WO2009134268A1 - Method for generating a diagnostic from a deviation of a flow meter parameter - Google Patents
Method for generating a diagnostic from a deviation of a flow meter parameter Download PDFInfo
- Publication number
- WO2009134268A1 WO2009134268A1 PCT/US2008/062295 US2008062295W WO2009134268A1 WO 2009134268 A1 WO2009134268 A1 WO 2009134268A1 US 2008062295 W US2008062295 W US 2008062295W WO 2009134268 A1 WO2009134268 A1 WO 2009134268A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- flow meter
- differential pressure
- flow
- deviation
- expected
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F25/00—Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F1/00—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
- G01F1/76—Devices for measuring mass flow of a fluid or a fluent solid material
- G01F1/78—Direct mass flowmeters
- G01F1/80—Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
- G01F1/84—Coriolis or gyroscopic mass flowmeters
- G01F1/845—Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits
- G01F1/8468—Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits vibrating measuring conduits
- G01F1/8472—Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits vibrating measuring conduits having curved measuring conduits, i.e. whereby the measuring conduits' curved center line lies within a plane
- G01F1/8477—Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits vibrating measuring conduits having curved measuring conduits, i.e. whereby the measuring conduits' curved center line lies within a plane with multiple measuring conduits
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F1/00—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
- G01F1/76—Devices for measuring mass flow of a fluid or a fluent solid material
- G01F1/78—Direct mass flowmeters
- G01F1/80—Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
- G01F1/84—Coriolis or gyroscopic mass flowmeters
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F1/00—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
- G01F1/76—Devices for measuring mass flow of a fluid or a fluent solid material
- G01F1/78—Direct mass flowmeters
- G01F1/80—Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
- G01F1/84—Coriolis or gyroscopic mass flowmeters
- G01F1/8409—Coriolis or gyroscopic mass flowmeters constructional details
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F15/00—Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
- G01F15/02—Compensating or correcting for variations in pressure, density or temperature
- G01F15/022—Compensating or correcting for variations in pressure, density or temperature using electrical means
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F25/00—Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume
- G01F25/10—Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume of flowmeters
Definitions
- the present invention relates to flow meters, and more particularly, to a method for generating a diagnostic using a deviation in a flow meter parameter.
- Coriolis effect mass flow meters it is generally known to use Coriolis effect mass flow meters to measure mass flow and other information for materials flowing through a conduit in the flow meter.
- Exemplary Coriolis flow meters are disclosed in U.S. Patent 4,109,524, U.S. Patent 4,491,025, and Re. 31,450 all to J.E. Smith et al. These flow meters have one or more conduits of straight or curved configuration.
- Each conduit configuration in a Coriolis mass flow meter has a set of natural vibration modes, which may be of simple bending, torsional, or coupled type.
- Each conduit can be driven to oscillate at resonance in one of these natural modes.
- the natural vibration modes of the vibrating, material filled system are defined in part by the combined mass of the conduits and the material flowing within the conduits.
- Coriolis mass flow meters have received great success in a wide variety of industries. However, Coriolis flow meters along with most other flow meters can suffer from an accumulation of deposits left by the process fluid. This accumulation is generally referred to in the art as "coating.”
- the fluid coating may or may not affect the flow meter's performance and accuracy. Although the coating generally will not affect the flow meter's stiffness nor cause a flow rate measurement error, it can affect other aspects of the flow meter's characteristics. For example, the coating may have a different density than the process fluid. This can adversely affect the density reading obtained from the flow meter. With certain process fluids, the coating may build up inside the flow meter to a certain thickness and then break off as small flakes. These small flakes may affect other parts of the process connected to the flow meter. In extreme circumstances, the coating may build up enough such that the flow meter becomes plugged requiring complete shut down or in some circumstances, a complete replacement of the flow meter.
- Prior art diagnostic methods of detecting flow meter coating have a number of problems.
- many of the prior art methods are limited to coating detection in the active section of the flow tube, i.e., the vibrating section.
- Other limitations of the prior art arise in situations where the density of the coating is substantially similar to the process fluid. In those circumstances, density based coating detection is not available. Therefore, there is a need in the art for a coating detection method that overcomes the above mentioned limitations.
- it is desirable during cleaning of the flow meter to be able to detect when the meter is completely uncoated.
- a method for detecting a deviation in a flow meter parameter comprises the steps of: measuring a differential pressure across at least a portion of the flow meter; comparing the measured differential pressure to an expected differential pressure based on the measured flow rate; and detecting a deviation in the flow meter parameter if the difference between the measured differential pressure and the expected differential pressure exceeds a threshold limit.
- the method further comprises the step of measuring a differential pressure across the entire flow meter.
- the expected differential pressure is based on a known fixed fluid viscosity.
- the expected differential pressure is obtained from a previously prepared plot of differential pressure v. flow rate.
- the method further comprises the step of storing the expected differential pressure in a meter electronics.
- the threshold limit comprises a predetermined value.
- the flow meter comprises a Coriolis flow meter.
- the deviation in the flow meter parameter indicates a coating in the flow meter.
- a method for detecting a deviation in a flow meter parameter comprises the steps of: measuring a differential pressure across the flow meter; calculating an expected fluid flow rate based on the differential pressure; and comparing the measured fluid flow rate to the calculated fluid flow rate and detecting a deviation in the flow meter parameter if the difference between the measured fluid flow rate and the calculated fluid flow rate exceeds a threshold limit.
- the step of calculating an expected fluid flow rate comprises the step of characterizing the flow meter to an orifice meter.
- the method further comprises the step of determining a flow meter coefficient.
- the method further comprises the step of storing the expected fluid flow rate in meter electronics.
- the threshold limit comprises a predetermined value.
- the flow meter comprises a Coriolis flow meter.
- the deviation in the flow meter parameter indicates a coating in the flow meter.
- a method for detecting a deviation in a flow meter parameter comprises the steps of: measuring a differential pressure across at least a portion of the flow meter; calculating a friction factor based on a measured flow rate and the measured differential pressure; and comparing the calculated friction factor to an expected friction factor based on the measured flow rate and detecting a deviation in the flow meter parameter if the difference between the calculated friction factor and the expected friction factor exceeds a threshold limit.
- the step of calculating a friction factor comprises using the equation: DAP
- the expected friction factor is obtained from a previous measurement.
- the differential pressure is measured across the entire flow meter.
- the expected friction factor is calculated based on a Reynold's number for the measured flow rate.
- the method further comprising the step of storing the expected friction factor in meter electronics.
- the flow meter comprises a Coriolis flow meter.
- the deviation in the flow meter parameter indicates a coating in the flow meter.
- a method for detecting a deviation in a flow meter parameter comprises the steps of: measuring a flow tube temperature in a plurality of locations; and calculating a temperature gradient based on the measured temperatures and detecting a deviation in the flow meter parameter if the calculated temperature gradient exceeds a temperature gradient threshold.
- the step of calculating a temperature gradient comprises calculating a temperature gradient from a flow meter inlet to a flow meter outlet.
- the step of calculating a temperature gradient comprises calculating a temperature gradient from a first flow tube to a second flow tube.
- the method further comprises the step of detecting a coating in the flow meter if the calculated temperature gradient changes by more than threshold limit.
- the temperature gradient threshold is predetermined.
- the flow meter comprises a Coriolis flow meter.
- the deviation in the flow meter parameter indicates a coating in the flow meter.
- FIG. 1 shows a flow meter according to an embodiment of the invention.
- FIG. 2 shows a partial cross section view of the flow meter according to an embodiment of the invention.
- FIG. 3 shows a cross section view of a flow tube with a coating formed inside the flow tube.
- FIG. 4 shows a block diagram of the flow meter according to an embodiment of the invention.
- FIGS. 1 - 4 and the following description depict specific examples to teach those skilled in the art how to make and use the best mode of the invention. For the purpose of teaching inventive principles, some conventional aspects have been simplified or omitted. Those skilled in the art will appreciate variations from these examples that fall within the scope of the invention. Those skilled in the art will appreciate that the features described below can be combined in various ways to form multiple variations of the invention. As a result, the invention is not limited to the specific examples described below, but only by the claims and their equivalents.
- FIG. 1 shows a flow meter 100 according to an embodiment of the invention. According to one embodiment of the invention, the flow meter 100 comprises a Coriolis flow meter.
- the flow meter 100 comprises a spacer 103 enclosing the lower portion of the flow tubes 101, 102 which are internally connected on their left ends to flange 104 via its neck 108 and which are connected on their right ends via neck 120 to flange 105, and manifold 107. Also shown in FIG. 1 are the outlet 106 of flange 105, left pick-off LPO, right pick-off RPO, and driver D.
- the right pick-off RPO is shown in some detail and includes magnet structure 115 and coil structure 116.
- Element 114 on the bottom of manifold spacer 103 is an opening for receiving from meter electronics (not shown) a wire (not shown) that extends internally to driver D and pick-offs LPO and RPO.
- Flow meter 100 is adapted when in use to be connected via flanges 104 and 105 to a pipeline or the like.
- FIG. 2 shows a cut away view of the flow meter 100. This view removes the front portion of manifold spacer 103 so that parts internal to the manifold spacer may be shown. The parts that are shown on FIG. 2, but not on FIG.
- outer end brace bars 201 and 204 include outer end brace bars 201 and 204, inner brace bars 202 and 203, right end flow tube outlet openings 205 and 212, flow tubes 101 and 102, curved flow tube sections 214, 215, 216, and 217.
- flow tubes 101 and 102 vibrate about their bending axes W and W.
- the outer end brace bars 201 and 204 and the inner brace bars 202 and 203 help determine the location of bending axes W and W.
- the flow meter 100 includes a pressure sensor 230.
- pressure sensor 230 comprises a differential pressure sensor.
- Pressure sensor 230 is connected to the flow meter 100 by means of pressure taps 231 and 232 to obtain a pressure reading.
- the taps 231 and 232 allow pressure sensor 230 to continuously monitor the material pressure drop across flow meter 100.
- the taps 231, 232 may be connected to the flow meter 100 at any desired location, according to the embodiment shown in FIG. 2, the taps 231, 232 are connected at the flanges 104, 105 respectively.
- pressure sensor 230 may obtain a differential pressure measurement for the entire flow meter 100 and not just the active portion of the flow meter 100.
- the pressure taps 231, 232 may be located in the pipeline to which the flow meter is connected. The differential pressure measurement is described further below.
- FIG. 2 also shows a plurality of temperature sensing devices 240.
- the temperature sensing devices comprise RTD sensors.
- RTD sensors may be implemented and the present invention should not be limited to RTD sensors.
- six RTD sensors 240 are shown, it should be understood that any number of RTD sensors may be implemented and still fall within the scope of the present invention.
- Both the pressure sensor 230 and the RTD sensors 240 are shown connected to meter electronics 20 via leads ⁇ P signal and RTD signal, respectively.
- the left and right pick-off sensors, LPO, RPO, as well as driver D, which are shown in FIG. 1, are also connected to meter electronics 20.
- Meter electronics 20 provides mass flow rate and totalized mass flow information.
- mass flow rate information, density, temperature, pressure, and other flow characteristics can be sent to downstream process control and/or measurement equipment via lead 26.
- Meter electronics 20 may also comprise a user interface that allows a user to input information such as fluid viscosity along with other known values.
- meter electronics 20 comprises a hard drive capable of storing known information or calculated information for future retrieval. This stored information is discussed further below.
- FIG. 3 shows a cross section view of a portion of the flow tube 101 with a coating 310.
- coating 310 may also form inside flow tube 102 as well as other parts of the flow meter 100 exposed to a process fluid. As the process fluid flows through the flow tube 101, deposits of the process fluid may be left behind. Over time, these deposits form a coating 310.
- the coating 310 may cover substantially the entire inside diameter of the flow tube 101 as shown, or alternatively, the coating 310 may be formed in certain areas of the flow tube 101, while other areas are free from coating 310.
- the coating 310 in a particular application may not be as thick as shown in FIG.
- the coating 310 becomes thick enough to substantially plug the flow meter 100. Even if the coating 310 is not thick enough to plug the flow meter 100, it can reduce the cross sectional area provided for the process fluid to flow through.
- the flow tube 101 may have an internal diameter of D 1 ; however, with the coating 310 present, the actual allowable diameter in which the process fluid can flow through is reduced to D 2 .
- the present invention provides alternative methods for determining the presence of coating 310 within the flow meter 100. Furthermore, while prior art methods are limited to detecting coating 310 only in the active part, i.e., the vibrating section of the flow tubes 101, 102, the present invention is capable of detecting coating 310 in all sections of the flow meter 100, including the manifolds 104, 105. It should be understood however, that the present invention is not limited to the detection of coating, but rather the present invention provides alternative methods for detecting a deviation in a flow meter parameter.
- the flow meter parameter may be any measurement that is obtained from the flow meter. In some embodiments the deviation in the flow meter parameter is caused by coating 310.
- the methods provided below detect a deviation in a flow meter parameter, which may provide a diagnostic that further investigation is required.
- a deviation in a flow meter parameter may be detected according to one of the methods described below.
- a deviation in a flow meter parameter is detected directly from the differential pressure measurement obtained from pressure sensor 230.
- a plot of differential pressure across a portion of the flow meter 100 versus mass flow rate can be prepared for a known fixed fluid viscosity. Based on this plot, an expected differential pressure can be determined for a given flow rate. The actual differential pressure can then be continuously monitored using the pressure sensor 230 and compared to the expected differential pressure for the measured flow rate.
- the threshold limit comprises a predetermined value.
- the threshold limit is set by a user or operator.
- Another method for detecting a deviation in a flow meter parameter is to characterize the flow meter 100 as an orifice meter.
- Orifice meters are generally known and are used to measure a fluid flow based on a differential pressure. They have certain advantages over other meters that measure fluid flow based on a differential pressure because they occupy much less space.
- An orifice meter operates by providing a plate with a hole in a pipe, where the hole is smaller than the diameter of the pipe. This reduction in the cross sectional area provided for fluid flow increases the velocity head at the expense of the pressure head.
- This differential pressure can be measured by pressure taps before and after the plate. Using the measured differential pressure, a fluid velocity can be calculated based on an equation such as, for example: Where:
- the orifice coefficient, C 0 remains almost constant and is independent for Reynold's numbers greater than approximately 30,000.
- the flow meter 100 experiences a measurable drop in pressure and can be viewed as an orifice meter as shown in FIG. 4.
- FIG. 4 shows the flow meter 100 positioned within a pipeline 401 and connected to meter electronics 20.
- the internal structure of the flow meter 100 is not shown, but rather, the flow meter 100 is shown as a simple block diagram.
- the flow meter 100 can be characterized as an orifice meter.
- the pressure sensor 430 can measure the differential pressure between the inlet 410 of the flow meter 100 and the outlet 411 using the pressure taps 431, 432, respectively.
- a flow meter coefficient can be determined experimentally. The flow meter coefficient being similar to an orifice coefficient.
- a flow rate can be calculated based on the differential pressure across the flow meter 100 based on the same principals as a flow rate is determined using an orifice meter.
- the flow rate measured by the flow meter 100 can be compared to an expected flow rate obtained by a calculation using equation (1) or a similar equation used for calculating flow rates based on an orifice meter. If the expected flow rate falls outside of a threshold difference from the flow rate obtained from the flow meter 100, meter electronics 20 may signal a deviation in the flow meter parameter. The deviation may be caused by the presence of coating 310 within the flow meter 100. However, the deviation may be caused by something other than coating 310.
- meter electronics 20 may signal little or no deviation in the flow meter parameter. It should be understood that the threshold difference may be predetermined or may be determined by an operator based on the particular circumstances.
- Another method for detecting the presence of a deviation in a flow meter parameter is to use a friction factor, such as the fanning friction factor, /
- a friction factor such as the fanning friction factor, /
- Other friction factors are generally known in the art such as the Darcy Weissbach friction factor, which is approximately 4/ It should be understood that the particular friction factor used is not important for the purposes of the present invention as any applicable equations can be adjusted according to the friction factor used.
- the flow meter 100 can be characterized as a circular pipe having a known inner diameter and length.
- One important number in characterizing fluid flow through a pipe is the use of the Reynold's number, Re, described above in equation (2).
- the tube diameter, D can be easily determined and is generally known at the factory.
- Many flow meters, including Coriolis flow meters are capable of measuring fluid aspects, such as the fluid density and the mass flow rate. From these two quantities, the average liquid velocity can be calculated. The fluid viscosity can also be determined based on a known, a calculated, or a measured value.
- the friction factor of a system is defined as the ratio of the wall shear stress to the product of the density and the velocity head ( V 2 H). It is often useful for incompressible fluid flow systems to characterize the friction factor, / in terms of the Reynold's number, Re.
- the exact equation varies depending on the particular characteristics of both the fluid as well as the pipe through which the fluid is flowing. It should be understood that the equations that follow are merely examples and other similar equations are generally known in the art. Therefore, the equations outlined below should not limit the scope of the invention.
- the friction factor,/can be characterized as:
- the friction factor /can be characterized as :
- Equation (4) can be used with reasonable accuracy for 10 4 ⁇ Re ⁇ 10 6 .
- Other equations are also known for correlating the friction factor to the Reynold's number such as:
- Equation (5) is generally applicable for 50,000 ⁇ Re ⁇ 10 6 and equation (6) is generally applicable for 3,000 ⁇ Re ⁇ 3xl0 6 . Based on equation 1 and any of equations 3-
- the friction factor of the system can be determined with the only unknown being the viscosity. Depending on the flow rate, changes in the viscosity may be insignificant. Alternatively, the user could enter a nominal viscosity.
- the differential pressure can be obtained by pressure sensor 230; the length of the flow meter 100 between the pressure taps 231, 232 can be easily measured; the tube diameter can also be easily measured; the fluid density can be obtained from the flow meter 100, and the average velocity can be obtained based on the mass flow rate and the density measured from the flow meter 100. Therefore, all of the variables on the right hand side of equation (7) can be found.
- a diagnostic is generated based on the presence of a deviation in a flow meter parameter by comparing a calculated friction factor, /1 based on a differential pressure to an expected friction factor /1.
- the expected friction factor f s can be obtained in a number of different ways.
- an expected friction factor /L can be determined either at the factor or on site, when it is known that there is little or no coating present.
- the expected friction factor ⁇ can be obtained based on various flow rate measurements and therefore a curve of friction factor v. flow rate can be prepared.
- the expected friction factor, f s can be prepared in advance and stored in meter electronics 20.
- the expected friction factor f e can be calculated based on a correlation to the Reynold's number obtained during normal operation.
- the pressure sensor 230 can obtain a differential pressure measurement of the flow meter 100.
- the flow meter 100 can obtain a flow rate measurement. From the flow rate measurement along with the differential pressure measurement, a calculated friction factor ⁇ can be calculated from equation (7). This calculated friction factor /1 can be compared to the expected friction factor /L. Variations in the two friction factors are indicative of a deviation in the flow meter parameter. According to one embodiment, the deviation may be caused by coating 310 in the flow meter 100.
- the deviation may be caused by other situations, such as plugging, inconsistent process fluid mixture, bubbles in the process fluid, etc.
- meter electronics 20 can determine that either no or little deviation is present in the flow meter parameter. If on the other hand, the calculated friction factor /1 falls beyond the threshold limit of the expected friction factor /L, meter electronics 20 can send an alert that a deviation may be present within the flow meter parameter.
- the threshold limit may be predetermined based on the particular flow meter or flow characteristics. According to another embodiment of the invention, the threshold limit may be determined on site by the user or operator.
- this method may also determine a deviation in the flow meter parameter in the absence of an exactly known fluid viscosity. Depending on the flow rate of the fluid, a small change in viscosity may not result in a substantial change in the Reynold's number. Therefore, an average viscosity may be input by the user, without a further need to measure the viscosity.
- a deviation in a flow meter parameter may be detected using temperature measurements.
- the flow meter 100 includes two or more temperature sensors, such as RTDs 240.
- FIG. 2 only shows six RTDs, it should be understood that in other embodiments, the flow meter 100 may include more or less than six RTD sensors 240.
- the RTD sensors 240 can monitor the temperature of the flow tubes 101, 102. Coating 310, for example, may interfere with the fluid flow through the flow tubes 101, 102.
- the coating 310 may also cause unusual variations in the temperature gradient from the inlet to the outlet of a given flow tube, either 101 or 102. Additionally, coating 310 may cause a temperature gradient from flow tube 101 to flow tube 102. Plugging may also affect the temperature gradient because little or no fluid is actually traveling through the flow meter 100. Therefore, according to an embodiment of the invention, a deviation in a flow meter parameter may be detected based on a temperature gradient. More specifically, according to an embodiment of the invention, a deviation may be determined by tracking a change in the temperature gradient obtained from more than one temperature sensor, such as RTD sensor 240. According to one embodiment, the temperature gradient is measured from an inlet of the flow meter 100 to an outlet of the flow meter 100.
- the temperature gradient is measured from one flow tube 101 of the flow meter 100 to another flow tube 102 of the flow meter 100.
- coating 310 may be detected if a temperature gradient exceeds a temperature gradient threshold value.
- the temperature gradient threshold value comprises a predetermined value.
- the temperature gradient threshold is determined by a user or operator.
- the flow meter 100 may include a temperature gradient even in the absence of a deviation. Therefore, according to an embodiment of the invention, a deviation may be detected based on a change in the already existing temperature gradient.
- the description above provides multiple methods for detecting a deviation in a flow meter parameter of a flow meter 100.
- the deviation in the flow meter parameter may be used to generate a diagnostic, which may be indicative of coating.
- Each of the methods includes different advantages and the particular method employed may depend on the existing circumstances or equipment available. Some of the methods allow for a detection of a deviation in a parameter in the absence of a deviation in the flow rate measurement. In addition, more than one method or all of the methods discussed above may be incorporated into a single flow meter system. Therefore, meter electronics 20 may compare the detection of a deviation obtained using one method to the results obtained from another method.
Landscapes
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- General Physics & Mathematics (AREA)
- Measuring Volume Flow (AREA)
Abstract
Description
Claims
Priority Applications (27)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/US2008/062295 WO2009134268A1 (en) | 2008-05-01 | 2008-05-01 | Method for generating a diagnostic from a deviation of a flow meter parameter |
KR1020137018677A KR20130085451A (en) | 2008-05-01 | 2008-05-01 | Method for detecting a deviation in a flow meter parameter |
KR1020127021403A KR20120102816A (en) | 2008-05-01 | 2008-05-01 | Method for generating a diagnostic from a deviation of a flow meter parameter |
AU2008355583A AU2008355583B2 (en) | 2008-05-01 | 2008-05-01 | Method for generating a diagnostic from a deviation of a flow meter parameter |
KR1020137018681A KR20130085452A (en) | 2008-05-01 | 2008-05-01 | Method for detecting a deviation in a flow meter parameter |
MX2010011725A MX2010011725A (en) | 2008-05-01 | 2008-05-01 | Method for generating a diagnostic from a deviation of a flow meter parameter. |
US12/936,564 US10480977B2 (en) | 2008-05-01 | 2008-05-01 | Method for generating a diagnostic from a deviation of a flow meter parameter |
EP08769265.3A EP2283329B1 (en) | 2008-05-01 | 2008-05-01 | Method for generating a diagnostic from a deviation of a flow meter parameter |
BRPI0822598-2A BRPI0822598B1 (en) | 2008-05-01 | 2008-05-01 | METHOD FOR DETECTING A DEVIATION IN A FLOW METER PARAMETER |
KR1020127021401A KR20120102814A (en) | 2008-05-01 | 2008-05-01 | Method for generating a diagnostic from a deviation of a flow meter parameter |
EP12005629.6A EP2535688B1 (en) | 2008-05-01 | 2008-05-01 | Method for generating a diagnostic from a deviation of a flow meter parameter |
CN200880128969XA CN102016519B (en) | 2008-05-01 | 2008-05-01 | Method for generating a diagnostic from a deviation of a flow meter parameter |
EP11000702.8A EP2439500B1 (en) | 2008-05-01 | 2008-05-01 | Method for generating a diagnostic from a deviation of flow meter parameter |
KR1020127021402A KR101298551B1 (en) | 2008-05-01 | 2008-05-01 | Method for detecting a deviation in a flow meter parameter |
CA2895860A CA2895860C (en) | 2008-05-01 | 2008-05-01 | Method for generating a diagnostic from a deviation of a flow meter parameter |
CA2722856A CA2722856C (en) | 2008-05-01 | 2008-05-01 | Method for generating a diagnostic from a deviation of a flow meter parameter |
KR1020107026931A KR20100137018A (en) | 2008-05-01 | 2008-05-01 | Method for generating a diagnostic from a deviation of a flow meter parameter |
CA2895864A CA2895864C (en) | 2008-05-01 | 2008-05-01 | Method for generating a diagnostic from a deviation of a flow meter parameter |
JP2011507393A JP5323928B2 (en) | 2008-05-01 | 2008-05-01 | How to diagnose from abnormal flowmeter parameters |
KR1020147005127A KR101572011B1 (en) | 2008-05-01 | 2008-05-01 | Method for detecting a deviation in a flow meter parameter |
ARP090101499A AR071602A1 (en) | 2008-05-01 | 2009-04-28 | METHOD FOR GENERATING A DIAGNOSIS FROM A DEVIATION OF A PARAMETER OF A FLOW METER |
HK11110381.3A HK1156101A1 (en) | 2008-05-01 | 2011-09-30 | Method for generating a diagnostic from a deviation of a flow meter parameter |
ARP140103044A AR097331A2 (en) | 2008-05-01 | 2014-08-13 | METHOD FOR DETECTING A DEVIATION OF A FLOW METER PARAMETER |
ARP140103045A AR097332A2 (en) | 2008-05-01 | 2014-08-13 | METHOD FOR DETECTING A DEVIATION OF A FLOW METER PARAMETER |
ARP140103046A AR097333A2 (en) | 2008-05-01 | 2014-08-13 | METHOD FOR DETECTING A DEVIATION OF A FLOW METER PARAMETER |
US16/600,024 US11415447B2 (en) | 2008-05-01 | 2019-10-11 | Method for generating a diagnostic from a deviation of a flow meter parameter |
US17/851,828 US11852517B2 (en) | 2008-05-01 | 2022-06-28 | Method for generating a diagnostic from a deviation of a flow meter parameter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/US2008/062295 WO2009134268A1 (en) | 2008-05-01 | 2008-05-01 | Method for generating a diagnostic from a deviation of a flow meter parameter |
Related Child Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/936,564 A-371-Of-International US10480977B2 (en) | 2008-05-01 | 2008-05-01 | Method for generating a diagnostic from a deviation of a flow meter parameter |
EP11000702.8A Previously-Filed-Application EP2439500B1 (en) | 2008-05-01 | 2008-05-01 | Method for generating a diagnostic from a deviation of flow meter parameter |
US16/600,024 Division US11415447B2 (en) | 2008-05-01 | 2019-10-11 | Method for generating a diagnostic from a deviation of a flow meter parameter |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009134268A1 true WO2009134268A1 (en) | 2009-11-05 |
Family
ID=40342238
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2008/062295 WO2009134268A1 (en) | 2008-05-01 | 2008-05-01 | Method for generating a diagnostic from a deviation of a flow meter parameter |
Country Status (12)
Country | Link |
---|---|
US (3) | US10480977B2 (en) |
EP (3) | EP2439500B1 (en) |
JP (1) | JP5323928B2 (en) |
KR (7) | KR20130085451A (en) |
CN (1) | CN102016519B (en) |
AR (4) | AR071602A1 (en) |
AU (1) | AU2008355583B2 (en) |
BR (1) | BRPI0822598B1 (en) |
CA (3) | CA2895864C (en) |
HK (1) | HK1156101A1 (en) |
MX (1) | MX2010011725A (en) |
WO (1) | WO2009134268A1 (en) |
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011068500A1 (en) * | 2009-12-01 | 2011-06-09 | Micro Motion, Inc. | Vibratory flowmeter friction compensation |
DE102010000760A1 (en) * | 2010-01-11 | 2011-07-14 | Endress + Hauser Flowtec Ag | Measuring system i.e. measuring device and/or Coriolis or mass flow measuring device for medium e.g. gas and/or liquid, flowing in pipeline, has transmitter electronics generating measured value |
DE102010000759A1 (en) * | 2010-01-11 | 2011-07-14 | Endress + Hauser Flowtec Ag | Measuring system i.e. Coriolis mass flow measuring device, for measuring pressure difference of medium flowing in pipeline of industrial plant, has electronics housing generating measured value representing reynolds number for medium |
WO2011080171A3 (en) * | 2009-12-31 | 2011-09-09 | Endress+Hauser Flowtec Ag | Measuring system comprising a vibration-type transducer |
WO2012031843A1 (en) | 2010-09-10 | 2012-03-15 | Endress+Hauser Flowtec Ag | Method for detecting a blockage in a flowmeter |
DE102010040600A1 (en) | 2010-09-10 | 2012-03-15 | Endress + Hauser Flowtec Ag | Method for detecting a blockage in a Coriolis flowmeter |
DE102011080415A1 (en) | 2011-08-04 | 2013-02-07 | Endress + Hauser Flowtec Ag | A method for detecting deposit formation or abrasion in a flowmeter |
US8671776B2 (en) | 2009-12-31 | 2014-03-18 | Endress + Hauser Flowtec Ag | Measuring medium flow with a measuring transducer of the vibration type |
CN103765171A (en) * | 2011-06-08 | 2014-04-30 | 微动公司 | Method and apparatus for determining and controlling a static fluid pressure through a vibrating meter |
WO2014198494A1 (en) | 2013-06-13 | 2014-12-18 | Endress+Hauser Flowtec Ag | Measuring system having a pressure device and method for monitoring and/or checking such a pressure device |
DE102013106157A1 (en) | 2013-06-13 | 2014-12-18 | Endress + Hauser Flowtec Ag | Measuring system with a pressure device and method for monitoring and / or checking such a pressure device |
DE102014103430A1 (en) | 2014-03-13 | 2015-09-17 | Endress + Hauser Flowtec Ag | Converter device and thus formed measuring system |
DE102014103427A1 (en) | 2014-03-13 | 2015-09-17 | Endress + Hauser Flowtec Ag | Converter device and thus formed measuring system |
EP3184973A1 (en) | 2015-12-21 | 2017-06-28 | Endress + Hauser Flowtec AG | Device for measuring a property of a flowing fluid |
DE102016112599A1 (en) | 2016-07-08 | 2018-01-11 | Endress + Hauser Flowtec Ag | measuring system |
DE102016112600A1 (en) | 2016-07-08 | 2018-01-11 | Endress + Hauser Flowtec Ag | measuring system |
DE102017106211A1 (en) | 2016-12-29 | 2018-07-05 | Endress+Hauser Flowtec Ag | Vibronic measuring system for measuring a mass flow rate |
WO2018121930A1 (en) | 2016-12-29 | 2018-07-05 | Endress+Hauser Flowtec Ag | Vibronic measuring system for measuring a mass flow rate |
WO2018121929A1 (en) | 2016-12-29 | 2018-07-05 | Endress+Hauser Flowtec Ag | Vibronic measuring system for measuring a mass flow rate |
DE102017118109A1 (en) | 2017-08-09 | 2019-02-14 | Endress + Hauser Flowtec Ag | sensor assembly |
DE102018101923A1 (en) | 2017-11-02 | 2019-05-02 | Endress + Hauser Flowtec Ag | Method for detecting deposit formation in a measuring tube and measuring device for carrying out the method |
WO2021069192A1 (en) | 2019-10-07 | 2021-04-15 | Endress+Hauser Flowtec Ag | Method for monitoring a measuring device system |
DE102020120054A1 (en) | 2020-07-29 | 2022-02-03 | Endress + Hauser Flowtec Ag | Method for determining a fluid temperature and measuring system for it |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8752433B2 (en) * | 2012-06-19 | 2014-06-17 | Rosemount Inc. | Differential pressure transmitter with pressure sensor |
US8997555B2 (en) * | 2013-01-07 | 2015-04-07 | Flowpro Well Technology a.s. | System and method for generating a change in pressure proportional to fluid viscosity |
EP3097389B1 (en) * | 2014-01-24 | 2020-09-09 | Micro Motion, Inc. | Vibratory flowmeter and method for meter verification |
EP3134713B1 (en) * | 2014-04-21 | 2021-03-10 | Micro Motion, Inc. | Flowmeter manifold with indexing boss |
EP3194903B8 (en) * | 2014-09-19 | 2021-10-20 | Weatherford Technology Holdings, LLC | Coriolis flow meter having flow tube with equalized pressure differential |
PL3012705T3 (en) * | 2014-10-22 | 2017-07-31 | Danfoss A/S | Heat exchanger valve arrangement, heating system and method for operating a heating system |
GB201506070D0 (en) * | 2015-04-10 | 2015-05-27 | Hartridge Ltd | Flow meter |
DE102016226003A1 (en) * | 2016-12-22 | 2018-06-28 | Robert Bosch Gmbh | Method and device for correcting an air mass flow sensor |
JP6299025B1 (en) * | 2017-07-13 | 2018-03-28 | 有限会社北沢技術事務所 | Pipe flow measuring device and pipe downstream pressure prediction control device |
WO2019045703A1 (en) * | 2017-08-30 | 2019-03-07 | Micro Motion, Inc. | Detecting and identifying a change in a vibratory meter |
CN107631765B (en) * | 2017-09-05 | 2020-07-07 | 合肥科迈捷智能传感技术有限公司 | Differential pressure flowmeter water treatment method |
KR102046035B1 (en) * | 2018-09-18 | 2019-11-18 | 주식회사 삼천리 | Apparatus for diagnosing fault of gas meter and gas meter using the same |
DE102019125682A1 (en) * | 2019-09-24 | 2021-03-25 | Endress + Hauser Flowtec Ag | Arrangement and method for recognizing and correcting an incorrect flow measurement |
DE102019009021A1 (en) * | 2019-12-29 | 2021-07-01 | Endress+Hauser Flowtec Ag | Method for monitoring a flow rate of a medium by means of a Coriolis mass flow meter and a differential pressure meter |
EP4097427A1 (en) * | 2020-01-31 | 2022-12-07 | Micro Motion, Inc. | Method of correcting flow meter variable |
DE102020123162A1 (en) * | 2020-09-04 | 2022-03-10 | Endress+Hauser Flowtec Ag | Method for operating a measuring arrangement with a Coriolis measuring device and measuring arrangement |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003294504A (en) * | 2002-03-29 | 2003-10-15 | Oval Corp | Flowmeter |
US20070084298A1 (en) * | 2005-09-27 | 2007-04-19 | Endress + Hauser Flowtec Ag | Method for measuring a medium flowing in a pipeline and measurement system therefor |
EP1821082A2 (en) | 2006-02-15 | 2007-08-22 | Dresser, Inc. | Flow meter diagnostics device |
JP2008089373A (en) | 2006-09-29 | 2008-04-17 | Oval Corp | Flow measurement by coriolis flowmeter, and flow controller |
US20080141789A1 (en) * | 2006-12-18 | 2008-06-19 | Abb Patent Gmbh | Method and device for compensation for influences, which interfere with the measurement accuracy, in measurement devices of the vibration type |
Family Cites Families (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS49617A (en) | 1972-04-18 | 1974-01-07 | ||
CA992348A (en) * | 1974-03-22 | 1976-07-06 | Helen G. Tucker | Measurement of at least one of the fluid flow rate and viscous characteristics using laminar flow and viscous shear |
US4109524A (en) | 1975-06-30 | 1978-08-29 | S & F Associates | Method and apparatus for mass flow rate measurement |
USRE31450E (en) | 1977-07-25 | 1983-11-29 | Micro Motion, Inc. | Method and structure for flow measurement |
US4491025A (en) | 1982-11-03 | 1985-01-01 | Micro Motion, Inc. | Parallel path Coriolis mass flow rate meter |
JPH049617A (en) * | 1990-04-26 | 1992-01-14 | Ube Ind Ltd | Method for measuring flow rate of granular substance |
WO1992020006A2 (en) | 1991-04-26 | 1992-11-12 | Unit Instruments, Inc. | Thermal mass flow sensor |
JP2763961B2 (en) * | 1992-04-23 | 1998-06-11 | ジューキ株式会社 | Envelope processing unit |
CN1076027A (en) | 1992-12-14 | 1993-09-08 | 陈生 | Capillary viscosity is taken into account the assay method of liquid viscosity |
KR100205969B1 (en) | 1994-03-18 | 1999-07-01 | 이현숙 | Measuring device of fluid speed flow meter |
US5594180A (en) | 1994-08-12 | 1997-01-14 | Micro Motion, Inc. | Method and apparatus for fault detection and correction in Coriolis effect mass flowmeters |
US5907104A (en) * | 1995-12-08 | 1999-05-25 | Direct Measurement Corporation | Signal processing and field proving methods and circuits for a coriolis mass flow meter |
CN1134651C (en) | 1996-01-17 | 2004-01-14 | 微动公司 | Bypass type coriolis effect flowmeter |
US5661232A (en) * | 1996-03-06 | 1997-08-26 | Micro Motion, Inc. | Coriolis viscometer using parallel connected Coriolis mass flowmeters |
WO1997033161A1 (en) * | 1996-03-08 | 1997-09-12 | Holometrix, Inc. | Heat flow meter instruments |
US6092409A (en) | 1998-01-29 | 2000-07-25 | Micro Motion, Inc. | System for validating calibration of a coriolis flowmeter |
US6227059B1 (en) * | 1999-01-12 | 2001-05-08 | Direct Measurement Corporation | System and method for employing an imaginary difference signal component to compensate for boundary condition effects on a Coriolis mass flow meter |
US6327915B1 (en) * | 1999-06-30 | 2001-12-11 | Micro Motion, Inc. | Straight tube Coriolis flowmeter |
JP2002039824A (en) | 2000-07-25 | 2002-02-06 | Yazaki Corp | Flow rate measurement device |
CN1116587C (en) | 2000-11-28 | 2003-07-30 | 北京山鑫海达科技发展有限公司 | Method for increasing measuring range and precision of orifice plate flowmeter |
JP2003270010A (en) | 2002-03-19 | 2003-09-25 | Ckd Corp | Device for setting flow rate and for measuring flow rate |
US6889908B2 (en) * | 2003-06-30 | 2005-05-10 | International Business Machines Corporation | Thermal analysis in a data processing system |
US6950768B2 (en) * | 2003-09-08 | 2005-09-27 | Daniel Industries, Inc. | Self-tuning ultrasonic meter |
FR2860868B1 (en) | 2003-10-13 | 2006-02-17 | Jean Michel Bargot | DEVICE FOR CONTROLLING THE DERIVATIVE OF AN ORGAN FOR MEASURING THE FLOW RATE AND / OR THE VOLUME OF A FLUID AND / OR CALIBRATING THE MEASURING MEMBER |
JP4796283B2 (en) * | 2004-03-31 | 2011-10-19 | 高砂熱学工業株式会社 | Flow rate measuring method and flow rate measuring device using temperature sensor |
IL171764A (en) * | 2005-11-03 | 2011-02-28 | G R T Dev Ltd | Apparatus and method for measuring a fluid flow- rate within a narrow conduit |
JP4645437B2 (en) * | 2005-12-22 | 2011-03-09 | 株式会社島津製作所 | Gradient liquid feeder |
WO2008025935A1 (en) | 2006-08-29 | 2008-03-06 | Richard Steven | Improvements in or relating to flow metering |
DE102007036258B4 (en) * | 2007-08-02 | 2019-01-03 | Robert Bosch Gmbh | Method and device for operating an internal combustion engine |
KR101201392B1 (en) * | 2007-10-15 | 2012-11-14 | 마이크로 모우션, 인코포레이티드 | Vibratory flow meter and method for determining a fluid temperature of a flow material |
-
2008
- 2008-05-01 KR KR1020137018677A patent/KR20130085451A/en not_active Application Discontinuation
- 2008-05-01 MX MX2010011725A patent/MX2010011725A/en active IP Right Grant
- 2008-05-01 WO PCT/US2008/062295 patent/WO2009134268A1/en active Application Filing
- 2008-05-01 EP EP11000702.8A patent/EP2439500B1/en active Active
- 2008-05-01 CA CA2895864A patent/CA2895864C/en active Active
- 2008-05-01 US US12/936,564 patent/US10480977B2/en active Active
- 2008-05-01 CN CN200880128969XA patent/CN102016519B/en active Active
- 2008-05-01 CA CA2722856A patent/CA2722856C/en active Active
- 2008-05-01 KR KR1020127021401A patent/KR20120102814A/en not_active Application Discontinuation
- 2008-05-01 EP EP08769265.3A patent/EP2283329B1/en active Active
- 2008-05-01 CA CA2895860A patent/CA2895860C/en active Active
- 2008-05-01 KR KR1020127021403A patent/KR20120102816A/en active Application Filing
- 2008-05-01 KR KR1020147005127A patent/KR101572011B1/en active IP Right Grant
- 2008-05-01 KR KR1020137018681A patent/KR20130085452A/en not_active Application Discontinuation
- 2008-05-01 KR KR1020127021402A patent/KR101298551B1/en active IP Right Grant
- 2008-05-01 JP JP2011507393A patent/JP5323928B2/en active Active
- 2008-05-01 KR KR1020107026931A patent/KR20100137018A/en not_active Application Discontinuation
- 2008-05-01 EP EP12005629.6A patent/EP2535688B1/en active Active
- 2008-05-01 AU AU2008355583A patent/AU2008355583B2/en active Active
- 2008-05-01 BR BRPI0822598-2A patent/BRPI0822598B1/en active IP Right Grant
-
2009
- 2009-04-28 AR ARP090101499A patent/AR071602A1/en active IP Right Grant
-
2011
- 2011-09-30 HK HK11110381.3A patent/HK1156101A1/en unknown
-
2014
- 2014-08-13 AR ARP140103046A patent/AR097333A2/en active IP Right Grant
- 2014-08-13 AR ARP140103044A patent/AR097331A2/en active IP Right Grant
- 2014-08-13 AR ARP140103045A patent/AR097332A2/en active IP Right Grant
-
2019
- 2019-10-11 US US16/600,024 patent/US11415447B2/en active Active
-
2022
- 2022-06-28 US US17/851,828 patent/US11852517B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003294504A (en) * | 2002-03-29 | 2003-10-15 | Oval Corp | Flowmeter |
US20070084298A1 (en) * | 2005-09-27 | 2007-04-19 | Endress + Hauser Flowtec Ag | Method for measuring a medium flowing in a pipeline and measurement system therefor |
EP1821082A2 (en) | 2006-02-15 | 2007-08-22 | Dresser, Inc. | Flow meter diagnostics device |
JP2008089373A (en) | 2006-09-29 | 2008-04-17 | Oval Corp | Flow measurement by coriolis flowmeter, and flow controller |
US20080141789A1 (en) * | 2006-12-18 | 2008-06-19 | Abb Patent Gmbh | Method and device for compensation for influences, which interfere with the measurement accuracy, in measurement devices of the vibration type |
Non-Patent Citations (1)
Title |
---|
CUMMING I W ET AL: "Prediction of deposit depth and transmembrane pressure during crossflow microfiltration", JOURNAL OF MEMBRANE SCIENCE, ELSEVIER SCIENTIFIC PUBL.COMPANY. AMSTERDAM, NL, vol. 154, no. 2, 17 March 1999 (1999-03-17), pages 229 - 237, XP004153964, ISSN: 0376-7388 * |
Cited By (44)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011068500A1 (en) * | 2009-12-01 | 2011-06-09 | Micro Motion, Inc. | Vibratory flowmeter friction compensation |
US9689735B2 (en) | 2009-12-01 | 2017-06-27 | Micro Motion, Inc. | Vibratory flowmeter friction compensation |
CN102762960A (en) * | 2009-12-01 | 2012-10-31 | 微动公司 | Vibratory flowmeter friction compensation |
WO2011080171A3 (en) * | 2009-12-31 | 2011-09-09 | Endress+Hauser Flowtec Ag | Measuring system comprising a vibration-type transducer |
US8924165B2 (en) | 2009-12-31 | 2014-12-30 | Endress + Hauser Flowtec Ag | Measuring system having a measuring transducer of vibration-type |
US8671776B2 (en) | 2009-12-31 | 2014-03-18 | Endress + Hauser Flowtec Ag | Measuring medium flow with a measuring transducer of the vibration type |
DE102010000760A1 (en) * | 2010-01-11 | 2011-07-14 | Endress + Hauser Flowtec Ag | Measuring system i.e. measuring device and/or Coriolis or mass flow measuring device for medium e.g. gas and/or liquid, flowing in pipeline, has transmitter electronics generating measured value |
DE102010000759A1 (en) * | 2010-01-11 | 2011-07-14 | Endress + Hauser Flowtec Ag | Measuring system i.e. Coriolis mass flow measuring device, for measuring pressure difference of medium flowing in pipeline of industrial plant, has electronics housing generating measured value representing reynolds number for medium |
DE102010000760B4 (en) | 2010-01-11 | 2021-12-23 | Endress + Hauser Flowtec Ag | A measuring system comprising a transducer of the vibration type for measuring a static pressure in a flowing medium |
US8631712B2 (en) | 2010-09-10 | 2014-01-21 | Endress + Hauser Flowtec Ag | Method for detecting plugging in a coriolis flow measuring device |
DE102010040598A1 (en) | 2010-09-10 | 2012-03-15 | Endress + Hauser Flowtec Ag | Method for detecting a blockage in a flow meter |
WO2012031843A1 (en) | 2010-09-10 | 2012-03-15 | Endress+Hauser Flowtec Ag | Method for detecting a blockage in a flowmeter |
WO2012031842A1 (en) | 2010-09-10 | 2012-03-15 | Endress+Hauser Flowtec Ag | Method for detecting a stoppage in a coriolis flow meter |
DE102010040600A1 (en) | 2010-09-10 | 2012-03-15 | Endress + Hauser Flowtec Ag | Method for detecting a blockage in a Coriolis flowmeter |
US8857270B2 (en) | 2010-09-10 | 2014-10-14 | Endress + Hauser Flowtec Ag | Method for detecting plugging in a Coriolis flow measuring device |
CN103765171A (en) * | 2011-06-08 | 2014-04-30 | 微动公司 | Method and apparatus for determining and controlling a static fluid pressure through a vibrating meter |
US9134165B2 (en) | 2011-08-04 | 2015-09-15 | Endress + Hauser Flowtec Ag | Method for detecting accretion or abrasion in a flow measuring device |
EP2739944B1 (en) * | 2011-08-04 | 2023-11-01 | Endress+Hauser Flowtec AG | Method for detecting a deposit formation or an abrasion in a flow meter |
DE102011080415A1 (en) | 2011-08-04 | 2013-02-07 | Endress + Hauser Flowtec Ag | A method for detecting deposit formation or abrasion in a flowmeter |
WO2013017405A1 (en) | 2011-08-04 | 2013-02-07 | Endress+Hauser Flowtec Ag | Method for detecting a deposit formation or an abrasion in a flow meter |
WO2014198494A1 (en) | 2013-06-13 | 2014-12-18 | Endress+Hauser Flowtec Ag | Measuring system having a pressure device and method for monitoring and/or checking such a pressure device |
DE102013106157A1 (en) | 2013-06-13 | 2014-12-18 | Endress + Hauser Flowtec Ag | Measuring system with a pressure device and method for monitoring and / or checking such a pressure device |
DE102013106155A1 (en) | 2013-06-13 | 2014-12-18 | Endress + Hauser Flowtec Ag | Measuring system with a pressure device and method for monitoring and / or checking such a pressure device |
DE102014103430A1 (en) | 2014-03-13 | 2015-09-17 | Endress + Hauser Flowtec Ag | Converter device and thus formed measuring system |
DE102014103427A1 (en) | 2014-03-13 | 2015-09-17 | Endress + Hauser Flowtec Ag | Converter device and thus formed measuring system |
US9891181B2 (en) | 2015-12-21 | 2018-02-13 | Endress + Hauser Flowtec Ag | Measurement device for measuring a property of a flowing fluid |
EP3184973A1 (en) | 2015-12-21 | 2017-06-28 | Endress + Hauser Flowtec AG | Device for measuring a property of a flowing fluid |
WO2018007176A1 (en) | 2016-07-08 | 2018-01-11 | Endress+Hauser Flowtec Ag | Vibration-type fluid flow-rate measuring system having temperature compensation |
DE102016112600A1 (en) | 2016-07-08 | 2018-01-11 | Endress + Hauser Flowtec Ag | measuring system |
DE102016112599A1 (en) | 2016-07-08 | 2018-01-11 | Endress + Hauser Flowtec Ag | measuring system |
WO2018007185A1 (en) | 2016-07-08 | 2018-01-11 | Endress+Hauser Flowtec Ag | Measuring system |
DE102017106211A1 (en) | 2016-12-29 | 2018-07-05 | Endress+Hauser Flowtec Ag | Vibronic measuring system for measuring a mass flow rate |
DE102017106209A1 (en) | 2016-12-29 | 2018-07-05 | Endress+Hauser Flowtec Ag | Vibronic measuring system for measuring a mass flow rate |
WO2018121930A1 (en) | 2016-12-29 | 2018-07-05 | Endress+Hauser Flowtec Ag | Vibronic measuring system for measuring a mass flow rate |
WO2018121929A1 (en) | 2016-12-29 | 2018-07-05 | Endress+Hauser Flowtec Ag | Vibronic measuring system for measuring a mass flow rate |
DE102017118109A1 (en) | 2017-08-09 | 2019-02-14 | Endress + Hauser Flowtec Ag | sensor assembly |
WO2019029942A1 (en) | 2017-08-09 | 2019-02-14 | Endress+Hauser Flowtec Ag | Sensor assembly |
US11428578B2 (en) | 2017-08-09 | 2022-08-30 | Endress+Hauser Flowtec Ag | Sensor assembly |
WO2019086188A2 (en) | 2017-11-02 | 2019-05-09 | Endress+Hauser Flowtec Ag | Method for identifiying deposit formation in a measuring tube and measuring device for carrying out said method |
DE102018101923A1 (en) | 2017-11-02 | 2019-05-02 | Endress + Hauser Flowtec Ag | Method for detecting deposit formation in a measuring tube and measuring device for carrying out the method |
WO2021069192A1 (en) | 2019-10-07 | 2021-04-15 | Endress+Hauser Flowtec Ag | Method for monitoring a measuring device system |
US12025479B2 (en) | 2019-10-07 | 2024-07-02 | Endress+Hauser Flowtec Ag | Monitoring a disturbing variable of a measuring device system by monitoring an error velocity of the measuring device system |
DE102020120054A1 (en) | 2020-07-29 | 2022-02-03 | Endress + Hauser Flowtec Ag | Method for determining a fluid temperature and measuring system for it |
WO2022022890A1 (en) | 2020-07-29 | 2022-02-03 | Endress+Hauser Flowtec Ag | Method for ascertaining the temperature of a substance to be measured, and measuring system for this purpose |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11852517B2 (en) | Method for generating a diagnostic from a deviation of a flow meter parameter | |
EP3403058B1 (en) | Multi-phase coriolis measurement device and method | |
US20160187172A1 (en) | Ultrasonic viscometer | |
AU2011239253B2 (en) | Method for Generating a Diagnostic from a Deviation of a Flow Meter Parameter | |
AU2011239256B2 (en) | Method for Generating a Diagnostic from a Deviation of a Flow Meter Parameter | |
AU2011239252B2 (en) | Method for Generating a Diagnostic from a Deviation of a Flow Meter Parameter | |
CN103090933A (en) | Method used for diagnosing according to deviation of flow meter parameters | |
RU2454634C1 (en) | Method of diagnosing flow meter from deviation of parameter thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200880128969.X Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 08769265 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12936564 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2008355583 Country of ref document: AU |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2010/011725 Country of ref document: MX |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2722856 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011507393 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2008355583 Country of ref document: AU Date of ref document: 20080501 Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 7609/CHENP/2010 Country of ref document: IN |
|
ENP | Entry into the national phase |
Ref document number: 20107026931 Country of ref document: KR Kind code of ref document: A |
|
REEP | Request for entry into the european phase |
Ref document number: 2008769265 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010149046 Country of ref document: RU Ref document number: 2008769265 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: PI0822598 Country of ref document: BR Kind code of ref document: A2 Effective date: 20101029 |