WO2009140949A1 - Rotorblatt mit darin integriertem radarabsorber für eine windkraftanlage - Google Patents

Rotorblatt mit darin integriertem radarabsorber für eine windkraftanlage Download PDF

Info

Publication number
WO2009140949A1
WO2009140949A1 PCT/DE2009/000689 DE2009000689W WO2009140949A1 WO 2009140949 A1 WO2009140949 A1 WO 2009140949A1 DE 2009000689 W DE2009000689 W DE 2009000689W WO 2009140949 A1 WO2009140949 A1 WO 2009140949A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor blade
radar
absorber
radar absorber
layer
Prior art date
Application number
PCT/DE2009/000689
Other languages
English (en)
French (fr)
Inventor
Joachim Bettermann
Andreas Frye
Original Assignee
Eads Deutschland Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eads Deutschland Gmbh filed Critical Eads Deutschland Gmbh
Priority to EP09749491.8A priority Critical patent/EP2297815B1/de
Priority to ES09749491.8T priority patent/ES2650805T3/es
Priority to DK09749491.8T priority patent/DK2297815T3/en
Priority to BRPI0913066-7A priority patent/BRPI0913066B1/pt
Priority to US12/993,655 priority patent/US8932025B2/en
Publication of WO2009140949A1 publication Critical patent/WO2009140949A1/de
Priority to US14/559,499 priority patent/US20150153448A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • F03D1/065Rotors characterised by their construction elements
    • F03D1/0675Rotors characterised by their construction elements of the blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • F03D80/10Arrangements for warning air traffic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/99Radar absorption
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2280/00Materials; Properties thereof
    • F05B2280/60Properties or characteristics given to material by treatment or manufacturing
    • F05B2280/6003Composites; e.g. fibre-reinforced
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2280/00Materials; Properties thereof
    • F05B2280/60Properties or characteristics given to material by treatment or manufacturing
    • F05B2280/6011Coating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2280/00Materials; Properties thereof
    • F05B2280/60Properties or characteristics given to material by treatment or manufacturing
    • F05B2280/6013Fibres
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2253/00Other material characteristics; Treatment of material
    • F05C2253/04Composite, e.g. fibre-reinforced
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2253/00Other material characteristics; Treatment of material
    • F05C2253/12Coating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2253/00Other material characteristics; Treatment of material
    • F05C2253/16Fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q17/00Devices for absorbing waves radiated from an antenna; Combinations of such devices with active antenna elements or systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the invention relates to a rotor blade made of fiber-reinforced plastic for a wind turbine.
  • a passive radar absorber integrated into the surface.
  • a moving object is generated for air traffic control radar systems, which require the direction and the distance of a flying object as a 2-D radar system for display.
  • the rotor blades as moving objects are characterized by a sufficiently strong reflection with Doppler components.
  • additional moving targets for the radar are generated, which hinder or distort the representation of a lane of an actual flying object.
  • the object of the present invention is to ensure through the specific use of a radar absorber that the radar system recognizes the wind turbine as such and can distinguish it from an actual flying object.
  • the passive radar absorber which is embedded in the fiber-reinforced plastic material of the rotor blade, comprises the following elements:
  • a layer near the surface in particular formed from a fleece, fabric, knitted fabric or a film. It has a defined electrical
  • the surface-distant layer can also be used as
  • Nonwoven fabric, woven, knitted or foil be formed.
  • the surface-distant layer is a technically conductive layer with a defined electrical surface resistance of a maximum of 50 ohms / square.
  • the integrated radar absorber is selective to one or more discrete, i. limited areas of the rotor blade separate, without covering the entire surface of the rotor blade.
  • area regions on the rotor blade edges are preferred, wherein the absorber can also be limited exclusively to surface regions on the rotor blade edges.
  • a portion of the rotor blade edges is located in at least one of the discrete surface areas where the radar absorber is present.
  • a portion of the rotor blade edges is located in all discrete surface areas where the radar absorber is present.
  • This absorber construction according to the invention ensures monostatic reflection reduction in a limited angle of incidence range. Since the radar absorber does not have to cover all reflection-relevant surface areas, there are advantages in terms of material consumption and weight.
  • a defined time-dependent reflection intensity is generated during a rotation of the rotor whose characteristic makes it possible for the signal processing of a radar system to identify and filter out this object as a wind turbine. The tracking or tracking of an actual flying object is not affected.
  • the starting materials generally used for these materials can be used (resin or polymer matrix, carbon, glass or aramid fibers).
  • the near-surface layer of the radar absorber may advantageously have a preferred direction in the surface, which causes a direction-dependent surface conductivity. This can be achieved, for example, by differences in the fiber compaction or in the fiber diameter.
  • 1a shows the representation of the temporal dependence of the radar cross section of a wind turbine without inventive radar absorber.
  • FIG. 1b shows the representation of the dynamic radar cross section of a wind power plant without a radar absorber according to the invention detected by a radar with a circulation time of 4.2 seconds;
  • FIG. 2a shows the representation of the temporal dependence of the radar cross section of a wind turbine with inventive radar absorber.
  • FIG. 2b shows the representation of the dynamic radar cross section of a wind power plant with radar absorber according to the invention detected by a radar with a circulation time of 4.2 seconds;
  • Fig. 3a structure of a radar absorber according to the invention, integrated in the rotor blade of the wind turbine;
  • FIG. 3b shows the frequency response of the reflection reduction (in dB) of the radar absorber according to the invention according to FIG. 3a.
  • FIGS. 1a and 1b relate to a rotor without a radar absorber according to the invention.
  • Fig. 1a shows the time dependence with which over a period of 10 seconds (in continuous lighting) a wind turbine is detected by a radar.
  • Fig. 1b shows a representation of the dynamic detected by the radar
  • the radar has a cycle time of 4.2 seconds, i. the radar detects the wind turbine only in successive times with a time interval corresponding to its orbital period. Accordingly, it can be seen from Fig. 1b pronounced radar reflections at a distance of about 4.2 seconds. Taking a value of 200 units on the vertical axis as a threshold value, the radar reflex of the wind turbine falls within 60 seconds in the measurement shown only 2 times (at about 17s and 38s). However, tracking and tracking of the target by the radar is not affected by such single radar echo failures. The wind turbine is thus interpreted by the radar as a moving target.
  • Figures 2a and 2b show the corresponding graphs for a wind turbine with rotor blades according to the invention, i. with integrated radar absorber.
  • a comparison of Fig. 2a with Fig. 1a shows that
  • the radar absorber thus not only provides a reflection attenuation with respect to the maximum strength of the detected signal, but also reduces the width of the maxima significantly.
  • Fig. 2b the absolute values of the radar reflections in Fig. 2b are generally reduced compared to Fig. 1b; b) in Fig. 2b, the number of radar reflections above 200 units on the vertical axis is less (on average, more than each falls) second radar reflex of the wind turbine).
  • 3a shows a cross-sectional view of an embodiment of the passive radar absorber according to the invention, which is integrated in the rotor blade.
  • the surface of the passive radar absorber according to the invention is integrated in the rotor blade.
  • Rotor blade is on the left side. All elements of the absorber are embedded in and surrounded by the fiber-reinforced plastic material of the rotor blade.
  • the near-surface layer VS e.g., a non-woven, woven, knitted or foil
  • the surface-smooth layer ES electrically conductive base area of the absorber
  • FIG. 3b shows the frequency response of the associated reflection coefficient for this absorber. As you can see, the absorber in this version is optimized for the frequency of 2.9 GHz.
  • FIG. 4 shows a rotor blade R according to the invention in several views from which, in particular, the distribution of the absorber in the surface of the rotor blade can be seen.
  • Fig. 4a From the 3-D representation of Fig. 4a can be seen two discrete surface areas AB1, AB2, where the radar absorber is integrated into the rotor blade R. Both surface areas are located at the rotor blade edges, with one AB2 at the leading edge and the other AB1 at the trailing edge.
  • the absorber AB2 is pulled over the rotor edge and distributed asymmetrically on the lower and upper side of the rotor blade (the absorber AB1 in the surface region at the trailing edge is not shown in FIG. 4b).
  • An arrangement of the absorbers AB 1, AB 2 in the immediate vicinity of the edge of the sheet, as is generally apparent from FIGS. 4 a - c, is particularly advantageous for producing the effect according to the invention.
  • An arrangement of the absorbers exclusively at the sheet edges, as shown in FIG. 4, is already sufficient for producing the effect according to the invention. It is not necessary to provide the leaf edges in their entire length with the absorber.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Wind Motors (AREA)

Abstract

Die Erfindung betrifft ein Rotorblatt (R) aus faserverstärktem Kunststoff für eine Windkraftanlage, das einen in den faserverstärkten Kunststoff eingebetteten Radarabsorber mit folgenden Elementen aufweist: - einer oberflächennahen Schicht (VS) mit einem definierten elektrischen Flächenwiderstand von 100 bis 800 Ohm/Quadrat, welche sich in einer Tiefe von 2 bis 5 mm unterhalb der Oberfläche befindet, - einer oberflächenfernen Schicht (ES) mit einem definierten elektrischen Flächenwiderstand von maximal 50 Ohm/Quadrat in einem Abstand zur oberflächennahen Schicht (VS) von 5 bis 16 mm, wobei der integrierte Radarabsorber einen oder mehrere diskrete Flächenbereiche (AB1, AB2) des Rotorblatts (R) abdeckt, ohne die gesamte Oberfläche des Rotorblatts (R) abzudecken.

Description

Rotorblatt mit darin integriertem Radarabsorber für eine Windkraftanlage
Die Erfindung betrifft ein Rotorblatt aus faserverstärktem Kunststoff für eine Windkraftanlage. Zur Radarreflexionsminderung umfasst es einen in die Oberfläche integrierten passiven Radarabsorber.
Durch die Bewegung der Windenergierotoren bzw. der Rotorblätter wird für Radarsysteme der Flugsicherung, die als 2-D-Radarsysteme die Richtung und die Entfernung eines Flugobjektes zur Darstellung benötigen, ein bewegtes Objekt generiert. Die Rotorblätter als bewegte Objekte sind wie Luftfahrtzeuge durch eine ausreichend starke Reflexion mit Doppleranteilen gekennzeichnet. Dadurch werden zusätzliche Bewegtziele für das Radar erzeugt, die die Darstellung einer Flugspur eines tatsächlichen Flugobjektes behindern oder verfälschen.
Aus früheren Patentanmeldungen, z.B. der DE 199 29 081 A1 , sind für die
Radarreflexionsminderung Interferenzabsorber und Jaumannabsorberbauweisen bekannt, die eine besonders hochwertige Radarreflexionsminderung sicherstellen. Durch den sehr hohen Radarquerschnitt einer Windenergieanlage von mehr als 400 m2 ist jedoch eine ausreichende Reflexionsdämpfung von mehr als 20 dB im Betriebfrequenzbereich von Radarsystemen zur Flugsicherung nicht unter allen Witterungsbedingungen gewährleistet. Allen bisherigen Lösungen und Herstellverfahren ist gemeinsam, dass möglichst alle reflexionsrelevanten Oberflächenbereiche eine reflexionsdämpfende Wirkung zeigen.
Aufgabe der vorliegenden Erfindung ist es, durch den spezifischen Einsatz eines Radarabsorbers sicherzustellen, dass die Radaranlage die Windkraftanlage als solche erkennt und sie von einem tatsächlichen Flugobjekt unterscheiden kann.
Diese Aufgabe wird mit dem Gegenstand des Patentanspruch 1 gelöst. Vorteilhafte Ausführungen der Erfindung sind Gegenstand von Unteransprüchen. Erfindungsgemäß umfasst der passive Radarabsorber, der in das faserverstärkte Kunststoffmaterial des Rotorblatts eingebettet ist, folgende Elemente:
einer oberflächennahen Schicht, insbesondere gebildet aus einem Vlies, Gewebe, Gewirke oder eine Folie. Sie weist einen definierten elektrischen
Flächenwiderstand von 100 bis 800 Ohm/Quadrat auf und befindet sich in einer Tiefe von 2 bis 5 mm unterhalb der Oberfläche des Rotorblatts;
einer oberflächenfernen Schicht in einem Abstand zur oberflächennahen Schicht von 5 bis 16 mm. Die oberflächenferne Schicht kann ebenfalls als
Vlies, Gewebe, Gewirke oder Folie ausgebildet sein. Bei der oberflächenfernen Schicht handelt es sich um eine technisch leitfähige Schicht mit einem definierten elektrischen Flächenwiderstand von maximal 50 Ohm/Quadrat.
Der integrierte Radarabsorber ist selektiv auf einen oder mehrere diskrete, d.h. voneinander getrennte Flächenbereiche des Rotorblatts beschränkt, ohne die gesamte Oberfläche des Rotorblatts abzudecken.
Dabei sind Flächenbereiche an den Rotorblattkanten bevorzugt, wobei der Absorber auch ausschließlich auf Flächenbereiche an den Rotorblattkanten beschränkt sein kann.
In einer Ausführung des Rotorblatts befindet sich in mindestens einem der diskreten Flächenbereiche, an denen der Radarabsorber vorhanden ist, ein Abschnitt der Rotorblattkanten.
In einer weiteren Ausführung befindet sich in sämtlichen diskreten Flächenbereichen, an denen der Radarabsorber vorhanden ist, ein Abschnitt der Rotorblattkanten.
Diese erfindungsgemäße Absorberbauweise stellt in einem beschränkten Einfallswinkelbereich eine monostatische Reflexionsminderung sicher. Da der Radarabsorber nicht sämtliche reflexionsrelevanten Oberflächenbereiche abdecken muss, ergeben sich Vorteile hinsichtlich Materialverbrauch und Gewicht.
Durch die selektive Anordnung des Radarabsorbers auf einem oder mehreren isolierten Oberflächenbereichen der Rotorblätter wird bei einer Drehung des Rotors eine definierte zeitabhängige Reflexionsintensität erzeugt, deren Charakteristik es der Signalverarbeitung einer Radaranlage ermöglich, dieses Objekt als Windenergieanlage zu identifizieren und auszufiltern. Die Spurbildung bzw. Verfolgung eines tatsächlichen Flugobjektes wird dadurch nicht beeinträchtigt.
Die Güte der Reflexionsdämpfung des Radarabsorbers und der Flächeneinsatz des Radarabsorbers im Hinblick auf die Formgebung, die Abmessungen des Rotorblattes und die Drehgeschwindigkeit des Rotors ermöglichen, eine definierte zeitliche Abhängigkeit der Reflexionsintensität in Richtung des Radaranlage sicherzustellen.
Für das faserverstärkte Kunststoffmaterial des Rotorblatts können die allgemein für diese Werkstoffe eingesetzten Ausgangsmaterialien verwendet werden (Harz- oder Polymermatrix; Kohlenstoff-, Glas- oder Aramidfasern).
Um für die oberflächennahe Schicht des Radarabsorbers den benötigten elektrischen Flächenwiderstand von 100 bis 800 Ohm/Quadrat einzustellen, können handelsübliche Fasermaterialien geringer elektrischer Leitfähigkeit entsprechend angepasst werden, z.B. durch Einweben metallischer Fäden oder durch Beschichtung des Fasermaterials mit leitfähigen Materialien.
Um für bestimmte Polarisationsrichtungen des Radarsystems wirksam zu sein, kann die oberflächennahe Schicht des Radarabsorbers vorteilhaft eine Vorzugsrichtung in der Fläche aufweisen, die eine richtungsabhängige Flächenleitfähigkeit bewirkt. Dies kann z.B. durch Unterschiede in der Faserverdichtung oder im Faserdurchmesser erzielt werden. Die Erfindung wird anhand mehrerer Figuren näher erläutert. Es zeigen:
Fig. 1a die Darstellung der zeitlichen Abhängigkeit des Radarquerschnitts einer Windkraftanlage ohne erfindungsgemäßem Radarabsorber;
Fig. 1 b die Darstellung des von einem Radar mit einer Umlaufzeit von 4,2 Sekunden erfassten dynamischen Radarquerschnitts einer Windkraftanlage ohne erfindungsgemäßem Radarabsorber;
Fig. 2a die Darstellung der zeitlichen Abhängigkeit des Radarquerschnitts einer Windkraftanlage mit erfindungsgemäßem Radarabsorber;
Fig. 2b die Darstellung des von einem Radar mit einer Umlaufzeit von 4,2 Sekunden erfassten dynamischen Radarquerschnitts einer Windkraftanlage mit erfindungsgemäßem Radarabsorber;
Fig. 3a Aufbau eines erfindungsgemäßen Radarabsorbers, integriert in das Rotorblatt der Windkraftanlage;
Fig. 3b Frequenzgang der Reflektionsminderung (in dB) des erfindungsgemäßen Radarabsorbers gemäß Fig. 3a.
Fig. 4 zeigt ein erfindungsgemäßes Rotorblatt in drei Ansichten:
Fig. 4a 3D-Darstellung Fig. 4b Schnittdarstellung
Fig. 4c Draufsicht.
Anhand der Fig. 1 und 2 soll zunächst das Funktionsprinzip des erfindungsgemäßen Radarabsorbers erläutert werden.
Die Fig. 1a und 1b beziehen sich dabei auf einen Rotor ohne erfindungsgemäßen Radarabsorber. Fig. 1a zeigt die zeitliche Abhängigkeit, mit der über einen Zeitraum von 10 Sekunden (bei Dauerbeleuchtung) eine Windkraftanlage von einem Radar detektiert wird. Man erkennt einen aufgrund der Rotorbewegung stark schwankenden zyklischen Verlauf mit breiten Maxima.
Fig. 1 b zeigt eine Darstellung des vom Radar erfassten dynamischen
Radarquerschnitts der Windkraftanlage über einen Zeitraum von 60 Sekunden in willkürlichen Einheiten (es wird zur Vereinfachung nur das oben zeigende Rotorblatt berücksichtigt unter der Annahme, dass das Rotorblatt entlang seiner Gesamtausdehnung störwirksame Reflexionsbeiträge liefert). Das Radar hat hier eine Umlaufzeit von 4,2 Sekunden, d.h. das Radar erfasst die Windkraftanlage nur in aufeinanderfolgenden Zeitpunkten mit einem zeitlichen Abstand entsprechend seiner Umlaufzeit. Demgemäß erkennt man aus der Fig. 1b ausgeprägte Radarreflexe im Abstand von jeweils ca. 4,2 Sekunden. Nimmt man einen Wert von 200 Einheiten auf der vertikalen Achse als Schwellwert, so fällt der Radarreflex der Windkraftanlage innerhalb von 60 Sekunden bei der dargestellten Messung nur 2 Mal aus (bei ca. 17s und 38s). Die Verfolgung und Spurbildung des Ziels durch das Radar wird durch solche einzelne Ausfälle des Radarechos jedoch nicht beeinträchtigt. Die Windkraftanlage wird vom Radar somit als Bewegtziel interpretiert.
Fig. 2a und Fig. 2b zeigt die entsprechenden Graphen für eine Windkraftanlage mit erfindungsgemäßen Rotorblättern, d.h. mit darin integriertem Radarabsorber. Ein Vergleich von Fig. 2a mit Fig. 1a zeigt, dass
a) der absolute Wert des Radarquerschnitts bei Fig. 2a geringer ist als in Fig. 1a b) die Breite der Maxima bei Fig. 2a geringer ist als bei Fig. 1a.
Der Radarabsorber sorgt also nicht nur für eine Reflektionsdämpfung hinsichtlich der maximalen Stärke des detektierten Signals, sondern reduziert auch die Breite der Maxima wesentlich. Diese Unterschiede führen bei den dynamischen Radarquerschnitten (Umlaufzeit des Radars jeweils 4,2 s) gemäß den Fig. 1b, und 2b dazu, dass
a) bei Fig. 2b die absoluten Werte der Radarreflexe in Fig. 2b gegenüber Fig. 1b generelle vermindert sind, b) bei Fig. 2 b die Anzahl der Radarreflexe oberhalb von 200 Einheiten auf der vertikalen Achse geringer ist (durchschnittlich fällt mehr als jeder zweite Radarreflex der Windkraftanlage aus).
Durch den häufigen Ausfall der Radarreflexe der Windkraftanlage kann die
Signalverarbeitung eines Radars erkennen, dass es sich hier nicht um ein echtes, sondern lediglich um ein Scheinziel handelt, das ausgefiltert werden muss.
Fig.3a zeigt in Querschnittdarstellung eine Ausführung des erfindungsgemäßen passiven Radarabsorbers, der im Rotorblatt integriert ist. Die Oberfläche des
Rotorblatts befindet sich auf der linken Seite. Sämtliche Elemente des Absorbers sind in das faserverstärkte Kunststoffmaterial des Rotorblatts eingebettet und von diesem umgeben.
In einem Abstand von 2 bis 5 mm unterhalb der Oberfläche des Rotorblatts befindet sich die oberflächennahe Schicht VS (z.B. ein Vlies, Gewebe, Gewirke oder eine Folie) mit einem Flächenwiderstand von 100 bis 800 Ohm/Quadrat. In einem Abstand von 5 bis 16 mm unterhalb der oberflächennahen Schicht VS ist die oberflächenfeme Schicht ES (elektrisch leitfähige Grundfläche des Absorbers) vorhanden.
Fig. 3b zeigt für diesen Absorber den Frequenzgang des zugehörigen Reflektionskoeffizienten. Wie man daraus erkennt, ist der Absorber in dieser Ausführung für die Frequenz von 2,9 GHz optimiert. Die Fig. 4 zeigt ein erfindungsgemäßes Rotorblatt R in mehreren Ansichten, aus denen man insbesondere die Verteilung des Absorbers in der Fläche des Rotorblatts entnehmen kann.
Aus der 3-D-Darstellung der Fig. 4a erkennt man zwei diskrete Flächenbereiche AB1 ,AB2, an denen der Radarabsorber in das Rotorblatt R integriert ist. Beide Flächenbereiche liegen an den Rotorblattkanten, wobei einer AB2 an der Vorderkante liegt und der andere AB1 an der Hinterkante.
Wie man aus der Schnittdarstellung gemäß Fig. 4b erkennen kann, ist der Absorber AB2 über die Rotorkante gezogen und dabei unsymmetrisch auf Unter- und Oberseite des Rotorblatts verteilt (der Absorber AB1 in dem Flächenbereich an der Hinterkante ist in Fig. 4b nicht dargestellt). Eine Anordnung der Absorber AB 1,AB2 in unmittelbarer Umgebung der Blattkante, wie generell aus den Fig. 4a-c hervorgeht, ist für die Erzeugung des erfindungsgemäßen Effekts besonders vorteilhaft. Eine Anordnung der Absorber ausschließlich an den Blattkanten wie in der Fig. 4 gezeigt, reicht für die Erzeugung des erfindungsgemäßen Effekts bereits aus. Es ist dabei nicht notwendig, die Blattkanten in ihrer gesamten Länge mit dem Absorber zu versehen.

Claims

Patentansprüche
1. Rotorblatt (R) aus faserverstärktem Kunststoff für eine Windkraftanlage, das einen in den faserverstärkten Kunststoff eingebetteten Radarabsorber mit folgenden Elementen aufweist:
- einer oberflächennahen Schicht (VS) mit einem definierten elektrischen Flächenwiderstand von 100 bis 800 Ohm/Quadrat, welche sich in einer Tiefe von 2 bis 5 mm unterhalb der Oberfläche befindet,
einer oberflächenfernen Schicht (ES) mit einem definierten elektrischen Flächenwiderstand von maximal 50 Ohm/Quadrat in einem Abstand zur oberflächennahen Schicht (VS) von 5 bis 16 mm,
wobei der integrierte Radarabsorber einen oder mehrere diskrete Flächenbereiche (AB1 , AB2) des Rotorblatts (R) abdeckt, ohne die gesamte Oberfläche des Rotorblatts (R) abzudecken.
2. Rotorblatt nach Anspruch 1, dadurch gekennzeichnet, dass sich in mindestens einem der diskreten Flächenbereiche (AB1, AB2) ein Abschnitt der Rotorblattkanten befindet.
3. Rotorblatt nach Anspruch 1 , dadurch gekennzeichnet, dass sich in sämtlichen diskreten Flächenbereichen (AB1 ,AB2) jeweils ein Abschnitt der
Rotorblattkanten befindet.
4. Rotorblatt nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die oberflächennahe Schicht (VS) eine Vorzugsrichtung in der Fläche aufweist, die eine richtungsabhängige Flächenleitfähigkeit bewirkt.
5. Rotorblatt nach einem der vorangehenden Ansprüchen, dadurch gekennzeichnet, dass die oberflächennahe Schicht (VS) aus einem Vlies, Gewebe, Gewirke oder einer Folie besteht.
6. Rotorblatt nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die oberflächenferne Schicht (ES) aus einem Vlies, Gewebe, Gewirke oder einer Folie besteht.
PCT/DE2009/000689 2008-05-21 2009-05-16 Rotorblatt mit darin integriertem radarabsorber für eine windkraftanlage WO2009140949A1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP09749491.8A EP2297815B1 (de) 2008-05-21 2009-05-16 Rotorblatt mit darin integriertem radarabsorber für eine windkraftanlage
ES09749491.8T ES2650805T3 (es) 2008-05-21 2009-05-16 Pala de rotor con absorbedor de radar integrado en ella para una instalación de energía eólica
DK09749491.8T DK2297815T3 (en) 2008-05-21 2009-05-16 ROTOR SHEET WITH INTEGRATED RADAR ABSORBER FOR A WINDOW POWER PLANT
BRPI0913066-7A BRPI0913066B1 (pt) 2008-05-21 2009-05-16 lâmina de rotor com absorvedor de radar integrado para uma central eólica
US12/993,655 US8932025B2 (en) 2008-05-21 2009-05-16 Rotor blade with an integrated radar absorber for a wind power plant
US14/559,499 US20150153448A1 (en) 2008-05-21 2014-12-03 Rotor Blade with an Integrated Radar Absorber for a Wind Power Plant

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008024644.1 2008-05-21
DE102008024644.1A DE102008024644B4 (de) 2008-05-21 2008-05-21 Rotorblatt mit darin integriertem Radarabsorber für eine Windkraftanlage

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US12/993,655 A-371-Of-International US8932025B2 (en) 2008-05-21 2009-05-16 Rotor blade with an integrated radar absorber for a wind power plant
US14/559,499 Continuation US20150153448A1 (en) 2008-05-21 2014-12-03 Rotor Blade with an Integrated Radar Absorber for a Wind Power Plant

Publications (1)

Publication Number Publication Date
WO2009140949A1 true WO2009140949A1 (de) 2009-11-26

Family

ID=41253691

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2009/000689 WO2009140949A1 (de) 2008-05-21 2009-05-16 Rotorblatt mit darin integriertem radarabsorber für eine windkraftanlage

Country Status (7)

Country Link
US (2) US8932025B2 (de)
EP (1) EP2297815B1 (de)
BR (1) BRPI0913066B1 (de)
DE (1) DE102008024644B4 (de)
DK (1) DK2297815T3 (de)
ES (1) ES2650805T3 (de)
WO (1) WO2009140949A1 (de)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010122352A2 (en) 2009-04-23 2010-10-28 Vestas Wind Systems A/S Improvements in or relating to composite structures
US20110020110A1 (en) * 2008-10-06 2011-01-27 Flodesign Wind Turbine Corporation Wind turbine with reduced radar signature
GB2484941A (en) * 2010-10-26 2012-05-02 Vestas Wind Sys As Material with radar absorbing circuit analogue elements for surface application to a wind turbine component
US20120141285A1 (en) * 2010-12-03 2012-06-07 Eads Deutschland Gmbh Rotor Blade for a Wind Turbine, and a Combination of a Radar Station and a Wind Turbine
EP2463515A1 (de) * 2010-12-08 2012-06-13 Ineo Defense Flügel einer Windkraftanlage mit reduziertem Radarquerschnitt, und mit einem solchen Flügel ausgestattete Windkraftanlage
EP2660463A1 (de) * 2009-11-02 2013-11-06 QinetiQ Limited Windturbinenschaufeln
US8827645B2 (en) 2009-04-23 2014-09-09 Vestas Wind Systems A/S Composite structures
CN106772440A (zh) * 2017-01-12 2017-05-31 杭州赛尤企业管理咨询有限公司 采用变频激光测风雷达的测风系统及变频控制方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010050591A1 (de) 2010-11-05 2012-05-10 Eads Deutschland Gmbh Windpark, Windenergieanlage in einem Windpark, sowie Betriebssteuerung hierfür
WO2012064125A1 (ko) * 2010-11-10 2012-05-18 한국기계연구원 유전성 손실시트를 활용한 전자파 흡수체, 형성 방법 및 이를 이용한 전자파 흡수 기능을 구비한 풍력 발전기용 회전 날개
EP2481918B1 (de) 2011-01-28 2015-08-26 Nordex Energy GmbH Verfahren zum Betreiben einer Windenergieanlage in einem Radarwirkungsbereich
US20130017096A1 (en) * 2011-07-13 2013-01-17 Charles Holley Reducing radar interference from wind turbines
US9140234B2 (en) 2012-01-11 2015-09-22 General Electric Company Wind turbine rotor blades with reduced radar cross sections
US9404371B1 (en) 2013-03-15 2016-08-02 Sandia Corporation Reduction of radar cross-section of a wind turbine

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0378839A2 (de) * 1989-01-14 1990-07-25 Messerschmitt-Bölkow-Blohm Gesellschaft mit beschränkter Haftung Rotorblatt
EP0499868A2 (de) * 1991-02-06 1992-08-26 Flachglas Aktiengesellschaft Verglasungselement mit niedrigem Radarreflexionsgrad
DE4216837A1 (de) * 1992-05-21 1993-11-25 Deutsche Aerospace Radartarnung für langsamfliegende rollstabilisierte Flugkörper
EP0677888A1 (de) * 1994-04-15 1995-10-18 TDK Corporation Absorber für elektromagnetische Wellen
DE3821588C1 (de) * 1987-06-26 1998-02-26 Aerospatiale Flügelblatt mit schwachem Radarecho
DE19929081A1 (de) * 1999-03-26 2000-10-19 Daimler Chrysler Ag Radarabsorbierende Verbundglasscheibe

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2599944A (en) 1943-05-11 1952-06-10 Us Navy Absorbent body for electromagnetic waves
DE3622908A1 (de) 1986-07-08 1988-01-28 Ruppert Maritta Propeller fuer eine windkraftmaschine, sowie verfahren und vorrichtung zur herstellung
DE4436197C2 (de) 1994-10-11 1998-09-24 Aloys Wobben Windenergieanlage mit Blitzschutzeinrichtung
AU2002354986B2 (en) 2001-07-19 2006-11-30 Vestas Wind Systems A/S Wind turbine blade
DE102006009480B4 (de) 2006-02-27 2008-05-29 Eads Deutschland Gmbh Aerodynamisches Profil für Luftfahrzeuge und Windkraftanlagen sowie Verfahren zur Messung der Eisdicke auf einem aerodynamischen Profil
MX2009000466A (es) 2006-07-14 2009-03-13 Vestas Wind Sys As Turbina eolica que comprende una estructura de gabinete para formar una jaula de faraday.

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3821588C1 (de) * 1987-06-26 1998-02-26 Aerospatiale Flügelblatt mit schwachem Radarecho
EP0378839A2 (de) * 1989-01-14 1990-07-25 Messerschmitt-Bölkow-Blohm Gesellschaft mit beschränkter Haftung Rotorblatt
EP0499868A2 (de) * 1991-02-06 1992-08-26 Flachglas Aktiengesellschaft Verglasungselement mit niedrigem Radarreflexionsgrad
DE4216837A1 (de) * 1992-05-21 1993-11-25 Deutsche Aerospace Radartarnung für langsamfliegende rollstabilisierte Flugkörper
EP0677888A1 (de) * 1994-04-15 1995-10-18 TDK Corporation Absorber für elektromagnetische Wellen
DE19929081A1 (de) * 1999-03-26 2000-10-19 Daimler Chrysler Ag Radarabsorbierende Verbundglasscheibe

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PAUL SAVILLE: "Review of Radar Absorbing Materials", no. TM 2005-003, 3 January 2005 (2005-01-03), Dartmouth, NS, CA, XP002541734, Retrieved from the Internet <URL:http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA436262&Location=U2&doc=GetTRDoc.pdf> [retrieved on 20090818] *

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110020110A1 (en) * 2008-10-06 2011-01-27 Flodesign Wind Turbine Corporation Wind turbine with reduced radar signature
WO2010122352A3 (en) * 2009-04-23 2011-06-16 Vestas Wind Systems A/S Improvements in or relating to composite structures
WO2010122352A2 (en) 2009-04-23 2010-10-28 Vestas Wind Systems A/S Improvements in or relating to composite structures
US9234499B2 (en) 2009-04-23 2016-01-12 Qinetiq Limited Composite structures
US8827645B2 (en) 2009-04-23 2014-09-09 Vestas Wind Systems A/S Composite structures
EP2660463A1 (de) * 2009-11-02 2013-11-06 QinetiQ Limited Windturbinenschaufeln
US8992181B2 (en) 2009-11-02 2015-03-31 Qinetiq Limited Wind turbine blades
EP2412525A1 (de) * 2010-07-29 2012-02-01 Flodesign Wind Turbine Corp. Windkraftanlage mit verringerter Radarsignatur
GB2484941A (en) * 2010-10-26 2012-05-02 Vestas Wind Sys As Material with radar absorbing circuit analogue elements for surface application to a wind turbine component
WO2012056230A1 (en) * 2010-10-26 2012-05-03 Vestas Wind Systems A/S Wind turbine component comprising radar -absorbing material
US9506349B2 (en) 2010-10-26 2016-11-29 Vestas Wind Systems A/S Wind turbine component comprising radar-absorbing material
CN102606384A (zh) * 2010-12-03 2012-07-25 伊德斯德国股份有限公司 用于风能设备的转子叶片、以及雷达站和风能设备的组合
US20120141285A1 (en) * 2010-12-03 2012-06-07 Eads Deutschland Gmbh Rotor Blade for a Wind Turbine, and a Combination of a Radar Station and a Wind Turbine
US9062658B2 (en) * 2010-12-03 2015-06-23 Eads Deutschland Gmbh Rotor blade for a wind turbine, and a combination of a radar station and a wind turbine
EP2461023A3 (de) * 2010-12-03 2016-10-26 Airbus Defence and Space GmbH Rotorblatt für eine Windenergieanlage, sowie Kombination einer Radarstation und einer Windenergieanlage
FR2968729A1 (fr) * 2010-12-08 2012-06-15 Ineo Defense Pale d'eolienne furtive amelioree et eolienne munie d'une telle pale
EP2463515A1 (de) * 2010-12-08 2012-06-13 Ineo Defense Flügel einer Windkraftanlage mit reduziertem Radarquerschnitt, und mit einem solchen Flügel ausgestattete Windkraftanlage
CN106772440A (zh) * 2017-01-12 2017-05-31 杭州赛尤企业管理咨询有限公司 采用变频激光测风雷达的测风系统及变频控制方法
CN106772440B (zh) * 2017-01-12 2023-09-19 杭州赛尤新能源科技有限公司 采用变频激光测风雷达的测风系统及变频控制方法

Also Published As

Publication number Publication date
ES2650805T3 (es) 2018-01-22
EP2297815A1 (de) 2011-03-23
US20110129352A1 (en) 2011-06-02
BRPI0913066B1 (pt) 2020-10-20
US8932025B2 (en) 2015-01-13
DK2297815T3 (en) 2018-01-08
US20150153448A1 (en) 2015-06-04
BRPI0913066A2 (pt) 2015-10-13
EP2297815B1 (de) 2017-10-04
DE102008024644B4 (de) 2018-07-26
DE102008024644A1 (de) 2009-12-03

Similar Documents

Publication Publication Date Title
DE102008024644B4 (de) Rotorblatt mit darin integriertem Radarabsorber für eine Windkraftanlage
DE102007004027A1 (de) Windenergieanlage mit Detektionseinrichtung
EP1989509B1 (de) Aerodynamisches profil für luftfahrzeuge und windkraftanlagen sowie verfahren zur messung der eisdicke auf einem aerodynamischen profil
WO2015075067A1 (de) Verfahren und windenergieanlage zur blitzwarnung
DE2151349A1 (de) Funkmess-Tarnung
EP1514023A1 (de) Rotorblatt einer windenergieanlage
EP1772622A1 (de) Verfahren zum Betreiben einer Windenergieanlage
EP2561977B1 (de) Verfahren zur Herstellung eines Windenergieanlagenrotorblattteils mit einem kohlenstofffaserverstärkten Hauptgurt
DE102015122933A1 (de) Verfahren zum Ermitteln eines Werts für eine Eisansatzmenge an mindestens einem Rotorblatt einer Windkraftanlage und dessen Verwendung
WO2017054966A1 (de) Windparkflugbefeuerungssystem sowie windpark damit und verfahren zur befeuerung eines windparks
EP2928774A2 (de) Einlauf für ein triebwerk eines luftfahrzeugs
EP2336557B1 (de) Verfahren zum Betrieb einer Windenergieanlage mit einem leistungsreduzierten Betriebsmodus
DE102014112926A1 (de) Niederschlagssensor, insbesondere Hagelsensor, und Verfahren zur Detektion eines Niederschlagsteilchens
DE102006054445A1 (de) Radarveränderungsstruktur mit Spiegelmustern aus leitendem Material
EP3536148A1 (de) Elektrischer weidezaunleiter, unempfindlich gegen pflanzenbewuchs, elektrischer weidezaun und herstellungsverfahren für einen elektrischen weidezaunleiter
EP3408532A2 (de) Holmgurt und herstellungsverfahren
DE69619153T2 (de) Verbundwerkstoffstruktur, fähig zur Absorption und Dissipation von auffallender elektromagnetischer Strahlungsenergie, insbesondere für Luft-, See- und Landfahrzeuge und für feste Bodeneinrichtungen
DE3901010C1 (de)
DE4014453C2 (de) Elektrisch leitfähiges Flächenelement sowie Verfahren zur Herstellung desselben
DE102012015456A1 (de) Vorrichtung und Verfahren zum Erfassen einer Verformung zumindest eines Rotorblatts eines Rotors einer Windenergieanlage
EP3866261B1 (de) Verfahren zum herstellen einer elektronikanordnung, die gegen raue umgebungsbedingungen geschützt ist, für luftfahrzeuge, elektronikanordnung und luftfahrzeug
EP2461023B1 (de) Rotorblatt für eine Windenergieanlage, sowie Kombination einer Radarstation und einer Windenergieanlage
EP2725225A2 (de) Windenergieanlage mit verringerter Radarreflektion
WO2020043870A1 (de) Rotorblatt für eine windenergieanlage und windenergieanlage
WO2020104585A1 (de) Rotorblatt mit einem elektrischen potentialausgleichselement und ein verfahren zu dessen herstellung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09749491

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2009749491

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009749491

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12993655

Country of ref document: US

ENP Entry into the national phase

Ref document number: PI0913066

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20101122