WO2009133760A1 - Active-energy-ray-curable aqueous resin composition, active-energy-ray-curable coating material, method for production of cured coating film, and article - Google Patents

Active-energy-ray-curable aqueous resin composition, active-energy-ray-curable coating material, method for production of cured coating film, and article Download PDF

Info

Publication number
WO2009133760A1
WO2009133760A1 PCT/JP2009/057263 JP2009057263W WO2009133760A1 WO 2009133760 A1 WO2009133760 A1 WO 2009133760A1 JP 2009057263 W JP2009057263 W JP 2009057263W WO 2009133760 A1 WO2009133760 A1 WO 2009133760A1
Authority
WO
WIPO (PCT)
Prior art keywords
active energy
energy ray
weight
acrylic resin
resin
Prior art date
Application number
PCT/JP2009/057263
Other languages
French (fr)
Japanese (ja)
Inventor
正広 伊藤
栄寿 一ノ瀬
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Publication of WO2009133760A1 publication Critical patent/WO2009133760A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D4/00Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • C09D133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C09D133/10Homopolymers or copolymers of methacrylic acid esters
    • C09D133/12Homopolymers or copolymers of methyl methacrylate

Definitions

  • the present invention is used for a coating agent for plastics, films, etc., and has an appearance of a cured coating film, an active energy ray-curable aqueous resin composition excellent in wear resistance and water resistance, and the composition
  • the present invention relates to an active energy ray-curable coating material, a method for forming a cured coating film using the coating material, and an article on which the cured coating film of the coating material is disposed.
  • the active energy ray-curable composition is used as a hard coating agent for plastic substrates for home appliances, mobile phones, etc., because it has a low heat history on the coating substrate and excellent coating film hardness and scratch resistance.
  • Examples of such an active energy ray-curable composition include a polymer having a polymerizable unsaturated double bond (for example, acrylic acrylate) and a polymer having substantially no polymerizable unsaturated double bond (for example, And an active energy ray-curable composition (non-aqueous active energy ray-curable composition) containing a polymerizable monomer and an organic solvent as a diluent.
  • this active energy ray-curable composition When this active energy ray-curable composition is used as, for example, an active energy ray-curable paint for spray coating, the organic solvent is contained in a large amount of 50 to 90% by weight based on the weight of the paint. Therefore, when an active energy ray-curable coating material containing the resin composition is used to form a cured coating film on the surface of a substrate such as plastic, the working environment is deteriorated by volatilization of the organic solvent in the coating material. There's a problem. Further, the volatilized organic solvent causes air pollution.
  • an active energy ray-curable aqueous composition containing water as a diluent has been studied.
  • the photosensitive oligomer (2) having at least one carbon-carbon double bond in the molecule and the molecule
  • An aqueous photosensitive coating composition comprising a photosensitive monomer (3) having at least one carbon-carbon double bond is disclosed (for example, see Patent Document 1).
  • acrylic fine particle emulsion for example, NANOCRYL BCX-2914 manufactured by Toyo Ink Mfg. Co., Ltd.
  • a photosensitive coating composition comprising 2.3 parts by weight of trimethylolpropane triacrylate is disclosed.
  • an ultraviolet curable aqueous coating composition that contains a (meth) acryloyl group-containing water-soluble resin (A), a polyfunctional (meth) acrylate compound (B), and a photopolymerization initiator and is in an emulsified state.
  • A a (meth) acryloyl group-containing water-soluble resin
  • B a polyfunctional (meth) acrylate compound
  • a photopolymerization initiator for example, refer to Patent Document 2.
  • an emulsion in which a water-dispersible acrylic resin obtained by neutralizing a carboxyl group of a carboxyl group-containing acrylic resin obtained by using methyl methacrylate as essential and a urethane acrylate oligomer are dispersed in water can be mentioned. .
  • a hydrophobic polymerizable monomer effective for improving wear resistance and water resistance and a water-soluble composition are used.
  • a hydrophobic urethane acrylate oligomer is used as the polyfunctional (meth) acrylate, and thereby the scratch resistance and water resistance of the cured coating film are used.
  • the (meth) acryloyl group-containing water-soluble resin (A) used in the UV-curable aqueous coating composition does not have sufficient dispersion power to disperse the hydrophobic urethane acrylate oligomer in water.
  • the polyfunctional (meth) acrylate compound (B) cannot be well dispersed in the (meth) acryloyl group-containing water-soluble resin (A) in water, or the polyfunctional (meth) acrylate compound (B) There is a problem that some parts are separated immediately. Therefore, defects such as repellency and orange peel are likely to occur in the cured coating film. Further, the ultraviolet curable aqueous coating composition is not sufficient in storage stability.
  • An object of the present invention is to use an active energy ray-curable aqueous resin composition that is used for a coating agent for plastics, films and the like, has a good appearance of the cured coating film, and has excellent wear resistance and water resistance, and the composition It is to provide an active energy ray-curable coating material containing a coating material, a method for forming a cured coating film using the coating material, and an article in which the cured coating film of the coating material is disposed.
  • a radically polymerizable monomer containing an alkylene group having 2 to 8 carbon atoms and having a carboxyl group added to the terminal of the alkylene group is 2 to 15 wt.
  • Acrylic resin obtained by using methyl (meth) acrylate in an amount of 55 to 70% by weight based on the weight of the resin-forming component, and containing 0.80 to 1.29 mmol / g of neutralized carboxyl groups A resin dispersion in which (hydrophilic acrylic resin) is dispersed in water can favorably disperse a hydrophobic polymerizable monomer. Therefore, by using an active energy ray-curable water-based paint containing these, a cured coating film that hardly causes repelling or orange peel can be obtained.
  • a compound having a polymerizable unsaturated double bond of 8.6 to 10.5 mmol / g is used as the hydrophobic polymerizable monomer, and the content ratio between the resin dispersion and the compound is calculated in terms of weight.
  • the cured coating film obtained using the active energy ray-curable water-based paint is excellent in wear resistance and water resistance.
  • the active energy ray-curable coating material is applied to the surface of the substrate, the active energy ray-curable coating material is cured by irradiating the active energy ray, thereby curing the coating with excellent scratch resistance and water resistance. A film can be easily formed.
  • the present invention uses 2 to 15% by weight of the radically polymerizable monomer represented by the following general formula (1) based on the weight of the resin-forming component and methyl methacrylate based on the weight of the resin-forming component.
  • a resin solution obtained by using 55 to 70% by weight and containing 0.80 to 1.29 mmol / g of neutralized carboxyl group (A) in water or the acrylic resin
  • An active energy ray-curable aqueous resin composition obtained by dispersing a compound (B) having a polymerizable unsaturated double bond of 8.6 to 10.5 mmol / g in a resin dispersion obtained by dispersing A) in water.
  • the active energy ray curing characterized in that the ratio [(B) / (A)] of the acrylic resin (A) and the compound (B) is 1.5 to 6 in terms of weight.
  • R 1 is a hydrogen atom or a methyl group
  • R 2 is an alkylene group having 2 to 8 carbon atoms
  • n is an integer of 1 to 10)
  • the present invention also provides an active energy ray-curable coating material characterized by containing the active energy ray-curable aqueous resin composition.
  • the present invention also provides a method for forming a cured coating film, comprising: applying the active energy ray-curable coating material to a substrate; and irradiating the active energy ray to cure the applied active energy ray-curable coating material. It is to provide.
  • the present invention provides an article comprising a cured coating film of the active energy ray-curable coating material.
  • the active energy ray-curable aqueous resin composition of the present invention has a good appearance of the cured coating film and is excellent in wear resistance and water resistance. Further, by using the active energy ray-curable coating material of the present invention, a cured coating film having a good appearance of the cured coating film and excellent in abrasion resistance and water resistance can be obtained. In addition, the cured coating film of the present invention has a good appearance, and a cured coating film having excellent wear resistance and water resistance can be easily obtained. Furthermore, the article of the present invention has a cured coating film excellent in wear resistance and water resistance.
  • the acrylic resin (A) used in the present invention uses 2 to 15% by weight of the radical polymerizable monomer represented by the general formula (1) based on the weight of the resin forming component, and methyl methacrylate as the resin forming component. And from 0.80 to 1.29 mmol / g of neutralized carboxyl groups. If an acrylic resin is used in which the amount of the radically polymerizable monomer represented by the general formula (1) is less than 2% by weight based on the weight of the resin-forming component, the dispersion stability is insufficient and precipitates or separations occur. This is not preferable because the active energy ray-curable aqueous resin composition has insufficient storage stability.
  • the acrylic resin (A) used in the present invention is an acrylic resin obtained by using 3 to 10% by weight of the radically polymerizable monomer represented by the general formula (1) based on the weight of the resin-forming component. It is preferable because it becomes a good active energy ray-curable aqueous resin composition.
  • methyl methacrylate when methyl methacrylate is used in an acrylic resin less than 55% by weight based on the weight of the resin-forming component, problems such as insufficient dispersion stability, sedimentation and separation occur, and storage stability is insufficient. It is not preferable because it becomes a new active energy ray-curable aqueous resin composition.
  • an acrylic resin in which the amount of methyl methacrylate used is larger than 70% by weight based on the weight of the resin forming component the fluidity of the acrylic resin is lowered and the leveling property is deteriorated, resulting in deterioration of the coating film appearance.
  • the resulting acrylic resin has a very high viscosity, which is not preferable because it becomes an active energy ray-curable aqueous resin composition that is difficult to handle.
  • the acrylic resin (A) used in the present invention is an active energy ray-curable aqueous resin composition having good storage stability, obtained by using 55 to 65% by weight of methyl methacrylate based on the weight of resin formation Further, it is preferable because the resulting cured coating film is excellent in appearance and substrate adhesion.
  • the acrylic resin (A) used in the present invention contains a neutralized carboxyl group in the range of 0.80 to 1.29 mmol / g.
  • a neutralized carboxyl group in the range of 0.80 to 1.29 mmol / g.
  • an acrylic resin having a neutralized carboxyl group content of less than 0.80 mmol / g is used, the appearance of the cured coating film of the active energy ray curable resin composition or the active energy ray curable coating of the present invention may be repelled. This is not preferable because it generates shading.
  • an acrylic resin having a neutralized carboxyl group content of more than 1.29 mmol / g is used, the water resistance of the cured film of the active energy ray curable resin composition or the active energy ray curable coating of the present invention is lowered. This is not preferable.
  • the acrylic resin (A) used in the present invention is an acrylic resin containing a neutralized carboxyl group in the range of 0.80 to 1.29 mmol / g.
  • An active energy ray-curable resin composition and an active energy ray-curable coating composition excellent in water resistance are preferable, and an acrylic resin containing a neutralized carboxyl group in a range of 0.90 to 1.20 mmol / g is more preferable. preferable.
  • the content (molar amount) of the neutralized carboxyl group was determined to be the same (same molar amount) as the molar amount of the basic compound calculated from the amine value of the basic compound used for neutralization.
  • the amine value of the basic compound used for neutralization was determined by dissolving 1.0 g of a basic compound sample in 5 ml of tetrahydrofuran and neutralizing with 0.5 mol / l hydrochloric acid solution using bromophenol blue as an indicator. I went and asked.
  • the acrylic resin (A) used in the present invention for example, the radical polymerizable monomer represented by the general formula (1) is used in an amount of 2 to 15% by weight based on the weight of the resin forming component, and methyl methacrylate is used as the resin.
  • An acrylic resin (a) obtained by using 55 to 70% by weight based on the weight of the forming component and containing a carboxyl group is synthesized, and then the carboxyl group in the acrylic resin (a) is neutralized with a basic compound. It can be obtained by things.
  • the acrylic resin (A) used in the present invention contains a neutralized carboxyl group in the range of 0.80 to 1.29 mmol / g as described above.
  • an acrylic resin containing a carboxyl group in the range of 0.80 to 1.29 mmol / g is used as the acrylic resin (a).
  • a method of neutralizing all carboxyl groups with a basic compound neutralization rate 100%
  • the carboxyl of the acrylic resin (a) It can be obtained by a method of neutralizing a part of the group with a basic compound.
  • a part of the carboxyl group in the acrylic resin (a) having an acid value of 100 mgKOH / g, for example, 60% is neutralized.
  • a part of the carboxyl groups in the acrylic resin (a) having an acid value of 80 mgKOH / g prepared so that the content of neutralized carboxyl groups is 1.07 mmol / g in the resin, for example, 80%
  • the neutralized carboxyl group content is adjusted to 1.14 mmol / g in the resin.
  • the acrylic resin (A) used in the present invention uses an acrylic resin containing a carboxyl group in the range of 1.3 to 2.7 mmol / g, and the neutralized carboxyl group of this resin is 0.80 to 1.29 mmol.
  • a / g acrylic resin is preferred because an active energy ray-curable aqueous resin composition and an active energy ray-curable coating material having excellent appearance of the cured coating film and excellent wear resistance and water resistance can be obtained.
  • the acrylic resin (a) is preferably an acrylic resin having an acid value of 75 to 150 mgKOH / g.
  • the acid value of the carboxyl group-containing acrylic resin (a), etc. is 0.1 mol by dissolving 1.0 g of a resin sample in a mixed solution of 1.5 ml of toluene and 3.5 ml of methanol and using phenolphthalein as an indicator. It was determined by performing neutralization titration with a / l potassium hydroxide / ethanol solution.
  • the carboxyl group-containing acrylic resin (a) includes, for example, 2 to 15% by weight of the radical polymerizable monomer represented by the general formula (1) based on the weight of the resin forming component and methyl methacrylate as the resin forming component. Based on the weight of the monomer, 55 to 70% by weight and a carboxyl group-containing ethylenically unsaturated monomer as an essential component, and if necessary, a mixture in which other polymerizable monomers are mixed, are used.
  • Examples of the radical polymerizable monomer represented by the general formula (1) include ⁇ -carboxypolycaprolactone (meth) acrylate. Specific examples include ⁇ -carboxypolycaprolactone acrylate and ⁇ -carboxypolycaprolactone methacrylate. Among them, ⁇ -carboxypolycaprolactone acrylate is preferable because it is stably supplied to the market and is easily available.
  • the ⁇ -carboxypolycaprolactone (meth) acrylate can be obtained, for example, by mixing (meth) acrylic acid and ⁇ -caprolactone in the presence of an acid catalyst, stirring and reacting at 40 to 150 ° C.
  • the acid catalyst examples include p-toluenesulfonic acid, benzenesulfonic acid, aluminum chloride, stannic chloride and the like.
  • the acid catalyst is preferably used in an amount of 1 to 20 parts by weight per 100 parts by weight of (meth) acrylic acid.
  • carboxyl group-containing ethylenically unsaturated monomer examples include (meth) acrylic acid, crotonic acid, isocrotonic acid, 2-methacryloxyethyl succinic acid, 2-methacryloxyethyl hexahydrophthalic acid, 2-methacrylic acid.
  • Roxyethyl glutarate dicarboxylic acid such as (anhydrous) maleic acid, fumaric acid, (anhydrous) itaconic acid and its anhydride; monomethylmaleic acid, monoethylmaleic acid, monobutylmaleic acid, monooctylmaleic acid, monomethylfumaric acid Monoethyl fumaric acid, monobutyl fumaric acid, monooctyl fumaric acid, monomethyl itaconic acid, monoethyl itaconic acid, monobutyl itaconic acid, monoalkyl esters of dicarboxylic acids such as monooctyl itaconic acid, and the like.
  • dicarboxylic acid such as (anhydrous) maleic acid, fumaric acid, (anhydrous) itaconic acid and its anhydride; monomethylmaleic acid, monoethylmaleic acid, monobutylmaleic acid, monooctylmaleic acid, monomethylfum
  • the carboxyl group-containing ethylenically unsaturated monomer is preferably (meth) acrylic acid such as acrylic acid or methacrylic acid.
  • the carboxyl group-containing ethylenically unsaturated monomer may be used alone or in combination of two or more.
  • acrylic acid is preferable because an acrylic resin (A) having a low viscosity and excellent dispersibility can be obtained.
  • the amount of (meth) acrylic acid such as acrylic acid or methacrylic acid is preferably 10 to 15% by weight based on the weight of the resin-forming component.
  • Examples of the other ethylenically unsaturated monomers include methyl acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, iso-propyl (meth) acrylate, n-butyl (meth) acrylate, and iso- Butyl (meth) acrylate, tert-butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, lauryl (meth) acrylate, octadecyl (meth) acrylate, docosanyl (meth) acrylate, cyclopentyl (meth) acrylate, cyclohexyl (meth) Alkyl (meth) acrylates such as acrylate, bornyl (meth) acrylate, isobornyl (meth) acrylate, dicyclopentanyl (meth) acrylate, cycloalkyl (meth
  • Aromatic vinyl compounds such as styrene, p-tert-butylstyrene, ⁇ -methylstyrene, vinyltoluene;
  • ⁇ -alkoxyalkyl (meth) acrylates such as 2-methoxyethyl (meth) acrylate and 4-methoxybutyl (meth) acrylate; tertiary amide group-containing vinyl monomers such as N, N-dimethyl (meth) acrylamide Vinyl monomers having a polyalkylene oxide structure such as methoxypolyethylene glycol (meth) acrylate and methoxypolypropylene glycol (meth) acrylate; n-methylol (meth) acrylamide, n-methoxymethyl (meth) acrylamide, n-ethoxy Alkoxymethyl (meth) acrylamides such as methyl (meth) acrylamide, n-butoxymethyl (meth) acrylamide, iso-butoxymethyl (meth) acrylamide;
  • Secondary amino group-containing vinyl monomers such as n-methylaminoethyl (meth) acrylate; vinyl monomers having an active methylene group such as vinyl acetoacetate and 2-acetoacetoxyethyl (meth) acrylate; vinyl trimethoxy Vinyl monomers having hydrolyzable silyl groups such as silane and 3- (meth) acryloyloxypropyltrimethoxysilane;
  • Vinyl monomers containing silyl ester groups such as trimethylsilyl (meth) acrylate; glycidyl (meth) acrylate, methyl glycidyl (meth) acrylate, 3,4-epoxycyclohexyl (meth) acrylate, glycidyl vinyl ether, allyl glycidyl ether, etc.
  • An isocyanate group such as 2-isocyanate propene, 2-isocyanate ethyl vinyl ether, 2-isocyanate ethyl methacrylate, m-isopropenyl- ⁇ , ⁇ -dimethylbenzyl isocyanate; Examples thereof include vinyl monomers. These may be used alone or in combination of two or more.
  • the acrylic resin (A) used in the present invention is preferably an acrylic resin that does not have a polymerizable unsaturated bond because a cured coating film that relaxes curing shrinkage and is excellent in substrate adhesion can be obtained.
  • the radical polymerizable monomer represented by the general formula (1) methyl methacrylate, carboxyl group-containing ethylenically unsaturated monomer and other polymerizable monomers as raw materials, polymerizable unsaturated
  • an acrylic resin having no bond for example, as a carboxyl group-containing ethylenically unsaturated monomer and other polymerizable monomers, a monomer having one ethylenically unsaturated monomer is used. It can be obtained by using.
  • the acrylic resin (A) used in the present invention is an active energy ray curable aqueous resin composition or an active energy ray curable type in which an acrylic resin having an alkyl group in the side chain is excellent in adhesion and a cured coating film having a good appearance can be obtained. It is preferable because a paint is obtained.
  • the alkyl groups a cured coating film having excellent adhesion and good appearance is obtained, and an active energy ray curable resin composition and an active energy ray curable coating material having excellent storage stability are obtained.
  • An alkyl group having 2 to 8 atoms is more preferable.
  • alkyl group having 2 to 8 carbon atoms examples include methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, i-butyl group, t-butyl group, cyclohexyl group, 2- And an ethylhexyl group.
  • an acrylic resin having an alkyl group in the side chain as the acrylic resin (A) for example, it is obtained by using an ethylenically unsaturated monomer having an alkyl group in combination when synthesizing the acrylic resin (a).
  • the ethylenically unsaturated monomer having an alkyl group include the alkyl (meth) acrylates.
  • the amount of the ethylenically unsaturated monomer having an alkyl group used for synthesizing the acrylic resin (a) is 1 to 25% by weight based on the weight of the resin forming component, and the active energy having excellent storage stability.
  • the cured cured coating film is preferably a linear curable aqueous resin composition or an active energy radiation curable coating material, and also has good adhesion to the substrate and excellent appearance, and more preferably 3 to 20% by weight.
  • a linear curable aqueous resin composition or an active energy radiation curable coating material ethylenically unsaturated monomers having an alkyl group
  • n-butyl (meth) acrylate is preferable because it becomes an active energy ray-curable aqueous resin composition or an active energy ray-curable coating material that is more excellent in storage stability.
  • an active energy ray-curable aqueous resin composition or active energy in which an acrylic resin having a hydroxyl group is excellent in storage stability and water resistance of the resulting cured coating film is also good. It is preferable because a wire curable coating is obtained.
  • acrylic resins having a hydroxyl group an acrylic resin having a hydroxyl value of 15 to 100 mgKOH / g is preferred, and an acrylic resin having a hydroxyl value of 25 to 65 mgKOH / g is more preferred.
  • an acrylic resin having a hydroxyl group includes, for example, a radical polymerizable monomer represented by the general formula (1) as the acrylic resin (a) based on the weight of the resin-forming component. 15% by weight, methyl methacrylate 55 to 70% by weight based on the weight of the resin-forming component, carboxyl group-containing ethylenically unsaturated monomer and hydroxyl group-containing ethylenically unsaturated monomer as essential components, and further required
  • an acrylic resin is synthesized by a solution polymerization method in which a radical polymerization reaction is performed in the presence of a polymerization initiator in a solvent, and then a basic compound is used. It can be obtained by neutralizing the carboxyl group in the acrylic resin.
  • hydroxyl group-containing ethylenically unsaturated monomer examples include hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, hydroxybutyl (meth) acrylate, and the like.
  • hydroxyethyl (meth) acrylate is preferable because an active energy ray-curable aqueous resin composition and an active energy ray-curable coating material excellent in storage stability can be obtained.
  • the amount of the hydroxyl group-containing ethylenically unsaturated monomer used when preparing an acrylic resin having a hydroxyl group as the acrylic resin (a) is preferably 3 to 20% by weight based on the weight of the resin-forming component.
  • the hydroxyl value of acrylic resin (A) and the like was determined by adding 25 ml of acetic anhydride / pyridine solution (volume ratio 1/19) to 10.0 g of a resin sample and heating to react for 1 hour, and then adding phenolphthalein. Used as an indicator, neutralization titration was performed with a 0.5 mol / l potassium hydroxide / ethanol solution.
  • a water-miscible organic solvent that is miscible without being separated from water is preferable.
  • the solubility in water is 25.
  • An organic solvent of 3 g or more is preferable at ° C.
  • these water-miscible organic solvents include alcohol solvents such as methanol, ethanol, propanol, and butanol; ketone solvents such as acetone and methyl ethyl ketone; ethylene glycol monomethyl ether, ethylene glycol dimethyl ether, ethylene glycol monoethyl ether, and ethylene glycol.
  • These water-miscible organic solvents may be used alone or in combination of two or more.
  • the water-miscible organic solvent can be used in combination with other organic solvents as necessary, for example, aromatic hydrocarbon solvents such as toluene and xylene; aliphatics such as hexane, heptane, octane and decane.
  • Hydrocarbon solvents examples include ester solvents such as methyl acetate, ethyl acetate, isopropyl acetate, butyl acetate, amyl acetate, ethyl formate, butyl propionate, etc. It is not preferable, and even when necessary, it is preferable to use 1% or less based on the total amount of the aqueous resin composition.
  • aromatic hydrocarbon solvents examples of the mixed aromatic hydrocarbon solvent include commercially available products such as Solvesso # 100 and Solvesso # 150.
  • radical polymerization initiator examples include 2,2′-azobis (isobutyronitrile), 2,2′-azobis (2-methylbutyro). Nitriles), azo compounds such as azobiscyanovaleric acid; tert-butyl peroxypivalate, tert-butyl peroxybenzoate, tert-butyl peroxy-2-ethylhexanoate, di-tert-butyl peroxide, cumene hydroper Organic peroxides such as oxide, benzoyl peroxide, t-butyl hydroperoxide; inorganic peroxides such as hydrogen peroxide, ammonium persulfate, potassium persulfate, sodium persulfate, etc., and these may be used alone or in combination of two or more Can be used together.
  • the radical polymerization initiator is preferably used within a range of 0.1 to 10% by weight with respect to the radical polymerization initiator
  • the nonvolatile content in the reaction vessel at the time of the solution polymerization is preferably 30 to 90% by weight, and more preferably 50 to 80% by weight.
  • Examples of the neutralizing agent (basic compound) used to neutralize the carboxyl group in the acrylic resin (a) include monomethylamine, dimethylamine, trimethylamine, monoethylamine, diethylamine, triethylamine, monopropyllamine, and dipropyl.
  • Alkylamines such as ruamine tripropyllamine; monoethanolamine, diethanolamine, monoisopropanolamine, diisopropanolamine, N-methylethanolamine, N, N-dimethylethanolamine, N, N-diethylethanolamine, 2-amino-2 Alkanolamines such as methylpropanol, 2- (dimethylamino) -2-methylpropanol, N-methyldiethanolamine; ethylenediamine, diethylenetriamine, triethyleneteto Min, organic amines or ammonia, such as polyvalent amines such as tetraethylene pentamine (water) and the like.
  • ammonia water and trimethylamine are preferred because they are highly volatile and therefore hardly remain on the cured coating film, and a cured coating film having excellent water resistance can be obtained.
  • the neutralizing agent (basic compound) may be used alone or in combination of two or more.
  • an acrylic resin having a structure composed of a repeating unit of the compound represented by the general formula (1) and a hydrogen atom directly bonded thereto is obtained. be able to.
  • an active energy ray curable aqueous resin composition or an active energy ray curable coating material that is excellent in storage stability and does not increase in viscosity too much is used. From the viewpoint of being obtained, 5,000 to 30,000 is preferable, and 8,000 to 25,000 is more preferable.
  • the weight average molecular weight (Mw) of the acrylic resin (a) used in the present invention an active energy ray-curable aqueous resin composition or an active energy ray-curable coating material that is excellent in storage stability and does not increase in viscosity too much is used. From the viewpoint of being obtained, it is preferably 10,000 to 100,000, and more preferably 30,000 to 80,000.
  • the number average molecular weight and the weight average molecular weight of a resin such as a carboxyl group-containing acrylic resin (a) are measured using a gel permeation chromatograph and excluding components having a molecular weight of 1000 or less in terms of polystyrene under the following conditions. Asked. Measuring device: HLC-8220 manufactured by Tosoh Corporation Column: Tosoh Co., Ltd.
  • the glass transition temperature of the carboxyl group-containing acrylic resin (a) used in the present invention is 30 ° C. because an active energy ray-curable aqueous resin composition capable of obtaining a cured coating film excellent in abrasion resistance and substrate adhesion is obtained. It is preferably ⁇ 100 ° C. Therefore, when synthesizing the acrylic resin (a), it is preferable to appropriately select and combine the raw material components so that the glass transition temperature is 30 ° C. to 100 ° C. 60 ° C. to 90 ° C. is more preferable because a cured coating film having better wear resistance and substrate adhesion can be obtained.
  • the glass transition temperature of the resin such as acrylic resin (a) was determined by differential scanning calorimetry (DSC) measurement according to JIS-K-7121.
  • DSC differential scanning calorimetry
  • the glass transition temperature of the resin such as the acrylic resin (a) can also be calculated by the following formula.
  • the glass transition temperature of the following formula is an absolute temperature (° K).
  • Xi is the weight fraction of the i-th monomer
  • Tgi is the glass transition temperature of the homopolymer of the i-th monomer.
  • the glass transition temperature of the monomer homopolymer was determined by Polymer Handbook (4 th Edition) J. MoI . Brandrup, E .; H. Immergut, E .; A. Values described by Gulke (Wiley Interscience) can be used.
  • the acrylic resin (A) it is preferable to synthesize the carboxyl group-containing acrylic resin (a) and then neutralize all or part of the carboxyl groups with a basic compound. Without using the acrylic resin (a) by using a monomer in which all or part of the carboxyl group-containing ethylenically unsaturated monomer used for the synthesis of the resin (a) is previously neutralized with a basic compound, The acrylic resin (A) may be directly prepared.
  • the compound (B) used in the present invention needs to have a polymerizable unsaturated double bond of 8.6 to 10.5 mmol / g.
  • the content of polymerizable unsaturated double bonds is less than 8.6 mmol / g, the abrasion resistance and water resistance of the cured coating film are insufficient because of insufficient crosslinking due to insufficient crosslinking. It is not preferable because it becomes a wire curable paint. If the content of the polymerizable unsaturated double bond is larger than 10.5 mmol / g, the adhesion of the resulting cured coating film to the substrate is not preferred.
  • the compound (B) is a polymerizable unsaturated double bond because it becomes an active energy ray-curable aqueous resin composition or an active energy ray-curable coating material from which a cured coating film excellent in abrasion resistance, water resistance and adhesion can be obtained.
  • the compound (B) having a polymerizable unsaturated double bond of 8.6 to 10.5 mmol / g used in the present invention it may be used alone, but a compound having a polymerizable unsaturated double bond is mixed. Thus, it is preferable to use a mixture having an average content of polymerizable unsaturated double bonds of 8.6 to 10.5 mmol / g.
  • a compound having a polymerizable unsaturated double bond used at this time a compound having a polymerizable unsaturated double bond in a content of 8.6 to 10.5 mmol / g may be used. Those having an unsaturated double bond of less than 8.6 mmol / g may be used, or those having a polymerizable unsaturated double bond of more than 10.5 mmol / g may be used.
  • a compound having a polymerizable unsaturated double bond of 8.6 to 10.5 mmol / g can be used alone to obtain a compound (B).
  • examples of such compounds include 1,6-hexanedi (meth) acrylate (polymerizable unsaturated double bond content: 8.8 mmol / g), diethylene glycol di (meth) acrylate (polymerizable unsaturated double bond).
  • Bond content 9.3 mmol / g
  • neopentyl glycol di (meth) acrylate polymerizable unsaturated double bond content: 9.4 mmol / g
  • 1,4-butanediol di (meth) acrylate Content of polymerizable unsaturated double bond: 10.1 mmol / g
  • trimethylolpropane tri (meth) acrylate content of polymerizable unsaturated double bond: 10.1 mmol / g
  • pentaerythritol tri ( (Meth) acrylate (polymerizable unsaturated double bond content: 10.1 mmol / g), ditrimethylolpropane tetra (meth) acrylate Content of polymerizable unsaturated double bond: 8.6 mmol / g
  • dipentaerythritol penta (meth) acrylate content of polymerizable unsaturated double bond: 9.5 mmol
  • Examples of the compound having a polymerizable unsaturated double bond used when preparing the compound (B) by mixing are isobornyl (meth) acrylate (content of polymerizable unsaturated double bond: 4.8 mmol / g). ), Mono (meth) acrylates such as dicyclopentanyl (meth) acrylate (polymerizable unsaturated double bond content: 4.9 mmol / g);
  • Tripropylene glycol di (meth) acrylate (polymerizable unsaturated double bond content: 6.7 mmol / g), bisphenol A diglycidyl ether di (meth) acrylate (polymerizable unsaturated double bond content: 3 .3 mmol / g), neopentyl glycol di (meth) acrylate hydroxypivalate (content of polymerizable unsaturated double bond: 6.4 mmol / g), tricyclodecane dimethanol (meth) acrylate (polymerizable unsaturated) Content of double bond: 6.6 mmol / g), polyethylene glycol di (meth) acrylate having 9 ethylene oxide repeating units (content of polymerizable unsaturated double bond: 3.8 mmol / g), ethylene Polyethylene glycol di (meth) acrylate having 13 repeating oxide units (polymerization Unsaturated double bond content: 2.9 mmol / g), polypropy
  • Tris (2- (meth) acryloyloxyethyl) isocyanurate polymerizable unsaturated double bond content: 5.6 mmol / g
  • Tri (meth) acrylates such as (meth) acrylate (content of polymerizable unsaturated double bond: 7.0 mmol / g)
  • Pentaerythritol tetra (meth) acrylate (content of polymerizable unsaturated double bond: 11.4 mmol / g), caprolactone-modified dipentaerythritol hexa (meth) acrylate (content of polymerizable unsaturated double bond: 6.
  • poly (meth) acrylates such as 5 mmol / g) and acryloylmorpholine (content of polymerizable unsaturated double bond: 7.1 mmol / g).
  • dipentaerythritol pentaacrylate and dipentaerythritol hexaacrylate because a film having high curability and excellent wear resistance can be obtained, and a mixture of dipentaerythritol pentaacrylate and dipentaerythritol hexaacrylate is more preferable. preferable.
  • diisocyanate compounds such as tolylene diisocyanate, isophorone diisocyanate, hexamethylene diisocyanate, dicyclohexylmethane diisocyanate, norbornane diisocyanate, further an isocyanate prepolymer obtained from these diisocyanate compound and polyol, and further from these diisocyanate compounds Triisocyanate compounds that are nurate bodies and burette bodies and 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol penta (meth) acrylate, etc.
  • Urethane (meth) acrylate which is a reaction product with hydroxyl group-containing (meth) acrylate
  • Polymerizable unsaturated double bonds such as mono-, di-, tri- or higher polyesters of polybasic acid and hydroxyalkyl (meth) acrylate, bisphenol A type epoxy acrylate, novolak type epoxy acrylate, etc. Examples include oligomers or prepolymers having a bond. These may be used alone or in combination of two or more if the polymerizable unsaturated double bond is 8.6 to 10.5 mmol / g.
  • these compounds having a polymerizable unsaturated double bond a compound having a polymerizable unsaturated double bond content of less than 8.6 mmol / g or a compound having a content of more than 10.5 mmol / g, It can be used if it is used in combination with a compound having a polymerizable unsaturated double bond and the average polymerizable unsaturated double bond is from 8.6 to 10.5 mmol / g.
  • urethane (meth) acrylate the urethane (meth) acrylate which is a reaction product of a diisocyanate compound and pentaerythritol tri (meth) acrylate is preferable.
  • a compound (B) used in the present invention by mixing two or more compounds having a polymerizable unsaturated double bond, for example, dipentaerythritol hexaacrylate (content of polymerizable unsaturated double bond: 10) 0.4 mmol / g) and tripropylene glycol diacrylate (polymerizable unsaturated double bond content: 6.7 mmol / g) are mixed at a weight ratio of 80:20.
  • the mixture has a polymerizable unsaturated double bond of 9.6 mmol / g and can be used as the compound (B).
  • the compounds (B) may be used alone or in combination of two or more.
  • the compound (B) used in the present invention since it becomes an active energy ray-curable aqueous resin composition or an active energy ray-curable coating material from which a cured coating film excellent in abrasion resistance is obtained, dipentaerythritol pentaacrylate and A mixture of dipentaerythritol hexaacrylate and urethane (meth) acrylate is more preferable.
  • a mixture containing urethane (meth) acrylate having a polymerizable unsaturated double bond of 5.5 to 9.5 mmol / g is preferable.
  • the average polymerizable unsaturated double bond concentration of the mixture is preferably 9.0 to 10.2 mmol / g.
  • the active energy ray-curable aqueous resin composition of the present invention comprises the acrylic resin (A) and the compound (B), and the content ratio [(B) / (A)] is 1.5 to 6 in terms of weight. It is necessary to be in the range. When the content ratio [(B) / (A)] is smaller than 1.5, the abrasion resistance and water resistance of the cured coating film are insufficient, which is not preferable. When the content ratio [(B) / (A)] is larger than 6, it is not preferable because the storage stability is insufficient.
  • the content ratio [(B) / (A)] is preferably 1.8 to 4, more preferably 2 to 3.5.
  • the production method of the active energy ray-curable aqueous resin composition of the present invention is not particularly limited, and examples thereof include the following methods.
  • the resin (A) obtained by neutralizing the carboxyl group in the acrylic resin (a) and the compound (B) are dissolved in a water-miscible organic solvent to form a solution, which is then mixed with water, Dissolution or dispersion of resin (A) in an aqueous medium containing a miscible organic solvent, and a resin solution in which resin (A) is dissolved or a resin dispersion in which resin (A) is dispersed in water, compound (B) How to disperse.
  • the methods (1) and (3) are preferable because an active energy ray-curable aqueous resin composition can be easily obtained.
  • the acrylic resin (a) or the acrylic resin (A) and the compound (B) need not be dissolved in the water-miscible organic solvent at the same time.
  • the acrylic resin (a) or the acrylic resin (A) is dissolved in water. After dissolving in a miscible organic solvent, it may be mixed with compound (B) to disperse compound (B). Further, in the resin solution in which the acrylic resin (A) obtained by neutralizing the carboxyl group in the acrylic resin (a) is dissolved in water or the resin dispersion in which the acrylic resin (A) is dispersed in water.
  • the active energy ray-curable aqueous resin composition in which the compound (B) is dispersed After obtaining the active energy ray-curable aqueous resin composition in which the compound (B) is dispersed, a part or all of the water-miscible organic solvent may be removed as necessary. Even if the active energy ray-curable aqueous resin composition or the active energy ray-curable coating material is used to remove the organic solvent, the content of the organic solvent can be reduced to 1/10 or less compared to conventional spray coating conditions. Therefore, problems such as deterioration of the working environment and air pollution caused by the volatile organic solvent are hardly caused.
  • the active energy ray-curable aqueous resin composition of the present invention usually contains a photo (polymerization) initiator.
  • a photo (polymerization) initiator can be used.
  • the photo (polymerization) initiator is added in the range of 0.05 to 20% by weight, preferably 0.5 to 10% by weight, based on the solid content of the active energy ray-curable aqueous resin composition of the present invention. Is done.
  • photosensitizers can be used in combination.
  • photosensitizers include amines, ureas, sulfur-containing compounds, phosphorus-containing compounds, chlorine-containing compounds, nitriles, and other nitrogen-containing compounds.
  • the active energy ray-curable aqueous resin composition of the present invention comprises a compound (B) in a resin solution in which an acrylic resin (A) is dissolved in water or in a resin dispersion in which the acrylic resin (A) is dispersed in water.
  • a resin solution in which an acrylic resin (A) is dissolved in water or in a resin dispersion in which the acrylic resin (A) is dispersed in water.
  • the ratio [(B) / (A)] of the acrylic resin (A) and the compound (B) is 1. It may be 5 to 6, and a part of the acrylic resin (A) may be dissolved in water, or a part of the compound (B) may be dissolved in water.
  • an emulsifier may be used as long as it does not impair the curing of the present invention.
  • an emulsifier By using an emulsifier, the dispersion stability of the acrylic resin (A) and the compound (B) in water can be improved.
  • the emulsifier examples include nonionic emulsifiers such as polyoxyethylene alkyl ether and polyoxyethylene alkylphenyl ether, anionic emulsifiers such as alkyl sulfate ester salt, alkylbenzene sulfonate salt, and polyoxyethylene alkyl ether sulfate ester salt. And cationic emulsifiers such as quaternary ammonium salts.
  • the amount is preferably as small as possible and more preferably not used.
  • the following means can be used. For example, for example, a method of mixing and dissolving and / or dispersing with a stirring blade using a turbine blade, a Max blend blade, a Hi-F mixer, or a method of mixing and dissolving and / or dispersing with a homogenizer, sonolator, disper, mixer, etc. It is done.
  • the active energy ray-curable coating composition of the present invention contains the active energy ray-curable resin composition of the present invention.
  • the active energy ray-curable coating composition of the present invention is, for example, a mixture of the active energy ray-curable resin composition of the present invention, a photoinitiator, and a leveling agent, an antifoaming agent, a rheology control agent, and the like as necessary. Is obtained.
  • leveling agent examples include polyether-modified polydimethylsiloxane, silicon-based leveling agents such as polyether-modified polydimethylsiloxane having an acryloyl group, and acrylic leveling agents.
  • antifoaming agent examples include silicon-based antifoaming agents, mineral oil-based antifoaming agents, and polymer-based antifoaming agents.
  • rheology control agent examples include an alkali swelling rheology control agent, an alkali swelling association rheology control agent, and a urethane association rheology control agent. These can be appropriately selected and used as necessary.
  • the active energy ray-curable coating composition of the present invention includes an emulsion of a compound having a polymerizable unsaturated double bond, an emulsion such as a urethane resin or an epoxy resin, a self-emulsified product, or a water-soluble resin as necessary. Etc. can also be blended.
  • the method for forming a cured coating film of the present invention is characterized in that after the active energy ray-curable coating material of the present invention is applied to a substrate, the applied active energy ray-curable coating material is cured by irradiation with active energy rays. .
  • the coating is performed by, for example, a gravure coating method, a roll coating method, a spray coating method, a lip coating method, a comma coating method, a spin coating method, a dipping method, or a coating method such as a gravure printing method or a screen printing method.
  • the substrate include plastic, metal or metal vapor deposition surface, glass, wood, paper and the like.
  • plastic examples include acrylic-butylene-styrene copolymer (ABS), polycarbonate (PC), polymethyl methacrylate (PMMA), polyethylene terephthalate (PET), polybutylene terephthalate (PBT), and cellulose triacetate (TAC). Or these composites etc. are mentioned.
  • metal examples include aluminum, stainless steel, tin, tinplate, and the like.
  • base materials are base materials having a cured coating film obtained by curing the active energy ray-curable coating material applied by irradiating the active energy ray after applying the active energy ray-curable coating material of the present invention in advance.
  • the substrate may have various shapes. For example, a thick shape, a sheet shape, or a film shape may be used. Furthermore, a design such as irregularities may be applied to the surface of the substrate.
  • Examples of the method for forming a cured coating film of the present invention include a forming method comprising the following steps. First, the active energy ray-curable coating material of the present invention is applied to a substrate. Thereafter, it is pre-dried. The preliminary drying is performed, for example, by allowing the coated substrate to stand in an environment of 50 to 100 ° C. for 1 to 30 minutes. Then, an active energy ray is irradiated. For example, when the base material is plastic, the preliminary drying is about 70 ° C. for about 5 minutes.
  • active energy rays include electron beams, ultraviolet rays, and gamma rays.
  • the irradiation condition of the active energy ray is determined according to the composition of the active energy ray-curable coating material to be used, but it is preferable that the irradiation is usually performed so that the integrated light amount is 50 to 5000 mj / cm 2. It is more preferable to irradiate so that it may become / cm ⁇ 2 >.
  • a handy type ultraviolet irradiator is used.
  • the coating film may be cured by irradiating with ultraviolet rays.
  • the active energy ray-curable aqueous resin composition and the active energy ray-curable coating composition of the present invention may appropriately contain a water-miscible organic solvent depending on the coating performance such as spray coating.
  • the total solid content of the acrylic resin (A) and the compound (B) in the active energy ray-curable aqueous resin composition or the active energy ray-curable coating of the present invention has a suitable viscosity and a coating agent. Is preferably 10 to 70% by weight, and more preferably 20 to 50% by weight.
  • the article in which the cured coating film of the active energy ray-curable coating material of the present invention is disposed has a cured coating film excellent in wear resistance and water resistance.
  • the cured coating film may be disposed on the surface of the article, or may be disposed on the article as a basic coating (base coat) or an intermediate coating. Even if it is arranged on the article as a basic coating (base coat) or an intermediate coating, it can supplement the scratch resistance and water resistance of the cured coating film on the surface and extend the life of the article. Further, by forming the base coat on the base material, it is possible to prevent the base material from being damaged by the next step.
  • Synthesis Example 1 [Synthesis of acrylic resin (A)] In a 1 liter reaction vessel equipped with a reflux condenser, a stirrer and a nitrogen inlet tube, 280 g of propylene glycol monopropyl ether was charged and stirring was started, and the temperature was raised to 120 ° C.
  • the polymerization reaction was further continued at the same temperature, and the reaction was terminated after 8 hours to obtain an acrylic resin (a-1) solution.
  • the acrylic resin (a-1) has an acid value of 102 mgKOH / g, a hydroxyl value of 64 mgKOH / g, a number average molecular weight of 15,000, a weight average molecular weight of 45,000, and a glass transition temperature of 72 ° C. there were.
  • 23.3 g of triethylamine and 36.7 g of 25% aqueous ammonia were added to this solution for neutralization, and adjustment with propylene glycol monopropyl ether was performed to obtain a solution of an acrylic resin (A-1).
  • the solution of the acrylic resin (A-1) had a nonvolatile content of 70%, and the amount of neutralized carboxyl groups was 1.10 mmol / g.
  • the characteristic values of the acrylic resin (A-1) are shown together with the physical properties of the acrylic resin (a-1) in Table 1.
  • Synthesis examples 2 to 9 (same as above) According to the method of Synthesis Example 1, an acrylic resin (A-2) solution and an acrylic resin (A-9) solution were obtained using the monomer mixture and the polymerization initiator shown in Table 1. The characteristic values of the acrylic resin (A-2) and the acrylic resin (A-9) are shown together with the physical properties of the acrylic resins (a-1) to (a-9) in Tables 1 and 2. .
  • Synthesis Examples 10 to 14 [Synthesis of comparative acrylic resin (a)] According to the method of Synthesis Example 1, the acrylic resin for comparison (A′-1) and the acrylic resin for comparison (A′-5) were used in the amounts of the monomer mixture and polymerization initiator shown in Table 1. Solution was obtained. The characteristic values of the acrylic resin (a′-1) and the acrylic resin (a′-5) are also shown in Table 3.
  • Synthesis Example 15 [Synthesis of Compound (B)] In a 1 liter reaction vessel equipped with a stirrer, 104 g of hexamethylene diisocyanate, 0.2 g of methoquinone and 0.2 g of dibutyltin dilaurate were charged and stirring was started, and the temperature was raised to 60 ° C. At the same temperature, 645 g of Aronix M305 (manufactured by Toa Gosei Co., Ltd., pentaerythritol triacrylate / pentaerythritol tetraacrylate, hydroxyl value 110 mgKOH / g) was added in 10 portions every 10 minutes.
  • Aronix M305 manufactured by Toa Gosei Co., Ltd., pentaerythritol triacrylate / pentaerythritol tetraacrylate, hydroxyl value 110 mgKOH / g
  • the reaction was continued for 10 hours, and it was confirmed that the absorption of the isocyanate group at 2250 cm ⁇ 1 disappeared in the infrared spectrum.
  • the reaction was terminated, and urethane acrylate (content of polymerizable unsaturated double bond: 7.8 mmol / g) ) And pentaerythritol tetraacrylate were obtained as a compound (BB-1).
  • the concentration of the polymerizable unsaturated double bond of the compound (BB-1) was 9.0 mmol / g.
  • Synthesis example 16 (same as above) In a 1 liter reaction vessel equipped with a stirrer, 128 g of isophorone diisocyanate, 0.2 g of methoquinone, and 0.2 g of dibutyltin dilaurate were charged and stirring was started, and the temperature was raised to 60 ° C. At the same temperature, 621 g of Aronix M305 was charged in 10 portions every 10 minutes. The reaction was further continued for 10 hours, and it was confirmed that the absorption of the isocyanate group at 2250 cm ⁇ 1 disappeared in the infrared spectrum, and the reaction was terminated.
  • urethane acrylate (content of polymerizable unsaturated double bond: 7.3 mmol / g)
  • pentaerythritol tetraacrylate were obtained as a compound (BB-2).
  • concentration of the polymerizable unsaturated double bond of the compound (BB-2) was 8.6 mmol / g.
  • Synthesis example 19 (same as above) A 1 liter reaction vessel equipped with a stirrer was charged with 150 g of Aronix M404, 75 g of Aronix M350 (ethylene oxide-modified trimethylolpropane triacrylate manufactured by Toa Gosei Co., Ltd.) and 275 g of compound (BB-2) and stirred at 40 ° C. To obtain the compound (B-3). The concentration of the polymerizable unsaturated double bond of the compound (B-3) was 8.8 mmol / g.
  • Synthesis example 20 (same as above) In a 1 liter reaction vessel equipped with a stirrer, 225 g of Aronix M402 (manufactured by Toa Gosei Co., Ltd., dipentaerythritol pentaacrylate / dipentaerythritol hexaacrylate, hydroxyl value 25 mgKOH / g), 250 g of Aronix M305 and compound (BB-1) ) was added and stirred at 40 ° C. to obtain compound (B-4). The concentration of the polymerizable unsaturated double bond of the compound (B-4) was 10.4 mmol / g.
  • Synthesis Example 21 [Synthesis of Comparative Control Compound (B)] A 1 liter reaction vessel equipped with a stirrer was charged with 75 g of Aronix M404, 150 g of Aronix M309 and 275 g of compound (BB-2), and stirred at 40 ° C. to obtain compound (b-1). The concentration of the polymerizable unsaturated double bond of the compound (b-1) was 8.4 mmol / g.
  • Synthesis example 22 (same as above) In a 1 liter reaction vessel equipped with a stirrer, 75 g of Aronix M402 and 425 g of Aronix M305 were charged and stirred at 40 ° C. to obtain compound (b-2). The concentration of the polymerizable unsaturated heavy bond of the compound (b-2) was 10.6 mmol / g.
  • Example 1 A 1 liter reaction vessel equipped with a stirrer was charged with 97 parts of the acrylic resin (A-1) solution obtained in Synthesis Example 1 and 147 g of the urethane acrylate (B-1) obtained in Synthesis Example 8 and stirred. Then, the temperature was raised to 70 ° C. and mixed with stirring. Next, 340 g of ion-exchanged water was added in 10 portions while stirring at 40 ° C. to disperse the urethane acrylate (B-1) in the solution of the acrylic resin (A-1).
  • Irgacure 500 photopolymerization initiator manufactured by Ciba Specialty Chemicals
  • a silicone leveling agent BYK, BYK-333
  • An active energy ray-curable aqueous resin composition 1 having a pH of 7.2 was prepared.
  • the average particle diameter in the active energy ray-curable aqueous resin composition 1 was 330 nm.
  • the average particle diameter in the active energy ray-curable aqueous resin composition 1 was measured using NANOTRAC 150 manufactured by MICROTRAC (hereinafter the same).
  • PH in the active energy ray-curable aqueous resin composition 1 was measured using a PH meter D-51 manufactured by Horiba, Ltd. and an electrode type 9621C (the same applies hereinafter).
  • the appearance evaluation, abrasion resistance, pencil hardness, adhesion to the substrate and hot water resistance of the cured coating film of the obtained active energy ray-curable aqueous resin composition 1 were evaluated.
  • the preparation method of the cured coating film and the evaluation method of each test are shown below.
  • test paint plate How to make a cured coating film (test paint plate). Spray coating was performed on a PMMA (polymethyl methacrylate) plate so that the film thickness after drying was 10 ⁇ m, and after preliminary drying at 70 ° C. for 10 minutes in a dryer, using a 80 W / cm high-pressure mercury lamp, 1000 mJ / cm The test coating plate was produced by irradiating with ultraviolet ray 2 .
  • a test coating plate based on ABS (acrylic butylene-styrene copolymer) and PC (polycarbonate) was also prepared and used. A test was also conducted.
  • Appearance evaluation The appearance of the test painted plate was visually evaluated. A: Smooth and no repelling. ⁇ : Smooth, but slight repelling can be confirmed. ⁇ : Slight irregularities are observed. X: Large unevenness is observed.
  • Abrasion resistance test Measure the haze value of the test area after rubbing the painted surface of the test painted plate with # 0000 steel wool under a load of 1Kg 100 times according to JIS-K5600-5-10 Judged by.
  • DIGITAL HAZE COMPUTER manufactured by Suga Test Instruments Co., Ltd. was used. A: Less than 3.5. ⁇ : 3.5 or more and less than 5.0. ⁇ : 5.0 or more and less than 15.0 X: 15.0 or more.
  • Pencil hardness test Using a high-grade pencil specified in JIS-S-6006, the coating surface of the test coating plate was examined for hardness to prevent scratches according to JIS-K-5400.
  • Adhesion test In accordance with JIS-K5600-5-6, 100 mm of cuts were made on the painted surface of the test coating plate (test coating plate using PMMA, ABS and PC as the base material) with a width of 1 mm. A mass was formed, a peel test was performed using a cellophane tape, and the number of remaining grids was determined. A: 100 on all test painted plates. ⁇ : 80 or more on all test painted plates and 100 on one or two test painted plates. ⁇ : 80 to 99 on all test painted plates. X: 79 or less in any test coating board.
  • test coating plate (test coating plate using PMMA, ABS and PC as a base material) was immersed in warm water at 90 ° C. for 2 hours, and then the adhesion test was performed.
  • test coating plate (test coating plate using PMMA, ABS and PC as a base material) was immersed in warm water at 50 ° C. for 24 hours and 72 hours, and then the whitening state of the coated surface was visually determined.
  • X Whitening or blistering is observed on the entire surface after 24 hours on all test painted plates.
  • Examples 2 to 14 and Comparative Examples 1 to 9 According to the method of Example 1, active energy ray-curable aqueous resin compositions 2 to 14 and comparative active energy ray-curable aqueous resin compositions 1 ′ to 9 ′ were obtained with the raw material compositions shown in Table 2. . Each test was performed in the same manner as in Example 1, and the evaluation results are shown in Tables 8-11.
  • MMA methyl methacrylate
  • BMA butyl methacrylate
  • EA ethyl acrylate
  • BA butyl acrylate
  • 2EHA 2-ethylhexyl acrylate
  • AA acrylic acid
  • MAA methacrylic acid
  • HEA hydroxyethyl acrylate
  • HEMA hydroxyethyl methacrylate
  • M -5300 Aronix M-5300
  • FM-1 Plaxel FM-1 [manufactured by Daicel Chemical Industries, Ltd., 1 mol of caprolactone adduct of hydroxyethyl methacrylate]
  • Initiator Initiator solution prepared by dissolving 12.6 g of tert-butylperoxy-2-ethylhexanoate with 20 g of propylene glycol monopropyl ether
  • Irgacure 500 Photopolymerization initiator manufactured by Ciba Specialty Chemicals Silicone leveling agent: BYK, BYK-333

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Paints Or Removers (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Abstract

Disclosed is an active-energy-ray-curable aqueous resin composition which enables the production of a cured coating film having excellent abrasion resistance, excellent water resistance and excellent hot water resistance/adhesiveness. The active-energy-ray-curable aqueous resin composition comprises: a solution having an acrylic resin (A) dissolved or dispersed in water; and a compound (B) which contains a polymerizable unsaturated double bond in an amount of 8.6 to 10.5 mmol/g and is dispersed in the solution, wherein the acrylic resin (A) is produced by using a monomer represented by general formula (1) in an amount of 2 to 15 wt% relative to the weight of the resin component and methyl methacrylate in an amount of 55 to 70 wt% relative to the weight of the resin component and contains a neutralized carboxyl group in an amount of 0.80 to 1.29 mmol/g. In the composition, the ratio between the content of the acrylic resin (A) and the content of the compound (B) (i.e., a (B)/(A) ratio) is 1.5 to 6 by weight. [In general formula (1), R1 represents a hydrogen atom or a methyl group; R2 represents an alkylene group having 2 to 8 carbon atoms; and n represents an integer of 1 to 10.]

Description

活性エネルギー線硬化型水性樹脂組成物、活性エネルギー線硬化型塗料、硬化塗膜の形成方法及び物品Active energy ray-curable aqueous resin composition, active energy ray-curable coating material, method for forming cured coating film, and article
 本発明は、プラスチック、フィルム等のコーティング剤に用いられ、その硬化塗膜の外観が良好で、且つ、耐摩耗性、耐水性に優れる活性エネルギー線硬化型水性樹脂組成物、該組成物を含有する活性エネルギー線硬化型塗料、該塗料を用いた硬化塗膜の形成方法及び塗料の硬化塗膜が配置している物品に関する。 The present invention is used for a coating agent for plastics, films, etc., and has an appearance of a cured coating film, an active energy ray-curable aqueous resin composition excellent in wear resistance and water resistance, and the composition The present invention relates to an active energy ray-curable coating material, a method for forming a cured coating film using the coating material, and an article on which the cured coating film of the coating material is disposed.
 活性エネルギー線硬化型組成物は、塗装基材への熱履歴が少なく、塗膜硬度や擦り傷性に優れるという特長から、家電製品、携帯電話等のプラスチック基材用ハードコート剤として使用されている。このような活性エネルギー線硬化型組成物としては、例えば、重合性不飽和二重結合を有するポリマー(例えば、アクリルアクリレート等)や重合性不飽和二重結合を実質的に有さないポリマー(例えば、アクリル樹脂等)と、重合性単量体と希釈剤として有機溶剤とを含有する活性エネルギー線硬化型組成物(非水系の活性エネルギー線硬化型組成物)等が挙げられる。この活性エネルギー線硬化型組成物を例えばスプレー塗装用の活性エネルギー線硬化型塗料として用いる場合、前記有機溶剤を該塗料の重量を基準として50~90重量%と多量に含有させる。その為、該樹脂組成物を含有する活性エネルギー線硬化型塗料を用いてプラスチック等の基材表面に硬化塗膜を形成させる際に該塗料中の有機溶剤が揮発する事で作業環境を悪化させる問題がある。また、この揮発した有機溶剤は大気汚染の原因にもなっている。 The active energy ray-curable composition is used as a hard coating agent for plastic substrates for home appliances, mobile phones, etc., because it has a low heat history on the coating substrate and excellent coating film hardness and scratch resistance. . Examples of such an active energy ray-curable composition include a polymer having a polymerizable unsaturated double bond (for example, acrylic acrylate) and a polymer having substantially no polymerizable unsaturated double bond (for example, And an active energy ray-curable composition (non-aqueous active energy ray-curable composition) containing a polymerizable monomer and an organic solvent as a diluent. When this active energy ray-curable composition is used as, for example, an active energy ray-curable paint for spray coating, the organic solvent is contained in a large amount of 50 to 90% by weight based on the weight of the paint. Therefore, when an active energy ray-curable coating material containing the resin composition is used to form a cured coating film on the surface of a substrate such as plastic, the working environment is deteriorated by volatilization of the organic solvent in the coating material. There's a problem. Further, the volatilized organic solvent causes air pollution.
 このような中、希釈剤として水を含有する活性エネルギー線硬化型水性組成物が検討されている。具体的には、例えば、平均粒径が10~100nmである水性樹脂分散体(1)に分子内に少なくとも一つ以上の炭素―炭素二重結合を有する感光性オリゴマー(2)および分子内に少なくとも一つ以上の炭素―炭素二重結合を有する感光性モノマー(3)を配合してなる水性感光性コーティング組成物が開示されている(例えば、特許文献1参照。)。具体的には、例えば、特許文献1の実施例1ではアクリル系微粒子エマルジョン〔例えば、東洋インキ製造(株)製のNANOCRYL BCX-2914等〕100重量部に水溶性ウレタンアクリレート2.3重量部及びトリメチロールプロパントリアクリレート2.3重量部を含有してなる感光性コーティング組成物が開示されている。 In such circumstances, an active energy ray-curable aqueous composition containing water as a diluent has been studied. Specifically, for example, in the aqueous resin dispersion (1) having an average particle diameter of 10 to 100 nm, the photosensitive oligomer (2) having at least one carbon-carbon double bond in the molecule and the molecule An aqueous photosensitive coating composition comprising a photosensitive monomer (3) having at least one carbon-carbon double bond is disclosed (for example, see Patent Document 1). Specifically, for example, in Example 1 of Patent Document 1, acrylic fine particle emulsion (for example, NANOCRYL BCX-2914 manufactured by Toyo Ink Mfg. Co., Ltd.) and 100 parts by weight of water-soluble urethane acrylate and A photosensitive coating composition comprising 2.3 parts by weight of trimethylolpropane triacrylate is disclosed.
 また、(メタ)アクリロイル基含有水溶性樹脂(A)、多官能(メタ)アクリレート化合物(B)、および光重合開始剤を含み、乳化状態である紫外線硬化型水性塗料組成物も開示されている(例えば、特許文献2参照。)。具体的には、例えば、メチルメタクリレートを必須として得られるカルボキシル基含有アクリル樹脂のカルボキシル基を中和して得られる水分散性アクリル樹脂とウレタンアクリレートオリゴマーとが水に分散してなるエマルジョンが挙げられる。 Also disclosed is an ultraviolet curable aqueous coating composition that contains a (meth) acryloyl group-containing water-soluble resin (A), a polyfunctional (meth) acrylate compound (B), and a photopolymerization initiator and is in an emulsified state. (For example, refer to Patent Document 2). Specifically, for example, an emulsion in which a water-dispersible acrylic resin obtained by neutralizing a carboxyl group of a carboxyl group-containing acrylic resin obtained by using methyl methacrylate as essential and a urethane acrylate oligomer are dispersed in water can be mentioned. .
 前記特許文献1で用いているアクリル系微粒子エマルジョン用いて活性エネルギー線硬化型樹脂組成物を得るには、耐摩耗性、耐水性を向上させるのに有効な疎水性の重合性単量体と水溶性ウレタンアクリレートや自己乳化性ウレタンアクリレートを併用し、水溶性ウレタンアクリレートや自己乳化性ウレタンアクリレートに該アクリル系微粒子エマルジョンの分散力や安定性を補わせることで、疎水性の重合性単量体を水に分散させている。その為、耐摩耗性、耐水性向上に期待できる疎水性の重合性単量体の効果が十分発揮されず、特許文献1の水性感光性コーティング組成物を用いて得られる硬化塗膜は耐摩耗性、耐水性が十分ではない。 In order to obtain an active energy ray-curable resin composition using the acrylic fine particle emulsion used in Patent Document 1, a hydrophobic polymerizable monomer effective for improving wear resistance and water resistance and a water-soluble composition are used. Water-soluble urethane acrylate or self-emulsifiable urethane acrylate together with water-soluble urethane acrylate or self-emulsifiable urethane acrylate, and supplementing the dispersion power and stability of the acrylic fine particle emulsion, Dispersed in water. Therefore, the effect of the hydrophobic polymerizable monomer that can be expected to improve wear resistance and water resistance is not sufficiently exhibited, and the cured coating film obtained using the aqueous photosensitive coating composition of Patent Document 1 is resistant to Abrasion and water resistance are not sufficient.
 また、前記特許文献2で開示されている紫外線硬化型水性塗料組成物では、多官能(メタ)アクリレートとして疎水性のウレタンアクリレートオリゴマーを用いており、これにより硬化塗膜の耐擦傷性、耐水性の向上を図っている。しかしながら、該紫外線硬化型水性塗料組成物に用いている(メタ)アクリロイル基含有水溶性樹脂(A)でも疎水性のウレタンアクリレートオリゴマーを水中に分散させるだけの十分な分散力を有しておらず、水中で前記(メタ)アクリロイル基含有水溶性樹脂(A)に多官能(メタ)アクリレート化合物(B)を分散させようとしてもうまく分散できない、または、多官能(メタ)アクリレート化合物(B)の一部がすぐに分離してしまうという問題がある。その為、硬化塗膜にハジキやオレンジピール等の欠陥が生じやすい。また、該紫外線硬化型水性塗料組成物は、貯蔵安定性も十分ではない。 Moreover, in the ultraviolet curable aqueous coating composition disclosed in Patent Document 2, a hydrophobic urethane acrylate oligomer is used as the polyfunctional (meth) acrylate, and thereby the scratch resistance and water resistance of the cured coating film are used. We are trying to improve. However, even the (meth) acryloyl group-containing water-soluble resin (A) used in the UV-curable aqueous coating composition does not have sufficient dispersion power to disperse the hydrophobic urethane acrylate oligomer in water. The polyfunctional (meth) acrylate compound (B) cannot be well dispersed in the (meth) acryloyl group-containing water-soluble resin (A) in water, or the polyfunctional (meth) acrylate compound (B) There is a problem that some parts are separated immediately. Therefore, defects such as repellency and orange peel are likely to occur in the cured coating film. Further, the ultraviolet curable aqueous coating composition is not sufficient in storage stability.
特開平9-302266公報JP-A-9-302266 特開2004-010779公報JP 2004-010779 A
 本発明の課題は、プラスチック、フィルム等のコーティング剤に用いられ、その硬化塗膜の外観が良好で、且つ、耐摩耗性、耐水性に優れる活性エネルギー線硬化型水性樹脂組成物、該組成物を含有する活性エネルギー線硬化型塗料、該塗料を用いた硬化塗膜の形成方法及び塗料の硬化塗膜が配置している物品を提供することにある。 An object of the present invention is to use an active energy ray-curable aqueous resin composition that is used for a coating agent for plastics, films and the like, has a good appearance of the cured coating film, and has excellent wear resistance and water resistance, and the composition It is to provide an active energy ray-curable coating material containing a coating material, a method for forming a cured coating film using the coating material, and an article in which the cured coating film of the coating material is disposed.
 本発明者らは、鋭意検討を進めた結果、下記の知見を見出した。
 (1)炭素原子数2~8のアルキレン基を含有し、且つ、該アルキレン基の末端にカルボキシル基が付加しているラジカル重合性単量体を樹脂形成成分の重量を基準として2~15重量%用い、メチル(メタ)アクリレートを樹脂形成成分の重量を基準として55~70重量%用いて得られ、且つ、0.80~1.29mmol/gの中和されたカルボキシル基を含有するアクリル樹脂(親水性アクリル樹脂)を水中に分散させた樹脂分散液は疎水性の重合性単量体を良好に分散できる。従って、これらを含有する活性エネルギー線硬化型水性塗料を用いる事によりハジキやオレンジピールが発生しにくい硬化塗膜が得られる。
As a result of intensive studies, the present inventors have found the following findings.
(1) A radically polymerizable monomer containing an alkylene group having 2 to 8 carbon atoms and having a carboxyl group added to the terminal of the alkylene group is 2 to 15 wt. Acrylic resin obtained by using methyl (meth) acrylate in an amount of 55 to 70% by weight based on the weight of the resin-forming component, and containing 0.80 to 1.29 mmol / g of neutralized carboxyl groups A resin dispersion in which (hydrophilic acrylic resin) is dispersed in water can favorably disperse a hydrophobic polymerizable monomer. Therefore, by using an active energy ray-curable water-based paint containing these, a cured coating film that hardly causes repelling or orange peel can be obtained.
 (2)疎水性の重合性単量体として重合性不飽和二重結合を8.6~10.5mmol/g有する化合物を用い、前記樹脂分散液と該化合物との含有量の比が重量換算で1.5~6である組成物を含有する活性エネルギー線硬化型水性塗料を用いる事によりハジキやオレンジピールが発生しにくい硬化塗膜が得られる。 (2) A compound having a polymerizable unsaturated double bond of 8.6 to 10.5 mmol / g is used as the hydrophobic polymerizable monomer, and the content ratio between the resin dispersion and the compound is calculated in terms of weight. By using an active energy ray-curable water-based paint containing a composition of 1.5 to 6, a cured coating film in which repelling and orange peel are unlikely to occur can be obtained.
 (3)更に、前記活性エネルギー線硬化型水性塗料を用いて得られる硬化塗膜は耐摩耗性、耐水性に優れる。 (3) Furthermore, the cured coating film obtained using the active energy ray-curable water-based paint is excellent in wear resistance and water resistance.
 (4)前記活性エネルギー線硬化型塗料を基材表面に塗布した後、活性エネルギー線を照射して塗布した活性エネルギー線硬化型塗料を硬化させることにより、耐擦傷性、耐水性に優れる硬化塗膜を容易に形成することができる。 (4) After the active energy ray-curable coating material is applied to the surface of the substrate, the active energy ray-curable coating material is cured by irradiating the active energy ray, thereby curing the coating with excellent scratch resistance and water resistance. A film can be easily formed.
 (5)前記活性エネルギー線硬化型塗料の硬化塗膜が表面に配置してなる物品はその表面はハジキやオレンジピールが無い硬化塗膜で覆われ、外観が美しい。また、耐擦傷性、耐水性を有する硬化塗膜の為、物品の耐久性を向上させる。その為、物品の価値が向上する。また、該活性エネルギー線硬化型塗料を中塗り塗料として用いても、耐擦傷性、耐水性を有する中塗り層により物品の耐久性を向上させる。
 本発明は上記知見に基づいて完成されたものである。
(5) An article formed by placing a cured coating film of the active energy ray-curable coating on the surface is covered with a cured coating film free from repelling or orange peel, and has a beautiful appearance. Moreover, since the cured coating film has scratch resistance and water resistance, the durability of the article is improved. Therefore, the value of the article is improved. Even when the active energy ray-curable coating material is used as an intermediate coating material, the durability of the article is improved by the intermediate coating layer having scratch resistance and water resistance.
The present invention has been completed based on the above findings.
 即ち、本発明は、下記一般式(1)で表されるラジカル重合性単量体を樹脂形成成分の重量を基準として2~15重量%用い、メチルメタアクリレートを樹脂形成成分の重量を基準として55~70重量%用いて得られ、且つ、0.80~1.29mmol/gの中和されたカルボキシル基を含有するアクリル樹脂(A)を水中に溶解させた樹脂溶液中または該アクリル樹脂(A)を水中に分散させた樹脂分散液中に、重合性不飽和二重結合を8.6~10.5mmol/g有する化合物(B)を分散してなる活性エネルギー線硬化型水性樹脂組成物であり、該アクリル樹脂(A)と該化合物(B)との含有量の比〔(B)/(A)〕が重量換算で1.5~6であることを特徴とする活性エネルギー線硬化型水性樹脂組成物を提供するものである。 That is, the present invention uses 2 to 15% by weight of the radically polymerizable monomer represented by the following general formula (1) based on the weight of the resin-forming component and methyl methacrylate based on the weight of the resin-forming component. In a resin solution obtained by using 55 to 70% by weight and containing 0.80 to 1.29 mmol / g of neutralized carboxyl group (A) in water or the acrylic resin ( An active energy ray-curable aqueous resin composition obtained by dispersing a compound (B) having a polymerizable unsaturated double bond of 8.6 to 10.5 mmol / g in a resin dispersion obtained by dispersing A) in water. The active energy ray curing characterized in that the ratio [(B) / (A)] of the acrylic resin (A) and the compound (B) is 1.5 to 6 in terms of weight. Providing a water-based resin composition A.
Figure JPOXMLDOC01-appb-C000002
(Rは水素原子またはメチル基であり、Rは炭素原子数2~8のアルキレン基であり、nは1~10の整数である。)
Figure JPOXMLDOC01-appb-C000002
(R 1 is a hydrogen atom or a methyl group, R 2 is an alkylene group having 2 to 8 carbon atoms, and n is an integer of 1 to 10)
 また、本発明は前記活性エネルギー線硬化型水性樹脂組成物を含有することを特徴とする活性エネルギー線硬化型塗料を提供するものである。 The present invention also provides an active energy ray-curable coating material characterized by containing the active energy ray-curable aqueous resin composition.
 また、本発明は前記活性エネルギー線硬化型塗料を基材に塗布した後、活性エネルギー線を照射して塗布した活性エネルギー線硬化型塗料を硬化させることを特徴とする硬化塗膜の形成方法を提供するものである。 The present invention also provides a method for forming a cured coating film, comprising: applying the active energy ray-curable coating material to a substrate; and irradiating the active energy ray to cure the applied active energy ray-curable coating material. It is to provide.
 更に、本発明は、前記活性エネルギー線硬化型塗料の硬化塗膜が配置してなることを特徴とする物品を提供するものである。 Furthermore, the present invention provides an article comprising a cured coating film of the active energy ray-curable coating material.
 本発明の活性エネルギー線硬化型水性樹脂組成物は、その硬化塗膜の外観が良好で、且つ、耐摩耗性、耐水性に優れる。また、本発明の活性エネルギー線硬化型塗料を用いることにより硬化塗膜の外観が良好で、且つ、耐摩耗性、耐水性に優れる硬化塗膜が得られる。また、本発明の硬化塗膜は、外観が良好で、且つ、耐摩耗性、耐水性に優れる硬化塗膜が容易に得られる。更に、本発明の物品は、耐摩耗性、耐水性に優れる硬化塗膜を有する。 The active energy ray-curable aqueous resin composition of the present invention has a good appearance of the cured coating film and is excellent in wear resistance and water resistance. Further, by using the active energy ray-curable coating material of the present invention, a cured coating film having a good appearance of the cured coating film and excellent in abrasion resistance and water resistance can be obtained. In addition, the cured coating film of the present invention has a good appearance, and a cured coating film having excellent wear resistance and water resistance can be easily obtained. Furthermore, the article of the present invention has a cured coating film excellent in wear resistance and water resistance.
 本発明で用いるアクリル樹脂(A)は、前記一般式(1)で表されるラジカル重合性単量体を樹脂形成成分の重量を基準として2~15重量%用い、メチルメタアクリレートを樹脂形成成分の重量を基準として55~70重量%用いて得られ、且つ、0.80~1.29mmol/gの中和されたカルボキシル基を含有する。一般式(1)で表されるラジカル重合性単量体の使用量が樹脂形成成分の重量を基準として2重量%よりも少ないアクリル樹脂を用いると、分散安定性が不十分で沈降物や分離が生じる等の問題が生じ、貯蔵安定性が不十分な活性エネルギー線硬化型水性樹脂組成物となることから好ましくない。一般式(1)で表されるラジカル重合性単量体の使用量が樹脂形成成分の重量を基準として15重量%よりも大きいアクリル樹脂を用いると、柔軟になり耐摩耗性が不十分な硬化塗膜しか得られない活性エネルギー線硬化型樹脂組成物となることから好ましくない。本発明で用いるアクリル樹脂(A)は一般式(1)で表されるラジカル重合性単量体を樹脂形成成分の重量を基準として3~10重量%用いて得られるアクリル樹脂が、貯蔵安定性の良い活性エネルギー線硬化型水性樹脂組成物となることから好ましい。 The acrylic resin (A) used in the present invention uses 2 to 15% by weight of the radical polymerizable monomer represented by the general formula (1) based on the weight of the resin forming component, and methyl methacrylate as the resin forming component. And from 0.80 to 1.29 mmol / g of neutralized carboxyl groups. If an acrylic resin is used in which the amount of the radically polymerizable monomer represented by the general formula (1) is less than 2% by weight based on the weight of the resin-forming component, the dispersion stability is insufficient and precipitates or separations occur. This is not preferable because the active energy ray-curable aqueous resin composition has insufficient storage stability. When an acrylic resin in which the amount of the radically polymerizable monomer represented by the general formula (1) is greater than 15% by weight based on the weight of the resin-forming component is used, the resin becomes flexible and has insufficient wear resistance. Since it becomes an active energy ray hardening-type resin composition from which only a coating film is obtained, it is not preferable. The acrylic resin (A) used in the present invention is an acrylic resin obtained by using 3 to 10% by weight of the radically polymerizable monomer represented by the general formula (1) based on the weight of the resin-forming component. It is preferable because it becomes a good active energy ray-curable aqueous resin composition.
 また、メチルメタアクリレートを樹脂形成成分の重量を基準として55重量%よりも少ないアクリル樹脂を用いると分散安定性が不十分で沈降物や分離が生じる等の問題が生じ、貯蔵安定性が不十分な活性エネルギー線硬化型水性樹脂組成物となることから好ましくない。メチルメタアクリレートの使用量が樹脂形成成分の重量を基準として70重量%よりも大きいアクリル樹脂を用いると、アクリル樹脂の流動性が低下してレベリング性が低下することによる塗膜外観の悪化が生じ、得られるアクリル樹脂粘度が非常に高くなるのでハンドリング困難な活性エネルギー線硬化型水性樹脂組成物となることから好ましくない。本発明で用いるアクリル樹脂(A)はメチルメタアクリレートを樹脂形成分の重量を基準として55~65重量%用いて得られるアクリル樹脂が、貯蔵安定性が良好な活性エネルギー線硬化型水性樹脂組成物となり、更に得られる硬化塗膜の外観と基材付着性に優れることから好ましい。 In addition, when methyl methacrylate is used in an acrylic resin less than 55% by weight based on the weight of the resin-forming component, problems such as insufficient dispersion stability, sedimentation and separation occur, and storage stability is insufficient. It is not preferable because it becomes a new active energy ray-curable aqueous resin composition. When an acrylic resin in which the amount of methyl methacrylate used is larger than 70% by weight based on the weight of the resin forming component, the fluidity of the acrylic resin is lowered and the leveling property is deteriorated, resulting in deterioration of the coating film appearance. The resulting acrylic resin has a very high viscosity, which is not preferable because it becomes an active energy ray-curable aqueous resin composition that is difficult to handle. The acrylic resin (A) used in the present invention is an active energy ray-curable aqueous resin composition having good storage stability, obtained by using 55 to 65% by weight of methyl methacrylate based on the weight of resin formation Further, it is preferable because the resulting cured coating film is excellent in appearance and substrate adhesion.
 また、本発明で用いるアクリル樹脂(A)は、中和されたカルボキシル基を0.80~1.29mmol/gの範囲で含有する。中和されたカルボキシル基の含有量が0.80mmol/gよりも少ないアクリル樹脂を用いると本発明の活性エネルギー線硬化型樹脂組成物や活性エネルギー線硬化型塗料の硬化塗膜の外観にハジキやブツが発生する為、好ましくない。中和されたカルボキシル基の含有量が1.29mmol/gよりも多いアクリル樹脂を用いると本発明の活性エネルギー線硬化型樹脂組成物や活性エネルギー線硬化型塗料の硬化塗膜の耐水性が低下することから好ましくない。本発明で用いるアクリル樹脂(A)は中和されたカルボキシル基を0.80~1.29mmol/gの範囲で含有するアクリル樹脂がその硬化塗膜の外観が良好で、且つ、耐摩耗性、耐水性に優れる活性エネルギー線硬化型樹脂組成物や活性エネルギー線硬化型塗料となることから好ましく、中和されたカルボキシル基を0.90~1.20mmol/gの範囲で含有するアクリル樹脂がより好ましい。 The acrylic resin (A) used in the present invention contains a neutralized carboxyl group in the range of 0.80 to 1.29 mmol / g. When an acrylic resin having a neutralized carboxyl group content of less than 0.80 mmol / g is used, the appearance of the cured coating film of the active energy ray curable resin composition or the active energy ray curable coating of the present invention may be repelled. This is not preferable because it generates shading. When an acrylic resin having a neutralized carboxyl group content of more than 1.29 mmol / g is used, the water resistance of the cured film of the active energy ray curable resin composition or the active energy ray curable coating of the present invention is lowered. This is not preferable. The acrylic resin (A) used in the present invention is an acrylic resin containing a neutralized carboxyl group in the range of 0.80 to 1.29 mmol / g. An active energy ray-curable resin composition and an active energy ray-curable coating composition excellent in water resistance are preferable, and an acrylic resin containing a neutralized carboxyl group in a range of 0.90 to 1.20 mmol / g is more preferable. preferable.
 前記中和されたカルボキシル基の含有量(モル量)は、中和に用いた塩基性化合物のアミン価から算出される塩基性化合物のモル量と同じ(同モル量)であるとして求めた。ここで、中和に用いた塩基性化合物のアミン価は、塩基性化合物試料1.0gをテトラヒドロフラン5mlに溶解し、ブロムフェノールブルーを指示薬に用いて0.5mol/l塩酸溶液で中和滴定を行って求めた。 The content (molar amount) of the neutralized carboxyl group was determined to be the same (same molar amount) as the molar amount of the basic compound calculated from the amine value of the basic compound used for neutralization. Here, the amine value of the basic compound used for neutralization was determined by dissolving 1.0 g of a basic compound sample in 5 ml of tetrahydrofuran and neutralizing with 0.5 mol / l hydrochloric acid solution using bromophenol blue as an indicator. I went and asked.
 本発明で用いるアクリル樹脂(A)は、例えば、前記一般式(1)で表されるラジカル重合性単量体を樹脂形成成分の重量を基準として2~15重量%用い、メチルメタアクリレートを樹脂形成成分の重量を基準として55~70重量%用いて得られ、且つカルボキシル基を含有するアクリル樹脂(a)を合成した後、塩基性化合物でアクリル樹脂(a)中のカルボキシル基を中和する事により得ることができる。 As the acrylic resin (A) used in the present invention, for example, the radical polymerizable monomer represented by the general formula (1) is used in an amount of 2 to 15% by weight based on the weight of the resin forming component, and methyl methacrylate is used as the resin. An acrylic resin (a) obtained by using 55 to 70% by weight based on the weight of the forming component and containing a carboxyl group is synthesized, and then the carboxyl group in the acrylic resin (a) is neutralized with a basic compound. It can be obtained by things.
 本発明で用いるアクリル樹脂(A)は、前記の通り中和されたカルボキシル基を0.80~1.29mmol/gの範囲で含有する。このようなアクリル樹脂(A)を得るには、例えば、アクリル樹脂(a)としてカルボキシル基を0.80~1.29mmol/gの範囲で含有するアクリル樹脂を用い、該アクリル樹脂(a)のカルボキシル基を全て塩基性化合物で中和する方法(中和率100%)、アクリル樹脂(a)としてカルボキシル基を1.29mmol/g以上含有するアクリル樹脂を用い、該アクリル樹脂(a)のカルボキシル基の一部を塩基性化合物で中和する方法等により得ることができる。該カルボキシル基の一部を塩基性化合物で中和する方法の具体例としては、例えば、酸価100mgKOH/gのアクリル樹脂(a)中のカルボキシル基のうち一部、例えば60%を中和して中和されたカルボキシル基の含有量が該樹脂中に1.07mmol/gとなるように調製する、酸価80mgKOH/gのアクリル樹脂(a)中のカルボキシル基のうち一部、例えば80%を中和して中和されたカルボキシル基の含有量が該樹脂中に1.14mmol/gとなるように調製する等が挙げられる。 The acrylic resin (A) used in the present invention contains a neutralized carboxyl group in the range of 0.80 to 1.29 mmol / g as described above. In order to obtain such an acrylic resin (A), for example, an acrylic resin containing a carboxyl group in the range of 0.80 to 1.29 mmol / g is used as the acrylic resin (a). A method of neutralizing all carboxyl groups with a basic compound (neutralization rate 100%), an acrylic resin containing 1.29 mmol / g or more of carboxyl groups as the acrylic resin (a), and the carboxyl of the acrylic resin (a) It can be obtained by a method of neutralizing a part of the group with a basic compound. As a specific example of the method of neutralizing a part of the carboxyl group with a basic compound, for example, a part of the carboxyl group in the acrylic resin (a) having an acid value of 100 mgKOH / g, for example, 60% is neutralized. A part of the carboxyl groups in the acrylic resin (a) having an acid value of 80 mgKOH / g prepared so that the content of neutralized carboxyl groups is 1.07 mmol / g in the resin, for example, 80% And the neutralized carboxyl group content is adjusted to 1.14 mmol / g in the resin.
 本発明で用いるアクリル樹脂(A)は、カルボキシル基を1.3~2.7mmol/gの範囲で含有するアクリル樹脂を用い、この樹脂の中和されたカルボキシル基が0.80~1.29mmol/gであるアクリル樹脂がその硬化塗膜の外観が良好で、且つ、耐摩耗性、耐水性に優れる活性エネルギー線硬化型水性樹脂組成物や活性エネルギー線硬化型塗料が得られることから好ましい。また、アクリル樹脂(a)は酸価75~150mgKOH/gのアクリル樹脂が好ましい。 The acrylic resin (A) used in the present invention uses an acrylic resin containing a carboxyl group in the range of 1.3 to 2.7 mmol / g, and the neutralized carboxyl group of this resin is 0.80 to 1.29 mmol. A / g acrylic resin is preferred because an active energy ray-curable aqueous resin composition and an active energy ray-curable coating material having excellent appearance of the cured coating film and excellent wear resistance and water resistance can be obtained. The acrylic resin (a) is preferably an acrylic resin having an acid value of 75 to 150 mgKOH / g.
 本発明においてカルボキシル基含有アクリル樹脂(a)等の酸価は、樹脂試料1.0gをトルエン1.5mlとメタノール3.5mlの混合溶液に溶解し、フェノールフタレインを指示薬に用いて0.1mol/lの水酸化カリウム/エタノール溶液で中和滴定を行って求めた。 In the present invention, the acid value of the carboxyl group-containing acrylic resin (a), etc. is 0.1 mol by dissolving 1.0 g of a resin sample in a mixed solution of 1.5 ml of toluene and 3.5 ml of methanol and using phenolphthalein as an indicator. It was determined by performing neutralization titration with a / l potassium hydroxide / ethanol solution.
 カルボキシル基含有アクリル樹脂(a)は、例えば、前記一般式(1)で表されるラジカル重合性単量体を樹脂形成成分の重量を基準として2~15重量%、メチルメタアクリレートを樹脂形成成分の重量を基準として55~70重量%及びカルボキシル基含有エチレン性不飽和単量体を必須成分とし、更に必要に応じてその他の重合性単量体を混合した混合物を用い、該混合物を溶剤中で重合開始剤の存在下でラジカル重合反応を行う溶液重合法等により合成することができる。この反応は、常圧下、高圧下の何れで行ってもよく、また、分子量の調整は、例えば、重合開始剤の仕込量を調整することにより行うことができる。 The carboxyl group-containing acrylic resin (a) includes, for example, 2 to 15% by weight of the radical polymerizable monomer represented by the general formula (1) based on the weight of the resin forming component and methyl methacrylate as the resin forming component. Based on the weight of the monomer, 55 to 70% by weight and a carboxyl group-containing ethylenically unsaturated monomer as an essential component, and if necessary, a mixture in which other polymerizable monomers are mixed, are used. Can be synthesized by a solution polymerization method in which a radical polymerization reaction is performed in the presence of a polymerization initiator. This reaction may be carried out under normal pressure or high pressure, and the molecular weight can be adjusted, for example, by adjusting the amount of the polymerization initiator charged.
 前記一般式(1)で表されるラジカル重合性単量体としては、例えば、ε-カルボキシポリカプロラクトン(メタ)アクリレート等が挙げられる。具体的には、例えば、ε-カルボキシポリカプロラクトンアクリレート、ε-カルボキシポリカプロラクトンメタアクリレート等が挙げられる。中でも市場に安定的に供給されており、入手が容易なことからε-カルボキシポリカプロラクトンアクリレートが好ましい。 Examples of the radical polymerizable monomer represented by the general formula (1) include ε-carboxypolycaprolactone (meth) acrylate. Specific examples include ε-carboxypolycaprolactone acrylate and ε-carboxypolycaprolactone methacrylate. Among them, ε-carboxypolycaprolactone acrylate is preferable because it is stably supplied to the market and is easily available.
 前記ε-カルボキシポリカプロラクトン(メタ)アクリレートは、例えば、(メタ)アクリル酸とε-カプロラクトンとを、酸触媒の存在下で混合、攪拌し、40~150℃で反応させる事により得られる。 The ε-carboxypolycaprolactone (meth) acrylate can be obtained, for example, by mixing (meth) acrylic acid and ε-caprolactone in the presence of an acid catalyst, stirring and reacting at 40 to 150 ° C.
 前記酸触媒としては、例えば、p-トルエンスルホン酸、ベンゼンスルホン酸、塩化アルミニウム、塩化第二錫等が挙げられる。酸触媒は(メタ)アクリル酸100重量部に対して、1~20重量部の範囲で使用するのが好ましい。 Examples of the acid catalyst include p-toluenesulfonic acid, benzenesulfonic acid, aluminum chloride, stannic chloride and the like. The acid catalyst is preferably used in an amount of 1 to 20 parts by weight per 100 parts by weight of (meth) acrylic acid.
 前記カルボキシル基含有エチレン性不飽和単量体としては、例えば、(メタ)アクリル酸、クロトン酸、イソクロトン酸、2-メタクリロキシエチルサクシニク酸、2-メタクリロキシエチルヘキサハイドロフタル酸、2-メタクリロキシエチルグルタレート;(無水)マレイン酸,フマル酸,(無水)イタコン酸の如きジカルボン酸及びその無水物;モノメチルマレイン酸、モノエチルマレイン酸、モノブチルマレイン酸、モノオクチルマレイン酸、モノメチルフマル酸、モノエチルフマル酸、モノブチルフマレイン酸、モノオクチルフマル酸、モノメチルイタコン酸、モノエチルイタコン酸、モノブチルイタコン酸、モノオクチルイタコン酸等のジカルボン酸のモノアルキルエステル等が挙げられる。カルボキシル基含有エチレン性不飽和単量体としてはアクリル酸、メタクリル酸等の(メタ)アクリル酸が好ましい。カルボキシル基含有エチレン性不飽和単量体は単独種で用いても良いし、2種以上を併用しても良い。カルボキシル基含有エチレン性不飽和単量体の中でも、低粘度で分散性に優れるアクリル樹脂(A)が得られることからアクリル酸が好ましい。アクリル酸、メタクリル酸等の(メタ)アクリル酸の使用量は、樹脂形成成分の重量を基準として10~15重量%が好ましい。 Examples of the carboxyl group-containing ethylenically unsaturated monomer include (meth) acrylic acid, crotonic acid, isocrotonic acid, 2-methacryloxyethyl succinic acid, 2-methacryloxyethyl hexahydrophthalic acid, 2-methacrylic acid. Roxyethyl glutarate; dicarboxylic acid such as (anhydrous) maleic acid, fumaric acid, (anhydrous) itaconic acid and its anhydride; monomethylmaleic acid, monoethylmaleic acid, monobutylmaleic acid, monooctylmaleic acid, monomethylfumaric acid Monoethyl fumaric acid, monobutyl fumaric acid, monooctyl fumaric acid, monomethyl itaconic acid, monoethyl itaconic acid, monobutyl itaconic acid, monoalkyl esters of dicarboxylic acids such as monooctyl itaconic acid, and the like. The carboxyl group-containing ethylenically unsaturated monomer is preferably (meth) acrylic acid such as acrylic acid or methacrylic acid. The carboxyl group-containing ethylenically unsaturated monomer may be used alone or in combination of two or more. Among the carboxyl group-containing ethylenically unsaturated monomers, acrylic acid is preferable because an acrylic resin (A) having a low viscosity and excellent dispersibility can be obtained. The amount of (meth) acrylic acid such as acrylic acid or methacrylic acid is preferably 10 to 15% by weight based on the weight of the resin-forming component.
 前記その他のエチレン性不飽和単量体としては、例えば、メチルアクリレート、エチル(メタ)アクリレート、n-プロピル(メタ)アクリレート、iso-プロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、iso-ブチル(メタ)アクリレート、tert-ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレート、オクタデシル(メタ)アクリレート、ドコサニル(メタ)アクリレート、シクロペンチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ボルニル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、シクロアルキル(メタ)アクリレート等のアルキル(メタ)アクリレート; Examples of the other ethylenically unsaturated monomers include methyl acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, iso-propyl (meth) acrylate, n-butyl (meth) acrylate, and iso- Butyl (meth) acrylate, tert-butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, lauryl (meth) acrylate, octadecyl (meth) acrylate, docosanyl (meth) acrylate, cyclopentyl (meth) acrylate, cyclohexyl (meth) Alkyl (meth) acrylates such as acrylate, bornyl (meth) acrylate, isobornyl (meth) acrylate, dicyclopentanyl (meth) acrylate, cycloalkyl (meth) acrylate;
ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、ヒドロキシブチル(メタ)アクリレート等のヒドロキシアルキル(メタ)アクリレートやこれらの単量体へのε-カプロラクトンまたはγ-バレロラクトン等のラクトン類の付加物等の水酸基含有エチレン性不飽和単量体; Addition of lactones such as ε-caprolactone or γ-valerolactone to hydroxyalkyl (meth) acrylates such as hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, and hydroxybutyl (meth) acrylate, and monomers thereof Hydroxyl-containing ethylenically unsaturated monomers such as
スチレン、p-tert-ブチルスチレン、α-メチルスチレン、ビニルトルエン等の芳香族ビニル化合物; Aromatic vinyl compounds such as styrene, p-tert-butylstyrene, α-methylstyrene, vinyltoluene;
2-メトキシエチル(メタ)アクリレート、4-メトキシブチル(メタ)アクリレート等のω-アルコキシアルキル(メタ)アクリレート;N,N-ジメチル(メタ)アクリルアミド等の3級アミド基含有ビニル系単量体類;メトキシポリエチレングリコール(メタ)アクリレート、メトキシポリプロピレンレングリコール(メタ)アクリレート等のポリアルキレンオキサイド構造を有するビニル単量体;n-メチロール(メタ)アクリルアミド、n-メトキシメチル(メタ)アクリルアミド、n-エトキシメチル(メタ)アクリルアミド、n-ブトキシメチル(メタ)アクリルアミド、iso-ブトキシメチル(メタ)アクリルアミド等の如きアルコキシメチル(メタ)アクリルアミド; Ω-alkoxyalkyl (meth) acrylates such as 2-methoxyethyl (meth) acrylate and 4-methoxybutyl (meth) acrylate; tertiary amide group-containing vinyl monomers such as N, N-dimethyl (meth) acrylamide Vinyl monomers having a polyalkylene oxide structure such as methoxypolyethylene glycol (meth) acrylate and methoxypolypropylene glycol (meth) acrylate; n-methylol (meth) acrylamide, n-methoxymethyl (meth) acrylamide, n-ethoxy Alkoxymethyl (meth) acrylamides such as methyl (meth) acrylamide, n-butoxymethyl (meth) acrylamide, iso-butoxymethyl (meth) acrylamide;
n-メチルアミノエチル(メタ)アクリレート等の二級アミノ基含有ビニル系単量体;ビニルアセトアセテート、2-アセトアセトキシエチル(メタ)アクリレート等の活性メチレン基を有するビニル単量体;ビニルトリメトキシシラン、3-(メタ)アクリロイルオキシプロピルトリメトキシシラン等の加水分解性シリル基を有するビニル系単量体; Secondary amino group-containing vinyl monomers such as n-methylaminoethyl (meth) acrylate; vinyl monomers having an active methylene group such as vinyl acetoacetate and 2-acetoacetoxyethyl (meth) acrylate; vinyl trimethoxy Vinyl monomers having hydrolyzable silyl groups such as silane and 3- (meth) acryloyloxypropyltrimethoxysilane;
トリメチルシリル(メタ)アクリレート等のシリルエステル基を含有するビニル系単量体;グリシジル(メタ)アクリレート、メチルグリシジル(メタ)アクリレート、3,4-エポキシシクロヘキシル(メタ)アクリレート、グリシジルビニルエーテル、アリルグリシジルエーテル等のエポキシ基を含有するビニル系単量体;2-イソシアナートプロペン、2-イソシアナートエチルビニルエーテル、2-イソシアナートエチルメタアクリレート、m-イソプロペニル-α,α-ジメチルベンジルイソシアネート等のイソシアネート基を含有するビニル系単量体等が挙げられる。これらは単独種で使用してもよいし、2種以上を併用しても良い。 Vinyl monomers containing silyl ester groups such as trimethylsilyl (meth) acrylate; glycidyl (meth) acrylate, methyl glycidyl (meth) acrylate, 3,4-epoxycyclohexyl (meth) acrylate, glycidyl vinyl ether, allyl glycidyl ether, etc. An isocyanate group such as 2-isocyanate propene, 2-isocyanate ethyl vinyl ether, 2-isocyanate ethyl methacrylate, m-isopropenyl-α, α-dimethylbenzyl isocyanate; Examples thereof include vinyl monomers. These may be used alone or in combination of two or more.
 本発明で用いるアクリル樹脂(A)は、硬化収縮を緩和して基材付着性に優れる硬化塗膜が得られることから重合性不飽和結合を有さないアクリル樹脂が好ましい。前記一般式(1)で表されるラジカル重合性単量体、メチルメタアクリレート、カルボキシル基含有エチレン性不飽和単量体及びその他の重合性単量体を原料として調製する場合、重合性不飽和結合を有さないアクリル樹脂を調製するには、例えば、カルボキシル基含有エチレン性不飽和単量体及びその他の重合性単量体として、エチレン性不飽和単量体を一つ有する単量体を用いることにより得ることができる。 The acrylic resin (A) used in the present invention is preferably an acrylic resin that does not have a polymerizable unsaturated bond because a cured coating film that relaxes curing shrinkage and is excellent in substrate adhesion can be obtained. When preparing the radical polymerizable monomer represented by the general formula (1), methyl methacrylate, carboxyl group-containing ethylenically unsaturated monomer and other polymerizable monomers as raw materials, polymerizable unsaturated In order to prepare an acrylic resin having no bond, for example, as a carboxyl group-containing ethylenically unsaturated monomer and other polymerizable monomers, a monomer having one ethylenically unsaturated monomer is used. It can be obtained by using.
 本発明で用いるアクリル樹脂(A)は側鎖にアルキル基を有するアクリル樹脂が付着性に優れ、外観も良好な硬化塗膜が得られる活性エネルギー線硬化型水性樹脂組成物や活性エネルギー線硬化型塗料が得られることから好ましい。前記アルキル基の中でも付着性に優れ、外観も良好な硬化塗膜が得られ、且つ、保存安定性に優れる活性エネルギー線硬化型樹脂組成物や活性エネルギー線硬化型塗料が得られることから、炭素原子数2~8のアルキル基がより好ましい。炭素原子数2~8のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、t-ブチル基、シクロヘキシル基、2-エチルヘキシル基等があげられる。 The acrylic resin (A) used in the present invention is an active energy ray curable aqueous resin composition or an active energy ray curable type in which an acrylic resin having an alkyl group in the side chain is excellent in adhesion and a cured coating film having a good appearance can be obtained. It is preferable because a paint is obtained. Among the alkyl groups, a cured coating film having excellent adhesion and good appearance is obtained, and an active energy ray curable resin composition and an active energy ray curable coating material having excellent storage stability are obtained. An alkyl group having 2 to 8 atoms is more preferable. Examples of the alkyl group having 2 to 8 carbon atoms include methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, i-butyl group, t-butyl group, cyclohexyl group, 2- And an ethylhexyl group.
 アクリル樹脂(A)として側鎖にアルキル基を有するアクリル樹脂を得るには、例えば、アクリル樹脂(a)を合成する際にアルキル基を有するエチレン性不飽和単量体を併用する事により得られる。アルキル基を有するエチレン性不飽和単量体としては、前記アルキル(メタ)アクリレート類等が挙げられる。アクリル樹脂(a)を合成する際に用いるアルキル基を有するエチレン性不飽和単量体の使用量としては、樹脂形成成分の重量を基準として1~25重量%が、貯蔵安定性に優れる活性エネルギー線硬化型水性樹脂組成物や活性エネルギー線硬化型塗料となり、且つ得られる硬化塗膜も基材と密着性が良好で、外観にも優れることから好ましく、3~20重量%がより好ましい。アルキル基を有するエチレン性不飽和単量体の中でもn-ブチル(メタ)アクリレートがより貯蔵安定性に優れる活性エネルギー線硬化型水性樹脂組成物や活性エネルギー線硬化型塗料となることから好ましい。 In order to obtain an acrylic resin having an alkyl group in the side chain as the acrylic resin (A), for example, it is obtained by using an ethylenically unsaturated monomer having an alkyl group in combination when synthesizing the acrylic resin (a). . Examples of the ethylenically unsaturated monomer having an alkyl group include the alkyl (meth) acrylates. The amount of the ethylenically unsaturated monomer having an alkyl group used for synthesizing the acrylic resin (a) is 1 to 25% by weight based on the weight of the resin forming component, and the active energy having excellent storage stability. The cured cured coating film is preferably a linear curable aqueous resin composition or an active energy radiation curable coating material, and also has good adhesion to the substrate and excellent appearance, and more preferably 3 to 20% by weight. Among the ethylenically unsaturated monomers having an alkyl group, n-butyl (meth) acrylate is preferable because it becomes an active energy ray-curable aqueous resin composition or an active energy ray-curable coating material that is more excellent in storage stability.
 本発明で用いるアクリル樹脂(A)の中でも、水酸基を有するアクリル樹脂が貯蔵安定性に優れ、且つ、得られる硬化塗膜の耐水性も良好な活性エネルギー線硬化型水性樹脂組成物やな活性エネルギー線硬化型塗料が得られることから好ましい。水酸基を有するアクリル樹脂の中でも水酸基価が15~100mgKOH/gのアクリル樹脂が好ましく、水酸基価が25~65mgKOH/gのアクリル樹脂がより好ましい。 Among the acrylic resins (A) used in the present invention, an active energy ray-curable aqueous resin composition or active energy in which an acrylic resin having a hydroxyl group is excellent in storage stability and water resistance of the resulting cured coating film is also good. It is preferable because a wire curable coating is obtained. Among acrylic resins having a hydroxyl group, an acrylic resin having a hydroxyl value of 15 to 100 mgKOH / g is preferred, and an acrylic resin having a hydroxyl value of 25 to 65 mgKOH / g is more preferred.
 アクリル樹脂(A)の中でも水酸基を有するアクリル樹脂は、例えば、前記アクリル樹脂(a)として前記一般式(1)で表されるラジカル重合性単量体を樹脂形成成分の重量を基準として2~15重量%、メチルメタアクリレートを樹脂形成成分の重量を基準として55~70重量%、カルボキシル基含有エチレン性不飽和単量体及び水酸基含有エチレン性不飽和単量体を必須成分とし、更に必要に応じてその他の重合性単量体を混合した混合物を用い、該混合物を溶剤中で重合開始剤の存在下でラジカル重合反応を行う溶液重合法等によりアクリル樹脂を合成した後、塩基性化合物で該アクリル樹脂中のカルボキシル基を中和する事により得ることができる。 Among the acrylic resins (A), an acrylic resin having a hydroxyl group includes, for example, a radical polymerizable monomer represented by the general formula (1) as the acrylic resin (a) based on the weight of the resin-forming component. 15% by weight, methyl methacrylate 55 to 70% by weight based on the weight of the resin-forming component, carboxyl group-containing ethylenically unsaturated monomer and hydroxyl group-containing ethylenically unsaturated monomer as essential components, and further required In accordance with a mixture of other polymerizable monomers, an acrylic resin is synthesized by a solution polymerization method in which a radical polymerization reaction is performed in the presence of a polymerization initiator in a solvent, and then a basic compound is used. It can be obtained by neutralizing the carboxyl group in the acrylic resin.
 前記水酸基含有エチレン性不飽和単量体としては、例えば、ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、ヒドロキシブチル(メタ)アクリレート等が挙げられる。中でも、貯蔵安定性に優れる活性エネルギー線硬化型水性樹脂組成物や活性エネルギー線硬化型塗料が得られることからヒドロキシエチル(メタ)アクリレートが好ましい。 Examples of the hydroxyl group-containing ethylenically unsaturated monomer include hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, hydroxybutyl (meth) acrylate, and the like. Among these, hydroxyethyl (meth) acrylate is preferable because an active energy ray-curable aqueous resin composition and an active energy ray-curable coating material excellent in storage stability can be obtained.
 アクリル樹脂(a)として水酸基を有するアクリル樹脂を調製する際に用いる前記水酸基含有エチレン性不飽和単量体の使用量は、樹脂形成成分の重量を基準として3~20重量%が好ましい。 The amount of the hydroxyl group-containing ethylenically unsaturated monomer used when preparing an acrylic resin having a hydroxyl group as the acrylic resin (a) is preferably 3 to 20% by weight based on the weight of the resin-forming component.
 また、アクリル樹脂(A)等の水酸基価は、樹脂試料10.0gに無水酢酸/ピリジン溶液(体積比1/19)25mlを加えて加熱して1時間反応を行った後に、フェノールフタレインを指示薬に用い0.5mol/lの水酸化カリウム/エタノール溶液で中和滴定を行って求めた。 In addition, the hydroxyl value of acrylic resin (A) and the like was determined by adding 25 ml of acetic anhydride / pyridine solution (volume ratio 1/19) to 10.0 g of a resin sample and heating to react for 1 hour, and then adding phenolphthalein. Used as an indicator, neutralization titration was performed with a 0.5 mol / l potassium hydroxide / ethanol solution.
 前記アクリル樹脂(a)の合成の際に用いる溶剤としては、水と分離することなく混和する水混和性有機溶剤が好ましく、中でも水に対する溶解度(水100gに溶解する有機溶剤のグラム数)が25℃において3g以上の有機溶剤が好ましい。これら水混和性有機溶剤としては、例えば、メタノール、エタノール、プロパノール、ブタノール等のアルコール系溶剤;アセトン、メチルエチルケトン等のケトン系溶剤;エチレングリコールモノメチルエーテル、エチレングリコールジメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノイソプロピルエーテル、モノブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールモノイソプロピルエーテル、ジエチレングリコールモノブチルエーテル、トリエチレングリコールモノメチルエーテル、トリエチレングリコールジメチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールジメチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールジメチルエーテル等のグリコールエーテル系溶剤などが挙げられる。これら水混和性有機溶剤は、それぞれ単独で用いても良いし、2種以上を併用しても良い。 As the solvent used in the synthesis of the acrylic resin (a), a water-miscible organic solvent that is miscible without being separated from water is preferable. In particular, the solubility in water (the number of grams of the organic solvent dissolved in 100 g of water) is 25. An organic solvent of 3 g or more is preferable at ° C. Examples of these water-miscible organic solvents include alcohol solvents such as methanol, ethanol, propanol, and butanol; ketone solvents such as acetone and methyl ethyl ketone; ethylene glycol monomethyl ether, ethylene glycol dimethyl ether, ethylene glycol monoethyl ether, and ethylene glycol. Diethyl ether, ethylene glycol monopropyl ether, ethylene glycol monoisopropyl ether, monobutyl ether, diethylene glycol monomethyl ether, diethylene glycol dimethyl ether, diethylene glycol monoethyl ether, diethylene glycol diethyl ether, diethylene glycol monoisopropyl ether, diethylene glycol monobutyl ether, triethylene glycol And glycol ether solvents such as methyl monomethyl ether, triethylene glycol dimethyl ether, propylene glycol monomethyl ether, propylene glycol dimethyl ether, propylene glycol monopropyl ether, propylene glycol monobutyl ether, dipropylene glycol monomethyl ether, and dipropylene glycol dimethyl ether. . These water-miscible organic solvents may be used alone or in combination of two or more.
 前記水混和性有機溶剤には、更に必要に応じて他の有機溶剤を併用することができ、例えば、トルエン、キシレン等の芳香族炭化水素系溶剤;ヘキサン、ヘプタン、オクタン、デカン等の脂肪族炭化水素系溶剤;酢酸メチル、酢酸エチル、酢酸イソプロピル、酢酸ブチル、酢酸アミル、ギ酸エチル、プロピオン酸ブチル等のエステル系溶剤などが挙げられるが、臭気等により作業環境が低下することからその使用は好ましくなく、必要な場合においても水性樹脂組成物の総量に対して1%以下の使用が好ましい。また、前記芳香族炭化水素系溶剤の中でも混合芳香族炭化水素系溶剤として、例えば、ソルベッソ#100、ソルベッソ#150等の市販品が挙げられる。 The water-miscible organic solvent can be used in combination with other organic solvents as necessary, for example, aromatic hydrocarbon solvents such as toluene and xylene; aliphatics such as hexane, heptane, octane and decane. Hydrocarbon solvents: Examples include ester solvents such as methyl acetate, ethyl acetate, isopropyl acetate, butyl acetate, amyl acetate, ethyl formate, butyl propionate, etc. It is not preferable, and even when necessary, it is preferable to use 1% or less based on the total amount of the aqueous resin composition. Among the aromatic hydrocarbon solvents, examples of the mixed aromatic hydrocarbon solvent include commercially available products such as Solvesso # 100 and Solvesso # 150.
 前記溶液重合法等によるアクリル樹脂(a)の合成で使用できるラジカル重合開始剤としては、例えば、2,2´-アゾビス(イソブチロニトリル)、2,2´-アゾビス(2-メチルブチロニトリル)、アゾビスシアノ吉草酸等のアゾ化合物;tert-ブチルパーオキシピバレート、tert-ブチルパーオキシベンゾエート、tert-ブチルパーオキシ-2-エチルヘキサノエート、ジ-tert-ブチルパーオキサイド、クメンハイドロパーオキサイド、ベンゾイルパーオキサイド、t-ブチルハイドロパーオキサイド等の有機過酸化物;過酸化水素、過硫酸アンモニウム、過硫酸カリウム、過硫酸ナトリウム等の無機過酸化物が挙げられ、これらを単独又は2種以上併用できる。前記ラジカル重合開始剤は、アクリル樹脂を構成する成分の総量に対して、0.1~10重量%の範囲内で使用することが好ましい。 Examples of the radical polymerization initiator that can be used in the synthesis of the acrylic resin (a) by the solution polymerization method include 2,2′-azobis (isobutyronitrile), 2,2′-azobis (2-methylbutyro). Nitriles), azo compounds such as azobiscyanovaleric acid; tert-butyl peroxypivalate, tert-butyl peroxybenzoate, tert-butyl peroxy-2-ethylhexanoate, di-tert-butyl peroxide, cumene hydroper Organic peroxides such as oxide, benzoyl peroxide, t-butyl hydroperoxide; inorganic peroxides such as hydrogen peroxide, ammonium persulfate, potassium persulfate, sodium persulfate, etc., and these may be used alone or in combination of two or more Can be used together. The radical polymerization initiator is preferably used within a range of 0.1 to 10% by weight with respect to the total amount of components constituting the acrylic resin.
 前記溶液重合をする際の反応容器中の不揮発分は、30~90重量%であることが好ましく、50~80重量%であることがより好ましい。 The nonvolatile content in the reaction vessel at the time of the solution polymerization is preferably 30 to 90% by weight, and more preferably 50 to 80% by weight.
 アクリル樹脂(a)中のカルボキシル基を中和するのに用いる中和剤(塩基性化合物)としては、例えば、モノメチルアミン、ジメチルアミン、トリメチルアミン、モノエチルアミン、ジエチルアミン、トリエチルアミン、モノプロピルルアミン、ジプロピルルアミントリプロピルルアミン等のアルキルアミン;モノエタノールアミン、ジエタノールアミン、モノイソプロパノールアミン、ジイソプロパノールアミン、N-メチルエタノールアミン、N,N-ジメチルエタノールアミン、N,N-ジエチルエタノールアミン、2-アミノ-2-メチルプロパノール、2-(ジメチルアミノ)-2-メチルプロパノール、N-メチルジエタノールアミン等のアルカノールアミン;エチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン等の多価アミン等の有機アミンやアンモニア(水)が挙げられる。塩基性化合物の中でも揮発性が高い為、硬化塗膜に残りにくく、耐水性に優れる硬化塗膜が得られることからアンモニア水、トリメチルアミンが好ましい。中和剤(塩基性化合物)は単独で使用してもよいし、2種以上を併用してもよい。 Examples of the neutralizing agent (basic compound) used to neutralize the carboxyl group in the acrylic resin (a) include monomethylamine, dimethylamine, trimethylamine, monoethylamine, diethylamine, triethylamine, monopropyllamine, and dipropyl. Alkylamines such as ruamine tripropyllamine; monoethanolamine, diethanolamine, monoisopropanolamine, diisopropanolamine, N-methylethanolamine, N, N-dimethylethanolamine, N, N-diethylethanolamine, 2-amino-2 Alkanolamines such as methylpropanol, 2- (dimethylamino) -2-methylpropanol, N-methyldiethanolamine; ethylenediamine, diethylenetriamine, triethyleneteto Min, organic amines or ammonia, such as polyvalent amines such as tetraethylene pentamine (water) and the like. Among basic compounds, ammonia water and trimethylamine are preferred because they are highly volatile and therefore hardly remain on the cured coating film, and a cured coating film having excellent water resistance can be obtained. The neutralizing agent (basic compound) may be used alone or in combination of two or more.
 尚、例えば、カルボキシル基含有のアクリル樹脂にε-カプロラクトン等を付加させることにより、一般式(1)で示される化合物の繰り返し単位とこれに直接結合する水素原子からなる構造を有するアクリル樹脂をえることができる。 For example, by adding ε-caprolactone or the like to a carboxyl group-containing acrylic resin, an acrylic resin having a structure composed of a repeating unit of the compound represented by the general formula (1) and a hydrogen atom directly bonded thereto is obtained. be able to.
 本発明で用いるアクリル樹脂(a)の数平均分子量(Mn)としては、貯蔵安定性に優れ、且つ、粘度も上昇しすぎない活性エネルギー線硬化型水性樹脂組成物や活性エネルギー線硬化型塗料が得られることから5,000~30,000が好ましく、中でも8,000~25,000がより好ましい。 As the number average molecular weight (Mn) of the acrylic resin (a) used in the present invention, an active energy ray curable aqueous resin composition or an active energy ray curable coating material that is excellent in storage stability and does not increase in viscosity too much is used. From the viewpoint of being obtained, 5,000 to 30,000 is preferable, and 8,000 to 25,000 is more preferable.
 本発明で用いるアクリル樹脂(a)の重量平均分子量(Mw)としては、貯蔵安定性に優れ、且つ、粘度も上昇しすぎない活性エネルギー線硬化型水性樹脂組成物や活性エネルギー線硬化型塗料が得られることから10,000~100,000であることが好ましく、中でも30,000~80,000がより好ましい。 As the weight average molecular weight (Mw) of the acrylic resin (a) used in the present invention, an active energy ray-curable aqueous resin composition or an active energy ray-curable coating material that is excellent in storage stability and does not increase in viscosity too much is used. From the viewpoint of being obtained, it is preferably 10,000 to 100,000, and more preferably 30,000 to 80,000.
 本発明においてカルボキシル基含有アクリル樹脂(a)等の樹脂の数平均分子量と重量平均分子量の測定は、ゲルパーミュエーションクロマトグラフを用い、下記の条件でポリスチレン換算により、分子量1000以下の成分を除いて求めた。
 測定装置 ; 東ソー株式会社製 HLC-8220
 カラム  ; 東ソー株式会社製 ガードカラムHXL-H
       +東ソー株式会社製 TSKgel G5000HXL
       +東ソー株式会社製 TSKgel G4000HXL
       +東ソー株式会社製 TSKgel G3000HXL
       +東ソー株式会社製 TSKgel G2000HXL
 検出器  ; RI(示差屈折計)
 データ処理; 東ソー株式会社製 SC-8010
 測定条件 ; カラム温度 40℃
        溶媒    テトラヒドロフラン
        流速    1.0ml/分
 標準   ; ポリスチレン
 試料   ; 樹脂固形分換算で0.4重量%のテトラヒドロフラン溶液をマイクロフィルターでろ過したもの(100μl)。
In the present invention, the number average molecular weight and the weight average molecular weight of a resin such as a carboxyl group-containing acrylic resin (a) are measured using a gel permeation chromatograph and excluding components having a molecular weight of 1000 or less in terms of polystyrene under the following conditions. Asked.
Measuring device: HLC-8220 manufactured by Tosoh Corporation
Column: Tosoh Co., Ltd. Guard column HXL-H
+ Tosoh Corporation TSKgel G5000HXL
+ Tosoh Corporation TSKgel G4000HXL
+ Tosoh Corporation TSKgel G3000HXL
+ Tosoh Corporation TSKgel G2000HXL
Detector: RI (differential refractometer)
Data processing; Tosoh Corporation SC-8010
Measurement conditions: Column temperature 40 ° C
Solvent Tetrahydrofuran Flow rate 1.0 ml / min Standard; Polystyrene sample; 0.4 wt% tetrahydrofuran solution in terms of resin solid content filtered through a microfilter (100 μl).
 本発明で用いるカルボキシル基含有アクリル樹脂(a)のガラス転移温度は、耐摩耗性と基材付着性に優れる硬化塗膜が得られる活性エネルギー線硬化型水性樹脂組成物が得られることから30℃~100℃であることが好ましい。このためアクリル樹脂(a)の合成に際しては、ガラス転移温度が30℃~100℃となるように原料成分を適宜選択し組み合わせることが好ましい。より耐摩耗性と基材付着性に優れる硬化塗膜が得られることから60℃~90℃がより好ましい。 The glass transition temperature of the carboxyl group-containing acrylic resin (a) used in the present invention is 30 ° C. because an active energy ray-curable aqueous resin composition capable of obtaining a cured coating film excellent in abrasion resistance and substrate adhesion is obtained. It is preferably ˜100 ° C. Therefore, when synthesizing the acrylic resin (a), it is preferable to appropriately select and combine the raw material components so that the glass transition temperature is 30 ° C. to 100 ° C. 60 ° C. to 90 ° C. is more preferable because a cured coating film having better wear resistance and substrate adhesion can be obtained.
 アクリル樹脂(a)等の樹脂のガラス転移温度はJIS-K-7121に準じて示差走査熱量(DSC)測定により求めた。
 測定装置; TAインスツルメント製 DSCQ-100
 容器  ; アルミ製オープンセル
 昇温速度; 20℃/分
The glass transition temperature of the resin such as acrylic resin (a) was determined by differential scanning calorimetry (DSC) measurement according to JIS-K-7121.
Measuring device: TASC Instruments DSCQ-100
Container: Aluminum open cell Temperature rising rate: 20 ° C / min
 前記アクリル樹脂(a)等の樹脂のガラス転移温度はまた、下記の式で計算することもできる。尚、下記式のガラス転移温度は絶対温度(°K)である。
Tg-1=ΣXi・Tgi-1
The glass transition temperature of the resin such as the acrylic resin (a) can also be calculated by the following formula. In addition, the glass transition temperature of the following formula is an absolute temperature (° K).
Tg −1 = ΣXi · Tgi −1
 ここで樹脂は、i=1~nまでのn個のモノマー成分が共重合しているとする。Xiはi番目のモノマーの重量分率で、Tgiはi番目のモノマーの単独重合体のガラス転移温度である。モノマーの単独重合体のガラス転移温度は、Polymer Handbook(4th Edition)J.Brandrup,E.H.Immergut,E.A.Grulke著(Wiley Interscience)記載の値を使用できる。 Here, it is assumed that n monomer components of i = 1 to n are copolymerized in the resin. Xi is the weight fraction of the i-th monomer, and Tgi is the glass transition temperature of the homopolymer of the i-th monomer. The glass transition temperature of the monomer homopolymer was determined by Polymer Handbook (4 th Edition) J. MoI . Brandrup, E .; H. Immergut, E .; A. Values described by Gulke (Wiley Interscience) can be used.
 尚、アクリル樹脂(A)を調製するには、カルボキシル基含有アクリル樹脂(a)を合成した後にカルボキシル基の全部または一部を塩基性化合物で中和するのが好ましいが、予めカルボキシル基含有アクリル樹脂(a)の合成に用いるカルボキシル基含有エチレン性不飽和単量体の全部または一部を予め塩基性化合物で中和した単量体を用いることで、アクリル樹脂(a)を経る事なく、直接アクリル樹脂(A)を調製しても良い。 In order to prepare the acrylic resin (A), it is preferable to synthesize the carboxyl group-containing acrylic resin (a) and then neutralize all or part of the carboxyl groups with a basic compound. Without using the acrylic resin (a) by using a monomer in which all or part of the carboxyl group-containing ethylenically unsaturated monomer used for the synthesis of the resin (a) is previously neutralized with a basic compound, The acrylic resin (A) may be directly prepared.
 本発明で用いる化合物(B)は、重合性不飽和二重結合を8.6~10.5mmol/g有する必要がある。重合性不飽和二重結合の含有量が8.6mmol/gよりも小さいと硬化塗膜の耐摩耗性と耐水性が、架橋不足により不十分な活性エネルギー線硬化型水性樹脂組成物や活性エネルギー線硬化型塗料となることから好ましくない。重合性不飽和二重結合の含有量が10.5mmol/gよりも大きいと得られる硬化塗膜の基材への付着性が低下することから好ましくない。化合物(B)は、耐摩耗性、耐水性、付着性に優れる硬化塗膜が得られる活性エネルギー線硬化型水性樹脂組成物や活性エネルギー線硬化型塗料となることから重合性不飽和二重結合を9.0~10.2mmol/g有する化合物が好ましく、重合性不飽和二重結合を9.0~9.8mmol/g有する化合物がより好ましい。 The compound (B) used in the present invention needs to have a polymerizable unsaturated double bond of 8.6 to 10.5 mmol / g. When the content of polymerizable unsaturated double bonds is less than 8.6 mmol / g, the abrasion resistance and water resistance of the cured coating film are insufficient because of insufficient crosslinking due to insufficient crosslinking. It is not preferable because it becomes a wire curable paint. If the content of the polymerizable unsaturated double bond is larger than 10.5 mmol / g, the adhesion of the resulting cured coating film to the substrate is not preferred. The compound (B) is a polymerizable unsaturated double bond because it becomes an active energy ray-curable aqueous resin composition or an active energy ray-curable coating material from which a cured coating film excellent in abrasion resistance, water resistance and adhesion can be obtained. Is preferably from 9.0 to 10.2 mmol / g, more preferably from 9.0 to 9.8 mmol / g of polymerizable unsaturated double bonds.
 本発明で用いる重合性不飽和二重結合を8.6~10.5mmol/g有する化合物(B)としては、単独で用いても良いが、重合性不飽和二重結合を有する化合物を混合して、重合性不飽和二重結合の平均の含有量が8.6~10.5mmol/gとした混合物を用いるほうが好ましい。このとき用いる重合性不飽和二重結合を有する化合物は、重合性不飽和二重結合を8.6~10.5mmol/gの含有量で有しているものを用いても良いし、重合性不飽和二重結合を8.6mmol/gよりも少なく有するもを用いても良いし、重合性不飽和二重結合を10.5mmol/gよりも多く有するもを用いても良い。 As the compound (B) having a polymerizable unsaturated double bond of 8.6 to 10.5 mmol / g used in the present invention, it may be used alone, but a compound having a polymerizable unsaturated double bond is mixed. Thus, it is preferable to use a mixture having an average content of polymerizable unsaturated double bonds of 8.6 to 10.5 mmol / g. As the compound having a polymerizable unsaturated double bond used at this time, a compound having a polymerizable unsaturated double bond in a content of 8.6 to 10.5 mmol / g may be used. Those having an unsaturated double bond of less than 8.6 mmol / g may be used, or those having a polymerizable unsaturated double bond of more than 10.5 mmol / g may be used.
 重合性不飽和二重結合を8.6~10.5mmol/g有する化合物は単独で使用して化合物(B)とすることができる。そのような化合物としては、例えば、1,6-ヘキサンジ(メタ)アクリレート(重合性不飽和二重結合の含有量:8.8mmol/g)、ジエチレングリコールジ(メタ)アクリレート(重合性不飽和二重結合の含有量:9.3mmol/g)、ネオペンチルグリコールジ(メタ)アクリレート(重合性不飽和二重結合の含有量:9.4mmol/g)、1,4-ブタンジオールジ(メタ)アクリレート(重合性不飽和二重結合の含有量:10.1mmol/g)、トリメチロールプロパントリ(メタ)アクリレート(重合性不飽和二重結合の含有量:10.1mmol/g)、ペンタエリスリトールトリ(メタ)アクリレート(重合性不飽和二重結合の含有量:10.1mmol/g)、ジトリメチロールプロパンテトラ(メタ)アクリレート(重合性不飽和二重結合の含有量:8.6mmol/g)、ジペンタエリスリトールペンタ(メタ)アクリレート(重合性不飽和二重結合の含有量:9.5mmol/g)、ジペンタエリスリトールヘキサ(メタ)アクリレート(重合性不飽和二重結合の含有量:10.4mmol/g)等が挙げられる。また、これらの化合物は混合して化合物(B)を調製する際の原料として用いる事もできる。 A compound having a polymerizable unsaturated double bond of 8.6 to 10.5 mmol / g can be used alone to obtain a compound (B). Examples of such compounds include 1,6-hexanedi (meth) acrylate (polymerizable unsaturated double bond content: 8.8 mmol / g), diethylene glycol di (meth) acrylate (polymerizable unsaturated double bond). Bond content: 9.3 mmol / g), neopentyl glycol di (meth) acrylate (polymerizable unsaturated double bond content: 9.4 mmol / g), 1,4-butanediol di (meth) acrylate (Content of polymerizable unsaturated double bond: 10.1 mmol / g), trimethylolpropane tri (meth) acrylate (content of polymerizable unsaturated double bond: 10.1 mmol / g), pentaerythritol tri ( (Meth) acrylate (polymerizable unsaturated double bond content: 10.1 mmol / g), ditrimethylolpropane tetra (meth) acrylate (Content of polymerizable unsaturated double bond: 8.6 mmol / g), dipentaerythritol penta (meth) acrylate (content of polymerizable unsaturated double bond: 9.5 mmol / g), dipenta And erythritol hexa (meth) acrylate (polymerizable unsaturated double bond content: 10.4 mmol / g). Moreover, these compounds can also be used as a raw material at the time of preparing a compound (B) by mixing.
 混合して化合物(B)を調製する際に用いる重合性不飽和二重結合を有する化合物としては、例えば、イソボニル(メタ)アクリレート(重合性不飽和二重結合の含有量:4.8mmol/g)、ジシクロペンタニル(メタ)アクリレート(重合性不飽和二重結合の含有量:4.9mmol/g)等のモノ(メタ)アクリレート類; Examples of the compound having a polymerizable unsaturated double bond used when preparing the compound (B) by mixing are isobornyl (meth) acrylate (content of polymerizable unsaturated double bond: 4.8 mmol / g). ), Mono (meth) acrylates such as dicyclopentanyl (meth) acrylate (polymerizable unsaturated double bond content: 4.9 mmol / g);
トリプロピレングリコールジ(メタ)アクリレート(重合性不飽和二重結合の含有量:6.7mmol/g)、ビスフェノールAジグリシジルエーテルジ(メタ)アクリレート(重合性不飽和二重結合の含有量:3.3mmol/g)、ヒドロキシピバリン酸ネオペンチルグリコールジ(メタ)アクリレート(重合性不飽和二重結合の含有量:6.4mmol/g)、トリシクロデカンジメタノール(メタ)アクリレート(重合性不飽和二重結合の含有量:6.6mmol/g)、エチレンオキサイド繰り返し単位数が9であるポリエチレングリコールジ(メタ)アクリレート(重合性不飽和二重結合の含有量:3.8mmol/g)、エチレンオキサイド繰り返し単位数が13であるポリエチレングリコールジ(メタ)アクリレート(重合性不飽和二重結合の含有量:2.9mmol/g)、プロピレンオキサイド繰り返し単位数が7であるポリプロピレングリコールジ(メタ)アクリレート(重合性不飽和二重結合の含有量:3.8mmol/g)、ペンタエリスリトールジ(メタ)アクリレート(重合性不飽和二重結合の含有量:8.2mmol/g)、ジペンタエリスリトールテトラ(メタ)アクリレート(重合性不飽和二重結合の含有量:8.5mmol/g)等のジ(メタ)アクリレート類; Tripropylene glycol di (meth) acrylate (polymerizable unsaturated double bond content: 6.7 mmol / g), bisphenol A diglycidyl ether di (meth) acrylate (polymerizable unsaturated double bond content: 3 .3 mmol / g), neopentyl glycol di (meth) acrylate hydroxypivalate (content of polymerizable unsaturated double bond: 6.4 mmol / g), tricyclodecane dimethanol (meth) acrylate (polymerizable unsaturated) Content of double bond: 6.6 mmol / g), polyethylene glycol di (meth) acrylate having 9 ethylene oxide repeating units (content of polymerizable unsaturated double bond: 3.8 mmol / g), ethylene Polyethylene glycol di (meth) acrylate having 13 repeating oxide units (polymerization Unsaturated double bond content: 2.9 mmol / g), polypropylene glycol di (meth) acrylate having 7 propylene oxide repeating units (polymerizable unsaturated double bond content: 3.8 mmol / g) , Pentaerythritol di (meth) acrylate (polymerizable unsaturated double bond content: 8.2 mmol / g), dipentaerythritol tetra (meth) acrylate (polymerizable unsaturated double bond content: 8.5 mmol) / (G) di (meth) acrylates;
トリス(2-(メタ)アクリロイルオキシエチル)イソシアヌレート(重合性不飽和二重結合の含有量:5.6mmol/g)、1分子あたりエチレンオキサイド鎖を3個有するエチレンオキサイド変性トリメチロールプロパントリ(メタ)アクリレート(重合性不飽和二重結合の含有量:7.0mmol/g)等のトリ(メタ)アクリレート類; Tris (2- (meth) acryloyloxyethyl) isocyanurate (polymerizable unsaturated double bond content: 5.6 mmol / g), ethylene oxide-modified trimethylolpropane tri having three ethylene oxide chains per molecule ( Tri (meth) acrylates such as (meth) acrylate (content of polymerizable unsaturated double bond: 7.0 mmol / g);
ペンタエリスリトールテトラ(メタ)アクリレート(重合性不飽和二重結合の含有量:11.4mmol/g)、カプロラクトン変性ジペンタエリスリトールヘキサ(メタ)アクリレート(重合性不飽和二重結合の含有量:6.5mmol/g)等のポリ(メタ)アクリレート類やアクリロイルモルフォリン(重合性不飽和二重結合の含有量:7.1mmol/g)等が挙げられる。 Pentaerythritol tetra (meth) acrylate (content of polymerizable unsaturated double bond: 11.4 mmol / g), caprolactone-modified dipentaerythritol hexa (meth) acrylate (content of polymerizable unsaturated double bond: 6. And poly (meth) acrylates such as 5 mmol / g) and acryloylmorpholine (content of polymerizable unsaturated double bond: 7.1 mmol / g).
 中でも硬化性が高く耐摩耗性に優れる塗膜が得られることから、ジペンタエリスリトールペンタアクリレート、ジペンタエリスリトールヘキサアクリレートを用いることが好ましく、ジペンタエリスリトールペンタアクリレートとジペンタエリスリトールヘキサアクリレートの混合物がより好ましい。 Among them, it is preferable to use dipentaerythritol pentaacrylate and dipentaerythritol hexaacrylate because a film having high curability and excellent wear resistance can be obtained, and a mixture of dipentaerythritol pentaacrylate and dipentaerythritol hexaacrylate is more preferable. preferable.
 また、化合物(B)として、トリレンジイソシアネート、イソホロンジイソシアネート、ヘキサメチレンジイソシアネート、ジシクロヘキシルメタンジイソシアネート、ノルボルナンジイソシアネート等のジイソシアネート化合物、さらにはこれらジイソシアネート化合物とポリオールから得られるイソシアネートプレポリマー、さらにはこれらジイソシアネート化合物から得られるヌレート体やビュレット体であるトリイソシアネート化合物と、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート等の水酸基を有する(メタ)アクリレートとの反応生成物であるウレタン(メタ)アクリレート等や、多塩基酸とヒドロキシアルキル(メタ)アクリレートとのモノ-、ジ-、トリ-またはそれ以上のポリエステル、あるいはビスフェノールA型エポキシアクリレート、ノボラック型エポキシアクリレートの如き、重合性不飽和二重結合を有するオリゴマー類もしくはプレポリマー類等が挙げられる。これらは重合性不飽和二重結合が8.6~10.5mmol/gとなれば単独種で使用してもよいし、2種以上を併用しても良い。また、これらの重合性不飽和二重結合を有する化合物で、重合性不飽和二重結合の含有量が8.6mmol/gよりも少ない化合物や10.5mmol/gよりも多く有する化合物でも他の重合性不飽和二重結合を有する化合物と併用し、平均の重合性不飽和二重結合が8.6~10.5mmol/g有するようにすれば使用することができる。尚、ウレタン(メタ)アクリレートとしては、ジイソシアネート化合物とペンタエリスリトールトリ(メタ)アクリレートとの反応生成物であるウレタン(メタ)アクリレートが好ましい。 Further, as the compound (B), diisocyanate compounds such as tolylene diisocyanate, isophorone diisocyanate, hexamethylene diisocyanate, dicyclohexylmethane diisocyanate, norbornane diisocyanate, further an isocyanate prepolymer obtained from these diisocyanate compound and polyol, and further from these diisocyanate compounds Triisocyanate compounds that are nurate bodies and burette bodies and 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol penta (meth) acrylate, etc. Urethane (meth) acrylate which is a reaction product with hydroxyl group-containing (meth) acrylate Polymerizable unsaturated double bonds such as mono-, di-, tri- or higher polyesters of polybasic acid and hydroxyalkyl (meth) acrylate, bisphenol A type epoxy acrylate, novolak type epoxy acrylate, etc. Examples include oligomers or prepolymers having a bond. These may be used alone or in combination of two or more if the polymerizable unsaturated double bond is 8.6 to 10.5 mmol / g. In addition, these compounds having a polymerizable unsaturated double bond, a compound having a polymerizable unsaturated double bond content of less than 8.6 mmol / g or a compound having a content of more than 10.5 mmol / g, It can be used if it is used in combination with a compound having a polymerizable unsaturated double bond and the average polymerizable unsaturated double bond is from 8.6 to 10.5 mmol / g. In addition, as urethane (meth) acrylate, the urethane (meth) acrylate which is a reaction product of a diisocyanate compound and pentaerythritol tri (meth) acrylate is preferable.
 重合性不飽和二重結合を有する化合物を2種以上混合して本発明で用いる化合物(B)とするには、例えば、ジペンタエリスリトールヘキサアクリレート(重合性不飽和二重結合の含有量:10.4mmol/g)とトリプロピレングリコールジアクリレート(重合性不飽和二重結合の含有量:6.7mmol/g)とを重量比で80:20で混合させる。これにより、混合物は重合性不飽和二重結合を9.6mmol/g有する事となり、化合物(B)として用いることができる。 In order to obtain a compound (B) used in the present invention by mixing two or more compounds having a polymerizable unsaturated double bond, for example, dipentaerythritol hexaacrylate (content of polymerizable unsaturated double bond: 10) 0.4 mmol / g) and tripropylene glycol diacrylate (polymerizable unsaturated double bond content: 6.7 mmol / g) are mixed at a weight ratio of 80:20. As a result, the mixture has a polymerizable unsaturated double bond of 9.6 mmol / g and can be used as the compound (B).
 前記化合物(B)は、それぞれ単独で用いても良いし、2種以上を併用しても良い。 The compounds (B) may be used alone or in combination of two or more.
 本発明で用いる化合物(B)としては、耐摩耗性に優れた硬化塗膜が得られる活性エネルギー線硬化型水性樹脂組成物や活性エネルギー線硬化型塗料となることから、ジペンタエリスリトールペンタアクリレートと、ジペンタエリスリトールヘキサアクリレートと、ウレタン(メタ)アクリレートとの混合物がより好ましい。この混合物の中でも重合性不飽和二重結合を5.5~9.5mmol/g有するウレタン(メタ)アクリレートを含有する混合物が好ましい。更に、この混合物の平均の重合性不飽和二重結合の濃度が9.0~10.2mmol/gであることが好ましい。 As the compound (B) used in the present invention, since it becomes an active energy ray-curable aqueous resin composition or an active energy ray-curable coating material from which a cured coating film excellent in abrasion resistance is obtained, dipentaerythritol pentaacrylate and A mixture of dipentaerythritol hexaacrylate and urethane (meth) acrylate is more preferable. Among these mixtures, a mixture containing urethane (meth) acrylate having a polymerizable unsaturated double bond of 5.5 to 9.5 mmol / g is preferable. Further, the average polymerizable unsaturated double bond concentration of the mixture is preferably 9.0 to 10.2 mmol / g.
 本発明の活性エネルギー線硬化型水性樹脂組成物は前記アクリル樹脂(A)と化合物(B)とを、含有量の比〔(B)/(A)〕が重量換算で1.5~6となる範囲である必要がある。含有量の比〔(B)/(A)〕が1.5より小さいと硬化塗膜の耐磨耗性と耐水性が不足することから好ましくない。含有量の比〔(B)/(A)〕が6より大きいと貯蔵安定性が不足することから好ましくない。含有量の比〔(B)/(A)〕は1.8~4が好ましく、中でも2~3.5が好ましい。 The active energy ray-curable aqueous resin composition of the present invention comprises the acrylic resin (A) and the compound (B), and the content ratio [(B) / (A)] is 1.5 to 6 in terms of weight. It is necessary to be in the range. When the content ratio [(B) / (A)] is smaller than 1.5, the abrasion resistance and water resistance of the cured coating film are insufficient, which is not preferable. When the content ratio [(B) / (A)] is larger than 6, it is not preferable because the storage stability is insufficient. The content ratio [(B) / (A)] is preferably 1.8 to 4, more preferably 2 to 3.5.
 本発明の活性エネルギー線硬化型水性樹脂組成物の製造方法は、特に限定されないが、例えば以下の方法等が挙げられる。 The production method of the active energy ray-curable aqueous resin composition of the present invention is not particularly limited, and examples thereof include the following methods.
 (1)アクリル樹脂(a)中のカルボキシル基を中和してなる樹脂(A)と化合物(B)を、水混和性有機溶剤に溶解させて溶液とした後、水と混合して、水混和性有機溶剤を含有する水性媒体中への樹脂(A)の溶解又は分散と、樹脂(A)が溶解した樹脂溶液又は樹脂(A)が水中に分散した樹脂分散液中に化合物(B)を分散させる方法。 (1) The resin (A) obtained by neutralizing the carboxyl group in the acrylic resin (a) and the compound (B) are dissolved in a water-miscible organic solvent to form a solution, which is then mixed with water, Dissolution or dispersion of resin (A) in an aqueous medium containing a miscible organic solvent, and a resin solution in which resin (A) is dissolved or a resin dispersion in which resin (A) is dispersed in water, compound (B) How to disperse.
 (2)アクリル樹脂(a)中のカルボキシル基を中和してなる樹脂(A)と化合物(B)を、水混和性有機溶剤を含有する水性媒体と混合し、水性媒体中への樹脂(A)の溶解又は分散と樹脂(A)が溶解した樹脂溶液又は樹脂(A)が分散した樹脂分散液中に化合物(B)を分散させる方法。 (2) The resin (A) obtained by neutralizing the carboxyl group in the acrylic resin (a) and the compound (B) are mixed with an aqueous medium containing a water-miscible organic solvent, and the resin ( A method in which the compound (B) is dispersed in the resin solution in which the resin (A) is dissolved or the resin solution (A) is dispersed.
 (3)アクリル樹脂(a)と化合物(B)を水混和性有機溶剤に溶解させて溶液とした後、該溶液と塩基性化合物とを混合してアクリル樹脂(a)中のカルボキシル基の中和を行いアクリル樹脂(A)を得た後、該アクリル樹脂(A)と重合性不飽和二重結合を有する化合物(B)を含有する水混和性有機溶剤溶液と水と混合して、水性媒体中への樹脂(A)の溶解又は分散とアクリル樹脂(A)が溶解した樹脂溶液又は樹脂(A)が水中に分散した樹脂分散液中に化合物(B)を分散させる方法。 (3) After the acrylic resin (a) and the compound (B) are dissolved in a water-miscible organic solvent to form a solution, the solution and the basic compound are mixed to form a carboxyl group in the acrylic resin (a). After obtaining the acrylic resin (A) by summing, the water-miscible organic solvent solution containing the acrylic resin (A) and the compound (B) having a polymerizable unsaturated double bond is mixed with water to obtain an aqueous solution. Dissolving or dispersing resin (A) in a medium and a method of dispersing compound (B) in a resin solution in which acrylic resin (A) is dissolved or in a resin dispersion in which resin (A) is dispersed in water.
 (4)アクリル樹脂(a)と化合物(B)を水混和性有機溶剤に溶解させて溶液とした後、該溶液と塩基性化合物を含有する水とを混合して、塩基性化合物によりアクリル樹脂(a)中のカルボキシル基の中和を行い、水性媒体中への樹脂(A)の溶解又は分散と樹脂(A)が溶解した樹脂溶液又は樹脂(A)が水中に分散した樹脂分散液中に化合物(B)を分散させる方法。 (4) After the acrylic resin (a) and the compound (B) are dissolved in a water-miscible organic solvent to form a solution, the solution is mixed with water containing a basic compound, and the acrylic resin is mixed with the basic compound. In the resin dispersion in which the carboxyl group in (a) is neutralized and the resin (A) is dissolved or dispersed in the aqueous medium and the resin (A) is dissolved or the resin (A) is dispersed in water. A method of dispersing the compound (B) in
 前記に述べた方法の中でも、前記(1)や(3)の方法が簡便に活性エネルギー線硬化型水性樹脂組成物が得られることから好ましい。なお、アクリル樹脂(a)やアクリル樹脂(A)と化合物(B)の水混和性有機溶剤への溶解は、同時に行う必要はなく、例えば、アクリル樹脂(a)やアクリル樹脂(A)を水混和性有機溶剤に溶解した後、化合物(B)と混合して化合物(B)を分散させる方法であっても良い。さらに、このようにしてアクリル樹脂(a)中のカルボキシル基を中和してなるアクリル樹脂(A)を水中に溶解させた樹脂溶液中又はアクリル樹脂(A)を水中に分散させた樹脂分散液中に化合物(B)を分散してなる活性エネルギー線硬化型水性樹脂組成物を得た後、必要に応じて水混和性有機溶剤の一部乃至全部を除去してもよいが、本発明の活性エネルギー線硬化型水性樹脂組成物や活性エネルギー線硬化型塗料は有機溶剤をあえて除去ぜすとも有機溶剤の含有量が従来のスプレー塗装条件に比べ1/10以下とすることができる。従って、作業環境を悪化させる、揮発した有機溶剤による大気汚染が引き起こされる等の問題を極めて生じにくい。 Among the methods described above, the methods (1) and (3) are preferable because an active energy ray-curable aqueous resin composition can be easily obtained. The acrylic resin (a) or the acrylic resin (A) and the compound (B) need not be dissolved in the water-miscible organic solvent at the same time. For example, the acrylic resin (a) or the acrylic resin (A) is dissolved in water. After dissolving in a miscible organic solvent, it may be mixed with compound (B) to disperse compound (B). Further, in the resin solution in which the acrylic resin (A) obtained by neutralizing the carboxyl group in the acrylic resin (a) is dissolved in water or the resin dispersion in which the acrylic resin (A) is dispersed in water. After obtaining the active energy ray-curable aqueous resin composition in which the compound (B) is dispersed, a part or all of the water-miscible organic solvent may be removed as necessary. Even if the active energy ray-curable aqueous resin composition or the active energy ray-curable coating material is used to remove the organic solvent, the content of the organic solvent can be reduced to 1/10 or less compared to conventional spray coating conditions. Therefore, problems such as deterioration of the working environment and air pollution caused by the volatile organic solvent are hardly caused.
 本発明の活性エネルギー線硬化型水性樹脂組成物には通常光(重合)開始剤を含有させる。光(重合)開始剤としては、種々のものを使用できる。例えば、アセトフェノン類、ベンゾフェノン誘導体、ミヒラーズケトン、ベンジン、ベンジル誘導体、ベンゾイン誘導体、ベンゾインメチルエーテル類、α-アシロキシムエステル、チオキサントン類、アンスラキノン類およびそれらの各種誘導体などで、例えば4-ジメチルアミノ安息香酸、4-ジメチルアミノ安息香酸エステル、アルコキシアセトフェノン、ベンジルジメチルケタール、ベンゾフェノン、ベンゾイル安息香酸アルキル、ビス(4-ジアルキルアミノフェニル)ケトン、ベンジル、ベンゾイン、ベンゾインベンゾエート、ベンゾインアルキルエーテル、2-ヒドロキシ-2-メチルプロピオフェノン、1-ヒドロキシシクロヘキシルフェニルケトン、4-(2-ヒドロキシエトキシ)フェニル-2-ヒドロキシ-2-プロピルケトン、2-ヒドロキシー2-メチル-1-フェニループロパン-1-オン、チオキサントン、2,4,6-トリメチルベンゾイルジフェノイルフォスフィンオキシド、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルホリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-ブタノン-1-オン等が挙げられる。これらは単独で使用してもよいし、は2種以上を併用して用いてもよい。尚、光(重合)開始剤は通常油性だが、開始剤も水中で安定的に分散した状態となる。 The active energy ray-curable aqueous resin composition of the present invention usually contains a photo (polymerization) initiator. Various photo (polymerization) initiators can be used. For example, acetophenones, benzophenone derivatives, Michler's ketone, benzine, benzyl derivatives, benzoin derivatives, benzoin methyl ethers, α-acyloxime esters, thioxanthones, anthraquinones and various derivatives thereof such as 4-dimethylaminobenzoic acid 4-dimethylaminobenzoate, alkoxyacetophenone, benzyldimethyl ketal, benzophenone, alkyl benzoylbenzoate, bis (4-dialkylaminophenyl) ketone, benzyl, benzoin, benzoin benzoate, benzoin alkyl ether, 2-hydroxy-2- Methyl propiophenone, 1-hydroxycyclohexyl phenyl ketone, 4- (2-hydroxyethoxy) phenyl-2-hydroxy-2-pro Luketone, 2-hydroxy-2-methyl-1-phenyl-propan-1-one, thioxanthone, 2,4,6-trimethylbenzoyldiphenoylphosphine oxide, 2-methyl-1- [4- (methylthio) phenyl] Examples include -2-morpholinopropan-1-one, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone-1-one, and the like. These may be used alone or in combination of two or more. The photo (polymerization) initiator is usually oily, but the initiator is also stably dispersed in water.
 光(重合)開始剤は、本発明の活性エネルギー線硬化型水性樹脂組成物の固形分に対して、0.05~20重量%、好ましくは、0.5~10重量%の範囲内で添加される。 The photo (polymerization) initiator is added in the range of 0.05 to 20% by weight, preferably 0.5 to 10% by weight, based on the solid content of the active energy ray-curable aqueous resin composition of the present invention. Is done.
 また、光(重合)開始剤加えて種々の光増感剤をも併用することができる。光増感剤としては、例えば、アミン類、尿素類、含硫黄化合物、含燐化合物、含塩素化合物またはニトリル類もしくはその他の含窒素化合物などが挙げられる。 In addition to the photo (polymerization) initiator, various photosensitizers can be used in combination. Examples of the photosensitizer include amines, ureas, sulfur-containing compounds, phosphorus-containing compounds, chlorine-containing compounds, nitriles, and other nitrogen-containing compounds.
 本発明の活性エネルギー線硬化型水性樹脂組成物はアクリル樹脂(A)を水中に溶解させた樹脂溶液中または該アクリル樹脂(A)を水中に分散させた樹脂分散液中に、化合物(B)を分散してなる活性エネルギー線硬化型水性樹脂組成物であり、該アクリル樹脂(A)と該化合物(B)との含有量の比〔(B)/(A)〕が重量換算で1.5~6であれば良く、アクリル樹脂(A)の一部が水に溶解した状態となっていても良いし、化合物(B)の一部が水に溶解した状態となっていても良い。 The active energy ray-curable aqueous resin composition of the present invention comprises a compound (B) in a resin solution in which an acrylic resin (A) is dissolved in water or in a resin dispersion in which the acrylic resin (A) is dispersed in water. Is an active energy ray-curable aqueous resin composition, in which the ratio [(B) / (A)] of the acrylic resin (A) and the compound (B) is 1. It may be 5 to 6, and a part of the acrylic resin (A) may be dissolved in water, or a part of the compound (B) may be dissolved in water.
 本発明の活性エネルギー線硬化型水性樹脂組成物は必要に応じて本発明の硬化を損なわない範囲で乳化剤を使用してもよい。乳化剤を使用することによりアクリル樹脂(A)と化合物(B)の水中での分散安定性を向上させることができる。 In the active energy ray-curable aqueous resin composition of the present invention, an emulsifier may be used as long as it does not impair the curing of the present invention. By using an emulsifier, the dispersion stability of the acrylic resin (A) and the compound (B) in water can be improved.
 前記乳化剤としては、例えば、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテルなどのノニオン系乳化剤、アルキル硫酸エステル塩、アルキルベンゼンスルホン酸塩、ポリオキシエチレンアルキルエーテル硫酸エステル塩などのアニオン系乳化剤、4級アンモニウム塩等のカチオン系乳化剤などが挙げられる。乳化剤を使用する際は硬化塗膜の耐水性を低下させないためにも、できるだけ少量が好ましく、使用しないのがより好ましい。 Examples of the emulsifier include nonionic emulsifiers such as polyoxyethylene alkyl ether and polyoxyethylene alkylphenyl ether, anionic emulsifiers such as alkyl sulfate ester salt, alkylbenzene sulfonate salt, and polyoxyethylene alkyl ether sulfate ester salt. And cationic emulsifiers such as quaternary ammonium salts. When using an emulsifier, in order not to reduce the water resistance of the cured coating film, the amount is preferably as small as possible and more preferably not used.
 前記本発明の活性エネルギー線硬化型水性樹脂組成物の製造でアクリル樹脂(a)、アクリル樹脂(A)、化合物(B)を水混和性有機溶剤等に溶解、分散させる機械的手段としては種々の手段を用いることができる。例えば、例えば撹拌翼にタービン翼、マックスブレンド翼、Hi-Fミキサー等を用いて混合溶解および/または分散させる方法や、ホモジナイザー、ソノレーター、ディスパー、ミキサー等により混合溶解および/または分散させる方法が用いられる。 There are various mechanical means for dissolving and dispersing the acrylic resin (a), the acrylic resin (A), and the compound (B) in a water-miscible organic solvent in the production of the active energy ray-curable aqueous resin composition of the present invention. The following means can be used. For example, for example, a method of mixing and dissolving and / or dispersing with a stirring blade using a turbine blade, a Max blend blade, a Hi-F mixer, or a method of mixing and dissolving and / or dispersing with a homogenizer, sonolator, disper, mixer, etc. It is done.
 本発明の活性エネルギー線硬化型塗料は本発明の活性エネルギー線硬化型樹脂組成物を含有する。本発明の活性エネルギー線硬化型塗料は、例えば、本発明の活性エネルギー線硬化型樹脂組成物と、光開始剤と、必要に応じてレベリング剤、消泡剤、レオロジーコントロール剤等を混合する事により得られる。 The active energy ray-curable coating composition of the present invention contains the active energy ray-curable resin composition of the present invention. The active energy ray-curable coating composition of the present invention is, for example, a mixture of the active energy ray-curable resin composition of the present invention, a photoinitiator, and a leveling agent, an antifoaming agent, a rheology control agent, and the like as necessary. Is obtained.
 前記レベリング剤としては、例えば、ポリエーテル変性ポリジメチルシロキサン、アクリロイル基を有するポリエーテル変性ポリジメチルシロキサン等のシリコン系レベリング剤、アクリル系レベリング剤等が挙げられる。前記消泡剤としては、例えば、シリコン系消泡剤、ミネラルオイル系消泡剤、ポリマー系消泡剤等が挙げられる。前記レオロジーコントロール剤としては、例えば、アルカリ膨潤型レオロジーコントロール剤、アルカリ膨潤会合型レオロジーコントロール剤、ウレタン会合型レオロジーコントロール剤等が挙げられる。これらは必要に応じて適宜選択して用いることができる。 Examples of the leveling agent include polyether-modified polydimethylsiloxane, silicon-based leveling agents such as polyether-modified polydimethylsiloxane having an acryloyl group, and acrylic leveling agents. Examples of the antifoaming agent include silicon-based antifoaming agents, mineral oil-based antifoaming agents, and polymer-based antifoaming agents. Examples of the rheology control agent include an alkali swelling rheology control agent, an alkali swelling association rheology control agent, and a urethane association rheology control agent. These can be appropriately selected and used as necessary.
 更に、本発明の活性エネルギー線硬化型塗料には必要に応じて前記重合性不飽和二重結合を有する化合物の乳化物や、ウレタン樹脂やエポキシ樹脂等の乳化物や自己乳化物もしくは水溶性樹脂等も配合することができる。 Furthermore, the active energy ray-curable coating composition of the present invention includes an emulsion of a compound having a polymerizable unsaturated double bond, an emulsion such as a urethane resin or an epoxy resin, a self-emulsified product, or a water-soluble resin as necessary. Etc. can also be blended.
 本発明の硬化塗膜の形成方法は本発明の活性エネルギー線硬化型塗料を基材に塗布した後、活性エネルギー線を照射して塗布した活性エネルギー線硬化型塗料を硬化させることを特徴とする。塗布は、例えば、グラビアコート法、ロールコート法、スプレーコート法、リップコート法、コンマコート法、スピンコート法、ディッピング法などのコート法、グラビア印刷法、スクリーン印刷法などの印刷法等により行う事ができる。基材としては、例えば、プラスチック、金属もしくは金属蒸着面、ガラス、木材、紙等が挙げられる。 The method for forming a cured coating film of the present invention is characterized in that after the active energy ray-curable coating material of the present invention is applied to a substrate, the applied active energy ray-curable coating material is cured by irradiation with active energy rays. . The coating is performed by, for example, a gravure coating method, a roll coating method, a spray coating method, a lip coating method, a comma coating method, a spin coating method, a dipping method, or a coating method such as a gravure printing method or a screen printing method. I can do things. Examples of the substrate include plastic, metal or metal vapor deposition surface, glass, wood, paper and the like.
 前記プラスチックとしては、例えば、アクリルーブチレンースチレン共重合体(ABS)、ポリカーボネート(PC)、ポリメチルメタクリレート(PMMA)、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、セルローストリアセテート(TAC)等もしくはこれらの複合体等が挙げられる。前記金属としては、例えば、アルミ、ステンレス、錫、ブリキ等が挙げられる。 Examples of the plastic include acrylic-butylene-styrene copolymer (ABS), polycarbonate (PC), polymethyl methacrylate (PMMA), polyethylene terephthalate (PET), polybutylene terephthalate (PBT), and cellulose triacetate (TAC). Or these composites etc. are mentioned. Examples of the metal include aluminum, stainless steel, tin, tinplate, and the like.
 前記これらの基材は予め本発明の活性エネルギー線硬化型塗料を塗布した後、活性エネルギー線を照射して塗布した活性エネルギー線硬化型塗料を硬化させた硬化塗膜を有する基材であってもよいし、予め本発明の活性エネルギー線硬化型塗料以外の塗料を塗布し、必要に応じて乾燥させた後、硬化させた硬化塗膜を有する基材であってもよいし、 These base materials are base materials having a cured coating film obtained by curing the active energy ray-curable coating material applied by irradiating the active energy ray after applying the active energy ray-curable coating material of the present invention in advance. Alternatively, a base material having a cured coating film cured after applying a coating material other than the active energy ray-curable coating material of the present invention in advance and drying it if necessary,
 また、基材は種々の形状を有していても良い。例えば、厚みのある形状やシート状、フィルム状であってもよい。更に基材表面に凹凸等の意匠が施されていても良い。 Also, the substrate may have various shapes. For example, a thick shape, a sheet shape, or a film shape may be used. Furthermore, a design such as irregularities may be applied to the surface of the substrate.
 本発明の硬化塗膜の形成方法は、例えば、以下の工程からなる形成方法等が挙げられる。まず、本発明の活性エネルギー線硬化型塗料を基材に塗布する。その後、予備乾燥させる。予備乾燥は、例えば、塗布後の基材を50~100℃の環境下に1~30分静置する事により行われる。その後、活性エネルギー線を照射する。例えば、基材がプラスチックの場合、予備乾燥は70℃5分程度である。 Examples of the method for forming a cured coating film of the present invention include a forming method comprising the following steps. First, the active energy ray-curable coating material of the present invention is applied to a substrate. Thereafter, it is pre-dried. The preliminary drying is performed, for example, by allowing the coated substrate to stand in an environment of 50 to 100 ° C. for 1 to 30 minutes. Then, an active energy ray is irradiated. For example, when the base material is plastic, the preliminary drying is about 70 ° C. for about 5 minutes.
 活性エネルギー線としては、例えば、電子線、紫外線、ガンマ線などを挙げることができる。活性エネルギー線の照射条件は、用いる活性エネルギー線硬化型塗料の組成に応じて定められるが、通常積算光量が50~5000mj/cmとなるように照射するのが好ましく、積算光量が200~3000mj/cmとなるように照射するのがより好ましい。 Examples of active energy rays include electron beams, ultraviolet rays, and gamma rays. The irradiation condition of the active energy ray is determined according to the composition of the active energy ray-curable coating material to be used, but it is preferable that the irradiation is usually performed so that the integrated light amount is 50 to 5000 mj / cm 2. It is more preferable to irradiate so that it may become / cm < 2 >.
 本発明の硬化塗膜の形成方法により住宅の床の補修を行うには、例えば、本発明の活性エネルギー線硬化型塗料を床に塗布して扇風機で乾燥した後、ハンディータイプの紫外線照射機を用いて紫外線を照射し、塗膜を硬化させればよい。 In order to repair the floor of a house by the method for forming a cured coating film of the present invention, for example, after applying the active energy ray-curable coating material of the present invention to the floor and drying it with a fan, a handy type ultraviolet irradiator is used. The coating film may be cured by irradiating with ultraviolet rays.
 本発明の活性エネルギー線硬化型水性樹脂組成物や活性エネルギー線硬化型塗料にはスプレー塗装などの塗工性能に応じて水混和性有機溶剤を適宜含ませても良い。また、本発明の活性エネルギー線硬化型水性樹脂組成物や活性エネルギー線硬化型塗料中のアクリル樹脂(A)と化合物(B)との合計の固形分含有率としては、粘度が適当でコーティング剤としての取扱いが容易なことから、10~70重量%であることが好ましく、20~50重量%であることがより好ましい。 The active energy ray-curable aqueous resin composition and the active energy ray-curable coating composition of the present invention may appropriately contain a water-miscible organic solvent depending on the coating performance such as spray coating. In addition, the total solid content of the acrylic resin (A) and the compound (B) in the active energy ray-curable aqueous resin composition or the active energy ray-curable coating of the present invention has a suitable viscosity and a coating agent. Is preferably 10 to 70% by weight, and more preferably 20 to 50% by weight.
 本発明の活性エネルギー線硬化型塗料の硬化塗膜が配置してなる物品は、耐摩耗性、耐水性に優れる硬化塗膜を有する。この硬化塗膜は物品の表面に配置していても良いし、基礎塗装(ベースコート)や中塗り塗装として物品上に配置していても良い。基礎塗装(ベースコート)や中塗り塗装として物品上に配置していても、表面の硬化塗膜の耐擦傷性や耐水性を補い、物品の寿命を延ばすことができる。また、ベースコートを基材上に形成しておくことでは次の工程までに発生する基材の傷つきを防止することもできる。 The article in which the cured coating film of the active energy ray-curable coating material of the present invention is disposed has a cured coating film excellent in wear resistance and water resistance. The cured coating film may be disposed on the surface of the article, or may be disposed on the article as a basic coating (base coat) or an intermediate coating. Even if it is arranged on the article as a basic coating (base coat) or an intermediate coating, it can supplement the scratch resistance and water resistance of the cured coating film on the surface and extend the life of the article. Further, by forming the base coat on the base material, it is possible to prevent the base material from being damaged by the next step.
 以下に、合成例、実施例および比較例を示して本発明を具体的に説明する。各例中の部および%は断りの無い限り重量基準である。 Hereinafter, the present invention will be specifically described with reference to synthesis examples, examples and comparative examples. Unless otherwise specified, parts and% in each example are based on weight.
 合成例1〔アクリル樹脂(A)の合成〕
 還流冷却器、撹拌機および窒素導入管を具備した1リットルの反応容器に、プロピレングリコールモノプロピルエーテル280gを仕込んで撹拌を開始し、120℃まで昇温した。ここに窒素気流下で、メチルメタアクリレート434g、ブチルメタアクリレート21g、アクリル酸84g、ヒドロキシエチルメタアクリレート105g、アロニックスM-5300〔東亜合成株式会社製、ω-カルボキシポリカプロラクトンアクリレート〕 35.0gからなる単量体混合物と、tert-ブチルパーオキシ-2-エチルヘキサノエート12.6gをプロピレングリコールモノプロピルエーテル20gで溶解した開始剤溶液とを4時間かけて併行添加した。同温度で更に重合反応を続け8時間後に反応を終了しアクリル樹脂(a-1)の溶液を得た。該アクリル樹脂(a-1)の樹脂固形分の酸価は102mgKOH/g、水酸基価は64mgKOH/g、数平均分子量は15,000、重量平均分子量は45,000、ガラス転移温度は72℃であった。次いで、この溶液にトリエチルアミン23.3g、25%アンモニア水36.7gを加えて中和を行い、プロピレングリコールモノプロピルエーテルで調整を行いアクリル樹脂(A-1)の溶液を得た。このアクリル樹脂(A-1)の溶液の不揮発分は70%、中和されたカルボキシル基の量は1.10mmol/gであった。アクリル樹脂(A-1)の特性値をアクリル樹脂(a-1)の物性値とともに第1表に併せて示す。
Synthesis Example 1 [Synthesis of acrylic resin (A)]
In a 1 liter reaction vessel equipped with a reflux condenser, a stirrer and a nitrogen inlet tube, 280 g of propylene glycol monopropyl ether was charged and stirring was started, and the temperature was raised to 120 ° C. Here, under nitrogen flow, 434 g of methyl methacrylate, 21 g of butyl methacrylate, 84 g of acrylic acid, 105 g of hydroxyethyl methacrylate, 35.0 g of Aronix M-5300 (manufactured by Toa Gosei Co., Ltd., ω-carboxypolycaprolactone acrylate) The monomer mixture and an initiator solution prepared by dissolving 12.6 g of tert-butylperoxy-2-ethylhexanoate in 20 g of propylene glycol monopropyl ether were added simultaneously over 4 hours. The polymerization reaction was further continued at the same temperature, and the reaction was terminated after 8 hours to obtain an acrylic resin (a-1) solution. The acrylic resin (a-1) has an acid value of 102 mgKOH / g, a hydroxyl value of 64 mgKOH / g, a number average molecular weight of 15,000, a weight average molecular weight of 45,000, and a glass transition temperature of 72 ° C. there were. Next, 23.3 g of triethylamine and 36.7 g of 25% aqueous ammonia were added to this solution for neutralization, and adjustment with propylene glycol monopropyl ether was performed to obtain a solution of an acrylic resin (A-1). The solution of the acrylic resin (A-1) had a nonvolatile content of 70%, and the amount of neutralized carboxyl groups was 1.10 mmol / g. The characteristic values of the acrylic resin (A-1) are shown together with the physical properties of the acrylic resin (a-1) in Table 1.
 合成例2~9(同上)
 合成例1の方法に従い、表1に示した単量体混合物及び重合開始剤の使用量にてアクリル樹脂(A-2)の溶液及びアクリル樹脂(A-9)の溶液を得た。アクリル樹脂(A-2)及びアクリル樹脂(A-9)の特性値を、アクリル樹脂(a-1)~アクリル樹脂(a-9)の物性値とともに第1表及び第2表に併せて示す。
Synthesis examples 2 to 9 (same as above)
According to the method of Synthesis Example 1, an acrylic resin (A-2) solution and an acrylic resin (A-9) solution were obtained using the monomer mixture and the polymerization initiator shown in Table 1. The characteristic values of the acrylic resin (A-2) and the acrylic resin (A-9) are shown together with the physical properties of the acrylic resins (a-1) to (a-9) in Tables 1 and 2. .
 合成例10~14〔比較対照用アクリル樹脂(a)の合成〕
 合成例1の方法に従い、表1に示した単量体混合物及び重合開始剤の使用量にて比較対照用アクリル樹脂(A´-1)の溶液~比較対照用アクリル樹脂(A´-5)の溶液を得た。アクリル樹脂(a´-1)及びアクリル樹脂(a´-5)の特性値を第3表に併せて示す。
Synthesis Examples 10 to 14 [Synthesis of comparative acrylic resin (a)]
According to the method of Synthesis Example 1, the acrylic resin for comparison (A′-1) and the acrylic resin for comparison (A′-5) were used in the amounts of the monomer mixture and polymerization initiator shown in Table 1. Solution was obtained. The characteristic values of the acrylic resin (a′-1) and the acrylic resin (a′-5) are also shown in Table 3.
 合成例15〔化合物(B)の合成〕
 撹拌機を具備した1リットルの反応容器に、ヘキサメチレンジイソシアネート104g、メトキノン0.2g、ジブチル錫ジラウリレート0.2gを仕込み撹拌を開始し60℃に昇温した。同温度で、アロニックスM305(東亜合成株式会社製、ペンタエリスリトールトリアクリレート/ペンタエリスリトールテトラアクリレート、水酸基価110mgKOH/g)645gを10回に分けて10分毎に仕込んだ。更に10時間反応を継続して赤外線スペクトルで2250cm-1のイソシアネート基の吸収が消失したことを確認して反応を終了しウレタンアクリレート(重合性不飽和二重結合の含有量:7.8mmol/g)とペンタエリスリトールテトラアクリレートの混合物である化合物(BB-1)を得た。化合物(BB-1)の重合性不飽和二重結合の濃度は9.0mmol/gであった。
Synthesis Example 15 [Synthesis of Compound (B)]
In a 1 liter reaction vessel equipped with a stirrer, 104 g of hexamethylene diisocyanate, 0.2 g of methoquinone and 0.2 g of dibutyltin dilaurate were charged and stirring was started, and the temperature was raised to 60 ° C. At the same temperature, 645 g of Aronix M305 (manufactured by Toa Gosei Co., Ltd., pentaerythritol triacrylate / pentaerythritol tetraacrylate, hydroxyl value 110 mgKOH / g) was added in 10 portions every 10 minutes. Further, the reaction was continued for 10 hours, and it was confirmed that the absorption of the isocyanate group at 2250 cm −1 disappeared in the infrared spectrum. The reaction was terminated, and urethane acrylate (content of polymerizable unsaturated double bond: 7.8 mmol / g) ) And pentaerythritol tetraacrylate were obtained as a compound (BB-1). The concentration of the polymerizable unsaturated double bond of the compound (BB-1) was 9.0 mmol / g.
 合成例16(同上)
 撹拌機を具備した1リットルの反応容器に、イソホロンジイソシアネート128g、メトキノン0.2g、ジブチル錫ジラウリレート0.2gを仕込み撹拌を開始し60℃に昇温した。同温度で、アロニックスM305 621gを10回に分けて10分毎に仕込んだ。更に10時間反応を継続して赤外線スペクトルで2250cm-1のイソシアネート基の吸収が消失したことを確認して反応を終了しウレタンアクリレート(重合性不飽和二重結合の含有量:7.3mmol/g)とペンタエリスリトールテトラアクリレートの混合物である化合物(BB-2)を得た。化合物(BB-2)の重合性不飽和二重結合の濃度は8.6mmol/gであった。
Synthesis example 16 (same as above)
In a 1 liter reaction vessel equipped with a stirrer, 128 g of isophorone diisocyanate, 0.2 g of methoquinone, and 0.2 g of dibutyltin dilaurate were charged and stirring was started, and the temperature was raised to 60 ° C. At the same temperature, 621 g of Aronix M305 was charged in 10 portions every 10 minutes. The reaction was further continued for 10 hours, and it was confirmed that the absorption of the isocyanate group at 2250 cm −1 disappeared in the infrared spectrum, and the reaction was terminated. Then, urethane acrylate (content of polymerizable unsaturated double bond: 7.3 mmol / g) ) And pentaerythritol tetraacrylate were obtained as a compound (BB-2). The concentration of the polymerizable unsaturated double bond of the compound (BB-2) was 8.6 mmol / g.
 合成例17〔化合物(B)の合成〕
 撹拌機を具備した1リットルの反応容器に、アロニックスM404(東亜合成株式会社製、ジペンタエリスリトールペンタアクリレート/ジペンタエリスリトールヘキサアクリレート、水酸基価50mgKOH/g)250g、アロニックスM-408(東亜合成株式会社製のジトリメチロールプロパンテトラアクリレート)50g及び化合物(BB-1)200gを仕込み、40℃で攪拌を行い化合物(B-1)を得た。化合物(B-1)の重合性不飽和二重結合の濃度は9.5mmol/gであった。
Synthesis Example 17 [Synthesis of Compound (B)]
In a 1 liter reaction vessel equipped with a stirrer, 250 g of Aronix M404 (Toa Gosei Co., Ltd., dipentaerythritol pentaacrylate / dipentaerythritol hexaacrylate, hydroxyl value 50 mg KOH / g), Aronix M-408 (Toa Gosei Co., Ltd.) 50 g of ditrimethylolpropane tetraacrylate) and 200 g of compound (BB-1) were charged and stirred at 40 ° C. to obtain compound (B-1). The concentration of the polymerizable unsaturated double bond of the compound (B-1) was 9.5 mmol / g.
 合成例18同上)
 撹拌機を具備した1リットルの反応容器に、アロニックスM404 450g及び化合物(BB-1)50gを仕込み、40℃で攪拌を行い化合物(B-2)を得た。化合物(B-2)の重合性不飽和二重結合の濃度は10.0mmol/gであった。
Synthesis Example 18 Same as above)
A 1 liter reaction vessel equipped with a stirrer was charged with 450 g of Aronix M404 and 50 g of compound (BB-1), and stirred at 40 ° C. to obtain compound (B-2). The concentration of the polymerizable unsaturated double bond of the compound (B-2) was 10.0 mmol / g.
 合成例19(同上)
 撹拌機を具備した1リットルの反応容器に、アロニックスM404 150g、アロニックスM350(東亜合成株式会社製のエチレンオキサイド変性トリメチロールプロパントリアクリレート)75g及び化合物(BB-2)275gを仕込み、40℃で攪拌を行い化合物(B-3)を得た。化合物(B-3)の重合性不飽和二重結合の濃度は8.8mmol/gであった。
Synthesis example 19 (same as above)
A 1 liter reaction vessel equipped with a stirrer was charged with 150 g of Aronix M404, 75 g of Aronix M350 (ethylene oxide-modified trimethylolpropane triacrylate manufactured by Toa Gosei Co., Ltd.) and 275 g of compound (BB-2) and stirred at 40 ° C. To obtain the compound (B-3). The concentration of the polymerizable unsaturated double bond of the compound (B-3) was 8.8 mmol / g.
 合成例20(同上)
 撹拌機を具備した1リットルの反応容器に、アロニックスM402(東亜合成株式会社製、ジペンタエリスリトールペンタアクリレート/ジペンタエリスリトールヘキサアクリレート、水酸基価25mgKOH/g)225g、アロニックスM305 250g及び化合物(BB-1)25gを仕込み、40℃で攪拌を行い化合物(B-4)を得た。化合物(B-4)の重合性不飽和二重結合の濃度は10.4mmol/gであった。
Synthesis example 20 (same as above)
In a 1 liter reaction vessel equipped with a stirrer, 225 g of Aronix M402 (manufactured by Toa Gosei Co., Ltd., dipentaerythritol pentaacrylate / dipentaerythritol hexaacrylate, hydroxyl value 25 mgKOH / g), 250 g of Aronix M305 and compound (BB-1) ) Was added and stirred at 40 ° C. to obtain compound (B-4). The concentration of the polymerizable unsaturated double bond of the compound (B-4) was 10.4 mmol / g.
 合成例21〔比較対照用化合物(B)の合成〕
  撹拌機を具備した1リットルの反応容器に、アロニックスM404 75g、アロニックスM309 150g、化合物(BB-2)275gを仕込み、40℃で攪拌を行い化合物(b-1)を得た。化合物(b-1)の重合性不飽和二重結合の濃度は8.4mmol/gであった。
Synthesis Example 21 [Synthesis of Comparative Control Compound (B)]
A 1 liter reaction vessel equipped with a stirrer was charged with 75 g of Aronix M404, 150 g of Aronix M309 and 275 g of compound (BB-2), and stirred at 40 ° C. to obtain compound (b-1). The concentration of the polymerizable unsaturated double bond of the compound (b-1) was 8.4 mmol / g.
 合成例22(同上)
  撹拌機を具備した1リットルの反応容器に、アロニックスM402 75g及びアロニックスM305 425gを仕込み、40℃で攪拌を行い化合物(b-2)を得た。化合物(b-2)の重合性不飽和重結合の濃度は10.6mmol/gであった。
Synthesis example 22 (same as above)
In a 1 liter reaction vessel equipped with a stirrer, 75 g of Aronix M402 and 425 g of Aronix M305 were charged and stirred at 40 ° C. to obtain compound (b-2). The concentration of the polymerizable unsaturated heavy bond of the compound (b-2) was 10.6 mmol / g.
  実施例1
 撹拌機を具備した1リットルの反応容器に合成例1で得られたアクリル樹脂(A-1)の溶液97部、合成例8で得られたウレタンアクリレート(B-1)147gを仕込んで撹拌を開始し70℃に昇温して攪拌混合した。次いで40℃にて攪拌を行いながらイオン交換水340gを10回に分割して投入し、アクリル樹脂(A-1)の溶液中にウレタンアクリレート(B-1)を分散させた。次にイルガキュア500(チバスペシャリティケミカルズ製の光重合開始剤)10.5g、シリコーン系レベリング剤(BYK製、BYK-333)2.1g添加混合し、イオン交換水で調整を行い不揮発分35%、PH7.2の活性エネルギー線硬化型水性樹脂組成物1を調整した。活性エネルギー線硬化型水性樹脂組成物1中の平均粒子径は330nmであった。
Example 1
A 1 liter reaction vessel equipped with a stirrer was charged with 97 parts of the acrylic resin (A-1) solution obtained in Synthesis Example 1 and 147 g of the urethane acrylate (B-1) obtained in Synthesis Example 8 and stirred. Then, the temperature was raised to 70 ° C. and mixed with stirring. Next, 340 g of ion-exchanged water was added in 10 portions while stirring at 40 ° C. to disperse the urethane acrylate (B-1) in the solution of the acrylic resin (A-1). Next, 10.5 g of Irgacure 500 (photopolymerization initiator manufactured by Ciba Specialty Chemicals) and 2.1 g of a silicone leveling agent (BYK, BYK-333) were added and mixed, adjusted with ion-exchanged water, and a non-volatile content of 35%. An active energy ray-curable aqueous resin composition 1 having a pH of 7.2 was prepared. The average particle diameter in the active energy ray-curable aqueous resin composition 1 was 330 nm.
 なお、活性エネルギー線硬化型水性樹脂組成物1中の平均粒子径は、MICROTRAC社製NANOTRAC 150を用いて測定した(以下同様)。 In addition, the average particle diameter in the active energy ray-curable aqueous resin composition 1 was measured using NANOTRAC 150 manufactured by MICROTRAC (hereinafter the same).
 活性エネルギー線硬化型水性樹脂組成物1中のPHは、株式会社堀場製作所製PHメーターD-51、電極型式9621Cを用いて測定した(以下同様)。 PH in the active energy ray-curable aqueous resin composition 1 was measured using a PH meter D-51 manufactured by Horiba, Ltd. and an electrode type 9621C (the same applies hereinafter).
 得られた活性エネルギー線硬化型水性樹脂組成物1の硬化塗膜の外観評価、耐摩耗性、鉛筆硬度、基材への付着性及び耐温水性を評価した。硬化塗膜の作成方法と各試験の評価方法を下記に示す。 The appearance evaluation, abrasion resistance, pencil hardness, adhesion to the substrate and hot water resistance of the cured coating film of the obtained active energy ray-curable aqueous resin composition 1 were evaluated. The preparation method of the cured coating film and the evaluation method of each test are shown below.
 硬化塗膜(試験塗装板)の作成方法。
 PMMA(ポリメチルメタアクリレート)板上に乾燥後膜厚が10μmになるようにスプレー塗装を行い、乾燥機中で70℃10分間の予備乾燥後に80W/cmの高圧水銀ランプを用いて1000mJ/cmの紫外線照射を行い、試験塗装板を作製した。なお付着性試験、耐温水付着性試験、耐水性試験は、更に、ABS(アクリルーブチレンースチレン共重合体)及びPC(ポリカーボネート)を基材とした試験塗装板も作成し、これらを用いた試験も行った。
How to make a cured coating film (test paint plate).
Spray coating was performed on a PMMA (polymethyl methacrylate) plate so that the film thickness after drying was 10 μm, and after preliminary drying at 70 ° C. for 10 minutes in a dryer, using a 80 W / cm high-pressure mercury lamp, 1000 mJ / cm The test coating plate was produced by irradiating with ultraviolet ray 2 . In addition, for the adhesion test, the hot water adhesion test, and the water resistance test, a test coating plate based on ABS (acrylic butylene-styrene copolymer) and PC (polycarbonate) was also prepared and used. A test was also conducted.
 外観評価:試験塗装板の外観を目視評価した。
  ◎:平滑でハジキも見られない。
  ○:平滑だが、ハジキがわずかに確認できる。
  △:わずかに凹凸がみられる。
  ×:大きな凹凸がみられる。
Appearance evaluation: The appearance of the test painted plate was visually evaluated.
A: Smooth and no repelling.
○: Smooth, but slight repelling can be confirmed.
Δ: Slight irregularities are observed.
X: Large unevenness is observed.
 耐摩耗性試験:JIS-K5600-5-10に準じて試験塗装板の塗装面を#0000のスチールウールに1Kgの荷重をかけて100回往復摩擦した後に、試験部のヘーズ値を測定することにより判定した。なお、ヘーズ値の測定にはスガ試験機株式会社製DIGITAL HAZE COMPUTERを用いた。
  ◎:3.5未満。
  ○:3.5以上~5.0未満。
  △:5.0以上~15.0未満。
  ×:15.0以上。
Abrasion resistance test: Measure the haze value of the test area after rubbing the painted surface of the test painted plate with # 0000 steel wool under a load of 1Kg 100 times according to JIS-K5600-5-10 Judged by. For measuring the haze value, DIGITAL HAZE COMPUTER manufactured by Suga Test Instruments Co., Ltd. was used.
A: Less than 3.5.
○: 3.5 or more and less than 5.0.
Δ: 5.0 or more and less than 15.0
X: 15.0 or more.
 鉛筆硬度試験:試験塗装板の塗装面をJIS-S-6006に規定された高級鉛筆を用い、JIS-K-5400に準じて傷がつかない硬さを調べた。 Pencil hardness test: Using a high-grade pencil specified in JIS-S-6006, the coating surface of the test coating plate was examined for hardness to prevent scratches according to JIS-K-5400.
 付着性試験:JIS-K5600-5-6に準じて、試験塗装板(基材にPMMA、ABS及びPCを用いた試験塗装板)の塗装面に1mm幅で碁盤目の切り込みを行い100個のマスをつくり、セロハンテープを用いて剥離試験を行い残存した碁盤目の数で判定を行った。
  ◎:全ての試験塗装板で100個。
  ○:全ての試験塗装板で80個以上で、且つ、一つまたは二つの試験塗装板で100個。
  △:全ての試験塗装板で80~99個。
  ×:いずれかの試験塗装板で79個以下。
Adhesion test: In accordance with JIS-K5600-5-6, 100 mm of cuts were made on the painted surface of the test coating plate (test coating plate using PMMA, ABS and PC as the base material) with a width of 1 mm. A mass was formed, a peel test was performed using a cellophane tape, and the number of remaining grids was determined.
A: 100 on all test painted plates.
○: 80 or more on all test painted plates and 100 on one or two test painted plates.
Δ: 80 to 99 on all test painted plates.
X: 79 or less in any test coating board.
 耐温水付着性:試験塗装板(基材にPMMA、ABS及びPCを用いた試験塗装板)を90℃の温水中に2時間浸漬した後に、前記付着性試験を行った。
  ◎:全ての試験塗装板で100個。
  ○:全ての試験塗装板で80個以上で、且つ、一つまたは二つの試験塗装板で100個。
  △:全ての試験塗装板で80~99個。
  ×:いずれかの試験塗装板で79個以下。
Resistance to hot water: The test coating plate (test coating plate using PMMA, ABS and PC as a base material) was immersed in warm water at 90 ° C. for 2 hours, and then the adhesion test was performed.
A: 100 on all test painted plates.
○: 80 or more on all test painted plates and 100 on one or two test painted plates.
Δ: 80 to 99 on all test painted plates.
X: 79 or less in any test coating board.
 耐水性試験:試験塗装板(基材にPMMA、ABS及びPCを用いた試験塗装板)を50℃の温水中に24時間および72時間浸漬した後に、塗装面の白化状態を目視で判定した。
  ◎:全ての試験塗装板で72時間後に変化なし。
  ○:全ての試験塗装板で24時間後は変化ないが、少なくとも一つの試験塗装板で72時間後に部分的に白化又はふくれがみられる。
  △:全ての試験塗装板で24時間後に部分的に白化又はふくれがみられる。
  ×:全ての試験塗装板で24時間後に全面に白化又はふくれがみられる。
Water resistance test: The test coating plate (test coating plate using PMMA, ABS and PC as a base material) was immersed in warm water at 50 ° C. for 24 hours and 72 hours, and then the whitening state of the coated surface was visually determined.
A: No change after 72 hours on all test painted plates.
◯: All test painted plates do not change after 24 hours, but at least one test painted plate is partially whitened or blistered after 72 hours.
(Triangle | delta): Whitening or blistering is partially seen after 24 hours by all the test coating plates.
X: Whitening or blistering is observed on the entire surface after 24 hours on all test painted plates.
 実施例2~14、比較例1~9
 実施例1の方法に従い、第2表に示した原料組成にて活性エネルギー線硬化型水性樹脂組成物2~14及び比較対照用活性エネルギー線硬化型水性樹脂組成物1´~9´を得た。実施例1と同様にして各試験を行い、その評価結果を第8表~第11表に示す。
Examples 2 to 14 and Comparative Examples 1 to 9
According to the method of Example 1, active energy ray-curable aqueous resin compositions 2 to 14 and comparative active energy ray-curable aqueous resin compositions 1 ′ to 9 ′ were obtained with the raw material compositions shown in Table 2. . Each test was performed in the same manner as in Example 1, and the evaluation results are shown in Tables 8-11.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 第1表の脚注
 MMA:メチルメタアクリレート
 BMA:ブチルメタアクリレート
 EA:エチルアクリレート
 BA:ブチルアクリレート
 2EHA:2-エチルヘキシルアクリレート
 AA:アクリル酸
 MAA:メタアクリル酸
 HEA:ヒドロキシエチルアクリレート
 HEMA:ヒドロキシエチルメタアクリレート
 M-5300:アロニックスM-5300〔東亜合成株式会社製、ω-カルボキシポリカプロラクトンアクリレート〕
 FM-1:プラクセルFM-1〔ダイセル化学工業(株)製、ヒドロキシエチルメタクリレートのカプロラクトン1mol付加物〕
 開始剤:tert-ブチルパーオキシ-2-エチルヘキサノエート12.6gをプロピレングリコールモノプロピルエーテル20gで溶解した開始剤溶液
Footnotes in Table 1 MMA: methyl methacrylate BMA: butyl methacrylate EA: ethyl acrylate BA: butyl acrylate 2EHA: 2-ethylhexyl acrylate AA: acrylic acid MAA: methacrylic acid HEA: hydroxyethyl acrylate HEMA: hydroxyethyl methacrylate M -5300: Aronix M-5300 [Toa Gosei Co., Ltd., ω-carboxypolycaprolactone acrylate]
FM-1: Plaxel FM-1 [manufactured by Daicel Chemical Industries, Ltd., 1 mol of caprolactone adduct of hydroxyethyl methacrylate]
Initiator: Initiator solution prepared by dissolving 12.6 g of tert-butylperoxy-2-ethylhexanoate with 20 g of propylene glycol monopropyl ether
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 第4表~第7表の脚注
 イルガキュア500:チバスペシャリティケミカルズ製の光重合開始剤
 シリコーン系レベリング剤:BYK製、BYK-333
Footnotes in Tables 4 to 7 Irgacure 500: Photopolymerization initiator manufactured by Ciba Specialty Chemicals Silicone leveling agent: BYK, BYK-333
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013

Claims (17)

  1. 下記一般式(1)で表されるラジカル重合性単量体を樹脂形成成分の重量を基準として2~15重量%用い、メチルメタアクリレートを樹脂形成成分の重量を基準として55~70重量%用いて得られ、且つ、0.80~1.29mmol/gの中和されたカルボキシル基を含有するアクリル樹脂(A)を水中に溶解させた樹脂溶液中または該アクリル樹脂(A)を水中に分散させた樹脂分散液中に、重合性不飽和二重結合を8.6~10.5mmol/g有する化合物(B)を分散してなる活性エネルギー線硬化型水性樹脂組成物であり、該アクリル樹脂(A)と該化合物(B)との含有量の比〔(B)/(A)〕が重量換算で1.5~6であることを特徴とする活性エネルギー線硬化型水性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    (Rは水素原子またはメチル基であり、Rは炭素原子数2~8のアルキレン基であり、nは1~10の整数である。)
    The radical polymerizable monomer represented by the following general formula (1) is used in an amount of 2 to 15% by weight based on the weight of the resin forming component, and methyl methacrylate is used in an amount of 55 to 70% by weight based on the weight of the resin forming component. In a resin solution obtained by dissolving an acrylic resin (A) containing 0.80 to 1.29 mmol / g of neutralized carboxyl group in water or dispersing the acrylic resin (A) in water An active energy ray-curable aqueous resin composition obtained by dispersing a compound (B) having a polymerizable unsaturated double bond in a range of 8.6 to 10.5 mmol / g in a dispersed resin dispersion, the acrylic resin An active energy ray-curable aqueous resin composition, wherein the content ratio [(B) / (A)] of (A) and the compound (B) is 1.5 to 6 in terms of weight.
    Figure JPOXMLDOC01-appb-C000001
    (R 1 is a hydrogen atom or a methyl group, R 2 is an alkylene group having 2 to 8 carbon atoms, and n is an integer of 1 to 10)
  2. 前記一般式(1)で表されるラジカル重合性単量体がε-カルボキシポリカプロラクトン(メタ)アクリレートである請求項1記載の活性エネルギー線硬化型水性樹脂組成物。 The active energy ray-curable aqueous resin composition according to claim 1, wherein the radical polymerizable monomer represented by the general formula (1) is ε-carboxypolycaprolactone (meth) acrylate.
  3. 前記アクリル樹脂(A)がε-カルボキシポリカプロラクトン(メタ)アクリレートを樹脂形成成分の重量を基準として3.0~10.0重量%用いて得られ、メチルメタアクリレートを樹脂形成成分の重量を基準として55~65重量%用いて得られ、且つ、0.90~1.20mmol/gの中和されたカルボキシル基を含有するアクリル樹脂である請求項2記載の活性エネルギー線硬化型水性樹脂組成物。 The acrylic resin (A) is obtained using ε-carboxypolycaprolactone (meth) acrylate in an amount of 3.0 to 10.0% by weight based on the weight of the resin forming component, and methyl methacrylate based on the weight of the resin forming component. 3. The active energy ray-curable aqueous resin composition according to claim 2, which is an acrylic resin obtained by using 55 to 65% by weight and containing a neutralized carboxyl group of 0.90 to 1.20 mmol / g. .
  4. 前記アクリル樹脂(A)が側鎖に炭素原子数2~8のアルキル基を含有するアクリル樹脂である請求項1記載の活性エネルギー線硬化型水性樹脂組成物。 The active energy ray-curable aqueous resin composition according to claim 1, wherein the acrylic resin (A) is an acrylic resin containing an alkyl group having 2 to 8 carbon atoms in the side chain.
  5. 前記アクリル樹脂(A)が水酸基価15~100mgKOH/gのアクリル樹脂である請求項1記載の活性エネルギー線硬化型水性樹脂組成物。 The active energy ray-curable aqueous resin composition according to claim 1, wherein the acrylic resin (A) is an acrylic resin having a hydroxyl value of 15 to 100 mgKOH / g.
  6. 前記アクリル樹脂(A)がε-カルボキシポリカプロラクトン(メタ)アクリレートを樹脂形成成分の重量を基準として3~10重量%、メチルメタアクリレートを樹脂形成成分の重量を基準として55~65重量%、ヒドロキシエチル(メタ)アクリレートを樹脂形成成分の重量を基準として3~20重量%、ブチル(メタ)アクリレートを樹脂形成成分の重量を基準として1~25重量%およびアクリル酸を樹脂形成成分の重量を基準として10~15重量%用いて得られるものである請求項1記載の活性エネルギー線硬化型水性樹脂組成物。 In the acrylic resin (A), ε-carboxypolycaprolactone (meth) acrylate is 3 to 10% by weight based on the weight of the resin forming component, methyl methacrylate is 55 to 65% by weight based on the weight of the resin forming component, hydroxy 3 to 20% by weight of ethyl (meth) acrylate based on the weight of the resin-forming component, 1 to 25% by weight of butyl (meth) acrylate based on the weight of the resin-forming component, and acrylic acid based on the weight of the resin-forming component The active energy ray-curable aqueous resin composition according to claim 1, wherein the active energy ray-curable aqueous resin composition is obtained by using 10 to 15% by weight.
  7. 前記アクリル樹脂(A)が重合性不飽和二重結合を含有しないアクリル樹脂である請求項1記載の活性エネルギー線硬化型水性樹脂組成物。 The active energy ray-curable aqueous resin composition according to claim 1, wherein the acrylic resin (A) is an acrylic resin containing no polymerizable unsaturated double bond.
  8. 前記アクリル樹脂(A)が、数平均分子量が5,000~30,000で、重量平均分子量が10,000~100,000で、酸価75~150mgKOH/gのカルボキシル基含有アクリル樹脂を中和して得られるアクリル樹脂である請求項1記載の活性エネルギー線硬化型水性樹脂組成物。 The acrylic resin (A) neutralizes a carboxyl group-containing acrylic resin having a number average molecular weight of 5,000 to 30,000, a weight average molecular weight of 10,000 to 100,000, and an acid value of 75 to 150 mgKOH / g. The active energy ray-curable aqueous resin composition according to claim 1, which is an acrylic resin obtained as described above.
  9. 前記アクリル樹脂(A)が中和されたカルボキシル基を0.90~1.10mmol/g含有する樹脂である請求項1記載の活性エネルギー線硬化型水性樹脂組成物。 The active energy ray-curable aqueous resin composition according to claim 1, wherein the acrylic resin (A) is a resin containing 0.90 to 1.10 mmol / g of neutralized carboxyl groups.
  10. 前記化合物(B)が重合性不飽和二重結合を9.0~10.2mmol/g有する化合物である請求項1記載の活性エネルギー線硬化型水性樹脂組成物。 The active energy ray-curable aqueous resin composition according to claim 1, wherein the compound (B) is a compound having a polymerizable unsaturated double bond of 9.0 to 10.2 mmol / g.
  11. 重合性不飽和二重結合を9.0~10.2mmol/g有する化合物がジペンタエリスリトールヘキサアクリレートとジペンタエリスリトールペンタアクリレートの混合物である請求項9記載の活性エネルギー線硬化型水性樹脂組成物。 The active energy ray-curable aqueous resin composition according to claim 9, wherein the compound having a polymerizable unsaturated double bond of 9.0 to 10.2 mmol / g is a mixture of dipentaerythritol hexaacrylate and dipentaerythritol pentaacrylate.
  12. 前記化合物(B)が更に、重合性不飽和二重結合を5.5~9.5mmol/g有するウレタン(メタ)アクリレートを含有する混合物で、該混合物の平均の重合性不飽和二重結合の濃度が9.0~10.2mmol/gである請求項11記載の活性エネルギー線硬化型水性樹脂組成物。 The compound (B) further comprises a urethane (meth) acrylate having a polymerizable unsaturated double bond of 5.5 to 9.5 mmol / g, wherein the average polymerizable unsaturated double bond of the mixture is The active energy ray-curable aqueous resin composition according to claim 11, having a concentration of 9.0 to 10.2 mmol / g.
  13. 前記ウレタン(メタ)アクリレートがジイソシアネート化合物とペンタエリスリトールトリ(メタ)アクリレートとの反応生成物であるウレタン(メタ)アクリレートである請求項12記載の活性エネルギー線硬化型水性樹脂組成物。 The active energy ray-curable aqueous resin composition according to claim 12, wherein the urethane (meth) acrylate is a urethane (meth) acrylate which is a reaction product of a diisocyanate compound and pentaerythritol tri (meth) acrylate.
  14. 前記アクリル樹脂(A)と化合物(B)との含有量の比〔(B)/(A)〕が2~3.5である請求項1記載の活性エネルギー線硬化型水性樹脂組成物。 The active energy ray-curable aqueous resin composition according to claim 1, wherein the content ratio [(B) / (A)] of the acrylic resin (A) to the compound (B) is 2 to 3.5.
  15. 請求項1~14のいずれか1項記載の活性エネルギー線硬化型水性樹脂組成物を含有することを特徴とする活性エネルギー線硬化型塗料。 An active energy ray-curable coating composition comprising the active energy ray-curable aqueous resin composition according to any one of claims 1 to 14.
  16. 請求項15記載の活性エネルギー線硬化型塗料を基材に塗布した後、活性エネルギー線を照射して塗布した活性エネルギー線硬化型塗料を硬化させることを特徴とする硬化塗膜の形成方法 A method for forming a cured coating film, comprising: applying the active energy ray-curable coating material according to claim 15 to a substrate; and irradiating the active energy ray to cure the applied active energy ray-curable coating material.
  17. 請求項15記載の活性エネルギー線硬化型塗料の硬化塗膜が配置してなることを特徴とする物品。 An article comprising a cured coating film of the active energy ray-curable coating composition according to claim 15.
PCT/JP2009/057263 2008-04-30 2009-04-09 Active-energy-ray-curable aqueous resin composition, active-energy-ray-curable coating material, method for production of cured coating film, and article WO2009133760A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008118469 2008-04-30
JP2008-118469 2008-04-30

Publications (1)

Publication Number Publication Date
WO2009133760A1 true WO2009133760A1 (en) 2009-11-05

Family

ID=41254980

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/057263 WO2009133760A1 (en) 2008-04-30 2009-04-09 Active-energy-ray-curable aqueous resin composition, active-energy-ray-curable coating material, method for production of cured coating film, and article

Country Status (2)

Country Link
TW (1) TW201000545A (en)
WO (1) WO2009133760A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011208026A (en) * 2010-03-30 2011-10-20 Nippon Synthetic Chem Ind Co Ltd:The Active energy ray-curable resin composition and coating agent
JP2011256312A (en) * 2010-06-10 2011-12-22 Yokohama Rubber Co Ltd:The Curable resin composition
CN103003380A (en) * 2010-07-07 2013-03-27 东洋油墨Sc控股株式会社 Highly-adhesive agent for a solar-cell back-side protective sheet, solar-cell back-side protective sheet, and solar cell module
JP2013163765A (en) * 2012-02-10 2013-08-22 Toyo Ink Sc Holdings Co Ltd Active energy ray-curable composition
EP2592124A4 (en) * 2010-07-07 2015-07-08 Toyo Ink Sc Holdings Co Ltd Highly-adhesive agent for a solar-cell back-side protective sheet, solar-cell back-side protective sheet, and solar cell module
WO2015111500A1 (en) * 2014-01-22 2015-07-30 Dic株式会社 Active energy ray-curable composition for flooring materials and installation method therefor
JP2015199818A (en) * 2014-04-08 2015-11-12 関西ペイント株式会社 Acrylic urethane composite resin particle
JPWO2018230427A1 (en) * 2017-06-15 2020-07-16 Dic株式会社 Curable composition and laminated film
CN115073949A (en) * 2021-03-02 2022-09-20 荒川化学工业株式会社 Aqueous composition, cured product and laminate

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08311398A (en) * 1995-05-24 1996-11-26 Nippon Oil & Fats Co Ltd Coating material composition
JP2004331865A (en) * 2003-05-09 2004-11-25 Dainippon Ink & Chem Inc Water-soluble resin composition
JP2004339310A (en) * 2003-05-14 2004-12-02 Dainippon Ink & Chem Inc Thermosetting water-based coating material for can and metal can coated with the coating material
JP4229214B2 (en) * 2006-11-09 2009-02-25 Dic株式会社 Active energy ray-curable aqueous resin composition, active energy ray-curable coating material, method for forming cured coating film, and article

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08311398A (en) * 1995-05-24 1996-11-26 Nippon Oil & Fats Co Ltd Coating material composition
JP2004331865A (en) * 2003-05-09 2004-11-25 Dainippon Ink & Chem Inc Water-soluble resin composition
JP2004339310A (en) * 2003-05-14 2004-12-02 Dainippon Ink & Chem Inc Thermosetting water-based coating material for can and metal can coated with the coating material
JP4229214B2 (en) * 2006-11-09 2009-02-25 Dic株式会社 Active energy ray-curable aqueous resin composition, active energy ray-curable coating material, method for forming cured coating film, and article

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"M-5300", HIKARI KOKAGATA JUSHI, 1 October 2007 (2007-10-01), pages 7 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011208026A (en) * 2010-03-30 2011-10-20 Nippon Synthetic Chem Ind Co Ltd:The Active energy ray-curable resin composition and coating agent
JP2011256312A (en) * 2010-06-10 2011-12-22 Yokohama Rubber Co Ltd:The Curable resin composition
KR101405450B1 (en) 2010-07-07 2014-06-10 토요잉크Sc홀딩스주식회사 Highly-adhesive agent for a solar-cell back-side protective sheet, solar-cell back-side protective sheet, and solar cell module
EP2592125A1 (en) * 2010-07-07 2013-05-15 Toyo Ink SC Holdings Co., Ltd. Highly-adhesive agent for a solar-cell back-side protective sheet, solar-cell back-side protective sheet, and solar cell module
EP2592125A4 (en) * 2010-07-07 2013-12-18 Toyo Ink Sc Holdings Co Ltd Highly-adhesive agent for a solar-cell back-side protective sheet, solar-cell back-side protective sheet, and solar cell module
CN103003380A (en) * 2010-07-07 2013-03-27 东洋油墨Sc控股株式会社 Highly-adhesive agent for a solar-cell back-side protective sheet, solar-cell back-side protective sheet, and solar cell module
EP2592124A4 (en) * 2010-07-07 2015-07-08 Toyo Ink Sc Holdings Co Ltd Highly-adhesive agent for a solar-cell back-side protective sheet, solar-cell back-side protective sheet, and solar cell module
US9321943B2 (en) 2010-07-07 2016-04-26 Toyo Ink Sc Holdings Co., Ltd. Easy-adhesive for solar cell rear surface protection sheet, solar cell rear surface protection sheet, and solar cell module
JP2013163765A (en) * 2012-02-10 2013-08-22 Toyo Ink Sc Holdings Co Ltd Active energy ray-curable composition
WO2015111500A1 (en) * 2014-01-22 2015-07-30 Dic株式会社 Active energy ray-curable composition for flooring materials and installation method therefor
JP5800212B1 (en) * 2014-01-22 2015-10-28 Dic株式会社 Active energy ray-curable composition for flooring and its construction method
JP2015199818A (en) * 2014-04-08 2015-11-12 関西ペイント株式会社 Acrylic urethane composite resin particle
JPWO2018230427A1 (en) * 2017-06-15 2020-07-16 Dic株式会社 Curable composition and laminated film
CN115073949A (en) * 2021-03-02 2022-09-20 荒川化学工业株式会社 Aqueous composition, cured product and laminate
CN115073949B (en) * 2021-03-02 2024-07-12 荒川化学工业株式会社 Aqueous composition, cured product, and laminate

Also Published As

Publication number Publication date
TW201000545A (en) 2010-01-01

Similar Documents

Publication Publication Date Title
JP4229214B2 (en) Active energy ray-curable aqueous resin composition, active energy ray-curable coating material, method for forming cured coating film, and article
WO2009133760A1 (en) Active-energy-ray-curable aqueous resin composition, active-energy-ray-curable coating material, method for production of cured coating film, and article
JP3990426B2 (en) UV curable aqueous coating composition
JP6294999B1 (en) Active energy ray-curable composition for forming a cured film on a cyclic olefin-based resin substrate, and method for producing a hard coat film
JP4805628B2 (en) MULTILAYER COATING FORMATION METHOD, COATING AND COATED ARTICLE USED FOR THE METHOD
JP2004010779A (en) Ultraviolet curing type water-based coating material composition
JP6840215B1 (en) Method for manufacturing active energy ray-curable composition for antiglare hard coat and antiglare hard coat film
JP6154793B2 (en) UV curable paint for metal, metal material coated with the paint, and metal product
JP6958553B2 (en) Active energy ray-curable resin composition and laminated film
JP2008031234A (en) Pigment dispersing agent for active energy ray-curable film-forming composition
JP2016172835A (en) Silica dispersion, and active energy ray-curable resin composition
JP6874787B2 (en) Active energy ray-curable resin composition, cured product and laminate
WO2014157070A1 (en) Active-energy-ray-curable coating composition
JP2011236334A (en) Active energy ray-curable water-based resin composition, manufacturing method of active energy ray-curable water-based resin composition, and active energy ray-curable coating
JP2007297491A (en) Curable aqueous resin composition
JP6703828B2 (en) Photocurable antiglare resin composition
JP2007077188A (en) Radiation-curing type composition
JPWO2017099139A1 (en) Curable composition
JP6907706B2 (en) Curable composition
JP5635798B2 (en) Emulsion resin paint
JP4740661B2 (en) Photo-curing primer for ethylene resin
JP5139138B2 (en) Contamination resistant coating composition and contamination prevention method
JP4058734B2 (en) Oxidation-curing silicone-modified vinyl copolymer, one-component paint using the same, and method for producing oxidation-curing silicone-modified vinyl copolymer
JP2017002245A (en) Active energy ray curable composition
JP4837312B2 (en) Water-based clear coating composition and method for forming clear coating film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09738697

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 09738697

Country of ref document: EP

Kind code of ref document: A1