WO2009131108A1 - 建物屋根輪郭認識装置、建物屋根輪郭認識方法、及び建物屋根輪郭認識プログラム - Google Patents

建物屋根輪郭認識装置、建物屋根輪郭認識方法、及び建物屋根輪郭認識プログラム Download PDF

Info

Publication number
WO2009131108A1
WO2009131108A1 PCT/JP2009/057901 JP2009057901W WO2009131108A1 WO 2009131108 A1 WO2009131108 A1 WO 2009131108A1 JP 2009057901 W JP2009057901 W JP 2009057901W WO 2009131108 A1 WO2009131108 A1 WO 2009131108A1
Authority
WO
WIPO (PCT)
Prior art keywords
roof
building
area
region
outline
Prior art date
Application number
PCT/JP2009/057901
Other languages
English (en)
French (fr)
Inventor
秀樹 島村
林 朱
Original Assignee
株式会社パスコ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社パスコ filed Critical 株式会社パスコ
Priority to US12/988,740 priority Critical patent/US8538151B2/en
Priority to CN2009801093960A priority patent/CN101978395B/zh
Priority to JP2010509179A priority patent/JP4880069B2/ja
Priority to EP09734956.7A priority patent/EP2278553A4/en
Publication of WO2009131108A1 publication Critical patent/WO2009131108A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C11/00Photogrammetry or videogrammetry, e.g. stereogrammetry; Photographic surveying
    • G01C11/04Interpretation of pictures
    • G01C11/06Interpretation of pictures by comparison of two or more pictures of the same area
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • G06T17/05Geographic models
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/11Region-based segmentation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/12Edge-based segmentation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/149Segmentation; Edge detection involving deformable models, e.g. active contour models
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/187Segmentation; Edge detection involving region growing; involving region merging; involving connected component labelling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/50Depth or shape recovery
    • G06T7/55Depth or shape recovery from multiple images
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/10Terrestrial scenes
    • G06V20/176Urban or other man-made structures
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10024Color image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10032Satellite or aerial image; Remote sensing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20112Image segmentation details
    • G06T2207/20116Active contour; Active surface; Snakes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30181Earth observation
    • G06T2207/30184Infrastructure

Definitions

  • the present invention relates to a building roof outline recognition device, a building roof outline recognition method, and a building roof outline recognition program.
  • the outline of the roof (including the rooftop) of a building is recognized using a high-resolution aerial photograph image taken from an aircraft or the like.
  • an operator uses a stereo plotter to determine the structure of a building roof outline from a stereo image, or the operator specifies a range where the building outline exists, and the building roof outline is determined by image recognition processing within that range.
  • a method of recognizing a building roof outline from an ortho image (orthographic projection image) by head-up digitizing is recognizing a building roof outline from an ortho image (orthographic projection image) by head-up digitizing.
  • DSM Digital Surface Model
  • the conventional method described above has a problem in that work efficiency is low because manual processing is required for recognition processing of the building roof outline of each building.
  • the recognition process involving manpower has a problem that quality assurance is difficult because the quality depends on the skill of the operator.
  • the aerial photograph image contains various information other than the building roof outline
  • DSM data is sophisticated information, but there is a problem that it is difficult to obtain a sufficient number of sampling points from which data can be obtained for recognition of a building roof outline.
  • the coarse DSM makes it difficult to accurately recognize the outline of the building roof, particularly in dense urban areas.
  • the present invention has been made to solve the above-described problems, and an object thereof is to provide a building roof contour recognition apparatus, a building roof contour recognition method, and a building roof contour recognition program that can be easily automated.
  • the building roof outline recognition apparatus obtains the area included in the roof from the recognition target area of the building roof outline for each building based on the surface layer data obtained from the sky and representing the altitude of the ground surface layer including the feature.
  • a candidate for roof that extracts a region having a commonality with the marker region with respect to the surface layer data and the aerial photograph image by a marker region extraction unit that extracts the marker region as a marker region and a region expansion method using the marker region as a nucleus.
  • the roof candidate area extraction unit determines the presence or absence of the commonality based on the surface layer data and the color information and image texture information of the aerial photograph image, and the roof candidate area Is a device for obtaining
  • the sign region extraction unit has a height corresponding to the building among convex portions appearing on the ground surface layer by dividing the region by a watershed method based on the surface layer data. It is an apparatus including a region dividing process for extracting as the marker region.
  • the building has a flat roof surface based on the surface layer data at the convex portion corresponding to the building from which the sign area is extracted in the area dividing process.
  • a roof shape discriminating unit for discriminating between a flat roof or a sloped roof having a sloped surface, and the building having the sloped roof, the sloped roof has, based on edges appearing in the aerial photograph image within the outer boundary line.
  • a three-dimensional structure of the building roof outline of the sloped roof is formed from a roof structure line extraction unit that extracts mutual boundary lines of a plurality of roof surfaces as a roof structure line, and the outer edge boundary line and the roof structure line. And a sloped roof profile component.
  • the sign area extraction unit for the large building based on the area of the recognition target area where the surface layer data exceeds a predetermined threshold prior to the area dividing process.
  • a preferred aspect of the present invention includes a vegetation region extraction unit that extracts a vegetation region based on the aerial photograph image, and the marker region extraction unit targets a region obtained by removing the vegetation region from the recognition target region. It is an apparatus that performs each process.
  • the building roof outline recognition apparatus subtracts the altitude of the ground surface that does not include the feature from the surface layer data, and generates a normalized surface layer data representing the height of the feature.
  • the sign area extraction unit extracts the sign area based on the normalized surface data
  • the roof candidate area extraction unit uses the normalized surface data for extracting the roof candidate area. can do.
  • the building roof outline recognition method or the building roof outline recognition program according to the present invention is obtained from the sky, based on the surface layer data representing the elevation of the ground surface layer including the features, from the recognition target area of the building roof outline,
  • the sign area extraction step for extracting the area included in the sign area as a sign area for each building, and the area expansion method using the sign area as a core, the area having the commonality with the sign area regarding the surface layer data and the aerial photograph image is roofed.
  • a roof candidate region extraction step for extracting as a candidate region, and an edge that matches the outer shape of the roof candidate region among the edges that appear in the aerial photo image are extracted, and the outer boundary boundary shaping that obtains the outer boundary boundary line that becomes the building roof contour Steps.
  • the roof contour can be recognized automatically and accurately. Since automation can be achieved, the time required for recognizing the building roof outline can be shortened, and quality can be ensured.
  • FIG. 1 is a flowchart showing a schematic processing flow of the building roof outline recognition method according to the embodiment.
  • the normalization process S2 normalizes the DSM data 4 that is the surface layer data.
  • the process S2 is performed using DSM data 4 and DTM (Digital Terrain Model) data 6, and NDSM (Normalized Digital Surface Model) data 8 which is normalized surface layer data is generated.
  • DTM Digital Terrain Model
  • NDSM Normalized Digital Surface Model
  • the vegetation region extraction process S10 specifies a vegetation region in the ortho image using the ortho image data 12 obtained based on the aerial photograph image taken from an aircraft or the like and the NDSM data 8. Thereby, the vegetation area
  • the large building candidate area extraction process S16 extracts a large building candidate area exceeding a predetermined height existing in the ground area (recognition target area) that is a target of the process of recognizing the building roof outline.
  • the small building candidate area extraction process S18 is performed on the area excluding the large building candidate area obtained in the process S16, and extracts a candidate area of a small building that is a low-rise building.
  • These processes S16 and S18 extract, as candidate areas for each building, an area that is at least partially included in the roof area viewed from above. That is, the candidate area is not necessarily equivalent to the entire roof (or the area where the building exists), and is basically an area in which a part thereof is included in a part of the roof area. That is, the building candidate area can be regarded as a sign (marking area) indicating the candidate position of the building rather than a candidate for the roof area itself.
  • the building area extraction process S20 obtains a building area (building area) in the recognition target area.
  • an area having the same attribute as the candidate area is obtained by the area expansion method using the building candidate area obtained in the processes S16 and S18 as a nucleus.
  • an area (roof candidate area) corresponding to the entire roof area is extracted as a building area.
  • the building boundary line shaping process S22 extracts edges that appear in the ortho image that match the outer shape of the building area obtained in the process S20, and obtains a building boundary line that becomes the outer boundary line of the building area.
  • This building boundary corresponds to the outline of the roof as seen from above.
  • the small building roof shape specifying process S24 determines whether the low-rise building from which the candidate building area has been extracted in process S18 is a flat roof having a flat roof surface or a sloped roof having a sloped surface.
  • the building roof structure line extraction process S26 may have a sloped roof on the low-rise building determined to have a sloped roof in process S24, based on the edges appearing in the ortho image within the building boundary determined in process S22. A boundary line between a plurality of roof surfaces is extracted as a roof structure line.
  • a three-dimensional structure of the roof contour of the sloped roof is constructed from the building boundary line and the roof structure line.
  • the DSM used in the normalization process S2 compares a plurality of aerial images with different shooting positions, and obtains the height of the feature based on the difference in appearance of the same feature in the plurality of aerial images. Is generated.
  • the DSM represents the altitude of the ground surface including features such as ground buildings and vegetation.
  • the DTM represents the altitude of the ground surface that does not include features.
  • the DTM can be obtained, for example, by performing morphological filtering on the DSM represented by the DSM data 4.
  • the normalization process S2 subtracts the DTM data 6 from the DSM data 4 for each point, removes the influence of the DTM included in the DSM, and generates NDSM data 8 representing the height of only the feature.
  • FIG. 2 is a schematic diagram for explaining the normalization process S2.
  • FIG. 2A is a schematic vertical sectional view of the ground.
  • the DSM 30 represents the horizontal coordinates / altitude of the surface of a feature such as the buildings 32 and 33 and the tree 34 and the horizontal coordinate / altitude of the ground surface 36 exposed between the features.
  • the altitude of the building in the DSM 30 is the sum of the altitude of the ground surface below and the height of the building.
  • the normalization process S2 subtracts the value of the DTM 40 from the value of the DSM 30 to generate an NDSM.
  • FIG. 2B is a vertical sectional view schematically showing the NDSM 42 obtained corresponding to the ground in FIG. In this NDSM 42, the features (buildings 32a, 33a, trees 34a) have height information from the ground surface, while the ground surface 36a basically has a height corresponding to zero height.
  • the vegetation area data 14 is generated in the vegetation area extraction process S10, and is used to exclude the vegetation area from the recognition target area of the building roof outline in processes S16 and S18.
  • the vegetation area data 14 can be defined as image data having a value “1” in a vegetation area and having a value “0” in a non-vegetation area.
  • NDVI is calculated by the following equation using the pixel values D NIR pixel value D R and NIR component of the R component: determining (Normalized Difference Vegetation Index Normalized vegetation index) of the above areas a predetermined threshold and vegetation areas can do.
  • NDVI (D NIR -D R ) / (D NIR + D R )
  • a vegetation region can also be discriminated using this difference. Specifically, an area where the variance of the gradient between adjacent sampling points exceeds a predetermined threshold can be determined as a vegetation area. It is also possible to determine the height variation based on the texture generated in an image taken from an aircraft or the like.
  • the density of vegetation edges is generally higher than the edge of the building.
  • a vegetation area can also be determined using this.
  • the accuracy of the determination can be improved by using the NDSM data 8 together with the above-described determination of the vegetation region.
  • relatively high trees that are likely to cause noise in the extraction process S16, S18 of the building candidate area can be suitably extracted as the vegetation area.
  • the green rooftop can be expected to have a small variance for a high height, and using this property, the green rooftop is determined as a non-vegetation area and the building candidate area is recognized. It is also possible not to exclude from the target area.
  • the large building candidate region extraction process S16 performs slicing of the NDSM at a predetermined threshold height as described above, and extracts a region exceeding the threshold height.
  • the extracted region is expanded / contracted by morphological processing to remove a small region that is noise, separate adjacent regions, or exclude vegetation regions by referring to vegetation region data 14, Find large candidate building areas.
  • FIG. 3 is a schematic diagram for explaining extraction processing S16 of a large building candidate area.
  • FIG. 3A is a vertical sectional view schematically showing the NDSM 42a corresponding to the NDSM 42 in FIG. 2B, and shows a threshold height level 50 of slicing.
  • the NDSM 42a represented by a solid line in FIG. 3A represents the shape more smoothly than the actual shape 52 of the feature.
  • the NDSM 42 is shown in a form corresponding to the shape 52, but in practice, the resolution of the NDSM is generally not high enough to capture the shape 52 sufficiently.
  • the NDSM 42a in FIG. 3 (a) expresses this consciously.
  • FIG. 3B is a schematic image of a recognition target area representing an area exceeding level 50.
  • the line segment AA is the position of the cross section shown in FIG.
  • the image after slicing includes a vegetation region 54 in which regions 34b corresponding to the trees 34a are distributed as noise in addition to the region 32b corresponding to the large building 32a.
  • FIG. 3C is a schematic diagram of an image after the morphology process and the vegetation area exclusion process using the vegetation area data 14 are performed on the image of FIG. By removing the vegetation region 54, an image in which the region 32b that is a large building candidate region appears with high accuracy is generated.
  • the small building candidate region extraction process S18 corresponds to a low-rise building among convex portions appearing on the ground surface layer by performing region segmentation processing (image segmentation) on the NDSM excluding the large building candidate region and the vegetation region. Those having a height are extracted as small building candidate regions. For example, in the NDSM data 8, processing for replacing large building candidate region and vegetation region data with the value “0” is performed, and region division processing is performed on the obtained NDSM. For example, watershed segmentation, marker-based / watershed segmentation, or the like can be used as an algorithm for the region division processing.
  • FIG. 4 is a schematic diagram for explaining the extraction process S18 of a small building candidate area.
  • 4A schematically illustrates the NDSM 42b after the processing of removing the trees 32a constituting the buildings 32a and the vegetation area 54 extracted as large building candidate areas is performed on the NDSM 42a shown in FIG. 3A.
  • FIG. FIG. 4B is a schematic image of a recognition target area showing a result of performing watershed segmentation on the NDSM 42b.
  • a region 56 corresponding to the top of the convex portion of the NDSM 42b corresponding to the low-rise building 33a is extracted as a small building candidate region in the roof region 58 of the building 33a.
  • This small building candidate area extraction process S18 recognizes the positions of the plurality of low-rise buildings 33a that may exist in the recognition target area as areas 56 separated from each other.
  • the small building roof shape specifying process S24 the three-dimensional shape of the roof of the low-rise building 33a corresponding to the area 56 is determined from the NDSM data 8 in each area 56. Specifically, in a region 56, a local surface normal vector on a solid surface composed of a mesh defined by the NDSM data 8 is obtained.
  • the normal vector of each polygon composing the mesh is obtained as a local surface normal vector, and when the direction is exclusively in the vertical direction, it is a flat roof, and many distributions in the direction inclined with respect to the vertical direction In the case, it is determined that it is a sloped roof.
  • the direction of the local surface normal vector is represented by a kind of spherical coordinates ( ⁇ , ⁇ ) shown in FIG. 5, and whether the flat roof or the sloped roof is based on the histogram of the local surface normal vector in the ⁇ plane. Can be determined.
  • ⁇ , ⁇ spherical coordinates
  • the vector N represents the local surface normal vector
  • the plane extending by the X axis and Y axis of the orthogonal coordinate system is the ground surface of the NDSM
  • the positive direction of the Z axis is perpendicular to the ground surface. It is upward.
  • the coordinate ⁇ is an angle formed by the vector N and the ZX plane
  • the coordinate ⁇ is an angle formed by the projection vector S of the vector N onto the ZX plane and the Z axis upward.
  • FIG. 6 is a schematic diagram showing an example of a two-dimensional histogram in the ⁇ plane.
  • FIG. 6A shows the frequency distribution of the local surface normal vector in the case of a flat roof, and the frequency in this case is high in the region 70 consisting of the origin of the ⁇ plane and its vicinity.
  • FIG. 6B shows an example of the frequency distribution of the local surface normal vector in the case of a sloped roof, and the frequency in this case is higher in the region 72 away from the origin of the ⁇ plane. Therefore, for example, the two-dimensional histogram is binarized with a predetermined threshold value for frequency, and a flat roof and a gradient roof are discriminated based on whether an area exceeding the threshold value is at the origin or at a position away from the origin. Can do.
  • the height information represented by the NDSM data 8 and the color information and texture information of the image obtained from the ortho image data 12 are obtained using the building candidate area obtained in the processes S16 and S18 as a nucleus (marker).
  • the building area is extracted using the area expansion method. Specifically, a region within a range that is recognized as having a common height, color, and texture with the candidate building region is combined with the candidate building region.
  • 7 and 8 are schematic diagrams illustrating the building area extraction processing S20.
  • FIG. 7 shows the building candidate region (region 56) extracted in the small building candidate region extraction process S ⁇ b> 18 superimposed on the ortho image 80.
  • the orthoimage 80 shows a low-rise building 33a with a gable roof
  • the image 82 of the roof surface in the ortho image 80 is indicated by hatching
  • the range of the roof surface is the roof region 58 described above. This is indicated by a dotted line surrounding the image 82.
  • FIG. 8 shows a building region 84 obtained by the region expansion process using the region 56 as a marker on the ortho image 80.
  • the building area 84 can cover the roof area 58 suitably, but due to the nature of the area expansion method, the outline of the building area 84 is not necessarily the outline of the roof area 58 indicated by the dotted line (outer edge boundary). Line) does not necessarily match.
  • the building boundary line shaping process S22 is a process for obtaining an outer edge boundary line that conforms to the building area. Out of the edges that appear in the ortho image, an edge that conforms to the outer shape of the building area obtained in process S20 is extracted. Find the building boundary that is a line.
  • FIG. 9 is a schematic diagram illustrating the building boundary line shaping process S22.
  • FIG. 9 shows a building boundary line 86 extracted corresponding to the building area 84 of FIG.
  • the building roof structure line extraction processing S26 is performed on a low-rise building having a sloped roof, and extracts edges and line segments from the ortho image in the building boundary line while referring to the height information obtained from the NDSM data 8. Further, by combining the extracted edges and line segments, determining the vertices, etc., a roof structure line that is a boundary line between a plurality of roof surfaces that the sloped roof can have is obtained.
  • FIG. 10 is a schematic diagram illustrating the building roof structure line extraction process S26.
  • the roof surface image 82 includes two regions 82a and 82b having different oblique directions, and these regions 82a and 82b correspond to the two roof surfaces constituting the gable roof.
  • the difference in the hatched diagonal direction expresses that a contrast is generated on the ortho image according to the difference in the direction of the corresponding roof surface between the region 82a and the region 82b.
  • FIG. 10 shows that the boundary line where the regions 82a and 82b contact is extracted as the roof structure line 88 based on the contrast and color information of the regions 82a and 82b.
  • a three-dimensional structure of the roof contour of the sloped roof is constructed from the building boundary line and the roof structure line.
  • the outer edge boundary line and the roof structure line are overlapped, and the position of the point where they are connected and intersected is determined.
  • the three-dimensional structure of the building roof outline is determined from a planar figure pattern in which the outer boundary line and the roof structure line are combined. Note that the three-dimensional shape of the roof can be estimated from basic types such as a gable type and a dormitory type, and the shape of the roof region formed by the outer boundary line.
  • FIG. 11 is a schematic perspective view showing a three-dimensional structure 90 of the building roof outline composed of the outer edge boundary line 86 of FIG. 9 and the roof structure line 88 of FIG.
  • the degree of unevenness formed by the roof surface can be determined based on the NDSM data 8 and information on the slope of the roof (angles ⁇ , ⁇ ) that can be obtained in the process S24.
  • the above-described building roof outline recognition method can be realized as a program executed on a computer.
  • the computer grasps the position of the building existing in the recognition target area, identifies the building area, and recognizes the roof outline of the building from the DSM data 4 and the ortho image data 12 acquired by an aircraft or the like. And the construction of the three-dimensional structure can be automatically performed.
  • the building roof outline recognition apparatus which concerns on this invention is implement
  • an aspect using an image taken from an aircraft and a DSM generated from the image has been described.
  • an image and a DSM acquired from a high-resolution satellite may be used.
  • the DSM may be acquired by irradiating a laser from an aircraft or the like to the ground.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Software Systems (AREA)
  • Remote Sensing (AREA)
  • Geometry (AREA)
  • Multimedia (AREA)
  • Computer Graphics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)
  • Processing Or Creating Images (AREA)

Abstract

 自動化が容易な建物屋根輪郭認識装置、建物屋根輪郭認識方法、及び建物屋根輪 郭認識プログラムを提供する。  正規化DSMデータ8に基づき、ウォーターシェッド法等の領域分割により、小さな建物の建物候補領域を抽出する(S18)。建物候補領域をマーカとし、正規化DSMデータ8の高さ情報及びオルソ画像データ12の色・テクスチャ情報を併用して、領域拡張法により建物領域を抽出する(S20)。高さ情報を参照しつつ、オルソ画像に現れるエッジのうち建物領域の外形に適合するものを抽出し、上空から見た屋根の外形となる建物境界線を求める(S22)。さらに、勾配屋根と判断される建物については、建物領域内に存在するエッジ等から、屋根面相互の境界線である屋根構造線を抽出し(S26)、建物境界線と屋根構造線とから建物屋根輪郭の立体的構造を求める(S28)。  

Description

建物屋根輪郭認識装置、建物屋根輪郭認識方法、及び建物屋根輪郭認識プログラム
 本発明は、建物屋根輪郭認識装置、建物屋根輪郭認識方法、及び建物屋根輪郭認識プログラムに関する。
 都市モデルの生成などにおいて、航空機などから撮影した高分解能の空中写真画像を利用して建物の屋根(屋上を含む)の輪郭を認識することが行われる。従来は、作業者がステレオ図化機を用いてステレオ画像から建物屋根輪郭の構造を求める方法や、建物の輪郭が存在する範囲を作業者が指定し、その範囲で画像認識処理によって建物屋根輪郭を生成する半自動的な認識方法や、作業者がヘッドアップデジタイジングにより、オルソ画像(正射投影画像)から建物屋根輪郭の認識を行う方法が行われている。
 また、空中写真画像を用いて自動的に建物屋根輪郭を認識する方法や、DSM(Digital Surface Model:数値表層モデル)データを用いて自動的に建物屋根輪郭を認識する方法も提案されている。
特開2003-323640号公報
 上述の従来の方法は、個々の建物の建物屋根輪郭の認識処理に、人手による作業が必要であるため、作業効率が低いという問題点があった。また人手を伴う認識処理は、その品質が作業者の技量に依存するため、品質保証が難しいという問題点があった。
 一方、空中写真画像は建物屋根輪郭以外にも様々な情報を含んでいるため、例えば、空中写真画像から輪郭を精度良く認識することが容易ではないという問題点があった。これに対して、DSMデータは洗練された情報であるが、データが得られるサンプリング点を、建物屋根輪郭の認識に十分な数だけ得ることが難しいという問題点があった。DSMが粗いことは、特に、建物の密集する都市領域において精度のよい建物屋根の輪郭の認識を困難にする。
 本発明は上記問題点を解決するためになされたものであり、自動化が容易な建物屋根輪郭認識装置、建物屋根輪郭認識方法、及び建物屋根輪郭認識プログラムを提供することを目的とする。
 本発明に係る建物屋根輪郭認識装置は、上空から取得され、地物を含んだ地上表層の標高を表す表層データに基づいて、建物屋根輪郭の認識対象領域から、屋根に含まれる領域を建物毎に標識領域として抽出する標識領域抽出部と、前記標識領域を核とする領域拡張法により、前記表層データ及び空中写真画像に関して当該標識領域と共通性を有する領域を屋根候補領域として抽出する屋根候補領域抽出部と、前記空中写真画像に現れるエッジのうち前記屋根候補領域の外形に適合するものを抽出し、前記建物屋根輪郭となる外縁境界線を求める外縁境界線整形部と、を有する。
 本発明の好適な態様は、前記屋根候補領域抽出部が、前記表層データと、前記空中写真画像が有する色情報及び画像テクスチャ情報とに基づいて前記共通性の有無を判断し、前記屋根候補領域を求める装置である。
 本発明の他の好適な態様は、前記標識領域抽出部が、前記表層データに基づくウォーターシェッド法による領域分割により、前記地上表層に現れる凸部のうち前記建物に対応する高さを有するものを前記標識領域として抽出する領域分割処理を含む装置である。
 本発明に係る建物屋根輪郭認識装置は、前記領域分割処理にて前記標識領域を抽出された前記建物に対応する前記凸部での前記表層データに基づいて、当該建物が平らな屋根面からなる平屋根か勾配面を有する勾配屋根かを判別する屋根形状判別部と、前記勾配屋根を有する前記建物について、前記外縁境界線内の前記空中写真画像に現れるエッジに基づき、前記勾配屋根が有し得る複数の屋根面の相互の境界線を屋根構造線として抽出する屋根構造線抽出部と、前記外縁境界線と前記屋根構造線とから前記勾配屋根の前記建物屋根輪郭の立体的構造を構成する勾配屋根輪郭構成部と、を有する装置とすることができる。
 また本発明に係る建物屋根輪郭認識装置においては、前記標識領域抽出部が、前記領域分割処理に先立ち、前記認識対象領域のうち前記表層データが所定の閾値を超える領域に基づいて、大きな建物についての前記標識領域を求める大建物領域抽出部と、前記認識対象領域のうち前記大きな建物の前記標識領域を除いた領域に対して、前記領域分割処理を行い、前記閾値に応じた高さ以下の低層建物である小さな建物についての前記標識領域を求める小建物領域抽出部と、を有する装置とすることができる。
 本発明の好適な態様は、前記空中写真画像に基づいて植生領域を抽出する植生領域抽出部を有し、前記標識領域抽出部は、前記認識対象領域から前記植生領域を除いた領域を対象として各処理を行う装置である。
 また、本発明に係る建物屋根輪郭認識装置は、前記表層データから前記地物を含まない地表の標高を減算して、前記地物の高さを表す正規化表層データを生成する正規化処理部を有し、前記標識領域抽出部が、前記正規化表層データに基づいて前記標識領域を抽出し、前記屋根候補領域抽出部が、前記屋根候補領域の抽出に前記正規化表層データを用いる構成とすることができる。
 本発明に係る建物屋根輪郭認識方法、又は建物屋根輪郭認識プログラムは、上空から取得され、地物を含んだ地上表層の標高を表す表層データに基づいて、建物屋根輪郭の認識対象領域から、屋根に含まれる領域を建物毎に標識領域として抽出する標識領域抽出ステップと、前記標識領域を核とする領域拡張法により、前記表層データ及び空中写真画像に関して当該標識領域と共通性を有する領域を屋根候補領域として抽出する屋根候補領域抽出ステップと、前記空中写真画像に現れるエッジのうち前記屋根候補領域の外形に適合するものを抽出し、前記建物屋根輪郭となる外縁境界線を求める外縁境界線整形ステップと、を有する。
 本発明によれば、表層データであるDSMデータの高さ情報と、空中写真画像から得られる高解像度の情報(画素値スペクトル情報やテクスチャ情報など)という互いに異なる性格の情報を組み合わせることで、建物屋根輪郭を自動的に、また精度良く認識することができる。自動化を図れることにより、建物屋根輪郭の認識に要する時間を短縮でき、また、品質の確保が図れる。
本発明の実施形態である建物屋根輪郭認識方法の概略の処理の流れを示すフロー図である。 正規化処理を説明する模式図である。 大きな建物候補領域の抽出処理を説明する模式図である。 小さな建物候補領域の抽出処理を説明する模式図である。 勾配屋根の判定処理に用いられる極座標系を説明する模式図である。 αβ平面における二次元ヒストグラムの例を示す模式図である。 低層建物のオルソ画像の上に建物候補領域を重ねて表示した模式図である。 低層建物のオルソ画像の上に建物領域を重ねて表示した模式図である。 低層建物のオルソ画像の上に建物境界線を重ねて表示した模式図である。 低層建物のオルソ画像の上に屋根構造線を重ねて表示した模式図である。 外縁境界線と屋根構造線とから構成された建物屋根輪郭の立体構造を示す模式的な斜視図である。
 以下、本発明の実施の形態(以下実施形態という)について、図面に基づいて説明する。
 図1は、実施形態である建物屋根輪郭認識方法の概略の処理の流れを示すフロー図である。正規化処理S2は、表層データであるDSMデータ4を正規化する。当該処理S2は、DSMデータ4とDTM(Digital Terrain Model:数値地形モデル)データ6とを用いて行われ、正規化表層データであるNDSM(Normalized Digital Surface Model)データ8が生成される。
 植生領域の抽出処理S10は、航空機等から撮影された空中写真画像に基づいて得られるオルソ画像データ12と、NDSMデータ8とを用いて、オルソ画像中における植生領域を特定する。これにより、植生領域を示す情報を含んだ植生領域データ14が生成される。
 大きな建物候補領域の抽出処理S16は、建物屋根輪郭を認識する処理の対象とする地上領域(認識対象領域)内に存在する所定の高さを超える大きな建物の候補領域を抽出する。一方、小さな建物候補領域の抽出処理S18は、処理S16で求められた大きな建物候補領域を除く領域を対象として行われ、低層建物である小さな建物の候補領域を抽出する。これら処理S16,S18は各建物の候補領域として、上空から見た屋根の領域内に少なくとも一部が包含される領域を抽出する。すなわち、候補領域は、屋根(又は建物の存在する領域)の全体に相当するものであるとは限らず、基本的にはその一部が屋根領域の一部に含まれる領域である。つまり、建物候補領域は、屋根領域そのものの候補というよりは、建物の候補位置を示す標識(標識領域)と捉えることができる。
 建物領域の抽出処理S20は、認識対象領域に占める建物の領域(建物領域)を求める。当該処理S20は、処理S16,S18で求めた建物候補領域を核とする領域拡張法により、当該候補領域と同じ属性を有する領域を求める。これにより、屋根領域の全体に対応する領域(屋根候補領域)が建物領域として抽出される。
 建物境界線の整形処理S22は、オルソ画像に現れるエッジのうち、処理S20で求めた建物領域の外形に適合するものを抽出し、建物領域の外縁境界線となる建物境界線を求める。この建物境界線は、上空から見た屋根の輪郭に相当する。
 小さな建物屋根形状の特定処理S24は、処理S18にて建物候補領域が抽出された低層建物が平らな屋根面からなる平屋根か勾配面を有する勾配屋根かを判別する。
 建物屋根構造線の抽出処理S26は、処理S24にて勾配屋根を有すると判定された低層建物について、処理S22で求めた建物境界線内のオルソ画像に現れるエッジに基づき、勾配屋根が有し得る複数の屋根面の相互の境界線を屋根構造線として抽出する。
 建物屋根輪郭の立体構造の構成処理S28は、建物境界線と屋根構造線とから勾配屋根の屋根輪郭の立体的構造を構成する。
 以下、上述の各処理についてさらに説明する。
 正規化処理S2で用いるDSMは、例えば、撮影位置の異なる複数の航空画像を照合し、同一の地物の当該複数の航空画像での見え方の違いに基づいて当該地物の高さを求めることにより生成される。DSMは地上の建物や植生等の地物を含んだ地表の標高を表す。これに対して、DTMは、地物を含まない地表の標高を表す。DTMは、例えば、DSMデータ4が表すDSMに対して、モフォロジカルフィルタリングを施すことで得ることができる。正規化処理S2は、地点毎にDSMデータ4からDTMデータ6を減算して、DSMに含まれるDTMの影響を除去し、地物のみの高さを表すNDSMデータ8を生成する。
 図2は、正規化処理S2を説明する模式図である。図2(a)は、地上の模式的な垂直断面図である。DSM30は、建物32,33、樹木34等の地物表面の水平座標・標高と、地物の間に露出する地表面36の水平座標・標高とを表す。ここで、DSM30における建物の標高は、その下の地表面の標高と建物の高さとの合計となる。正規化処理S2は、このDSM30の値からDTM40の値を減算し、NDSMを生成する。図2(b)は、図2(a)の地上に対応して得られるNDSM42を模式的に表す垂直断面図である。このNDSM42では、地物(建物32a,33a、樹木34a)は地表からの高さ情報を有する一方、地表面36aは基本的に、高さ0に応じた高さとなる。
 NDSMでは、建物以外の地物も有意な高さを有し、特に、樹木34a等の植生は建物に相当する高さとなり得るため、建物候補領域の抽出処理S16,S18等においてノイズ要因となる。そこで植生領域の抽出処理S10にて植生領域データ14を生成し、処理S16,S18等にて、建物屋根輪郭の認識対象領域から植生領域を除外するために用いる。例えば、植生領域データ14は、植生領域では値“1”を有し、非植生領域では値“0”を有する画像データとして定義することができる。
 オルソ画像データ12として、赤(R)、緑(G)、青(B)、近赤外(NIR)の複数成分からなるマルチスペクトル画像を用いた場合には、樹木の葉が近赤外光を強く反射する性質から植生領域を検知することができる。例えば、R成分のピクセル値D及びNIR成分のピクセル値DNIRを用いて次式で算出されるNDVI(Normalized Difference Vegetation Index:正規化植生指標)が所定の閾値以上の領域を植生領域と判定することができる。
NDVI=(DNIR-D)/(DNIR+D
 また、植生領域であるか否かは、屋根や屋上は比較的大きな水平距離にわたって平滑な面が広がるのに対し、植生領域では、比較的小さい空間周期で高さの変動が生じる。この違いを利用して植生領域を判別することもできる。具体的には、隣接サンプリング点間での勾配の分散が所定の閾値を超える領域を植生領域と判断することができる。また、高さの変動が航空機等から撮影した画像に生じるテクスチャに基づいて判別することも可能である。
 また、オルソ画像に現れるエッジに関し、植生のエッジの密度は建物のエッジに比べて概して高くなる。これを利用して植生領域を判定することもできる。
 ここで、建物屋根輪郭の認識に係る本実施形態では、上述の植生領域の判定にNDSMデータ8を併用することで、判定の精度の向上を図ることができる。例えば、建物候補領域の抽出処理S16,S18にてノイズとなりやすい比較的高い樹木を好適に植生領域として抽出可能となる。また、緑化されている屋上では高さが高い割にはその分散が小さいことが期待でき、このような性質を利用して、緑化された屋上は非植生領域と判定し、建物候補領域の認識対象領域から除外しないようにすることもできる。
 大きな建物候補領域の抽出処理S16は、上述のように所定の閾値高さでNDSMをスライシングし、当該閾値高さを超える領域を抽出する。この抽出された領域に対して、モフォロジー処理により膨張・収縮を施して、ノイズである小領域の除去や、隣接領域の分離を行ったり、植生領域データ14を参照して植生領域を除外し、大きな建物候補領域を求める。
 図3は、大きな建物候補領域の抽出処理S16を説明する模式図である。図3(a)は、図2(b)のNDSM42に相当するNDSM42aを模式的に表す垂直断面図に、スライシングの閾値高さのレベル50を示している。ここで、図3(a)に実線で表すNDSM42aは地物の実際の形状52よりも形を滑らかに表している。図2ではNDSM42を形状52に即した形で表したが、実際にはNDSMの分解能は一般に形状52を十分に捉え得るほどには高くない。図3(a)のNDSM42aは、これを意識して表している。
 図3(b)は、レベル50を超える領域を表した認識対象領域の模式的な画像である。なお、図3(b)において線分A-Aが図3(a)に示す断面の位置である。スライシング後の画像には、大きな建物32aに対応する領域32bの他に、ノイズとして樹木34aに対応する領域34bが分布する植生領域54が含まれている。図3(c)は、図3(b)の画像に対して、モフォロジー処理や、植生領域データ14を用いた植生領域除外処理を行った後の画像の模式図である。植生領域54が除去されることで、大きな建物候補領域となる領域32bが精度良く現れた画像が生成される。
 小さな建物候補領域の抽出処理S18は、大きな建物候補領域や植生領域を除いたNDSMに対して、領域分割処理(画像セグメンテーション)を行うことで、地上表層に現れる凸部のうち低層建物に対応する高さを有するものを小さな建物候補領域として抽出する。例えば、NDSMデータ8において、大きな建物候補領域や植生領域のデータを値“0”に置き換える処理を行い、得られたNDSMに対して領域分割処理を行う。領域分割処理のアルゴリズムとしては例えば、ウォーターシェッド(watershed)セグメンテーションや、マーカーベースド(marker-based)・ウォーターシェッドセグメンテーションなどを用いることができる。
 図4は、小さな建物候補領域の抽出処理S18を説明する模式図である。図4(a)は、図3(a)に示すNDSM42aに対して、大きな建物候補領域として抽出される建物32aや植生領域54を構成する樹木34aを除去する処理を行った後のNDSM42bを模式的に表す垂直断面図である。図4(b)は、NDSM42bに対してウォーターシェッドセグメンテーションを行った結果を示す認識対象領域の模式的な画像である。低層建物33aに対応するNDSM42bの凸部の頂部に対応する領域56が小さな建物候補領域として、建物33aの屋根領域58内に抽出される。
 この小さな建物候補領域の抽出処理S18により、認識対象領域に存在し得る複数の低層建物33aのそれぞれの位置が、互いに分離した領域56として把握される。小さな建物屋根形状の特定処理S24では、各領域56におけるNDSMデータ8から、当該領域56に対応する低層建物33aの屋根の立体的な形状が判定される。具体的には、領域56にて、NDSMデータ8によって定義されるメッシュで構成される立体面上での局所表面法線ベクトルを求める。例えば、メッシュを構成する各ポリゴンの法線ベクトルが局所表面法線ベクトルとして求められ、それらの向きが専ら鉛直方向である場合は平屋根であり、鉛直方向に対して傾斜した向きに多く分布する場合は勾配屋根であると判定する。その際、例えば、図5に示す一種の球座標(α,β)で局所表面法線ベクトルの向きを表し、αβ平面での局所表面法線ベクトルのヒストグラムに基づいて、平屋根か勾配屋根かの判定を行うことができる。なお、図5において、ベクトルNが局所表面法線ベクトルを表しており、直交座標系のX軸、Y軸が張る平面がNDSMの地表面であり、Z軸の正の向きが地表面に対する鉛直上向きである。また座標αはベクトルNとZX平面とのなす角度であり、座標βはベクトルNのZX平面への射影ベクトルSとZ軸上向きとのなす角度である。この球座標系によれば、ベクトルNが鉛直方向の場合にα,βが共に0となってαβ平面の原点に位置し、一方、鉛直方向から傾くと原点から離れた点に対応付けられる。図6は、αβ平面における二次元ヒストグラムの例を示す模式図である。図6(a)は平屋根の場合の局所表面法線ベクトルの度数分布を表しており、この場合の度数はαβ平面の原点及びその近傍からなる領域70で高くなる。図6(b)は勾配屋根の場合の局所表面法線ベクトルの度数分布の例を表しており、この場合の度数はαβ平面の原点から離れた領域72で高くなる。そこで、例えば、度数についての所定の閾値で当該二次元ヒストグラムを二値化し、当該閾値を超える領域が原点にあるか、原点から離れた位置にあるかによって平屋根と勾配屋根とを判別することができる。
 建物領域の抽出処理S20では、処理S16,S18で求めた建物候補領域を核(マーカ)とし、NDSMデータ8が表す高さ情報や、オルソ画像データ12から得られる画像の色情報やテクスチャ情報を用いて、領域拡張法により建物領域が抽出される。具体的には、建物候補領域に連続する領域のうち、当該建物候補領域と高さ、色、テクスチャについて共通性があると認められる範囲内の領域を当該建物候補領域に結合して、建物領域とする。図7、図8は、建物領域の抽出処理S20を説明する模式図である。図7は、小さな建物候補領域の抽出処理S18にて抽出された建物候補領域(領域56)を、オルソ画像80に重ねて示している。なお、オルソ画像80には切妻屋根の低層建物33aが表されており、オルソ画像80での屋根面の像82を斜線ハッチングで示し、また、この屋根面の範囲が上述した屋根領域58であることを像82を囲む点線で示している。図8は、領域56をマーカとする領域拡張処理により得られた建物領域84を、オルソ画像80上に示している。
 このように、NDSMデータ8とオルソ画像データ12の情報とを併用した領域拡張法を用いることで、コンピュータ等の演算処理装置を用いた自動的な処理で、建物領域か否かを精度良く判別し、建物領域を好適に抽出することが可能となる。
 ここで、図8に示すように建物領域84は屋根領域58を好適にカバーし得るが、領域拡張法の性質上、建物領域84の輪郭は必ずしも、点線で示す屋根領域58の輪郭(外縁境界線)にきれいに一致するとは限らない。建物境界線の整形処理S22は、建物領域に適合する外縁境界線を求める処理であり、オルソ画像に現れるエッジのうち、処理S20で求めた建物領域の外形に適合するものを抽出し、外縁境界線である建物境界線を求める。図9は、建物境界線の整形処理S22を説明する模式図である。図9は、図8の建物領域84に対応して抽出された建物境界線86を示している。
 建物屋根構造線の抽出処理S26は、勾配屋根を有する低層建物を対象として行われ、NDSMデータ8から得られる高さ情報を参照しつつ、建物境界線内のオルソ画像からエッジ・線分を抽出し、さらに、抽出したエッジ・線分の結合や頂点決め等を行って、勾配屋根が有し得る複数の屋根面の相互の境界線である屋根構造線を求める。図10は、建物屋根構造線の抽出処理S26を説明する模式図である。ここで、屋根面の像82には斜線の向きが異なる2つの領域82a,82bが含まれているが、これら領域82a,82bは切妻屋根を構成する2つの屋根面に対応している。ハッチングの斜線の向きの違いは、領域82aと領域82bとの間にて、それぞれに対応する屋根面の向きの違いに応じオルソ画像上、コントラストが生じることを表現している。図10は、屋根構造線88として、領域82a,82bのコントラストや色情報に基づき、領域82a,82bが接する境界線が抽出されることを示している。
 建物屋根輪郭の立体構造の構成処理S28は、建物境界線と屋根構造線とから勾配屋根の屋根輪郭の立体的構造を構成する。この処理では、外縁境界線と屋根構造線とを重ね合わせ、それらが接続、交差する点の位置を決定する。さらに、屋根の立体的形状の情報を考慮に入れて、外縁境界線と屋根構造線とを組み合わせた平面的な図形パターンから、建物屋根輪郭の立体的構造が決定される。なお、屋根の立体的形状は、切妻型、寄棟型等の基本的な類型や、外縁境界線が構成する屋根領域の形状から推定できる。図11は、図9の外縁境界線86と図10の屋根構造線88とから構成された建物屋根輪郭の立体構造90を示す模式的な斜視図である。ちなみに、屋根面が形成する凹凸の程度は、NDSMデータ8や、処理S24にて得ることができる屋根の勾配の情報(角度α,β)に基づいて定めることが可能である。
 上述の建物屋根輪郭の認識方法は、コンピュータ上で実行されるプログラムとして実現することができる。コンピュータは当該プログラムを実行することにより、航空機等にて取得されたDSMデータ4及びオルソ画像データ12から、認識対象領域に存在する建物の位置の把握、建物領域の特定、そして建物屋根輪郭の認識及びその立体的構造の構築を自動的に行うことができる。また、本発明に係る建物屋根輪郭認識装置は、例えば、当該プログラムを実行するコンピュータによって実現される。
 また、上述の実施形態では、航空機から撮影した画像及び当該画像から生成したDSMを用いた態様を説明したが、高分解能衛星から取得した画像及びDSMを用いてもよい。またDSMは、航空機等から地上へレーザを照射して取得するものであってもよい。

Claims (9)

  1.  上空から取得され、地物を含んだ地上表層の標高を表す表層データに基づいて、建物屋根輪郭の認識対象領域から、少なくとも一部が屋根に含まれる領域を建物毎に標識領域として抽出する標識領域抽出部と、
     前記標識領域を核とする領域拡張法により、前記表層データ及び空中写真画像に関して当該標識領域と共通性を有する領域を屋根候補領域として抽出する屋根候補領域抽出部と、
     前記空中写真画像に現れるエッジのうち前記屋根候補領域の外形に適合するものを抽出し、前記建物屋根輪郭となる外縁境界線を求める外縁境界線整形部と、
     を有することを特徴とする建物屋根輪郭認識装置。
  2.  請求項1に記載の建物屋根輪郭認識装置において、
     前記屋根候補領域抽出部は、
     前記表層データと、前記空中写真画像が有する色情報及び画像テクスチャ情報とに基づいて前記共通性の有無を判断し、前記屋根候補領域を求めること、
     を特徴とする建物屋根輪郭認識装置。
  3.  請求項1に記載の建物屋根輪郭認識装置において、
     前記標識領域抽出部は、前記表層データに基づくウォーターシェッド法による領域分割により、前記地上表層に現れる凸部のうち前記建物に対応する高さを有するものを前記標識領域として抽出する領域分割処理を含むこと、
     を特徴とする建物屋根輪郭認識装置。
  4.  請求項3に記載の建物屋根輪郭認識装置において、
     前記領域分割処理にて前記標識領域を抽出された前記建物に対応する前記凸部での前記表層データに基づいて、当該建物が平らな屋根面からなる平屋根か勾配面を有する勾配屋根かを判別する屋根形状判別部と、
     前記勾配屋根を有する前記建物について、前記外縁境界線内の前記空中写真画像に現れるエッジに基づき、前記勾配屋根が有し得る複数の屋根面の相互の境界線を屋根構造線として抽出する屋根構造線抽出部と、
     前記外縁境界線と前記屋根構造線とから前記勾配屋根の前記建物屋根輪郭の立体的構造を構成する勾配屋根輪郭構成部と、
     を有することを特徴とする建物屋根輪郭認識装置。
  5.  請求項3又は請求項4に記載の建物屋根輪郭認識装置において、
     前記標識領域抽出部は、
     前記領域分割処理に先立ち、前記認識対象領域のうち前記表層データが所定の閾値を超える領域に基づいて、大きな建物についての前記標識領域を求める大建物領域抽出部と、 前記認識対象領域のうち前記大きな建物の前記標識領域を除いた領域に対して、前記領域分割処理を行い、前記閾値に応じた高さ以下の低層建物である小さな建物についての前記標識領域を求める小建物領域抽出部と、
     を有することを特徴とする建物屋根輪郭認識装置。
  6.  請求項1から請求項4のいずれか1つに記載の建物屋根輪郭認識装置において、
     前記空中写真画像に基づいて植生領域を抽出する植生領域抽出部を有し、
     前記標識領域抽出部は、前記認識対象領域から前記植生領域を除いた領域を対象として各処理を行うこと、
     を特徴とする建物屋根輪郭認識装置。
  7.  請求項1から請求項4のいずれか1つに記載の建物屋根輪郭認識装置において、
     前記表層データから前記地物を含まない地表の標高を減算して、前記地物の高さを表す正規化表層データを生成する正規化処理部を有し、
     前記標識領域抽出部は、前記正規化表層データに基づいて前記標識領域を抽出し、
     前記屋根候補領域抽出部は、前記屋根候補領域の抽出に前記正規化表層データを用いること、
     を特徴とする建物屋根輪郭認識装置。
  8.  上空から取得され、地物を含んだ地上表層の標高を表す表層データに基づいて、建物屋根輪郭の認識対象領域から、少なくとも一部が屋根に含まれる領域を建物毎に標識領域として抽出する標識領域抽出ステップと、
     前記標識領域を核とする領域拡張法により、前記表層データ及び空中写真画像に関して当該標識領域と共通性を有する領域を屋根候補領域として抽出する屋根候補領域抽出ステップと、
     前記空中写真画像に現れるエッジのうち前記屋根候補領域の外形に適合するものを抽出し、前記建物屋根輪郭となる外縁境界線を求める外縁境界線整形ステップと、
     を有することを特徴とする建物屋根輪郭認識方法。
  9.  上空から取得され、地物を含んだ地上表層の標高を表す表層データに基づいて、建物屋根輪郭の認識対象領域から、少なくとも一部が屋根に含まれる領域を建物毎に標識領域として抽出する標識領域抽出ステップと、
     前記標識領域を核とする領域拡張法により、前記表層データ及び空中写真画像に関して当該標識領域と共通性を有する領域を屋根候補領域として抽出する屋根候補領域抽出ステップと、
     前記空中写真画像に現れるエッジのうち前記屋根候補領域の外形に適合するものを抽出し、前記建物屋根輪郭となる外縁境界線を求める外縁境界線整形ステップと、
     をコンピュータに実行させるための建物屋根輪郭認識プログラム。
PCT/JP2009/057901 2008-04-23 2009-04-21 建物屋根輪郭認識装置、建物屋根輪郭認識方法、及び建物屋根輪郭認識プログラム WO2009131108A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US12/988,740 US8538151B2 (en) 2008-04-23 2009-04-21 Building roof outline recognizing device, building roof outline recognizing method, and building roof outline recognizing program
CN2009801093960A CN101978395B (zh) 2008-04-23 2009-04-21 建筑物屋顶轮廓识别装置及建筑物屋顶轮廓识别方法
JP2010509179A JP4880069B2 (ja) 2008-04-23 2009-04-21 建物屋根輪郭認識装置、建物屋根輪郭認識方法、及び建物屋根輪郭認識プログラム
EP09734956.7A EP2278553A4 (en) 2008-04-23 2009-04-21 DEVICE, METHOD AND PROGRAM FOR DETECTING BUILDING ACOUSTIC CONTOURS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-112874 2008-04-23
JP2008112874 2008-04-23

Publications (1)

Publication Number Publication Date
WO2009131108A1 true WO2009131108A1 (ja) 2009-10-29

Family

ID=41216840

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/057901 WO2009131108A1 (ja) 2008-04-23 2009-04-21 建物屋根輪郭認識装置、建物屋根輪郭認識方法、及び建物屋根輪郭認識プログラム

Country Status (5)

Country Link
US (1) US8538151B2 (ja)
EP (1) EP2278553A4 (ja)
JP (1) JP4880069B2 (ja)
CN (1) CN101978395B (ja)
WO (1) WO2009131108A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102930540A (zh) * 2012-10-26 2013-02-13 中国地质大学(武汉) 城市建筑物轮廓检测的方法及系统
JP2013101428A (ja) * 2011-11-07 2013-05-23 Pasuko:Kk 建物輪郭抽出装置、建物輪郭抽出方法及び建物輪郭抽出プログラム
CN104484668A (zh) * 2015-01-19 2015-04-01 武汉大学 一种无人机多重叠遥感影像的建筑物轮廓线提取方法
CN104729529A (zh) * 2013-12-24 2015-06-24 北京市测绘设计研究院 地形图测量系统误差判断的方法和系统
CN105606123A (zh) * 2015-12-18 2016-05-25 昆山数字城市信息技术有限公司 一种低空航空摄影测量自动纠正数字地面高程模型的方法
CN108062793A (zh) * 2017-12-28 2018-05-22 百度在线网络技术(北京)有限公司 基于高程的物体顶部处理方法、装置、设备和存储介质
CN110321826A (zh) * 2019-06-26 2019-10-11 贵州省交通规划勘察设计研究院股份有限公司 一种基于植株高度的无人机边坡植被分类方法
CN111508015A (zh) * 2020-03-03 2020-08-07 宝略科技(浙江)有限公司 一种基于三维实景数据的建筑物高度提取方法及其装置
CN111538798A (zh) * 2020-04-09 2020-08-14 武汉大学 一种顾及dsm和dlg的城市汇水区精细化提取方法
JP2022158951A (ja) * 2021-04-01 2022-10-17 ネイバーラボス コーポレーション ドローン映像を活用した航空地図のアップデート方法およびシステム

Families Citing this family (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7424133B2 (en) 2002-11-08 2008-09-09 Pictometry International Corporation Method and apparatus for capturing, geolocating and measuring oblique images
US7873238B2 (en) 2006-08-30 2011-01-18 Pictometry International Corporation Mosaic oblique images and methods of making and using same
US8145578B2 (en) 2007-04-17 2012-03-27 Eagel View Technologies, Inc. Aerial roof estimation system and method
US10930063B2 (en) 2007-04-17 2021-02-23 Eagle View Technologies, Inc. Aerial roof estimation systems and methods
US9262818B2 (en) 2007-05-01 2016-02-16 Pictometry International Corp. System for detecting image abnormalities
US7991226B2 (en) 2007-10-12 2011-08-02 Pictometry International Corporation System and process for color-balancing a series of oblique images
US8531472B2 (en) 2007-12-03 2013-09-10 Pictometry International Corp. Systems and methods for rapid three-dimensional modeling with real façade texture
US8588547B2 (en) 2008-08-05 2013-11-19 Pictometry International Corp. Cut-line steering methods for forming a mosaic image of a geographical area
US8731234B1 (en) * 2008-10-31 2014-05-20 Eagle View Technologies, Inc. Automated roof identification systems and methods
US8170840B2 (en) 2008-10-31 2012-05-01 Eagle View Technologies, Inc. Pitch determination systems and methods for aerial roof estimation
US8209152B2 (en) 2008-10-31 2012-06-26 Eagleview Technologies, Inc. Concurrent display systems and methods for aerial roof estimation
US8401222B2 (en) * 2009-05-22 2013-03-19 Pictometry International Corp. System and process for roof measurement using aerial imagery
US9330494B2 (en) 2009-10-26 2016-05-03 Pictometry International Corp. Method for the automatic material classification and texture simulation for 3D models
WO2011094760A2 (en) 2010-02-01 2011-08-04 Eagle View Technologies Geometric correction of rough wireframe models derived from photographs
US8477190B2 (en) 2010-07-07 2013-07-02 Pictometry International Corp. Real-time moving platform management system
US8823732B2 (en) 2010-12-17 2014-09-02 Pictometry International Corp. Systems and methods for processing images with edge detection and snap-to feature
US8692827B1 (en) * 2011-01-24 2014-04-08 Google Inc. Carving buildings from a three-dimensional model, and applications thereof
WO2013106080A2 (en) 2011-06-10 2013-07-18 Pictometry International Corp. System and method for forming a video stream containing gis data in real-time
EP2543964B1 (en) 2011-07-06 2015-09-02 Harman Becker Automotive Systems GmbH Road Surface of a three-dimensional Landmark
US9639757B2 (en) * 2011-09-23 2017-05-02 Corelogic Solutions, Llc Building footprint extraction apparatus, method and computer program product
US20130155109A1 (en) * 2011-11-29 2013-06-20 Pictometry International Corp. System for automatic structure footprint detection from oblique imagery
US9317966B1 (en) * 2012-02-15 2016-04-19 Google Inc. Determine heights/shapes of buildings from images with specific types of metadata
US9183538B2 (en) 2012-03-19 2015-11-10 Pictometry International Corp. Method and system for quick square roof reporting
US9881163B2 (en) 2013-03-12 2018-01-30 Pictometry International Corp. System and method for performing sensitive geo-spatial processing in non-sensitive operator environments
US9244272B2 (en) 2013-03-12 2016-01-26 Pictometry International Corp. Lidar system producing multiple scan paths and method of making and using same
US9275080B2 (en) 2013-03-15 2016-03-01 Pictometry International Corp. System and method for early access to captured images
US9753950B2 (en) 2013-03-15 2017-09-05 Pictometry International Corp. Virtual property reporting for automatic structure detection
CN103699900B (zh) * 2014-01-03 2016-10-05 西北工业大学 卫星影像中建筑物水平矢量轮廓自动批量提取方法
MX2016008890A (es) 2014-01-10 2017-01-16 Pictometry Int Corp Sistema y metodo de evaluacion de estructura de aeronave no tripulada.
US9292913B2 (en) 2014-01-31 2016-03-22 Pictometry International Corp. Augmented three dimensional point collection of vertical structures
WO2015120188A1 (en) 2014-02-08 2015-08-13 Pictometry International Corp. Method and system for displaying room interiors on a floor plan
CN104200212B (zh) * 2014-06-25 2016-05-18 西安煤航信息产业有限公司 一种基于机载LiDAR数据的建筑物外边界线提取方法
JP6293593B2 (ja) * 2014-07-03 2018-03-14 株式会社日立ソリューションズ 体積算出装置、体積算出方法、および体積算出プログラム
CN104457691B (zh) * 2014-12-15 2017-02-01 重庆市勘测院 一种建筑物主体高程信息获取方法
US10586385B2 (en) * 2015-03-05 2020-03-10 Commonwealth Scientific And Industrial Research Organisation Structure modelling
US10038838B2 (en) * 2015-05-29 2018-07-31 Hover Inc. Directed image capture
AU2017221222B2 (en) 2016-02-15 2022-04-21 Pictometry International Corp. Automated system and methodology for feature extraction
US10671648B2 (en) 2016-02-22 2020-06-02 Eagle View Technologies, Inc. Integrated centralized property database systems and methods
CN106097311A (zh) * 2016-05-31 2016-11-09 中国科学院遥感与数字地球研究所 机载激光雷达数据的建筑物三维重建方法
CN106326492B (zh) * 2016-09-19 2019-08-27 深圳市数字城市工程研究中心 空间矢量数据生成方法及装置
US10127670B2 (en) * 2016-09-27 2018-11-13 Xactware Solutions, Inc. Computer vision systems and methods for detecting and modeling features of structures in images
JP6688901B2 (ja) * 2016-10-17 2020-04-28 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd 3次元形状推定方法、3次元形状推定システム、飛行体、プログラム、及び記録媒体
CN107038755A (zh) * 2017-05-09 2017-08-11 北京四维空间数码科技有限公司 矢量数据叠加dsm自动批量生成三维模型的方法
US10861247B2 (en) * 2017-09-21 2020-12-08 Nearmap Us, Inc. Roof report generation
CN109583284B (zh) * 2017-09-29 2023-09-12 中国科学院空天信息创新研究院 基于高分辨率sar图像的城市高层建筑物高度提取方法及装置
CN108038907A (zh) * 2017-11-21 2018-05-15 泰瑞数创科技(北京)有限公司 城市信息模型语义信息自动生成方法和系统
US10503843B2 (en) 2017-12-19 2019-12-10 Eagle View Technologies, Inc. Supervised automatic roof modeling
CN107977968B (zh) * 2017-12-22 2021-03-19 长江勘测规划设计研究有限责任公司 基于建筑物阴影信息挖掘的建筑物分层检测方法
CN108062794A (zh) * 2017-12-29 2018-05-22 百度在线网络技术(北京)有限公司 一种建筑物模型的获取方法、装置、服务器及存储介质
AU2019287397A1 (en) * 2018-06-15 2021-01-07 Geomni, Inc. Computer vision systems and methods for modeling roofs of structures using two-dimensional and partial three-dimensional data
CN109146889B (zh) * 2018-07-13 2021-11-19 洛阳中科龙网创新科技有限公司 一种基于高分辨率遥感图像的农田边界提取方法
US11195324B1 (en) 2018-08-14 2021-12-07 Certainteed Llc Systems and methods for visualization of building structures
CN109325506A (zh) * 2018-09-19 2019-02-12 中南民族大学 一种基于少数民族图像的标志识别方法及装置
CN109614871B (zh) * 2018-11-13 2022-05-13 远景能源(南京)软件技术有限公司 一种光伏屋顶及光伏障碍物自动识别方法
CN109961043B (zh) * 2019-03-22 2023-03-31 广西北斗星测绘科技有限公司 一种基于无人机高分辨率影像的单木高度测量方法及系统
CN112304292B (zh) * 2019-07-25 2023-07-28 富泰华工业(深圳)有限公司 基于单色光的物体检测方法及检测系统
CN111611643B (zh) * 2020-05-27 2023-05-23 电子科技大学中山学院 户型矢量化数据获得方法、装置、电子设备及存储介质
CN112164142A (zh) * 2020-10-21 2021-01-01 江苏科技大学 一种基于智能手机的楼盘采光模拟方法
US20220180016A1 (en) * 2020-12-09 2022-06-09 Zesty.Ai, Inc. Determining 3D Structure Features From DSM Data
CN113514036B (zh) * 2021-04-24 2022-05-17 中国建筑第五工程局有限公司 一种超高层建筑物垂直度测控方法
CN113313418A (zh) * 2021-06-23 2021-08-27 中科青城(天津)科技有限公司 一种城市建筑屋顶绿化适建性评估分级方法
CN114821334B (zh) * 2022-05-17 2023-08-04 重庆市地理信息和遥感应用中心 基于区域定位和局部特征匹配的楼顶加盖违建识别方法
CN116168290B (zh) * 2022-12-28 2023-08-08 二十一世纪空间技术应用股份有限公司 基于高分辨率遥感影像及三维数据的乔灌草分类方法
CN117036959B (zh) * 2023-09-08 2024-02-09 江西财经大学 一种基于遥感的建筑物洪灾易损性评价方法
CN117237565B (zh) * 2023-09-27 2024-02-13 自然资源部国土卫星遥感应用中心 基于高分辨率卫星立体影像的建筑物白模制作方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001357380A (ja) * 2000-06-13 2001-12-26 Pasuko:Kk 画像処理による森林地域の評価方法及びこの評価に関するプログラムを記憶した記憶媒体
JP2002074323A (ja) * 2000-09-01 2002-03-15 Kokusai Kogyo Co Ltd 三次元市街地空間モデル作成方法およびシステム
JP2002366977A (ja) * 2001-06-08 2002-12-20 Pasuko:Kk 地物形状作成システム及び3次元地図作成システム
JP2003323640A (ja) * 2002-04-26 2003-11-14 Asia Air Survey Co Ltd レーザスキャナデータと空中写真画像を用いた高精度都市モデルの生成方法及び高精度都市モデルの生成システム並びに高精度都市モデルの生成のプログラム
JP2003344048A (ja) * 2002-05-22 2003-12-03 Pasuko:Kk 森林情報処理システム
JP2004212334A (ja) * 2003-01-08 2004-07-29 Sony Corp データ処理システム及び方法、並びにコンピュータ・プログラム
JP2004341422A (ja) * 2003-05-19 2004-12-02 Hitachi Ltd 地図作成装置、地図配信方法及び地図作成プログラム
JP2006323608A (ja) * 2005-05-18 2006-11-30 Kozo Keikaku Engineering Inc 立体構造物群モデル作成装置、立体構造物群モデル作成方法及び立体モデル作成システム
JP2007003244A (ja) * 2005-06-21 2007-01-11 Pasuko:Kk 家屋異動判定方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3915631A1 (de) * 1989-05-12 1990-11-15 Dornier Luftfahrt Navigationsverfahren
US7509241B2 (en) * 2001-07-06 2009-03-24 Sarnoff Corporation Method and apparatus for automatically generating a site model
TW550521B (en) * 2002-02-07 2003-09-01 Univ Nat Central Method for re-building 3D model of house in a semi-automatic manner using edge segments of buildings
CN1152341C (zh) * 2002-08-27 2004-06-02 上海交通大学 房屋数字地图自动生成方法
US7728833B2 (en) * 2004-08-18 2010-06-01 Sarnoff Corporation Method for generating a three-dimensional model of a roof structure

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001357380A (ja) * 2000-06-13 2001-12-26 Pasuko:Kk 画像処理による森林地域の評価方法及びこの評価に関するプログラムを記憶した記憶媒体
JP2002074323A (ja) * 2000-09-01 2002-03-15 Kokusai Kogyo Co Ltd 三次元市街地空間モデル作成方法およびシステム
JP2002366977A (ja) * 2001-06-08 2002-12-20 Pasuko:Kk 地物形状作成システム及び3次元地図作成システム
JP2003323640A (ja) * 2002-04-26 2003-11-14 Asia Air Survey Co Ltd レーザスキャナデータと空中写真画像を用いた高精度都市モデルの生成方法及び高精度都市モデルの生成システム並びに高精度都市モデルの生成のプログラム
JP2003344048A (ja) * 2002-05-22 2003-12-03 Pasuko:Kk 森林情報処理システム
JP2004212334A (ja) * 2003-01-08 2004-07-29 Sony Corp データ処理システム及び方法、並びにコンピュータ・プログラム
JP2004341422A (ja) * 2003-05-19 2004-12-02 Hitachi Ltd 地図作成装置、地図配信方法及び地図作成プログラム
JP2006323608A (ja) * 2005-05-18 2006-11-30 Kozo Keikaku Engineering Inc 立体構造物群モデル作成装置、立体構造物群モデル作成方法及び立体モデル作成システム
JP2007003244A (ja) * 2005-06-21 2007-01-11 Pasuko:Kk 家屋異動判定方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2278553A4 *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013101428A (ja) * 2011-11-07 2013-05-23 Pasuko:Kk 建物輪郭抽出装置、建物輪郭抽出方法及び建物輪郭抽出プログラム
CN102930540B (zh) * 2012-10-26 2015-06-10 中国地质大学(武汉) 城市建筑物轮廓检测的方法及系统
CN102930540A (zh) * 2012-10-26 2013-02-13 中国地质大学(武汉) 城市建筑物轮廓检测的方法及系统
CN104729529A (zh) * 2013-12-24 2015-06-24 北京市测绘设计研究院 地形图测量系统误差判断的方法和系统
CN104484668B (zh) * 2015-01-19 2017-11-10 武汉大学 一种无人机多重叠遥感影像的建筑物轮廓线提取方法
CN104484668A (zh) * 2015-01-19 2015-04-01 武汉大学 一种无人机多重叠遥感影像的建筑物轮廓线提取方法
CN105606123B (zh) * 2015-12-18 2018-07-06 昆山数字城市信息技术有限公司 一种低空航空摄影测量自动纠正数字地面高程模型的方法
CN105606123A (zh) * 2015-12-18 2016-05-25 昆山数字城市信息技术有限公司 一种低空航空摄影测量自动纠正数字地面高程模型的方法
CN108062793A (zh) * 2017-12-28 2018-05-22 百度在线网络技术(北京)有限公司 基于高程的物体顶部处理方法、装置、设备和存储介质
CN108062793B (zh) * 2017-12-28 2021-06-01 百度在线网络技术(北京)有限公司 基于高程的物体顶部处理方法、装置、设备和存储介质
CN110321826A (zh) * 2019-06-26 2019-10-11 贵州省交通规划勘察设计研究院股份有限公司 一种基于植株高度的无人机边坡植被分类方法
CN110321826B (zh) * 2019-06-26 2023-02-24 贵州省交通规划勘察设计研究院股份有限公司 一种基于植株高度的无人机边坡植被分类方法
CN111508015A (zh) * 2020-03-03 2020-08-07 宝略科技(浙江)有限公司 一种基于三维实景数据的建筑物高度提取方法及其装置
CN111538798A (zh) * 2020-04-09 2020-08-14 武汉大学 一种顾及dsm和dlg的城市汇水区精细化提取方法
CN111538798B (zh) * 2020-04-09 2023-09-19 武汉大学 一种顾及dsm和dlg的城市汇水区精细化提取方法
JP2022158951A (ja) * 2021-04-01 2022-10-17 ネイバーラボス コーポレーション ドローン映像を活用した航空地図のアップデート方法およびシステム
JP7375064B2 (ja) 2021-04-01 2023-11-07 ネイバーラボス コーポレーション ドローン映像を活用した航空地図のアップデート方法およびシステム

Also Published As

Publication number Publication date
US20110033110A1 (en) 2011-02-10
JP4880069B2 (ja) 2012-02-22
EP2278553A1 (en) 2011-01-26
CN101978395A (zh) 2011-02-16
JPWO2009131108A1 (ja) 2011-08-18
EP2278553A4 (en) 2013-10-23
US8538151B2 (en) 2013-09-17
CN101978395B (zh) 2012-10-03

Similar Documents

Publication Publication Date Title
JP4880069B2 (ja) 建物屋根輪郭認識装置、建物屋根輪郭認識方法、及び建物屋根輪郭認識プログラム
US8494211B2 (en) House change judgment method and house change judgment program
JP5762251B2 (ja) 建物輪郭抽出装置、建物輪郭抽出方法及び建物輪郭抽出プログラム
Zhang et al. Object-oriented shadow detection and removal from urban high-resolution remote sensing images
US7728833B2 (en) Method for generating a three-dimensional model of a roof structure
US9269145B2 (en) System and method for automatically registering an image to a three-dimensional point set
KR100935857B1 (ko) 항공라이다와 디지털항공사진을 이용한 3차원 산림지리정보 생성 시스템 및 그 방법
JP6084552B2 (ja) 路面オルソ画像の生成装置および生成方法
WO2012169294A1 (ja) Dtm推定方法、dtm推定プログラム、dtm推定装置及び3次元建物モデルの作成方法、並びに、領域抽出方法、領域抽出プログラム及び領域抽出装置
Mostafa et al. Shadow identification in high resolution satellite images in the presence of water regions
Lee et al. An individual tree-based automated registration of aerial images to lidar data in a forested area
CN114283213A (zh) 联合LiDAR点云与光学图像的房屋自适应矢量化方法
JP2008242508A (ja) 特定領域自動抽出システム、特定領域自動抽出方法、および、プログラム
Xiao et al. Individual tree detection and crown delineation with 3D information from multi-view satellite images
JP7126316B2 (ja) 家屋異動推定装置及びプログラム
JP5305485B2 (ja) 地盤高データ生成装置、地盤高データ生成方法、及びプログラム
CN107808160B (zh) 三维建筑物提取方法和装置
Dimmeler et al. Combined airborne sensors in urban environment
CN113657332B (zh) 地面警戒线识别方法、装置、计算机设备及存储介质
Iovan et al. Automatic extraction and classification of vegetation areas from high resolution images in urban areas
Starodubtsev et al. Roof Segmentation on the High Resolution Digital Terrain Model
Awrangjeb et al. Integration of LiDAR data and orthoimage for automatic 3D building roof plane extraction
Pál Measurements of forest inventory parameters on terrestrial laser scanning data using digital geometry and topology
Pohl et al. Extraction and refinement of building faces in 3D point clouds
Usman et al. Shadow removal of individual tree crowns in a high resolution satellite imagery

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980109396.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09734956

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010509179

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12988740

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009734956

Country of ref document: EP