WO2009135485A9 - Dispositif de transformation d'énergie thermique en énergie électrique - Google Patents

Dispositif de transformation d'énergie thermique en énergie électrique Download PDF

Info

Publication number
WO2009135485A9
WO2009135485A9 PCT/DE2009/000657 DE2009000657W WO2009135485A9 WO 2009135485 A9 WO2009135485 A9 WO 2009135485A9 DE 2009000657 W DE2009000657 W DE 2009000657W WO 2009135485 A9 WO2009135485 A9 WO 2009135485A9
Authority
WO
WIPO (PCT)
Prior art keywords
heat
hydrogen
energy
compressor
oxygen
Prior art date
Application number
PCT/DE2009/000657
Other languages
German (de)
English (en)
Other versions
WO2009135485A2 (fr
WO2009135485A3 (fr
Inventor
Daniel Wolf
Original Assignee
Daniel Wolf
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daniel Wolf filed Critical Daniel Wolf
Priority to DE112009001670T priority Critical patent/DE112009001670A5/de
Publication of WO2009135485A2 publication Critical patent/WO2009135485A2/fr
Publication of WO2009135485A9 publication Critical patent/WO2009135485A9/fr
Publication of WO2009135485A3 publication Critical patent/WO2009135485A3/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J45/00Discharge tubes functioning as thermionic generators

Definitions

  • the invention deals with the conversion of heat energy into electrical energy, in particular the generation of electricity by solar energy, by a thermoelectric cycle.
  • any heat source for the production of electrical energy has been the use of a pressure gradient which drives an electrochemical cell, in conjunction with a cyclic process proposed. So is in the alkali-metal Thermoelectric converter sodium or potassium converted by supplying heat in vapor form and built up a pressure which leads to a flow of ions over a solid electrolyte to the low pressure compartment, where condensation takes place. By oxidation and reduction at the two electrodes of the ceramic electrolyte, a current is generated.
  • One of the disadvantages of this type of thermoelectric converter is that the metals are relatively corrosive.
  • the converter due to the high boiling point of the metals, must be operated at high temperatures, which also includes a high lower temperature level, and thus leads to a relatively low efficiency in terms of the Carnot process. Furthermore, the limited conductivity of the ionic conductors in this case poses a problem.
  • Robert, E. US 4,677,038, 1987
  • a cell produces a pressure gradient by supplying current by transporting a gas through an electrolyte in ionized form associated with reduction and oxidation.
  • a second cell is operated at a high temperature and uses the established gradient to generate electricity.
  • the aim of the present invention is a device which allows the simplest possible means an efficient generation of electric power from heat.
  • the generation of electrical energy from solar radiation with a high efficiency is the aim of the invention.
  • the mechanical Compression takes place with dissipation of heat by liquid or gas cooling at a low temperature.
  • a concentration cell consisting of a solid ion conductor is operated while supplying heat.
  • the electrolyte forms a boundary between the room with high and the space with lower partial pressure.
  • At the electrolyte electrodes are each attached to the surfaces which face the two rooms.
  • This electrochemical concentration cell generates electric energy by supplying heat at a high temperature level by an ion flux caused by the partial pressure difference.
  • the heat of the hydrogen or oxygen removed from the cell in the low pressure chamber is used to heat the compressed hydrogen or oxygen supplied in the high pressure chamber of the cell.
  • the advantages achieved by the invention are, in particular, that in comparison to the pure mechanical heat engine no moving parts are exposed to high temperatures. Furthermore, the process runs continuously at high temperatures. Since, in contrast to the so-called Amtec converter, hydrogen or oxygen is used instead of alkali metals, there are advantages in terms of electrolyte properties, thermodynamics, phase change, corrosion and lifetime of the electrodes. Furthermore, the use of simple, yet efficient, electromechanical components for compression presents a potential for reducing costs over the construction of a partial pressure differential by electrolysis cells. Also, using efficient electric machines and intensive near-isothermal cooling in compression can provide very good overall efficiency be achieved and which can expect even better values compared to expensive polymer electrolyte cells. The invention thus forms a combination of the proven simple mechanical principle of the Stirling engine, with the benefits of direct, known from fuel cells, electrochemical energy conversion, which requires no moving parts at high temperature.
  • Fig. 1 shows the schematic structure of the device
  • Fig. 2 shows an embodiment of the device, wherein solar heat is used to generate electricity shows.
  • Fig.3 shows the device corresponding to the theoretical Ercisson cycle.
  • the device according to the invention for the conversion of heat into electrical energy comprises a solid electrolyte, which gas-tightly separates two chambers 1, 2 in a closed system.
  • a pressure difference between the two spaces is generated within the system by a mechanical compressor 3.
  • electrodes 5, 6 are mounted.
  • the working gas 7, which is hydrogen or oxygen, or contains portions of hydrogen and oxygen, is ionized and can pass through the electrolyte 4 at high temperature.
  • the driving force of this process is the partial pressure difference on both sides.
  • the compressor 3 is operated by cooling 8 at a temperature T2 which is below the operating temperature Tl of the electrochemical concentration cell.
  • the process in the electrochemical cell is carried out with the supply of heat energy QTl.
  • This step in the cycle corresponds to the isothermal expansion in a Stirling or exact Ericsson engine.
  • the heat of the gas 2, which leaves the electrochemical cell in the hot and relaxed state, is transferred in a heat exchanger 9 to the compressed gas 1, which is supplied to the cell.
  • This process corresponds to the internal isobaric heating and isobaric cooling in the Ericsson process.
  • the open circuit voltage of the cell is described by the Nernst equation:
  • No-load voltage R * Tl / z * F In (pl / p2)
  • the mechanical work of the compressor under isothermal conditions, at the lower temperature, corresponds to the amount of heat to be dissipated by the cooling.
  • An increase in the pressure difference leads to a higher cell voltage.
  • the current correlates with the amount of gas to be compressed and circulated through the electrolyte.
  • the electrochemical cell must be continuously supplied with thermal energy during operation.
  • the passage of the ions in the electrolyte from the high pressure side to the low partial pressure side corresponds to the isothermal expansion of the gas in the Stirling engine. In both cases, energy is supplied in the form of heat.
  • water can be injected into the cylinder chamber of the compressor at a temperature of 3O 0 C.
  • a very advantageous development is mentioned, wherein the compression process is carried out very slowly.
  • An operating frequency below 6 Hz achieves the most effective and reversible heat dissipation and thus compression. This positively influences the overall efficiency. It is also conceivable that more compressor stages are used.
  • the use of hydrogen as a working gas in conjunction with a proton conductor as the electrolyte membrane is mentioned in claim 6.
  • Advantages of hydrogen include the reducing effect and the high thermal conductivity. In the Scientific literature has been discussed in particular proton conductors of the perovskite type.
  • the use of yttrium-stabilized zirconia which has a high ionic conductivity, is suitable.
  • the use of a variable in the speed electronic control of the electric motor of the compressor is given in claim 7. Whereby the electronics ideally also have the possibility to buffer the kinetic energy of the piston during its braking in capacitors and again to use for the acceleration.
  • the drive of the compressor by a linear motor has the advantage that no gear is necessary.
  • a linear motor is used in synchronous design.
  • the generation of a water vapor pressure in the system is called by the cooling water in claim 10.
  • the cooling water with a corresponding temperature provides this vapor pressure.
  • a mechanical compressor 17 which is controlled by a synchronous linear motor 18, the working gas hydrogen is compressed from 0.5 bar to 30 bar.
  • the Working frequency is about one stroke per second which makes an ideal heat dissipation through the cooling water 19, which is sprayed into the piston chamber with a temperature of 30 0 C possible.
  • the cooling water is then taken out at about 40 ° and circulated to a cooling tower or the like.
  • the cooling water also provides a corresponding vapor pressure in the system, which maintains the proton conductivity of the electrolyte.
  • Accumulator 19, 20 at ambient temperature are the compressor 17 upstream and downstream and take over a Windkesselfunktion.
  • the compressed hydrogen gas 18 is heated by a countercurrent heat exchanger 19, by the flowing out of the cell at about 1000 ° C gas 21, also approximately 1000 °, while cools the low-pressure hydrogen from.
  • the cell is operated as constant as possible at a temperature of 1000 0 C.
  • the pressure difference leads to a flow of ionized gas particles over the electrolyte membrane 14 and thus to a voltage which can be dissipated and used via the electrodes 15 and current collector 16. Part of the energy is needed for the operation of the compressor. However, the energy required for compaction is significantly lower than the energy released by the ion current at high temperature, corresponding to the isothermal expansion.
  • the compressor is controlled by a computer-controlled power electronics 22.
  • the compressor piston can alternatively be driven by a crankshaft with flywheel and a conventional electric motor with reduction.
  • the invention can also be used to convert parabolic mirrored solar energy into electricity.
  • a central compression and cooling of the working gas offers. This can then be forwarded to numerous individual parabolic mirrors, which are equipped at the focal point with ceramic concentration cells for generating electricity.
  • the use of the invention in parabolic trough power plants is possible, in which case ideally an elongated shaped cell is used in the focal point. Because of the smaller concentration ratio in this case, the operation at slightly lower temperatures offers.
  • the present invention also enables the efficient use of combustion heat of any kind.

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Fuel Cell (AREA)

Abstract

La présente invention concerne un procédé et un dispositif permettant de transformer de l'énergie thermique en énergie électrique. Une pile de concentration électrochimique est mise en oeuvre à haute température avec apport de chaleur. L'hydrogène et l'oxygène sont condensés à basse température au moyen d'un condensateur mécanique, puis sont transférés à la pile de concentration par l'intermédiaire d'un échangeur thermique. La différence de pression partielle présente conduit à un flux d'ions qui crée un courant électrique pouvant être prélevé au niveau des électrodes. Une partie de l'énergie électrique permet de mettre en oeuvre le condensateur mécanique. Ce nouveau processus cyclique permet de réunir à la fois les avantages d'une pile à combustible et ceux d'un moteur Stirling.
PCT/DE2009/000657 2008-05-08 2009-05-08 Dispositif de transformation d'énergie thermique en énergie électrique WO2009135485A2 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112009001670T DE112009001670A5 (de) 2008-05-08 2009-05-08 Vorrichtung zur Wandlung von Wärmeenergie in elektrische Energie

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008022874 2008-05-08
DE102008022874.5 2008-05-08

Publications (3)

Publication Number Publication Date
WO2009135485A2 WO2009135485A2 (fr) 2009-11-12
WO2009135485A9 true WO2009135485A9 (fr) 2009-12-30
WO2009135485A3 WO2009135485A3 (fr) 2010-07-01

Family

ID=41137594

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2009/000657 WO2009135485A2 (fr) 2008-05-08 2009-05-08 Dispositif de transformation d'énergie thermique en énergie électrique

Country Status (2)

Country Link
DE (1) DE112009001670A5 (fr)
WO (1) WO2009135485A2 (fr)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4677038A (en) * 1984-10-29 1987-06-30 Temple University Of The Commonwealth System Of Higher Education Gas concentration cells for utilizing energy
US5492570A (en) * 1994-07-05 1996-02-20 Thermacore, Inc. Hybrid thermal electric generator
US6949303B1 (en) * 2000-04-10 2005-09-27 Johnson Electro Mechanical Systems, Llc Electromechanical conversion system
US6899967B2 (en) * 2000-04-10 2005-05-31 Excellatron Solid State, Llc Electrochemical conversion system
WO2002011220A1 (fr) * 2000-07-28 2002-02-07 Johnson Research & Development Company, Inc. Moteur johnson réversible

Also Published As

Publication number Publication date
WO2009135485A2 (fr) 2009-11-12
DE112009001670A5 (de) 2011-04-07
WO2009135485A3 (fr) 2010-07-01

Similar Documents

Publication Publication Date Title
EP3532710A1 (fr) Dispositif d'accumulation d'énergie et procédé d'accumulation d'énergie
EP2067942B1 (fr) Procédé de transformation et de stockage d'énergie régénérative
EP3140435B1 (fr) Procédé d'actionnement d'une installation d'électrolyse et installation d'électrolyse
WO2008064889A1 (fr) Dispositif de conversion d'énergie thermodynamique en énergie électrique
WO2011092297A2 (fr) Aéronef à entraînement électrique
EP3186506B1 (fr) Dispositif et procédé de stockage d'énergie
WO2011141221A1 (fr) Procédé pour produire de l'hydrogène à partir d'eau au moyen d'un électrolyseur à haute température
DE102012206296A1 (de) Anlage zur Speicherung und Abgabe thermischer Energie und Verfahren zu deren Betrieb
DE102019216242A1 (de) Dampfturbinenanlage sowie Verfahren zum Betreiben einer solchen Dampfturbinenanlage
DE10154637A1 (de) Brennstoffbereitstellungseinheit und Verfahren zur Bereitstellung eines wasserstoffhaltigen Brennstoffs
EP0613588B1 (fr) Procede permettant de degager de la chaleur de piles a combustible et dispositif de mise en oeuvre dudit procede
EP4244470A1 (fr) Accumulateur d'énergie thermique pour le stockage d'énergie électrique
EP1038094A2 (fr) Procede de mise en action de force motrice a vapeur multi-etage pour la production d'energie electrique dans un cycle et dispositif pour la mise en oeuvre de ce procede
DE102015007732A1 (de) Sauerstoff Expander (Elektrolyse) zur Kühlung des Produktions- und Verdichtungsprozesses
DE102010004079A1 (de) Brennkraftmaschine, kombiniert mit Rankineprozess zur effizienten Nutzung der Kühlmittel- und Abgaswärme
EP2705562A1 (fr) Accumulateur d'énergie et procédé pour charger ou décharger un accumulateur d'énergie
WO2009135485A9 (fr) Dispositif de transformation d'énergie thermique en énergie électrique
EP1962362A1 (fr) Installation de production combinée de chaleur et d'électricité
DE102004063304A1 (de) Vorrichtung zur Bereitstellung von Energie mit Brennstoffzelle und Wärmekraftmaschine
DE102006004917B4 (de) Vorrichtung und Verfahren zur Kühlung und zur Erzeugung elektrischer Energie sowie Bearbeitungsverfahren und Einrichtung hierfür
DE2710533A1 (de) Elektrische stromerzeugungsanlage
DE19622073C2 (de) Verfahren zum Betreiben einer Brennstoffzellenanlage und Brennstoffzellenanlage
EP3901087A1 (fr) Procédé et appareil de séparation thermo-chimique assistée de manière électrochimique de l'eau et du dioxyde de carbone
DE102022203737B4 (de) Wasserstoff-Speicherkraftwerk und Verfahren zu dessen Betrieb
DE4007541C1 (en) Direct conversion of heat into electrical energy - using solar collector to transfer hydrogen from stove to high pressure chamber bounded by foil coated electrolyte

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09741758

Country of ref document: EP

Kind code of ref document: A2

REF Corresponds to

Ref document number: 112009001670

Country of ref document: DE

Date of ref document: 20110407

Kind code of ref document: P

REG Reference to national code

Ref country code: DE

Ref legal event code: R225

Ref document number: 112009001670

Country of ref document: DE

Effective date: 20110407

122 Ep: pct application non-entry in european phase

Ref document number: 09741758

Country of ref document: EP

Kind code of ref document: A2