WO2009130413A1 - Procede pour la determination de la vitesse de sortie d'effet de sol d'un aeronef - Google Patents

Procede pour la determination de la vitesse de sortie d'effet de sol d'un aeronef Download PDF

Info

Publication number
WO2009130413A1
WO2009130413A1 PCT/FR2009/000360 FR2009000360W WO2009130413A1 WO 2009130413 A1 WO2009130413 A1 WO 2009130413A1 FR 2009000360 W FR2009000360 W FR 2009000360W WO 2009130413 A1 WO2009130413 A1 WO 2009130413A1
Authority
WO
WIPO (PCT)
Prior art keywords
aircraft
attitude
criterion
value
fins
Prior art date
Application number
PCT/FR2009/000360
Other languages
English (en)
Inventor
Frédéric Sauvinet
Original Assignee
Airbus France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Airbus France filed Critical Airbus France
Priority to US12/935,744 priority Critical patent/US8565942B2/en
Publication of WO2009130413A1 publication Critical patent/WO2009130413A1/fr

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0083Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots to help an aircraft pilot in the rolling phase
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D43/00Arrangements or adaptations of instruments
    • B64D43/02Arrangements or adaptations of instruments for indicating aircraft speed or stalling conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C13/00Control systems or transmitting systems for actuating flying-control surfaces, lift-increasing flaps, air brakes, or spoilers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C19/00Aircraft control not otherwise provided for

Definitions

  • the present invention relates to a method for determining the ground effect output speed of an aircraft.
  • this ground effect output speed (generally designated by French-speaking technicians by VMU speed, for Minimum Speed Unstick, and by the English-speaking technicians by Minimum Unstick Speed) is used in the performance calculations of take-off of an aircraft, imposing the runway length necessary for take-off or the take-off weight of that aircraft for a given runway length.
  • the lower the ground effect output speed the better the takeoff performance of the aircraft. It is therefore generally advantageous to seek to minimize this ground effect output speed.
  • the speed of said aircraft is noted at the moment of said unloading, this speed being the desired ground effect exit speed.
  • the aerodynamic depth surfaces used in this process are the elevators and / or an adjustable horizontal tilt stabilizer, usually designated by either abbreviations PHR (for Horizontal Adjustable Plane) or THS (for Horizontal Trimmable). Stabilize).
  • PHR Horizontal Adjustable Plane
  • THS Horizontal Trimmable
  • Stabilize the tail of said aircraft is provided with a protective shoe at its low point.
  • the object of the present invention is to improve this known method, in order to minimize the ground effect output speed of the aircraft.
  • said method for determining the ground effect output speed is remarkable in that, after said upward deflection of the aerodynamic depth surfaces capable of conferring on said aircraft the attitude of touching tail and while said main landing gear is still compressed, said fins are turned downward, in a symmetrical manner, from their position partially pointing downwards.
  • said downwardly symmetrical deflection of said ailerons is authorized only beyond a tilting threshold of said steering stick in the nose-up direction, said tilting threshold being at least equal to the take-off tilt usually used during an ordinary take-off.
  • said downwardly symmetrical deflection of said fins is allowed only beyond a nose-up attitude threshold, which threshold is at least equal to the maximum attitude value imposed on said aircraft. to avoid a tail feel when rotating an ordinary takeoff.
  • a nose-up attitude threshold which threshold is at least equal to the maximum attitude value imposed on said aircraft.
  • said flight control computers have at their disposal information relating to the fact that the aircraft is on the ground or not, it is advantageous to: - establish a ground criterion which takes the value 0 when the aircraft is in flight and the value 1 when the aircraft is on the ground; and
  • Figure 1 shows schematically, in perspective from above and from the rear, a jumbo jet capable of implementing the present invention.
  • Figure 2 illustrates, in schematic side view, the aircraft of Figure 1 during a phase of the method according to the present invention.
  • FIG. 3 illustrates, in three successive phases I, II and III, the method according to the invention, the phase represented in FIG. 2 corresponding to phase II of FIG. 3.
  • FIG. 4 diagrammatically illustrates the position of the ailerons of said airplane. jumbo during phases I and III of Figure 3.
  • FIG. 5 diagrammatically illustrates the position of the fins of said jumbo airplane during phase II of FIG.
  • Figure 6 is a block diagram of the implementation of the method according to the present invention.
  • FIGS 7, 8 and 9 respectively show three criteria used in the block diagram of Figure 6.
  • FIGS. 1, 2 and 3 the flaps, the spouts, the rudders, the ailerons, the adjustable horizontal stabilizer, as well as the other moving aerodynamic surfaces of the jumbo jet, are represented in the retracted position for reasons for clarity of the drawings. It will be readily understood that during phases I, II and III of Figure 3, at least some of these surfaces are instead in the deployed position, although represented in the retracted position.
  • the AC jumbo jet shown schematically in FIGS.
  • FIGS. 4 and 5 said fins 6G and 6D are rotatably articulated at the rear of said wings 2G and 2D, respectively, their rotation distance ⁇ downwards being able to take the maximum value ⁇ M , counted from their position for which they are in extension of the wing 2G or 2D corresponding.
  • the aircraft AC comprises an inclinable horizontal stabilizer 7, as illustrated by the double arrow 8.
  • the adjustable horizontal stabilizer 7 At the rear edge of said adjustable horizontal stabilizer 7, are articulated 9G elevators, 9D respectively, being rotatable relative to said empennage 7, as illustrated by the double arrows 10.
  • the aircraft AC comprises a main landing gear 11, as well as a nose gear 12. Moreover, under the fuselage 1, at the location of the tail of the latter which risks touching the ground during a take-off rotation too tight, there is provided a protective shoe 13.
  • Phase I the AC aircraft rolls on the RW airstrip, accelerating for take-off.
  • the leading edge slats 4G, 4D and the trailing edge flaps 5G 1 5D are deployed in the usual manner (not shown), the adjustable horizontal stabilizer 7 is inclined to pitch and the 9G, 9D elevators are, for example, in their position aerodynamically extending said adjustable horizontal stabilizer 7.
  • the set of said adjustable horizontal stabilizer 7 and 9G, 9D elevators generates a nose-up aerodynamic force a pitch-up pitch for the AC aircraft, 4G, 4D leading-edge slat configurations and 5G, 5D trailing edge flaps to optimize the fineness (lift / drag ratio) of the AC airplane.
  • the fins 6G, 6D are also used to optimize this fineness and they are symmetrically pointed downwards, as shown in Figure 4. For this purpose, they occupy a position partially pointed towards the bottom, defined by a value ⁇ D of the stroke ⁇ , lower than the maximum stroke ⁇ M.
  • phase II of the method according to the present invention the pilot of the aircraft AC actuates the elevators 9G, 9D and / or the adjustable horizontal stabilizer 7 (in a manner not shown) so that all of these control surfaces 9G, 9D and this empennage 7 generates a nose-up force and a pitching moment to pitch up, able to give the aircraft AC a ⁇ ⁇ s attitude, such that the shoe 13 touches the runway flight RW.
  • the fins 6G, 6D are turned downwards, symmetrically, from their position partially pointed downwards defined above by the value ⁇ D of the rotational stroke ⁇ .
  • the fins 6G, 6D thus take the maximum deflection position defined by the value ⁇ M of the stroke ⁇ .
  • FIG. 5 facilitates the flight of the AC airplane and reduces the ground effect output speed with respect to the situation in which said fins 6G, 6D remain in their partially pointed position of FIG. 4.
  • FIG. 6 makes it possible to implement the method of the invention, while taking into account that, during an ordinary take-off (other than a take-off of the measurement of the effect output speed of ground), it is usual:
  • control stick at a predetermined position to pitch up which corresponds to a fraction ⁇ 0 , for example equal to 2/3, of the maximum upward movement ⁇ M of said stick;
  • this maximum attitude ⁇ 0 corresponds for example to a distance of 3 feet between the low point of the tail of the airplane and the runway RW).
  • a logic device 15 receiving said signal ⁇ of the handle 14 and transforming it into a handle criterion C ⁇ shown in FIG. 7: the criterion C ⁇ is zero below a threshold S ⁇ greater than the value ⁇ 0 corresponding to said predetermined position of an ordinary take-off and increases uniformly beyond said threshold S ⁇ to reach the value 1 at a value ⁇ m close, but lower, to the maximum value ⁇ M ; a attitude detector 16 (usual on board the aircraft) generating a signal representative of the attitude ⁇ of the aircraft AC;
  • a logic device 17 receiving said signal ⁇ of the attitude detector 16 and transforming it into a criterion of attitude C ⁇ represented in FIG. 8: the criterion C ⁇ is zero within a threshold S ⁇ greater than said maximum attitude ⁇ 0 and increases uniformly beyond said threshold S ⁇ to reach the value
  • a voter 18 who receives the two criteria C ⁇ and C ⁇ and who delivers at his exit which of the two is the largest; a multiplier 19 disposed at the output of said voter 18;
  • a detector 20 capable of generating a zero signal if the aircraft AC is not on the ground and a signal equal to 1 if the aircraft AC is on the ground (compressed main gear), the output of the detector 20 being connected to the multiplier 19, so that it delivers at its output the result of the multiplication of the signal generated by the voter 18 by 0 or 1;
  • a logic device 21 receiving the result of the multiplication carried out by the multiplier 19 and transforming it into a criterion of deflection of ailerons Ca, said criterion being equal to said value ⁇ D of partial deflection
  • FIGS. 6 to 9 can easily be implemented in the on-board computers of the aircraft AC, which, in the usual way, have information concerning the deflection ⁇ of the aircraft. pilot 14, the attitude ⁇ of the aircraft AC and the fact that the aircraft is on the ground or not.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Toys (AREA)
  • Traffic Control Systems (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

Selon l'invention, au cours d'un décollage, on confère à l'aéronef (AC) l'assiette (?ts) de toucher de queue et on braque les ailerons (6G, 6D) à fond vers le bas.

Description

Procédé pour la détermination de la vitesse de sortie d'effet de sol d'un aéronef
La présente invention concerne un procédé pour la détermination de la vitesse de sortie d'effet de sol d'un aéronef.
On sait que cette vitesse de sortie d'effet de sol (généralement désignée par les techniciens de langue française par vitesse VMU, pour Vitesse Minimum Unstick, et par les techniciens de langue anglaise par Minimum Unstick Speed) est utilisée dans les calculs de performance de décollage d'un aéronef, imposant la longueur de piste nécessaire au décollage de celui-ci ou la masse décollable de cet aéronef pour une longueur de piste donnée. Ainsi, plus la vitesse de sortie d'effet de sol est faible, meilleures sont les performances de décollage de l'aéronef. On a donc généralement intérêt à chercher à minimiser cette vitesse de sortie d'effet de sol. Pour déterminer la vitesse de sortie d'effet de sol d'un aéronef, il est connu d'effectuer un décollage non ordinaire de la façon suivante : alors que ledit aéronef roule sur une piste d'envol en accélérant avec son train d'atterrissage principal comprimé par la masse dudit aéronef et par l'effet de sol et avec ses ailerons occupant une position partiellement braquée vers le bas pour rendre maximale la finesse dudit aéronef :
- par basculement du manche de pilotage dans le sens à cabrer, on braque lesdites surfaces aérodynamiques de profondeur vers le haut pour conférer audit aéronef l'assiette pour laquelle sa queue est amenée à toucher ladite piste d'envol ;
- dans cette position d'assiette de toucher de queue, on poursuit l'accélération dudit aéronef jusqu'au délestage complet dudit train d'atterrissage principal ; et
- on note la vitesse dudit aéronef au moment dudit délestage, cette vitesse étant la vitesse de sortie d'effet de sol recherchée. Les surfaces aérodynamiques de profondeur utilisées dans ce procédé sont les gouvernes de profondeur et/ou un empennage horizontal stabilisateur réglable en inclinaison, généralement désigné par l'une ou l'autre des abréviations PHR (pour Plan Horizontal Réglable) ou THS (pour Trimmable Horizontal Stabiliser). De plus, pour éviter tout endommagement contre la piste d'envol, la queue dudit aéronef est pourvue d'un sabot de protection, à son point bas.
L'objet de la présente invention est de perfectionner ce procédé connu, afin de minimiser la vitesse de sortie d'effet de sol de l'aéronef. A cette fin, selon l'invention, ledit procédé pour la détermination de la vitesse de sortie d'effet de sol est remarquable en ce que, après ledit braquage vers le haut des surfaces aérodynamiques de profondeur apte à conférer audit aéronef l'assiette de toucher de queue et alors que ledit train d'atterrissage principal est encore comprimé, on braque lesdits ailerons à fond vers le bas, de façon symétrique, à partir de leur position partiellement braquée vers le bas.
Ainsi, grâce à la présente invention, du fait de ce braquage à fond desdits ailerons vers le bas, on augmente temporairement la portance de l'aéronef, qui se trouve alors à son assiette de toucher de queue, ce qui a pour conséquence de réduire ladite vitesse de sortie d'effet de sol.
De préférence, ledit braquage symétrique à fond vers le bas desdits ailerons n'est autorisé qu'au-delà d'un seuil de basculement dudit manche de pilotage dans le sens à cabrer, ledit seuil de basculement étant au moins égal au basculement de décollage usuellement utilisé lors d'un décollage ordinaire. De même, avantageusement, ledit braquage symétrique à fond vers le bas desdits ailerons n'est autorisé qu'au-delà d'un seuil d'assiette cabrée, celui-ci étant au moins égal à la valeur maximale d'assiette imposée audit aéronef pour éviter un toucher de queue lors de la rotation d'un décollage ordinaire. Pour éviter de réduire les performances d'accélération de l'aéronef au début du décollage, il est nécessaire que le braquage à fond, vers le bas, desdits ailerons n'intervienne pas avant le toucher de queue de l'aéronef. De même, pour éviter de réduire les performances de montée de l'aéronef après son envol, il est avantageux que, après délestage dudit train d'atterrissage principal, lesdits ailerons soient ramenés de la position braquée à fond vers le bas à ladite position partiellement braquée vers le bas.
Par ailleurs, on sait que les calculateurs de commande de vol des aéronefs ont à leur disposition des informations concernant le basculement du manche de pilotage et l'assiette de l'aéronef. Il est donc intéressant d'implémenter le procédé selon l'invention dans lesdits calculateurs. A cet effet, on peut :
- établir un critère de manche dont la valeur est 0 au-dessous dudit seuil de basculement du manche et dont la valeur croît de 0 à 1 entre ledit seuil de basculement et le basculement maximal à cabrer dudit manche ;
- établir un critère d'assiette dont la valeur est 0 au-dessous dudit seuil d'assiette et dont la valeur croît de 0 à 1 entre ledit seuil d'assiette et ladite assiette de toucher de queue ; et
- à partir de celui de ces deux critères qui est le plus grand, établir un critère de braquage d'ailerons qui croît uniformément de la valeur correspondant à la position partiellement braquée vers le bas à la valeur correspondant à la position braquée à fond vers le bas, lorsque ledit plus grand des deux critères passe de la valeur 0 à la valeur 1.
Comme, de plus, lesdits calculateurs de commande de vol ont à leur disposition des informations relatives au fait que l'aéronef est ou non au sol, on peut avantageusement : - établir un critère de sol qui prend la valeur 0 lorsque l'aéronef est en vol et la valeur 1 lorsque l'aéronef est au sol ; et
- multiplier, par ledit critère de sol, ledit plus grand des deux critères que sont le critère de manche et le critère d'assiette, avant d'établir ledit critère de braquage d'ailerons. Grâce aux dispositions qui précèdent, on peut ainsi aisément im- plémenter le procédé conforme à la présente invention dans ledit aéronef. L'invention concerne donc de plus un aéronef mettant en œuvre ledit procédé de l'invention. Les figures du dessin annexé feront bien comprendre comment l'invention peut être réalisée. Sur ces figures, des références identiques désignent des éléments semblables.
La figure 1 montre schématiquement, en perspective du dessus et de l'arrière, un avion gros porteur pouvant mettre en œuvre la présente invention. La figure 2 illustre, en vue latérale schématique, l'avion de la figure 1 pendant une phase du procédé conforme à la présente invention.
La figure 3 illustre, en trois phases successives I, II et III, le procédé selon l'invention, la phase représentée sur la figure 2 correspondant à la phase II de la figure 3. La figure 4 illustre schématiquement la position des ailerons dudit avion gros porteur pendant les phases I et III de la figure 3.
La figure 5 illustre schématiquement la position des ailerons dudit avion gros porteur pendant la phase II de la figure 3.
La figure 6 est le schéma synoptique de la mise en œuvre du procédé conforme à la présente invention.
Les figures 7, 8 et 9 montrent respectivement trois critères utilisés dans le schéma synoptique de la figure 6.
Sur les figures 1 , 2 et 3, les volets, les becs, les gouvernes, les ailerons, l'empennage horizontal réglable, ainsi que les autres surfaces aé- rodynamiques mobiles de l'avion gros porteur, sont représentés en position rentrée pour des raisons de clarté des dessins. On comprendra aisément qu'au cours des phases I, II et III de la figure 3, au moins certaines de ces surfaces sont au contraire en position déployée, bien que représentées en position rentrée. L'avion gros porteur AC, montré schématiquement par les figures 1 et
2, présente un axe longitudinal L-L et comporte un fuselage 1 et deux ailes symétriques 2G et 2D. Lesdites ailes portent des moteurs 3 et une pluralité de becs de bord d'attaque 4G, 4D et de volets de bord de fuite 5G, 5D. De plus, à l'extrémité des ailes 2G, 2D se trouvent des ailerons 6G et 6D, respectivement. Comme le montrent schématiquement les figures 4 et 5, lesdits ailerons 6G et 6D sont articulés en rotation à l'arrière desdites ailes 2G et 2D, respectivement, leur course de rotation α vers le bas pouvant prendre la valeur maximale αM, comptée à partir de leur position pour laquelle ils se trouvent en prolongement de l'aile 2G ou 2D correspondante.
A l'arrière du fuselage 1, l'avion AC comporte un empennage hori- zontal 7 réglable en inclinaison, comme cela est illustré par la double flèche 8. Au bord arrière dudit empennage horizontal réglable 7, sont articulées des gouvernes de profondeur 9G, 9D respectivement, pouvant tourner par rapport audit empennage 7, comme cela est illustré par les doubles flèches 10.
L'avion AC comporte un train d'atterrissage principal 11, ainsi qu'un train avant 12. De plus, sous le fuselage 1, à l'endroit de la queue de celui-ci qui risque de toucher le sol lors d'une rotation de décollage trop serrée, il est prévu un sabot de protection 13.
Sur la figure 3, on a illustré trois phases I, II et III du procédé conforme à la présente invention. Dans la phase I, l'avion AC roule sur la piste d'envol RW en accélérant en vue de son décollage. Pendant cette phase d'accélération I, les becs de bord d'attaque 4G, 4D et les volets de bord de fuite 5G1 5D sont déployés de façon usuelle (non représentée), l'empennage horizontal réglable 7 est incliné à cabrer et les gouvernes de profondeur 9G, 9D sont, par exemple, dans leur position prolongeant aérodynamiquement ledit empennage horizontal réglable 7. Dans cette configuration usuelle, l'ensemble dudit empennage horizontal réglable 7 et des gouvernes de profondeur 9G, 9D engendre une force aérodynamique à cabrer produisant un moment de tangage à cabrer pour l'avion AC, les configurations des becs de bord d'attaque 4G, 4D et des volets de bord de fuite 5G, 5D permettant d'optimiser la finesse (rapport portance/traînée) de l'avion AC. Aussi, dans cette phase d'accélération I, les ailerons 6G, 6D sont également utilisés pour optimiser cette finesse et ils sont symétriquement braqués vers le bas, comme l'illustre la figure 4. A cet effet, ils occupent une position partiellement braquée vers le bas, définie par une valeur αD de la course α, inférieure à la course maximale αM. On comprendra aisément que si lesdits ailerons 6G, 6D étaient braqués de la valeur maximale αM, ils engendreraient une traînée importante, pénalisant les performances de l'avion AC lors de la phase I. Bien entendu, dans cette phase d'accélération I5 le train principal 11 de l'avion AC est comprimé par la masse de celui-ci et par l'effet de sol.
Dans la phase II du procédé conforme à la présente invention, (voir également la figure 2), le pilote de l'avion AC actionne les gouvernes de profondeur 9G, 9D et/ou l'empennage horizontal réglable 7 (de façon non représentée) pour que l'ensemble de ces gouvernes 9G, 9D et de cet empennage 7 engendre une force à cabrer et un moment de tangage à cabrer, aptes à conférer à l'avion AC une assiette θτs, telle que le sabot 13 touche la piste d'envol RW. Dans cette phase II de toucher de queue, afin d'apporter un supplément de portance à l'avion AC et comme le montre la figure 5, les ailerons 6G, 6D sont braqués à fond vers le bas, de façon symétrique, à partir de leur position partiellement braquée vers le bas définie ci-dessus par la valeur αD de la course de rotation α. Les ailerons 6G, 6D prennent donc la position de braquage maximale vers le bas définie par la valeur αM de la course α.
Dans la position de toucher de queue de la phase II, l'avion AC continue sa course d'accélération jusqu'à ce que se produise l'envol de ce dernier, comme cela est représenté par la phase III de la figure 3. Cet envol est détecté par le délestage complet du train principal 11 et, à l'instant de ce délestage, on note la vitesse de l'avion AC, cette vitesse étant alors la vitesse VMU de sortie d'effet de sol cherchée. On comprendra aisément que le supplément de portance apporté par les ailerons 6G, 6D dans la phase II par leur braquage maximal αM vers le bas
(figure 5) facilite l'envol de l'avion AC et réduit la vitesse de sortie d'effet de sol par rapport à la situation dans laquelle lesdits ailerons 6G, 6D resteraient dans leur position partiellement braquée de la figure 4.
On notera de plus que, pour faciliter la performance de montée de l'avion AC après la phase d'envol III, il est nécessaire de ramener les ailerons 6G, 6D de leur position de braquage maximal vers le bas, définie par la valeur αM, à leur position de braquage partielle vers le bas, définie par la valeur αD et correspondant à la finesse optimale.
Ainsi, de ce qui précède, on voit que le braquage à fond vers le bas des ailerons 6G, 6D ne doit intervenir que pendant la phase II, c'est-à-dire lorsque l'avion AC est au sol et qu'il présente une forte assiette.
Le schéma synoptique montré par la figure 6 permet de mettre en œuvre le procédé de l'invention, tout en prenant en compte que, lors d'un décollage ordinaire (autre qu'un décollage de mesure de la vitesse de sortie d'effet de sol), il est usuel :
- de positionner le manche de pilotage à une position prédéterminée à cabrer qui correspond à une fraction β0, par exemple égale à 2/3, de la course maximale à cabrer βM dudit manche ; et
- d'imposer à l'avion une assiette maximale θ0 pour éviter un toucher de queue lors de la rotation d'envol (cette assiette maximale θ0 correspond par exemple à une distance de 3 pieds entre le point bas de la queue de l'avion et la piste d'envol RW). Dans le schéma synoptique de la figure 6, on a représenté :
- le manche de pilotage 14 de l'avion AC engendrant un signal représentatif de son angle de basculement à cabrer β ;
- un dispositif logique 15, recevant ledit signal β du manche 14 et le transformant en un critère de manche Cβ représenté sur la figure 7 : le critère Cβ est nul en deçà d'un seuil Sβ supérieur à la valeur β0 correspondant à ladite position prédéterminée d'un décollage ordinaire et croît de façon uniforme au-delà dudit seuil Sβ pour atteindre la valeur 1 à une valeur βm proche, mais inférieure, à la valeur maximale βM ; - un détecteur d'assiette 16 (usuel à bord des aéronefs) engendrant un signal représentatif de l'assiette θ de l'avion AC ;
- un dispositif logique 17, recevant ledit signal θ du détecteur d'assiette 16 et le transformant en un critère d'assiette Cθ représenté sur la figure 8 : le critère Cθ est nul en deçà d'un seuil Sθ supérieur à ladite assiette maximale θ0 et croît de façon uniforme au-delà dudit seuil Sθ pour atteindre la valeur
1 à une valeur θm de l'assiette θ proche, mais inférieure, à la valeur θτs correspondant au toucher de queue ;
- un voteur 18 qui reçoit les deux critères Cβ et Cθ et qui délivre à sa sortie celui des deux qui est le plus grand ; - un multiplicateur 19 disposé à la sortie dudit voteur 18 ;
- un détecteur 20 apte à engendrer un signal nul si l'avion AC n'est pas au sol et un signal égal à 1 si l'avion AC est au sol (train principal comprimé), la sortie du détecteur 20 étant reliée au multiplicateur 19, de sorte que ce dernier délivre à sa sortie le résultat de la multiplication du signal engendré par le voteur 18 par 0 ou par 1 ; et
- un dispositif logique 21 , recevant le résultat de la multiplication effectuée par le multiplicateur 19 et le transformant en un critère de braquage d'ailerons Ca, ledit critère étant égal à ladite valeur αD de braquage partiel
(voir la figure 4) si la sortie du multiplicateur 19 est nulle et croissant de façon uniforme de la valeur αD à la valeur maximale αM, si la sortie du multiplicateur 19 croît uniformément de 0 à 1.
On remarquera que la logique illustrée par les figures 6 à 9 peut aisément être implémentée dans les calculateurs de bord de l'avion AC, qui, de façon usuelle, disposent des informations concernant le braquage β du man- che de pilotage 14, l'assiette θ de l'avion AC et le fait que l'avion est au sol ou non.

Claims

REVENDICATIONS
1. Procédé pour la détermination de la vitesse de sortie d'effet de sol d'un aéronef (AC) pourvu d'au moins un manche de pilotage (14), d'un train d'atterrissage principal (11), d'ailerons (6G, 6D) et de surfaces aéro- dynamiques mobiles de profondeur (7, 9G, 9D), procédé selon lequel, au cours d'un décollage, alors que ledit aéronef (AC) roule sur une piste d'envol (RW) en accélérant avec ledit train d'atterrissage principal (11) comprimé par la masse dudit aéronef et par l'effet de sol et avec lesdits ailerons (6G, 6D) occupant une position (αD) partiellement braquée vers le bas pour rendre maximale la finesse dudit aéronef :
- par basculement dudit manche de pilotage (14) dans le sens à cabrer, on braque lesdites surfaces aérodynamiques de profondeur (7, 9G, 9D) vers le haut pour conférer audit aéronef l'assiette (θτs) pour laquelle sa queue (13) est amenée à toucher ladite piste d'envol (RW) ; - dans cette position d'assiette de toucher de queue (θτs), on poursuit l'accélération dudit aéronef (AC) jusqu'au délestage complet dudit train d'atterrissage principal (11) ; et
- on note la vitesse dudit aéronef au moment dudit délestage, cette vitesse étant la vitesse de sortie d'effet de sol recherchée, caractérisé en ce que, après ledit braquage vers le haut des surfaces aérodynamiques de profondeur (7, 9G, 9D) apte à conférer audit aéronef l'assiette de toucher de queue (θτs) et alors que ledit train d'atterrissage principal (11) est encore comprimé, on braque lesdits ailerons (6G, 6D) à fond vers le bas (αM), de façon symétrique, à partir de leur position (αD) partiellement braquée vers le bas.
2. Procédé selon la revendication 1 , caractérisé en ce que ledit braquage symétrique à fond vers le bas desdits ailerons (6G, 6D) n'est autorisé qu'au-delà d'un seuil de basculement (Sβ) dudit manche (14) dans le sens à cabrer.
3. Procédé selon la revendication 2, caractérisé en ce que ledit seuil de basculement (Sβ) est au moins égal au basculement de décollage (β0) usuellement utilisé lors d'un décollage ordinaire.
4. Procédé selon l'une des revendications 1 à 3, caractérisé en ce que ledit braquage symétrique à fond vers le bas desdits ailerons (6G, 6D) n'est autorisé qu'au-delà d'un seuil d'assiette cabrée (Sθ).
5. Procédé selon la revendication 4, caractérisé en ce que ledit seuil d'assiette cabrée (Sθ) est au moins égal à la valeur maximale d'assiette (θ0) imposée audit aéronef pour éviter un toucher de queue lors de la rotation d'un décollage ordinaire.
6. Procédé selon l'une des revendications 1 à 5, caractérisé en ce que, après délestage dudit train d'atterrissage principal (11), lesdits ailerons (6G, 6D) sont ramenés de la position braquée à fond vers le bas (αM) à ladite position partiellement braquée vers le bas (αD).
7. Procédé selon les revendications 3 et 5, destiné à être implémenté dans les calculateurs de commande de vol dudit aéronef (AC) ayant à leur disposition des informations concernant le basculement (β) dudit manche de pilotage (14) et l'assiette (θ) dudit aéronef (AC), caractérisé en ce que : - on établit un critère de manche (Cβ) dont la valeur est 0 au-dessous dudit seuil de basculement (Sβ) et dont la valeur croît de 0 à 1 entre ledit seuil de basculement (Sβ) et le basculement maximal à cabrer (βM) dudit manche ; - on établit un critère d'assiette (Cθ) dont la valeur est 0 au-dessous dudit seuil d'assiette (Sθ) et dont la valeur croît de 0 à 1 entre ledit seuil d'assiette (Sθ) et ladite assiette de toucher de queue (θτs) ; et
- à partir de celui de ces deux critères (Cβ, Cθ) qui est le plus grand, on établit un critère de braquage d'ailerons (Ca) qui croît uniformément de la valeur (αD) correspondant à la position partiellement braquée vers le bas à la valeur (αM) correspondant à la position braquée à fond vers le bas, lorsque ledit plus grand critère passe de la valeur 0 à la valeur 1.
8. Procédé selon la revendication 7, dans lequel lesdits calculateurs de commande de vol ont à leur disposition des informations relatives au fait que l'aéronef est ou non au sol, caractérisé en ce que :
- on établit un critère de sol qui prend la valeur 0 lorsque l'aéronef est en vol et la valeur 1 lorsque l'aéronef est au sol ; et - on multiplie, par ledit critère de sol, ledit plus grand des deux critères que sont le critère de manche (Cβ) et le critère d'assiette (Cθ), avant d'établir ledit critère de braquage d'ailerons (Ca).
9. Aéronef, caractérisé en ce qu'il met en œuvre le procédé selon l'une quelconque des revendications 1 à 8.
PCT/FR2009/000360 2008-04-02 2009-03-30 Procede pour la determination de la vitesse de sortie d'effet de sol d'un aeronef WO2009130413A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/935,744 US8565942B2 (en) 2008-04-02 2009-03-30 Method for determining the speed at which an aircraft breaks free of the ground effect

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0801821A FR2929724B1 (fr) 2008-04-02 2008-04-02 Procede pour la determination de la vitesse de sortie d'effet de sol d'un aeronef.
FR0801821 2008-04-02

Publications (1)

Publication Number Publication Date
WO2009130413A1 true WO2009130413A1 (fr) 2009-10-29

Family

ID=40010765

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2009/000360 WO2009130413A1 (fr) 2008-04-02 2009-03-30 Procede pour la determination de la vitesse de sortie d'effet de sol d'un aeronef

Country Status (3)

Country Link
US (1) US8565942B2 (fr)
FR (1) FR2929724B1 (fr)
WO (1) WO2009130413A1 (fr)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2931004B1 (fr) * 2008-05-07 2010-04-23 Airbus France Procede pour la reduction de la course d'envol d'un aeronef.
FR2932883B1 (fr) * 2008-06-19 2010-08-20 Airbus France Procede hybride pour l'evaluation de l'effet de sol sur un aeronef
JP5611882B2 (ja) * 2010-05-31 2014-10-22 株式会社東芝 磁気共鳴イメージング装置
JP2018520730A (ja) 2015-05-29 2018-08-02 メイヨ フォンデーシヨン フォー メディカル エジュケーション アンド リサーチ 非対称勾配を用いた磁気共鳴イメージングにおける随伴磁界補正のためのシステム及び方法
US10479481B2 (en) * 2016-09-28 2019-11-19 The Boeing Company Process and machine for reducing a drag component of a horizontal stabilizer on an aircraft
CN109094816B (zh) * 2018-07-30 2022-01-25 成都飞机工业(集团)有限责任公司 一种测试飞机气动升力的方法
CN115520405B (zh) * 2022-11-29 2023-04-14 四川腾盾科技有限公司 一种后缘富勒襟翼滑动装置的设计方法及结构

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4717097A (en) * 1986-03-03 1988-01-05 The Boeing Company Aircraft wings with aileron-supported ground speed spoilers and trailing edge flaps
US5702072A (en) * 1995-06-30 1997-12-30 Nusbaum; Steve R. Aileron/flap mixing mechanism
FR2901537A1 (fr) * 2006-05-29 2007-11-30 Airbus France Sas Procede et dispositif de pilotage d'un aeronef optimisant la commande des ailerons en configuration hypersustentee

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3659810A (en) * 1968-05-20 1972-05-02 James L Robertson Inherently stable tapered wing flaperon airplane
US4705236A (en) * 1981-09-29 1987-11-10 The Boeing Company Aileron system for aircraft and method of operating the same
US5901927A (en) * 1996-07-18 1999-05-11 Honeywell Inc. Ground strike protection function for aircraft autopilot
US6079672A (en) * 1997-12-18 2000-06-27 Lam; Lawrence Y. Aileron for fixed wing aircraft
DE102005016578A1 (de) * 2005-04-11 2006-10-19 Airbus Deutschland Gmbh Einfachspaltklappe mit gleitender Abweiserklappe und absenkbarem Spoiler
US7367530B2 (en) * 2005-06-21 2008-05-06 The Boeing Company Aerospace vehicle yaw generating systems and associated methods
US7883060B2 (en) * 2006-12-14 2011-02-08 Utah State University Apparatus and method for twisting a wing to increase lift on aircraft and other vehicles
FR2929723B1 (fr) * 2008-04-02 2011-02-11 Airbus France Procede pour la reduction exceptionnelle de la course d'envol d'un aeronef.

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4717097A (en) * 1986-03-03 1988-01-05 The Boeing Company Aircraft wings with aileron-supported ground speed spoilers and trailing edge flaps
US5702072A (en) * 1995-06-30 1997-12-30 Nusbaum; Steve R. Aileron/flap mixing mechanism
FR2901537A1 (fr) * 2006-05-29 2007-11-30 Airbus France Sas Procede et dispositif de pilotage d'un aeronef optimisant la commande des ailerons en configuration hypersustentee

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ANONYMOUS: "See How It Flies", INTERNET ARTICLE (TAKEOFF), 9 October 2006 (2006-10-09), pages 1 - 18, XP002505294, Retrieved from the Internet <URL:http://web.archive.org/web/20061009033324/http://www.av8n.com/how/htm/takeoff.html> [retrieved on 20081124] *

Also Published As

Publication number Publication date
FR2929724B1 (fr) 2010-04-30
US20110029165A1 (en) 2011-02-03
US8565942B2 (en) 2013-10-22
FR2929724A1 (fr) 2009-10-09

Similar Documents

Publication Publication Date Title
EP1768899B1 (fr) Procede et dispositif d&#39;amelioration de la manoeuvrabilite d&#39;un aeronef lors des phases d&#39;approche avant l&#39;atterrissage puis d&#39;arrondi
EP1591854B1 (fr) Procédé d&#39;aide au décollage d&#39;un aéronef
WO2009130413A1 (fr) Procede pour la determination de la vitesse de sortie d&#39;effet de sol d&#39;un aeronef
EP3002209B1 (fr) Giravion muni d&#39;un dispositif stabilisateur
EP0584010B1 (fr) Procédé de commande des gouvernes d&#39;un avion pour compenser à basse vitesse une déviation latérale de trajectoire
WO2008142258A2 (fr) Système de commande d&#39;un giravion
EP1568605A1 (fr) Procédé et dispositif pour l&#39;optimisation du braquage des volets déporteurs d&#39;un aéronef en vol
EP1498794B1 (fr) Système pour commander automatiquement des dispositifs hypersustentateurs d&#39;un aéronef, en particulier des becs de bord d&#39;attaque d&#39;aile
EP2963517B1 (fr) Système et procédé de commande de vol d&#39;un aéronef à voilure tournante en tenue de trajectoire ou tenue de cap selon sa vitesse d&#39;avancement
EP2963518B1 (fr) Procédé et système de mise en vol stationnaire d&#39;un aéronef à voilure tournante en tenue de trajectoire ou tenue de cap selon sa vitesse d&#39; avancement
EP3112971B1 (fr) Procédé de détermination de valeurs de consigne de la vitesse air longitudinale et de la vitesse sol longitudinale d&#39;un aéronef à voilure tournante selon son exposition au vent
EP0454549B1 (fr) Système pour le pilotage d&#39;un avion en tangage
EP1562091B1 (fr) Procédé pour améliorer l&#39;atterrissage d&#39;un aéronef
FR2942612A1 (fr) Procede et dispositif d&#39;optimisation automatique au sol de la configuration aerodynamique d&#39;un avion
WO2009133268A1 (fr) Procédé pour la réduction exceptionnelle de la course d&#39;envol d&#39;un aéronef
FR2900126A1 (fr) Procede et dispositif pour la reduction des tourbillons de sillage d&#39;un aeronef en phase d&#39;approche/atterrissage
EP3015362B1 (fr) Carenage de sommet d&#39;un giravion equipe d&#39;un organe mobile de guidage du flux d&#39;air s&#39;ecoulant vers l&#39;arriere du giravion
WO2009138596A1 (fr) Precede pour la reduction de la course d&#39;envol d&#39;un aeronef
EP3882141B1 (fr) Procédé et système de réduction du bruit en vol d&#39;un hélicoptère hybride par gestion de l&#39;incidence de son rotor principal et de la poussée de chaque hélice
EP1585001B1 (fr) Procédé pour assurer la sécurité d&#39;un aéronef volant horizontalement à faible vitesse
CA2489794C (fr) Procede pour la reduction des charges aerodynamiques appliquees aux gouvernes de profondeur d&#39;un aeronef lors d&#39;un decollage
EP3752419B1 (fr) Dispositif de remorquage d&#39;un aéronef sans moteur par un aéronef sans pilote embarqué; aéronef muni d&#39;un tel dispositif de remorquage et procédé de remorquage d&#39;un aéronef sans moteur par un aéronef sans pilote embarqué
FR2873094A1 (fr) Procede et dispositif d&#39;amelioration de la manoeuvrabilite d&#39;un aeronef lors des phases d&#39;approche avant l&#39;atterrissage puis d&#39;arrondi
FR3080362A1 (fr) Drone a voilure fixe ameliore, procede de commande et d&#39;atterrisage
FR2929241A1 (fr) Procede et dispositif de reduction du tremblement d&#39;un avion.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09734557

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12935744

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09734557

Country of ref document: EP

Kind code of ref document: A1