WO2009138596A1 - Precede pour la reduction de la course d'envol d'un aeronef - Google Patents

Precede pour la reduction de la course d'envol d'un aeronef Download PDF

Info

Publication number
WO2009138596A1
WO2009138596A1 PCT/FR2009/000514 FR2009000514W WO2009138596A1 WO 2009138596 A1 WO2009138596 A1 WO 2009138596A1 FR 2009000514 W FR2009000514 W FR 2009000514W WO 2009138596 A1 WO2009138596 A1 WO 2009138596A1
Authority
WO
WIPO (PCT)
Prior art keywords
aircraft
threshold
speed
fins
tilting
Prior art date
Application number
PCT/FR2009/000514
Other languages
English (en)
Inventor
Frédéric Sauvinet
Original Assignee
Airbus France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Airbus France filed Critical Airbus France
Priority to US12/990,656 priority Critical patent/US8814102B2/en
Publication of WO2009138596A1 publication Critical patent/WO2009138596A1/fr

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0083Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots to help an aircraft pilot in the rolling phase

Definitions

  • the present invention relates to a method for reducing the flight stroke of an aircraft.
  • the present invention aims to overcome this disadvantage.
  • the method for reducing the flight stroke of an aircraft provided with at least one steering column, fins carried by the wings of said aircraft and moving aerodynamic surfaces of depth. flight of flight during which said aircraft rolls on a runway while accelerating and at the end of which the pilot of said aircraft communicates to said flight control sleeve a strongly tilted takeoff position so that said movable aerodynamic surfaces of depth cause the flight of said aircraft is remarkable in that:
  • a threshold of tilting of said lower steering column to said take-off position is determined, but large enough to be representative of the pilot's will to take off said aircraft;
  • said fins are controlled so that they take: a symmetrical position partially pointed downwards corresponding to a maximum fineness for said aircraft, if the tilting tilt of said steering stick is greater than said tipping threshold, and a symmetrical position at least substantially close to that which is in extension of said wings and providing a minimum drag for said fins, if the tilting tilt of said steering shaft is below said tipping threshold.
  • said takeoff position of the steering shaft is approximately two-thirds of the maximum stroke of said steering wheel.
  • a good value for said tipping threshold may correspond to at least approximately one-third of this maximum stroke.
  • the pilot may be required to steer the nose up pilot while the aircraft is traveling at low speed.
  • the implementation of the method of the present invention is subject to a speed condition.
  • said fins can take their minimum drag position only if the speed of the aircraft is greater than a predetermined speed threshold, while they take their finesse position. maximum if said speed of the aircraft is below said speed threshold.
  • a speed threshold may be a few tens of kts, for example 40 kts.
  • said fins are controlled to take their minimum drag position, when the following three conditions are realized at the same time:
  • a ground criterion which is equal to 1 when said aircraft is in flight and which is equal to 0 when said aircraft is on the ground; • a speed criterion, which is equal to 1 when the taxiing speed of said aircraft is below said threshold speed, which is equal to 0 when said running speed is higher than said threshold speed; and a steering wheel criterion, which is equal to 1 if the tilt-up of said tiller is greater than said tipping threshold and which is equal to 0 if said tilt-up is less than said tilt threshold; and
  • the invention therefore also relates to an aircraft implementing said method of the invention.
  • Figure 1 shows schematically, in perspective from above and from the rear, a jumbo jet capable of implementing the present invention.
  • Figure 2 illustrates, in schematic side view, the jumbo jet of Figure 1 during a take-off phase.
  • FIG. 3 schematically illustrates the tilting tilt of said control stick.
  • FIG. 4 illustrates, in three successive phases I, II and III, the take-off of the aircraft of FIGS. 1 and 2, the phase represented in FIG. 2 corresponding to phase II of FIG. 4 and the phases I and II constituting the flight of the said jumbo jet aircraft.
  • FIG. 5 schematically illustrates the usual position of the ailerons of said jumbo airplane during the phases I to III of FIG. 4.
  • FIG. 6 schematically illustrates the position of the ailerons of said jumbo jet aircraft in accordance with the present invention during the fastest part of phase I and during phase II of FIG. 4.
  • FIG. 7 is the block diagram of the implementation of the process according to the present invention.
  • the wide-body aircraft AC shown schematically in FIGS. 1 and 2, has a longitudinal axis LL and comprises a fuselage 1 and two symmetrical wings 2G and 2D. Said wings carry motors 3 and a plurality of leading edge slats 4G, 4D and trailing edge flaps 5G, 5D. In addition, at the end of the wings 2G, 2D are fins 6G and 6D, respectively. As is diagrammatically shown in FIGS.
  • said fins 6G and 6D are rotatably articulated at the rear of said wings 2G and 2D, respectively, their rotation distance ⁇ downwards being able to take the maximum value ⁇ M , counted from their position for which they are in extension of the wing 2G or 2D corresponding.
  • This last position which is represented in FIG. 6 and for which the stroke ⁇ is equal to 0 °, is generally that for which the drag generated by said fins 6G and 6D is minimal.
  • the minimum drag position of fins 6G and 6D is not exactly the position corresponding to ⁇ equal to 0 °, but a neighboring position for which the stroke ⁇ is close to 0 °, but not exactly zero .
  • the minimum drag position of the fins 6G and 6D corresponds to a value ⁇ 0 of the stroke ⁇ , this value ⁇ 0 being zero or close to zero.
  • the aircraft AC comprises a horizontal tail 7 adjustable in inclination, as illustrated by the double arrow 8.
  • a horizontal tail 7 adjustable in inclination as illustrated by the double arrow 8.
  • articulated elevator 9G, 9D respectively At the rear edge of said adjustable horizontal stabilizer 7, are articulated elevator 9G, 9D respectively , rotatable relative to said empennage 7, as illustrated by the double arrows 10.
  • the aircraft AC is controlled in pitch by a tilting piloting handle 14, at the disposal of the pilot, who actuates said adjustable horizontal stabilizer 7 and said 9G elevators, 9D.
  • the control stick 14 In the direction to be pitched, the control stick 14 generates for this purpose a nose-up command ⁇ addressed to the actuators (not shown) of said adjustable horizontal stabilizer 7 and said elevators 9G, 9D.
  • the maximum upshift flight of the flight control rod 14 is designated by ⁇ M
  • the nose-up position generally used by the pilot during a flight is designated by ⁇ D and corresponds to approximately 2 ⁇ M / 3.
  • the aircraft AC further comprises a main landing gear 11, as well as a nose gear 12.
  • a main landing gear 11 as well as a nose gear 12.
  • FIG. 4 three phases I, II and III of the take-off of said airplane have been illustrated making it possible to illustrate the method according to FIG. the present invention.
  • phase I the aircraft AC rolls on the runway RW accelerating for takeoff, said main train 11 being compressed by the mass of said aircraft AC and the ground effect.
  • the leading edge slats 4G, 4D and the trailing edge flaps 5G 1 5D are deployed in the usual manner (not shown), the adjustable horizontal stabilizer 7 is inclined to pitch up by action. of the pilot on the control stick and the elevators 9G, 9D are, for example, in their position aerodynamically extending said adjustable horizontal stabilizer 7.
  • the set of said adjustable horizontal stabilizer 7 and elevators 9G , 9D generates a nose-up aerodynamic force producing a pitch-up pitching moment for the AC aircraft, 4G, 4D leading-edge slat configurations and 5G, 5D trailing edge flaps to optimize finesse ( lift / drag ratio) of the AC airplane.
  • the fins 6G, 6D are also used to optimize this fineness and they are symmetrically pointed downwards, as shown in FIG. 5. For this purpose, they occupy a position partially pointed towards the bottom, defined by a value ⁇ F of the stroke ⁇ , lower than the maximum stroke ⁇ .
  • phase II of the take-off see also FIG.
  • the pilot of the aircraft AC via the flight control rod 14, operates the elevators 9G, 9D and / or the adjustable horizontal stabilizer 7 (FIG. in a manner not shown) so that all of these control surfaces 9G, 9D and this empennage 7 generates a nose-up force and a pitching pitching moment, able to give the aircraft AC a controlled attitude ⁇ c of favorable value the flight of the latter.
  • this phase II in order to minimize the drag generated by the fins 6G, 6D, these remain in their position taken in phase I and shown in FIG. 6. With such a position of ailerons, the aircraft AC continues its acceleration race until the flight of the latter and the complete unloading of the main gear 11, as represented by the phase III of FIG. 4.
  • the minimum drag position of the fins 6G, 6D must only occur during phases I and II, when the aircraft is on the ground, its speed V is greater than said threshold V s, and that the steering shaft is steered by an angle ⁇ less than the threshold ⁇ s .
  • the fins 6G, 6D must leave their steering ⁇ 0 minimal drag to take their deflection ⁇ F maximum finesse.
  • FIG. 7 The block diagram of Figure 7 corresponds to a preferred embodiment of the present invention. In this FIG. 7, there is shown:
  • a logic device 15 which receives, from the main landing gear 11, information concerning its state of compression or expansion, so that the logic device 15 can deduce if the aircraft AC is on the ground (the train 11 is then compressed) or in flight (the train 11 is then relaxed) and delivers at its output a ground criterion CS which is equal to 1 if the aircraft is in flight and 0 if the aircraft is on the ground;
  • a comparator 16 which receives the running speed V of the aircraft AC, which knows the speed threshold V s and which delivers at its output a speed criterion CV whose value is equal to 1 if the speed V is lower than at the threshold V s and at 0 if the speed V is greater than said threshold V s ;
  • a comparator 17 which receives the pitch-up command ⁇ generated by the control shaft 14, which knows the tilt threshold ⁇ s and which delivers at its output a handle criterion C ⁇ whose value is equal to 1 if the tilting ⁇ is greater than the threshold ⁇ s and 0 if the tilting ⁇ is lower than the threshold ⁇ s ;
  • the driving speed V is greater than the speed threshold V s , and * The control sleeve 14 is turned to pitch up an angle ⁇ less than the tilting threshold ⁇ s .
  • the fins 6G, 6D are controlled at position ⁇ F of maximum fineness, if any of the following conditions exist:
  • the control sleeve 14 is pointed to pitch up an angle ⁇ greater than the tilting threshold ⁇ s . It will be noted that the logic illustrated in FIG. 7 can easily be implemented in the on-board computers of the aircraft AC, which, in the usual way, have information concerning the steering wheel ⁇ of the flight control rod 14, the running speed V of the AC airplane and the fact that the aircraft is on the ground or in flight.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Toys (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

- Procédé pour la réduction de la course d'envol d'un aéronef. - Selon l'invention, on confère aux ailerons (6G, 6D) dudit aéronef soit un braquage à cabrer (αF) correspondant à la finesse maximale si l'ordre à cabrer est supérieur à un seuil prédéterminé, soit un braquage (α0) correspondant à la traînée minimale si l'ordre à cabrer est inférieur audit seuil.

Description

Procédé pour la réduction de la course d'envol d'un aéronef
La présente invention concerne un procédé pour la réduction de la course d'envol d'un aéronef.
On sait que, en vue d'un décollage, on confère aux becs de bord d'attaque, aux volets et aux ailerons d'un aéronef une configuration optimisant la finesse (rapport portance/traînée) de ce dernier, afin de rendre maximale la pente de montée. Or, dans une telle configuration d'optimisation de finesse, lesdits ailerons occupent une position partiellement braquée vers le bas. Il en résulte que, alors que l'aéronef présente une finesse optimisée dès qu'il a quitté le sol, la traînée dudit aéronef ne peut être optimale tant que celui-ci roule en accélérant sur le sol.
La présente invention a pour objet de remédier à cet inconvénient. A cette fin, selon l'invention, le procédé pour la réduction de la course d'envol d'un aéronef pourvu d'au moins un manche de pilotage, d'ailerons portés par les ailes dudit aéronef et de surfaces aérodynamiques mobiles de profondeur, course d'envol au cours de laquelle ledit aéronef roule sur une piste d'envol en accélérant et à la fin de laquelle le pilote dudit aéronef communique audit manche de pilotage une position de décollage fortement basculée à cabrer afin que lesdites surfaces aérodynamiques mobiles de profondeur provoquent l'envol dudit aéronef, est remarquable en ce que :
- on détermine un seuil de basculement dudit manche de pilotage inférieur à ladite position de décollage, mais suffisamment grand pour être représentatif de la volonté du pilote d'effectuer le décollage dudit aéronef ; et
- on commande lesdits ailerons pour qu'ils prennent : - une position symétrique partiellement braquée vers le bas correspondant à une finesse maximale pour ledit aéronef, si le basculement à cabrer dudit manche de pilotage est supérieur audit seuil de basculement, et - une position symétrique au moins sensiblement voisine de celle qui est en prolongement desdites ailes et assurant une traînée minimale pour lesdits ailerons, si le basculement à cabrer dudit manche de pilotage est inférieur audit seuil de basculement. Ainsi, grâce à la présente invention, lorsque l'aéronef est en phase de roulage en vue d'un réel décollage, la traînée engendrée par lesdits ailerons est éliminée jusqu'à ce que le pilote commande l'envol, ce qui réduit la course d'envol. On peut donc diminuer la longueur de piste nécessaire au décollage ou, inversement, l'aéronef peut emporter une plus grande charge pour une longueur de piste déterminée.
On remarquera que, bien qu'une telle élimination de traînée des ailerons pendant la plus grande partie de la phase de roulage se fasse au détriment de la finesse de l'aéronef, il n'en résulte aucun effet nuisible pour l'aéronef, puisque la finesse n'est pas un paramètre important pendant le roulage.
On sait que, généralement, ladite position de décollage du manche de pilotage correspond approximativement aux deux tiers de la course maximale dudit manche à cabrer. Notamment dans ce cas, une bonne valeur pour ledit seuil de basculement peut correspondre au moins approximativement au tiers de cette course maximale.
Au cours de la vérification du fonctionnement de tous les organes et dispositifs de l'aéronef, préalablement à un décollage et en accord avec une liste d'opérations préétablie (check-list), le pilote peut être amené à braquer à cabrer ledit manche de pilotage alors que l'aéronef roule à faible vitesse. Pour éviter que les ailerons passent alors sans raison d'une des positions à l'autre, il est alors avantageux que la mise en œuvre du procédé de la présente invention soit subordonnée à une condition de vitesse. Ainsi, selon une autre particularité de la présente invention, lesdits ailerons ne peuvent prendre leur position de traînée minimale que si la vitesse de l'aéronef est supérieure à un seuil de vitesse prédéterminé, alors qu'ils prennent leur position de finesse maximale si ladite vitesse de l'aéronef est inférieure audit seuil de vitesse. Un tel seuil de vitesse peut être de quelques dizaines de kts, par exemple 40 kts.
Par ailleurs, on sait que, en cas de mauvais centrage de l'aéronef, celui-ci peut décoller avec une faible amplitude du basculement du manche de pilotage. Aussi, par sécurité, il est important que, en vol, l'aéronef se trouve avec ses ailerons en position de finesse maximale. Aussi, selon encore une autre particularité de la présente invention, lesdits ailerons ne peuvent prendre leur position de traînée minimale que si l'aéronef est au sol, alors qu'ils prennent leur position de finesse maximale dès que l'aéronef quitte le sol.
Il résulte de ce qui précède que, dans une forme de mise en oeuvre préférée du procédé conforme à la présente invention :
- lesdits ailerons sont commandés pour prendre leur position de traînée minimale, lorsque les trois conditions suivantes sont réalisées en même temps :
• l'aéronef est au sol,
• et la vitesse de l'aéronef est supérieure audit seuil de vitesse,
• et le basculement dudit manche de pilotage est inférieur audit seuil de basculement ; et - lesdits ailerons sont commandés pour prendre leur position de finesse maximale, lorsque au moins l'une des conditions suivantes est réalisée :
• l'aéronef est en vol,
• ou la vitesse de l'aéronef est inférieure audit seuil de vitesse, • ou le basculement dudit manche de pilotage est supérieur audit seuil de basculement. Pour la mise en œuvre de la présente invention, on peut :
- établir
- un critère de sol, qui est égal à 1 lorsque ledit aéronef est en vol et qui est égal à 0 lorsque ledit aéronef est au sol ; un critère de vitesse, qui est égal à 1 lorsque la vitesse de roulage dudit aéronef est inférieure audit seuil de vitesse et qui est égal à 0 lorsque ladite vitesse de roulage est supérieure audit seuil de vitesse ; et - un critère de manche de pilotage, qui est égal à 1 si le basculement à cabrer dudit manche est supérieur audit seuil de basculement et qui est égal à 0 si ledit basculement à cabrer est inférieur audit seuil de basculement ; et
- adresser chacun des trois critères à une entrée respective d'une porte logique OU analogue, dont la sortie commande lesdits ailerons : a à ladite position symétrique partiellement braquée vers le bas correspondant à une finesse maximale pour l'aéronef, si un 1 y apparaît ; ou
à ladite position symétrique au moins sensiblement voisine de celle qui est en prolongement desdites ailes et assurant une traînée minimale pour les ailerons, si un 0 y apparaît. Grâce aux dispositions qui précèdent, on peut ainsi aisément im- plémenter le procédé conforme à la présente invention dans ledit aéronef.
L'invention concerne donc de plus un aéronef mettant en œuvre ledit procédé de l'invention.
Les figures du dessin annexé feront bien comprendre comment l'invention peut être réalisée. Sur ces figures, des références identiques désignent des éléments semblables. La figure 1 montre schématiquement, en perspective du dessus et de l'arrière, un avion gros porteur pouvant mettre en œuvre la présente invention. La figure 2 illustre, en vue latérale schématique, l'avion gros porteur de la figure 1 pendant une phase du décollage.
La figure 3 illustre schématiquement le basculement à cabrer dudit manche de pilotage. La figure 4 illustre, en trois phase successives I, II et III, le décollage de l'avion des figures 1 et 2, la phase représentée sur la figure 2 correspondant à la phase II de la figure 4 et les phases I et II constituant la course d'envol dudit avion gros porteur. La figure 5 illustre schématiquement la position usuelle des ailerons dudit avion gros porteur pendant les phases I à III de la figure 4.
La figure 6 illustre schématiquement la position des ailerons dudit avion gros porteur conformément à la présente invention pendant la partie la plus rapide de la phase I et pendant la phase II de la figure 4. La figure 7 est le schéma synoptique de la mise en œuvre du procédé conforme à la présente invention.
Sur les figures 1 , 2 et 4, les volets, les becs, les gouvernes, les ailerons, l'empennage horizontal réglable, ainsi que les autres surfaces aérodynamiques mobiles de l'avion gros porteur, sont représentés en position rentrée pour des raisons de clarté des dessins. On comprendra aisément qu'au cours des phases I, II et III de la figure 4, au moins certaines de ces surfaces sont au contraire en position déployée, bien que représentées en position rentrée.
L'avion gros porteur AC, montré schématiquement par les figures 1 et 2, présente un axe longitudinal L-L et comporte un fuselage 1 et deux ailes symétriques 2G et 2D. Lesdites ailes portent des moteurs 3 et une pluralité de becs de bord d'attaque 4G, 4D et de volets de bord de fuite 5G, 5D. De plus, à l'extrémité des ailes 2G, 2D se trouvent des ailerons 6G et 6D, respectivement. Comme le montrent schématiquement les figures 4 et 5, lesdits ailerons 6G et 6D sont articulés en rotation à l'arrière desdites ailes 2G et 2D, respectivement, leur course de rotation α vers le bas pouvant prendre la valeur maximale αM, comptée à partir de leur position pour laquelle ils se trouvent en prolongement de l'aile 2G ou 2D correspondante. Cette dernière position, qui est représentée sur la figure 6 et pour laquelle la course α est égale à 0°, est généralement celle pour laquelle la traînée engendrée par lesdits ailerons 6G et 6D est minimale. Toutefois, il peut se faire que la positon de traînée minimale des ailerons 6G et 6D ne soit pas exactement la position correspondant à α égal à 0°, mais une position voisine pour laquelle la course α est proche de 0°, mais non exactement nulle. Aussi, dans ce qui suit, on considérera que la position de traînée minimale des ailerons 6G et 6D correspond à une valeur α0 de la course α, cette valeur α0 étant nulle ou proche de zéro.
A l'arrière du fuselage 1 , l'avion AC comporte un empennage horizontal 7 réglable en inclinaison, comme cela est illustré par la double flèche 8. Au bord arrière dudit empennage horizontal réglable 7, sont articulées des gouvernes de profondeur 9G, 9D respectivement, pouvant tourner par rapport audit empennage 7, comme cela est illustré par les doubles flèches 10.
De façon connue, et comme illustré par la figure 3, l'avion AC est commandé en tangage par un manche de pilotage basculant 14, à la dis- position du pilote, qui actionne ledit empennage horizontal réglable 7 et lesdites gouvernes de profondeur 9G, 9D. Dans le sens à cabrer le manche de pilotage 14 engendre à cet effet un ordre à cabrer β adressé aux actionneurs (non représentés) dudit empennage horizontal réglable 7 et desdites gouvernes de profondeur 9G, 9D. La course maximale à cabrer du manche de pilotage 14 est désignée par βM, alors que la position à cabrer généralement utilisée par le pilote lors d'un envol (phase III de la figure 4) est désignée par βD et correspond à environ 2 βM/3.
L'avion AC comporte de plus un train d'atterrissage principal 11 , ainsi qu'un train avant 12. Sur la figure 4, on a illustré trois phases I, II et III du décollage dudit avion permettant d'illustrer le procédé conforme à la présente invention.
Dans la phase I, l'avion AC roule sur la piste d'envol RW en accélérant en vue de son décollage, ledit train principal 11 étant alors comprimé par la masse dudit avion AC et par l'effet de sol. Pendant cette phase d'accélération I, les becs de bord d'attaque 4G, 4D et les volets de bord de fuite 5G1 5D sont déployés de façon usuelle (non représentée), l'empennage horizontal réglable 7 est incliné à cabrer par action du pilote sur le manche de pilotage et les gouvernes de profondeur 9G, 9D sont, par exemple, dans leur position prolongeant aérodynamiquement ledit empennage horizontal réglable 7. Dans cette configuration usuelle, l'ensemble dudit empennage horizontal réglable 7 et des gouvernes de profondeur 9G, 9D engendre une force aérodynamique à cabrer produisant un moment de tangage à cabrer pour l'avion AC, les configurations des becs de bord d'attaque 4G, 4D et des volets de bord de fuite 5G, 5D permettant d'optimiser la finesse (rapport portance/traînée) de l'avion AC.
Usuellement, dans cette phase d'accélération I, les ailerons 6G, 6D sont également utilisés pour optimiser cette finesse et ils sont symétriquement braqués vers le bas, comme l'illustre la figure 5. A cet effet, ils occupent une position partiellement braquée vers le bas, définie par une valeur αF de la course α, inférieure à la course maximale α..
On comprendra aisément que cette position des ailerons 6G1 6D braquée partiellement vers le bas, bien que favorable à la finesse de l'avion AC, est en réalité la cause d'une traînée importante, engendrée par lesdits ailerons et pénalisant les performances de l'avion AC lors de la phase I.
Aussi, selon l'invention, pour remédier à cet inconvénient, dès que, dans la phase I, la vitesse V de l'avion AC a dépassé un seuil de vitesse prédéterminé Vs (par exemple égal à 40 kt) et que le pilote a manifesté son intention de décoller (ce qui peut être matérialisé par le fait que le basculement β du manche 14 à cabrer a dépassé un seuil βs prédéterminé, par exemple égal à PM/3), les ailerons 6G, 6D sont ramenés de leur position de finesse optimale (α = αF), représentée sur la figure 5, à leur position de traînée minimale (α = α0), représentée par la figure 6. Dans a phase II du décollage (voir également la figure 2), le pilote de l'avion AC, par l'intermédiaire du manche de pilotage 14, actionne les gouvernes de profondeur 9G, 9D et/ou l'empennage horizontal réglable 7 (de façon non représentée) pour que l'ensemble de ces gouvernes 9G, 9D et de cet empennage 7 engendre une force à cabrer et un moment de tangage à cabrer, aptes à conférer à l'avion AC une assiette commandée θc de valeur favorable à l'envol de ce dernier. Dans cette phase II, afin de minimiser la traînée engendrée par les ailerons 6G, 6D, ceux-ci restent dans leur position prise dans la phase I et représentée sur la figure 6. Avec une telle position d'ailerons, l'avion AC continue sa course d'accélération jusqu'à ce que se produise l'envol de ce dernier et le délestage complet du train principal 11 , comme cela est représenté par la phase III de la figure 4.
On comprendra aisément que la réduction de traînée apportée par les ailerons 6G, 6D en position de traînée minimale (figure 6) dans la partie finale de la phase I et pendant la phase II, facilite l'envol de l'avion AC et réduit la course d'envol de celui-ci par rapport à la situation dans laquelle lesdits ailerons 6G, 6D seraient dans leur position partiellement braquée de la figure 5. On notera de plus que, pour faciliter la performance de montée de l'avion AC pendant la phase d'envol III, il est nécessaire de ramener les ailerons 6G, 6D de leur position de braquage de traînée minimale, définie par la valeur α0 (figure 6), à leur position de braquage partielle vers le bas, définie par la valeur αF et correspondant à la finesse optimale (figure 5). Ainsi, de ce qui précède, on voit que la position de traînée minimale des ailerons 6G, 6D ne doit intervenir que pendant les phases I et II, lorsque l'avion est au sol, que sa vitesse V est supérieure audit seuil Vs et que le manche de pilotage est braqué d'un angle β inférieur au seuil βs.
En revanche, dès que l'avion AC quitte la piste RW (ce qui est par exemple détecté par le délestage du train principal 11), les ailerons 6G, 6D doivent quitter leur braquage α0 de traînée minimale pour prendre leur braquage αF de finesse maximale.
Le schéma synoptique de la figure 7 correspond à un mode préféré de mise en œuvre de la présente invention. Sur cette figure 7, on a repré- sente :
- un dispositif logique 15, qui reçoit, du train d'atterrissage principal 11 , une information concernant son état de compression ou de détente, de sorte que le dispositif logique 15 peut en déduire si l'avion AC est au sol (le train 11 est alors comprimé) ou en vol (le train 11 est alors détendu) et délivre à sa sortie un critère de sol CS qui est égal à 1 si l'avion est en vol et à 0 si l'avion est au sol ;
- un comparateur 16, qui reçoit la vitesse de roulage V de l'aéronef AC, qui connaît le seuil de vitesse Vs et qui délivre à sa sortie un critère de vitesse CV dont la valeur est égale à 1 si la vitesse V est inférieure au seuil Vs et à 0 si la vitesse V est supérieure audit seuil Vs ;
- un comparateur 17, qui reçoit l'ordre à cabrer β engendré par le manche de pilotage 14, qui connaît le seuil de basculement à cabrer βs et qui délivre à sa sortie un critère de manche Cβ dont la valeur est égale à 1 si le basculement β est supérieur au seuil βs et à 0 si le basculement β est inférieur au seuil βs ; et
- une porte OU (ou analogue) 18 aux trois entrées de laquelle sont respectivement appliqués les critères CS, CV, et Cβ et qui commande les ailerons 6G, 6D au braquage symétrique αF si sa sortie est à 1 et au braquage symétrique α0 si sa sortie est à 0. On voit ainsi aisément que la position α0 de traînée minimale (figure 6) des ailerons 6G, 6D est commandée si les trois conditions suivantes sont réalisées en même temps :
l'avion AC est au sol, et
* la vitesse de roulage V est supérieure au seuil de vitesse Vs, et * le manche de pilotage 14 est braqué à cabrer d'un angle β inférieur au seuil de basculement βs.
En revanche, les ailerons 6G, 6D sont commandés à la position αF de finesse maximale, si l'une quelconque des conditions suivantes existe :
l'avion AC est en vol, ou
la vitesse de roulage V est inférieure au seuil de vitesse Vs, ou
* le manche de pilotage 14 est braqué à cabrer d'un angle β supérieur au seuil de basculement βs. On remarquera que la logique illustrée par la figure 7 peut aisément être implémentée dans les calculateurs de bord de l'avion AC, qui, de façon usuelle, disposent des informations concernant le braquage à cabrer β du manche de pilotage 14, la vitesse de roulage V de l'avion AC et le fait que l'avion est au sol ou en vol.

Claims

REVENDICATIONS
1. Procédé pour la réduction de la course d'envol d'un aéronef (AC) pourvu d'au moins un manche de pilotage (14), d'ailerons (6G, 6D) portés par les ailes (2G, 2D) dudit aéronef et de surfaces aérodynamiques mobiles de profondeur (7, 9G, 9D), course d'envol au cours de laquelle ledit aéronef (AC) roule sur une piste d'envol (RW) en accélérant et à la fin de laquelle le pilote dudit aéronef communique audit manche de pilotage (14) une position de décollage fortement basculée à cabrer (βD) afin que lesdites surfaces aérodynamiques mobiles de profondeur (7, 9G, 9D) provoquent l'envol dudit aéronef (AC), caractérisé en ce que :
- on détermine un seuil de basculement à cabrer (βs) dudit manche de pilotage (14), inférieur à ladite position de décollage (βD), mais suffisamment grand pour être représentatif de la volonté du pilote d'effectuer le décollage dudit aéronef ; et
- on commande lesdits ailerons (6G, 6D) pour qu'ils prennent :
- une position symétrique (αF) partiellement braquée vers le bas correspondant à une finesse maximale pour ledit aéronef, si le basculement à cabrer (β) dudit manche de pilotage (14) est supé- rieur audit seuil de basculement (βs), et
- une position symétrique (α0) au moins sensiblement voisine de celle qui est en prolongement desdites ailes (2G, 2D) et assurant une traînée minimale pour lesdits ailerons, si le basculement à cabrer dudit manche de pilotage est inférieur audit seuil de basculement (βs).
2. Procédé de la revendication 1 , caractérisé en ce que ledit seuil de basculement à cabrer (βs) correspond au moins approximativement au tiers de la course maximale à cabrer (βM) dudit manche de pilotage (14).
3. Procédé selon l'une des revendications 1 ou 2, caractérisé en ce qu'on établit de plus un seuil de vitesse (V8) pour l'aéronef roulant sur ladite piste d'envol (RW) et en ce que lesdits ailerons (6G, 6D) prennent : - ladite position symétrique partiellement braquée vers le bas (αF) correspondant à une finesse maximale pour ledit aéronef, si le basculement à cabrer (β) dudit manche de pilotage est supérieur audit seuil de basculement (βs) ou si la vitesse de roulage (V) dudit aéronef est inférieure audit seuil de vitesse (V8) ;et - ladite position symétrique (α0), au moins sensiblement voisine de celle qui est en prolongement desdites ailes et assurant une traînée minimale pour lesdits ailerons (6G, 6D), si le basculement à cabrer (β) dudit manche de pilotage (14) est inférieur audit seuil de basculement (βs) et si la vitesse de roulage (V) dudit aéronef est supérieure audit seuil de vitesse (Vs).
4. Procédé selon la revendication 3, caractérisé en ce que ledit seuil de vitesse (V8) est égal à quelques dizaines de noeuds.
5. Procédé selon la revendication 4, caractérisé en ce que ledit seuil de vitesse (V8) est au moins approximativement égal à 40 kts.
6. Procédé selon l'une des revendications 3 à 5, caractérisé en ce qu'on détermine de plus si l'aéronef est au sol ou en vol et en ce que lesdits ailerons prennent : - ladite position symétrique partiellement braquée vers le bas (αF) correspondant à une finesse maximale pour l'aéronef, si le basculement à cabrer (β) dudit manche de pilotage est supérieur audit seuil de basculement (βs), ou si la vitesse de roulage (V) dudit aéronef est inférieure audit seuil de vitesse (V8), ou si l'aéronef est en vol ; et - ladite position symétrique (α0) au moins sensiblement voisine de celle qui est en prolongement desdites ailes et assurant une traînée minimale pour lesdits ailerons, si le basculement à cabrer (β) dudit manche de pilotage est inférieur audit seuil de basculement (βs), et si la vitesse de roulage (V) dudit aéronef est supérieure audit seuil de vitesse (Vs) et si l'aéronef est au sol.
7. Procédé de la revendication 6, caractérisé en ce que :
- on établit :
un critère de sol (CS), qui est égal à 1 lorsque ledit aéronef est en vol et qui est égal à 0 lorsque ledit aéronef est au sol ;
* un critère de vitesse (CV), qui est égal à 1 lorsque la vitesse de roulage (V) dudit aéronef est inférieure audit seuil de vitesse (Vs) et qui est égal à 0 lorsque ladite vitesse de roulage (V) est supérieure audit seuil de vitesse(Vs) ; et - un critère de manche de pilotage (Cβ), qui est égal à 1 si le basculement à cabrer (β) dudit manche est supérieur audit seuil de basculement (βs) et qui est égal à 0 si ledit basculement à cabrer (β) est inférieur audit seuil de basculement (βs) ; et
- on adresse chacun des trois critères (CS, CV, Cβ) à une entrée respective d'une porte logique OU ou analogue (18), dont la sortie commande lesdits ailerons (6G, 6D) :
* à ladite position symétrique (αF) partiellement braquée vers le bas correspondant à une finesse maximale pour l'aéronef, si un 1 y apparaît ; ou • à ladite position symétrique (α0) au moins sensiblement voisine de celle qui est en prolongement desdites ailes (2G, 2D) et assurant une traînée minimale pour les ailerons, si un 0 y apparaît.
8. Aéronef, caractérisé en ce qu'il met en œuvre le procédé selon l'une quelconque des revendications 1 à 7.
PCT/FR2009/000514 2008-05-07 2009-04-30 Precede pour la reduction de la course d'envol d'un aeronef WO2009138596A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/990,656 US8814102B2 (en) 2008-05-07 2009-04-30 Method for reducing the takeoff run of an aircraft

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0802539 2008-05-07
FR0802539A FR2931004B1 (fr) 2008-05-07 2008-05-07 Procede pour la reduction de la course d'envol d'un aeronef.

Publications (1)

Publication Number Publication Date
WO2009138596A1 true WO2009138596A1 (fr) 2009-11-19

Family

ID=39884367

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2009/000514 WO2009138596A1 (fr) 2008-05-07 2009-04-30 Precede pour la reduction de la course d'envol d'un aeronef

Country Status (3)

Country Link
US (1) US8814102B2 (fr)
FR (1) FR2931004B1 (fr)
WO (1) WO2009138596A1 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10545511B2 (en) 2016-09-28 2020-01-28 The Boeing Company Process and machine for increasing a pitch authority of an aircraft
US10479481B2 (en) 2016-09-28 2019-11-19 The Boeing Company Process and machine for reducing a drag component of a horizontal stabilizer on an aircraft
CN107757948B (zh) * 2017-09-08 2023-10-20 中国飞行试验研究院 大型水陆两栖飞机水面最小操纵速度的试飞方法
CN112212887B (zh) * 2020-08-27 2022-07-05 武汉乐庭软件技术有限公司 一种基于阿克曼转向模型的自动泊车定位参数标定方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4717097A (en) * 1986-03-03 1988-01-05 The Boeing Company Aircraft wings with aileron-supported ground speed spoilers and trailing edge flaps
US5702072A (en) * 1995-06-30 1997-12-30 Nusbaum; Steve R. Aileron/flap mixing mechanism
FR2901537A1 (fr) * 2006-05-29 2007-11-30 Airbus France Sas Procede et dispositif de pilotage d'un aeronef optimisant la commande des ailerons en configuration hypersustentee

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5901927A (en) * 1996-07-18 1999-05-11 Honeywell Inc. Ground strike protection function for aircraft autopilot
US6079672A (en) * 1997-12-18 2000-06-27 Lam; Lawrence Y. Aileron for fixed wing aircraft
US7367530B2 (en) * 2005-06-21 2008-05-06 The Boeing Company Aerospace vehicle yaw generating systems and associated methods
FR2929724B1 (fr) * 2008-04-02 2010-04-30 Airbus France Procede pour la determination de la vitesse de sortie d'effet de sol d'un aeronef.

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4717097A (en) * 1986-03-03 1988-01-05 The Boeing Company Aircraft wings with aileron-supported ground speed spoilers and trailing edge flaps
US5702072A (en) * 1995-06-30 1997-12-30 Nusbaum; Steve R. Aileron/flap mixing mechanism
FR2901537A1 (fr) * 2006-05-29 2007-11-30 Airbus France Sas Procede et dispositif de pilotage d'un aeronef optimisant la commande des ailerons en configuration hypersustentee

Also Published As

Publication number Publication date
US8814102B2 (en) 2014-08-26
FR2931004B1 (fr) 2010-04-23
FR2931004A1 (fr) 2009-11-13
US20110042526A1 (en) 2011-02-24

Similar Documents

Publication Publication Date Title
EP1591854B1 (fr) Procédé d'aide au décollage d'un aéronef
CA2607265C (fr) Procede d'aide au decollage d'un aeronef
EP1568605B1 (fr) Procédé et dispositif pour l'optimisation du braquage des volets déporteurs d'un aéronef en vol
EP1768899B1 (fr) Procede et dispositif d'amelioration de la manoeuvrabilite d'un aeronef lors des phases d'approche avant l'atterrissage puis d'arrondi
EP0584010B1 (fr) Procédé de commande des gouvernes d'un avion pour compenser à basse vitesse une déviation latérale de trajectoire
FR2962713A1 (fr) Procede et aeronef muni d'un rotor arriere basculant
EP2021239B1 (fr) Procédé et dispositif de pilotage d'un aéronef optimisant la commande des ailerons en configuration hypersustentée
EP1562091B1 (fr) Procédé pour améliorer l'atterrissage d'un aéronef
WO2006048519A1 (fr) Procede et dispositif pour ameliorer l'efficacite de freinage d'un aeronef roulant sur le sol
EP1824731B1 (fr) Procede pour ameliorer le pilotage en roulis d'un aeronef et aeronef mettent en oeuvre ce procede
EP0454549B1 (fr) Système pour le pilotage d'un avion en tangage
WO2009130413A1 (fr) Procede pour la determination de la vitesse de sortie d'effet de sol d'un aeronef
EP1989104A1 (fr) Systeme de commande electrique pour une gouverne de direction d'un avion
WO2009138596A1 (fr) Precede pour la reduction de la course d'envol d'un aeronef
FR2942612A1 (fr) Procede et dispositif d'optimisation automatique au sol de la configuration aerodynamique d'un avion
WO2007144485A1 (fr) Procede de pilotage d'un aeronef en phase d'approche
WO2009133268A1 (fr) Procédé pour la réduction exceptionnelle de la course d'envol d'un aéronef
EP1544100B1 (fr) Procédé pour la réduction des charges aérodynamiques appliquées aux gouvernes de profondeur d'un aéronef lors d'un décollage
FR2864023A1 (fr) Procede pour ameliorer la manoeuvrabilite d'un aeronef lors d'une ressource.
FR3080362A1 (fr) Drone a voilure fixe ameliore, procede de commande et d'atterrisage
FR2929241A1 (fr) Procede et dispositif de reduction du tremblement d'un avion.
FR2868852A1 (fr) Procede pour assurer la securite d'un aeronef volant horizontalement a faible vitesse
WO1998045172A1 (fr) Dispositif de commande de gouvernes d'un aeronef et aeronef equipe de ce dispositif

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09745915

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12990656

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09745915

Country of ref document: EP

Kind code of ref document: A1