WO2009139344A1 - Drive device - Google Patents

Drive device Download PDF

Info

Publication number
WO2009139344A1
WO2009139344A1 PCT/JP2009/058741 JP2009058741W WO2009139344A1 WO 2009139344 A1 WO2009139344 A1 WO 2009139344A1 JP 2009058741 W JP2009058741 W JP 2009058741W WO 2009139344 A1 WO2009139344 A1 WO 2009139344A1
Authority
WO
WIPO (PCT)
Prior art keywords
vibration
moving
lens
friction portion
piezoelectric element
Prior art date
Application number
PCT/JP2009/058741
Other languages
French (fr)
Japanese (ja)
Inventor
俊彦 本間
賢 安食
Original Assignee
ミツミ電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ミツミ電機株式会社 filed Critical ミツミ電機株式会社
Priority to CN2009801173378A priority Critical patent/CN102027402A/en
Publication of WO2009139344A1 publication Critical patent/WO2009139344A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • G02B7/08Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification adapted to co-operate with a remote control mechanism
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/02Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing linear motion, e.g. actuators; Linear positioners ; Linear motors
    • H02N2/021Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing linear motion, e.g. actuators; Linear positioners ; Linear motors using intermittent driving, e.g. step motors, piezoleg motors
    • H02N2/025Inertial sliding motors

Definitions

  • the present invention relates to a drive device, and more particularly, to a drive device using an electromechanical transducer such as a piezoelectric element.
  • linear actuators that use electromechanical transducer elements such as piezoelectric elements, electrostrictive elements, and magnetostrictive elements have been used as autofocus actuators and zoom actuators for cameras.
  • Patent Document 1 discloses a piezoelectric element (electromechanical conversion element), a drive shaft (a wear-resistant vibration rod, a vibration friction portion, a vibration member) that is coupled to the piezoelectric element and extends in the expansion and contraction direction of the piezoelectric element.
  • a drive device including a driven member (zoom lens barrel, moving member) frictionally coupled to the drive shaft is disclosed.
  • a driven signal (zoom lens barrel, moving member) is driven by devising a drive signal to be applied to a piezoelectric element.
  • a drive shaft (vibration friction portion, vibration member) is sandwiched between a driven member (moving member) and a friction plate.
  • the drive shaft (vibration friction portion, vibration member) passes between the driven member (moving member) and the friction plate.
  • the friction plate is pressed by the pressure contact spring in a direction to sandwich the drive shaft (vibration friction portion, vibration member) with the driven member (moving member).
  • Patent Document 2 discloses that the mover is made of a liquid crystal polymer containing carbon fiber, thereby reducing the cost and weight and reducing the moving speed and driving force compared to the case where the mover is made of a metal material.
  • a high-performance drive device using a mover having a high flexural modulus is disclosed.
  • the driving device disclosed in Patent Document 2 includes a piezoelectric element (electromechanical conversion element) that expands and contracts when a voltage is applied, and a drive shaft (vibration friction portion, vibration member) that is fixed to one end of the expansion and contraction direction of the piezoelectric element.
  • a mover moving member slidably engaged with the drive shaft, and a weight (stationary member, weight) fixedly bonded to the other end in the expansion / contraction direction of the piezoelectric element.
  • the moving element is moved along the driving shaft (vibrating friction portion, vibrating member) by causing the driving shaft to vibrate by varying the expansion or contraction speed or acceleration of the piezoelectric element.
  • the drive shaft (vibration friction portion, vibration member) is formed of a round rod shaft body extending linearly.
  • the mover (moving member) includes a mover main body and a cap, and both engage with the drive shaft so as to sandwich the drive shaft.
  • the mover body and the cap are pressed against the drive shaft by a substantially U-shaped leaf spring so that a predetermined frictional force is generated between the drive shaft and the mover.
  • the mover body is provided with a groove having a V-shaped cross section. A drive shaft is fitted into the groove so that two inclined surfaces of the groove come into contact with the drive shaft.
  • the cap is provided with a groove having a V-shaped cross section.
  • the drive shaft is fitted in the groove of the cap, and the two inclined surfaces of the groove come into contact with the drive shaft.
  • a carbon fiber rod or carbon fiber reinforced resin in which carbon fibers are bundled and hardened with a binder is used as a material for the drive shaft.
  • a mixture of fluororesin, fluoro oil and solvent is applied on the mutual contact surface of the drive shaft or the mover which is the friction portion.
  • Patent Document 3 discloses a driving device that can stably drive a moving member at high speed.
  • the drive device disclosed in Patent Document 3 is coupled to a stationary member, an electromechanical conversion element having one end in the expansion / contraction direction fixed to the stationary member, and the other end in the expansion / contraction direction of the electromechanical conversion element.
  • a drive member (vibration friction part, vibration member) supported so as to be movable in the expansion / contraction direction of the mechanical conversion element, and a movement that is frictionally coupled to the drive member and supported so as to be movable in the expansion / contraction direction of the electromechanical conversion element
  • the apparatus includes a member, and a frictional force applying unit that generates a frictional force between the driving member (vibrating member) and the moving member.
  • the frictional force adding means includes an elastic member that is fixed to the moving member and generates a pressing force, and a sandwiching member that transmits the pressing force generated by the elastic member to the driving member. Moreover, the contact part of a moving member and a drive member and the contact part of a pinching member are made into V-shaped cross section.
  • Patent Document 4 discloses a drive device using an electromechanical transducer.
  • the driving device disclosed in Patent Document 4 includes an electromechanical transducer element fixed to a support base (stationary member) at one end, a vibration member (vibration friction portion) fixed to the other end of the electromechanical transducer element, A moving body (moving member) engaged with the vibrating member with a predetermined frictional force is provided. A carbon rod is used as the vibration member.
  • Patent Document 5 discloses a drive device having a short overall length.
  • the drive device disclosed in Patent Document 5 includes an electromechanical conversion element having one end fixed to a stationary body (stationary member), and a drive friction member (vibration friction portion, vibration) fixed to the other end of the electromechanical conversion element. Member) and a moving body (moving member) that frictionally engages with the driving friction member.
  • a stationary body stationary member
  • a drive friction member vibration friction portion, vibration
  • Member a moving body
  • moving body moving body that frictionally engages with the driving friction member.
  • ceramic materials ceramic materials, engineering plastics such as polyphenylene sulfide resin (PPS resin) and liquid crystal polymer (LCP resin), carbon reinforced resin, and glass fiber reinforced resin are used.
  • PPS resin polyphenylene sulfide resin
  • LCP resin liquid crystal polymer
  • carbon reinforced resin and glass fiber reinforced resin
  • the end face of the electromechanical conversion element and the end face of the vibration friction portion are directly coupled.
  • the vibration friction portion needs to efficiently transmit the vibration generated by the expansion and contraction of the electromechanical conversion element to the moving body. Therefore, a certain degree of rigidity is required for the vibration friction portion.
  • the vibration friction portion also has a role of smoothly reciprocating a moving member (moving body) frictionally coupled thereto.
  • an object of the present invention is to provide a drive device capable of expanding the degree of freedom of material selection for the vibration friction portion.
  • Another object of the present invention is to provide a driving device capable of expanding the degree of freedom of the shape of the vibration friction portion.
  • the driving device is attached to the electromechanical conversion element having first and second end faces opposed to each other in the expansion and contraction direction, and the second end face of the electromechanical conversion element. It is understood that the vibration friction portion is provided and a moving member frictionally coupled to the vibration friction portion. The moving member is movable in the expansion / contraction direction of the electromechanical transducer.
  • the drive device includes a vibration transmission member disposed between the second end face of the electromechanical transducer and the end face of the vibration friction portion.
  • the vibration transmission member is inserted between one of the pair of end faces of the electromechanical transducer and the end face of the vibration friction part, the degree of freedom in selecting the material of the vibration friction part can be expanded, and the vibration friction part The degree of freedom of the shape can be expanded.
  • FIG. 2 is a partially enlarged perspective view showing an enlarged main part of the drive device shown in FIG. 1. It is a side view of the principal part of the drive device shown in FIG. It is a wave form diagram for demonstrating the electric current supplied to a laminated piezoelectric element. It is a wave form diagram for demonstrating the displacement which generate
  • FIG. 6 It is side surface sectional drawing which shows the vibration transmission member used for the drive device shown in FIG. 6 with a vibration friction part and a laminated piezoelectric element (electromechanical conversion element). It is a perspective view which shows the modification of the drive device shown in FIG.
  • FIG. 1 is a perspective view showing the driving device 10.
  • FIG. 2 is a partially enlarged perspective view showing an enlarged main part of the driving apparatus 10 shown in FIG.
  • FIG. 3 is a side view of the main part of the driving device 10.
  • an orthogonal coordinate system (X, Y, Z) is used. 1 to 3, in the orthogonal coordinate system (X, Y, Z), the X-axis direction is the front-rear direction (depth direction), the Y-axis direction is the left-right direction (width direction), and Z The axial direction is the vertical direction (height direction).
  • the illustrated driving device 10 is used, for example, as an autofocus lens driving unit.
  • the vertical direction Z is the direction of the optical axis O of the lens.
  • the autofocus lens driving unit is composed of a lens movable part and a lens driving part.
  • the lens driving unit drives the lens moving unit as will be described later while supporting the lens moving unit slidably in the optical axis O direction.
  • the illustrated driving device 10 is arranged in a housing (not shown).
  • the housing includes a cup-shaped upper cover (not shown) and a lower base (not shown).
  • a stationary member (weight) 11 is mounted on the lower base of the housing.
  • the upper surface of the upper cover has a cylindrical portion (not shown) having the optical axis O as the central axis.
  • an image sensor arranged on the substrate is mounted in the center of the lower base.
  • This imaging device captures a subject image formed by a movable lens (described later) and converts it into an electrical signal.
  • the image pickup device is configured by, for example, a charge coupled device (CCD) image sensor, a complementary metal oxide (CMOS) image sensor, or the like.
  • a movable barrel (lens holder, lens support) 17 as a driven member is accommodated in the housing.
  • the movable lens barrel (lens holder, lens support) 17 has a cylindrical cylindrical portion 170 for holding a lens barrel (lens assembly) 18.
  • a lens barrel (lens assembly) 18 holds an autofocus lens AFL.
  • a female screw (not shown) is cut on the inner peripheral wall of the cylindrical portion 170 of the lens holder 17.
  • a male screw (not shown) that is screwed into the female screw is cut on the outer peripheral wall of the lens barrel 18.
  • the lens barrel 18 is rotated around the optical axis O and screwed along the optical axis O direction with respect to the cylindrical portion 170 of the lens holder 17.
  • the lens barrel 18 is accommodated in the lens holder 17 and bonded to each other by an adhesive or the like.
  • the lens holder 17 has a protrusion 172 that protrudes radially outward on the right side in the left-right direction Y of the cylindrical portion 170 with respect to the optical axis O.
  • the protruding portion 172 extends in the vertical direction Z in parallel with the optical axis O.
  • a rod-shaped first moving body (moving shaft) 121 is fixed to the rear wall of the protruding portion 172.
  • the first moving body 121 has a cylindrical shape.
  • the lens holder 17 has an extending part 174 that extends to the left in the left-right direction Y at the rear end of the cylindrical part 170.
  • the extending portion 174 is provided with a locking groove 174a for holding the first end 15a of the spring 15.
  • the spring 15 extends along the extending portion 174 from the first end portion 15a to the right end in the left-right direction Y to the second end portion 15b.
  • a rod-shaped second moving body (moving shaft) 122 is fixed to the second end 15 b of the spring 15.
  • the second moving body 122 is also cylindrical.
  • the second moving body (moving shaft) 122 is urged by the spring 15 in a direction approaching the first moving body (moving shaft) 121 (forward direction in the front-rear direction X).
  • a vibration friction portion (vibrating member) 14 described later is sandwiched between a first moving body (moving shaft) 121 and a second moving body (moving shaft) 122.
  • the first moving body 121 is longer than the second moving body 122.
  • the first moving body 121 and the second moving body 122 are made of the same material.
  • the combination of the first moving body 121 and the second moving body 122 is called a moving member.
  • the combination of the movable lens barrel (lens holder) 17, lens barrel (lens assembly) 18, spring 15, and first and second moving bodies 121 and 122 constitutes the lens movable part of the autofocus lens driving unit. Is done. As will be described later, a groove having a V-shaped cross section is formed on the friction surface of the vibration friction portion (vibration member) 14. Thereby, the lens movable part can move only in the optical axis O direction of the lens with respect to the housing.
  • the lens driving unit (driving device) 10 includes a laminated piezoelectric element 13 that functions as an electromechanical conversion element, the stationary member (weight) 11, the vibration friction unit (vibrating member) 14, and a vibration transmitting member 19.
  • the lens driving unit (driving device) 10 includes a laminated piezoelectric element 13 that functions as an electromechanical conversion element, the stationary member (weight) 11, the vibration friction unit (vibrating member) 14, and a vibration transmitting member 19.
  • the laminated piezoelectric element 13 expands and contracts in the direction of the optical axis O.
  • the laminated piezoelectric element 13 has a structure in which a plurality of piezoelectric layers are laminated in the optical axis O direction. As shown in FIG. 3, the laminated piezoelectric element 13 has a first end face (lower end face) 13a and a second end face (upper end face) 13b that face each other in the expansion / contraction direction.
  • the stationary member (weight) 11 is coupled to the first end surface (lower end surface) 13a of the laminated piezoelectric element 13 with an adhesive or the like. A combination of the laminated piezoelectric element 13 and the stationary member 11 is called a piezoelectric unit.
  • the vibration friction portion (vibration member) 14 is attached to the second end face (upper end face) 13b of the laminated piezoelectric element 13 with an adhesive or the like via the vibration transmission member 19. That is, the upper end surface 13b of the laminated piezoelectric element 13 is bonded (joined) to the lower end surface 19a of the vibration transmitting member 19 with an adhesive (adhesive resin), and the lower end surface 14a of the vibration friction portion (vibrating member) 14 is bonded to the adhesive. (Adhesive resin) is coupled (joined) to the upper end surface 19b of the vibration transmitting member 19.
  • the vibration transmission member 19 is added (intervened) between the vibration friction portion (vibration member) 14 and the laminated piezoelectric element (electromechanical conversion element) 13, vibration is generated.
  • the friction part (vibrating member) 14 only needs to have a structure that takes into account the slidability with the first and second moving bodies 121 and 122. Therefore, it is not necessary to select the material of the vibration friction portion (vibration member) 14 in consideration of resin adhesiveness with the electromechanical transducer (laminated piezoelectric element) 13. Thereby, the vibration friction part (vibration member) 14 expands not only the freedom degree of the material selection but the freedom degree of the shape. As a result, the adhesive strength between the electromechanical conversion element (laminated piezoelectric element) 13 and the vibration friction portion (vibration member) 14 can be increased.
  • vibration friction portion As the material of the vibration friction portion (vibration member) 14, aluminum whose surface is subjected to fluorine lubrication plating is used.
  • a material of the vibration transmission member 19 As a material of the vibration transmission member 19, an iron alloy (cold rolled thin plate (SPCC), stainless steel (SUS), etc.) is used.
  • the vibration transmitting member 19 by adding the vibration transmitting member 19, the material and shape of the vibration transmitting member 19 are combined with other members, so that the resonance phenomenon of the spring 15 can be suppressed. In other words, the resonance frequency of the driving device 10 can be set freely.
  • the vibration transmission member 19 can be manufactured with a simple shape, it is possible to reduce variation in performance of each product of the driving device 10.
  • the rod-shaped first and second moving bodies (moving shafts) 121 and 122 are frictionally coupled to the vibration friction portion (vibrating member) 14.
  • the vibration friction portion (vibration member) 14 has a first friction coupling portion (first friction surface) between the vibration friction portion 14 and the rod-shaped first moving shaft 121 at the front end in the front-rear direction X.
  • a groove 14b having a V-shaped first cross section is formed, and at the rear end in the front-rear direction X, a second friction coupling part (second second part) between the vibration friction part 14 and the rod-like second moving shaft 122 is formed.
  • a groove 14c having a second V-shaped cross section is formed on the friction surface.
  • the lens moving portion sandwiches the vibration friction portion (vibration member) 14 between the first and second friction surfaces of the first and second moving bodies (movement shafts) 121 and 122 in the form of rods.
  • Spring 15 is provided. That is, the first end 15a of the spring 15 is held by the locking groove 174a of the lens holder 17, and the second moving body (moving shaft) 122 attached to the second end 15b. A pressing force that presses the vibration friction portion (vibrating member) 14 toward the first moving body (moving shaft) 121 is generated. In other words, the spring 15 urges the second moving body (moving shaft) 122 to the vibration friction portion (vibration member) 14 to cause the vibration friction portion (vibration member) 14 to be the first and second movement bodies. As urging means for applying a frictional force between the vibration friction portion (vibrating member) 14 and the first and second moving bodies (moving shafts) 121 and 122 by being sandwiched between the (moving shafts) 121 and 122. Works.
  • the vibration friction portion (vibration member) 14 has both end faces (first and second formed on the first and second friction surfaces) facing each other in the direction orthogonal to the expansion and contraction direction of the multilayer piezoelectric element 13.
  • first and second movable bodies (moving shafts) 121 and 122 are sandwiched between the first and second movable bodies (moving shafts) 121 and 122, so that the position of the lens movable portion can be regulated and the lens movable portion is Rotation around one moving body (moving axis) 121 can be suppressed.
  • the first moving body 121 and the second moving body 122 are made of the same material.
  • the second frictional force acting between the second friction surface 122 and the second friction surface (the groove 14c having the second V-shaped cross section) of the vibration friction portion 14 can be made equal.
  • a lens movable part can be driven stably.
  • a first cross section V-shaped groove 14 b is formed in a first friction coupling portion (first friction surface) between the vibration friction portion 14 and the first moving body 121. .
  • the contact state of the first friction coupling portion (first friction surface) is stabilized and reproduced by the bilinear contact with the first moving body 121 by the groove 14b having the V-shaped first cross section of the vibration friction portion 14.
  • the first moving body 121 has an effect of increasing the straight movement as the uniaxial moving body.
  • the angle of the first cross-sectionally V-shaped groove 14b is desirably in the range of 30 degrees to less than 180 degrees.
  • a second V-shaped groove 14 c is formed in the second friction coupling portion (second friction surface) between the vibration friction portion 14 and the second moving body 122. is doing.
  • the contact state of the second friction coupling portion (second friction surface) is stabilized and reproduced by the bilinear contact with the second moving body 122 by the groove 14c having the V-shaped second cross section of the vibration friction portion 14.
  • the friction drive with good characteristics is obtained, and there is an effect that the straight movement as the uniaxial moving body of the second moving body 122 is improved.
  • the angle of the second cross-section V-shaped groove 14c is desirably in the range of 30 degrees to less than 180 degrees.
  • first and second moving bodies 121 and 122 are pressed against the vibration friction portion 14 by the spring 15.
  • first moving body 121 and the second moving body 122 are pressed against the first cross section V-shaped groove 14b and the second cross section V-shaped groove 14c of the vibration friction portion 14, respectively. Therefore, stable line contact of the three parts (the first and second moving bodies 121 and 122 and the vibration friction portion 14) is enabled.
  • the lens driving unit and the lens moving unit are juxtaposed with respect to the optical axis O as shown in FIG. Therefore, the drive device 10 can be reduced in height.
  • FIGS. 4A and 4B are the same as those shown in FIG. 5 of Patent Document 1.
  • 4A shows a change in current supplied to the laminated piezoelectric element 13 by a drive circuit (not shown), and
  • FIG. 4B shows a displacement of the laminated piezoelectric element 13.
  • a large current (positive direction) and a predetermined constant current (negative direction) are alternately passed through the laminated piezoelectric element 13.
  • the laminated piezoelectric element 13 has a sudden displacement (elongation) corresponding to a large current (positive direction) and a gentle displacement (contraction) corresponding to a constant current (negative direction). ) Occur alternately.
  • a rectangular wave current is applied to the laminated piezoelectric element 13 (FIG. 4A), and a sawtooth wave-like displacement (expansion / contraction) is caused to the laminated piezoelectric element 13 (FIG. 4B).
  • the operation of the driving device 10 will be described with reference to FIG. 1 in addition to FIGS. 4A and 4B. First, an operation when the lens movable portion is moved downward along the vertical direction Z will be described.
  • the laminated piezoelectric element 13 rapidly undergoes an elongation displacement in the thickness direction.
  • the vibration friction portion 14 rapidly moves upward along the optical axis O direction (vertical direction Z) of the lens.
  • the lens movable portion (the first and second moving bodies 121 and 122) does not move. This is because, due to the inertial force, the lens movable portion (the first and second moving bodies 121 and 122) causes the frictional force between the vibration friction portion 14 and the rod-shaped first and second moving bodies 121 and 122. This is because it overcomes and stays in that position.
  • the lens holder 17 (lens barrel 18) can be continuously moved downward along the optical axis O direction (vertical direction Z).
  • the lens movable part is moved upward along the optical axis O direction (vertical direction Z). Conversely, this is achieved by alternately flowing a large current (negative direction or reverse direction) and a constant current (positive direction or forward direction) through the laminated piezoelectric element 13.
  • the laminated piezoelectric element 13 has a rectangular parallelepiped shape, and the element size is 0.9 [mm] ⁇ 0.9 [mm] ⁇ 1.5 [mm].
  • a low Qm material such as PZT is used as the piezoelectric material.
  • the laminated piezoelectric element 13 is manufactured by laminating 50 layers of piezoelectric materials having a thickness of 20 [ ⁇ m] and internal electrodes having a thickness of 2 [ ⁇ m] alternately in a comb shape.
  • the effective internal electrode size of the laminated piezoelectric element 13 is 0.6 [mm] ⁇ 0.6 [mm]. In other words, a ring-shaped dead zone portion (clearance) having a width of 0.15 [mm] exists in the peripheral portion located outside the effective internal electrode of the laminated piezoelectric element 13.
  • the first moving body 121 and the movable lens barrel (lens holder, lens support body) 17 are separate and fixed to each other.
  • FIG. 5 is a perspective view showing a modified example 10A of the drive device shown in FIG.
  • the first moving body 121 and the movable lens barrel (lens holder, lens support body) 17 are integrally formed.
  • the movable lens barrel (lens holder, lens support) 17 and the first moving body 121 are made of the same material.
  • FIG. 6 is a perspective view of the driving device 10B.
  • FIG. 7 is a right side view of the driving device 10B.
  • FIG. 8 is a side sectional view showing the vibration transmitting member 19A used in the driving device 10B together with the vibration friction portion 14 and the laminated piezoelectric element (electromechanical conversion element) 13. As shown in FIG.
  • an orthogonal coordinate system (X, Y, Z) is used. 6 and 7, in the orthogonal coordinate system (X, Y, Z), the X-axis direction is the front-rear direction (depth direction), the Y-axis direction is the left-right direction (width direction), and Z The axial direction is the vertical direction (height direction).
  • the vibration transmitting member 19 is deformed into a vibration transmitting member 19A as described later, and the movable barrel (lens holder, lens support body) and the first moving body are deformed as described later. Except for this point, it has the same configuration as that of the driving device 10 shown in FIGS. Therefore, the reference numerals 17A and 121A are assigned to the movable lens barrel (lens holder and lens support) and the first moving body, respectively. In the following, components having the same functions as those shown in FIGS. 1 to 3 are denoted by the same reference numerals, and only different points will be described for simplification of description.
  • the movable lens barrel (lens holder, lens support) 17A has the movable lens barrel (lens holder, lens support) shown in FIGS. 1 to 3 except that the protrusion 172 is changed to the protrusion 172A.
  • the length of the protrusion 172A is shorter than that of the protrusion 172. That is, the ridge portion 172A is formed on the upper portion of the cylindrical portion 170.
  • the length of the first moving body 121A fixed to the ridge portion 172A is also shorter than that of the first moving body 121 shown in FIGS.
  • the vibration transmission member 19 ⁇ / b> A has a horizontal and vertical width (dimensions) in the horizontal plane that is wider than that of the vibration transmission member 19 shown in FIGS. 1 to 3.
  • the vibration transmitting member 19 ⁇ / b> A has a first recess 191 formed on the surface facing the upper end surface 13 b of the laminated piezoelectric element (electromechanical conversion element) 13, and is below the vibration friction portion 14.
  • a second recess 192 is formed on the surface facing the end surface 14a. Therefore, the upper end surface 13 b of the laminated piezoelectric element (electromechanical transducer) 13 is loosely fitted in the first recess 191, and the lower end surface 14 a of the vibration friction portion 14 is loosely fitted in the second recess 192.
  • the 1st recessed part 191 is for clarifying the application
  • the 2nd recessed part 192 is for clarifying the application
  • the laminated piezoelectric element (electromechanical conversion element) 13 the vibration transmission member 19 ⁇ / b> A, and the vibration friction portion 14 can be attached without any adhesive resin layer therebetween. . Therefore, the vibration generated by the expansion and contraction of the laminated piezoelectric element (electromechanical conversion element) 13 is efficiently and efficiently transmitted through the vibration transmission member 19A and the vibration friction portion 14 to the first and second moving bodies (moving members) 121A. , 121 can be transmitted.
  • the first moving body 121A and the movable lens barrel (lens holder, lens support body) 17A are separate and fixed to each other.
  • FIG. 9 is a perspective view showing a modification 10C of the drive device shown in FIG.
  • a driving device 10C shown in FIG. 9 integrally includes a first moving body 121A and a movable lens barrel (lens holder, lens support) 17A.
  • the movable lens barrel (lens holder, lens support) 17A and the first moving body 121A are made of the same material.
  • the vibration transmission member includes a first recess in which the second end surface of the electromechanical transducer is loosely fitted, and a second recess in which the end surface of the vibration friction portion is loosely fitted. It is preferable to have The drive device may further include a stationary member coupled to the first end surface of the electromechanical transducer.

Abstract

A drive device which allows increase of the degree of freedom in material selection and shape of a vibrational friction part.  The drive device comprises an electromechanical conversion element provided with first and second end faces facing each other in the direction of expansion, the vibrational friction part mounted on the second end face of the electromechanical conversion element, and a moving member frictionally coupled with the vibrational friction part.  The moving member is movable in the direction of expansion of the electromechanical conversion element.  A vibration transmitting member is inserted between the second end face of the electromechanical conversion element and the end face of the vibrating friction part.

Description

駆動装置Drive device
 本発明は駆動装置に関し、特に、圧電素子等の電気機械変換素子を用いた駆動装置に関する。 The present invention relates to a drive device, and more particularly, to a drive device using an electromechanical transducer such as a piezoelectric element.
 従来から、カメラのオートフォーカス用アクチュエータやズーム用アクチュエータとして、圧電素子、電歪素子、磁歪素子等の電気機械変換素子を使用した(駆動装置)リニアアクチュエータが使用されている。 Conventionally, linear actuators that use electromechanical transducer elements such as piezoelectric elements, electrostrictive elements, and magnetostrictive elements have been used as autofocus actuators and zoom actuators for cameras.
 特許文献1は、圧電素子(電機機械変換素子)と、この圧電素子に結合して圧電素子の伸縮方向に延在する駆動軸(耐摩耗性の振動棒、振動摩擦部、振動部材)と、この駆動軸に摩擦結合した被駆動部材(ズームレンズ鏡筒、移動部材)とを備えた駆動装置を開示している。この特許文献1では、圧電素子に印加する駆動信号を工夫して、被駆動部材(ズームレンズ鏡筒、移動部材)を駆動している。特許文献1では、駆動軸(振動摩擦部、振動部材)を被駆動部材(移動部材)と摩擦板との間で挟んでいる。換言すれば、駆動軸(振動摩擦部、振動部材)は被駆動部材(移動部材)と摩擦板との間を貫通している。圧接ばねにより摩擦板が駆動軸(振動摩擦部、振動部材)を被駆動部材(移動部材)との間に挟む方向に押圧される。 Patent Document 1 discloses a piezoelectric element (electromechanical conversion element), a drive shaft (a wear-resistant vibration rod, a vibration friction portion, a vibration member) that is coupled to the piezoelectric element and extends in the expansion and contraction direction of the piezoelectric element. A drive device including a driven member (zoom lens barrel, moving member) frictionally coupled to the drive shaft is disclosed. In Patent Document 1, a driven signal (zoom lens barrel, moving member) is driven by devising a drive signal to be applied to a piezoelectric element. In Patent Document 1, a drive shaft (vibration friction portion, vibration member) is sandwiched between a driven member (moving member) and a friction plate. In other words, the drive shaft (vibration friction portion, vibration member) passes between the driven member (moving member) and the friction plate. The friction plate is pressed by the pressure contact spring in a direction to sandwich the drive shaft (vibration friction portion, vibration member) with the driven member (moving member).
 また、特許文献2は、可動子を炭素繊維を含む液晶ポリマーで形成することで、金属材料で形成する場合に比べて、低コスト化と軽量化を図れるとともに、移動速度や駆動力を低下させることなく高い曲げ弾性係数の可動子を用いた高性能な駆動装置を開示している。この特許文献2に開示された駆動装置は、電圧が印加されることにより伸縮する圧電素子(電気機械変換素子)と、圧電素子の伸縮方向一端に固定された駆動軸(振動摩擦部、振動部材)と、駆動軸に摺動可能に摩擦係合する可動子(移動部材)と、圧電素子の伸縮方向他端に接着固定されたウェイト(静止部材、錘)とを備える。圧電素子の伸びと縮みの速度または加速度を異ならせて駆動軸を振動させることにより、可動子(移動部材)を駆動軸(振動摩擦部、振動部材)に沿って移動させる。 Patent Document 2 discloses that the mover is made of a liquid crystal polymer containing carbon fiber, thereby reducing the cost and weight and reducing the moving speed and driving force compared to the case where the mover is made of a metal material. A high-performance drive device using a mover having a high flexural modulus is disclosed. The driving device disclosed in Patent Document 2 includes a piezoelectric element (electromechanical conversion element) that expands and contracts when a voltage is applied, and a drive shaft (vibration friction portion, vibration member) that is fixed to one end of the expansion and contraction direction of the piezoelectric element. ), A mover (moving member) slidably engaged with the drive shaft, and a weight (stationary member, weight) fixedly bonded to the other end in the expansion / contraction direction of the piezoelectric element. The moving element (moving member) is moved along the driving shaft (vibrating friction portion, vibrating member) by causing the driving shaft to vibrate by varying the expansion or contraction speed or acceleration of the piezoelectric element.
 特許文献2に開示された駆動装置において、駆動軸(振動摩擦部、振動部材)は、直線状に延びる丸棒の軸体で構成されている。可動子(移動部材)は、可動子本体とキャップとで構成され、両者が駆動軸を挟むようにして駆動軸に係合している。可動子を駆動軸に沿って移動可能にすべく、駆動軸と可動子間が所定の摩擦力となるように、略コ字状の板バネにより可動子本体とキャップを駆動軸に押し付けている。可動子本体にはV字形断面の溝が設けられている。この溝に駆動軸が嵌り込んで、溝の2つの斜面が駆動軸と接触するようになっている。同様に、キャップにはV字形断面の溝が設けられている。キャップが可動子本体と組み合わされた場合に、キャップの溝に駆動軸が嵌り込んで、その溝の2つの斜面が駆動軸と接触するようになっている。駆動軸の材料としては、カーボンファイバを束ねてバインダで固めたカーボンファイバーロッドや炭素繊維強化樹脂が使用される。また、摩擦部である駆動軸または可動子の相互接触面上にフッ素樹脂とフッ素オイルと溶媒の混合物を塗布している。 In the drive device disclosed in Patent Document 2, the drive shaft (vibration friction portion, vibration member) is formed of a round rod shaft body extending linearly. The mover (moving member) includes a mover main body and a cap, and both engage with the drive shaft so as to sandwich the drive shaft. In order to allow the mover to move along the drive shaft, the mover body and the cap are pressed against the drive shaft by a substantially U-shaped leaf spring so that a predetermined frictional force is generated between the drive shaft and the mover. . The mover body is provided with a groove having a V-shaped cross section. A drive shaft is fitted into the groove so that two inclined surfaces of the groove come into contact with the drive shaft. Similarly, the cap is provided with a groove having a V-shaped cross section. When the cap is combined with the mover main body, the drive shaft is fitted in the groove of the cap, and the two inclined surfaces of the groove come into contact with the drive shaft. As a material for the drive shaft, a carbon fiber rod or carbon fiber reinforced resin in which carbon fibers are bundled and hardened with a binder is used. Further, a mixture of fluororesin, fluoro oil and solvent is applied on the mutual contact surface of the drive shaft or the mover which is the friction portion.
 さらに、特許文献3は、移動部材を高速で安定して駆動することができる駆動装置を開示している。特許文献3に開示された駆動装置は、静止部材と、この静止部材にその伸縮方向の一端を固定された電気機械変換素子と、この電気機械変換素子の伸縮方向の他端に結合され、電気機械変換素子の伸縮方向に移動できるように支持された駆動部材(振動摩擦部、振動部材)と、この駆動部材に摩擦結合され、電気機械変換素子の伸縮方向に移動できるように支持された移動部材と、駆動部材(振動部材)と移動部材との間に摩擦力を発生させる摩擦力付与手段とを備えている。この摩擦力付加手段は、移動部材に固定されて押付力を発生する弾性部材と、弾性部材により発生する押付力を駆動部材に伝える挟み込み部材から構成される。また、移動部材と駆動部材の接触部、及び挟み込み部材の接触部を断面V字状にしている。 Furthermore, Patent Document 3 discloses a driving device that can stably drive a moving member at high speed. The drive device disclosed in Patent Document 3 is coupled to a stationary member, an electromechanical conversion element having one end in the expansion / contraction direction fixed to the stationary member, and the other end in the expansion / contraction direction of the electromechanical conversion element. A drive member (vibration friction part, vibration member) supported so as to be movable in the expansion / contraction direction of the mechanical conversion element, and a movement that is frictionally coupled to the drive member and supported so as to be movable in the expansion / contraction direction of the electromechanical conversion element The apparatus includes a member, and a frictional force applying unit that generates a frictional force between the driving member (vibrating member) and the moving member. The frictional force adding means includes an elastic member that is fixed to the moving member and generates a pressing force, and a sandwiching member that transmits the pressing force generated by the elastic member to the driving member. Moreover, the contact part of a moving member and a drive member and the contact part of a pinching member are made into V-shaped cross section.
 特許文献4は、電気機械変換素子を使用した駆動装置を開示している。特許文献4に開示された駆動装置は、一端において支持台(静止部材)に固定された電気機械変換素子と、この電気機械変換素子の他端に固定された振動部材(振動摩擦部)と、この振動部材に対して所定の摩擦力でもって係合する移動体(移動部材)とを備えている。振動部材としては、カーボンロッドが使用される。 Patent Document 4 discloses a drive device using an electromechanical transducer. The driving device disclosed in Patent Document 4 includes an electromechanical transducer element fixed to a support base (stationary member) at one end, a vibration member (vibration friction portion) fixed to the other end of the electromechanical transducer element, A moving body (moving member) engaged with the vibrating member with a predetermined frictional force is provided. A carbon rod is used as the vibration member.
 また、特許文献5は、全長が短い駆動装置を開示している。特許文献5に開示された駆動装置は、一端が固定体(静止部材)に固定された電気機械変換素子と、この電気機械変換素子の他端に固着された駆動摩擦部材(振動摩擦部、振動部材)と、この駆動摩擦部材に摩擦係合する移動体(移動部材)とを備えている。駆動摩擦部材の材料としては、セラミックス材料や、ポリフェニレンサルファイド樹脂(PPS樹脂)や液晶ポリマー(LCP樹脂)などのエンジニアリングプラスチック、カーボン強化樹脂およびガラス繊維強化樹脂などが使用される。 Further, Patent Document 5 discloses a drive device having a short overall length. The drive device disclosed in Patent Document 5 includes an electromechanical conversion element having one end fixed to a stationary body (stationary member), and a drive friction member (vibration friction portion, vibration) fixed to the other end of the electromechanical conversion element. Member) and a moving body (moving member) that frictionally engages with the driving friction member. As the material of the drive friction member, ceramic materials, engineering plastics such as polyphenylene sulfide resin (PPS resin) and liquid crystal polymer (LCP resin), carbon reinforced resin, and glass fiber reinforced resin are used.
特許第3218851号公報Japanese Patent No. 3188851 特開2006-304529号公報JP 2006-304529 A 特許第3141714号公報Japanese Patent No. 3141714 特開2002-119074号公報Japanese Patent Laid-Open No. 2002-119074 特開2006-141133号公報JP 2006-141133 A
 前述した特許文献1~5に開示されたレンズ駆動装置においては、いずれも、電気機械変換素子の端面と振動摩擦部(振動部材)の端面とが直接結合されている。振動摩擦部は、電気機械変換素子の伸縮により発生する振動を移動体に効率良く伝達させる必要がある。その為、振動摩擦部にはある程度の剛性が求められる。また、振動摩擦部は、それに摩擦結合している移動部材(移動体)をスムーズに往復運動させる役割もある。 In the lens driving devices disclosed in Patent Documents 1 to 5 described above, the end face of the electromechanical conversion element and the end face of the vibration friction portion (vibration member) are directly coupled. The vibration friction portion needs to efficiently transmit the vibration generated by the expansion and contraction of the electromechanical conversion element to the moving body. Therefore, a certain degree of rigidity is required for the vibration friction portion. The vibration friction portion also has a role of smoothly reciprocating a moving member (moving body) frictionally coupled thereto.
 しかしながら、レンズ駆動装置の小型化に伴って、剛性と摺動性、部品の寸法安定性、電気機械変換素子との接着性の面から、振動摩擦部の材料選定が非常に困難になっている。 However, with the miniaturization of the lens driving device, it is very difficult to select the material for the vibration friction part in terms of rigidity and slidability, dimensional stability of parts, and adhesion to the electromechanical transducer. .
 したがって、本発明の目的は、振動摩擦部の材料選定の自由度を広げることが可能な駆動装置を提供することにある。 Therefore, an object of the present invention is to provide a drive device capable of expanding the degree of freedom of material selection for the vibration friction portion.
 本発明の他の目的は、振動摩擦部の形状の自由度を広げることができる、駆動装置を提供することにある。 Another object of the present invention is to provide a driving device capable of expanding the degree of freedom of the shape of the vibration friction portion.
 本発明の他の目的は、説明が進むにつれて明らかになるだろう。 Other objects of the present invention will become clear as the description proceeds.
 本発明の例示的な態様の要点について述べると、駆動装置は、伸縮方向で互いに対向する第1及び第2の端面を持つ電気機械変換素子と、この電気機械変換素子の第2の端面に取り付けられた振動摩擦部と、この振動摩擦部と摩擦結合される移動部材とを備えるものと理解される。移動部材は、電気機械変換素子の伸縮方向に移動可能である。本発明の例示的な態様によれば、駆動装置は、電気機械変換素子の第2の端面と振動摩擦部の端面との間に配置された振動伝達部材を備える。 The gist of the exemplary embodiment of the present invention will be described. The driving device is attached to the electromechanical conversion element having first and second end faces opposed to each other in the expansion and contraction direction, and the second end face of the electromechanical conversion element. It is understood that the vibration friction portion is provided and a moving member frictionally coupled to the vibration friction portion. The moving member is movable in the expansion / contraction direction of the electromechanical transducer. According to an exemplary aspect of the present invention, the drive device includes a vibration transmission member disposed between the second end face of the electromechanical transducer and the end face of the vibration friction portion.
 本発明では、電気機械変換素子の一対の端面の一方と振動摩擦部の端面との間に振動伝達部材を挿入したので、振動摩擦部の材料選定の自由度を広げることができ、振動摩擦部の形状の自由度を広げることができる。 In the present invention, since the vibration transmission member is inserted between one of the pair of end faces of the electromechanical transducer and the end face of the vibration friction part, the degree of freedom in selecting the material of the vibration friction part can be expanded, and the vibration friction part The degree of freedom of the shape can be expanded.
本発明の第1の実施の形態による駆動装置を示す斜視図である。It is a perspective view which shows the drive device by the 1st Embodiment of this invention. 図1に示した駆動装置の主要部を拡大して示す部分拡大斜視図である。FIG. 2 is a partially enlarged perspective view showing an enlarged main part of the drive device shown in FIG. 1. 図1に示した駆動装置の主要部の側面図である。It is a side view of the principal part of the drive device shown in FIG. 積層圧電素子に供給される電流を説明するための波形図である。It is a wave form diagram for demonstrating the electric current supplied to a laminated piezoelectric element. 積層圧電素子によって発生する変位を説明するための波形図である。It is a wave form diagram for demonstrating the displacement which generate | occur | produces with a laminated piezoelectric element. 図1に示した駆動装置の変形例を示す斜視図である。It is a perspective view which shows the modification of the drive device shown in FIG. 本発明の第2の実施の形態による駆動装置を示す斜視図である。It is a perspective view which shows the drive device by the 2nd Embodiment of this invention. 図6に示した駆動装置の右側面図である。It is a right view of the drive device shown in FIG. 図6に示した駆動装置に使用される振動伝達部材を、振動摩擦部と積層圧電素子(電気機械変換素子)と共に示す側面断面図である。It is side surface sectional drawing which shows the vibration transmission member used for the drive device shown in FIG. 6 with a vibration friction part and a laminated piezoelectric element (electromechanical conversion element). 図6に示した駆動装置の変形例を示す斜視図である。It is a perspective view which shows the modification of the drive device shown in FIG.
 以下、図面を参照して、本発明の実施の形態について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 図1乃至図3を参照して、本発明の第1の実施の形態による駆動装置10について説明する。図1は駆動装置10を示す斜視図である。図2は図1に示した駆動装置10の主要部を拡大して示す部分拡大斜視図である。図3は駆動装置10の主要部の側面図である。 With reference to FIG. 1 thru | or FIG. 3, the drive device 10 by the 1st Embodiment of this invention is demonstrated. FIG. 1 is a perspective view showing the driving device 10. FIG. 2 is a partially enlarged perspective view showing an enlarged main part of the driving apparatus 10 shown in FIG. FIG. 3 is a side view of the main part of the driving device 10.
 ここでは、図1乃至図3に示されるように、直交座標系(X,Y,Z)を使用している。図1乃至図3に図示した状態では、直交座標系(X,Y,Z)において、X軸方向は前後方向(奥行方向)であり、Y軸方向は左右方向(幅方向)であり、Z軸方向は上下方向(高さ方向)である。 Here, as shown in FIGS. 1 to 3, an orthogonal coordinate system (X, Y, Z) is used. 1 to 3, in the orthogonal coordinate system (X, Y, Z), the X-axis direction is the front-rear direction (depth direction), the Y-axis direction is the left-right direction (width direction), and Z The axial direction is the vertical direction (height direction).
 図示の駆動装置10は、例えば、オートフォーカスレンズ駆動ユニットとして使用される。その場合、図1乃至図3に示す例においては、上下方向Zがレンズの光軸O方向である。 The illustrated driving device 10 is used, for example, as an autofocus lens driving unit. In that case, in the example shown in FIGS. 1 to 3, the vertical direction Z is the direction of the optical axis O of the lens.
 尚、オートフォーカスレンズ駆動ユニットは、レンズ可動部とレンズ駆動部とから構成される。レンズ駆動部は、レンズ可動部を光軸O方向に摺動可能に支持しながら、後述するようにレンズ可動部を駆動する。 The autofocus lens driving unit is composed of a lens movable part and a lens driving part. The lens driving unit drives the lens moving unit as will be described later while supporting the lens moving unit slidably in the optical axis O direction.
 図示の駆動装置10は、図示しない筐体内に配置される。筐体は、カップ状の上側カバー(図示せず)と下側ベース(図示せず)とを含む。筐体の下側ベース上に静止部材(錘)11が搭載される。上側カバーの上面は、光軸Oを中心軸とした円筒部(図示せず)を有する。 The illustrated driving device 10 is arranged in a housing (not shown). The housing includes a cup-shaped upper cover (not shown) and a lower base (not shown). A stationary member (weight) 11 is mounted on the lower base of the housing. The upper surface of the upper cover has a cylindrical portion (not shown) having the optical axis O as the central axis.
 一方、図示はしないが、下側ベースの中央部には、基板に配置された撮像素子が搭載される。この撮像素子は、可動レンズ(後述する)により結像された被写体像を撮像して電気信号に変換する。撮像素子は、例えば、CCD(charge coupled device)型イメージセンサ、CMOS(complementary metal oxide semiconductor)型イメージセンサ等により構成される。 On the other hand, although not shown, an image sensor arranged on the substrate is mounted in the center of the lower base. This imaging device captures a subject image formed by a movable lens (described later) and converts it into an electrical signal. The image pickup device is configured by, for example, a charge coupled device (CCD) image sensor, a complementary metal oxide (CMOS) image sensor, or the like.
 筐体内には、被駆動部材としての可動鏡筒(レンズホルダ、レンズ支持体)17が収容されている。可動鏡筒(レンズホルダ、レンズ支持体)17は、レンズバレル(レンズアセンブリ)18を保持するための円筒状の筒状部170を有する。レンズバレル(レンズアセンブリ)18はオートフォーカスレンズAFLを保持する。レンズホルダ17の筒状部170の内周壁には雌ネジ(図示せず)が切られている。一方、レンズバレル18の外周壁には、上記雌ネジに螺合される雄ネジ(図示)が切られている。従って、レンズバレル18をレンズホルダ17に装着するには、レンズバレル18をレンズホルダ17の筒状部170に対して光軸O周りに回転して光軸O方向に沿って螺合することにより、レンズバレル18をレンズホルダ17内に収容し、接着剤などによって互いに接合する。 A movable barrel (lens holder, lens support) 17 as a driven member is accommodated in the housing. The movable lens barrel (lens holder, lens support) 17 has a cylindrical cylindrical portion 170 for holding a lens barrel (lens assembly) 18. A lens barrel (lens assembly) 18 holds an autofocus lens AFL. A female screw (not shown) is cut on the inner peripheral wall of the cylindrical portion 170 of the lens holder 17. On the other hand, a male screw (not shown) that is screwed into the female screw is cut on the outer peripheral wall of the lens barrel 18. Therefore, in order to attach the lens barrel 18 to the lens holder 17, the lens barrel 18 is rotated around the optical axis O and screwed along the optical axis O direction with respect to the cylindrical portion 170 of the lens holder 17. The lens barrel 18 is accommodated in the lens holder 17 and bonded to each other by an adhesive or the like.
 レンズホルダ17は、光軸Oに対して、筒状部170の左右方向Yの右側で半径方向外側に突出する突条部172を有する。この突条部172は、光軸Oと平行に上下方向Zに延在している。この突条部172の後壁には、棒状の第1の移動体(移動軸)121が固着されている。図示の例では、第1の移動体121は円柱状をしている。 The lens holder 17 has a protrusion 172 that protrudes radially outward on the right side in the left-right direction Y of the cylindrical portion 170 with respect to the optical axis O. The protruding portion 172 extends in the vertical direction Z in parallel with the optical axis O. A rod-shaped first moving body (moving shaft) 121 is fixed to the rear wall of the protruding portion 172. In the illustrated example, the first moving body 121 has a cylindrical shape.
 レンズホルダ17は、筒状部170の後端で左右方向Yの左側へ延在する延在部174を有する。この延在部174には、バネ15の第1の端部15aを保持するための係止溝174aが設けられている。バネ15は、延在部174に沿って、この第1の端部15aから左右方向Yの右側に第2の端部15bまで延在している。このバネ15の第2の端部15bには、棒状の第2の移動体(移動軸)122が固着されている。図示の例では、第2の移動体122も円柱状をしている。 The lens holder 17 has an extending part 174 that extends to the left in the left-right direction Y at the rear end of the cylindrical part 170. The extending portion 174 is provided with a locking groove 174a for holding the first end 15a of the spring 15. The spring 15 extends along the extending portion 174 from the first end portion 15a to the right end in the left-right direction Y to the second end portion 15b. A rod-shaped second moving body (moving shaft) 122 is fixed to the second end 15 b of the spring 15. In the illustrated example, the second moving body 122 is also cylindrical.
 この第2の移動体(移動軸)122は、バネ15によって、第1の移動体(移動軸)121に近づく方向(前後方向Xの前方向)に付勢されている。第1の移動体(移動軸)121と第2の移動体(移動軸)122との間に、後述する振動摩擦部(振動部材)14が挟持されている。図示の例では、第1の移動体121が第2の移動体122よりも長い。第1の移動体121と第2の移動体122とは、同じ材料で構成されている。第1の移動体121と第2の移動体122との組み合わせは、移動部材と呼ばれる。 The second moving body (moving shaft) 122 is urged by the spring 15 in a direction approaching the first moving body (moving shaft) 121 (forward direction in the front-rear direction X). A vibration friction portion (vibrating member) 14 described later is sandwiched between a first moving body (moving shaft) 121 and a second moving body (moving shaft) 122. In the illustrated example, the first moving body 121 is longer than the second moving body 122. The first moving body 121 and the second moving body 122 are made of the same material. The combination of the first moving body 121 and the second moving body 122 is called a moving member.
 可動鏡筒(レンズホルダ)17と、レンズバレル(レンズアセンブリ)18と、バネ15と、第1及び第2の移動体121、122との組み合わせによって、オートフォーカスレンズ駆動ユニットのレンズ可動部が構成される。後述するように、振動摩擦部(振動部材)14の摩擦面には、断面V字状の溝が形成されている。これにより、レンズ可動部は、筐体に対してレンズの光軸O方向にのみ移動可能である。 The combination of the movable lens barrel (lens holder) 17, lens barrel (lens assembly) 18, spring 15, and first and second moving bodies 121 and 122 constitutes the lens movable part of the autofocus lens driving unit. Is done. As will be described later, a groove having a V-shaped cross section is formed on the friction surface of the vibration friction portion (vibration member) 14. Thereby, the lens movable part can move only in the optical axis O direction of the lens with respect to the housing.
 次に、オートフォーカスレンズ駆動ユニットのレンズ駆動部について説明する。レンズ駆動部(駆動装置)10は、電気機械変換素子として働く積層圧電素子13と、上記静止部材(錘)11と、上記振動摩擦部(振動部材)14と、振動伝達部材19とから構成される。 Next, the lens driving unit of the autofocus lens driving unit will be described. The lens driving unit (driving device) 10 includes a laminated piezoelectric element 13 that functions as an electromechanical conversion element, the stationary member (weight) 11, the vibration friction unit (vibrating member) 14, and a vibration transmitting member 19. The
 積層圧電素子13は、光軸O方向に伸縮する。積層圧電素子13は、光軸O方向に複数の圧電層を積層した構造を有する。図3に示されるように、積層圧電素子13は、伸縮方向で互いに対向する第1の端面(下端面)13aと第2の端面(上端面)13bとを持つ。静止部材(錘)11は、積層圧電素子13の第1の端面(下端面)13aに接着剤等で結合される。積層圧電素子13と静止部材11との組合せは、圧電ユニットと呼ばれる。 The laminated piezoelectric element 13 expands and contracts in the direction of the optical axis O. The laminated piezoelectric element 13 has a structure in which a plurality of piezoelectric layers are laminated in the optical axis O direction. As shown in FIG. 3, the laminated piezoelectric element 13 has a first end face (lower end face) 13a and a second end face (upper end face) 13b that face each other in the expansion / contraction direction. The stationary member (weight) 11 is coupled to the first end surface (lower end surface) 13a of the laminated piezoelectric element 13 with an adhesive or the like. A combination of the laminated piezoelectric element 13 and the stationary member 11 is called a piezoelectric unit.
 振動摩擦部(振動部材)14は、振動伝達部材19を介して、積層圧電素子13の第2の端面(上端面)13bに接着剤等で取り付けられている。すなわち、積層圧電素子13の上端面13bは、接着剤(接着樹脂)で振動伝達部材19の下端面19aに結合(接合)され、振動摩擦部(振動部材)14の下端面14aは、接着剤(接着樹脂)で振動伝達部材19の上端面19bに結合(接合)されている。 The vibration friction portion (vibration member) 14 is attached to the second end face (upper end face) 13b of the laminated piezoelectric element 13 with an adhesive or the like via the vibration transmission member 19. That is, the upper end surface 13b of the laminated piezoelectric element 13 is bonded (joined) to the lower end surface 19a of the vibration transmitting member 19 with an adhesive (adhesive resin), and the lower end surface 14a of the vibration friction portion (vibrating member) 14 is bonded to the adhesive. (Adhesive resin) is coupled (joined) to the upper end surface 19b of the vibration transmitting member 19.
 このように本実施の形態では、振動摩擦部(振動部材)14と積層圧電素子(電気機械変換素子)13との間に、振動伝達部材19を追加して(介在させて)いるので、振動摩擦部(振動部材)14は、単に、第1及び第2の移動体121、122との摺動性を考慮した構造をしていればよい。そのため、振動摩擦部(振動部材)14は、電気機械変換素子(積層圧電素子)13との樹脂接着性を考慮して、その材料を選定する必要がない。これにより、振動摩擦部(振動部材)14は、その材料選定の自由度のみならず、その形状の自由度も広がる。その結果、電気機械変換素子(積層圧電素子)13と振動摩擦部(振動部材)14との接着強度を上げることができる。 As described above, in the present embodiment, since the vibration transmission member 19 is added (intervened) between the vibration friction portion (vibration member) 14 and the laminated piezoelectric element (electromechanical conversion element) 13, vibration is generated. The friction part (vibrating member) 14 only needs to have a structure that takes into account the slidability with the first and second moving bodies 121 and 122. Therefore, it is not necessary to select the material of the vibration friction portion (vibration member) 14 in consideration of resin adhesiveness with the electromechanical transducer (laminated piezoelectric element) 13. Thereby, the vibration friction part (vibration member) 14 expands not only the freedom degree of the material selection but the freedom degree of the shape. As a result, the adhesive strength between the electromechanical conversion element (laminated piezoelectric element) 13 and the vibration friction portion (vibration member) 14 can be increased.
 図示の実施の形態では、振動摩擦部(振動部材)14の材料として、その表面にフッ素潤滑めっきを施したアルミニウムを使用している。一方、振動伝達部材19の材料としては、鉄合金(冷延薄板(SPCC)、ステンレス鋼(SUS)等)が使用される。 In the illustrated embodiment, as the material of the vibration friction portion (vibration member) 14, aluminum whose surface is subjected to fluorine lubrication plating is used. On the other hand, as a material of the vibration transmission member 19, an iron alloy (cold rolled thin plate (SPCC), stainless steel (SUS), etc.) is used.
 また、振動伝達部材19を追加することによって、その材質、形状を他の部材と合わせこむことにより、バネ15の共振現象を抑制することができる。換言すれば、駆動装置10の共振周波数の設定を自由に行うことができる。 Further, by adding the vibration transmitting member 19, the material and shape of the vibration transmitting member 19 are combined with other members, so that the resonance phenomenon of the spring 15 can be suppressed. In other words, the resonance frequency of the driving device 10 can be set freely.
 さらに、バネ15の寸法ばらつきによって生じる製品ごとの性能ばらつきを、形状が比較的簡単な振動伝達部材19で補うことが可能である。換言すれば、振動伝達部材19が簡単な形状で作製できるので、駆動装置10の製品ごとの性能ばらつきを少なくすることができる。 Furthermore, it is possible to compensate for the performance variation for each product caused by the dimensional variation of the spring 15 with the vibration transmission member 19 having a relatively simple shape. In other words, since the vibration transmission member 19 can be manufactured with a simple shape, it is possible to reduce variation in performance of each product of the driving device 10.
 棒状の第1及び第2の移動体(移動軸)121、122は、この振動摩擦部(振動部材)14と摩擦結合される。振動摩擦部(振動部材)14には、前後方向Xの前端で、当該振動摩擦部14と棒状の第1の移動軸121との間の第1の摩擦結合部(第1の摩擦面)に第1の断面V字状の溝14bが形成され、前後方向Xの後端で、当該振動摩擦部14と棒状の第2の移動軸122との間の第2の摩擦結合部(第2の摩擦面)に第2の断面V字状の溝14cが形成されている。 The rod-shaped first and second moving bodies (moving shafts) 121 and 122 are frictionally coupled to the vibration friction portion (vibrating member) 14. The vibration friction portion (vibration member) 14 has a first friction coupling portion (first friction surface) between the vibration friction portion 14 and the rod-shaped first moving shaft 121 at the front end in the front-rear direction X. A groove 14b having a V-shaped first cross section is formed, and at the rear end in the front-rear direction X, a second friction coupling part (second second part) between the vibration friction part 14 and the rod-like second moving shaft 122 is formed. A groove 14c having a second V-shaped cross section is formed on the friction surface.
 前述したように、レンズ移動部は、振動摩擦部(振動部材)14を、その第1及び第2の摩擦面で、棒状の第1及び第2の移動体(移動軸)121、122によって挟み込むためのバネ15を備える。すなわち、バネ15は、その第1の端部15aがレンズホルダ17の係止溝174aに保持されて、その第2の端部15bに取り付けられた第2の移動体(移動軸)122で、振動摩擦部(振動部材)14を第1の移動体(移動軸)121に向けて押し付ける押付力を発生する。換言すれば、バネ15は、第2の移動体(移動軸)122を振動摩擦部(振動部材)14に付勢して、振動摩擦部(振動部材)14を第1及び第2の移動体(移動軸)121、122で挟持することにより、振動摩擦部(振動部材)14と第1及び第2の移動体(移動軸)121、122との間に摩擦力を付加する付勢手段として作用する。 As described above, the lens moving portion sandwiches the vibration friction portion (vibration member) 14 between the first and second friction surfaces of the first and second moving bodies (movement shafts) 121 and 122 in the form of rods. Spring 15 is provided. That is, the first end 15a of the spring 15 is held by the locking groove 174a of the lens holder 17, and the second moving body (moving shaft) 122 attached to the second end 15b. A pressing force that presses the vibration friction portion (vibrating member) 14 toward the first moving body (moving shaft) 121 is generated. In other words, the spring 15 urges the second moving body (moving shaft) 122 to the vibration friction portion (vibration member) 14 to cause the vibration friction portion (vibration member) 14 to be the first and second movement bodies. As urging means for applying a frictional force between the vibration friction portion (vibrating member) 14 and the first and second moving bodies (moving shafts) 121 and 122 by being sandwiched between the (moving shafts) 121 and 122. Works.
 このように、振動摩擦部(振動部材)14は、積層圧電素子13の伸縮方向と直交する方向で互いに対向するその両端面(第1及び第2の摩擦面に形成された第1及び第2の断面V字状の溝14b、14c)で、第1及び第2の移動体(移動軸)121、122によって挟み込まれているので、レンズ可動部の位置を規制できると共に、レンズ可動部が第1の移動体(移動軸)121の回りで回転するのを抑制することができる。 As described above, the vibration friction portion (vibration member) 14 has both end faces (first and second formed on the first and second friction surfaces) facing each other in the direction orthogonal to the expansion and contraction direction of the multilayer piezoelectric element 13. Are sandwiched between the first and second movable bodies (moving shafts) 121 and 122, so that the position of the lens movable portion can be regulated and the lens movable portion is Rotation around one moving body (moving axis) 121 can be suppressed.
 また、図示の実施の形態では、第1の移動体121と第2の移動体122とが同じ材料で構成されている。その結果、第1の移動体121と振動摩擦部14の第1の摩擦面(第1の断面V字状の溝14b)との間に作用する第1の摩擦力と、第2の移動体122と振動摩擦部14の第2の摩擦面(第2の断面V字状の溝14c)との間に作用する第2の摩擦力とを等しくすることができる。これにより、レンズ可動部を安定して駆動することができる。 In the illustrated embodiment, the first moving body 121 and the second moving body 122 are made of the same material. As a result, the first frictional force acting between the first moving body 121 and the first friction surface of the vibration friction portion 14 (first groove V-shaped groove 14b), and the second moving body The second frictional force acting between the second friction surface 122 and the second friction surface (the groove 14c having the second V-shaped cross section) of the vibration friction portion 14 can be made equal. Thereby, a lens movable part can be driven stably.
 さらに、バネ15の有効長を長く設計することが可能である。その為、たとえバネ15の寸法や組立寸法がばらついても、荷重への影響を少なくすることができる。その結果、製品ごとの性能ばらつきを少なくして駆動装置10を製造することができる。 Furthermore, it is possible to design the effective length of the spring 15 longer. Therefore, even if the dimensions and assembly dimensions of the spring 15 vary, the influence on the load can be reduced. As a result, it is possible to manufacture the drive device 10 with less performance variation for each product.
 振動摩擦部14において、振動摩擦部14と第1の移動体121との間の第1の摩擦結合部(第1の摩擦面)に第1の断面V字状の溝14bを形成している。振動摩擦部14の第1の断面V字状の溝14bによる第1の移動体121との2直線接触により、第1の摩擦結合部(第1の摩擦面)の接触状態が安定し、再現性の良い摩擦駆動が得られると共に、第1の移動体121の一軸移動体としての直進移動性を高めるという効果を奏する。尚、この第1の断面V字状の溝14bの角度は、30度から180度未満の範囲であることが望ましい。 In the vibration friction portion 14, a first cross section V-shaped groove 14 b is formed in a first friction coupling portion (first friction surface) between the vibration friction portion 14 and the first moving body 121. . The contact state of the first friction coupling portion (first friction surface) is stabilized and reproduced by the bilinear contact with the first moving body 121 by the groove 14b having the V-shaped first cross section of the vibration friction portion 14. In addition to obtaining an excellent friction drive, the first moving body 121 has an effect of increasing the straight movement as the uniaxial moving body. The angle of the first cross-sectionally V-shaped groove 14b is desirably in the range of 30 degrees to less than 180 degrees.
 同様に、振動摩擦部14において、振動摩擦部14と第2の移動体122との間の第2の摩擦結合部(第2の摩擦面)に第2の断面V字状の溝14cを形成している。振動摩擦部14の第2の断面V字状の溝14cによる第2の移動体122との2直線接触により、第2の摩擦結合部(第2の摩擦面)の接触状態が安定し、再現性の良い摩擦駆動が得られると共に、第2の移動体122の一軸移動体としての直進移動性を高めるという効果を奏する。尚、この第2の断面V字状の溝14cの角度は、30度から180度未満の範囲であることが望ましい。 Similarly, in the vibration friction portion 14, a second V-shaped groove 14 c is formed in the second friction coupling portion (second friction surface) between the vibration friction portion 14 and the second moving body 122. is doing. The contact state of the second friction coupling portion (second friction surface) is stabilized and reproduced by the bilinear contact with the second moving body 122 by the groove 14c having the V-shaped second cross section of the vibration friction portion 14. The friction drive with good characteristics is obtained, and there is an effect that the straight movement as the uniaxial moving body of the second moving body 122 is improved. The angle of the second cross-section V-shaped groove 14c is desirably in the range of 30 degrees to less than 180 degrees.
 また、第1及び第2の移動体121、122をバネ15で振動摩擦部14に押し付けている。これにより、振動摩擦部14の第1の断面V字状の溝14bと第2の断面V字状の溝14cとに、それぞれ、第1の移動体121及び第2の移動体122を押し付けることで、3部品(第1及び第2の移動体121、122、振動摩擦部14)の安定した線接触を可能としている。 Further, the first and second moving bodies 121 and 122 are pressed against the vibration friction portion 14 by the spring 15. As a result, the first moving body 121 and the second moving body 122 are pressed against the first cross section V-shaped groove 14b and the second cross section V-shaped groove 14c of the vibration friction portion 14, respectively. Therefore, stable line contact of the three parts (the first and second moving bodies 121 and 122 and the vibration friction portion 14) is enabled.
 レンズ駆動部とレンズ移動部とは、図1に示されるように、光軸Oに対して並置されている。したがって、駆動装置10を低背化することができる。 The lens driving unit and the lens moving unit are juxtaposed with respect to the optical axis O as shown in FIG. Therefore, the drive device 10 can be reduced in height.
 次に、図4Aおよび図4Bを参照して、積層圧電素子13に供給される電流と積層圧電素子13に発生する変位について説明する。なお、図4Aおよび図4Bは、上記特許文献1の図5に図示されたものと同じものである。図4Aは駆動回路(図示せず)により積層圧電素子13に供給される電流の変化を示し、図4Bは積層圧電素子13の変位を示す。 Next, the current supplied to the laminated piezoelectric element 13 and the displacement generated in the laminated piezoelectric element 13 will be described with reference to FIGS. 4A and 4B. 4A and 4B are the same as those shown in FIG. 5 of Patent Document 1. 4A shows a change in current supplied to the laminated piezoelectric element 13 by a drive circuit (not shown), and FIG. 4B shows a displacement of the laminated piezoelectric element 13.
 図4Aに示すように、積層圧電素子13に大電流(正方向)と所定の一定電流(負方向)とを交互に流す。このような状況では、図4Bに示すように、積層圧電素子13は、大電流(正方向)に対応した急激な変位(伸び)と、一定電流(負方向)に対応した穏やかな変位(縮み)とが交互に生じる。 As shown in FIG. 4A, a large current (positive direction) and a predetermined constant current (negative direction) are alternately passed through the laminated piezoelectric element 13. In such a situation, as shown in FIG. 4B, the laminated piezoelectric element 13 has a sudden displacement (elongation) corresponding to a large current (positive direction) and a gentle displacement (contraction) corresponding to a constant current (negative direction). ) Occur alternately.
 すなわち、積層圧電素子13に矩形波電流を印加して(図4A)、積層圧電素子13に対してのこぎり波状の変位(伸縮)を生じ(図4B)させる。 That is, a rectangular wave current is applied to the laminated piezoelectric element 13 (FIG. 4A), and a sawtooth wave-like displacement (expansion / contraction) is caused to the laminated piezoelectric element 13 (FIG. 4B).
 図4Aおよび図4Bに加えて図1をも参照して、駆動装置10の動作について説明する。先ず、レンズ可動部を上下方向Zに沿って下方向に移動する場合の動作について説明する。 The operation of the driving device 10 will be described with reference to FIG. 1 in addition to FIGS. 4A and 4B. First, an operation when the lens movable portion is moved downward along the vertical direction Z will be described.
 先ず、図4Aに示すように、積層圧電素子13に正方向すなわち順方向の大電流を流したとする。この場合、図4Bに示すように、積層圧電素子13は急速に厚み方向の伸び変位を生じる。その結果、振動摩擦部14はレンズの光軸O方向(上下方向Z)に沿って上方向に急速に移動する。このとき、レンズ可動部(第1及び第2の移動体121、122)は移動しない。何故なら、その慣性力により、レンズ可動部(第1及び第2の移動体121、122)は、振動摩擦部14と棒状の第1及び第2の移動体121、122との間の摩擦力に打ち勝って実質的にその位置にとどまるからである。 First, as shown in FIG. 4A, it is assumed that a large current in the positive direction, that is, the forward direction is passed through the laminated piezoelectric element 13. In this case, as shown in FIG. 4B, the laminated piezoelectric element 13 rapidly undergoes an elongation displacement in the thickness direction. As a result, the vibration friction portion 14 rapidly moves upward along the optical axis O direction (vertical direction Z) of the lens. At this time, the lens movable portion (the first and second moving bodies 121 and 122) does not move. This is because, due to the inertial force, the lens movable portion (the first and second moving bodies 121 and 122) causes the frictional force between the vibration friction portion 14 and the rod-shaped first and second moving bodies 121 and 122. This is because it overcomes and stays in that position.
 次に、図4Aに示すように、積層圧電素子13に負方向すなわち逆方向の一定電流を流したとする。この場合、積層圧電素子13は緩やかに厚み方向の縮み変位を生じる。その結果、振動摩擦部14は光軸O方向(上下方向Z)に沿って下方向に緩やかに移動する。このとき、レンズ可動部(第1及び第2の移動体121、122)は振動摩擦部14と共に実質的に光軸O方向(上下方向Z)に沿って下方向に移動する。何故なら、振動摩擦部14と棒状の第1及び第2の移動体121、122とはそれらの間の接触面(第1及び第2の摩擦面)に発生する摩擦力により結合しているからである。 Next, as shown in FIG. 4A, it is assumed that a constant current in the negative direction, that is, the reverse direction is passed through the laminated piezoelectric element 13. In this case, the laminated piezoelectric element 13 is gradually contracted in the thickness direction. As a result, the vibration friction portion 14 moves gently downward along the optical axis O direction (vertical direction Z). At this time, the lens movable portion (the first and second moving bodies 121 and 122) moves downward along the optical axis O direction (vertical direction Z) substantially together with the vibration friction portion 14. This is because the vibration friction portion 14 and the rod-shaped first and second moving bodies 121 and 122 are coupled to each other by the frictional force generated on the contact surfaces (first and second friction surfaces) between them. It is.
 このように、積層圧電素子13に(正方向すなわち順方向)大電流と(負方向すなわち逆方向)一定電流を交互に流して、積層圧電素子13に伸び変位と縮み変位を交互に生じさせることにより、レンズホルダ17(レンズバレル18)を光軸O方向(上下方向Z)に沿って下方向へ連続して移動させることができる。 In this manner, a large current (positive direction or forward direction) and a constant current (negative direction or reverse direction) are alternately supplied to the laminated piezoelectric element 13 to alternately generate an expansion displacement and a contraction displacement in the laminated piezoelectric element 13. Thus, the lens holder 17 (lens barrel 18) can be continuously moved downward along the optical axis O direction (vertical direction Z).
 レンズ可動部を光軸O方向(上下方向Z)に沿って上方向に移動させるとする。逆に、積層圧電素子13に(負方向すなわち逆方向)大電流と(正方向すなわち順方向)一定電流とを交互に流すことによって、これは達成される。 Suppose that the lens movable part is moved upward along the optical axis O direction (vertical direction Z). Conversely, this is achieved by alternately flowing a large current (negative direction or reverse direction) and a constant current (positive direction or forward direction) through the laminated piezoelectric element 13.
 次に、積層圧電素子13について説明する。積層圧電素子13は直方体の形状をしており、その素子サイズは、0.9[mm]×0.9[mm]×1.5[mm]である。圧電材料としてPZTのような低Qm材を使用している。厚さ20[μm]の圧電材料と厚さ2[μm]の内部電極とを交互に櫛形に50層積層することによって、積層圧電素子13を製造する。そして、積層圧電素子13の有効内部電極サイズは、0.6[mm]×0.6[mm]である。換言すれば、積層圧電素子13の有効内部電極の外側に位置する周辺部には、幅0.15[mm]のリング状の不感帯部分(クリアランス)が存在する。 Next, the laminated piezoelectric element 13 will be described. The laminated piezoelectric element 13 has a rectangular parallelepiped shape, and the element size is 0.9 [mm] × 0.9 [mm] × 1.5 [mm]. A low Qm material such as PZT is used as the piezoelectric material. The laminated piezoelectric element 13 is manufactured by laminating 50 layers of piezoelectric materials having a thickness of 20 [μm] and internal electrodes having a thickness of 2 [μm] alternately in a comb shape. The effective internal electrode size of the laminated piezoelectric element 13 is 0.6 [mm] × 0.6 [mm]. In other words, a ring-shaped dead zone portion (clearance) having a width of 0.15 [mm] exists in the peripheral portion located outside the effective internal electrode of the laminated piezoelectric element 13.
 図1乃至図3に示した駆動装置10では、第1の移動体121と可動鏡筒(レンズホルダ、レンズ支持体)17とは別体で、互いに固着されている。 In the driving apparatus 10 shown in FIGS. 1 to 3, the first moving body 121 and the movable lens barrel (lens holder, lens support body) 17 are separate and fixed to each other.
 図5は図1に示した駆動装置の変形例10Aを示す斜視図である。図5に示される駆動装置10Aでは、第1の移動体121と可動鏡筒(レンズホルダ、レンズ支持体)17とを一体に構成している。この場合、可動鏡筒(レンズホルダ、レンズ支持体)17と第1の移動体121とは同一の材料で構成される。 FIG. 5 is a perspective view showing a modified example 10A of the drive device shown in FIG. In the driving apparatus 10A shown in FIG. 5, the first moving body 121 and the movable lens barrel (lens holder, lens support body) 17 are integrally formed. In this case, the movable lens barrel (lens holder, lens support) 17 and the first moving body 121 are made of the same material.
 図6乃至図8を参照して、本発明の第2の実施の形態による駆動装置10Bについて説明する。図6は駆動装置10Bの斜視図である。図7は駆動装置10Bの右側面図である。図8は、駆動装置10Bに使用される振動伝達部材19Aを、振動摩擦部14と積層圧電素子(電気機械変換素子)13と共に示す側面断面図である。 A driving apparatus 10B according to a second embodiment of the present invention will be described with reference to FIGS. FIG. 6 is a perspective view of the driving device 10B. FIG. 7 is a right side view of the driving device 10B. FIG. 8 is a side sectional view showing the vibration transmitting member 19A used in the driving device 10B together with the vibration friction portion 14 and the laminated piezoelectric element (electromechanical conversion element) 13. As shown in FIG.
 ここでも、図6及び図7に示されるように、直交座標系(X,Y,Z)を使用している。図6及び図7に図示した状態では、直交座標系(X,Y,Z)において、X軸方向は前後方向(奥行方向)であり、Y軸方向は左右方向(幅方向)であり、Z軸方向は上下方向(高さ方向)である。 Again, as shown in FIGS. 6 and 7, an orthogonal coordinate system (X, Y, Z) is used. 6 and 7, in the orthogonal coordinate system (X, Y, Z), the X-axis direction is the front-rear direction (depth direction), the Y-axis direction is the left-right direction (width direction), and Z The axial direction is the vertical direction (height direction).
 図示の駆動装置10Bは、振動伝達部材19が後述するように振動伝達部材19Aに変形されると共に、可動鏡筒(レンズホルダ、レンズ支持体)および第1の移動体が後述するように変形されている点を除いて、図1乃至図3に示した駆動装置10と同様の構成を有する。したがって、可動鏡筒(レンズホルダ、レンズ支持体)および第1の移動体に、それぞれ、17Aおよび121Aの参照符号を付してある。以下では、図1乃至図3に示したものと同様の機能を有するものには同一の参照符号を付し、説明の簡略化のために、異なる点についてのみ説明する。 In the illustrated driving device 10B, the vibration transmitting member 19 is deformed into a vibration transmitting member 19A as described later, and the movable barrel (lens holder, lens support body) and the first moving body are deformed as described later. Except for this point, it has the same configuration as that of the driving device 10 shown in FIGS. Therefore, the reference numerals 17A and 121A are assigned to the movable lens barrel (lens holder and lens support) and the first moving body, respectively. In the following, components having the same functions as those shown in FIGS. 1 to 3 are denoted by the same reference numerals, and only different points will be described for simplification of description.
 可動鏡筒(レンズホルダ、レンズ支持体)17Aは、突条部172が突条部172Aに変更されている点を除いて、図1乃至図3に示した可動鏡筒(レンズホルダ、レンズ支持体)17と同様の構成を有する。突条部172Aは、その長さが突条部172よりも短くなっている。すなわち、突条部172Aは、筒状部170の上部に形成されている。 The movable lens barrel (lens holder, lens support) 17A has the movable lens barrel (lens holder, lens support) shown in FIGS. 1 to 3 except that the protrusion 172 is changed to the protrusion 172A. Body). The length of the protrusion 172A is shorter than that of the protrusion 172. That is, the ridge portion 172A is formed on the upper portion of the cylindrical portion 170.
 そのため、この突条部172Aに固着される第1の移動体121Aも、その長さが図1乃至図3に示した第1の移動体121よりも短くなっている。 Therefore, the length of the first moving body 121A fixed to the ridge portion 172A is also shorter than that of the first moving body 121 shown in FIGS.
 振動伝達部材19Aは、その水平面における縦横の幅(寸法)が、図1乃至図3に示した振動伝達部材19よりも広くなっている。 The vibration transmission member 19 </ b> A has a horizontal and vertical width (dimensions) in the horizontal plane that is wider than that of the vibration transmission member 19 shown in FIGS. 1 to 3.
 そして、図8に示されるように、振動伝達部材19Aは、積層圧電素子(電気機械変換素子)13の上端面13bとの対向面に第1の凹部191が形成され、振動摩擦部14の下端面14aとの対向面に第2の凹部192が形成されている。従って、第1の凹部191には積層圧電素子(電気機械変換素子)13の上端面13bが遊嵌され、第2の凹部192には振動摩擦部14の下端面14aが遊嵌される。 As shown in FIG. 8, the vibration transmitting member 19 </ b> A has a first recess 191 formed on the surface facing the upper end surface 13 b of the laminated piezoelectric element (electromechanical conversion element) 13, and is below the vibration friction portion 14. A second recess 192 is formed on the surface facing the end surface 14a. Therefore, the upper end surface 13 b of the laminated piezoelectric element (electromechanical transducer) 13 is loosely fitted in the first recess 191, and the lower end surface 14 a of the vibration friction portion 14 is loosely fitted in the second recess 192.
 第1の凹部191は、積層圧電素子(電気機械変換素子)13の上端面13bと振動伝達部材19Aの下端面19aとの間の接着剤(接着樹脂)20の塗布領域を明確するためである。第2の凹部192は、振動摩擦部14の下端面14aと振動伝達部材19Aの上端面19bとの間の接着剤(接着樹脂)20の塗布領域を明確にするためである。これにより、駆動装置10Bの組み立て性を向上することができる。 The 1st recessed part 191 is for clarifying the application | coating area | region of the adhesive agent (adhesive resin) 20 between the upper end surface 13b of the laminated piezoelectric element (electromechanical conversion element) 13 and the lower end surface 19a of the vibration transmission member 19A. . The 2nd recessed part 192 is for clarifying the application | coating area | region of the adhesive agent (adhesive resin) 20 between the lower end surface 14a of the vibration friction part 14, and the upper end surface 19b of the vibration transmission member 19A. Thereby, the assembly property of the drive device 10B can be improved.
 また、図8に示されるように、振動伝達部材19Aの下端面19aと積層圧電素子(電気機械変換素子)13の上端面13bとを接着剤(接着樹脂)20で接合(接着)する際、その接着剤(接着樹脂)20は振動伝達部材19Aの第1の凹部191の内側壁側に押しやられる。同様に、振動伝達部材19Aの上端面19bと振動摩擦部14の下端面14aとを接着剤(接着樹脂)20で接合する際も、その接着剤(接着樹脂)20は第2の凹部192の内側壁側に押しやられる。 8, when joining (adhering) the lower end surface 19a of the vibration transmitting member 19A and the upper end surface 13b of the laminated piezoelectric element (electromechanical transducer) 13 with an adhesive (adhesive resin) 20, The adhesive (adhesive resin) 20 is pushed to the inner wall side of the first recess 191 of the vibration transmitting member 19A. Similarly, when the upper end surface 19 b of the vibration transmitting member 19 </ b> A and the lower end surface 14 a of the vibration friction portion 14 are joined with the adhesive (adhesive resin) 20, the adhesive (adhesive resin) 20 is used as the second recess 192. It is pushed to the inner wall side.
 その結果、図8に示されるように、積層圧電素子(電気機械変換素子)13と振動伝達部材19Aと振動摩擦部14とを、それらの間に接着樹脂層が無い状態で、取り付けることができる。その為、積層圧電素子(電気機械変換素子)13の伸縮により発生する振動を、振動伝達部材19Aおよび振動摩擦部14を介して、効率良く、第1及び第2の移動体(移動部材)121A、121まで伝達することが可能となる。 As a result, as shown in FIG. 8, the laminated piezoelectric element (electromechanical conversion element) 13, the vibration transmission member 19 </ b> A, and the vibration friction portion 14 can be attached without any adhesive resin layer therebetween. . Therefore, the vibration generated by the expansion and contraction of the laminated piezoelectric element (electromechanical conversion element) 13 is efficiently and efficiently transmitted through the vibration transmission member 19A and the vibration friction portion 14 to the first and second moving bodies (moving members) 121A. , 121 can be transmitted.
 図6及び図7に示した駆動装置10Bでは、第1の移動体121Aと可動鏡筒(レンズホルダ、レンズ支持体)17Aとは別体で、互いに固着されている。 In the driving device 10B shown in FIGS. 6 and 7, the first moving body 121A and the movable lens barrel (lens holder, lens support body) 17A are separate and fixed to each other.
 図9は図6に示した駆動装置の変形例10Cを示す斜視図である。図9に示される駆動装置10Cは、第1の移動体121Aと可動鏡筒(レンズホルダ、レンズ支持体)17Aとを一体に構成している。この場合、可動鏡筒(レンズホルダ、レンズ支持体)17Aと第1の移動体121Aとは同一の材料で構成される。 FIG. 9 is a perspective view showing a modification 10C of the drive device shown in FIG. A driving device 10C shown in FIG. 9 integrally includes a first moving body 121A and a movable lens barrel (lens holder, lens support) 17A. In this case, the movable lens barrel (lens holder, lens support) 17A and the first moving body 121A are made of the same material.
 上記本発明の例示的な態様において、振動伝達部材は、電気機械変換素子の第2の端面が遊嵌される第1の凹部と、振動摩擦部の端面が遊嵌される第2の凹部と、を持つことが好ましい。また、駆動装置は、電気機械変換素子の第1の端面に結合された静止部材を更に有してよい。 In the exemplary aspect of the present invention, the vibration transmission member includes a first recess in which the second end surface of the electromechanical transducer is loosely fitted, and a second recess in which the end surface of the vibration friction portion is loosely fitted. It is preferable to have The drive device may further include a stationary member coupled to the first end surface of the electromechanical transducer.
 以上、本発明を、その実施の形態を参照して特に示し説明してきたが、本発明はこれら実施の形態に限定されない。当業者によって、請求の範囲に規定された本発明の精神と範囲を逸脱せずに、形式や詳細において種々の変形がなされると理解される。 Although the present invention has been particularly shown and described with reference to the embodiments, the present invention is not limited to these embodiments. It will be understood by those skilled in the art that various modifications can be made in form and detail without departing from the spirit and scope of the invention as defined in the claims.
 本出願は、2008年5月13日に出願した、日本国の特許出願第2008-125529号に基き、優先権の利益を主張するものであり、その開示は、参考文献として全体としてここに組み入れられる。 This application claims the benefit of priority based on Japanese Patent Application No. 2008-125529 filed on May 13, 2008, the disclosure of which is hereby incorporated by reference in its entirety. It is done.

Claims (3)

  1.  伸縮方向で互いに対向する第1及び第2の端面(13a,13b)を持つ電気機械変換素子(13)と、
     該電気機械変換素子の前記第2の端面(13b)に取り付けられた振動摩擦部(14)と、
     該振動摩擦部と摩擦結合される移動部材(121;121A,122)であって、前記電気機械変換素子(13)の伸縮方向に移動可能な前記移動部材(121;121A,122)と、
     前記電気機械変換素子(13)の前記第2の端面(13b)と前記振動摩擦部(14)の端面(14a)との間に配置された振動伝達部材(19;19A)と、を有する駆動装置(10;10A;10B;10C)。
    An electromechanical transducer element (13) having first and second end faces (13a, 13b) facing each other in a stretching direction;
    A vibration friction portion (14) attached to the second end face (13b) of the electromechanical transducer;
    A moving member (121; 121A, 122) that is frictionally coupled to the vibration friction portion, the moving member (121; 121A, 122) being movable in the expansion / contraction direction of the electromechanical transducer (13);
    A drive having a vibration transmitting member (19; 19A) disposed between the second end surface (13b) of the electromechanical transducer (13) and an end surface (14a) of the vibration friction portion (14). Apparatus (10; 10A; 10B; 10C).
  2.  前記振動伝達部材(19A)は、
     前記電気機械変換素子(13)の前記第2の端面(13b)が遊嵌される第1の凹部(191)と、
     前記振動摩擦部(14)の端面(14a)が遊嵌される第2の凹部(192)と、
    を持つ、請求項1に記載の駆動装置(10B;10C)。
    The vibration transmission member (19A)
    A first recess (191) in which the second end face (13b) of the electromechanical transducer (13) is loosely fitted;
    A second recess (192) in which the end face (14a) of the vibration friction portion (14) is loosely fitted;
    The drive device (10B; 10C) according to claim 1, wherein
  3.  前記電気機械変換素子(13)の前記第1の端面(13a)に結合された静止部材(11)を更に有する、請求項1又は2に記載の駆動装置。 The driving device according to claim 1 or 2, further comprising a stationary member (11) coupled to the first end face (13a) of the electromechanical transducer (13).
PCT/JP2009/058741 2008-05-13 2009-05-11 Drive device WO2009139344A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2009801173378A CN102027402A (en) 2008-05-13 2009-05-11 Drive device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-125529 2008-05-13
JP2008125529A JP2009276422A (en) 2008-05-13 2008-05-13 Driving gear

Publications (1)

Publication Number Publication Date
WO2009139344A1 true WO2009139344A1 (en) 2009-11-19

Family

ID=41318713

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/058741 WO2009139344A1 (en) 2008-05-13 2009-05-11 Drive device

Country Status (4)

Country Link
JP (1) JP2009276422A (en)
CN (1) CN102027402A (en)
TW (1) TW200947098A (en)
WO (1) WO2009139344A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011120414A (en) * 2009-12-07 2011-06-16 Shicoh Engineering Co Ltd Linear drive device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018180353A (en) * 2017-04-17 2018-11-15 シーエム・テクノロジー株式会社 Lens drive device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002119074A (en) * 2000-10-04 2002-04-19 Minolta Co Ltd Drive using electromechanical sensing element
JP2006129625A (en) * 2004-10-29 2006-05-18 Konica Minolta Opto Inc Drive unit

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE479201T1 (en) * 2004-03-02 2010-09-15 Piezoelectric Technology Co Lt SMALL PIEZOELECTRIC OR ELECTROSTRICTION LINEAR MOTOR
JP2007181348A (en) * 2005-12-28 2007-07-12 Ginga Denki Kogyo Kk Method for manufacturing stator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002119074A (en) * 2000-10-04 2002-04-19 Minolta Co Ltd Drive using electromechanical sensing element
JP2006129625A (en) * 2004-10-29 2006-05-18 Konica Minolta Opto Inc Drive unit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011120414A (en) * 2009-12-07 2011-06-16 Shicoh Engineering Co Ltd Linear drive device

Also Published As

Publication number Publication date
CN102027402A (en) 2011-04-20
JP2009276422A (en) 2009-11-26
TW200947098A (en) 2009-11-16

Similar Documents

Publication Publication Date Title
JP5376115B2 (en) Driving method of driving device
EP1720049A2 (en) Driving mechanism
JP2006330053A (en) Lens barrel
JP5387811B2 (en) Driving method of driving device
JP2015133864A (en) Ultrasonic motor and device with ultrasonic motor
US7633208B2 (en) Driving device capable of transferring vibrations generated by an electro-mechanical transducer to a vibration friction portion with a high degree of efficiency
JP4844769B2 (en) Drive device
US7652407B2 (en) Driving device capable of improving a shock and vibration resistance thereof
JP5316756B2 (en) Drive device
US7732982B2 (en) Driving device capable of reducing height thereof
WO2009139344A1 (en) Drive device
JP2009050142A (en) Drive unit
KR20130129258A (en) Displacement member, driving member, actuator, and driving apparatus
US7633209B2 (en) Driving device capable of obtaining a stable frequency characteristic
WO2009139345A1 (en) Driving device
JP2010091678A (en) Driving device
JP2018101094A (en) Vibration type actuator, lens driving device, optical instrument, and electronic apparatus
JP5515677B2 (en) Actuator, lens barrel and imaging device
JP2009050143A (en) Drive unit
JP2010032912A (en) Drive device and lens drive device
JP2007181260A (en) Drive unit and camera module

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980117337.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09746551

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09746551

Country of ref document: EP

Kind code of ref document: A1