JP2018101094A - Vibration type actuator, lens driving device, optical instrument, and electronic apparatus - Google Patents

Vibration type actuator, lens driving device, optical instrument, and electronic apparatus Download PDF

Info

Publication number
JP2018101094A
JP2018101094A JP2016247817A JP2016247817A JP2018101094A JP 2018101094 A JP2018101094 A JP 2018101094A JP 2016247817 A JP2016247817 A JP 2016247817A JP 2016247817 A JP2016247817 A JP 2016247817A JP 2018101094 A JP2018101094 A JP 2018101094A
Authority
JP
Japan
Prior art keywords
vibration
type actuator
axis direction
vibrating body
friction member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016247817A
Other languages
Japanese (ja)
Inventor
真衣 濱本
Mai Hamamoto
真衣 濱本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2016247817A priority Critical patent/JP2018101094A/en
Publication of JP2018101094A publication Critical patent/JP2018101094A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To drive a lens group at an equal speed irrespective of the direction of movement without changing driving conditions for a vibration type actuator according to the direction of movement of the lens group.SOLUTION: In a vibration type actuator 1 comprising a vibrator 11 and a driven body 12, the vibrator 11 includes a plate-like elastic body 112, projection parts 112a and 112b provided on one face of the elastic body 112 and in contact with the driven body 12, and a piezoelectric element 111 adhered to the other face of the elastic body 112. Driving vibration includes a vibration mode having a nodal line substantially parallel to a direction orthogonal to both the thickness direction of the elastic body 112 and a relative direction of movement between the vibrator 11 and driven body 12; the projection parts 112a and 112b are provided at positions shifted in the direction of movement by a predetermined distance from the position of the nodal line when the driving vibration is excited.SELECTED DRAWING: Figure 2

Description

本発明は、振動型アクチュエータ、レンズ駆動装置、光学機器及び電子機器に関し、特に、振動型アクチュエータを用いてレンズ等の駆動対象物を移動させる技術に関する。   The present invention relates to a vibration type actuator, a lens driving device, an optical device, and an electronic device, and more particularly to a technique for moving a driving object such as a lens using a vibration type actuator.

小型軽量で駆動力が大きく、広い速度レンジを有し、静音駆動が可能である等の特徴を有する振動型アクチュエータは、例えば、デジタルカメラ等の光学機器(撮像装置)でのレンズ駆動に採用されている。振動型アクチュエータには、様々な構造のもの知られている。例えば、特許文献1には、板状の弾性体の一方の面に突起部が設けられ、他方の面に圧電素子が接合された構造を有する振動体を備え、突起部の先端が被駆動体と加圧接触する構造を有する振動型アクチュエータが記載されている。この振動型アクチュエータでは、圧電素子に交流電圧を印加して突起部の先端に楕円運動を発生させ、突起部が被駆動体に推力(摩擦力)を与えることにより、振動体と被駆動体とを相対的に移動させることができる。   Vibrating actuators that are small and light, have a large driving force, have a wide speed range, and can be driven silently, are used for lens driving in optical equipment (imaging devices) such as digital cameras. ing. Various types of vibration actuators are known. For example, Patent Document 1 includes a vibrating body having a structure in which a protrusion is provided on one surface of a plate-like elastic body and a piezoelectric element is bonded to the other surface, and the tip of the protrusion is a driven body. A vibration type actuator having a structure in pressure contact is described. In this vibration type actuator, an alternating voltage is applied to the piezoelectric element to generate an elliptical motion at the tip of the protrusion, and the protrusion gives a thrust (frictional force) to the driven body. Can be moved relatively.

ところで、特許文献2には、レンズ群と、レンズ群を移動させるための送り棒と、送り棒に貫通支持されたレンズ移動枠と、付勢バネによってレンズ群を光軸方向に付勢して片寄せする機構を備えたレンズ鏡筒が記載されている。   By the way, in Patent Document 2, a lens group, a feed rod for moving the lens group, a lens moving frame supported by the feed rod, and a biasing spring are used to urge the lens group in the optical axis direction. A lens barrel provided with a mechanism for shifting is described.

特開2004−304887号公報Japanese Patent Laid-Open No. 2004-304877 特開平4−342211号公報JP-A-4-342211

特許文献1に記載された振動型アクチュエータを特許文献2に記載されたレンズ鏡筒に適用して、レンズ群を光軸方向に駆動する構成を考える。特許文献2に記載されたレンズ鏡筒では、レンズ群を光軸方向で移動させるときの駆動負荷が、付勢バネがレンズ群を付勢する方向とその逆方向とで異なる。よって、付勢バネがレンズ群を付勢する方向とその逆方向とでレンズ群の移動速度を同じにするためには、レンズ群の移動方向に応じて駆動条件を変える必要がある。換言すれば、振動型アクチュエータの駆動条件をレンズ群の移動方向に関係なく一定とした場合には、レンズ群の移動方向によって移動速度に差が生じてしまうという問題が生じる。   Consider a configuration in which the vibration type actuator described in Patent Document 1 is applied to the lens barrel described in Patent Document 2 to drive the lens group in the optical axis direction. In the lens barrel described in Patent Document 2, the driving load when moving the lens group in the optical axis direction differs between the direction in which the biasing spring biases the lens group and the opposite direction. Therefore, in order to make the moving speed of the lens group the same in the direction in which the biasing spring biases the lens group and in the opposite direction, it is necessary to change the driving conditions according to the moving direction of the lens group. In other words, when the driving condition of the vibration type actuator is constant regardless of the moving direction of the lens group, there arises a problem that the moving speed varies depending on the moving direction of the lens group.

本発明は、駆動対象物が移動方向の一方の方向に付勢されている場合に、振動型アクチュエータの駆動条件を変えることなく、駆動対象物を移動方向によらずに同等な速度で駆動可能な振動型アクチュエータを提供することを目的とする。   In the present invention, when the driven object is urged in one of the moving directions, the driven object can be driven at the same speed regardless of the moving direction without changing the driving condition of the vibration type actuator. An object of the present invention is to provide a simple vibration type actuator.

本発明に係る振動型アクチュエータは、摩擦部材に加圧接触させた振動体に駆動振動が励起されることで前記振動体と前記摩擦部材とが相対的に移動する振動型アクチュエータであって、前記振動体は、平板状の弾性体と、前記弾性体の一方の面に該弾性体の厚み方向に突出するように設けられ、前記摩擦部材と当接する突起部と、前記弾性体の他方の面に接着された電気−機械エネルギ変換素子と、を有し、前記弾性体の厚み方向と前記振動体と前記摩擦部材の相対的な移動方向の両方向と直交する方向に略平行な節線を有する振動モードを含む前記駆動振動が励起されたときの前記節線の位置から前記移動方向へ所定の距離ずれた位置に前記突起部が設けられていることを特徴とする。   The vibration-type actuator according to the present invention is a vibration-type actuator in which the vibration body and the friction member move relative to each other when the drive vibration is excited by the vibration body that is press-contacted with the friction member. The vibrating body includes a flat elastic body, a protrusion provided on one surface of the elastic body so as to protrude in the thickness direction of the elastic body, a protrusion that contacts the friction member, and the other surface of the elastic body An electro-mechanical energy conversion element bonded to the substrate, and having a nodal line substantially parallel to the thickness direction of the elastic body and a direction orthogonal to both directions of relative movement directions of the vibration body and the friction member The protrusion is provided at a position shifted by a predetermined distance in the moving direction from the position of the nodal line when the driving vibration including a vibration mode is excited.

本発明によれば、駆動対象物が移動方向の一方の方向に付勢されている場合に、振動型アクチュエータの駆動条件を変えることなく、駆動対象物を移動方向によらずに同等な速度で駆動することができる。   According to the present invention, when the driven object is biased in one direction of movement, the driven object is moved at the same speed regardless of the moving direction without changing the driving condition of the vibration type actuator. Can be driven.

本発明の実施形態に係る振動型アクチュエータの概略構成を示す図である。It is a figure which shows schematic structure of the vibration type actuator which concerns on embodiment of this invention. 図1の振動型アクチュエータが備える振動体の概略構成を説明する図である。It is a figure explaining schematic structure of the vibrating body with which the vibration type actuator of FIG. 1 is provided. 従来例に係る振動体に励起される駆動振動の態様を説明する図である。It is a figure explaining the aspect of the drive vibration excited by the vibrating body which concerns on a prior art example. 本実施形態での振動体に励起される駆動振動の態様を説明する図である。It is a figure explaining the aspect of the drive vibration excited by the vibrating body in this embodiment. 従来例に係る振動体の突起部の先端に生じる振動変位を説明する図である。It is a figure explaining the vibration displacement which arises in the front-end | tip of the projection part of the vibrating body which concerns on a prior art example. 本実施形態での振動体の突起部の先端に生じる振動変位を説明する図である。It is a figure explaining the vibration displacement which arises at the front-end | tip of the projection part of the vibrating body in this embodiment. 従来例に係る振動体が摩擦部材に与える推力の作用を説明する図である。It is a figure explaining the effect | action of the thrust which the vibrating body which concerns on a prior art example gives to a friction member. 本実施形態での振動体が摩擦部材に与える推力の作用を説明する図である。It is a figure explaining the effect | action of the thrust which the vibrating body in this embodiment gives to a friction member. 振動型アクチュエータの速度−推力線図を従来例と実施例とで比較して説明する図である。It is a figure which compares and compares the speed-thrust diagram of a vibration type actuator with a prior art example and an Example. 本実施形態に係るレンズ駆動装置の概略断面図である。It is a schematic sectional drawing of the lens drive device concerning this embodiment.

以下、本発明の実施形態について、添付図面を参照して詳細に説明する。図1(a)は、本発明の実施形態に係る振動型アクチュエータ1の分解斜視図である。なお、図1(a)に示すように、互いに直交するx軸方向、y軸方向及びz軸方向を規定する。図1(b)は、図1(a)に示す断面Aでの断面図(zx断面図)である。x軸方向は、後述するように、振動型アクチュエータ1を構成する振動体11と被駆動体12との相対的な移動方向である。z軸方向は、振動体11を構成する弾性体112の厚み方向であり、弾性体112に設けられた突起部112a,112bの突出方向である。y軸方向は、x軸方向とz軸方向の両方向と直交する方向であり、弾性体112の幅方向でもある。   Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. FIG. 1A is an exploded perspective view of a vibration type actuator 1 according to an embodiment of the present invention. In addition, as shown to Fig.1 (a), the x-axis direction, y-axis direction, and z-axis direction which mutually orthogonally cross are prescribed | regulated. FIG. 1B is a cross-sectional view (zx cross-sectional view) taken along the cross-section A shown in FIG. As will be described later, the x-axis direction is a relative movement direction of the vibrating body 11 and the driven body 12 constituting the vibration type actuator 1. The z-axis direction is the thickness direction of the elastic body 112 constituting the vibrating body 11, and is the protruding direction of the protrusions 112a and 112b provided on the elastic body 112. The y-axis direction is a direction orthogonal to both the x-axis direction and the z-axis direction, and is also the width direction of the elastic body 112.

振動型アクチュエータ1は、振動体11、被駆動体12、ネジ13、振動体保持部材14、加圧ユニット15、転動部材16、カバープレート17及びネジ18を備える。振動体11は、圧電素子111と弾性体112を備える。電気−機械エネルギ変換素子である圧電素子111は、例えば、矩形で平板状の圧電セラミックスの表裏面に所定の形状の電極膜が形成された構造を有する。圧電セラミックスとしては、例えば、チタン酸ジルコン酸鉛(PZT)が用いられ、圧電セラミックスは、厚み方向であるz軸方向に分極されている。圧電素子111は、矩形で平板状の弾性体112の一方の面に接着剤を用いて接着されている。弾性体112は、例えば、ステンレス鋼(ステンレス鋼板)等からなる。弾性体112において圧電素子111が接着されている面の反対側の面には、長手方向(x軸方向)に所定の間隔で2カ所に突起部112a,112bが形成されている。また、弾性体112の長手方向端にはそれぞれ、振動体11を振動体保持部材14に接合するための被接合部112c,112dが形成されている。振動体11に励起する駆動振動については後述する。   The vibration type actuator 1 includes a vibration body 11, a driven body 12, a screw 13, a vibration body holding member 14, a pressure unit 15, a rolling member 16, a cover plate 17, and a screw 18. The vibrating body 11 includes a piezoelectric element 111 and an elastic body 112. The piezoelectric element 111 which is an electro-mechanical energy conversion element has a structure in which a predetermined shape of electrode film is formed on the front and back surfaces of a rectangular and flat piezoelectric ceramic, for example. For example, lead zirconate titanate (PZT) is used as the piezoelectric ceramic, and the piezoelectric ceramic is polarized in the z-axis direction which is the thickness direction. The piezoelectric element 111 is bonded to one surface of a rectangular and flat elastic body 112 using an adhesive. The elastic body 112 is made of, for example, stainless steel (stainless steel plate). On the surface of the elastic body 112 opposite to the surface to which the piezoelectric element 111 is bonded, projections 112a and 112b are formed at two locations at predetermined intervals in the longitudinal direction (x-axis direction). Further, bonded portions 112 c and 112 d for bonding the vibrating body 11 to the vibrating body holding member 14 are formed at the longitudinal ends of the elastic body 112, respectively. The drive vibration excited on the vibrating body 11 will be described later.

被駆動体12は、摩擦部材121と摩擦部材固定部122を備える。摩擦部材121は、摩擦部材固定部122に対してネジ13を用いて固定されているが、固定方法は限定されない。振動体11の突起部112a,112bは、加圧ユニット15からの加圧力によって摩擦部材121に当接している。詳細は後述するが、突起部112a,112bの先端に、zx面内での楕円運動を励起して、突起部112a,112bから摩擦部材121へ推力(摩擦力)を与えることで、振動体11と被駆動体12とをx軸方向において相対的に移動させることができる。振動体11と被駆動体12との相対移動を滑らかに行うと共に十分な耐久性を得る観点から、摩擦部材121において突起部112a,112bと加圧接触する摺動面は、平滑で且つ高硬度であることが望ましい。そのため、本実施形態では、摩擦部材121には、例えば、ステンレス鋼板が用いられている。なお、摩擦部材固定部122には、例えば、樹脂成形体を用いることができる。   The driven body 12 includes a friction member 121 and a friction member fixing portion 122. Although the friction member 121 is fixed to the friction member fixing portion 122 using the screw 13, the fixing method is not limited. The protrusions 112 a and 112 b of the vibrating body 11 are in contact with the friction member 121 by the pressure applied from the pressurizing unit 15. Although details will be described later, the vibrating body 11 is excited by applying elliptical motion in the zx plane to the tips of the protrusions 112a and 112b and applying a thrust (friction force) to the friction member 121 from the protrusions 112a and 112b. And the driven body 12 can be relatively moved in the x-axis direction. From the viewpoint of smoothly moving the vibrating body 11 and the driven body 12 and obtaining sufficient durability, the sliding surface of the friction member 121 that is in pressure contact with the protrusions 112a and 112b is smooth and has high hardness. It is desirable that Therefore, in the present embodiment, for example, a stainless steel plate is used for the friction member 121. For example, a resin molded body can be used for the friction member fixing portion 122.

振動体保持部材14は、例えば、樹脂からなる。弾性体112の被接合部112c,112dには穴部が形成されており、振動体保持部材14には被接合部112c,112dに形成された穴部と嵌合する凸部が形成されている。被接合部112c,112dの穴部と振動体保持部材14の凸部とを嵌合させて接着剤等により接着することにより、振動体11は振動体保持部材14に固定される。   The vibrating body holding member 14 is made of resin, for example. Holes are formed in the bonded portions 112c and 112d of the elastic body 112, and convex portions are formed in the vibrating body holding member 14 so as to be fitted with the holes formed in the bonded portions 112c and 112d. . The vibrating body 11 is fixed to the vibrating body holding member 14 by fitting the holes of the joined portions 112c and 112d and the convex portions of the vibrating body holding member 14 and bonding them with an adhesive or the like.

加圧ユニット15は、加圧板151と加圧部材152を備える。加圧板151は、フェルト等の弾性部材からなり、加圧部材152からの加圧力(付勢力)を圧電素子111に均等に付与すると共に振動体11に励起した駆動振動の加圧部材152への伝達を抑制する。加圧部材152は、例えば、コイルばねであり、加圧板151と振動体保持部材14との間に圧縮変形した状態で組み込まれている。よって、加圧部材152が伸びようとする力が加圧板151を介して振動体11に伝達されることにより、突起部112a,112bの先端は摩擦部材121の摺動面に加圧接触する。振動体保持部材14において振動体11が配置される面の反対側の面には、転動部材16が配置される案内溝14aが設けられている。   The pressure unit 15 includes a pressure plate 151 and a pressure member 152. The pressure plate 151 is made of an elastic member such as felt. The pressure plate 151 uniformly applies the pressing force (biasing force) from the pressure member 152 to the piezoelectric element 111 and applies drive vibration to the pressure member 152 excited by the vibrating body 11. Suppress transmission. The pressure member 152 is, for example, a coil spring, and is incorporated between the pressure plate 151 and the vibrating body holding member 14 in a state of being compressed and deformed. Therefore, the force at which the pressure member 152 tries to extend is transmitted to the vibrating body 11 via the pressure plate 151, so that the tips of the protrusions 112 a and 112 b are in pressure contact with the sliding surface of the friction member 121. A guide groove 14a in which the rolling member 16 is disposed is provided on the surface of the vibration body holding member 14 opposite to the surface on which the vibration body 11 is disposed.

カバープレート17は、ネジ18(又はビス等)を用いて摩擦部材固定部122に固定される。このとき、転動部材16であるボールが、振動体保持部材14に設けられた案内溝14aとカバープレート17の間に嵌入される。これにより、振動体11、振動体保持部材14及び加圧ユニット15は、一体となって案内溝14aに案内されて、被駆動体12に対して相対的にx軸方向に移動可能となっている。   The cover plate 17 is fixed to the friction member fixing portion 122 using screws 18 (or screws or the like). At this time, the ball as the rolling member 16 is inserted between the guide groove 14 a provided in the vibrating body holding member 14 and the cover plate 17. Thereby, the vibrating body 11, the vibrating body holding member 14, and the pressure unit 15 are integrally guided by the guide groove 14 a and can move relative to the driven body 12 in the x-axis direction. Yes.

なお、図1に示す構成は本発明の実施形態に係る振動型アクチュエータの構成の一例であって、本発明の実施形態に係る振動型アクチュエータの構成は、図1で示す構成に限定されない。例えば、振動体11を摩擦部材121に加圧接触させる構成は、加圧部材152が伸びようとする力で加圧板151を押す構成ではなく、加圧部材152が縮もうとする力で加圧板151を引っ張る構成であってもよい。また、振動体11が移動する構成ではなく、摩擦部材121が移動する構成でもよい。   The configuration shown in FIG. 1 is an example of the configuration of the vibration type actuator according to the embodiment of the present invention, and the configuration of the vibration type actuator according to the embodiment of the present invention is not limited to the configuration shown in FIG. For example, the configuration in which the vibrating body 11 is brought into pressure contact with the friction member 121 is not a configuration in which the pressure plate 151 is pushed by the force that the pressure member 152 tries to extend, but the pressure plate that is pressed by the force that the pressure member 152 tries to contract. The structure which pulls 151 may be sufficient. Moreover, the structure which the friction member 121 moves may be sufficient instead of the structure to which the vibrating body 11 moves.

次に、振動体11における突起部112a,112bの位置と振動体11に励起する駆動振動について説明する。図2(a)は、振動体11の側面図である。図2(b)は、振動体11の正面図である。図2(c)は、振動体11の底面図である。図2(a),(c)に破線で示される突起部112a0,112b0はそれぞれ、従来例(上記特許文献1)に係る振動体の突起部を示している。図3は、従来例に係る振動体11´を簡略化し、振動体11´に励起される駆動振動の態様を説明する図である。図3(a)は、振動体11´をy軸方向から見た図(側面図)であり、図3(b)は、振動体11´をx軸方向から見た図(正面図)である。また、図4は、本実施例での振動体11を簡略化し、振動体11に励起される駆動振動の態様を説明する図である。図4(a)は、振動体11をy軸方向から見た図(側面図)であり、図4(b)は、振動体11をx軸方向から見た図(正面図)である。   Next, the positions of the protrusions 112a and 112b in the vibrating body 11 and the driving vibration excited on the vibrating body 11 will be described. FIG. 2A is a side view of the vibrating body 11. FIG. 2B is a front view of the vibrating body 11. FIG. 2C is a bottom view of the vibrating body 11. Protrusions 112a0 and 112b0 indicated by broken lines in FIGS. 2A and 2C respectively indicate the projecting parts of the vibrator according to the conventional example (the above-mentioned Patent Document 1). FIG. 3 is a diagram illustrating a mode of driving vibration excited by the vibrating body 11 ′ by simplifying the vibrating body 11 ′ according to the conventional example. 3A is a view (side view) of the vibrating body 11 ′ viewed from the y-axis direction, and FIG. 3B is a view (front view) of the vibrating body 11 ′ viewed from the x-axis direction. is there. FIG. 4 is a diagram illustrating a mode of driving vibration excited by the vibrating body 11 by simplifying the vibrating body 11 in the present embodiment. 4A is a view (side view) of the vibrating body 11 viewed from the y-axis direction, and FIG. 4B is a view (front view) of the vibrating body 11 viewed from the x-axis direction.

従来例に係る振動体に励起される駆動振動と突起部112a0,112b0の動きと、本実施形態での振動体11に励起される駆動振動と突起部112a,112bの動きとを比較して説明する。図2、図3及び図4において、位置M,Pは、振動体11´が備える突起部112a0,112b0の中心のx軸方向での位置を表している。また、位置Oは、振動体11,11´のx軸方向での中心を表しており、振動体11,11´で共通している。位置Lは、振動体11,11´のy軸方向での中心を表しており、突起部112a0,112b0の中心のy軸方向での位置であり、突起部112a,112bの中心のy軸方向での位置でもある。また、図2及び図4において、位置N,Qは、振動体11が備える突起部112a,112bの中心のx軸方向での位置を表している。x軸方向における位置Mと位置Nの間隔及び位置Pと位置Qの間隔は共に所定の距離δとなっている。   The drive vibration excited by the vibrator according to the conventional example and the movement of the protrusions 112a0 and 112b0 are compared with the drive vibration excited by the vibrator 11 and the movement of the protrusions 112a and 112b in the present embodiment. To do. 2, 3, and 4, positions M and P represent positions in the x-axis direction of the centers of the protrusions 112 a 0 and 112 b 0 included in the vibrating body 11 ′. The position O represents the center of the vibrating bodies 11 and 11 ′ in the x-axis direction and is common to the vibrating bodies 11 and 11 ′. The position L represents the center in the y-axis direction of the vibrating bodies 11 and 11 ′, is the position in the y-axis direction of the center of the protrusions 112a0 and 112b0, and is the y-axis direction of the center of the protrusions 112a and 112b. It is also the position at. 2 and 4, positions N and Q represent positions in the x-axis direction of the centers of the protrusions 112 a and 112 b included in the vibrating body 11. The distance between the position M and the position N in the x-axis direction and the distance between the position P and the position Q are both a predetermined distance δ.

振動体11,11´には同じ駆動振動が励起される。駆動振動は、2つ振動モードとの振動を同時に振動体11,11´に励起させることによって生じさせることができる。1つの振動モードは、図3(a)及び図4(a)に示すように、x軸方向にy軸と略平行な3つの節線を持つ固有振動モード(モード1(一次の面外曲げ振動モード))である。そして、別の1つの振動モードは、図3(b)及び図4(b)に示すように、y軸方向にx軸と略平行な2つの節線を持つ固有振動モード(モード2(二次の面外曲げ振動モード))である。なお、図3及び図4では、各振動モードでの振動体11,11´の変形の様子を誇張して示している。   The same drive vibration is excited in the vibrating bodies 11 and 11 ′. The drive vibration can be generated by exciting the vibrations in the two vibration modes simultaneously to the vibrators 11 and 11 ′. As shown in FIGS. 3A and 4A, one vibration mode is a natural vibration mode (mode 1 (primary out-of-plane bending) having three nodal lines substantially parallel to the y-axis in the x-axis direction. Vibration mode)). As shown in FIGS. 3B and 4B, another vibration mode is a natural vibration mode (mode 2 (2) having two nodal lines substantially parallel to the x-axis in the y-axis direction. The next out-of-plane bending vibration mode)). 3 and 4 exaggerately show how the vibrating bodies 11 and 11 'are deformed in each vibration mode.

突起部112a0,112b0は、モード1の振動によりx軸方向に振動し、モード2の振動によりy軸方向に振動する。よって、モード1とモード2の各振動を所定の位相差で同時に励起することにより、突起部112a0,112b0の先端がzx面内で楕円軌跡を描く運動(楕円運動)が生じる駆動振動を振動体11´に生じさせることができる。これと同様に、突起部112a,112bの先端にも、モード1とモード2の各振動を所定の位相差で同時に励起することによって、楕円運動を生じさせることができる。   The protrusions 112a0 and 112b0 vibrate in the x-axis direction due to mode 1 vibration, and vibrate in the y-axis direction due to mode 2 vibration. Therefore, by simultaneously exciting each vibration of mode 1 and mode 2 with a predetermined phase difference, the driving vibration in which the tip of the protrusions 112a0 and 112b0 draws an elliptical locus in the zx plane (elliptical movement) is generated as a vibrating body. 11 '. Similarly, elliptical motion can also be generated at the tips of the protrusions 112a and 112b by simultaneously exciting the vibrations of mode 1 and mode 2 with a predetermined phase difference.

位置M,O,Pはモード1の振動の節線の位置(以下「節位置」という)に対応しており、位置Lはモード2の振動の腹位置に対応している。従来例に係る突起部112a0と112b0の中心のx軸方向での位置は位置M,Pと合致し、y軸方向での位置は位置Lと合致している。一方、本実施形態での突起部112a,112bの中心のx軸方向での位置は位置M,Pから距離δだけ一律にx軸方向にずれた位置N,Qと合致しており、y軸方向での位置は位置Lと合致している。ここで、2つの突起部112a,112bの間隔dは、モード1の波長の略整数倍(但し、ゼロを除く)に設定されている。なお、突起部112a,112bと突起部112a0,112b0とでは、振動体11,11´でのX軸方向での位置が異なることによって、それぞれの先端に生じる楕円運動の軌跡に違いが生じることとなり、その詳細については後述する。   The positions M, O, and P correspond to the position of the mode 1 vibration node line (hereinafter referred to as “node position”), and the position L corresponds to the antinode position of mode 2 vibration. The positions of the centers of the protrusions 112a0 and 112b0 according to the conventional example in the x-axis direction match the positions M and P, and the position in the y-axis direction matches the position L. On the other hand, the positions of the centers of the protrusions 112a and 112b in the present embodiment in the x-axis direction coincide with the positions N and Q that are uniformly displaced in the x-axis direction by the distance δ from the positions M and P, and the y-axis The position in the direction matches the position L. Here, the distance d between the two protrusions 112a and 112b is set to an approximately integral multiple of the wavelength of mode 1 (except for zero). Note that the protrusions 112a and 112b and the protrusions 112a0 and 112b0 have different positions in the X-axis direction on the vibrating bodies 11 and 11 ′, and thus the trajectory of the elliptical motion generated at the respective tips is different. The details will be described later.

次に、本実施形態での振動体11の動作について、従来例に係る振動体11´の動作と比較して説明する。図5(a)は、モード1,2の振動の位相差を略π/2(略90°)に設定して従来例に係る振動体11´に駆動振動を励起したときの突起部112a0,112b0の先端の振動変位を説明する図である。図5(b)は、モード1,2の振動を位相差を略π/2に設定して振動体11´に駆動振動を励起したときの突起部112a0,112b0の先端の振動変位の軌跡を説明する図である。   Next, the operation of the vibrating body 11 in the present embodiment will be described in comparison with the operation of the vibrating body 11 ′ according to the conventional example. FIG. 5A shows the protrusions 112a0 when the phase difference between the vibrations of modes 1 and 2 is set to approximately π / 2 (approximately 90 °) to excite the drive vibration in the vibration body 11 ′ according to the conventional example. It is a figure explaining the vibration displacement of the front-end | tip of 112b0. FIG. 5B shows the locus of vibration displacement at the tips of the protrusions 112a0 and 112b0 when the vibration of modes 1 and 2 is set to a phase difference of approximately π / 2 to excite the drive vibration in the vibrating body 11 ′. It is a figure explaining.

従来例に係る振動体11´では、上述したように、突起部112a0,112b0の中心は、モード1の振動の節位置にあり、且つ、モード2の振動の腹位置にある。図3に示すように、振動体11´にモード1の振動を励起すると、突起部112a0,112b0の先端には、x軸方向の変位を主成分とし、y軸方向及びz軸方向の変位が十分に小さい振動変位が生じる。また、振動体11´にモード2の振動を励起すると、突起部112a0,112b0には、z軸方向の変位を主成分とし、x軸方向及びy軸方向の変位が十分に小さい振動変位が生じる。よって、モード1,2の振動の位相差を略π/2に設定した場合、図5(a)に示すように、x軸方向の振動変位とz軸方向の振動変位の振動位相φ´も略π/2となる。その結果、図5(b)に示すように、突起部112a0,112b0の先端にzx面内で楕円運動を生じさせることができ、このときの楕円軌跡は、z軸に平行で楕円中心を通る軸について略線対称な形状となる。なお、モード1,2の位相差を+π/2にした場合と−π/2にした場合とでは、楕円運動の回転方向が逆となる。   In the vibrating body 11 ′ according to the conventional example, as described above, the centers of the protrusions 112a0 and 112b0 are at the mode 1 vibration node positions and at the mode 2 vibration antinode positions. As shown in FIG. 3, when mode 1 vibration is excited in the vibrating body 11 ′, the tips of the protrusions 112 a 0 and 112 b 0 have displacements in the x-axis direction as main components and displacements in the y-axis direction and the z-axis direction. A sufficiently small vibration displacement occurs. In addition, when mode 2 vibration is excited in the vibrating body 11 ′, vibration displacements are generated in the protrusions 112 a 0 and 112 b 0 with the displacement in the z-axis direction and the displacement in the x-axis direction and the y-axis direction being sufficiently small. . Therefore, when the phase difference between the vibrations of modes 1 and 2 is set to approximately π / 2, as shown in FIG. 5A, the vibration phase φ ′ of the vibration displacement in the x-axis direction and the vibration displacement in the z-axis direction is also It becomes approximately π / 2. As a result, as shown in FIG. 5B, elliptical motion can be generated in the zx plane at the tips of the protrusions 112a0 and 112b0, and the elliptical locus at this time passes through the center of the ellipse parallel to the z axis. The shape is substantially line symmetrical about the axis. It should be noted that the rotational direction of the elliptical motion is reversed when the phase difference between modes 1 and 2 is + π / 2 and when −π / 2.

図6(a)は、モード1,2の振動の位相差を略π/2に設定して本実施形態での振動体11に駆動振動を励起したときの突起部112a,112bの先端の振動変位を説明する図である。図6(b)は、モード1,2の振動を位相差をπ/2に設定して振動体11に駆動振動を励起したときの突起部112a,112bの先端の振動変位の軌跡を説明する図である。   FIG. 6A shows the vibrations at the tips of the protrusions 112a and 112b when the vibration difference of modes 1 and 2 is set to approximately π / 2 to excite the drive vibration in the vibration body 11 in this embodiment. It is a figure explaining a displacement. FIG. 6B illustrates the locus of vibration displacement at the tips of the protrusions 112a and 112b when the vibrations of modes 1 and 2 are set to a phase difference of π / 2 to excite the drive vibration in the vibrating body 11. FIG.

振動体11では、突起部112a,112bの中心が、モード2の振動に関しては腹位置にあるが、モード1の振動に関しては節位置から距離δだけずれた位置にある。図4に示すように、振動体11にモード2の振動を励起した場合には、従来例に係る振動体11´と同様に、突起部112a,112bには、z軸方向の変位を主成分とし、x軸方向及びy軸方向の変位が十分に小さい振動変位が生じる。この場合の振動変位は、図6(a)の上段に実線で示されている。一方、振動体11にモード1の振動を励起すると、突起部112a,112bの先端には、y軸方向の変位は十分に小さいが、x軸方向及びz軸方向に変位を有する振動変位が生じる。   In the vibrating body 11, the centers of the protrusions 112 a and 112 b are at the antinode position for the mode 2 vibration, but at the position shifted by the distance δ from the node position for the mode 1 vibration. As shown in FIG. 4, when mode 2 vibration is excited in the vibrating body 11, as in the vibrating body 11 ′ according to the conventional example, the protrusions 112 a and 112 b have displacement in the z-axis direction as a main component. As a result, vibration displacement occurs in which the displacement in the x-axis direction and the y-axis direction is sufficiently small. The vibration displacement in this case is indicated by a solid line in the upper part of FIG. On the other hand, when mode 1 vibration is excited in the vibrating body 11, the displacement in the y-axis direction is sufficiently small at the tips of the protrusions 112a and 112b, but vibration displacement having displacement in the x-axis direction and the z-axis direction is generated. .

よって、モード1,2の振動の位相差を略π/2に設定すると、図6(a)の下段に示すように、振動変位のz軸方向成分は、モード1の振動変位のz軸方向成分(実線)とモード2の振動変位のz軸方向成分(破線)を重ね合わせた振動変位(一点鎖線)となる。その結果、x軸方向の振動変位とz軸方向の振動変位との振動位相φはπ/2未満となり、突起部112a,112bの先端がzx面内で描く楕円軌跡は、図6(b)に示すように、z軸に平行で楕円中心を通る軸について線対称ではない非対称形状となる。なお、突起部112a,112bのx軸方向の間隔dは前述の通りにモード1の波長の略整数倍に設定されているため、突起部112aの先端が描く楕円軌跡の形状と突起部112bの先端が描く楕円軌跡の形状は、図6(b)に示した形状で略一致する。   Therefore, when the phase difference between the vibrations of modes 1 and 2 is set to approximately π / 2, the z-axis direction component of the vibration displacement is the z-axis direction of the vibration displacement of mode 1 as shown in the lower part of FIG. The vibration displacement (one-dot chain line) is obtained by superimposing the component (solid line) and the z-axis direction component (broken line) of the vibration displacement in mode 2. As a result, the vibration phase φ between the vibration displacement in the x-axis direction and the vibration displacement in the z-axis direction becomes less than π / 2, and the elliptical locus drawn by the tips of the protrusions 112a and 112b in the zx plane is shown in FIG. As shown in FIG. 4, the asymmetric shape is not line symmetric with respect to an axis parallel to the z axis and passing through the center of the ellipse. Note that the distance d in the x-axis direction between the protrusions 112a and 112b is set to be approximately an integer multiple of the wavelength of mode 1 as described above, so that the shape of the elliptical locus drawn by the tip of the protrusion 112a and the protrusion 112b The shape of the elliptical locus drawn by the tip is substantially the same as the shape shown in FIG.

振動型アクチュエータ1において、振動体11は加圧ユニット15によって摩擦部材121側へ加圧されており、突起部112a,112bは摩擦部材121と加圧接触している。よって、突起部112a,112bの先端に上述の通りに楕円運動を励起すると、突起部112a,112bから摩擦部材121へ推力が与えられる。こうして、一体となった振動体11、振動体保持部材14及び加圧ユニット15と、一体となった被駆動体12及びカバープレート17と、をx軸方向において相対移動させることができる。その際に、振動体11が摩擦部材121に対して与える推力の作用について、従来例に係る振動体11´が摩擦部材121に対して与える推力の作用と比較して、以下に説明する。   In the vibration type actuator 1, the vibrating body 11 is pressurized toward the friction member 121 by the pressure unit 15, and the protrusions 112 a and 112 b are in pressure contact with the friction member 121. Therefore, when an elliptical motion is excited at the tips of the protrusions 112a and 112b as described above, thrust is applied from the protrusions 112a and 112b to the friction member 121. In this way, the integrated vibrating body 11, the vibrating body holding member 14, and the pressure unit 15, and the integrated driven body 12 and cover plate 17 can be relatively moved in the x-axis direction. At that time, the action of the thrust that the vibrating body 11 gives to the friction member 121 will be described below in comparison with the action of the thrust that the vibrating body 11 ′ according to the conventional example gives to the friction member 121.

図7は、従来例に係る振動体11´が摩擦部材121に与える推力の作用を説明する図である。図7(a),(b)では、突起部112a0,112b0の楕円運動の回転方向が逆となっている。図8は、本実施形態での振動体11が摩擦部材121に与える推力の作用を説明する図である。図8(a),(b)では、突起部112a,112bの楕円運動の回転方向が逆となっている。なお、図7及び図8ではそれぞれ、振動体11´,11の構造を簡略化し、振動体11´,11の変形の様子を誇張して表している。   FIG. 7 is a diagram for explaining the action of thrust applied to the friction member 121 by the vibrating body 11 ′ according to the conventional example. 7A and 7B, the rotation directions of the elliptical motions of the protrusions 112a0 and 112b0 are reversed. FIG. 8 is a diagram for explaining the action of thrust applied to the friction member 121 by the vibrating body 11 in the present embodiment. 8A and 8B, the rotation directions of the elliptical motions of the protrusions 112a and 112b are reversed. In FIGS. 7 and 8, the structures of the vibrating bodies 11 ′ and 11 are simplified, and the deformation of the vibrating bodies 11 ′ and 11 is exaggerated.

図7(a)では、突起部112a0,112b0の回転方向が摩擦部材121の摺動面に対してx軸方向の負方向であるため、摩擦部材121が固定されていると仮定した場合には、振動体11´はx軸方向の正方向に移動する。このときの無負荷速度をva´とする。図7(b)では、突起部112a0,112b0の回転方向が摩擦部材121の摺動面に対してx軸方向の正方向であるため、摩擦部材121が固定されていると仮定した場合には、振動体11´はx軸方向の負方向に移動する。このときの無負荷速度をvb´とする。同様に、図8(a)では、突起部112a,112bの回転方向が摩擦部材121の摺動面に対してx軸方向の負方向であるため、摩擦部材121が固定されていると仮定した場合には、振動体11はx軸方向の正方向に移動する。このときの無負荷速度をvaとする。図8(b)では、突起部112a,112bの回転方向が摩擦部材121の摺動面に対してx軸方向の正方向であるため、摩擦部材121が固定されていると仮定した場合には、振動体11はx軸方向の負方向に移動する。このときの無負荷速度をvbとする。   In FIG. 7A, since the rotation direction of the protrusions 112a0 and 112b0 is the negative direction in the x-axis direction with respect to the sliding surface of the friction member 121, it is assumed that the friction member 121 is fixed. The vibrating body 11 ′ moves in the positive direction of the x-axis direction. The no-load speed at this time is denoted by va ′. In FIG. 7B, since it is assumed that the friction member 121 is fixed because the rotation direction of the projections 112a0 and 112b0 is the positive direction in the x-axis direction with respect to the sliding surface of the friction member 121. The vibrating body 11 ′ moves in the negative direction of the x-axis direction. The no-load speed at this time is assumed to be vb ′. Similarly, in FIG. 8A, since the rotation direction of the protrusions 112a and 112b is the negative direction in the x-axis direction with respect to the sliding surface of the friction member 121, it is assumed that the friction member 121 is fixed. In this case, the vibrating body 11 moves in the positive direction of the x-axis direction. The no-load speed at this time is assumed to be va. In FIG. 8B, when the rotation direction of the protrusions 112a and 112b is the positive direction in the x-axis direction with respect to the sliding surface of the friction member 121, it is assumed that the friction member 121 is fixed. The vibrating body 11 moves in the negative direction of the x-axis direction. The no-load speed at this time is assumed to be vb.

従来例に係る振動体11´の突起部112a0,112b0が、図7(a)に示すように摩擦部材121に接触するときの力の向きをfa´とし、このときに摩擦部材121の摺動面に対して作用する推力のx軸方向の力をfax´とする。また、突起部112a0,112b0が、図7(b)に示すように摩擦部材121に接触するときの力の向きをfb´とし、このときに摩擦部材121の摺動面に作用するx軸方向の力をfbx´とする。すると、力fax´はx軸の負方向を向き、力fbx´はx軸の正方向を向き、力fax´,fbx´の向きは互いに逆向きとなる。このとき、図5(b)に示したように、突起部112a0,112b0の先端が描く楕円軌跡は、z軸に平行で楕円中心を通る軸について略線対称な形状であるため、力fax´の大きさと力fbx´の大きさは略一致する。したがって、無負荷速度va´と無負荷速度vb´は略一致する。   As shown in FIG. 7A, the direction of the force when the protrusions 112a0 and 112b0 of the vibrating body 11 ′ according to the conventional example contact the friction member 121 is set to fa ′. At this time, the sliding of the friction member 121 The force in the x-axis direction of the thrust acting on the surface is referred to as fax ′. Further, as shown in FIG. 7B, the direction of the force when the protrusions 112a0 and 112b0 contact the friction member 121 is fb ′, and the x-axis direction acting on the sliding surface of the friction member 121 at this time Is the force fbx ′. Then, the force fax ′ is directed in the negative direction of the x axis, the force fbx ′ is directed in the positive direction of the x axis, and the directions of the forces fax ′ and fbx ′ are opposite to each other. At this time, as shown in FIG. 5B, the elliptical trajectory drawn by the tips of the protrusions 112a0 and 112b0 has a shape substantially axisymmetric with respect to an axis parallel to the z axis and passing through the center of the ellipse. And the magnitude of the force fbx ′ substantially coincide with each other. Therefore, the no-load speed va ′ and the no-load speed vb ′ are substantially the same.

一方、本実施形態での振動体11の突起部112a,112bが、図8(a)に示すように摩擦部材121に接触するときの力をfaとし、このときに摩擦部材121の摺動面に対して作用するx軸方向の力をfaxとする。また、突起部112a,112bが、図8(b)に示すように摩擦部材121に接触するときの力をfbとし、このときに摩擦部材121の摺動面に対して作用するx軸方向の力をfbxとする。力faxはx軸の負方向を向いており、x軸の負方向は突起部112a,112bが摩擦部材121の摺動面上を移動する方向であるため、力faxは振動体11のx軸の正方向への移動を促進するように作用する。これに対して、力fbxはx軸の負方向を向いており、x軸の負方向は突起部112a,112bが摩擦部材121の摺動面上を移動する方向とは逆方向であるため、力fbxは振動体11のx軸の負方向への移動を抑制するように作用する。その結果、無負荷速度vbは無負荷速度vaよりも遅くなり、この点で、振動体11の駆動特性は従来例に係る振動体11´の駆動特性と異なる。なお、突起部112a,112bが描く楕円軌跡の形状は略一致しているため、突起部112a,112bが送り出す力は干渉(相殺)せず、よって、突起部112a,112bの先端の楕円運動による力を効率的に摩擦部材121に伝達することができる。   On the other hand, as shown in FIG. 8A, the force when the projections 112a and 112b of the vibrating body 11 contact the friction member 121 is fa, and the sliding surface of the friction member 121 at this time Let the force in the x-axis direction acting on be Further, as shown in FIG. 8B, the force when the protrusions 112 a and 112 b come into contact with the friction member 121 is fb, and the x-axis direction acting on the sliding surface of the friction member 121 at this time is defined as fb. Let the force be fbx. The force fax is directed in the negative direction of the x-axis, and the negative direction of the x-axis is the direction in which the protrusions 112a and 112b move on the sliding surface of the friction member 121. It acts to promote the movement of the in the positive direction. On the other hand, the force fbx is directed in the negative direction of the x-axis, and the negative direction of the x-axis is opposite to the direction in which the protrusions 112a and 112b move on the sliding surface of the friction member 121. The force fbx acts to suppress the movement of the vibrating body 11 in the negative direction of the x axis. As a result, the no-load speed vb becomes slower than the no-load speed va, and in this respect, the driving characteristics of the vibrating body 11 are different from the driving characteristics of the vibrating body 11 ′ according to the conventional example. In addition, since the shapes of the elliptical trajectories drawn by the protrusions 112a and 112b are substantially the same, the forces sent out by the protrusions 112a and 112b do not interfere (cancel), and thus are due to the elliptical motion of the tips of the protrusions 112a and 112b. The force can be efficiently transmitted to the friction member 121.

図9(a)は、従来例に係る振動体11´を備える振動型アクチュエータの速度−推力線図である。図9(b)は、本実施形態での振動体11を備える振動型アクチュエータ1の速度−推力線図である。以下の説明では、図7及び図8を参照して説明したときの、摩擦部材121が固定されて振動体11,11´がx軸方向に移動すること、を前提とする。図9(b)において、振動体11がx軸の正方向に移動するときの速度と推力の関係は実線で表されており、振動体11がx軸の負方向に移動するときの速度と推力の関係は破線で表されている。   FIG. 9A is a velocity-thrust diagram of a vibration type actuator including a vibrating body 11 ′ according to a conventional example. FIG. 9B is a velocity-thrust diagram of the vibration type actuator 1 including the vibrating body 11 in the present embodiment. In the following description, it is assumed that the friction member 121 is fixed and the vibrating bodies 11 and 11 ′ move in the x-axis direction as described with reference to FIGS. 7 and 8. In FIG. 9B, the relationship between the speed and the thrust when the vibrating body 11 moves in the positive direction of the x axis is represented by a solid line, and the speed when the vibrating body 11 moves in the negative direction of the x axis and The relationship of thrust is represented by a broken line.

図9(a)に示すように、振動体11´に対する負荷が無負荷(T=0)のとき、振動体11´がx軸の正方向に移動するときの無負荷速度va´と負方向に移動するときの無負荷速度vb´は略同じ速度vとなる。これに対して、図9(b)に示すように、振動体11に対する負荷が無負荷のとき、振動体11がx軸の正方向に移動するときの無負荷速度vaは、x軸の負方向に移動するときの無負荷速度vbよりも大きい。一方、突起部112a,112bの摩擦部材121に対する静止摩擦力は同等であるため、振動体11の移動方向に関係なく、停止トルクTsは一致する。   As shown in FIG. 9A, when the load on the vibrating body 11 ′ is no load (T = 0), the no-load speed va ′ and the negative direction when the vibrating body 11 ′ moves in the positive direction of the x-axis. The no-load speed vb ′ when moving to is substantially the same speed v. On the other hand, as shown in FIG. 9B, when the load on the vibrating body 11 is no load, the no-load speed va when the vibrating body 11 moves in the positive direction of the x axis is negative in the x axis. It is larger than the no-load speed vb when moving in the direction. On the other hand, since the static frictional force of the protrusions 112a and 112b against the friction member 121 is the same, the stop torque Ts matches regardless of the moving direction of the vibrating body 11.

振動体11,11´のそれぞれに対する負荷がx軸の正方向と負方向とで異なり、図9に示すように、一方の方向(正方向)では駆動負荷がT1であり、他方の方向(負方向)では駆動負荷がT2であり、T1>T2、の関係が成り立っているとする。この場合、従来例に係る振動体11´では、駆動負荷T1が作用している方向への移動速度はv1´となり、駆動負荷T2が作用している方向への移動速度がv2´となって、移動方向によって移動速度に大きな差が生じる。これに対して、本実施形態での振動体11では、無負荷速度がva(>vb)となる方向を駆動負荷がT1となる方向と一致させ、無負荷速度がvbとなる方向を駆動負荷がT2となる方向と一致させる。これにより、駆動負荷T1が作用している方向への移動速度v1と、駆動負荷T2が作用している方向への移動速度v2との差を小さくすることができる。つまり、本実施形態に係る振動型アクチュエータ1では、振動体11と被駆動体12とを相対移動させる各移動方向で駆動負荷が異なる場合に、振動体11を駆動するための交流電圧の制御を行うことなく、各移動方向での移動速度の差を小さくすることができる。   As shown in FIG. 9, the load on each of the vibrating bodies 11 and 11 ′ is different between the positive direction and the negative direction of the x-axis. As shown in FIG. 9, the driving load is T1 in one direction (positive direction) and the other direction (negative) In the direction), it is assumed that the driving load is T2, and the relationship of T1> T2 is established. In this case, in the vibrating body 11 ′ according to the conventional example, the moving speed in the direction in which the drive load T1 is applied is v1 ′, and the moving speed in the direction in which the drive load T2 is applied is v2 ′. A large difference occurs in the moving speed depending on the moving direction. In contrast, in the vibrating body 11 according to the present embodiment, the direction in which the no-load speed is va (> vb) is matched with the direction in which the drive load is T1, and the direction in which the no-load speed is vb is the drive load. Is made to coincide with the direction in which T2 becomes T2. Thereby, the difference between the moving speed v1 in the direction in which the drive load T1 is applied and the moving speed v2 in the direction in which the drive load T2 is applied can be reduced. That is, in the vibration type actuator 1 according to this embodiment, when the driving load is different in each moving direction in which the vibrating body 11 and the driven body 12 are relatively moved, the AC voltage for driving the vibrating body 11 is controlled. Without performing, the difference in the moving speed in each moving direction can be reduced.

次に、振動型アクチュエータ1の適用例について、デジタルカメラ等の撮像装置が備えるレンズ鏡筒の内部に装備されるレンズ駆動装置を取り上げて説明する。図10は、レンズ鏡筒の内部に装備されるレンズ駆動装置40の概略構成を示す断面図である。レンズ駆動装置40は、振動型アクチュエータ1、被駆動部91、付勢部材92及び案内部材93を備える。なお、図10では、振動型アクチュエータ1の構成を簡略的に表している。振動型アクチュエータ1は、振動体11と被駆動体12との相対的な移動方向(x軸方向)が光軸方向と一致する(x軸と光軸とが略平行となる)ように、レンズ鏡筒内に配置されている。また、被駆動体12は、レンズ鏡筒の不図示のフレーム等に固定されており、振動型アクチュエータ1を駆動したときには、被駆動体12に対して振動体11を保持した振動体保持部材14がx軸方向(光軸方向)に移動可能となっている。   Next, an application example of the vibration type actuator 1 will be described by taking up a lens driving device provided inside a lens barrel included in an imaging device such as a digital camera. FIG. 10 is a cross-sectional view showing a schematic configuration of the lens driving device 40 provided in the lens barrel. The lens driving device 40 includes the vibration type actuator 1, a driven portion 91, an urging member 92, and a guide member 93. In addition, in FIG. 10, the structure of the vibration type actuator 1 is represented simply. The vibration type actuator 1 has a lens so that the relative moving direction (x-axis direction) of the vibrating body 11 and the driven body 12 coincides with the optical axis direction (the x-axis and the optical axis are substantially parallel). It is arranged in the lens barrel. The driven body 12 is fixed to a frame (not shown) of the lens barrel, and when the vibration type actuator 1 is driven, the vibrating body holding member 14 that holds the vibrating body 11 with respect to the driven body 12. Is movable in the x-axis direction (optical axis direction).

被駆動部91は、レンズ911とレンズ保持部材912を有する。レンズ911は、例えば、フォーカスレンズ又はズームレンズである。フォーカスレンズを光軸方向に移動させることにより、所望する被写体にピントを合わせる(合焦させる)ことができる。また、ズームレンズを光軸方向に移動させることにより、撮影画角を変更することができる。なお、ここでは、被駆動部91として1枚のレンズ911を備える構成を示しているが、被駆動部91は、複数枚のレンズからなるレンズ群がレンズ保持部材912に保持された構成であってもよい。   The driven unit 91 includes a lens 911 and a lens holding member 912. The lens 911 is, for example, a focus lens or a zoom lens. By moving the focus lens in the optical axis direction, a desired subject can be focused (focused). In addition, the shooting angle of view can be changed by moving the zoom lens in the optical axis direction. Here, a configuration including one lens 911 as the driven portion 91 is shown, but the driven portion 91 has a configuration in which a lens group composed of a plurality of lenses is held by a lens holding member 912. May be.

2本の案内部材93はそれぞれ、例えば、円柱形状の棒状部材であり、スラスト方向(軸方向)がレンズ911の光軸方向と平行となるように、不図示のフレーム等に配置されている。レンズ911を保持するレンズ保持部材912は、振動体保持部材14に連結されると共に、2本の案内部材93に対して光軸方向に移動可能に嵌合している。よって、振動型アクチュエータ1を駆動して振動体11を被駆動体12に対して相対移動させることにより、被駆動部91を光軸方向に移動させることができる。   Each of the two guide members 93 is, for example, a cylindrical rod-shaped member, and is disposed on a frame (not shown) or the like so that the thrust direction (axial direction) is parallel to the optical axis direction of the lens 911. A lens holding member 912 that holds the lens 911 is connected to the vibrating body holding member 14 and is fitted to the two guide members 93 so as to be movable in the optical axis direction. Therefore, the driven portion 91 can be moved in the optical axis direction by driving the vibration type actuator 1 and moving the vibrating body 11 relative to the driven body 12.

レンズ駆動装置40に実装された振動型アクチュエータ1の構成は、図2及び図8に示した構成と同じである。つまり、振動体11の突起部112a,112bのx軸方向での位置は、モード1の振動の節位置からx軸方向の正方向(第2の方向)に距離δだけ一律にずれた位置に設けられている。換言すれば、振動体11の突起部112a,112bは、モード1振動の節位置から付勢部材92による付勢方向の逆方向に距離δだけずれた位置に設けられている。また、距離δは、モード1の振動の波長の1/4未満に設定されている。その他の構成は、図2を参照して説明した構成に準ずる。   The configuration of the vibration type actuator 1 mounted on the lens driving device 40 is the same as the configuration shown in FIGS. That is, the positions of the protrusions 112a and 112b of the vibrating body 11 in the x-axis direction are uniformly shifted from the nodal position of the mode 1 vibration by the distance δ in the positive direction (second direction) in the x-axis direction. Is provided. In other words, the protrusions 112a and 112b of the vibrating body 11 are provided at positions shifted from the node position of the mode 1 vibration by the distance δ in the direction opposite to the urging direction by the urging member 92. The distance δ is set to less than ¼ of the wavelength of mode 1 vibration. Other configurations are the same as those described with reference to FIG.

ここで、レンズ保持部材912と振動体保持部材14の連結部分に嵌合隙間が生じないように、レンズ保持部材912は付勢部材92により常にx軸方向の負方向(第1の方向)へ付勢されている。つまり、付勢部材92には、縮もうとする力が常に生じている。なお、本実施形態では、付勢部材92としてコイルばねを用いているが、これに限定されるものではない。2本の案内部材93の一方を付勢部材92であるコイルばねに挿通させ、コイルばねの一端は、レンズ保持部材912に固定され、他端はレンズ鏡筒の不図示のフレーム等に固定される。   Here, the lens holding member 912 is always moved in the negative direction (first direction) in the x-axis direction by the urging member 92 so that a fitting gap does not occur at the connecting portion between the lens holding member 912 and the vibrating body holding member 14. It is energized. That is, the biasing member 92 always has a force to shrink. In the present embodiment, a coil spring is used as the urging member 92, but the present invention is not limited to this. One of the two guide members 93 is inserted into a coil spring that is a biasing member 92, one end of the coil spring is fixed to the lens holding member 912, and the other end is fixed to a frame (not shown) of the lens barrel. The

レンズ保持部材912が付勢部材92によりx軸方向の負方向に常に付勢されているため、レンズ保持部材912をx軸方向の正方向に移動させるために振動体11をx軸方向の正方向に移動させる際には、付勢部材92の付勢力に逆らう力が必要となる。そのため、振動体11をx軸方向の正方向に移動させるための駆動負荷は、振動体11をx軸方向の負方向に移動させるための駆動負荷よりも大きくなる。   Since the lens holding member 912 is constantly urged in the negative x-axis direction by the urging member 92, the vibrating body 11 is moved positive in the x-axis direction in order to move the lens holding member 912 in the positive x-axis direction. When moving in the direction, a force against the urging force of the urging member 92 is required. Therefore, the driving load for moving the vibrating body 11 in the positive direction of the x-axis direction is larger than the driving load for moving the vibrating body 11 in the negative direction of the x-axis direction.

そこで、振動体11をx軸方向の正方向に移動させる際には、図8(a)に示したように突起部112a,112bの先端がzx面内で時計回りの楕円軌跡を描くように駆動する。これにより、振動体11をx軸方向の正方向に移動させる際の速度−推力線図を、図9(b)中の実線で示す特性に設定することができる。また、振動体11をx軸方向の負方向に移動させる際には、図8(b)に示したように突起部112a,112bの先端がzx面内で反時計回りの楕円軌跡を描くように駆動する。これにより、振動体11をx軸方向の負方向に移動させる際の速度−推力線図を、図9(b)中の破線で示す特性に設定することができる。よって、レンズ保持部材912を光軸方向において進退させるために振動体11の移動方向をx軸方向の正方向/負方向で切り替えるときに、振動体11を駆動するための交流電圧の制御を行うことなく、各移動方向での移動速度の差を小さくすることができる。   Therefore, when the vibrating body 11 is moved in the positive direction of the x-axis direction, as shown in FIG. 8A, the tips of the protrusions 112a and 112b draw a clockwise elliptical locus in the zx plane. To drive. Thereby, the speed-thrust diagram when moving the vibrating body 11 in the positive direction of the x-axis direction can be set to the characteristic indicated by the solid line in FIG. 9B. Further, when the vibrating body 11 is moved in the negative x-axis direction, the tips of the protrusions 112a and 112b draw an anticlockwise elliptical locus in the zx plane as shown in FIG. 8B. To drive. Thereby, the speed-thrust diagram when moving the vibrating body 11 in the negative direction of the x-axis direction can be set to the characteristics indicated by the broken line in FIG. Therefore, when the moving direction of the vibrating body 11 is switched between the positive direction and the negative direction in the x-axis direction in order to advance and retract the lens holding member 912 in the optical axis direction, the AC voltage for driving the vibrating body 11 is controlled. The difference in the moving speed in each moving direction can be reduced.

以上、本発明をその好適な実施形態に基づいて詳述してきたが、本発明はこれら特定の実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の様々な形態も本発明に含まれる。例えば、振動体11について、2つの突起部112a,112bを備えるものについて説明したが、3つ以上の複数の突起部を備えるものであってもよいし、逆に1つの突起部しか備えていないものであってもよい。突起部が1つの場合でも、突起部は、x軸方向におけるモード1の振動の節位置(位置M,O,P)からx軸の正方向に距離δだけずれた位置で、且つ、モード2の振動の腹位置に設ければよい。また、上記実施形態では、振動体が摩擦部材に対して直線的に相対移動するリニア駆動型の振動型アクチュエータを取り上げたが、本発明はリニア駆動型の振動型アクチュエータに限定して適用可能なものではない。例えば、円環状や円板状の摩擦部材を回転駆動させる構成の振動型アクチュエータであっても、被駆動体の駆動負荷が回転方向によって異なる場合に振動体11を適用することで、上記の実施形態と同様の効果を得ることができる。図10を参照して説明したレンズ駆動装置40は、撮像装置のレンズ鏡筒に限らず、例えば、顕微鏡や望遠鏡、その他の種々の光学機器のレンズ駆動源として用いることができる。また、振動型アクチュエータにより駆動される駆動対象物はレンズ保持部材以外であってもよく、光学機器以外の電子機器にも本発明は適用可能である。   Although the present invention has been described in detail based on preferred embodiments thereof, the present invention is not limited to these specific embodiments, and various forms within the scope of the present invention are also included in the present invention. included. For example, although the vibration body 11 has been described as having two protrusions 112a and 112b, it may be provided with a plurality of three or more protrusions, or conversely, only one protrusion is provided. It may be a thing. Even when there is one protrusion, the protrusion is located at a position shifted by a distance δ in the positive direction of the x-axis from the node position (position M, O, P) of mode 1 vibration in the x-axis direction, and in mode 2 It may be provided at the antinode position of the vibration. Further, in the above-described embodiment, the linear drive type vibration type actuator in which the vibrating body moves linearly relative to the friction member is taken up. However, the present invention can be applied only to the linear drive type vibration type actuator. It is not a thing. For example, even in the case of a vibration type actuator configured to rotationally drive an annular or disk-shaped friction member, when the driving load of the driven body varies depending on the rotation direction, the above-described implementation is possible. The same effect as the form can be obtained. The lens driving device 40 described with reference to FIG. 10 is not limited to the lens barrel of the imaging device, and can be used as a lens driving source for, for example, a microscope, a telescope, and other various optical devices. Further, the driven object driven by the vibration type actuator may be other than the lens holding member, and the present invention is applicable to electronic devices other than optical devices.

1 振動型アクチュエータ
11 振動体
12 被駆動体
15 加圧ユニット
40 レンズ駆動装置
92 付勢部材
93 案内部材
111 圧電素子
112 弾性体
112a,112b 突起部
121 摩擦部材
911 レンズ
912 レンズ保持部材
DESCRIPTION OF SYMBOLS 1 Vibration type actuator 11 Vibrating body 12 Driven body 15 Pressure unit 40 Lens drive device 92 Energizing member 93 Guide member 111 Piezoelectric element 112 Elastic body 112a, 112b Protrusion part 121 Friction member 911 Lens 912 Lens holding member

Claims (9)

摩擦部材に加圧接触させた振動体に駆動振動が励起されることで前記振動体と前記摩擦部材とが相対的に移動する振動型アクチュエータであって、
前記振動体は、
平板状の弾性体と、
前記弾性体の一方の面に該弾性体の厚み方向に突出するように設けられ、前記摩擦部材と当接する突起部と、
前記弾性体の他方の面に接着された電気−機械エネルギ変換素子と、を有し、
前記弾性体の厚み方向と前記振動体と前記摩擦部材の相対的な移動方向の両方向と直交する方向に略平行な節線を有する振動モードを含む前記駆動振動が励起されたときの前記節線の位置から前記移動方向へ所定の距離ずれた位置に前記突起部が設けられていることを特徴とする振動型アクチュエータ。
A vibration type actuator in which the vibration body and the friction member move relative to each other when a driving vibration is excited in the vibration body pressed into contact with the friction member,
The vibrator is
A flat elastic body;
A protrusion provided on one surface of the elastic body so as to protrude in the thickness direction of the elastic body, and abutting against the friction member;
An electro-mechanical energy conversion element bonded to the other surface of the elastic body,
The nodal line when the driving vibration including a vibration mode having a nodal line substantially parallel to a direction perpendicular to both the thickness direction of the elastic body and the relative moving direction of the vibrating body and the friction member is excited. The vibration type actuator is characterized in that the protrusion is provided at a position shifted from the position by a predetermined distance in the moving direction.
前記所定の距離は、前記振動モードの波長の1/4未満であることを特徴とする請求項1に記載の振動型アクチュエータ。   The vibration type actuator according to claim 1, wherein the predetermined distance is less than ¼ of the wavelength of the vibration mode. 複数の前記突起部が、前記移動方向において前記節線の位置から一律にずれた位置に設けられていることを特徴とする請求項1又は2に記載の振動型アクチュエータ。   The vibration type actuator according to claim 1, wherein the plurality of protrusions are provided at positions that are uniformly deviated from the position of the nodal line in the moving direction. 前記移動方向における前記複数の突起部の間隔は、前記振動モードの波長の略整数倍であることを特徴とする請求項3に記載の振動型アクチュエータ。   The vibration type actuator according to claim 3, wherein an interval between the plurality of protrusions in the moving direction is substantially an integer multiple of a wavelength of the vibration mode. 摩擦部材に加圧接触させた振動体に駆動振動が励起されることで前記振動体と前記摩擦部材とが相対的に移動する振動型アクチュエータであって、
前記振動体は、
弾性体と、
前記弾性体の一方の面に該弾性体の厚み方向に突出するように設けられ、前記摩擦部材と当接する突起部と、
前記弾性体の他方の面に接着された電気−機械エネルギ変換素子と、を有し、
前記突起部は、前記弾性体の厚み方向と前記振動体と前記摩擦部材の相対的な移動方向の両方向を含む面内において前記突起部の先端が楕円運動を行うように前記振動体に駆動振動を励起したときに、前記面内での前記突起部の先端の楕円軌跡が前記楕円軌跡の中心を通り且つ前記厚み方向と平行な軸について線対称とならない位置に設けられていることを特徴とする振動型アクチュエータ。
A vibration type actuator in which the vibration body and the friction member move relative to each other when a driving vibration is excited in the vibration body pressed into contact with the friction member,
The vibrator is
An elastic body,
A protrusion provided on one surface of the elastic body so as to protrude in the thickness direction of the elastic body, and abutting against the friction member;
An electro-mechanical energy conversion element bonded to the other surface of the elastic body,
The protrusion is driven to vibrate the vibrating body so that the tip of the protrusion performs an elliptical motion in a plane including both the thickness direction of the elastic body and the relative movement direction of the vibrating body and the friction member. The elliptical locus at the tip of the protrusion in the plane is provided at a position that is not line-symmetric with respect to an axis that passes through the center of the elliptical locus and is parallel to the thickness direction. Vibration type actuator.
請求項1乃至4のいずれか1項に記載の振動型アクチュエータと、
レンズを保持し、前記振動型アクチュエータにより光軸方向に駆動されるレンズ保持部材と、
前記レンズ保持部材を前記光軸方向の第1の方向に付勢する付勢部材と、
前記レンズ保持部材の前記光軸方向に案内する案内部材と、を備え、
前記振動型アクチュエータにおいて、前記突起部は、前記節線の位置から前記第1の方向とは反対の方向である第2の方向へ所定の距離ずれた位置に設けられていることを特徴とするレンズ駆動装置。
The vibration type actuator according to any one of claims 1 to 4,
A lens holding member that holds the lens and is driven in the optical axis direction by the vibration actuator;
A biasing member that biases the lens holding member in a first direction in the optical axis direction;
A guide member for guiding the lens holding member in the optical axis direction,
In the vibration type actuator, the protrusion is provided at a position shifted from the position of the nodal line by a predetermined distance in a second direction which is a direction opposite to the first direction. Lens drive device.
請求項5に記載の振動型アクチュエータと、
レンズを保持し、前記振動型アクチュエータにより光軸方向に駆動されるレンズ保持部材と、
前記レンズ保持部材を前記光軸方向の第1の方向に付勢する付勢部材と、
前記レンズ保持部材の前記光軸方向に案内する案内部材と、を備え、
前記振動型アクチュエータにおいて、前記突起部の先端が楕円運動を行って前記摩擦部材に接触するときの力の前記移動方向の成分が、前記楕円運動の回転方向にかかわらず、前記第1の方向を向いていることを特徴とするレンズ駆動装置。
The vibration type actuator according to claim 5,
A lens holding member that holds the lens and is driven in the optical axis direction by the vibration actuator;
A biasing member that biases the lens holding member in a first direction in the optical axis direction;
A guide member for guiding the lens holding member in the optical axis direction,
In the vibration-type actuator, the component of the moving direction of the force when the tip of the protruding portion makes an elliptical motion and contacts the friction member has the first direction regardless of the rotational direction of the elliptical motion. A lens driving device characterized by facing.
請求項6又は7に記載のレンズ駆動装置を備え、
前記案内部材と前記振動型アクチュエータの前記摩擦部材とが固定され、前記レンズ保持部材と前記振動型アクチュエータにおいて前記振動体を保持する振動体保持部材とが連結されていることを特徴とする光学機器。
A lens driving device according to claim 6 or 7,
The optical device, wherein the guide member and the friction member of the vibration type actuator are fixed, and the lens holding member and a vibration body holding member that holds the vibration body in the vibration type actuator are connected. .
請求項1乃至5のいずれか1項に記載の振動型アクチュエータと、
前記振動型アクチュエータにより駆動される駆動対象物と、を備えることを特徴とする電子機器。
The vibration type actuator according to any one of claims 1 to 5,
An electronic device comprising: a driving object driven by the vibration actuator.
JP2016247817A 2016-12-21 2016-12-21 Vibration type actuator, lens driving device, optical instrument, and electronic apparatus Pending JP2018101094A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016247817A JP2018101094A (en) 2016-12-21 2016-12-21 Vibration type actuator, lens driving device, optical instrument, and electronic apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016247817A JP2018101094A (en) 2016-12-21 2016-12-21 Vibration type actuator, lens driving device, optical instrument, and electronic apparatus

Publications (1)

Publication Number Publication Date
JP2018101094A true JP2018101094A (en) 2018-06-28

Family

ID=62714310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016247817A Pending JP2018101094A (en) 2016-12-21 2016-12-21 Vibration type actuator, lens driving device, optical instrument, and electronic apparatus

Country Status (1)

Country Link
JP (1) JP2018101094A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021079799A1 (en) * 2019-10-21 2021-04-29 キヤノン株式会社 Vibration wave motor, optical device, and electronic device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021079799A1 (en) * 2019-10-21 2021-04-29 キヤノン株式会社 Vibration wave motor, optical device, and electronic device

Similar Documents

Publication Publication Date Title
US10541629B2 (en) Vibration driven actuator, apparatus, and optical apparatus
JP2006330053A (en) Lens barrel
JP2006330054A (en) Lens barrel
US9964731B2 (en) Vibration type motor, and lens drive apparatus, lens unit and image pickup apparatus using vibration type motor
JP2017200260A (en) Vibration type actuator and electronic apparatus
JP6639243B2 (en) Vibration type actuator and electronic equipment
US10120158B2 (en) Vibration-type actuator and optical device using the same
US10510944B2 (en) Vibration actuator reduced in cost and size, and electronic device
WO2021079799A1 (en) Vibration wave motor, optical device, and electronic device
US10924037B2 (en) Vibration motor that prevents resonance of contact member, and electronic apparatus
JP5273915B2 (en) Vibration type linear drive device and camera lens
US10439518B2 (en) Vibration-type actuator, driving method for vibration-type actuator, and electronic apparatus equipped with vibration-type actuator
JP2017173502A (en) Lens barrel and imaging apparatus
JP2018101094A (en) Vibration type actuator, lens driving device, optical instrument, and electronic apparatus
JP6708472B2 (en) Vibration wave motor and optical device equipped with the vibration wave motor
WO2016002917A1 (en) Vibration-type actuator, lens barrel, image-capturing device, and automatic stage
JP2017195743A (en) Vibration type actuator, lens barrel and imaging apparatus
JP2017169427A (en) Linear drive device, lens barrel, and imaging apparatus
JP2017127154A (en) Vibration actuator and electronic apparatus
JP4554261B2 (en) Drive device
JP6537482B2 (en) Vibration wave motor and electronic equipment
US11843279B2 (en) Vibration wave driving apparatus and image pickup apparatus
JP7169851B2 (en) Vibration wave motor and lens device using vibration wave motor
JP2017060342A (en) Vibration wave motor
JP2016039756A (en) Vibrator, vibration type actuator, imaging apparatus and stage device