JP2017169427A - Linear drive device, lens barrel, and imaging apparatus - Google Patents

Linear drive device, lens barrel, and imaging apparatus Download PDF

Info

Publication number
JP2017169427A
JP2017169427A JP2016055434A JP2016055434A JP2017169427A JP 2017169427 A JP2017169427 A JP 2017169427A JP 2016055434 A JP2016055434 A JP 2016055434A JP 2016055434 A JP2016055434 A JP 2016055434A JP 2017169427 A JP2017169427 A JP 2017169427A
Authority
JP
Japan
Prior art keywords
driving
lens
actuator
driven
urging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016055434A
Other languages
Japanese (ja)
Other versions
JP6659164B2 (en
Inventor
俊輔 二宮
Shunsuke Ninomiya
俊輔 二宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2016055434A priority Critical patent/JP6659164B2/en
Publication of JP2017169427A publication Critical patent/JP2017169427A/en
Application granted granted Critical
Publication of JP6659164B2 publication Critical patent/JP6659164B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Lens Barrels (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a linear drive device excellent in responsiveness.SOLUTION: A lens drive device 300 for driving a lens holding member 13 in an X direction by a first actuator 100A and a second actuator 100B is structured so that a first connection member 15 driven by the first actuator 100A is energized to the lens holding member 13 in a +X direction by a first energizing member 16 and a second connection member 25 driven by the second actuator 100B is energized to the lens holding member 13 in a -X direction by a second energizing member 26. For instance, when the lens holding member 13 is driven in the +X direction, both of the first connection member 15 and the second connection member 25 are driven in the +X direction by the first actuator 100A and the second actuator 100B. At this time, the drive force of the first actuator 100A is made larger than the drive force of the second actuator 100B.SELECTED DRAWING: Figure 2

Description

本発明は、リニア駆動装置、レンズ鏡筒及び撮像装置に関する。   The present invention relates to a linear drive device, a lens barrel, and an imaging device.

デジタル一眼レフカメラ等の撮像装置による撮影シーンには、被写体の動く方向が頻繁に変化する撮影シーンや撮像装置自体が大きな動きを伴う撮影シーンがあり、このような撮影シーンでは被写体に対するオートフォーカス機能に対して高い応答性が要求される。このような要求に対して、例えば、オートフォーカスレンズの駆動機構に振動型アクチュエータを用いることにより、静粛性、高速駆動性、高速で動く被写体に対するオートフォーカスでの高い追従性等を得ることができる。レンズ駆動に用いられる振動型アクチュエータとして、板状の弾性体と圧電素子とを接合してなる振動体に高周波振動を発生させ、振動体と加圧接触している摩擦部材を摩擦駆動し、振動体と摩擦部材とを相対的に移動させるものが知られている。   Shooting scenes with imaging devices such as digital single-lens reflex cameras include shooting scenes in which the direction of movement of the subject changes frequently and shooting scenes in which the imaging device itself moves greatly. In such shooting scenes, the autofocus function for the subject High responsiveness is required. In response to such a demand, for example, by using a vibration type actuator for the driving mechanism of the autofocus lens, it is possible to obtain quietness, high speed driving performance, high followability in autofocusing on a subject moving at high speed, and the like. . As a vibration-type actuator used for lens driving, high-frequency vibration is generated in a vibration body formed by joining a plate-like elastic body and a piezoelectric element, and a friction member in pressure contact with the vibration body is frictionally driven to vibrate. What moves a body and a friction member relatively is known.

図11(a)は、振動型アクチュエータを用いた従来のレンズ駆動装置の一例の概略構成を示す斜視図であり、図11(b)は、レンズ駆動装置の一部を拡大して示す平面図である。このレンズ駆動装置では、被駆動部材であるレンズ保持部材913は、レンズ912を保持し、連結部材915を介して振動型アクチュエータの可動部材905に連結されており、2本のガイド部材911と摺動可能に嵌合している。可動部材905はX方向に移動可能に構成されており、可動部材905の移動に伴ってレンズ保持部材913がガイド部材911に案内されてX方向に移動する構造となっている。ここで、連結部材915は、付勢部材916によって、レンズ保持部材913に対して矢印C方向に付勢されている(特許文献1参照)。   FIG. 11A is a perspective view showing a schematic configuration of an example of a conventional lens driving device using a vibration type actuator, and FIG. 11B is a plan view showing an enlarged part of the lens driving device. It is. In this lens driving device, a lens holding member 913 which is a driven member holds a lens 912 and is connected to a movable member 905 of a vibration type actuator via a connecting member 915, and slides with two guide members 911. It is movably fitted. The movable member 905 is configured to be movable in the X direction, and has a structure in which the lens holding member 913 is guided by the guide member 911 and moves in the X direction as the movable member 905 moves. Here, the connecting member 915 is urged in the arrow C direction with respect to the lens holding member 913 by the urging member 916 (see Patent Document 1).

特開2015−133864号公報Japanese Patent Laying-Open No. 2015-133864

しかし、図11に示したレンズ駆動装置は、レンズ保持部材913を矢印C方向と同じ+X方向に駆動するときの応答性は高いが、その反対方向の−X方向に駆動する際に応答性が低下してしまうという問題がある。すなわち、レンズ保持部材913を+X方向に駆動するために可動部材905を+X方向に駆動する加減速時には、連結部材915はレンズ保持部材913に対して+X方向に推力を与える。この推力の方向と付勢部材916によって連結部材915が付勢される矢印C方向とは同じ方向であるため、レンズ保持部材913は可動部材905に追従して移動することで高い応答性が得られる。一方、レンズ保持部材913を−X方向に駆動するために可動部材905を−X方向に駆動する加減速時には、連結部材915は付勢部材916を介してレンズ保持部材913に対して矢印H方向に推力を与える。矢印H方向の推力と矢印C方向の付勢力とは逆方向であるため、矢印H方向の推力が矢印C方向の付勢力よりも大きくなると、付勢部材916が圧縮されてしまい、レンズ保持部材913が可動部材905に追従して移動することができなくなる。つまり、図11に示したレンズ駆動装置では、レンズ保持部材913を−X方向に駆動する際に応答性が低下することがある。   However, the lens driving device shown in FIG. 11 has high responsiveness when driving the lens holding member 913 in the + X direction, which is the same as the arrow C direction, but is responsive when driving in the opposite -X direction. There is a problem that it falls. That is, at the time of acceleration / deceleration in which the movable member 905 is driven in the + X direction in order to drive the lens holding member 913 in the + X direction, the connecting member 915 applies a thrust to the lens holding member 913 in the + X direction. Since the direction of this thrust and the direction of arrow C in which the connecting member 915 is urged by the urging member 916 are the same direction, the lens holding member 913 moves following the movable member 905 to obtain high responsiveness. It is done. On the other hand, at the time of acceleration / deceleration in which the movable member 905 is driven in the −X direction in order to drive the lens holding member 913 in the −X direction, the connecting member 915 is in the direction of the arrow H with respect to the lens holding member 913 via the biasing member 916. To give thrust. Since the thrust in the direction of arrow H and the biasing force in the direction of arrow C are opposite directions, if the thrust in the direction of arrow H is greater than the biasing force in the direction of arrow C, the biasing member 916 is compressed and the lens holding member 913 cannot move following the movable member 905. That is, in the lens driving device shown in FIG. 11, the responsiveness may decrease when the lens holding member 913 is driven in the −X direction.

なお、付勢部材916を用いずに、可動部材905とレンズ保持部材913とを連結部材915により固着接合すれば、レンズ保持部材913を+X方向と−X方向のどの方向に駆動した場合でも、高い応答性を得ることができると考えられる。しかし、可動部材905、連結部材915及びレンズ保持部材913の各部品間に動きの自由度を与えない構造としてしまうと、各部品に極めて高い寸法精度が要求されると共に、極めて高い精度で部品を組み付ける必要がある。そして、この要求が満たされないときには、レンズ保持部材913をスムーズにX方向に駆動することができなくなってしまうため、現実的な対応策とは言えない。   If the movable member 905 and the lens holding member 913 are fixedly joined by the connecting member 915 without using the biasing member 916, the lens holding member 913 can be driven in any of the + X direction and the −X direction. It is considered that high responsiveness can be obtained. However, if the movable member 905, the connecting member 915, and the lens holding member 913 have a structure that does not give freedom of movement between the components, extremely high dimensional accuracy is required for each component, and components can be mounted with extremely high accuracy. It is necessary to assemble. If this requirement is not satisfied, the lens holding member 913 cannot be driven smoothly in the X direction, which is not a realistic countermeasure.

本発明は、被駆動部材の駆動方向に関わりなく応答性を向上させたリニア駆動装置を提供することを目的とする。   SUMMARY OF THE INVENTION An object of the present invention is to provide a linear drive device with improved responsiveness regardless of the drive direction of a driven member.

本発明に係るリニア駆動装置は、被駆動部材と、第1の駆動源と、前記第1の駆動源と前記被駆動部材とを連結し、前記第1の駆動源の駆動力を前記被駆動部材に伝達する第1の連結部材と、第2の駆動源と、前記第2の駆動源と前記被駆動部材とを連結し、前記第2の駆動源の駆動力を前記被駆動部材に伝達する第2の連結部材と、前記第1の連結部材を前記被駆動部材に対して第1の方向に付勢して前記第1の連結部材と前記被駆動部材とを加圧接触させる第1の付勢手段と、前記第2の連結部材を前記被駆動部材に対して前記第1の方向の反対方向に付勢して前記第2の連結部材と前記被駆動部材とを加圧接触させる第2の付勢手段と、を備えることを特徴とする。   The linear drive device according to the present invention connects a driven member, a first drive source, the first drive source, and the driven member, and drives the drive force of the first drive source to the driven A first connecting member that transmits to the member, a second driving source, the second driving source, and the driven member are connected, and the driving force of the second driving source is transmitted to the driven member. And a first connecting member that urges the first connecting member in a first direction relative to the driven member to bring the first connecting member and the driven member into pressure contact with each other. The urging means and the second connecting member are urged against the driven member in a direction opposite to the first direction to bring the second connecting member and the driven member into pressure contact. And a second urging means.

本発明によれば、応答性に優れたリニア駆動装置を実現することができる。   According to the present invention, a linear drive device with excellent responsiveness can be realized.

本発明の実施形態に係るレンズ駆動装置を構成する振動型アクチュエータの概略構成を示す分解斜視図である。It is a disassembled perspective view which shows schematic structure of the vibration type actuator which comprises the lens drive device which concerns on embodiment of this invention. 図1の振動型アクチュエータを備える、第1実施形態に係るレンズ駆動装置の概略構成を示す平面図、正面図、平面図の一部拡大図及び矢視B−B断面図である。It is a top view which shows schematic structure of the lens drive device which concerns on 1st Embodiment provided with the vibration type actuator of FIG. 1, a front view, the partially expanded view of a top view, and arrow BB sectional drawing. 図2のレンズ駆動装置を有する撮像装置の概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the imaging device which has the lens drive device of FIG. 図3の撮像装置のオートフォーカス制御を説明するフローチャートである。4 is a flowchart illustrating autofocus control of the imaging apparatus in FIG. 3. 図2のレンズ駆動装置を構成する第1アクチュエータ及び第2アクチュエータの周波数特性を示す図である。It is a figure which shows the frequency characteristic of the 1st actuator which comprises the lens drive device of FIG. 2, and a 2nd actuator. 図2のレンズ駆動装置を構成する第1アクチュエータ及び第2アクチュエータの駆動力を調整するための周波数補正方法を説明する図である。It is a figure explaining the frequency correction method for adjusting the drive force of the 1st actuator which comprises the lens drive device of FIG. 2, and a 2nd actuator. 図2のレンズ駆動装置を構成する第1アクチュエータ及び第2アクチュエータの周波数特性を示す図である。It is a figure which shows the frequency characteristic of the 1st actuator which comprises the lens drive device of FIG. 2, and a 2nd actuator. 第2実施形態に係るレンズ駆動装置の概略構成を示す正面図及び部分拡大図である。It is the front view and partial enlarged view which show schematic structure of the lens drive device which concerns on 2nd Embodiment. 第1実施形態に係るレンズ駆動装置において第1の付勢部材及び第2の付勢部材によりレンズ保持部材に作用する付勢力を説明する正面図である。It is a front view explaining the urging force which acts on a lens holding member by the 1st urging member and the 2nd urging member in the lens drive device concerning a 1st embodiment. 第3実施形態に係るレンズ駆動装置において第1の付勢部材及び第2の付勢部材によりレンズ保持部材に作用する付勢力を説明する正面図である。It is a front view explaining the biasing force which acts on a lens holding member by the 1st biasing member and the 2nd biasing member in the lens drive device which concerns on 3rd Embodiment. 振動型アクチュエータを用いた従来例のレンズ駆動装置の概略構成を示す斜視図と、レンズ駆動装置の一部を拡大して示す平面図である。FIG. 6 is a perspective view showing a schematic configuration of a conventional lens driving device using a vibration type actuator, and a plan view showing an enlarged part of the lens driving device.

以下、本発明の実施形態について、添付図面を参照して詳細に説明する。ここでは、本発明に係るリニア駆動装置の一例として、撮像装置のレンズ鏡筒に設けられたレンズを光軸方向に駆動するレンズ駆動装置を取り上げることとする。   Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. Here, as an example of the linear drive device according to the present invention, a lens drive device that drives a lens provided in a lens barrel of the imaging device in the optical axis direction is taken up.

図1(a)は、本発明の実施形態に係るレンズ駆動装置を構成する振動型アクチュエータ100の概略構成を示す分解斜視図である。説明の便宜上、振動型アクチュエータ100に対して、互いに直交するX方向(X軸)、Y方向(Y軸)及びZ方向(Z軸)を、図1(a)に示す通りに定める。X方向(第1の方向)は、後述する摩擦部材1と振動体2との相対的な移動方向である。Z方向(第2の方向)は、摩擦部材1と振動体2とを加圧接触させるために振動体2を摩擦部材1に対して加圧する加圧方向であり、振動体2から摩擦部材1への向きを+Z方向、摩擦部材1から振動体2への向きを−Z方向と定義する。Y方向は、X方向及びZ方向に直交する方向となる。図1(b)は、振動型アクチュエータ100のZX断面図である。図1(c)は、振動型アクチュエータ100を構成する振動体2の斜視図である。   FIG. 1A is an exploded perspective view showing a schematic configuration of a vibration type actuator 100 constituting the lens driving device according to the embodiment of the present invention. For convenience of explanation, an X direction (X axis), a Y direction (Y axis), and a Z direction (Z axis) orthogonal to each other are determined as shown in FIG. The X direction (first direction) is a relative moving direction between a friction member 1 and a vibrating body 2 described later. The Z direction (second direction) is a pressurizing direction in which the vibrating member 2 is pressed against the friction member 1 in order to press the friction member 1 and the vibrating member 2 in pressure contact. The direction from the friction member 1 to the vibrating body 2 is defined as the -Z direction. The Y direction is a direction orthogonal to the X direction and the Z direction. FIG. 1B is a ZX sectional view of the vibration type actuator 100. FIG. 1C is a perspective view of the vibrating body 2 constituting the vibration type actuator 100.

振動型アクチュエータ100は、摩擦部材1、振動体2、保持部材3、加圧部材4、可動部材5、固定部材6、転動部材7、天板8、緩衝部材9、加圧板10及びローラー11を備える。摩擦部材1は、振動体2と加圧接触して振動体2から摩擦駆動力を受ける摺動面1aを有する部材であり、固定部材6に固定されている。   The vibration type actuator 100 includes a friction member 1, a vibrating body 2, a holding member 3, a pressure member 4, a movable member 5, a fixed member 6, a rolling member 7, a top plate 8, a buffer member 9, a pressure plate 10, and a roller 11. Is provided. The friction member 1 is a member having a sliding surface 1 a that is in pressure contact with the vibrating body 2 and receives a frictional driving force from the vibrating body 2, and is fixed to the fixed member 6.

振動体2は、弾性体2aと圧電素子2bを有する。弾性体2aは、薄板状の矩形形状を有し、長手方向端であるX方向端には、保持部材3と連結される腕部2a2が設けられている。弾性体2aの一方の面には、矩形板状の圧電素子2bが接着剤等により接合されている。弾性体2aにおいて圧電素子2bが接着されている面の反対側の面には、X方向に所定の間隔で2つの突起部2a1が設けられている。ここでは、図1(b)に示されるように、突起部2a1は、弾性体2aに対してプレス加工等を行うことにより、弾性体2aと一体的(連続的)に形成されている。なお、突起部2a1は、溶接等によって弾性体2aに接合されていてもよい。突起部2a1の先端面が、摩擦部材1の摺動面1aと加圧接触する。保持部材3には振動体2の腕部2a2が固定され、これにより振動体2は保持部材3に保持される。   The vibrating body 2 includes an elastic body 2a and a piezoelectric element 2b. The elastic body 2a has a thin plate-like rectangular shape, and an arm portion 2a2 connected to the holding member 3 is provided at an end in the X direction which is a longitudinal end. A rectangular plate-like piezoelectric element 2b is bonded to one surface of the elastic body 2a with an adhesive or the like. Two protrusions 2a1 are provided at a predetermined interval in the X direction on the surface of the elastic body 2a opposite to the surface to which the piezoelectric element 2b is bonded. Here, as shown in FIG. 1 (b), the protrusion 2a1 is formed integrally (continuously) with the elastic body 2a by pressing the elastic body 2a or the like. Note that the protrusion 2a1 may be joined to the elastic body 2a by welding or the like. The tip surface of the protrusion 2a1 is in pressure contact with the sliding surface 1a of the friction member 1. The arm 2 a 2 of the vibrating body 2 is fixed to the holding member 3, whereby the vibrating body 2 is held by the holding member 3.

電気−機械エネルギ変換素子である圧電素子2bには、不図示の2相の電極が設けられている。振動体2に2つの固有振動モードの振動が所定の位相差で励起されるように、不図示のフレキシブル基板を通じて交流電圧が圧電素子2bの各電極に印加される。これにより、突起部2a1にZX面内での楕円運動が生じ、突起部2a1が摩擦部材1を摩擦駆動する。このとき、腕部2a2を固有振動モードの節となる位置に設けることによって、振動体2に生じる振動が保持部材3によって抑制されることが回避され、逆に、振動体2に生じる振動が保持部材3に伝達されるのを抑制することができる。なお、本実施形態では、後述するように、突起部2a1が摩擦部材1を摩擦駆動するときの反力により、固定された摩擦部材1に対して振動体2がX方向に相対的に移動する。また、振動体2に励起される2つの固有振動モードは、特に限定されるものではないが、例えば、一次の面外曲げ振動モードと、二次の面外曲げ振動モードが挙げられる。これらの固有振動モードの振動励起方法は周知であるので、ここでの説明を省略する。   The piezoelectric element 2b, which is an electro-mechanical energy conversion element, is provided with two-phase electrodes (not shown). An AC voltage is applied to each electrode of the piezoelectric element 2b through a flexible substrate (not shown) so that the vibration body 2 is excited with a predetermined phase difference between two natural vibration modes. As a result, elliptical motion in the ZX plane occurs in the protrusion 2a1, and the protrusion 2a1 frictionally drives the friction member 1. At this time, by providing the arm portion 2a2 at a position that becomes a node of the natural vibration mode, it is avoided that the vibration generated in the vibrating body 2 is suppressed by the holding member 3, and conversely, the vibration generated in the vibrating body 2 is held. Transmission to the member 3 can be suppressed. In this embodiment, as will be described later, the vibrating body 2 moves relative to the fixed friction member 1 in the X direction by a reaction force when the protrusion 2a1 frictionally drives the friction member 1. . Further, the two natural vibration modes excited by the vibrating body 2 are not particularly limited, and examples thereof include a primary out-of-plane bending vibration mode and a secondary out-of-plane bending vibration mode. Since vibration excitation methods in these natural vibration modes are well known, description thereof is omitted here.

可動部材5は、ローラー11を介して保持部材3と係合している。そのため、保持部材3は、可動部材5に対して、X方向での移動は規制されるが、Z方向では移動は規制されない。可動部材5は、球面突起状の動力伝達部5aを有している。動力伝達部5aは、後述するレンズ保持部材と連結される。加圧部材4は、振動体2を摩擦部材1に対して加圧する部材であり、Z方向の一端は可動部材5の作用面5bに、Z方向の他端は加圧板10の作用面10aと接触している。加圧部材4は、加圧板10及び緩衝部材9を介して、振動体2に加圧力を作用させて、振動体2を摩擦部材1に加圧接触させる。このとき、加圧部材4と振動体2との間に緩衝部材9を介在させることで、振動体2に生成する振動を阻害することなく、振動体2を摩擦部材1に対して加圧することができる。   The movable member 5 is engaged with the holding member 3 via the roller 11. For this reason, the holding member 3 is restricted from moving in the X direction with respect to the movable member 5, but is not restricted in the Z direction. The movable member 5 has a spherical protrusion-shaped power transmission portion 5a. The power transmission unit 5a is connected to a lens holding member described later. The pressurizing member 4 is a member that presses the vibrating body 2 against the friction member 1, and one end in the Z direction is an action surface 5 b of the movable member 5, and the other end in the Z direction is an action surface 10 a of the pressurizing plate 10. In contact. The pressurizing member 4 applies pressure to the vibrating body 2 via the pressurizing plate 10 and the buffer member 9 to bring the vibrating body 2 into pressure contact with the friction member 1. At this time, the vibration member 2 is pressurized against the friction member 1 without interfering with the vibration generated in the vibration member 2 by interposing the buffer member 9 between the pressure member 4 and the vibration member 2. Can do.

天板8は、ネジ等を用いて固定部材6に固定されている。可動部材5と天板8の間には転動部材7が配置されている。転動部材7は、X方向に延びるように可動部材5に設けられた案内溝5cと天板8に設けられた案内溝8aとに挟まれている。転動部材が案内溝5c,8aに案内されながら転動することにより、加圧部材4の加圧力によって可動部材5と天板8との間に生じる摺動負荷を軽減しながら、可動部材5と固定部材6とをX方向に相対的に移動させることができる。振動体2が連結された保持部材3は、可動部材5に対するX方向の移動が規制されており、摩擦部材1は固定部材6に固定されている。そのため、振動体2に固有振動モードの振動を励起すると、振動体2、保持部材3及び可動部材5が、一体となって固定部材6に対してX方向に相対移動する。よって、可動部材5に設けられた動力伝達部5aにレンズ保持部材を連結することで、レンズ保持部材をX方向に駆動することができる。   The top plate 8 is fixed to the fixing member 6 using screws or the like. A rolling member 7 is disposed between the movable member 5 and the top plate 8. The rolling member 7 is sandwiched between a guide groove 5 c provided in the movable member 5 and a guide groove 8 a provided in the top plate 8 so as to extend in the X direction. When the rolling member rolls while being guided by the guide grooves 5c and 8a, the movable member 5 is reduced while reducing the sliding load generated between the movable member 5 and the top plate 8 by the pressure applied by the pressure member 4. And the fixing member 6 can be relatively moved in the X direction. The holding member 3 to which the vibrating body 2 is connected is restricted from moving in the X direction with respect to the movable member 5, and the friction member 1 is fixed to the fixed member 6. Therefore, when the vibration in the natural vibration mode is excited in the vibrating body 2, the vibrating body 2, the holding member 3, and the movable member 5 are integrally moved relative to the fixed member 6 in the X direction. Therefore, the lens holding member can be driven in the X direction by connecting the lens holding member to the power transmission portion 5 a provided in the movable member 5.

次に、振動型アクチュエータ100を備える第1実施形態に係るレンズ駆動装置について説明する。図2(a)は、第1実施形態に係るレンズ駆動装置300の概略構成を示す平面図である。図2(b)は、レンズ駆動装置300の概略構成を示す正面図である。図2(c)は、図2(a)の平面図の一部拡大図である。図2(d)は、図2(a)に示す矢視B−Bでの断面図の一部拡大図である。   Next, the lens driving device according to the first embodiment including the vibration type actuator 100 will be described. FIG. 2A is a plan view illustrating a schematic configuration of the lens driving device 300 according to the first embodiment. FIG. 2B is a front view illustrating a schematic configuration of the lens driving device 300. FIG. 2C is a partially enlarged view of the plan view of FIG. FIG.2 (d) is a partially expanded view of sectional drawing by arrow BB shown to Fig.2 (a).

レンズ駆動装置300は、第1の駆動源である第1の振動型アクチュエータ100A(以下「第1アクチュエータ100A」と記す)と、第2の駆動源である第2の振動型アクチュエータ100B(以下「第2アクチュエータ100B」と記す)を有する。また、レンズ駆動装置300は、レンズ12、レンズ保持部材13、ガイド部材14a,14b、第1の連結部材15、第1の付勢部材16、固定軸17、第2の連結部材25及び第2の付勢部材26を備える。   The lens driving device 300 includes a first vibration type actuator 100A (hereinafter referred to as “first actuator 100A”) as a first drive source and a second vibration type actuator 100B (hereinafter referred to as “first actuator 100A”) as a second drive source. 2nd actuator 100B "). The lens driving device 300 includes the lens 12, the lens holding member 13, the guide members 14a and 14b, the first connecting member 15, the first biasing member 16, the fixed shaft 17, the second connecting member 25, and the second. The urging member 26 is provided.

第1アクチュエータ100Aと第2アクチュエータ100Bのそれぞれの構成は、上述した振動型アクチュエータ100と同じである。そこで、以下の説明では、振動型アクチュエータ100の構成要素であって、第1アクチュエータ100Aの構成要素として説明するときには、構成要素の名称の前に「第1の」を付すと共に符号の末尾に「A」を付すものとする。同様に、第2アクチュエータ100Bの構成要素として説明するときには、構成要素の名称の前に「第2の」を付すと共に符号の末尾に「B」を付すものとする。例えば、振動型アクチュエータ100の「可動部材5」について、第1アクチュエータ100Aの構成要素として説明する際には「第1の可動部材5A」と称呼し、第2アクチュエータ100Bの構成要素として説明する際には「第2の可動部材5B」と称呼する。第1アクチュエータ100Aと第2アクチュエータ100Bのそれぞれの構成についての説明は、振動型アクチュエータ100についての上述の説明に準ずるため、省略する。   The configurations of the first actuator 100A and the second actuator 100B are the same as those of the vibration actuator 100 described above. Therefore, in the following description, when describing as a component of the vibration type actuator 100 and the component of the first actuator 100A, “first” is added before the name of the component and “ A "shall be attached. Similarly, when describing as a component of the second actuator 100B, “second” is added before the name of the component, and “B” is added at the end of the reference numeral. For example, when the “movable member 5” of the vibration type actuator 100 is described as a component of the first actuator 100A, it is referred to as “first movable member 5A” and is described as a component of the second actuator 100B. Is referred to as “second movable member 5B”. The description of the configuration of each of the first actuator 100A and the second actuator 100B is the same as the above description of the vibration type actuator 100, and is therefore omitted.

被駆動部材であるレンズ保持部材13は、レンズ12を保持する。レンズ保持部材13は、丸穴部13aとU字穴部13bを有し、丸穴部13aでガイド部材14aと摺動可能に嵌合しており、U字穴部13bでガイド部材14bと摺動可能に嵌合している。こうして、レンズ保持部材13は、ガイド部材14a,14bによってX方向に案内されて直進することができるようになっている。なお、レンズ保持部材13のU字穴部13bは、ガイド部材14bに対して嵌合ガタを有する。レンズ駆動装置300では、第1アクチュエータ100Aと第2アクチュエータ100Bの駆動力をレンズ保持部材13に伝達することによって、レンズ保持部材13に保持されたレンズ12をX方向に直進させる。   A lens holding member 13 that is a driven member holds the lens 12. The lens holding member 13 has a round hole portion 13a and a U-shaped hole portion 13b. The lens holding member 13 is slidably fitted to the guide member 14a in the round hole portion 13a, and slides on the guide member 14b in the U-shaped hole portion 13b. It is movably fitted. Thus, the lens holding member 13 is guided in the X direction by the guide members 14a and 14b so as to be able to go straight. Note that the U-shaped hole 13b of the lens holding member 13 has a fitting play with respect to the guide member 14b. In the lens driving device 300, the driving force of the first actuator 100 </ b> A and the second actuator 100 </ b> B is transmitted to the lens holding member 13, so that the lens 12 held by the lens holding member 13 moves straight in the X direction.

第1アクチュエータ100Aと第2アクチュエータ100Bは、Z方向から見たときに、点Oに対して点対称となるように配置されており、そこで先ず、レンズ駆動装置300における第1アクチュエータ100Aとその周辺構成との関係について説明する。第1の連結部材15は、レンズ保持部材13と第1アクチュエータ100Aとを連結する。第1の連結部材15は、レンズ保持部材13に対して、固定軸17まわりに回転自在に配置されている。第1の付勢部材16は、固定軸17が挿通された状態でレンズ保持部材13の面13cと第1の連結部材15の面15aに接触してX方向で圧縮されている。これにより、第1の連結部材15は、レンズ保持部材13に対して矢印C方向に付勢され、レンズ保持部材13と加圧接触している。第1の付勢部材16には、トグルばねが用いられており、トグルばねのそれぞれの端部がレンズ保持部材13の受け部13e1と第1の連結部材15の凸部15bに作用している。これにより、レンズ保持部材13に対して固定軸17まわりに第1の連結部材15を回転させる付勢力が生じ、第1の連結部材15に設けられたV字溝部15cから第1の可動部材5Aの第1の動力伝達部5aAに対して−Z方向に付勢力Fが作用する。こうして、V字溝部15cが第1の動力伝達部5aAに係合することにより、第1の連結部材15は、第1アクチュエータ100Aの第1の可動部材5Aに連結される。その結果、第1の可動部材5Aは、第1の連結部材15を介してレンズ保持部材13に連結される。 The first actuator 100A and the second actuator 100B are arranged so as to be point-symmetric with respect to the point O when viewed from the Z direction. First, the first actuator 100A and its surroundings in the lens driving device 300 are firstly provided. The relationship with the configuration will be described. The first connecting member 15 connects the lens holding member 13 and the first actuator 100A. The first connecting member 15 is arranged to be rotatable around the fixed shaft 17 with respect to the lens holding member 13. The first urging member 16 is compressed in the X direction by contacting the surface 13c of the lens holding member 13 and the surface 15a of the first connecting member 15 in a state where the fixed shaft 17 is inserted. Accordingly, the first connecting member 15 is urged in the direction of the arrow C with respect to the lens holding member 13 and is in pressure contact with the lens holding member 13. A toggle spring is used for the first biasing member 16, and each end of the toggle spring acts on the receiving portion 13 e 1 of the lens holding member 13 and the convex portion 15 b of the first connecting member 15. . Thereby, an urging force for rotating the first connecting member 15 around the fixed shaft 17 is generated with respect to the lens holding member 13, and the first movable member 5 </ b> A from the V-shaped groove portion 15 c provided in the first connecting member 15. The urging force F A acts in the −Z direction on the first power transmission unit 5aA. Thus, when the V-shaped groove portion 15c engages with the first power transmission portion 5aA, the first connecting member 15 is connected to the first movable member 5A of the first actuator 100A. As a result, the first movable member 5 </ b> A is coupled to the lens holding member 13 via the first coupling member 15.

このように、第1の付勢部材16を用いてレンズ保持部材13と第1の可動部材5Aとを連結することにより、部品公差や組立公差等を吸収することができる。また、第1の加圧部材4Aにより第1の可動部材5Aに作用する付勢力Gの方向と第1の付勢部材16によって第1の連結部材15に作用する付勢力Fの方向は、共に−Z方向となっている。よって、第1の加圧部材4Aによる加圧力を打ち消すことなく、第1の連結部材15を第1の可動部材5Aに連結することができる。 Thus, by connecting the lens holding member 13 and the first movable member 5 </ b> A using the first biasing member 16, component tolerances, assembly tolerances, and the like can be absorbed. The direction of the biasing force F A that acts on the first connecting member 15 and the direction of the urging force G by the first biasing member 16 which act by the first pressure member 4A to the first movable member 5A is Both are in the −Z direction. Therefore, the first connecting member 15 can be connected to the first movable member 5A without canceling the pressure applied by the first pressure member 4A.

第2アクチュエータ100Bは、第1アクチュエータ100Aと同様の方法で、レンズ保持部材13に連結されている。すなわち、第2の連結部材25は、レンズ保持部材13に対して、固定軸17まわりに回転自在に取り付けられている。第2の付勢部材26は、固定軸17が挿通された状態でレンズ保持部材13の受け面13dと第2の連結部材25の面25aに接触してX方向で圧縮されている。これにより、第2の連結部材25は、レンズ保持部材13に対して矢印D方向に付勢され、レンズ保持部材13と加圧接触している。第2の付勢部材26に用いられているトグルばねのそれぞれの端部は、レンズ保持部材13の受け部13e2と第2の連結部材25の凸部(不図示)に作用している。これにより、第2の連結部材25に設けられたV字溝部(不図示)から第2の可動部材5Bの第1の動力伝達部(不図示)に対して−Z方向に付勢力Fが作用する。こうして、第2の連結部材25は、第2アクチュエータ100Bの第2の可動部材5Bに連結される。その結果、第2の可動部材5Bは、第2の連結部材25を介してレンズ保持部材13に連結される。なお、レンズ駆動装置300では、付勢力F,Fの大きさは略等しく、その方向も略平行となっている。 The second actuator 100B is coupled to the lens holding member 13 in the same manner as the first actuator 100A. That is, the second connecting member 25 is attached to the lens holding member 13 so as to be rotatable around the fixed shaft 17. The second urging member 26 comes into contact with the receiving surface 13d of the lens holding member 13 and the surface 25a of the second connecting member 25 in a state where the fixed shaft 17 is inserted, and is compressed in the X direction. Accordingly, the second connecting member 25 is urged in the direction of the arrow D with respect to the lens holding member 13 and is in pressure contact with the lens holding member 13. Each end of the toggle spring used for the second urging member 26 acts on the receiving portion 13e2 of the lens holding member 13 and the convex portion (not shown) of the second connecting member 25. Thus, the first power transmission unit force F B with the -Z direction with respect to the (not shown) from the second V-shaped groove provided in the connecting member 25 (not shown) the second movable member 5B Works. Thus, the second connecting member 25 is connected to the second movable member 5B of the second actuator 100B. As a result, the second movable member 5 </ b> B is coupled to the lens holding member 13 via the second coupling member 25. In the lens driving device 300, the magnitudes of the urging forces F A and F B are substantially equal, and the directions thereof are also substantially parallel.

図3は、レンズ駆動装置300を有する撮像装置400の概略構成を示すブロック図である。撮像装置400は、レンズ駆動装置300を内蔵するレンズ鏡筒20、撮像素子21を内蔵する本体部22、レンズ位置検出部18a、加速度検出部18b、焦点位置検出部18c及び駆動制御部19を備える。図3では、説明の便宜上、撮像装置400を構成するこれらの主要部を撮像装置400から抜き出して示しており、レンズ駆動装置300を構成する第1アクチュエータ100Aと第2アクチュエータ100Bも同様にレンズ鏡筒20から抜き出して示している。   FIG. 3 is a block diagram illustrating a schematic configuration of the imaging device 400 having the lens driving device 300. The imaging device 400 includes a lens barrel 20 that houses a lens driving device 300, a main body 22 that houses an imaging device 21, a lens position detection unit 18a, an acceleration detection unit 18b, a focus position detection unit 18c, and a drive control unit 19. . In FIG. 3, for convenience of explanation, these main parts constituting the imaging device 400 are shown extracted from the imaging device 400, and the first actuator 100A and the second actuator 100B constituting the lens driving device 300 are similarly lens mirrors. It is shown extracted from the cylinder 20.

レンズ鏡筒20を通過した光束は撮像素子21に結像し、撮像素子21は光学像を電気信号に変換し、不図示の画像処理回路が電気信号から画像データを生成する。レンズ位置検出部18aは、レンズ鏡筒20に設けられるセンサと、センサからの信号を処理するために本体部22に設けられる演算回路とを有し、レンズ12(レンズ保持部材13)の位置を検出する。加速度検出部18bは、レンズ鏡筒20に設けられるセンサと、センサからの信号を処理するために本体部22に設けられる演算回路とを有し、レンズ12が光軸方向に駆動されているときの加速度を検出する。焦点位置検出部18cは、本体部22に設けられており、位相差検出方式等の周知の方法を用いてレンズ12の合焦位置を検出し、合焦位置情報を駆動制御部19へ供給する。駆動制御部19は、焦点位置検出部18cから供給される合焦位置情報に基づいてレンズ12の駆動目標位置を決定する。そして、駆動制御部19は、レンズ位置検出部18a及び加速度検出部18b及び情報に基づいて、第1アクチュエータ100A及び第2アクチュエータ100Bの駆動を制御し、レンズ12を合焦位置へ移動させる。   The light beam that has passed through the lens barrel 20 forms an image on the image sensor 21, and the image sensor 21 converts the optical image into an electrical signal, and an image processing circuit (not shown) generates image data from the electrical signal. The lens position detection unit 18a includes a sensor provided in the lens barrel 20 and an arithmetic circuit provided in the main body unit 22 for processing a signal from the sensor, and determines the position of the lens 12 (lens holding member 13). To detect. The acceleration detection unit 18b includes a sensor provided in the lens barrel 20 and an arithmetic circuit provided in the main body unit 22 for processing a signal from the sensor, and when the lens 12 is driven in the optical axis direction. The acceleration of is detected. The focus position detection unit 18 c is provided in the main body unit 22, detects the focus position of the lens 12 using a known method such as a phase difference detection method, and supplies the focus position information to the drive control unit 19. . The drive control unit 19 determines the drive target position of the lens 12 based on the focus position information supplied from the focus position detection unit 18c. Then, the drive control unit 19 controls the driving of the first actuator 100A and the second actuator 100B based on the lens position detection unit 18a, the acceleration detection unit 18b, and information, and moves the lens 12 to the in-focus position.

なお、駆動制御部19は、CPU(演算処理回路)、ROM、RAM等を有する。CPUがROMに記憶されたコンピュータプログラムをRAMに展開することにより、撮像装置400を構成する各部の動作が制御されることで、撮像装置400の全体的な制御が実現される。駆動制御部19は、撮像装置400を構成する各部の処理の全部又は一部を論理回路により実現するASIC等の専用プロセッサであってもよい。レンズ位置検出部18a、加速度検出部18b及び焦点位置検出部18cについても同様であり、ソフトウェア(プログラム)による実装とハードウェアによる実装のいずれも可能であり、ソフトウェアとハードウェアとの組合せによって実装されていてもよい。   The drive control unit 19 includes a CPU (arithmetic processing circuit), a ROM, a RAM, and the like. When the CPU expands the computer program stored in the ROM to the RAM, the operation of each unit constituting the imaging apparatus 400 is controlled, whereby the overall control of the imaging apparatus 400 is realized. The drive control unit 19 may be a dedicated processor such as an ASIC that implements all or part of the processing of each unit constituting the imaging apparatus 400 by a logic circuit. The same applies to the lens position detection unit 18a, the acceleration detection unit 18b, and the focus position detection unit 18c, which can be implemented by software (program) or hardware, and is implemented by a combination of software and hardware. It may be.

図4は、撮像装置400のオートフォーカス制御を説明するフローチャートである。図4のフローチャートに示す各処理は、駆動制御部19が所定のプログラムを実行して撮像装置400を構成する各部の動作を制御することにより実現される。以下の説明では、図2(c)に示した矢印C方向を+X方向とし、矢印D方向を−X方向と定義する。また、撮像素子21から被写体(不図示)に向かう方向が+X方向であるとし、光軸方向を+X方向に進むにしたがってレンズ位置を規定する値(座標値)は大きくなるものとする。   FIG. 4 is a flowchart for describing autofocus control of the imaging apparatus 400. Each process shown in the flowchart of FIG. 4 is realized by the drive control unit 19 executing a predetermined program to control the operation of each unit constituting the imaging apparatus 400. In the following description, the arrow C direction shown in FIG. 2C is defined as the + X direction, and the arrow D direction is defined as the −X direction. Further, it is assumed that the direction from the image sensor 21 toward the subject (not shown) is the + X direction, and the value (coordinate value) that defines the lens position increases as the optical axis direction advances in the + X direction.

駆動制御部19は、ステップS11において焦点位置検出部18cから取得した合焦位置情報に基づいてレンズ12の駆動目標位置Xを決定し、ステップS12においてレンズ位置検出部18aから現在のレンズ位置Xを取得する。ステップS13において駆動制御部19は、駆動目標位置Xとレンズ位置Xに基づき、レンズ12の駆動方向が+X方向か−X方向かを判定する。「Xt>X」であれば、レンズ12を+X方向へ駆動する必要が生じていることになり、「Xt≦X」であれば、レンズ12を−X方向へ駆動する必要が生じていることになる。よって、駆動制御部19は、「Xt>X」であるとき(S13でYES)、処理をステップS14へ進め、「Xt≦X」であるとき(S13でNO)、処理をステップS20へ進める。 Drive control unit 19, a driving target position X t of the lens 12 is determined based on the obtained focus position information from the focus position detection unit 18c in step S11, the current lens position X from the lens position detector 18a in step S12 Get 0 . Drive control unit 19 in step S13, based on the drive target position X t and the lens position X 0, the driving direction of the lens 12 determines whether the + X direction or -X direction. If “Xt> X 0 ”, it is necessary to drive the lens 12 in the + X direction. If “Xt ≦ X 0 ”, it is necessary to drive the lens 12 in the −X direction. Will be. Therefore, when “Xt> X 0 ” (YES in S13), the drive control unit 19 advances the process to step S14, and when “Xt ≦ X 0 ” (NO in S13), the process proceeds to step S20. Proceed.

ステップS14において、駆動制御部19は、第1の可動部材5Aと第2の可動部材5Bが共に+X方向に駆動されるように第1アクチュエータ100Aと第2アクチュエータ100Bに所定の交流電圧を供給する。これにより、レンズ駆動装置300の駆動が開始される。ステップS15において駆動制御部19は、加速度検出部18bからの信号に基づき、レンズ12が加速又は減速を行っているか或いは一定速度で移動しているかを判定する。駆動制御部19は、レンズ12が加速又は減速を行っている場合(S14でYES)、処理をステップS16へ進め、レンズ12が一定速度で移動している場合(S14でNO)、処理をステップS17へ進める。   In step S14, the drive control unit 19 supplies a predetermined AC voltage to the first actuator 100A and the second actuator 100B so that both the first movable member 5A and the second movable member 5B are driven in the + X direction. . Thereby, the driving of the lens driving device 300 is started. In step S15, the drive control unit 19 determines whether the lens 12 is accelerating or decelerating or moving at a constant speed based on the signal from the acceleration detecting unit 18b. If the lens 12 is accelerating or decelerating (YES in S14), the drive control unit 19 advances the process to step S16. If the lens 12 is moving at a constant speed (NO in S14), the driving control unit 19 performs the process. Proceed to S17.

ステップS16において駆動制御部19は、第1アクチュエータ100Aの駆動力が第2アクチュエータ100Bの駆動力よりも大きくなるようにレンズ駆動装置300の駆動を制御する。これにより、第1アクチュエータ100Aの第1の可動部材5Aにより、第1の連結部材15を介してレンズ保持部材13に対して+X方向に推力が与えられる。このとき、第1の付勢部材16が第1の連結部材15をレンズ保持部材13に対して付勢する方向も+X方向である。したがって、第1の可動部材5Aの動きに追従してレンズ保持部材13を駆動することができるため、高い応答性が得られる。ステップS17において駆動制御部19は、第1アクチュエータ100Aの駆動力と第2アクチュエータ100Bの駆動力とが等しくなるようにレンズ駆動装置300の駆動を制御し、これによりレンズ12を一定速度で移動させることができる。ステップS16,S17に続くステップS18において駆動制御部19は、レンズ12(レンズ位置X)が駆動目標位置Xに到達したか否かを判定する。駆動制御部19は、レンズ12が駆動目標位置Xに到達した場合(S18でYES)、本処理を終了させ、レンズ12が駆動目標位置Xに到達していない場合(S18でNO)、処理をステップS15へ戻す。 In step S16, the drive control unit 19 controls the driving of the lens driving device 300 so that the driving force of the first actuator 100A is larger than the driving force of the second actuator 100B. Accordingly, a thrust is applied in the + X direction to the lens holding member 13 via the first connecting member 15 by the first movable member 5A of the first actuator 100A. At this time, the direction in which the first urging member 16 urges the first connecting member 15 against the lens holding member 13 is also the + X direction. Therefore, since the lens holding member 13 can be driven following the movement of the first movable member 5A, high responsiveness can be obtained. In step S17, the drive control unit 19 controls the driving of the lens driving device 300 so that the driving force of the first actuator 100A and the driving force of the second actuator 100B are equal, thereby moving the lens 12 at a constant speed. be able to. Step S16, S17 the drive control unit 19 in step S18 subsequent to the lens 12 (lens position X 0) determines whether the host vehicle has reached the drive target position X t. Drive control unit 19, when the lens 12 has reached the drive target position X t (YES in S18), to terminate the present process, when the lens 12 has not reached the drive target position X t (NO in S18), The process returns to step S15.

ステップS20,S21,S22,S23,S24,S25の処理はそれぞれ、ステップS14,S15,S16,S17,S18,S19の処理と対応している。これらの処理は、レンズ12を移動させる方向が+X方向の反対方向である−X方向となっている点で相違しており、ステップS20〜S25の処理は、ステップS14〜S19の処理と同様に行われるため、説明を省略する。なお、ステップS16に対応するステップS22では、駆動制御部19は、第2アクチュエータ100Bの駆動力が第1アクチュエータ100Aの駆動力よりも大きくなるようにレンズ駆動装置300の駆動を制御する。これにより、第2アクチュエータ100Bの第2の可動部材5Bにより、第2の連結部材25を介してレンズ保持部材13に対して−X方向に推力が与えられる。このとき、第2の付勢部材26が第2の連結部材25をレンズ保持部材13に対して付勢する方向も−X方向である。したがって、第2の可動部材5Bに追従してレンズ保持部材13を移動させることができるため、高い応答性が得られる。   The processes in steps S20, S21, S22, S23, S24, and S25 correspond to the processes in steps S14, S15, S16, S17, S18, and S19, respectively. These processes are different in that the direction in which the lens 12 is moved is the −X direction, which is the opposite direction to the + X direction, and the processes in steps S20 to S25 are the same as the processes in steps S14 to S19. Since this is done, the description is omitted. In step S22 corresponding to step S16, the drive control unit 19 controls the driving of the lens driving device 300 so that the driving force of the second actuator 100B is larger than the driving force of the first actuator 100A. Accordingly, a thrust is applied in the −X direction to the lens holding member 13 via the second connecting member 25 by the second movable member 5B of the second actuator 100B. At this time, the direction in which the second urging member 26 urges the second connecting member 25 against the lens holding member 13 is also the −X direction. Therefore, since the lens holding member 13 can be moved following the second movable member 5B, high responsiveness can be obtained.

このように、撮像装置400での駆動制御では、第1の付勢部材16と第2の付勢部材26の付勢方向とレンズ12の駆動方向との関係に応じて、第1アクチュエータ100Aの駆動力と第2アクチュエータ100Bの駆動力の大きさを切り替える。これにより、レンズ12の駆動方向が+X方向の−X方向のどちらの方向であっても、高い応答性を得ることができる。   As described above, in the drive control in the imaging apparatus 400, the first actuator 100A is controlled according to the relationship between the urging directions of the first urging member 16 and the second urging member 26 and the driving direction of the lens 12. The magnitude of the driving force and the driving force of the second actuator 100B is switched. Thereby, high responsiveness can be obtained regardless of which of the + X direction and the −X direction the driving direction of the lens 12 is.

続いて、第1アクチュエータ100Aの駆動力を第2アクチュエータ100Bの駆動力よりも大きくする手法について説明する。図5は、第1アクチュエータ100Aの周波数特性(交流電圧の周波数fとレンズ12(レンズ保持部材13)の駆動速度Vとの関係)を示す図であり、第2アクチュエータ100Bの周波数特性でもある。第1アクチュエータ100A及び第2アクチュエータ100Bの駆動に用いる周波数f以上の周波数領域では、周波数fが高くなるにしたがって駆動速度Vは小さくなる。なお、周波数fは、第1アクチュエータ100A及び第2アクチュエータ100Bを安定して駆動することができる上限周波数である。 Next, a method for making the driving force of the first actuator 100A larger than the driving force of the second actuator 100B will be described. FIG. 5 is a diagram showing the frequency characteristic of the first actuator 100A (relationship between the frequency f of the AC voltage and the driving speed V of the lens 12 (lens holding member 13)), and is also the frequency characteristic of the second actuator 100B. In the frequency f 1 or frequency region used for driving the first actuator 100A and the second actuator 100B, the driving velocity V in accordance with the frequency f becomes higher the smaller. The frequency f h is an upper limit frequency at which the first actuator 100A and the second actuator 100B can be driven stably.

第1アクチュエータ100Aの駆動力を第2アクチュエータ100Bの駆動力よりも大きくするためには、第1アクチュエータ100Aの駆動周波数fを第2アクチュエータ100Bの駆動周波数fよりもΔfだけ低くする。これにより、第1の可動部材5Aの駆動速度Vは第2の可動部材5Bの駆動速度Vよりも大きくなる。つまり、駆動周波数fを駆動周波数fよりもΔfだけ高くする(f=f+Δf)ことにより、第1アクチュエータ100Aの駆動力を第2アクチュエータ100Bの駆動力よりも大きくすることができる。なお、第2アクチュエータ100Bの駆動力を第1アクチュエータ100Aの駆動力よりも大きくするには、駆動周波数f,fの関係を逆にすればよいだけであるので、詳細な説明は省略する。 To larger than the driving force of the first actuator 100A driving force of the second actuator 100B lowers the drive frequency f 1 of the first actuator 100A only Δf than the drive frequency f 2 of the second actuator 100B. As a result, the drive speed V1 of the first movable member 5A is greater than the drive speed V2 of the second movable member 5B. That is, by making the drive frequency f 2 higher than the drive frequency f 1 by Δf (f 2 = f 1 + Δf), the drive force of the first actuator 100A can be made larger than the drive force of the second actuator 100B. . Note that in order to make the driving force of the second actuator 100B larger than the driving force of the first actuator 100A, it is only necessary to reverse the relationship between the driving frequencies f 1 and f 2 , so detailed description will be omitted. .

撮像装置400でのオートフォーカス制御では、駆動制御部19は、第1アクチュエータ100A及び第2アクチュエータ100Bを駆動するための交流電圧の駆動周波数f,fを制御しながらレンズ12を移動させる。そして、駆動制御部19は、レンズ12の位置が駆動目標位置へ到達した時点で、第1アクチュエータ100A及び第2アクチュエータ100Bへの交流電圧の供給を停止する。なお、第1アクチュエータ100A及び第2アクチュエータ100Bでは、それぞれの圧電素子2bに設けられた2相の電極に印加する2相の交流電圧の周波数と位相差を制御することにより第1の可動部材5Aと第2の可動部材5Bの速度制御が行われる。この制御方法は周知であるため、その詳細な説明は省略する。 In the autofocus control in the imaging apparatus 400, the drive control unit 19 moves the lens 12 while controlling the drive frequencies f 1 and f 2 of the AC voltage for driving the first actuator 100A and the second actuator 100B. Then, when the position of the lens 12 reaches the drive target position, the drive control unit 19 stops supplying the AC voltage to the first actuator 100A and the second actuator 100B. In the first actuator 100A and the second actuator 100B, the first movable member 5A is controlled by controlling the frequency and phase difference of the two-phase AC voltage applied to the two-phase electrodes provided in the respective piezoelectric elements 2b. Then, the speed control of the second movable member 5B is performed. Since this control method is well known, its detailed description is omitted.

図5を参照して第1アクチュエータ100Aの周波数特性と第2アクチュエータ100Bの周波数特性とが略等しい場合について説明したが、第1アクチュエータ100Aの周波数特性と第2アクチュエータ100Bの周波数特性とが異なる場合がある。そこで、次に、2つの振動型アクチュエータの周波数特性が異なる場合に駆動力の大きさを調整する方法について、次に説明する。   Although the case where the frequency characteristic of the first actuator 100A and the frequency characteristic of the second actuator 100B are substantially equal has been described with reference to FIG. 5, the frequency characteristic of the first actuator 100A and the frequency characteristic of the second actuator 100B are different. There is. Then, next, a method for adjusting the magnitude of the driving force when the frequency characteristics of the two vibration actuators are different will be described.

図6は、第1アクチュエータ100Aと第2アクチュエータ100Bの駆動力を調整するための周波数補正方法を説明する図であり、図6(a)は周波数補正前の周波数特性を示しており、図6(b)は、周波数補正前の周波数特性を示している。ここでは、第2の可動部材5Bの最大速度が第1の可動部材5Aの最大速度よりも小さくなるように、第2アクチュエータ100Bでの周波数特性が第1アクチュエータ100Aの周波数特性よりも高周波側にシフトしている場合を取り上げることとする。この場合、周波数補正前の第1の可動部材5Aの最大速度V1maxを与える駆動周波数f1maxと第2の可動部材5Bの最大速度V2maxを与える駆動周波数f2maxとの関係は、V2max<V1max,f1max<f2maxとなる。 FIG. 6 is a diagram for explaining a frequency correction method for adjusting the driving force of the first actuator 100A and the second actuator 100B. FIG. 6A shows the frequency characteristics before the frequency correction, and FIG. (B) shows the frequency characteristics before frequency correction. Here, the frequency characteristic of the second actuator 100B is higher than the frequency characteristic of the first actuator 100A so that the maximum speed of the second movable member 5B is smaller than the maximum speed of the first movable member 5A. The case of shifting will be taken up. In this case, the relationship between the driving frequency f 2max applying a driving frequency f 1max and maximum speed V 2max of the second movable member 5B which gives the maximum speed V 1max of the first movable member 5A before the frequency correction, V 2max < V1max , f1max < f2max .

この場合に、周波数補正を行わずに第1アクチュエータ100Aを駆動周波数f、第2アクチュエータ100Bを駆動周波数fでそれぞれ駆動した場合、第1の可動部材5Aの駆動速度Vと第2の可動部材5Bの駆動速度Vは略等しく(V≒V)なる。この場合、第1アクチュエータ100Aの駆動力を第2アクチュエータ100Bの駆動力よりも大きくすることはできない。そこで、図6(b)に示すように、駆動周波数f以上の周波数領域で第1アクチュエータ100Aと第2アクチュエータ100Bの周波数特性が略等しくなるように、第2アクチュエータ100Bの周波数特性を破線で示すようにシフトさせる。その際の周波数シフト量Δfに基づいて第2アクチュエータ100Bの駆動周波数fを補正し、補正後周波数f´(=f+Δf)で第2アクチュエータ100Bを駆動する。これにより、第2の可動部材5Bの駆動速度Vは、第1の可動部材5Aの駆動速度Vよりも小さくなるため、第1アクチュエータ100Aの駆動力を第2アクチュエータ100Bの駆動力よりも大きくすることができる。 In this case, when the first actuator 100A is driven at the drive frequency f 1 and the second actuator 100B is driven at the drive frequency f 2 without performing frequency correction, the drive speed V 1 of the first movable member 5A and the second driving speed V 2 of the movable member 5B is substantially equal (V 1V 2). In this case, the driving force of the first actuator 100A cannot be made larger than the driving force of the second actuator 100B. Therefore, as shown in FIG. 6 (b), so that the frequency characteristic of the first actuator 100A and the second actuator 100B are substantially equal in the above driving frequency f L of the frequency domain, the frequency characteristic of the second actuator 100B by a broken line Shift as shown. The drive frequency f 2 of the second actuator 100B is corrected based on the frequency shift amount Δf 2 at that time, and the second actuator 100B is driven at the corrected frequency f 2 ′ (= f 2 + Δf 2 ). As a result, the driving speed V2 of the second movable member 5B is smaller than the driving speed V1 of the first movable member 5A, so that the driving force of the first actuator 100A is greater than the driving force of the second actuator 100B. Can be bigger.

以上説明した通り、撮像装置400では、レンズ12(レンズ保持部材13)は、+X方向に駆動される場合には第1の可動部材5Aに遅れなく追従して移動し、−X方向に駆動される場合には、第2の可動部材5Bに遅れなく追従して移動する。つまり、レンズ駆動装置300は応答性に優れており、レンズ12を合焦位置まで遅延することなく駆動することが可能になることにより、機動性に優れたオートフォーカス機構を実現することができる。   As described above, in the imaging apparatus 400, when driven in the + X direction, the lens 12 (lens holding member 13) moves following the first movable member 5A without delay and is driven in the -X direction. When moving, the second movable member 5B follows the second movable member 5B without delay. That is, the lens driving device 300 is excellent in responsiveness, and the lens 12 can be driven to the in-focus position without delay, thereby realizing an autofocus mechanism with excellent mobility.

上記説明では、固定された摩擦部材1に対して振動体2と可動部材5とが一体となって移動する振動型アクチュエータ100を用いて構成されたレンズ駆動装置300について説明した。しかし、レンズ駆動装置300に用いられる振動型アクチュエータは、固定された振動体2に対して摩擦部材1と可動部材5とが一体となって移動する構成であってもよい。また、レンズ保持部材13を一定速度で駆動する際には、第1アクチュエータ100Aの駆動力と第2アクチュエータ100Bの駆動力を同じとしたが、これに限られず、加減速時の駆動力の関係のままで、一定速度での駆動を行ってもよい。更に、レンズ駆動装置300では、駆動源に振動型アクチュエータ100を用いたが、これに代えてステッピングモータやボイスコイルモータを用いることもできる。   In the above description, the lens driving device 300 configured using the vibration type actuator 100 in which the vibrating body 2 and the movable member 5 move integrally with the fixed friction member 1 has been described. However, the vibration type actuator used in the lens driving device 300 may be configured such that the friction member 1 and the movable member 5 move integrally with respect to the fixed vibration body 2. Further, when the lens holding member 13 is driven at a constant speed, the driving force of the first actuator 100A and the driving force of the second actuator 100B are the same. However, the present invention is not limited to this, and the relationship between the driving force during acceleration and deceleration. Alternatively, driving at a constant speed may be performed. Further, in the lens driving device 300, the vibration type actuator 100 is used as a driving source, but a stepping motor or a voice coil motor may be used instead.

図5及び図6を参照して、第1アクチュエータ100Aと第2アクチュエータ100Bの駆動周波数を制御することによって駆動力の大きさを調整する方法について説明した。これに対して、次に、第1アクチュエータ100Aと第2アクチュエータ100Bに供給する交流電圧の位相差を制御することによって駆動力の大きさを調整する方法について説明する。駆動力の大きさを駆動周波数で調整するか位相差で調整するかの相違は駆動制御部19での制御方法の相違であり、レンズ駆動装置300を備える撮像装置400の構成は図1乃至図3を参照して説明した通りである。よって、レンズ駆動装置300及び撮像装置400についての説明は省略する。   With reference to FIGS. 5 and 6, the method of adjusting the magnitude of the driving force by controlling the driving frequency of the first actuator 100A and the second actuator 100B has been described. In contrast, a method for adjusting the magnitude of the driving force by controlling the phase difference between the AC voltages supplied to the first actuator 100A and the second actuator 100B will be described. The difference between adjusting the magnitude of the driving force by the driving frequency or adjusting the phase difference is the difference in the control method in the drive control unit 19, and the configuration of the imaging device 400 including the lens driving device 300 is shown in FIGS. As described with reference to FIG. Therefore, descriptions of the lens driving device 300 and the imaging device 400 are omitted.

図7は、第1アクチュエータ100Aと第2アクチュエータ100Bの周波数特性を示す図である。レンズ12(レンズ保持部材13)は、第1アクチュエータ100A及び第2アクチュエータ100Bのそれぞれの圧電素子2bに印加する交流電圧の位相差が正のときに+X方向に移動し、位相差が負のときに−X方向に移動する構成になっているものとする。レンズ保持部材13を+X方向に駆動する場合、位相差θが約+90度のときにレンズ保持部材13は最大速度となり、位相差θが0度に近付くにしたがって速度は小さくなる。そこで、位相差θが0度乃至90度の範囲において、第1アクチュエータ100Aの位相差θを第2アクチュエータ100Bの位相差θよりも大きい値に設定する。この場合、駆動周波数fdにおいて、第1の可動部材5Aの駆動速度Vと第2の可動部材5Bの速度Vの関係は、V>Vとなる。つまり、駆動制御部19は、レンズ保持部材13を+X方向に駆動するときの加減速時には、第1アクチュエータ100A及び第2アクチュエータ100Bに駆動のために供給する交流電圧の位相差θ,θを、θ>θの関係に設定する。これにより、第1アクチュエータ100Aの駆動力を第2アクチュエータ100Bの駆動力よりも大きくすることができる。 FIG. 7 is a diagram illustrating frequency characteristics of the first actuator 100A and the second actuator 100B. The lens 12 (lens holding member 13) moves in the + X direction when the phase difference of the AC voltage applied to each piezoelectric element 2b of the first actuator 100A and the second actuator 100B is positive, and when the phase difference is negative. It is assumed that it is configured to move in the -X direction. When driving the lens holding member 13 in the + X direction, the lens holding member 13 has a maximum speed when the phase difference θ is about +90 degrees, and the speed decreases as the phase difference θ approaches 0 degrees. Therefore, the phase difference theta is in the range of 0 degrees to 90 degrees, setting the phase difference theta 1 of the first actuator 100A to a value greater than the phase difference theta 2 of the second actuator 100B. In this case, the drive frequency fd, the driving speed V 1 of the first movable member 5A relationship velocity V 2 of the second movable member 5B becomes V 1> V 2. That is, the drive control unit 19 performs phase difference θ 1 , θ 2 of AC voltages supplied to the first actuator 100A and the second actuator 100B for driving during acceleration / deceleration when driving the lens holding member 13 in the + X direction. Is set to a relationship of θ 1 > θ 2 . Thereby, the driving force of the first actuator 100A can be made larger than the driving force of the second actuator 100B.

なお、第1アクチュエータ100Aと第2アクチュエータ100Bには、安定した駆動が可能な周波数範囲f〜fがあり、この周波数範囲から外れた周波数で駆動を行うと、駆動停止を含めて駆動が不安定になる等の問題が発生する。したがって、第1アクチュエータ100Aと第2アクチュエータ100Bのそれぞれの駆動周波数f,fを共に周波数範囲f〜fの範囲に収める必要がある。第1アクチュエータ100Aと第2アクチュエータ100Bの駆動周波数を制御することによって駆動力の大きさを調整する場合には、使用可能な周波数範囲がΔf分だけ狭くなってしまう。これに対して、第1アクチュエータ100Aと第2アクチュエータ100Bに供給する交流電圧の位相差に異なる値を設定することによって駆動力の大きさを調整する方法には、使用可能な周波数範囲が制限されることはないという利点がある。 Note that the first actuator 100A and the second actuator 100B have a frequency range f L to f h in which stable driving is possible. If driving is performed at a frequency outside the frequency range, driving including driving stop is performed. Problems such as instability occur. Accordingly, it is necessary to keep the drive frequencies f 1 and f 2 of the first actuator 100A and the second actuator 100B within the frequency range f L to f h , respectively. When the magnitude of the driving force is adjusted by controlling the driving frequency of the first actuator 100A and the second actuator 100B, the usable frequency range is narrowed by Δf. On the other hand, in the method of adjusting the magnitude of the driving force by setting different values for the phase difference between the AC voltages supplied to the first actuator 100A and the second actuator 100B, the usable frequency range is limited. There is an advantage that it does not.

次に、第2実施形態に係るレンズ駆動装置について説明する。上記第1実施形態に係るレンズ駆動装置300では、第1の可動部材5Aと第2の可動部材5Bがそれぞれ第1の付勢部材16と第2の付勢部材26により付勢される方向が共に−Z方向となるように構成した。しかし、これに限定されず、一方の振動型アクチュエータにおける可動部材が付勢部材によって+Z方向に付勢された構成とすることができる。以下、第2アクチュエータ100Bを第2の可動部材5Bが+Z方向に付勢された、第2実施形態に係るレンズ駆動装置について説明する。なお、第2実施形態に係るレンズ駆動装置において第1実施形態に係るレンズ駆動装置300と共通する構成については、説明を省略する。   Next, a lens driving device according to the second embodiment will be described. In the lens driving device 300 according to the first embodiment, the directions in which the first movable member 5A and the second movable member 5B are urged by the first urging member 16 and the second urging member 26, respectively. Both were configured to be in the -Z direction. However, the present invention is not limited to this, and the movable member in one vibration type actuator may be urged in the + Z direction by the urging member. Hereinafter, the lens driving device according to the second embodiment in which the second movable member 5B is biased in the + Z direction by the second actuator 100B will be described. Note that, in the lens driving device according to the second embodiment, the description of the configuration common to the lens driving device 300 according to the first embodiment is omitted.

図8(a)は、第2実施形態に係るレンズ駆動装置300Aの概略構成を示す正面図であり、図8(b)は、レンズ保持部材13のU字穴部13bとガイド部材14bとの嵌合部の部分拡大図である。レンズ駆動装置300Aでは、第2の付勢部材26(不図示)によって第2アクチュエータ100Bの第2の可動部材5Bには、+Z方向に付勢力Fが作用する。一方、図2に示したように、第1の付勢部材16によって第1アクチュエータ100Aの第1の可動部材5Aには−Z方向に付勢力Fが作用している。その結果、レンズ保持部材13のU字穴部13bには、付勢力F,Fに起因して、ガイド部材14bに対して付勢力L12,L22が同じ方向に生じる。 FIG. 8A is a front view showing a schematic configuration of a lens driving device 300A according to the second embodiment, and FIG. 8B is a view showing the U-shaped hole 13b of the lens holding member 13 and the guide member 14b. It is the elements on larger scale of a fitting part. In the lens driving device 300A, the second movable member 5B of the second actuator 100B by the second biasing member 26 (not shown), acting biasing force F B in the + Z direction. On the other hand, as shown in FIG. 2, the biasing force F A in the -Z direction on the first movable member 5A of the first actuator 100A by the first biasing member 16 is acting. As a result, the urging forces L 12 and L 22 are generated in the same direction in the U-shaped hole portion 13b of the lens holding member 13 with respect to the guide member 14b due to the urging forces F A and F B.

レンズ駆動装置300Aにおいて生じる付勢力L12,L22と、第1実施形態に係るレンズ駆動装置300において付勢力F,Fに起因して生じる付勢力とを比較する。図9(a)は、レンズ駆動装置300において第1の付勢部材16及び第2の付勢部材26によりレンズ保持部材13に作用する付勢力を説明する正面図であり、第1アクチュエータ100Aの図示を省略している。図9(b)は、レンズ保持部材13のU字穴部13bとガイド部材14bとの嵌合部の正面図である。レンズ駆動装置300では、第2の付勢部材26は、レンズ保持部材13の受け面13dに作用し、レンズ保持部材13を矢印J方向に付勢する。これに従って、レンズ保持部材13には点I(ガイド部材14aの中心軸)を中心として矢印K方向の回転力が与えられ、U字穴部13bをガイド部材14bに対して付勢する付勢力L21が生じる。同様に、不図示の第1の付勢部材16によってレンズ保持部材13は矢印J方向に付勢され、これに従って、U字穴部13bをガイド部材14bに対して付勢する付勢力L11が生じる。付勢力L11,L21では、U字穴部13bに対して作用する方向が逆になる。この場合、第1の付勢部材16と第2の付勢部材26の特性ばらつきやレンズ駆動装置300を構成する各種部品の部品公差や組立公差等によって、ガイド部材14bがU字穴部13bの面13f,13gのどちらに当接するかが異なってくる。 The urging forces L 12 and L 22 generated in the lens driving device 300A are compared with the urging forces generated due to the urging forces F A and F B in the lens driving device 300 according to the first embodiment. FIG. 9A is a front view for explaining the urging force acting on the lens holding member 13 by the first urging member 16 and the second urging member 26 in the lens driving device 300, and shows the first actuator 100A. The illustration is omitted. FIG. 9B is a front view of a fitting portion between the U-shaped hole 13b of the lens holding member 13 and the guide member 14b. In the lens driving device 300, the second biasing member 26 acts on the receiving surface 13d of the lens holding member 13, urges the lens holding member 13 in the arrow J 2 direction. Accordingly, a rotational force in the direction of arrow K is applied to the lens holding member 13 around the point I (the central axis of the guide member 14a), and an urging force L that urges the U-shaped hole 13b against the guide member 14b. 21 is produced. Similarly, the lens holding member 13 is urged in the direction of the arrow J1 by a first urging member 16 (not shown), and accordingly, an urging force L 11 that urges the U-shaped hole 13b against the guide member 14b. Occurs. In the urging forces L 11 and L 21 , the direction acting on the U-shaped hole 13 b is reversed. In this case, the guide member 14b is formed in the U-shaped hole 13b due to variations in characteristics of the first urging member 16 and the second urging member 26, component tolerances and assembly tolerances of various components constituting the lens driving device 300, and the like. Which of the surfaces 13f and 13g abuts is different.

これに対して、レンズ駆動装置300Aでは、付勢力L12,L22が同じ方向に生じているため、ガイド部材14bと面13gとが当接するように、U字穴部13bはガイド部材14bに対して一方向に付勢される。そのため、レンズ駆動装置300Aを構成する各種部品に部品公差及び組立公差等が生じていても、安定してレンズ保持部材13及びレンズ12のYZ平面上の位置を決めることができる。すなわち、レンズ駆動装置300Aには、第1の付勢部材16と第2の付勢部材26によってレンズ保持部材13に生じる付勢力の方向を揃えることによって、レンズ保持部材13をガイド部材14bに対して確実に付勢することができる利点がある。 On the other hand, in the lens driving device 300A, since the urging forces L 12 and L 22 are generated in the same direction, the U-shaped hole portion 13b is placed on the guide member 14b so that the guide member 14b and the surface 13g come into contact with each other. It is energized in one direction. Therefore, the position of the lens holding member 13 and the lens 12 on the YZ plane can be determined stably even if there are part tolerances, assembly tolerances, and the like in various parts constituting the lens driving device 300A. That is, in the lens driving device 300A, by aligning the direction of the urging force generated in the lens holding member 13 by the first urging member 16 and the second urging member 26, the lens holding member 13 is moved relative to the guide member 14b. There is an advantage that it can be reliably energized.

次に、第3実施形態に係るレンズ駆動装置について説明する。上記第1実施形態に係るレンズ駆動装置300では、第1の付勢部材16と第2の付勢部材26によって生じる付勢力F,Fの大きさが略等しい構成について説明した。これに対して、第3実施形態に係るレンズ駆動装置では、付勢力F,Fの大きさに差を設けた構成とする。なお、第3実施形態に係るレンズ駆動装置において第1実施形態に係るレンズ駆動装置300と共通する構成については、説明を省略する。 Next, a lens driving device according to a third embodiment will be described. In the lens driving apparatus 300 according to the first embodiment, the biasing force F A that the first biasing member 16 caused by the second biasing member 26 has been described substantially equal configuration the size of the F B. On the other hand, in the lens driving device according to the third embodiment, a difference is provided in the magnitudes of the urging forces F A and F B. Note that in the lens driving device according to the third embodiment, the description of the configuration common to the lens driving device 300 according to the first embodiment is omitted.

図10(a)は、第3実施形態に係るレンズ駆動装置300Bにおいて第1の付勢部材16及び第2の付勢部材26Aによりレンズ保持部材13に作用する付勢力を説明する正面図である。図10(b)は、第1の付勢部材16と第2の付勢部材26Aの平面図である。図10(c)は、レンズ保持部材13のU字穴部13bとガイド部材14bとの嵌合部の正面図である。第1の付勢部材16により第1の可動部材5Aに対して作用する付勢力Fと第2の付勢部材26Aにより第2の可動部材5Bに対して作用する付勢力Fは共に同じ−Z方向を向いている。そのため、図9を参照して説明した通り、第1の付勢部材16と第2の付勢部材26Aのそれぞれがレンズ保持部材13のU字穴部13bをガイド部材14bに対して与える付勢力L13,L23の方向は逆向きとなる。 FIG. 10A is a front view for explaining the urging force acting on the lens holding member 13 by the first urging member 16 and the second urging member 26A in the lens driving device 300B according to the third embodiment. . FIG. 10B is a plan view of the first urging member 16 and the second urging member 26A. FIG. 10C is a front view of a fitting portion between the U-shaped hole 13b of the lens holding member 13 and the guide member 14b. The urging force F A acting on the first movable member 5A by the first urging member 16 and the urging force F B acting on the second movable member 5B by the second urging member 26A are both the same. -Z direction. Therefore, as described with reference to FIG. 9, the urging force that the first urging member 16 and the second urging member 26A respectively apply the U-shaped hole 13b of the lens holding member 13 to the guide member 14b. The directions of L 13 and L 23 are opposite to each other.

ここで、付勢力F,Fの間に「F<F」の関係が成立するように、第2の付勢部材26Aは、第1の付勢部材16よりも太い線径の材料で構成されている。なお、第1の付勢部材16と第2の付勢部材26Aとで線径を変える方向に限られず、例えば、材質を変えることによって「F<F」の関係が成立するようにしても構わない。この結果、付勢力L13,L23の間には「L13<L23」の関係が成り立ち、ガイド部材14bはU字穴部13bの面13fに当接する。こうして、レンズ駆動装置300Bを構成する各種部品に部品公差及び組立公差等が生じていても、安定してレンズ保持部材13及びレンズ12のYZ平面上の位置を決めることができる。 Here, the second urging member 26 </ b > A has a wire diameter larger than that of the first urging member 16 so that the relationship of “F A <F B ” is established between the urging forces F A and F B. Consists of materials. The first biasing member 16 and the second biasing member 26A are not limited to the direction of changing the wire diameter. For example, by changing the material, the relationship “F A <F B ” is established. It doesn't matter. As a result, the relationship of “L 13 <L 23 ” is established between the urging forces L 13 and L 23 , and the guide member 14 b comes into contact with the surface 13 f of the U-shaped hole portion 13 b. In this way, the position of the lens holding member 13 and the lens 12 on the YZ plane can be determined stably even if component tolerances, assembly tolerances, and the like occur in the various components constituting the lens driving device 300B.

以上、本発明をその好適な実施形態に基づいて詳述してきたが、本発明はこれら特定の実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の様々な形態も本発明に含まれる。更に上述した各実施形態は本発明の一実施形態を示すものにすぎず、各実施形態を適宜組み合わせることも可能である。   Although the present invention has been described in detail based on preferred embodiments thereof, the present invention is not limited to these specific embodiments, and various forms within the scope of the present invention are also included in the present invention. included. Furthermore, each embodiment mentioned above shows only one embodiment of this invention, and it is also possible to combine each embodiment suitably.

1 摩擦部材
2 振動体
4 加圧部材
5A 第1の可動部材
5B 第2の可動部材
13 レンズ保持部材
15 第1の連結部材
16 第1の付勢部材
19 駆動制御部
20 レンズ鏡筒
21 撮像素子
25 第2の連結部材
26 第2の付勢部材
100A 第1の振動型アクチュエータ(第1アクチュエータ)
100B 第2の振動型アクチュエータ(第2アクチュエータ)
300,300A,300B レンズ駆動装置
400 撮像装置
DESCRIPTION OF SYMBOLS 1 Friction member 2 Vibrating body 4 Pressure member 5A 1st movable member 5B 2nd movable member 13 Lens holding member 15 1st connection member 16 1 biasing member 19 Drive control part 20 Lens barrel 21 Imaging element 25 Second connecting member 26 Second urging member 100A First vibration type actuator (first actuator)
100B Second vibration type actuator (second actuator)
300, 300A, 300B Lens driving device 400 Imaging device

Claims (13)

被駆動部材と、
第1の駆動源と、
前記第1の駆動源と前記被駆動部材とを連結し、前記第1の駆動源の駆動力を前記被駆動部材に伝達する第1の連結部材と、
第2の駆動源と、
前記第2の駆動源と前記被駆動部材とを連結し、前記第2の駆動源の駆動力を前記被駆動部材に伝達する第2の連結部材と、
前記第1の連結部材を前記被駆動部材に対して第1の方向に付勢して前記第1の連結部材と前記被駆動部材とを加圧接触させる第1の付勢手段と、
前記第2の連結部材を前記被駆動部材に対して前記第1の方向の反対方向に付勢して前記第2の連結部材と前記被駆動部材とを加圧接触させる第2の付勢手段と、を備えることを特徴とするリニア駆動装置。
A driven member;
A first drive source;
A first connecting member that connects the first driving source and the driven member, and that transmits a driving force of the first driving source to the driven member;
A second drive source;
A second connecting member for connecting the second driving source and the driven member, and transmitting a driving force of the second driving source to the driven member;
First urging means for urging the first connecting member in a first direction with respect to the driven member to press-contact the first connecting member and the driven member;
Second urging means for urging the second connecting member in a direction opposite to the first direction with respect to the driven member to press-contact the second connecting member and the driven member. A linear drive device comprising:
前記第1の駆動源と前記第2の駆動源で発生させる駆動力を制御する制御手段を備え、
前記制御手段は、
前記被駆動部材を前記第1の方向に駆動する場合に、前記第1の駆動源で前記第1の連結部材を前記第1の方向に駆動するための駆動力を前記第2の駆動源で前記第2の連結部材を前記第1の方向に駆動するための駆動力よりも大きくし、
前記被駆動部材を前記反対方向に駆動する場合に、前記第2の駆動源で前記第2の連結部材を前記反対方向に駆動するための駆動力を前記第1の駆動源で前記第1の連結部材を前記第1の方向に駆動するための駆動力よりも大きくすることを特徴とする請求項1に記載のリニア駆動装置。
Control means for controlling the driving force generated by the first driving source and the second driving source;
The control means includes
When the driven member is driven in the first direction, a driving force for driving the first connecting member in the first direction by the first driving source is generated by the second driving source. Greater than the driving force for driving the second connecting member in the first direction;
When the driven member is driven in the opposite direction, a driving force for driving the second connecting member in the opposite direction by the second driving source is used by the first driving source. The linear driving device according to claim 1, wherein the driving force is greater than the driving force for driving the connecting member in the first direction.
前記制御手段は、前記被駆動部材を一定速度で駆動する際に、前記第1の駆動源で前記第1の連結部材を前記第1の方向に駆動するための駆動力と前記第2の駆動源で前記第2の連結部材を前記第1の方向に駆動するための駆動力とを略等しくすることを特徴とする請求項2に記載のリニア駆動装置。   When the driven member is driven at a constant speed, the control means drives the first connecting member in the first direction with the first driving source and the second driving. The linear drive device according to claim 2, wherein a driving force for driving the second connecting member in the first direction with a source is made substantially equal. 前記第1の駆動源は、前記第1の連結部材と連結される第1の可動部材を有し、
前記第2の駆動源は、前記第2の連結部材と連結される第2の可動部材を有し、
前記制御手段は、前記第1の可動部材と前記第2の可動部材の駆動を制御することにより前記第1の連結部材と前記第2の連結部材の駆動を制御することを特徴とする請求項2又は3に記載のリニア駆動装置。
The first drive source has a first movable member coupled to the first coupling member,
The second drive source has a second movable member coupled to the second coupling member,
The control means controls driving of the first connecting member and the second connecting member by controlling driving of the first movable member and the second movable member. The linear drive device according to 2 or 3.
前記第1の駆動源と前記第2の駆動源はそれぞれ振動型アクチュエータであり、
前記振動型アクチュエータは、
弾性体と電気−機械エネルギ変換素子とが接合されてなる振動体と、
前記振動体と加圧接触する摩擦部材と、
前記振動体と前記摩擦部材とを加圧接触させる加圧部材と、を有し、
前記第1の駆動源と前記第2の駆動源のそれぞれにおいて、前記振動体に励起した振動による前記振動体と前記摩擦部材との相対的な移動によって、前記第1の可動部材と前記第2の可動部材とが駆動されることを特徴とする請求項4に記載のリニア駆動装置。
Each of the first drive source and the second drive source is a vibration actuator,
The vibration type actuator is
A vibrating body in which an elastic body and an electromechanical energy conversion element are joined;
A friction member in pressure contact with the vibrator;
A pressure member that pressurizes and contacts the vibrating body and the friction member;
In each of the first drive source and the second drive source, the first movable member and the second drive member are moved by relative movement between the vibration member and the friction member caused by vibration excited by the vibration member. The linear drive device according to claim 4, wherein the movable member is driven.
前記被駆動部材を前記第1の方向に案内するガイド部材を備え、
前記被駆動部材は、前記ガイド部材と摺動可能に嵌合する嵌合部を有し、
前記第1の付勢手段が前記第1の可動部材に対して前記第1の連結部材を前記第1の方向と直交する第2の方向に付勢し、前記第2の付勢手段が前記第2の可動部材に対して前記第2の連結部材を前記第2の方向と略平行な方向に付勢すると共に、前記第1の付勢手段と前記第2の付勢手段が前記被駆動部材を所定の方向に付勢することにより、前記ガイド部材に対して前記嵌合部を当接させていることを特徴とする請求項5に記載のリニア駆動装置。
A guide member for guiding the driven member in the first direction;
The driven member has a fitting portion that fits slidably with the guide member;
The first urging means urges the first connecting member in a second direction perpendicular to the first direction with respect to the first movable member, and the second urging means The second linking member is urged with respect to the second movable member in a direction substantially parallel to the second direction, and the first urging means and the second urging means are driven. The linear drive device according to claim 5, wherein the fitting portion is brought into contact with the guide member by urging the member in a predetermined direction.
前記第1の駆動源と前記第2の駆動源のそれぞれにおいて、前記加圧部材が前記振動体と前記摩擦部材とを加圧接触させる加圧方向は、前記第2の方向と略平行であることを特徴とする請求項6に記載のリニア駆動装置。   In each of the first drive source and the second drive source, a pressurizing direction in which the pressurizing member pressurizes and contacts the vibrating body and the friction member is substantially parallel to the second direction. The linear drive device according to claim 6. 前記第2の付勢手段は、前記第2の可動部材に対して前記第2の連結部材を前記第2の方向の反対方向に付勢することを特徴とする請求項6又は7に記載のリニア駆動装置。   The second biasing means biases the second connecting member in a direction opposite to the second direction with respect to the second movable member. Linear drive device. 前記第2の付勢手段は、前記第2の可動部材に対して前記第2の連結部材を前記第2の方向に付勢し、
前記第1の付勢手段が前記第1の可動部材に対して前記第1の連結部材を前記第2の方向に付勢する付勢力の大きさと、前記第2の付勢手段が前記第2の可動部材に対して前記第2の連結部材を前記第2の方向に付勢する付勢力の大きさが異なることを特徴とする請求項6又は7に記載のリニア駆動装置。
The second urging means urges the second connecting member in the second direction with respect to the second movable member,
The first urging means urges the first connecting member in the second direction with respect to the first movable member, and the second urging means has the second urging means. The linear drive device according to claim 6, wherein the urging force for urging the second connecting member in the second direction with respect to the movable member is different.
前記制御手段は、前記第1の駆動源が有する電気−機械エネルギ変換素子と前記第2の駆動源が有する電気−機械エネルギ変換素子のそれぞれに供給する交流電圧に異なる周波数を設定することにより、前記第1の可動部材と前記第2の可動部材のそれぞれの駆動力の大きさを調整することを特徴とする請求項5乃至9のいずれか1項に記載のリニア駆動装置。   The control means sets different frequencies for the AC voltage supplied to each of the electro-mechanical energy conversion element of the first drive source and the electro-mechanical energy conversion element of the second drive source, 10. The linear drive device according to claim 5, wherein magnitudes of driving forces of the first movable member and the second movable member are adjusted. 前記制御手段は、前記第1の駆動源が有する電気−機械エネルギ変換素子と前記第2の駆動源が有する電気−機械エネルギ変換素子のそれぞれに所定の位相差を有する2相の供給する交流電圧を供給し、前記位相差に異なる値を設定することにより、前記第1の可動部材と前記第2の可動部材のそれぞれの駆動力の大きさを調整することを特徴とする請求項5乃至9のいずれか1項に記載のリニア駆動装置。   The control means is configured to supply two-phase AC voltage having a predetermined phase difference between the electro-mechanical energy conversion element of the first drive source and the electro-mechanical energy conversion element of the second drive source. And adjusting the magnitudes of the respective driving forces of the first movable member and the second movable member by setting different values for the phase difference. The linear drive device of any one of these. レンズと、
請求項1乃至11のいずれか1項に記載のリニア駆動装置と、を備え、
前記リニア駆動装置が備える前記被駆動部材は、前記レンズを保持するレンズ保持部材であり、前記第1の方向は前記レンズの光軸方向と略平行であることを特徴とするレンズ鏡筒。
A lens,
A linear drive device according to any one of claims 1 to 11,
The lens barrel, wherein the driven member included in the linear driving device is a lens holding member that holds the lens, and the first direction is substantially parallel to an optical axis direction of the lens.
請求項12に記載のレンズ鏡筒と、
前記レンズ鏡筒を通過した光束が結像し、光学像を電気信号に変換する撮像素子と、を備えることを特徴とする撮像装置。
The lens barrel according to claim 12,
An image pickup device comprising: an image pickup device that forms an image of a light beam that has passed through the lens barrel and converts an optical image into an electric signal.
JP2016055434A 2016-03-18 2016-03-18 Linear drive device, lens barrel, and imaging device Active JP6659164B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016055434A JP6659164B2 (en) 2016-03-18 2016-03-18 Linear drive device, lens barrel, and imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016055434A JP6659164B2 (en) 2016-03-18 2016-03-18 Linear drive device, lens barrel, and imaging device

Publications (2)

Publication Number Publication Date
JP2017169427A true JP2017169427A (en) 2017-09-21
JP6659164B2 JP6659164B2 (en) 2020-03-04

Family

ID=59913622

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016055434A Active JP6659164B2 (en) 2016-03-18 2016-03-18 Linear drive device, lens barrel, and imaging device

Country Status (1)

Country Link
JP (1) JP6659164B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109889083A (en) * 2017-11-27 2019-06-14 佳能株式会社 Vibration types of motors, lens apparatus and electronic equipment
CN115185056A (en) * 2022-01-11 2022-10-14 新思考电机有限公司 Optical element driving device, camera device, and electronic apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109889083A (en) * 2017-11-27 2019-06-14 佳能株式会社 Vibration types of motors, lens apparatus and electronic equipment
JP2019097346A (en) * 2017-11-27 2019-06-20 キヤノン株式会社 Vibration type motor, lens device, and electronic apparatus
US11418134B2 (en) 2017-11-27 2022-08-16 Canon Kabushiki Kaisha Vibration type motor for guiding movement of a friction member, and lens apparatus and electronic apparatus including said motor
CN115185056A (en) * 2022-01-11 2022-10-14 新思考电机有限公司 Optical element driving device, camera device, and electronic apparatus

Also Published As

Publication number Publication date
JP6659164B2 (en) 2020-03-04

Similar Documents

Publication Publication Date Title
US10574156B2 (en) Vibration type actuator, lens driving device, and ultrasonic motor
JP2001174857A (en) Driving device
US9912850B2 (en) Vibration type actuator, optical device, and image pickup apparatus
JP7336740B2 (en) Actuator for optical equipment and lens barrel provided with the same
US8824071B2 (en) Lens barrel and camera
JP6576214B2 (en) Vibration type actuator, lens barrel, imaging device and stage device
JP2017127127A (en) Vibration actuator and electronic apparatus
JP2017127127A5 (en)
JP6659164B2 (en) Linear drive device, lens barrel, and imaging device
WO2021079799A1 (en) Vibration wave motor, optical device, and electronic device
JP5273915B2 (en) Vibration type linear drive device and camera lens
JP2017173502A (en) Lens barrel and imaging apparatus
JP2012227988A (en) Vibration type linear actuator and optical apparatus using the same
JP6497964B2 (en) Vibrating actuator, lens barrel, camera, and control method
US11689120B2 (en) Control apparatus, control method, and driving apparatus of vibration type actuator
JP2018101094A (en) Vibration type actuator, lens driving device, optical instrument, and electronic apparatus
US11128239B2 (en) Vibration wave motor and lens driving device
US20230029612A1 (en) Vibration type actuator, imaging apparatus, and electronic equipment
CN112468015B (en) Vibration motor and driving apparatus
JP7204526B2 (en) lens driver
JP2017201341A (en) Image shake correction device
JP2023019639A (en) Vibration wave drive apparatus and imaging apparatus
JP2018101045A (en) Lens drive device, lens barrel, and imaging device
WO2013125635A1 (en) Actuator device, lens barrel, and camera
JP2022155689A (en) Vibration type actuator, and optical instrument and electronic instrument having the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190314

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200204

R151 Written notification of patent or utility model registration

Ref document number: 6659164

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151