WO2009130905A1 - 通信端末装置及び通信方法 - Google Patents

通信端末装置及び通信方法 Download PDF

Info

Publication number
WO2009130905A1
WO2009130905A1 PCT/JP2009/001861 JP2009001861W WO2009130905A1 WO 2009130905 A1 WO2009130905 A1 WO 2009130905A1 JP 2009001861 W JP2009001861 W JP 2009001861W WO 2009130905 A1 WO2009130905 A1 WO 2009130905A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
beacon
communication
packet
network
Prior art date
Application number
PCT/JP2009/001861
Other languages
English (en)
French (fr)
Inventor
松下陽介
藤原ゆうき
本間秀樹
森田直樹
浦部嘉夫
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2010509083A priority Critical patent/JPWO2009130905A1/ja
Priority to CN200980000482A priority patent/CN101689887A/zh
Priority to EP09734243.0A priority patent/EP2270999A4/en
Priority to US12/666,337 priority patent/US20100195569A1/en
Publication of WO2009130905A1 publication Critical patent/WO2009130905A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/54Systems for transmission via power distribution lines
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/54Systems for transmission via power distribution lines
    • H04B3/544Setting up communications; Call and signalling arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2203/00Indexing scheme relating to line transmission systems
    • H04B2203/54Aspects of powerline communications not already covered by H04B3/54 and its subgroups
    • H04B2203/5429Applications for powerline communications
    • H04B2203/5445Local network

Definitions

  • the present invention relates to a communication terminal apparatus and communication method that use a power line as a communication path.
  • a mobile terminal detects that it has entered a range in which it can communicate with a base station by receiving a beacon emitted from the base station.
  • Beacons in the field of wireless communication are modulated with the slowest modulation scheme among a plurality of modulation schemes used by the base station. This is because modulation with the slowest modulation scheme maximizes the range that can be communicated with the base station.
  • the mobile terminal since the mobile terminal is assumed to move, there is a high probability that the mobile terminal moves out of the range where it can communicate with the base station.
  • the base station modulates the beacon with the slowest modulation method to maximize the range in which communication with the base station can be performed, and reduces the probability that the mobile terminal is out of the range in which the mobile terminal can communicate with the base station.
  • an ad hoc wireless network that enables data communication between another relay terminal and another terminal existing in a specific range of the relay terminal without using a base station by relaying by the terminal is also possible.
  • ad hoc wireless network communication between terminals becomes possible by performing relaying, as compared with the case of one base station.
  • a terminal to relay is not specified. Therefore, when performing data communication between certain two terminals, it is necessary to specify a terminal suitable for relaying to all other terminals present in the specific range of the relay terminal as the relay terminal.
  • a proactive method of periodically exchanging control information see, for example, non-patent documents 1 and 2 and exchange of control information at the start of data communication are described. They are classified into active methods (see, for example, non-patent documents 3 and 4). In general, it is said that the proactive method is effective when the moving speed of the terminal is slow, and the reactive method is effective when the moving speed of the terminal is fast.
  • the beacon is transmitted from the relay terminal by the slowest modulation method as the beacon of the communication using the base station. This is because communication does not become impossible when the terminal moves.
  • a PLC (Power Line Communication) terminal that uses a power line as a communication path is a terminal that does not move. Therefore, the control packet transmitted by the relay device in the power line communication network to the slave device is one of a plurality of modulation schemes used by the relay device in order to maximize the range in which communication with the relay device can be performed. There is no need to modulate with the lowest speed modulation scheme.
  • An object of the present invention is to provide a communication terminal device and a communication method capable of securing transmission of data which is originally intended to be transmitted.
  • the communication terminal apparatus does not receive a request packet for requesting a control packet used for setting a communication path with a terminal on a power line communication network from the network for a predetermined period Among the plurality of modulation schemes used in the network, the request packet of the control packet is modulated by the modulation scheme with the lowest communication speed and transmitted to the network.
  • the communication terminal apparatus of the first aspect does not receive from the network for a predetermined period a control packet used to set up a communication path between the communication section connected to the network of the power line communication and the terminal on the network, And a control unit that modulates the request packet of the control packet according to the modulation method with the lowest communication speed among the modulation methods and transmits the same to the network.
  • the control packet when a control packet used for setting a communication path with a terminal on the network is not received from the network for a predetermined period, the control packet is the modulation packet with the lowest communication speed among the plurality of modulation schemes used in the network. Modulate and send the request packet to the network. As a result, even if the communication path is out of the range where communication with a terminal on the network can be performed due to a change in the communication path, the request packet is transmitted with the modulation method with the lowest communication speed among the plurality of modulation methods used in the network. Since modulation can maximize the communicable range of the request packet, the request packet can reach any terminal on the network and communication can be resumed with that terminal.
  • the control unit transmits the request packet at startup.
  • the request packet can be communicated by modulating the request packet with the modulation method with the lowest communication speed among the plurality of modulation methods used in the network.
  • the request packet can reach any terminal on the network and can initiate communication with that terminal.
  • control terminal modulates the control packet modulated by the modulation scheme with the highest communication speed used with the first terminal responding to the request packet as the first terminal Are received from
  • the first terminal receives the control packet modulated by the modulation scheme with the highest communication speed used with the first terminal with the first terminal to which the request packet has arrived. Since the communicable range centering on can be reduced to the necessary minimum, the overlapping part with the communicable range of other terminals can be minimized, and the reach of the control packet from the first terminal can be minimized. As a result, the probability that control packets overlap in the entire network is reduced, and it is possible to prevent an increase in the proportion of the bandwidth consumed for control packet transmission among the bandwidth consumed for all communications.
  • control section compares the modulation scheme used with the first terminal with the modulation scheme with the highest communication speed during the period in which the control packet is received from the first terminal.
  • the transmission source of the control packet is switched from the first terminal to the second terminal.
  • the control unit modulates with the modulation scheme having a different communication speed compared to the modulation scheme with the highest communication speed used with the first terminal during a period in which the control packet is received from the first terminal.
  • the transmission source of the control packet is switched from the first terminal to the second terminal.
  • the communication range of the second terminal becomes wider than the communication range of the first terminal. Therefore, the number of terminals that can receive control packets from the second terminal increases, and if the second terminal that is the transmission source of control packets received by more terminals is selected, the number of transmission entities of control packets can be reduced. As a result, it is possible to effectively reduce the proportion of the bandwidth consumed for transmission of control packets in the bandwidth consumed for all communications.
  • the communication range of the control packet from the second terminal is narrower than the communication range of the control packet of the first terminal. Therefore, if the second terminal having a narrower communication range of control packets is selected, the number of transmission entities of control packets can be reduced and the communication range of beacons occupied in the entire network can be narrowed. As a result, it is possible to effectively reduce the proportion of the bandwidth consumed for transmission of control packets in the bandwidth consumed for all communications.
  • the control section when switching the transmission source of the control packet from the first terminal to the second terminal, notifies the first terminal of switching of the transmission source of the control packet It is According to this aspect, when switching the transmission source of the control packet from the first terminal to the second terminal, the first terminal, which is the transmission source of the control packet, is notified by switching the transmission source of the control packet.
  • the terminal can perform processing such as stopping transmission of a control packet based on the notification. As a result, the number of transmission entities of control packets can be reduced, and as a result, the proportion of the bandwidth consumed for transmission of control packets among the bandwidths consumed for all communications can be effectively reduced.
  • the first terminal is notified of switching of the transmission source of the control packet, and when there is another transmission destination of the control packet, the communication terminal apparatus with the other terminal
  • the control packet is modulated according to the modulation scheme with the highest communication speed used between the two and transmitted to another terminal.
  • the communication speed used with the other terminal is the highest.
  • the control packet is modulated by the high modulation scheme and transmitted to another terminal.
  • the communication range of the first terminal can be narrowed to the minimum range including the other terminals, so that overlapping with the communication range of the second terminal can be minimized, and the bandwidth consumed for all communications can be reduced. It is possible to prevent the ratio occupied by the bandwidth consumed for transmission of control packets from being increased wastefully. As a result, it is possible to effectively secure a band consumed for data to be originally transmitted.
  • the transmission terminal of the control packet is stopped when there is no other transmission destination of the control packet.
  • the first terminal when notified of switching of the transmission source of the control packet, the first terminal stops transmission of the control packet when there is no other transmission destination of the control packet.
  • the communication range of the control packet by the first terminal disappears, so there is no overlap with the communication range of the second terminal, and the band consumed for transmitting the control packet occupies the band consumed for all communications. It is possible to prevent the rate from increasing unnecessarily. As a result, it is possible to effectively secure a band consumed for data to be originally transmitted.
  • control unit is configured to receive a control packet from the second terminal and then stop receiving the control packet for a predetermined period.
  • the request packet is modulated by the modulation method with the lowest communication speed and transmitted to the network.
  • the request packet when a control packet is not received for a predetermined period after receiving the control packet from the second terminal, the request packet is transmitted using the modulation method with the lowest communication speed among the plurality of modulation methods used in the network. Is modulated and sent to the network.
  • the modulation scheme with the lowest communication speed among the plurality of modulation schemes used in the network Since the request packet is modulated in step S2, it is possible to maximize the communicable range of the request packet.
  • the request packet can reach any terminal on the network, resume communication with that terminal, and re-incorporate the communication terminal that has lost communication with the second terminal into the network. .
  • the information related to the communication path with the terminal on the network indicates information indicating a relay device, via which path the relay device can be connected to the master device And at least one of the route information indicating which route can be connected to another terminal on the network via the relay device.
  • the control packet modulated by the modulation method with the lowest communication speed among the modulation methods used in the network is a broadcast packet
  • the control packet modulated by the modulation scheme with the highest communication speed used among them is a unicast packet.
  • the control packet modulated by the modulation scheme with the lowest communication speed is transmitted as a broadcast packet.
  • the control packet modulated by the modulation scheme with the highest communication speed used with the first terminal is transmitted as a unicast packet.
  • broadcast packets will be modulated by the modulation method with the lowest communication speed among the modulation methods used in the network, and communication of control packets is also possible in a system that can not increase the communication speed. You can increase the speed.
  • the range reached by the control packet transmitted from the first terminal can be narrowed to the minimum necessary range with the terminal currently in communication.
  • the control packet modulated by the modulation scheme with the highest communication speed used with the first terminal is a broadcast packet
  • the communication terminal apparatus with the first terminal The control packet that is modulated by a modulation scheme that has a slower communication speed than the modulation scheme that has the highest communication speed used in the above, and that is received from the second terminal is a broadcast packet.
  • the broadcast packet is not modulated by the modulation method with the lowest communication speed, but the communication speed of the control packet transmitted from the first terminal and the second terminal
  • the communication speed of the control packet transmitted from the above it is possible to narrow the reach of the control packet transmitted from the first terminal to the minimum necessary range in relation to the communication range of the second terminal.
  • the control packet modulated by the modulation scheme with the highest communication speed used with the first terminal is a unicast packet
  • the control terminal apparatus with the first terminal The control packet received from the second terminal is a broadcast packet, which is modulated by a modulation scheme having a slower communication speed than the modulation scheme having the highest communication speed used among them.
  • the control packet modulated by the modulation scheme with the highest communication speed used with the first terminal is a unicast packet.
  • the control packet received from the second terminal is a broadcast packet.
  • the broadcast packet will be modulated by the modulation method with the lowest communication speed among the modulation methods used in the network, and even in a system that can not increase the communication speed, transmission from the first terminal
  • the communication speed of the control packet can be made faster than the communication speed of the control packet transmitted from the second terminal.
  • the reach of the control packet transmitted from the first terminal can be narrowed to the necessary minimum range in relation to the communication range of the second terminal.
  • a communication unit for transmitting a control packet used for setting a communication path with the terminal to the terminal connected to the power line communication network, and a response corresponding to the control packet from the terminal In the case of not receiving in a period, the control packet is modulated by the modulation method with the lowest communication speed among a plurality of modulation methods used in the network, and a control unit is provided to transmit to the terminal.
  • the control packet when a response corresponding to the control packet is not received from the terminal for a predetermined period, the control packet is modulated with the modulation scheme with the lowest communication speed among the plurality of modulation schemes used in the network.
  • the transmitting terminal of the control packet determines that the receiving terminal can not receive the control packet, and expands the communicable range of the control packet to allow the receiving terminal to receive the control packet. Since it is retransmitted, the control packet can reach the receiving terminal and resume communication with the receiving terminal.
  • the communication unit transmits the control packet to the terminal by unicast, and the control unit does not receive a response corresponding to the control packet from the terminal for a predetermined period,
  • the control packet is modulated by the modulation method with the lowest communication speed among the plurality of modulation methods used in the network, and is transmitted to the terminal.
  • control packet is transmitted to the terminal by unicast, and the control unit transmits the control packet by broadcast when the terminal does not receive a response corresponding to the control packet from the terminal for a predetermined period.
  • the control packet is transmitted by the modulation method with the lowest communication speed among the plurality of modulation methods. As a result, the communicable range of the control packet is expanded, so that the control packet can reach the receiving terminal and resume communication with the receiving terminal.
  • the control unit when the response corresponding to the control packet is not received from the terminal for a predetermined period, the control unit includes the case where the response corresponding to the control packet is not received a predetermined number of times from the terminal. It is according to this aspect, the present invention is also applicable to the case where a response corresponding to a control packet is not received from the terminal a predetermined number of times.
  • communication is performed among a plurality of modulation schemes used in a network when not receiving for a predetermined period from a control packet network used for setting a communication path between a network of power line communication and a terminal connected.
  • the request packet of the control packet is modulated by the modulation method with the lowest speed and transmitted to the network.
  • the modulation scheme with the lowest communication speed is requested among the plurality of modulation schemes used in the network.
  • the communicable range of the request packet can be expanded to the maximum, so that the request packet can reach any terminal on the network and start or resume communication with that terminal.
  • the communication terminal apparatus significantly reduces the ratio of the bandwidth consumed for transmission of control packets among the bandwidths consumed for all communications, and the data originally intended to be transmitted Can ensure the transmission of
  • FIG. 13 is a sequence diagram of a process of state transition from FIG. 5 to FIG. 12 in the first embodiment. It is a figure showing the zone
  • FIG. 18 is a sequence diagram of a process of state transition from FIG. 17 to FIG. 24 in the second embodiment. It is a figure showing the zone
  • FIG. 30 is a sequence diagram of a process of state transition from FIG. 29 to FIG. 32 in the third embodiment. It is a figure showing the zone
  • FIG. 1 is a diagram showing a network configuration in which a communication terminal device and a communication method according to a first embodiment of the present invention are used.
  • This network is a network of PLCs. Since the service area 101 of this network is larger than the cover area of each terminal existing in the network, it constitutes an ad hoc network in which mutual communication is performed via the relay terminals 103 to 107. All the terminals (including the receiving terminals 108 to 110) in the service area 101 receive the route information packet periodically transmitted from the transmitting terminal 102 through the relay terminals 103 to 107, thereby enabling each terminal to communicate with each other. Then, it can be understood which terminal should be selected as the relay terminal to perform communication.
  • the route information packet is a control packet used to set up a communication route between terminals on the network, and is similar to a beacon in the field of wireless communication.
  • the path information packet includes information indicating at what speed communication can be performed between the terminals.
  • FIG. 2 is a diagram showing the detailed configuration of each terminal.
  • each terminal comprises a memory 201 including various control programs and work areas, a CPU 202 for controlling the entire terminal, and a network interface 203 connected to the power line and communicating various data via the power line.
  • Each terminal executes a program stored in the memory 201 by the CPU 202, transmits data via the network interface 203, and decodes the data received via the network interface 203 by the CPU 202.
  • the CPU 202 can be described as a control unit for controlling the entire terminal, and the network interface 203 can be described as a communication unit for handling communication of the entire terminal.
  • FIG. 3 shows a packet format used in an ad hoc network to which the present invention is applied.
  • This packet format is composed of a PHY header 301, a MAC header 302, and a payload 303.
  • the payload 303 also includes the upper layer header.
  • the PHY header 301 has a field 304 in which the modulation scheme of the packet is described. Each terminal determines whether it is a packet that it can receive by reading the PHY header 301.
  • the MAC header 302 has fields representing an address of a transmission source, a destination, a relay source, and a relay destination.
  • the address of the transmitting terminal 102 is set as the transmission source address 305
  • the destination address 306 indicates all terminals ff: ff: ff: ff: ff: ff is set.
  • Each terminal including the receiving terminals 108 to 110 looks at the destination address 306 and the relay destination address 308, and starts reception processing of the payload 303 if the address matches the terminal or is an address including the terminal. .
  • the modulation scheme is one that can be received by itself, reception is possible regardless of the address.
  • the relay destination address 308 is set as ff: ff: ff: ff: ff: ff so that all terminals can receive, but as a modulation method, a modulation method adapted to a specific terminal is used. To be.
  • FIG. 4 is a functional block diagram for explaining each function executed by the CPU 202.
  • the reception processing unit 401 receives all receivable packets whose modulation scheme conforms to the modulation scheme of the own terminal, and transmits packets transmitted to all terminals from the destination address (hereinafter referred to as “flooding packet ) And, if the received packet is not a flood packet, it is passed to the modulation scheme determination unit 402 as a packet to be relayed. Further, the reception processing unit 401 receives various control packets used in the present invention, and outputs necessary data to the utilization efficiency determination unit 403 or the control packet transmission unit 404.
  • the modulation scheme determination unit 402 determines the modulation scheme of the packet to be relayed based on the information obtained from the usage efficiency determination unit 403.
  • the modulation scheme of a route information packet (hereinafter referred to as “beacon”) periodically transmitted to all terminals containing data such as route information is different from that of the beacon in the field of wireless communication.
  • the case of performing modulation other than speed will be described. By performing modulation at a rate other than the lowest rate, it is possible to significantly reduce the bandwidth consumed by the beacon.
  • the utilization efficiency determination unit 403 records to which terminal each relay terminal 103 to 107 is transmitting beacons and which terminal can receive beacons from its own terminal, and the utilization efficiency of the ad hoc network is optimal.
  • the modulation scheme and relay terminal to be determined are determined. For example, when it is preferable to change the modulation scheme of the beacon transmitted from the own terminal, the use efficiency determination unit 403 requests the modulation scheme determination unit 402 to change the optimum modulation scheme.
  • the transmission processing unit 405 is requested to stop the transmission.
  • the control packet transmission unit 404 is requested to change the relay terminal.
  • the control packet transmission unit 404 transmits various control packets in response to a request from the reception processing unit 401 or the utilization efficiency determination unit 403. For example, the control packet transmission unit 404 transmits a beacon request packet or a beacon response packet in response to a request from the reception processing unit 401. Also, for example, in response to a request from the utilization efficiency determination unit 403, the control packet transmission unit 404 transmits a confirmation packet or a registration information update packet. Each of the beacon request packet, the beacon response packet, the determination packet, and the registration information update packet will be described later.
  • the transmission processing unit 405 performs transmission of various control packets passed from the control packet transmission unit 404 and transmission of beacon packets.
  • the transmission processing unit 405 also transmits general data.
  • FIG. 5 shows the case where the relay terminal B 502 relays a beacon using the modulation scheme with the lowest communication speed, and the relay terminal C 503 relays the beacon using the modulation scheme not with the lowest communication speed.
  • It is a network diagram.
  • beacons are relayed to reach a wide area using a modulation scheme with the lowest communication rate, but in the present embodiment, beacons are relayed using a high-speed modulation scheme depending on the situation. This makes it possible to reduce the bandwidth consumed to flood the beacon as the entire ad hoc network.
  • a terminal A 501 is a beacon transmission terminal, and transmits a beacon using a modulation scheme with the lowest communication speed.
  • the terminals B 502 and C 503 existing in the cover area 506 of the terminal A 501 are relaying beacons.
  • the terminal B 502 relays to the terminal D 504, and relays beacons using a modulation scheme with the lowest communication speed because the distance between the terminals B and D is large.
  • the terminal C 503 relays a beacon toward the terminal E 505, and uses a modulation scheme with a high communication speed because the distance between the terminals C and E is short.
  • the terminal E 505 uses the highest speed modulation method in the coverage area 508 of the terminal C 503.
  • beacons modulated by the modulation scheme with the highest communication speed used between the terminals are communicated.
  • the communicable coverage area 508 centering on the terminal C 503 can be reduced to the necessary minimum. Therefore, the overlapping portion of the terminal B 502 with the communicable coverage area 507 can be minimized, and the reach of the beacon from the terminal C 503 can be minimized.
  • the probability of overlapping beacons in the entire network is reduced, and it is possible to prevent the ratio of the band consumed for transmitting beacons from being unnecessarily occupied among the bands consumed for all communications.
  • FIG. 6 is a diagram showing a beacon tree in the state of FIG. In the present embodiment, it is assumed that to which terminal the terminal is transmitting beacons and to which terminal the terminal is relaying beacons are registered. Each terminal switches the transmission / reception destination of the beacon by updating this information (hereinafter referred to as receiving terminal information).
  • the beacon tree is a tree structure representing a transmission / reception path of beacons according to the reception terminal information.
  • the terminal B 502 and the terminal C 503 receive a beacon from the terminal A 501.
  • the terminal D504 receives a beacon from the terminal B502, and the terminal E505 receives a beacon from the terminal C503.
  • FIG. 7 is a network diagram when a new terminal F 701 enters the state of FIG.
  • the terminal F 701 can not enter the network because it is not in any of the cover areas of the terminals A 501, B 502, and C 503. In that case, it is necessary to have one of the terminals relay a beacon.
  • the control packet transmission unit 404 in the terminal F 701 determines that the terminal F 701 has not received a beacon from the network for a predetermined period, the communication speed is the highest among the plurality of modulation schemes used in the network. Send beacon request packet using low modulation scheme.
  • the beacon request packet is transmitted by the modulation method with the lowest communication speed among the plurality of modulation methods used in the network. If so, the communicable range of beacon request packets can be expanded to the maximum extent. As a result, the beacon request packet reaches any terminal on the network, and the terminal F 701 can start communication with that terminal.
  • FIG. 8 is a diagram showing a beacon tree in the state of FIG. Referring to FIG. 8, terminal F 701 has just entered a new network, and thus has not entered the beacon tree and can not receive a beacon.
  • FIG. 9 is a network diagram when the terminal C 503 reduces the modulation rate so that the terminal F 701 can receive.
  • the terminal C 503 receives the beacon request packet transmitted from the terminal F 701.
  • the terminal C 503 transmits a beacon to the terminal E 505 by a modulation scheme whose communication speed is higher than the minimum speed. Therefore, the terminal C 503 changes the modulation scheme for transmitting the beacon to a modulation scheme with a low communication speed so that the terminal F 701 can receive the beacon.
  • the modulation scheme for transmitting the beacon is changed to a modulation scheme with a lower communication speed
  • the cover area 508 of the terminal C 503 is expanded to the cover area 901. Therefore, the terminal C 503 can put the terminal F 701 in the cover area 901.
  • FIG. 10 is a diagram showing a beacon tree in the state of FIG. Referring to FIG. 10, terminal F 701 is stored in the beacon tree, and all terminals can receive beacons.
  • FIG. 11 is a network diagram when terminal D 504 switches the relay source of the beacon from terminal B 502 to terminal C 503.
  • the terminal D 504 is in the coverage areas 507 and 901 of both the terminal B 502 and the terminal C 503 because the terminal C 503 extends the cover area 901 (see FIG. 9). That is, the terminal D504 receives a beacon from both the terminal B 502 and the terminal C 503.
  • the terminal B 502 stops relaying the beacon to the terminal D 504
  • the communication range of the beacon from the terminal C 503 is narrower, so if the terminal C 503 with a narrower beacon communication range is selected, The number of beacon transmission entities can be reduced, and the communication range of beacons in the entire network can be narrowed. As a result, it is possible to effectively reduce the proportion of the bandwidth consumed for transmitting the beacon among the bandwidth consumed for all communications.
  • the control packet transmission unit 404 of the terminal D 504 notifies the terminal B 502 of switching of the transmission source of the beacon. If the terminal B 502 is notified of the switching of the transmission source of the beacon and there is no transmission destination of the beacon other than the terminal D 504, the terminal B 502 stops transmission of the beacon (see FIG. 11).
  • the terminal B 502 which is the beacon transmission source transmits the beacon based on the notification. It can be stopped. As a result, the number of beacon transmission entities can be reduced, and as a result, it is possible to effectively reduce the ratio of the bandwidth consumed for beacon transmission among the bandwidth consumed for all communications.
  • the terminal B 502 when the terminal B 502 is notified of the switching of the beacon transmission source and the transmission destination of the beacon is not present other than the terminal D 504, the communication range of the beacon by the terminal B 502 is stopped by stopping transmission of the beacon. (Ie, the cover area 507) disappears. Therefore, there is no duplication with the communication range (that is, the cover area 901) of the terminal C 503, and it is possible to prevent the ratio of the bandwidth consumed for beacon transmission from being unnecessarily increased among the bandwidths consumed for all communications. . As a result, it is possible to effectively secure a band consumed for data to be originally transmitted.
  • FIG. 12 is a diagram showing a beacon tree in the state of FIG. Referring to FIG. 12, terminal D 504 is connected to terminal C 503, and terminal B 502 is not a relay terminal but a receiving terminal.
  • FIG. 13 is a sequence diagram of a process of state transition from FIG. 5 to FIG.
  • terminal B 502 relays beacon 1301 to terminal D 504.
  • the terminal F 701 which can not receive the beacon broadcasts a beacon request 1304 to surrounding terminals.
  • broadcast means transmitting using the modulation scheme with the lowest communication speed and using ff: ff: ff: ff: ff: ff as the destination address.
  • the timing at which the terminal F 701 sends the beacon request 1304 may be when the beacon can not be received for a predetermined period, or may be at the time of terminal activation.
  • the terminal C 503 that has received the beacon request 1304 transmits a CE (CHANNEL ESTIMATION) request 1305 to the terminal F 701, and receives a CE response 1306 from the terminal F 701 as a response to the CE request 1305. Accordingly, the terminal C 503 estimates the highest speed modulation scheme that can communicate with the terminal F 701. When the modulation scheme of the highest speed is found, the control packet transmission unit 404 in the terminal C 503 returns a beacon response 1307 using the modulation scheme to the terminal F 701 via the transmission processing unit 405.
  • CE CHANNEL ESTIMATION
  • the terminal F 701 having received the beacon response determines the relay terminal of the beacon as the terminal C 503, and the control packet transmission unit 404 in the terminal F 701 has the beacon relayed to the terminal C 503 via the transmission processing unit 405.
  • the confirmation response 1308 is sent.
  • the terminal C 503 since the terminal C 503 has already communicated with the terminal E 505 (see FIG. 7), the terminal C 503 determines the modulation scheme of the highest speed that can be commonly used between the terminal E 505 and the terminal F 701.
  • the terminal C 503 that has received the confirmation response registers the terminal F 701 as a beacon receiving terminal in addition to the terminal E 505, and transmits the beacon 1302 in an optimal modulation scheme that can be received by both parties.
  • the terminal F 701 transmits the beacon request packet using the modulation scheme with the lowest communication speed among the plurality of modulation schemes used in the network. Thereby, even when the terminal F 701 exists outside the coverage area capable of communicating with other terminals on the network, the beacon request packet is transmitted by the modulation method with the lowest communication speed among the plurality of modulation methods used in the network. If so, the communicable range of beacon request packets can be expanded to the maximum extent. As a result, the beacon request packet reaches any terminal on the network, and the terminal F 701 can start communication with that terminal.
  • the terminal D 504 can receive both the beacon 1302 from the terminal B 502 and the beacon 1302 from the terminal C 503.
  • the terminal D 504 switches the relay source to a terminal capable of higher speed communication. Unlike beacons in the field of wireless communication, it is assumed that information on which high-speed communication is possible is stored as route information in the beacons.
  • the relay source may stop relaying beacons.
  • beacon relaying from the terminal B 502 that is the relay source is stopped, and beacon relay from the terminal C 503 that is the new relay source is started.
  • the terminal B 502 can stop beacon relay because there is no other terminal that relays a beacon.
  • the terminal D 504 transmits the beacon modulated by the modulation scheme faster than the communication speed used with the terminal B 502 during the period when the beacon is received from the terminal B 502.
  • the transmission source of a beacon is switched from terminal B502 to terminal C503.
  • the beacon communication range from the terminal C 503 is narrower, so selecting a terminal C 503 with a narrower beacon communication range will transmit a beacon.
  • the number of entities can be reduced and the communication range of beacons occupied in the entire network can be narrowed. As a result, it is possible to effectively reduce the proportion of the bandwidth consumed for transmitting the beacon among the bandwidth consumed for all communications.
  • the control packet transmission unit 404 in the terminal D 504 transmits the registration information update packet 1309 to the terminal B 502 via the transmission processing unit 405 to request a relay stop, and transmits the registration information update packet 1310 to the terminal C 503 to relay Request a start.
  • the beacon 1303 is transmitted from the terminal C 503 to both the terminal D 504 and the terminal F 701. Since the beacon from the terminal C 503 is transmitted by broadcast, it has reached the terminal D 504.
  • the reason why the terminal D 504 transmits the registration information update packet 1310 to the terminal C 503 to request the relay start is to notify the terminal C 503 that the terminal D 504 is a terminal that has received the beacon from the terminal C 503.
  • the control packet transmission unit 404 of the terminal D 504 transmits the registration information update packet 1309 to the terminal B 502 for switching the transmission source of the beacon.
  • the terminal B 502 stops transmission of the beacon because there is no transmission destination of the beacon other than the terminal D 504.
  • the number of beacon transmission entities can be reduced, and as a result, it is possible to effectively reduce the ratio of the bandwidth consumed for beacon transmission among the bandwidth consumed for all communications.
  • the coverage area 507 of the beacon by the terminal B 502 disappears.
  • duplication with the cover area 901 of the terminal C 503 is eliminated (see FIG. 11), and the ratio of the bandwidth consumed for beacon transmission among the bandwidth consumed for all communications is prevented from being unnecessarily increased it can.
  • FIG. 14 is a diagram in which bands consumed by beacons in all networks in various states are represented by time in the first embodiment.
  • the modulation scheme with the lowest communication speed is used for all transmissions, it takes a very long time, and the time in which the original data communication can be performed is compressed (FIG. 14 (a)).
  • a certain amount of consumption band reduction effect can be obtained (FIG. 14 (b)).
  • FIG. 11 Furthermore, by combining the operation of selecting the relay terminal (see FIG. 11), it is possible to realize further reduction of the consumption band (FIG. 14 (c)).
  • FIG. 15 is a flowchart for explaining beacon reception processing in each terminal.
  • step S1501 when there is no beacon reception for a certain period of time or when the terminal is activated (step S1501), beacon request packets are transmitted to the surrounding terminals via the network in the modulation scheme with the lowest communication speed. It transmits (step S1502).
  • step S1503 When each terminal receives a beacon response packet from any of the terminals, each terminal transmits a confirmation response packet to that terminal (step S1503). If the beacon response packet can not be received, the beacon request packet is retransmitted.
  • a terminal capable of communication by the highest speed modulation method is selected from among the terminals (step S1505), and a confirmation response packet is transmitted to the terminal (Step S1506).
  • beacon request packet is transmitted by using the modulation method with the lowest communication speed among a plurality of modulation methods used in the network Communicate request range of beacon request can be expanded to the maximum extent. As a result, the beacon request packet reaches any of the terminals on the network, and each terminal can resume or start communication with that terminal.
  • each terminal checks whether the modulation scheme conforms to the own terminal and can receive the payload (step S1512). If the payload can not be received, the process returns to the process of step S1501. If the payload can be received, if the beacon transmission source matches the current relay terminal, the processing returns to normal beacon reception processing. If the beacon transmission source does not match the current relay terminal (step S1513), it is determined which of the current relay terminal and the beacon transmission source terminal consumes less overall bandwidth (step S1514) .
  • the communication speed used by the beacon transmission source terminal is the current relay speed by comparing the communication speed used by the beacon transmission source terminal with the communication speed used by the current relay terminal.
  • the communication range of the beacon by the terminal that has transmitted the beacon is narrower.
  • the terminal of the beacon transmission source is selected instead of the current relay terminal, the number of beacon transmission entities can be reduced and the communication range of the beacon occupied in the entire network can be narrowed.
  • it can be determined that the total consumed bandwidth is smaller when relaying to the terminal of the beacon transmission source than the current relay terminal, so the registration information update packet is transmitted to the current relay terminal,
  • the relay stop request is requested (step S1515).
  • a registration information update packet is transmitted to request the terminal of the beacon transmission source to become a new relay terminal, and the relay start is requested (step S1516).
  • the relay start is requested (step S1516).
  • FIG. 16 is a flowchart illustrating beacon transmission processing in each terminal.
  • each terminal selects an optimum modulation scheme for the transmission source of the beacon request packet (step S1602). If the optimum modulation scheme is known from the route information or the past communication history, the beacon response packet is transmitted using the modulation scheme (step S1603). If the optimum modulation scheme is not known, the CE request and the CE response are used to find out the optimum modulation scheme.
  • each terminal receives a confirmation response packet from the terminal that has transmitted the beacon response packet (step S1604), each terminal updates receiving terminal information (step S1605). Among the modulation schemes that all terminals can receive from the reception terminal information, the highest modulation scheme is selected as the optimum modulation scheme. Thereafter, beacon relay processing is started (step S1607).
  • step S1611 If one of the registration information update packets instructing to start relaying is received (step S1611), the receiving terminal information is updated (step S1612), and of the modulation schemes that can be received by all the terminals from the receiving terminal information, The fastest modulation scheme is selected as the optimal modulation scheme (step S1613). Thereafter, beacon relay processing is started (step S1607).
  • a beacon is transmitted in addition to the terminal that has transmitted the instruction to stop relaying.
  • the number of terminals to be selected is determined (step S1623). If the number of terminals has become zero, relay processing of beacons is stopped (step S1625). As a result, the communication range of the beacon by this terminal disappears. Therefore, the number of beacon transmission entities can be reduced to eliminate duplication with the communication range of another terminal. As a result, it is possible to prevent an increase in the proportion of the bandwidth consumed for transmitting the beacon among the bandwidths consumed for all communications, and effectively secure the bandwidth consumed for the data to be originally transmitted. . On the other hand, when other receiving terminals remain, the optimum modulation scheme is selected from the registered receiving terminal information, and beacon relay processing is continued (step S1624).
  • Second Embodiment In the first embodiment, the operation at the time of the new entry of the terminal into the network has been described.
  • home appliances such as a vacuum cleaner are changed to PLC
  • the state of the network may change due to the generation of noise sources.
  • an operation when a noise source is generated due to connection of a home appliance or the like will be described.
  • FIG. 17 is a network diagram before a noise source is generated.
  • terminal A 1701 is a beacon transmission terminal, and transmits a beacon using a modulation scheme with the lowest communication speed.
  • the terminal B 1702 and the terminal C 1703 present in the communicable coverage area 1707 of the terminal A 1701 are relaying beacons.
  • the terminal B 1702 relays the beacon toward the terminal D 1704 and the terminal F 1706, and relays the beacon using the modulation scheme of the highest speed among modulation schemes that both the terminal D 1704 and the terminal F 1706 can receive.
  • the terminal C 1703 relays to the terminal E 1705, and performs beacon relay using the modulation scheme of the highest speed among modulation schemes that can be received by the terminal E 1705.
  • FIG. 18 is a diagram showing a beacon tree in the state of FIG. Referring to FIG. 18, terminal B 1702 and terminal C 1703 receive a beacon from terminal A 1701. Terminal D 1704 and terminal F 1706 receive the beacon from terminal B 1702. Also, the terminal E 1705 receives a beacon from the terminal C 1703.
  • FIG. 19 is a network diagram when the noise source 1901 has entered the state of FIG.
  • the case where the noise source 1901 enters means, for example, a case where a home appliance such as a vacuum cleaner is connected to a PLC network or a case where a home appliance such as a microwave connected to the PLC network is turned ON / OFF.
  • the packet loss rate in the surrounding area is dramatically increased.
  • the loss area 1902 is wide for terminals using a modulation scheme with high communication speed, and narrow for terminals using a modulation scheme with low communication speed. Therefore, the loss area 1902 is wider than the terminal B 1702 using a modulation scheme with a high communication speed, and the terminal F 1706 is included in the loss area 1902. That is, although the terminal F 1706 is included in the cover area 1708 of the terminal B 1702, a state occurs in which it can not receive a beacon.
  • the terminal F 1706 since the terminal F 1706 does not receive a beacon from the network for a predetermined period, a plurality of modulation schemes used between the terminal B 1702 and the terminal B 1702 have transmitted beacons until now.
  • the beacon request packet is transmitted using the modulation scheme with the lowest communication speed. Thereby, even if the terminal F 1706 is in the coverage area 1708 of the terminal B 1702, when the beacon can not be received from the terminal B 1702, the communication speed among the plurality of modulation schemes used with the terminal B 1702 is By transmitting the beacon request packet with the lowest modulation scheme, the communicable range of the beacon request packet can be maximized. As a result, the beacon request packet reaches terminal B 1702, and terminal F 1706 can resume communication with terminal B 1702.
  • FIG. 20 is a diagram showing a beacon tree in the state of FIG. Referring to FIG. 20, terminal F 1706 is supposed to receive a beacon from terminal B 1702 when viewed from the cover area 1708 of terminal B 1702, but there is a situation that it can not actually receive.
  • FIG. 21 is a network diagram when terminal B 1702 switches to a low-speed modulation scheme and starts beacon transmission due to the entry of noise source 1901.
  • the terminal B 1702 receives the beacon request packet transmitted from the terminal F 1706. Accordingly, terminal B 1702 changes the modulation scheme for transmitting the beacon to a modulation scheme with a low communication speed so that terminal F 1706 can receive the beacon.
  • the cover area 1708 of the terminal B 1702 is expanded to the cover area 2101.
  • the terminal B 1702 can put the terminal F 1706 into the cover area 2101, and the terminal F 1706 can receive the beacon from the terminal B 1702.
  • the beacon tree returns to the state of FIG. 20 to FIG.
  • FIG. 22 is a network diagram when the terminal E 1705 switches the relay source of the beacon from the terminal C 1703 to the terminal B 1702 because the terminal B 1702 switches to a low speed modulation scheme and starts transmission.
  • the terminal E 1705 belongs to the cover areas 2101 and 1709 of both the terminal B 1702 and the terminal C 1703 because the terminal B 1702 extends the cover area 2101. Therefore, the terminal E 1705 receives a beacon from both of the terminal B 1702 and the terminal C 1703.
  • the terminal E 1705 transmits a beacon modulated by a modulation scheme slower than the communication speed used with the terminal C 1703 from the terminal B 1702 during the period for receiving a beacon from the terminal C 1703. When it is received, the transmission source of the beacon is switched from terminal C 1703 to terminal B 1702.
  • the cover area 2101 of the terminal B 1702 is wider than the cover area 1709 of the terminal C 1703. Therefore, since there are many terminals that can receive beacons from the terminal B 1702, if the terminal B 1702 that is a transmission source of beacons that are received by more terminals is selected, the number of beacon transmission entities can be reduced. As a result, it is possible to effectively reduce the proportion of the bandwidth consumed for transmission of control packets in the bandwidth consumed for all communications.
  • the control packet transmission unit 404 in the terminal E 1705 notifies the terminal C 1703 of switching of the beacon transmission source. If the terminal C 1703 is notified of the switching of the beacon transmission source and there is no beacon transmission destination other than the terminal E 1705, the terminal C 1703 stops beacon transmission.
  • terminal C 1703 which is the beacon transmission source, transmits beacons based on the notification. It can be stopped. As a result, the number of beacon transmission entities can be reduced, and as a result, it is possible to effectively reduce the ratio of the bandwidth consumed for beacon transmission among the bandwidth consumed for all communications.
  • the coverage area 1709 of the beacon by the terminal C 1703 disappears.
  • duplication with the cover area 2101 of the terminal B 1702 is eliminated, and it is possible to prevent the ratio of the band consumed for beacon transmission from being unnecessarily increased among the bands consumed for all communications.
  • FIG. 23 is a diagram showing a beacon tree in the state of FIG.
  • terminal C 1703 is a terminal that performs only reception, and terminal B 1702 transmits a beacon to terminal D 1704, terminal E 1705, and terminal F 1706.
  • FIG. 24 is a network diagram when the noise source 1901 is detached from the state of FIG. Referring to FIG. 24, even when noise source 1901 leaves, terminal E 1705 and terminal F 1706 continue to receive beacons from terminal B 1702.
  • the terminal E 1705 switches the beacon transmission source from the terminal B 1702 to the terminal C 1703
  • the terminal E 1705 can switch the modulation scheme to a high speed one.
  • the beacon may include the route information between the terminal E1705 and the terminal C1703 and the route information between the terminal E1705 and the terminal B1702, and the terminal E1705 may make a determination based on the route information.
  • FIG. 25 is a sequence diagram of a process of state transition from FIG. 17 to FIG.
  • terminal E 1705 receives beacon 2501 from terminal C 1703
  • terminal F 1706 receives beacon 2501 from terminal B 1702.
  • Terminal F 1702 can not receive beacon 2502 transmitted from terminal B 1702 because the noise source has entered.
  • the terminal F 1706 does not receive the beacon for a predetermined period, and therefore transmits the beacon request 2511 using the modulation scheme with the lowest communication speed among the plurality of modulation schemes used with the terminal B 1702.
  • the communication speed among the plurality of modulation schemes used with the terminal B 1702 is By transmitting a beacon request packet with the lowest modulation scheme, the communicable range of the beacon request 2511 can be expanded to the maximum extent. As a result, beacon request 2511 reaches terminal B 1702, and terminal F 1706 can resume communication with terminal B 1702.
  • the terminal B 1702 that has received the beacon request 2511 transmits a CE request 2512 to the terminal F 1706, and receives a CE response 2513 from the terminal F 1706 as a response to select an optimal modulation scheme in the case where there is a noise source. .
  • Terminal B 1702 returns beacon response 2514 in the optimal modulation scheme.
  • the terminal F 1706 sends back a confirmation response 2515.
  • terminal B 1702 determines the maximum speed that can be commonly used between terminal D 1704 and terminal F 1706.
  • Terminal B 1702 having received the confirmation response re-registers terminal F 1706 as a beacon receiving terminal, and transmits beacon 1302 in an optimal modulation scheme that can be received by both parties, including terminal D 1704.
  • the operation following the beacon response may be omitted, and the modulation scheme of the beacon itself may be changed. In that case, if the beacon is lost, the beacon request will be transmitted again.
  • the beacon from the terminal B 1702 whose modulation scheme has been changed comes to the terminal F 1706 without loss.
  • the terminal E 1705 receives the beacon 2503 from both the terminal B 1702 and the terminal C 1703.
  • the beacon modulated by the modulation scheme slower than the communication speed used with the terminal C 1703 is received from the terminal B 1702 , And switch the beacon transmission source from terminal C 1703 to terminal B 1702.
  • the cover area 2101 of the terminal B 1702 is wider than the cover area 1709 of the terminal C 1703. Therefore, since there are many terminals that can receive beacons from the terminal B 1702, if the terminal B 1702 that is a transmission source of beacons that are received by more terminals is selected, the number of beacon transmission entities can be reduced. As a result, it is possible to effectively reduce the proportion of the bandwidth consumed for transmission of control packets in the bandwidth consumed for all communications.
  • the terminal E 1705 transmits a registration information update packet 2516 to the terminal C 1703 in order to select the terminal B 1702, and requests stop of beacon relay.
  • the terminal C 1703 receives the update packet 2516 and there is no transmission destination of a beacon other than the terminal E 1705, the transmission of the beacon is stopped.
  • the number of beacon transmission entities can be reduced, and as a result, it is possible to effectively reduce the ratio of the bandwidth consumed for beacon transmission among the bandwidth consumed for all communications.
  • the terminal C 1703 stops transmitting a beacon the coverage area 1709 of the beacon by the terminal B 502 disappears.
  • the terminal E 1705 transmits an update packet 2517 of registration information to the terminal B 1702 and requests start of beacon relay. As a result, the terminal E 1705 receives the beacon 2504 only from the terminal B 1702. In addition, since the beacon from terminal B 1702 is transmitted by broadcast, it has reached terminal E 1705. The terminal E 1705 transmits the registration information update packet 2517 to the terminal B 1702 to request the relay start, in order to notify the terminal B 1702 that the terminal E 1705 is a terminal receiving the beacon from the terminal B 1702.
  • FIG. 26 is a diagram representing in time the bandwidth consumed by beacon packets in the entire network in various states in the second embodiment.
  • FIG. 26 (a) When noise is generated, it is necessary to use slow modulation, and band consumption is temporarily increased (FIG. 26 (b)).
  • FIG. 26 (c) When low-speed modulation is used, the number of terminals that can be received increases, but as in the second embodiment, the same effect as when high-speed modulation is used by selecting a relay destination terminal (C) of FIG.
  • FIG. 27A is a flowchart illustrating beacon reception processing of each terminal in the second embodiment.
  • the beacon transmission process in each terminal in the 2nd embodiment is the same as the process of 1st Embodiment demonstrated in FIG. 16, it is abbreviate
  • each terminal that has detected that a packet loss has occurred due to noise transmits a beacon request packet by the modulation method with the lowest speed (steps S2701 and S2702).
  • each terminal determines that packet loss due to noise has occurred because beacons are not received for a predetermined period. If the relay terminal is performing beacon relay with a modulation scheme that is not the minimum speed, the beacon request packet may be unicast transmitted to the address of the relay terminal.
  • the beacon response packet can be received from the relay terminal (step S2703), it is determined that the reception becomes possible, and a confirmation response packet is sent to the relay terminal (step S2704). You can get it relayed. Even when the beacon response packet can not be received, when the next beacon can be received from the relay terminal, relay of the beacon from the relay terminal is continued. If the next beacon can not be received from the relay terminal, the beacon request packet is retransmitted.
  • each terminal checks whether the modulation scheme conforms to the own terminal and can receive a payload (step S2712). If the payload can not be received, the process returns to step S2701. If the payload can be received, if the beacon transmission source matches the current relay terminal, the processing returns to normal beacon reception processing. If the beacon transmission source does not match the current relay terminal (step S2713), it is determined which of the current relay terminal and the beacon transmission source terminal consumes less overall bandwidth (step S2714) .
  • the communication speed used by the beacon transmission source terminal is the communication speed used by the current relay terminal
  • the communication speed used by the beacon transmission source terminal is the communication speed used by the current relay terminal
  • the communication range of the beacon by the terminal that has transmitted the beacon is narrower.
  • the beacon transmission source terminal is selected instead of the current relay terminal, the number of beacon transmission entities can be reduced and the communication range of the beacon occupied in the entire network can be narrowed.
  • it can be determined that the total consumed bandwidth is smaller when relaying to the terminal of the beacon transmission source than the current relay terminal, so the registration information update packet is transmitted to the current relay terminal,
  • the relay stop request is requested (step S2715).
  • a registration information update packet is transmitted to request the terminal of the beacon transmission source to become a new relay terminal, and the relay start is requested (step S2716).
  • the relay start is requested (step S2716).
  • FIG. 27B is a flowchart describing beacon reception processing of each terminal in the second embodiment.
  • the beacon transmission process in each terminal in the 2nd embodiment is the same as the process of 1st Embodiment demonstrated in FIG. 16, it is abbreviate
  • each terminal determines whether packet loss due to noise has occurred (step S2701). If it is determined that a packet loss is occurring due to noise, each terminal determines whether a beacon has been received from another terminal (step S2711). Each terminal that has detected that it has not received a beacon from another terminal transmits a beacon request packet by the modulation scheme of the lowest speed (step S2702). The subsequent operation is the same as that described with reference to FIG.
  • the relay destination address is ff: ff: ff: ff: ff: ff: ff: ff and the modulation method is used in accordance with a specific terminal.
  • This system is divided into several stages from low speed to high speed as a modulation system, and a modulation system slower than its own receivable modulation is effective when all can be received.
  • an adaptive modulation scheme a scheme in which the modulation scheme is changed for each subcarrier in OFDM
  • Since the modulation scheme is specialized between two specific terminals, very high-speed communication is required. It becomes possible. Therefore, it may be possible to consume less bandwidth by specializing between specific two terminals, rather than communicating in a modulation scheme that can be received by multiple terminals.
  • a relay destination address is ff: ff: ff: ff: ff: ff: ff, and a transmission method using a modulation method with the lowest communication speed as a modulation method (hereinafter referred to as “broadcast” And the transmission method using the modulation method with the highest communication speed between the relay source and the relay destination as the modulation method (hereinafter referred to as “unicast”).
  • the operation for reducing bandwidth consumption will be described.
  • an acknowledgment hereinafter referred to as “ACK” is notified from the receiving terminal to notify that the data has been normally received from the receiving terminal to the transmitting terminal, and no ACK is returned even if retransmission is repeated. In this case, it can be seen that packet loss has occurred.
  • FIG. 28 is a functional block diagram for explaining each function in the third embodiment. Basically, it is the same as FIG. 4 of the first embodiment. The difference from the first embodiment is that although the modulation scheme determination unit 402 is provided in FIG. 4, a relay destination address determination unit 2802 is provided in FIG. 28 instead.
  • the relay destination address determination unit 2802 determines the relay destination address based on the data output from the usage efficiency determination unit 403. The modulation scheme is automatically determined when the relay destination address is determined.
  • the relay destination address determination unit 2802 may be used in combination with the modulation scheme determination unit 402 of the first embodiment.
  • FIG. 29 is a network diagram before a noise source is generated.
  • terminal A 1701 is a beacon transmission terminal, and transmits a beacon using broadcast.
  • the terminal B 1702 and the terminal C 1703 present in the communicable coverage area 2901 of the terminal A 1701 relay beacons using unicast.
  • the terminal B 1702 relays the beacon toward the terminal D 1704 and the terminal F 1706.
  • the terminal B 1702 relays a beacon to the terminal D 1704 using the modulation scheme of the highest speed among modulation schemes that can be received by the terminal D 1704.
  • the terminal F1706 The terminal C 1703 relays the beacon toward the terminal E 1705, and relays the beacon using the modulation scheme of the highest speed among modulation schemes that can be received by the terminal E 1705.
  • FIG. 30 is a network diagram in the case where the noise source 1901 has entered the state of FIG. 29 as in FIG. 19 in the second embodiment.
  • terminal B 1702 transmits a beacon in unicast to terminal F 1706 and ACK is not returned from terminal F 1706, retransmission of the beacon to terminal F 1706 by terminal B 1702 is performed. .
  • the terminal B 1702 redetermines the optimum modulation rate by the CE request and the CE response. Do. If the sum of the bandwidth consumption of unicast for transmission to terminal D 1704 and terminal F 1706 is greater than the bandwidth consumption of broadcast, terminal B 1702 changes the beacon transmission method to terminal D 1704 and terminal F 1706 to broadcast.
  • the optimum modulation rate is redetermined by the CE request and the CE response.
  • the present invention is not limited to this, and the re-decision may be made when an ACK for the transmission of a beacon by unicast does not return for a predetermined period.
  • similar processing can be performed when a new terminal enters. That is, the same applies to the case where the band consumption is less when terminal B 1702 transmits by broadcast rather than transmitting beacons to terminal D 1704, terminal F 1706, and three terminals including a new terminal by unicast.
  • FIG. 31 is a network diagram when terminal B 1702 changes the beacon transmission method to broadcast.
  • the coverage area 2902 of terminal B 1702 is made wider to cover area 3101 because the modulation method uses the modulation method with the lowest communication speed. Become.
  • terminal B 1702 transmits a beacon to terminal F 1706 by unicast and does not receive an ACK corresponding to the beacon from terminal F 1706 a predetermined number of times or for a predetermined period
  • communication is performed among a plurality of modulation schemes used in the network.
  • the beacon is transmitted to the terminal F 1706 by broadcast in the modulation scheme with the lowest speed.
  • the receiving terminal F 1706 can not receive the beacon by the transmitting terminal B 1702 of the beacon, and the beacon is transmitted in such a manner that the receiving terminal F 1706 can receive the beacon by expanding the communicable range of the beacon. cure. Therefore, the beacon reaches the receiving terminal F1706, and the terminal B1702 can resume communication with the receiving terminal F1706.
  • FIG. 32 is a network diagram when the terminal E 1705 switches the relay source of the beacon from the terminal C 1703 to the terminal B 1702 because the terminal B 1702 switches to broadcast and starts transmission.
  • the terminal E 1705 As the cover area 2902 of the terminal B 1702 is expanded to the cover area 3101, the terminal E 1705 is included in both the cover area 3101 of the terminal B 1702 and the cover area 2903 of the terminal C 1703. Therefore, the terminal E 1705 receives a beacon from the terminal B 1702 by broadcast and receives a beacon from the terminal C 1703 by unicast.
  • the terminal C 1703 stops the relay of the beacon by unicast to the terminal E 1705, it is possible to suppress the band consumption as a whole.
  • the terminal E 1705 is a beacon modulated by a modulation scheme slower than the communication rate used with the terminal C 1703. Is received from the terminal B 1702, the beacon transmission source is switched from the terminal C 1703 to the terminal B 1702.
  • the cover area 3101 of the terminal B 1702 is wider than the cover area 2903 of the terminal C 1703. Therefore, since there are many terminals that can receive beacons from the terminal B 1702, if the terminal B 1702 that is a transmission source of beacons that are received by more terminals is selected, the number of beacon transmission entities can be reduced. As a result, it is possible to effectively reduce the proportion of the bandwidth consumed for transmission of control packets in the bandwidth consumed for all communications.
  • the control packet transmission unit 404 in the terminal E 1705 notifies the terminal C 1703 of switching of the beacon transmission source. If the terminal C 1703 is notified of the switching of the beacon transmission source and there is no beacon transmission destination other than the terminal E 1705, the terminal C 1703 stops beacon transmission.
  • terminal C 1703 which is the beacon transmission source, transmits beacons based on the notification. It can be stopped. As a result, the number of beacon transmission entities can be reduced, and as a result, it is possible to effectively reduce the ratio of the bandwidth consumed for beacon transmission among the bandwidth consumed for all communications.
  • the coverage area 2903 of the beacon by the terminal C 1703 disappears.
  • duplication with the cover area 3101 of the terminal B 1702 is eliminated, and it is possible to prevent the ratio of the band consumed for beacon transmission from being unnecessarily increased among the bands consumed for all communications.
  • FIG. 33 is a sequence diagram of a process of state transition from FIG. 29 to FIG.
  • beacon 3301 is transmitted by unicast from terminal B 1702 to terminal D 1704 and terminal F 1706, and is transmitted by unicast from terminal C 1703 to terminal E 1705.
  • ACKs 3312, 3314, and 3352 are returned, respectively, and transmission has been completed normally.
  • beacon 3302 is also transmitted by unicast from terminal B 1702 to terminal D 1704 and terminal F 1706, and is also transmitted by unicast from terminal C 1703 to terminal E 1705.
  • ACK3316 and ACK3354 are sent back for the packet 3315 and the packet 3353, and the transmission is completed normally. However, no ACK is sent back for the packet 3317. Therefore, the packet 3318 and the packet 3319 are retransmitted. If the terminal B 1702 still can not receive the ACK packet, it determines that the packet can not be transmitted by the modulation scheme.
  • a noise source 1901 is generated.
  • Terminal B 1702 that has detected a change in the state of the network exchanges CE request 3320 and CE response 3321 with terminal F 1706, and investigates the fastest modulation scheme that can be transmitted in that state.
  • the terminal B 1702 uses the result to determine whether it is better to transmit a beacon using a plurality of unicasts or to transmit a beacon using a broadcast.
  • the terminal B 1702 that has determined that it is better to transmit the beacon using broadcast transmits the beacon 3303 by broadcast.
  • the beacon 3302 is transmitted from the terminal C 1703 to the terminal E 1705 by packet 3353 using unicast.
  • an ACK packet 3354 is returned from the terminal E 1705 to the terminal C 1703.
  • the packet 3322 in which the terminal B 1702 broadcasts the beacon 3303 is received not only by the terminal D 1704 and the terminal F 1706 but also by the terminal E 1705.
  • the terminal E 1705 also receives a packet 3355 obtained by unicasting the beacon 3303 from the terminal C 1703.
  • the terminal E 1705 switches to reception from the terminal B 1702 by the same method as in the second embodiment. That is, while the terminal E 1705 receives the packet 3355 of the beacon 3303 in unicast from the terminal C 1703 and sends the ACK packet 3356 back to the terminal C 1703, the terminal E 1705 has a lower communication speed than the communication speed used with the terminal C 1703. For example, when the packet 3322 of the beacon 3303 modulated by the modulation scheme is received from the terminal B 1702 by broadcast, the beacon transmission source is switched from the terminal C 1703 to the terminal B 1702.
  • the cover area 3101 of the terminal B 1702 is wider than the cover area 2903 of the terminal C 1703. Therefore, since there are many terminals that can receive packet 3322 of beacon 3303 from terminal B 1702, if terminal B 1702 that is the transmission source of packet 3322 of beacon 3303 received by more terminals is selected, the number of beacon transmission entities is It can be reduced. As a result, it is possible to effectively reduce the proportion of the bandwidth consumed for transmission of control packets in the bandwidth consumed for all communications.
  • the terminal E 1705 transmits the registration information update packet 3358 to the terminal C 1703, and requests start of beacon relay.
  • the terminal E 1705 receives the packet 3323 of the beacon 3304 and the packet 3324 of the beacon 3305 only from the terminal B 1702.
  • the beacon from terminal B 1702 since the beacon from terminal B 1702 is transmitted by broadcast, it has reached terminal E 1705.
  • the terminal E 1705 transmits the registration information update packet 3358 to the terminal B 1702 to request the relay start, in order to notify the terminal B 1702 that the terminal E 1705 is a terminal receiving the beacon from the terminal B 1702.
  • the control packet transmission unit 404 in the terminal E 1705 notifies the terminal C 1703 of switching of the beacon transmission source by the registration information update packet 3357.
  • the terminal C 1703 stops transmitting the beacon 3303.
  • the packet 3323 of the beacon 3304 and the packet 3324 of the beacon 3305 transmitted by broadcast from the terminal B 1702 reach the terminal D 1704, the terminal E 1705, and the terminal F 1705.
  • terminal C 1703 which is the beacon transmission source, transmits beacons based on the notification. It can be stopped. As a result, the number of beacon transmission entities can be reduced, and as a result, it is possible to effectively reduce the ratio of the bandwidth consumed for beacon transmission among the bandwidth consumed for all communications.
  • the coverage area 2903 of the beacon by the terminal C 1703 disappears.
  • duplication with the cover area 3101 of the terminal B 1702 is eliminated, and it is possible to prevent the ratio of the band consumed for beacon transmission from being unnecessarily increased among the bands consumed for all communications.
  • FIG. 34 is a diagram representing in time the bands consumed by beacon packets in all networks in various states in the third embodiment.
  • it is possible to suppress the consumed band by unicasting using the fastest modulation among the terminals (FIG. 34 (a)).
  • FIG. 34 (b) Although it is possible to perform unicasting using low-speed modulation when noise is generated (FIG. 34 (b)), in the third embodiment, the number of receivable terminals is increased using broadcasting. Efficiency is better (Fig. 34 (c)).
  • FIG. 35 is a flowchart for explaining beacon transmission processing of each terminal in the third embodiment.
  • the beacon reception process in each terminal in the 3rd embodiment is the same as the process of 2nd Embodiment demonstrated in FIG. 27, it is abbreviate
  • the terminal E 1705 is included in both the cover area 3101 of the terminal B 1702 and the cover area 2903 of the terminal C 1703 as the cover area of the terminal B 1702 is expanded, the processing of the terminal E 1705 is shown in FIG. The process is the same as the process shown in steps S2711 to S2716 in 27A and 27B.
  • the relay terminal transmits a beacon in unicast with the receiving terminal.
  • the relay terminal that can not receive the ACK for the beacon a predetermined number of times or for a predetermined period determines that the beacon can not be relayed by the current modulation scheme (step S3501).
  • the relay terminal investigates the optimum modulation scheme for the beacon transmission destination using the CE request and the CE response (step S3502).
  • the relay terminal determines, based on the survey result, whether the total bandwidth consumption is the smallest is unicast or broadcast (step S3503). Beacon relaying is started based on the determined result (step S3504).
  • the relay terminal transmits a beacon to the reception terminal by unicast and does not receive an ACK corresponding to the beacon from the reception terminal for a predetermined number of times or for a predetermined period
  • communication is performed among a plurality of modulation schemes used in the network.
  • the beacon is transmitted to the receiving terminal in the modulation scheme with the lowest speed. Accordingly, it is determined that the receiving terminal can not receive the beacon by the relay terminal of the beacon, and the beacon can be transmitted again in a mode in which the receiving terminal can receive the beacon by expanding the communicable range of the beacon. As a result, the beacon reaches the receiving terminal, and the relay terminal can resume communication with the receiving terminal.
  • the ratio of the band consumed for transmission of control packets among the bands consumed for all communications is significantly reduced, etc. It is possible to provide a communication terminal device and a communication method that can ensure transmission.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Small-Scale Networks (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)

Abstract

 電力線を用いたネットワークにおいて、全通信に消費される帯域の中で制御パケットの送信に消費される帯域が占める割合を削減して、送信すべきデータの送信を確保する通信端末装置を提供する。電力線通信のネットワークと接続されたPLC端末F701は、ネットワークからビーコンを所定期間受信しないと判断した場合、ネットワークで用いられる複数の変調方式の中で通信速度が一番低い変調方式を用いて、ビーコン要求パケットをネットワークに送信する。

Description

通信端末装置及び通信方法
 本発明は、通信路として電力線を用いる通信端末装置及び通信方法に関する。
 無線通信の分野では、基地局から発射されるビーコンを受信することにより、移動端末は基地局と通信できる範囲に入ったことを検知する。無線通信の分野でのビーコンは、基地局が用いる複数の変調方式の中で一番低速の変調方式で変調される。これは、一番低速の変調方式で変調することにより、基地局と通信できる範囲が最大限に拡大するからである。無線通信の場合、移動端末は移動することが前提であるため、移動により基地局と通信できる範囲から外れる確率が高い。基地局を用いた通信では、ビーコンを受信した全ての移動端末は必ず基地局を中継して通信を行うため、基地局と通信できる範囲から外れると通信不能となる。そのため、基地局は一番低速の変調方式でビーコンを変調し、基地局と通信できる範囲を最大限に拡大し、移動端末が移動により基地局と通信できる範囲から外れる確率を減らしている。
 また、無線ネットワークにおいて、端末が中継を行うことにより、基地局を用いずに中継端末の特定範囲に存在する他の端末と中継端末との間でデータの通信を可能とするアドホックな無線ネットワークも存在する。このアドホックな無線ネットワークにおいては、端末同士が中継を行うことにより、基地局1つの場合に比べて広範囲な通信が可能となる。ただし、アドホックな無線ネットワークにおいては基地局を用いる通信と異なり、中継を行う端末が特定されない。そのため、ある2端末間でデータ通信をしようとした場合には、中継端末の特定範囲に存在する全ての他の端末に中継するのに適した端末を中継端末として特定する必要がある。
 中継端末を特定するための制御情報の交換方式は、制御情報を周期的に交換するプロアクティブ方式(例えば、非特許文献1及び2を参照)と、制御情報の交換をデータ通信開始時に行うリアクティブ方式(例えば、非特許文献3及び4を参照)とに分類される。一般に、端末の移動速度が遅い場合にはプロアクティブ方式が有効であり、端末の移動速度が速い場合にはリアクティブ方式が有効であると言われている。
リクエスト・フォー・コメント3626:オプティマイズド・リンク・ステート・ルーティング・プロトコル(OLSR)「REQUEST FOR COMMENT 3626:Optimized Link State Routing Protocol(OLSR)」 リクエスト・フォー・コメント3684:トポロジー・ディセミネーション・ベースド・オン・リバース-パス・フォワーディング(TBRPF)「REQUEST FOR COMMENT 3684:Topology Dissemination Based on Reverse-Path Forwarding(TBRPF)」 リクエスト・フォー・コメント3561:アド・ホック・オン-デマンド・ディスタンス・ヴェクター(AODV)・ルーティング「REQUEST FOR COMMENT 3561:Ad hoc On-Demand Distance Vector (AODV) Routing」 リクエスト・フォー・コメント4728:ザ・ダイナミック・ソース・ルーティング・プロトコル(DSR)・フォー・モバイル・アド・ホック・ネットワーク・フォー・アイピーヴイ4「REQUEST FOR COMMENT 4728:The Dynamic Source Routing(DSR) Protocol for Mobile Ad Hoc Networks for IPv4」
 しかし、上記の従来技術を通信路として電力線を用いる電力線通信に適用した場合、以下のような問題が生ずる。
 上記の従来技術は無線通信で用いられることを前提としているため、基地局を用いた通信のビーコンと同じく一番低速の変調方式で中継端末からビーコンを送信している。これは、端末が移動した時に通信不能とならないためである。しかし、通信路として電力線を用いるPLC(Power Line Communication)端末は移動しない端末である。そのため、電力線通信のネットワークに存在する中継機が子機に対して送信する制御パケットは、中継機と通信できる範囲を最大限に拡大するために、中継機が用いる複数の変調方式の中で一番低速の変調方式で変調する必要性はない。むしろ、一番低速の変調方式で変調した制御パケットを送信すると、アドホックなネットワークでは制御パケットを出力する中継機が複数存在するので、制御パケットを送信するために消費される帯域がネットワーク全体として見れば増大し、本来送信したいデータを送信するための帯域が減少するという問題がある。
 それ故に、本発明は、上記課題に鑑みて、電力線を用いたアドホックなネットワークにおいて、全通信に消費される帯域の中で制御パケットの送信に消費される帯域が占める割合を大幅に削減して、本来送信したいデータの送信を確保できる通信端末装置及び通信方法を提供することを目的とする。
 上記課題を解決するために、本発明の一態様の通信端末装置は、電力線通信のネットワーク上の端末との通信経路の設定に用いる制御パケットを依頼する依頼パケットをネットワークから所定期間受信しない場合、ネットワークで用いられる複数の変調方式の中で通信速度が一番低い変調方式で制御パケットの依頼パケットを変調してネットワークに送信するものである。
 第1の態様の通信端末装置は、電力線通信のネットワークと接続された通信部と、ネットワーク上の端末との通信経路の設定に用いる制御パケットをネットワークから所定期間受信しない場合、ネットワークで用いられる複数の変調方式の中で通信速度が一番低い変調方式で制御パケットの依頼パケットを変調して、ネットワークに送信する制御部とを備えたものである。
 本態様によると、ネットワーク上の端末との通信経路の設定に用いる制御パケットをネットワークから所定期間受信しない場合、ネットワークで用いられる複数の変調方式の中で通信速度が一番低い変調方式で制御パケットの依頼パケットを変調して、ネットワークに送信する。これにより、通信路の状態が変化したためにネットワーク上の端末と通信できる範囲から外れた等の場合でも、ネットワークで用いられる複数の変調方式の中で通信速度が一番低い変調方式で依頼パケットを変調すれば、依頼パケットの通信可能な範囲を最大限に拡大できるので、依頼パケットはネットワーク上のいずれかの端末に届き、その端末との間で通信を再開できる。
 第2の態様の通信端末装置は、上記態様において、制御パケットをネットワークから所定期間受信しない場合には、起動時が含まれるものである。本態様によると、制御部は、起動時に依頼パケットを送信する。これにより、通信端末装置を新規にネットワークに取り付けた場合でも、ネットワークで用いられる複数の変調方式の中で通信速度が一番低い変調方式で依頼パケットを変調すれば、依頼パケットの通信可能な範囲を最大限に拡大できるので、依頼パケットはネットワーク上のいずれかの端末に届き、その端末との間で通信を開始できる。
 第3の態様の通信端末装置は、上記態様において、制御部が、依頼パケットに応答した第1端末との間で用いられる通信速度が一番高い変調方式で変調された制御パケットを第1端末から受信するものである。
 本態様によると、依頼パケットが届いた第1端末との間では、第1端末との間で用いられる通信速度が一番高い変調方式で変調された制御パケットを受信することにより、第1端末を中心とした通信可能な範囲を必要最小限まで小さくできるので、他の端末の通信可能な範囲との重複部分を最小限にして、第1端末から制御パケットが届く範囲を最小限にできる。その結果、ネットワーク全体において制御パケットが重複する確率が減少し、全通信に消費される帯域の中で制御パケットの送信に消費される帯域が占める割合が無駄に増大するのを防止できる。
 第4の態様の通信端末装置は、上記態様において、制御部は、第1端末から制御パケットを受信する期間に、第1端末との間で用いられる通信速度が一番高い変調方式と比較して通信速度が異なる変調方式で変調された制御パケットを第2端末から受信した場合、制御パケットの送信元を第1端末から第2端末に切替えるものである。
 本態様によると、制御部は、第1端末から制御パケットを受信する期間に、第1端末との間で用いられる通信速度が一番高い変調方式と比較して通信速度が異なる変調方式で変調された制御パケットを第2端末から受信した場合、制御パケットの送信元を第1端末から第2端末に切替える。これにより、通信速度がより遅い変調方式で制御パケットを変調する第2端末が存在する場合、第2端末の通信範囲は第1端末の通信範囲より広くなる。そのため、第2端末から制御パケットを受信できる端末が多くなり、より多くの端末が受信する制御パケットの送信元である第2端末を選択すれば、制御パケットの送信主体の数を削減できる。その結果、全通信に消費される帯域の中で制御パケットの送信に消費される帯域が占める割合を効果的に削減できる。
 また、通信速度がより遅い変調方式で制御パケットを変調する第2端末が存在する場合、第2端末からの制御パケットの通信範囲の方が第1端末の制御パケットの通信範囲より狭くなる。そのため、より制御パケットの通信範囲が狭い第2端末を選択すれば、制御パケットの送信主体の数を削減できると共にネットワーク全体に占めるビーコンの通信範囲を狭めることができる。その結果、全通信に消費される帯域の中で制御パケットの送信に消費される帯域が占める割合を効果的に削減できる。
 第5の態様の通信端末装置は、上記態様において、制御部は、制御パケットの送信元を第1端末から第2端末に切替える際、第1端末に対して制御パケットの送信元の切替えを通知するものである。本態様によると、制御パケットの送信元を第1端末から第2端末に切替える際、第1端末に対して制御パケットの送信元の切替えを通知することにより、制御パケットの送信元である第1端末は通知に基づいて制御パケットの送信を停止する等の処理を行うことができる。これにより、制御パケットの送信主体の数を削減でき、その結果、全通信に消費される帯域の中で制御パケットの送信に消費される帯域が占める割合を効果的に削減できる。
 第6の態様の通信端末装置は、上記態様において、第1端末は、制御パケットの送信元の切替えを通知された場合、制御パケットの送信先が他に存在する場合、この他の端末との間で用いられる通信速度が一番高い変調方式で制御パケットを変調して他の端末に送信するものである。
 本態様によると、第1端末は、制御パケットの送信元の切替えを通知された場合、制御パケットの送信先が他に存在する場合、この他の端末との間で用いられる通信速度が一番高い変調方式で制御パケットを変調して他の端末に送信する。これにより、第1端末の通信範囲を他の端末を含む最小限の範囲に狭めることができるので、第2端末の通信範囲との重複を最小限に抑えて、全通信に消費される帯域の中で制御パケットの送信に消費される帯域が占める割合が無駄に増大するのを防止できる。その結果、本来送信すべきデータに消費される帯域を効果的に確保できる。
 第7の態様の通信端末装置は、上記態様において、第1端末は、制御パケットの送信元の切替えを通知された場合、制御パケットの送信先が他に存在しない場合、制御パケットの送信を停止するものである。
 本態様によると、第1端末は、制御パケットの送信元の切替えを通知された場合、制御パケットの送信先が他に存在しない場合、制御パケットの送信を停止する。これにより、第1端末による制御パケットの通信範囲が消失するので、第2端末の通信範囲との重複が無くなり、全通信に消費される帯域の中で制御パケットの送信に消費される帯域が占める割合が無駄に増大するのを防止できる。その結果、本来送信すべきデータに消費される帯域を効果的に確保できる。
 第8の態様の通信端末装置は、上記態様において、制御部は、第2端末から制御パケットを受信してから所定期間制御パケットを受信しなくなった場合に、ネットワークで用いられる複数の変調方式の中で通信速度が一番低い変調方式で依頼パケットを変調してネットワークに送信するものである。
 本態様によると、第2端末から制御パケットを受信してから所定期間制御パケットを受信しなくなった場合に、ネットワークで用いられる複数の変調方式の中で通信速度が一番低い変調方式で依頼パケットを変調してネットワークに送信する。これにより、通信路の状態が変化したためにそれまで通信していた第2端末から制御パケットを受信できなくなった場合に、ネットワークで用いられる複数の変調方式の中で通信速度が一番低い変調方式で依頼パケットを変調するので、依頼パケットの通信可能な範囲を最大限に拡大できる。その結果、依頼パケットはネットワーク上のいずれかの端末に届き、その端末との間で通信を再開して、第2端末との通信が途絶えた通信端末装置をネットワークの中に再度組み入れることができる。
 第9の態様の通信端末装置は、上記態様において、ネットワーク上の端末との通信経路に関する情報は、中継機を示す情報、中継機を介してどの経路を介して親機と接続できるかを示した経路情報、及び中継機を介してどの経路を介してネットワーク上の他の端末と接続できるかを示した経路情報の中の少なくともいずれか一つを含むものである。
 第10の態様の通信端末装置は、上記態様において、ネットワークの中で用いられる変調方式の中で通信速度が一番低い変調方式で変調された制御パケットは、ブロードキャストパケットであり、第1端末との間で用いられる通信速度が一番高い変調方式で変調された制御パケットは、ユニキャストパケットであるものである。
 本態様によると、通信速度が一番低い変調方式で変調された制御パケットは、ブロードキャストパケットとして送信する。一方、第1端末との間で用いられる通信速度が一番高い変調方式で変調された制御パケットは、ユニキャストパケットとして送信する。これにより、ブロードキャストパケットについては、ネットワークの中で用いられる変調方式の中で通信速度が一番低い変調方式で変調されることになり、通信速度を上げることができないシステムにおいても、制御パケットの通信速度を上げることができる。その結果、第1端末から送信される制御パケットが届く範囲を現在通信している端末との間で必要最小限の範囲に狭めることができる。
 第11の態様の通信端末装置は、上記態様において、第1端末との間で用いられる通信速度が一番高い変調方式で変調された制御パケットは、ブロードキャストパケットであり、第1端末との間で用いられる通信速度が一番高い変調方式より通信速度が遅い変調方式で変調され、第2端末から受信する制御パケットは、ブロードキャストパケットであるものである。
 本態様により、制御パケットとしてブロードキャストパケットを用いた場合でも、このブロードキャストパケットを通信速度が一番低い変調方式で変調するのではなく、第1端末から送信される制御パケットの通信速度と第2端末から送信される制御パケットの通信速度とを変えるので、第1端末から送信される制御パケットが届く範囲を第2端末の通信範囲との関係で必要最小限の範囲に狭めることができる。
 第12の態様の通信端末装置は、上記態様において、第1端末との間で用いられる通信速度が一番高い変調方式で変調された制御パケットは、ユニキャストパケットであり、第1端末との間で用いられる通信速度が一番高い変調方式より通信速度が遅い変調方式で変調され、第2端末から受信する制御パケットは、ブロードキャストパケットであるものである。
 本態様によると、第1端末との間で用いられる通信速度が一番高い変調方式で変調される制御パケットについてはユニキャストパケットとする。一方、第1端末との間で用いられる通信速度が一番高い変調方式より通信速度が遅い変調方式で変調され、第2端末から受信する制御パケットについてはブロードキャストパケットとする。これにより、ブロードキャストパケットについてはネットワークの中で用いられる変調方式の中で通信速度が一番低い変調方式で変調されることになり、通信速度を上げることができないシステムにおいても、第1端末から送信される制御パケットの通信速度を第2端末から送信される制御パケットの通信速度より速くできる。その結果、第1端末から送信される制御パケットが届く範囲を第2端末の通信範囲との関係で必要最小限の範囲に狭めることができる。
 第13の態様の通信端末装置は、電力線通信のネットワークと接続された端末に対して端末との通信経路の設定に用いる制御パケットを送信する通信部と、端末から制御パケットに対応する応答を所定期間受信しない場合、ネットワークで用いられる複数の変調方式の中で通信速度が一番低い変調方式で制御パケットを変調して、端末に対して送信する制御部とを備えたものである。
 本態様によると、端末から制御パケットに対応する応答を所定期間受信しない場合、ネットワークで用いられる複数の変調方式の中で通信速度が一番低い変調方式で制御パケットを変調して、端末に対して送信する。これにより、制御パケットの送信端末の方で受信端末が制御パケットを受信できない状態にあると判断し、制御パケットの通信可能な範囲を拡大して受信端末が制御パケットを受信できる態様で制御パケットを送信し直すので、制御パケットは受信端末に届き、受信端末との間での通信を再開できる。
 第14の態様の通信端末装置は、上記態様において、通信部は、端末に対して制御パケットをユニキャストで送信し、制御部は、端末から制御パケットに対応する応答を所定期間受信しない場合、ブロードキャストで制御パケットを送信することで、ネットワークで用いられる複数の変調方式の中で通信速度が一番低い変調方式で制御パケットを変調して、端末に対して送信するものである。
 本態様によると、端末に対して制御パケットをユニキャストで送信し、制御部は、端末から制御パケットに対応する応答を所定期間受信しない場合、ブロードキャストで制御パケットを送信することにより、ネットワークで用いられる複数の変調方式の中で通信速度が一番低い変調方式で制御パケットを送信する。これにより、制御パケットの通信可能な範囲を拡大するので、制御パケットは受信端末に届き、受信端末との間での通信を再開できる。
 第15の態様の通信端末装置は、上記態様において、端末から制御パケットに対応する応答を所定期間受信しない場合は、制御部は、端末から制御パケットに対応する応答を所定回数受信しない場合を含むものである。本態様によると、端末から制御パケットに対応する応答を所定回数受信しない場合にも適用できる。
 第16の態様の通信方法は、電力線通信のネットワークと接続された端末との間で通信経路の設定に用いる制御パケットネットワークから所定期間受信しない場合、ネットワークで用いられる複数の変調方式の中で通信速度が一番低い変調方式で制御パケットの依頼パケットを変調してネットワークに送信するものである。
 本態様によると、通信路の状態が変化したためにネットワーク上の端末と通信できる範囲から外れた等の場合でも、ネットワークで用いられる複数の変調方式の中で通信速度が一番低い変調方式で依頼パケットを変調すれば、依頼パケットの通信可能な範囲を最大限に拡大できるので、依頼パケットはネットワーク上のいずれかの端末に届き、その端末との間で通信を開始又は再開できる。
 上記態様の通信端末装置によって、電力線を用いたアドホックなネットワークにおいて、全通信に消費される帯域の中で制御パケットの送信に消費される帯域が占める割合を大幅に削減して、本来送信したいデータの送信を確保できる。
第1の実施形態に係る通信端末装置及び通信方法が用いられるネットワーク構成図である。 第1の実施形態で用いられる端末の詳細な構成を示す図である。 第1の実施形態に用いるパケットフォーマットを示す図である。 第1の実施形態におけるCPU202が実行する各機能を説明する機能ブロック図である。 第1の実施形態において新規端末参入前の状態を表すネットワーク構成図である。 第1の実施形態において新規端末参入前のビーコンツリーを表す図である。 第1の実施形態において新規端末参入後の状態を表すネットワーク構成図である。 第1の実施形態において新規端末参入後のビーコンツリーを表す図である。 第1の実施形態において変調方式変更後の状態を表すネットワーク構成図である。 第1の実施形態において変調方式変更後のビーコンツリーを表す図である。 第1の実施形態において中継端末変更後の状態を表すネットワーク構成図である。 第1の実施形態において中継端末変更後のビーコンツリーを表す図である。 第1の実施形態において図5から図12へ状態遷移していく過程のシーケンス図である。 第1の実施形態における帯域利用効率を表した図である。 第1の実施形態におけるビーコンの受信処理を示すフローチャートである。 第1の実施形態におけるビーコンの送信処理を示すフローチャートである。 第2の実施形態において雑音源参入前の状態を表すネットワーク構成図である。 第2の実施形態において雑音源参入前のビーコンツリーを表す図である。 第2の実施形態において雑音源参入後の状態を表すネットワーク構成図である。 第2の実施形態において雑音源参入後のビーコンツリーを表す図である。 第2の実施形態において変調方式変更後の状態を表すネットワーク構成図である。 第2の実施形態において中継端末変更後の状態を表すネットワーク構成図である。 第2の実施形態において中継端末変更後のビーコンツリーを表す図である。 第2の実施形態において中継端末離脱後の状態を表すネットワーク構成図である。 第2の実施形態において図17から図24へ状態遷移していく過程のシーケンス図である。 第2の実施形態における帯域利用効率を表した図である。 第2の実施形態におけるビーコンの受信処理を示すフローチャートである。 第2の実施形態におけるビーコンの受信処理を示すフローチャートである。 第3の実施形態におけるCPU202が実行する各機能を説明する機能ブロック図である。 第3の実施形態において雑音源参入前の状態を表すネットワーク構成図である。 第3の実施形態において雑音源参入後の状態を表すネットワーク構成図である。 第3の実施形態において宛先アドレス変更後の状態を表すネットワーク構成図である。 第3の実施形態において中継端末変更後の状態を表すネットワーク構成図である。 第3の実施形態において図29から図32へ状態遷移していく過程のシーケンス図である。 第3の実施形態における帯域利用効率を表した図である。 第3の実施形態におけるビーコンの送信処理を示すフローチャートである。
 (第1の実施形態)
 図1は、本発明の第1の実施形態に係る通信端末装置及び通信方法が用いられるネットワーク構成を示す図である。このネットワークは、PLCのネットワークである。このネットワークのサービスエリア101は、ネットワーク内に存在する各端末のカバーエリアよりも大きいため、中継端末103~107を介して相互の通信を行うアドホックネットワークを構成している。サービスエリア101内の全ての端末(受信端末108~110を含む)は、送信端末102から周期的に送信される経路情報パケットを、中継端末103~107を介して受信することにより、各端末間でどの端末を中継端末として選択し、通信を行えばよいかがわかる。なお、経路情報パケットは、ネットワーク上の端末間で通信経路の設定に用いる制御パケットであり、無線通信の分野でのビーコンに類似したものである。また、経路情報パケットには、各端末間でどの速度で通信可能かを示す情報が含まれているものとする。
 図2は、各端末の詳細な構成を示した図である。図2において、各端末は、各種の制御プログラムやワークエリアを含むメモリ201、端末全体を制御するCPU202、及び電力線と接続され、かつ電力線を介して各種データを通信するネットワークインタフェース203から構成されている。各端末は、メモリ201に格納されているプログラムをCPU202で実行し、ネットワークインタフェース203を介してデータの送信を行い、ネットワークインタフェース203を介して受信したデータをCPU202で解読する。なお、CPU202は端末全体を制御するため制御部と、ネットワークインタフェース203は端末全体の通信を担当するため通信部と記すことができる。
 図3は、本発明が適用されるアドホックネットワークにおいて用いられるパケットフォーマットを表している。このパケットフォーマットは、PHYヘッダ301、MACヘッダ302、及びペイロード303からなる。ペイロード303には、上位レイヤのヘッダも含まれる。PHYヘッダ301には、そのパケットの変調方式が記されているフィールド304がある。各端末は、PHYヘッダ301を読み取ることによって自身が受信可能なパケットか否かの判定を行う。MACヘッダ302には、送信元、宛先、中継元、及び中継先のアドレスを表すフィールドがある。この例では、送信端末102から送信される経路情報パケットには、送信元アドレス305として送信端末102のアドレスが設定され、宛先アドレス306としては全端末を示すff:ff:ff:ff:ff:ffが設定される。中継端末103~107が経路情報パケットを中継する場合には、送信元アドレス305と宛先アドレス306とはそのままに、中継元アドレス307に中継端末103~107のアドレスを設定し、中継先アドレス308にff:ff:ff:ff:ff:ffを設定する。
 受信端末108~110を含む各端末は、宛先アドレス306と中継先アドレス308とを見て、自端末と一致する又は自端末が含まれるアドレスであった場合に、ペイロード303の受信処理を開始する。ただし、変調方式が自身の受信可能な変調方式であった場合には、アドレスによらず受信することは可能である。本実施形態における経路情報パケットでは、中継先アドレス308をff:ff:ff:ff:ff:ffとし全端末が受信できるようにするが、変調方式としては特定の端末に合わせた変調方式を用いることとする。
 図4は、CPU202が実行する各機能を説明する機能ブロック図である。図4において、受信処理部401は、変調方式が自端末の変調方式に適合した受信可能な全てのパケットを受信し、宛先アドレスから全ての端末に対して送信されたパケット(以下、「フラッディングパケット」という)か否かを識別し、受信したパケットがフラッディングパケットでない場合は中継すべきパケットとして変調方式決定部402に渡す。また、受信処理部401は、本発明で用いる各種制御パケットを受信し、必要なデータを利用効率判定部403又は制御パケット送信部404に出力する。
 変調方式決定部402は、利用効率判定部403から入手した情報に基づいて、中継すべきパケットの変調方式を決定する。本実施形態では、経路情報などのデータの入った周期的に全端末に送信される経路情報パケット(以下、「ビーコン」という)の変調方式を、無線通信の分野でのビーコンと異なって、最低速度以外の変調で行う場合について説明する。最低速度以外の変調で行うことにより、ビーコンが消費する帯域を大幅に削減することが可能となる。
 利用効率判定部403では、各中継端末103~107がどの端末に向けてビーコンを送信しているか、どの端末が自端末からのビーコンの受信が可能かを記録し、アドホックネットワークの利用効率が最適になる変調方式及び中継端末を判定する。例えば、利用効率判定部403は、自端末から送信しているビーコンの変調方式を変更した方がよい場合には、変調方式決定部402へ最適な変調方式の変更を要請する。自端末より送信しているビーコンを停止した方がよい場合には、送信処理部405に送信の停止を要請する。自端末が受信しているビーコンの中継端末を変更した方がよい場合には、制御パケット送信部404に中継端末の変更を要請する。
 制御パケット送信部404では、受信処理部401又は利用効率判定部403の要請に応じて各種制御パケットの送信を行う。例えば、制御パケット送信部404は、受信処理部401の要請に応じてビーコン要求パケット又はビーコン応答パケットを送信する。また、例えば、制御パケット送信部404は、利用効率判定部403の要請に応じて、確定パケット又は登録情報更新パケットを送信する。なお、ビーコン要求パケット、ビーコン応答パケット、確定パケット又は登録情報更新パケットの各々については、後述する。
 送信処理部405では、制御パケット送信部404から渡された各種制御パケットの送信とビーコンパケットの送信とを行う。また、一般データの送信も送信処理部405にて行う。
 以下、上記のように構成された本発明の通信端末装置について、図5~図14を用いてその動作を説明する。
 図5は、通信速度が最低速度の変調方式を用いて中継端末B502がビーコンを中継しており、通信速度が最低速度ではない変調方式を用いて中継端末C503がビーコンを中継している場合のネットワーク図である。一般に、ビーコンは通信速度が最低速度の変調方式を用いて広範囲に届くように中継されるが、本実施形態では状況に応じて、ビーコンは高速な変調方式を用いて中継される。これにより、アドホックネットワーク全体としてビーコンをフラッディングするのに消費する帯域を減らすことが可能となる。
 図5において、端末A501は、ビーコンの送信端末であり、通信速度が最低速度の変調方式を用いてビーコンを送信している。端末A501のカバーエリア506に存在する端末B502及び端末C503は、ビーコンの中継を行っている。端末B502は、端末D504に向けて中継しており、端末B-D間の距離が離れているため通信速度が最低速度の変調方式を用いてビーコンの中継を行っている。端末C503は、端末E505に向けてビーコンを中継しており、端末C-E間の距離は近いため通信速度が高速な変調方式を用いている。具体的には、端末E505が端末C503のカバーエリア508に入る変調方式のうち最高速度のものを用いている。
 このように、端末C503と端末E505との間では、その端末間で用いられる通信速度が一番高い変調方式で変調されたビーコンを通信する。これにより、端末C503を中心とした通信可能なカバーエリア508を必要最小限まで小さくできる。そのため、端末B502の通信可能なカバーエリア507との重複部分を最小限にして、端末C503からビーコンが届く範囲を最小限にできる。その結果、ネットワーク全体においてビーコンが重複する確率が減少し、全通信に消費される帯域の中でビーコンの送信に消費される帯域が占める割合が無駄に増大するのを防止できる。
 図6は、図5の状態におけるビーコンツリーを表した図である。なお、本実施形態では、自端末がどの端末に向けてビーコンを送信しているか、自端末がどの端末にビーコンを中継してもらっているかを登録しているものとする。各端末は、この情報(以下、受信端末情報と記す)を更新することにより、ビーコンの送受信先を切り替える。ビーコンツリーとは、この受信端末情報に従った、ビーコンの送受信経路を表すツリー構造のことである。図6においては、端末B502及び端末C503は、端末A501からビーコンを受信する。端末D504は端末B502から、端末E505は端末C503からビーコンを受信する。
 図7は、図5の状態に新たな端末F701が参入した時のネットワーク図である。端末F701は、端末A501,B502,及びC503のカバーエリアのいずれにも入っていないため、ネットワークに参入することが出来ない。その場合には、いずれかの端末にビーコンを中継をしてもらう必要がある。本実施形態では、端末F701は、ネットワークからビーコンを所定期間受信していないと端末F701内部の制御パケット送信部404が判断した場合、ネットワークで用いられる複数の変調方式の中で通信速度が一番低い変調方式を用いてビーコン要求パケットを送信する。
 これにより、端末F701がネットワーク上の他の端末と通信できるカバーエリアの外に存在する場合でも、ネットワークで用いられる複数の変調方式の中で通信速度が一番低い変調方式でビーコン要求パケットを送信すれば、ビーコン要求パケットの通信可能な範囲を最大限に拡大できる。その結果、ビーコン要求パケットがネットワーク上のいずれかの端末に届き、端末F701は、その端末との間で通信を開始することが可能となる。
 図8は、図7の状態におけるビーコンツリーを表した図である。図8を参照して、端末F701は、ネットワークに新規参入したばかりなので、ビーコンツリーに入っておらず、ビーコンを受信できない。
 図9は、端末F701が受信可能なように、端末C503が変調速度を低下させた場合のネットワーク図である。本実施形態では、端末F701から送信されたビーコン要求パケットを端末C503が受信する。図5及び図7で示すように、端末C503は、端末E505に対して通信速度が最低速度より高速の変調方式でビーコンを送信している。そこで、端末C503は、端末F701がビーコンを受信できるように、ビーコンを送信する変調方式を通信速度が低い変調方式に変更する。ビーコンを送信する変調方式をより通信速度が低い変調方式に変更した場合、端末C503のカバーエリア508は、カバーエリア901へと広くなる。そのため、端末C503は、端末F701をカバーエリア901内に入れることが出来る。
 図10は、図9の状態におけるビーコンツリーを表した図である。図10を参照して、端末F701がビーコンツリーに格納され、全ての端末がビーコンを受信できる状態となっている。
 図11は、端末D504がビーコンの中継元を端末B502から端末C503に切り換えた場合のネットワーク図である。上述したように、端末D504は、端末C503がカバーエリア901を広げたことにより、端末B502及び端末C503の双方のカバーエリア507及び901に入っている(図9参照)。すなわち、端末D504は、端末B502及び端末C503の双方からビーコンを受信することになる。ここで、端末B502が端末D504へのビーコンの中継を中止すれば全体としての帯域消費を抑えることができる。そのため、本実施形態では、端末D504は、端末B502からビーコンを受信する期間に、端末B502との間で用いられる通信速度より速い通信速度の変調方式により変調されたビーコンを端末C503から受信した場合、ビーコンの送信元を端末B502から端末C503に切替える。
 これにより、通信速度がより速い変調方式によりビーコンを変調する端末C503が存在する場合、端末C503からのビーコンの通信範囲の方が狭いので、よりビーコンの通信範囲が狭い端末C503を選択すれば、ビーコンの送信主体の数を削減できると共にネットワーク全体に占めるビーコンの通信範囲を狭めることができる。その結果、全通信に消費される帯域の中でビーコンの送信に消費される帯域が占める割合を効果的に削減できる。
 また、ビーコンの送信元を端末B502から端末C503に切替える際、端末D504の制御パケット送信部404は、端末B502に対してビーコンの送信元の切替えを通知する。端末B502は、ビーコンの送信元の切替えを通知された場合であって、ビーコンの送信先が端末D504以外に存在しない場合、ビーコンの送信を停止する(図11参照)。
 このように、ビーコンの送信元を端末B502から端末C503に切替える際、端末B502に対してビーコンの送信元の切替えを通知すると、ビーコンの送信元である端末B502では通知に基づいてビーコンの送信を停止することができる。これにより、ビーコンの送信主体の数を削減でき、その結果、全通信に消費される帯域の中でビーコンの送信に消費される帯域が占める割合を効果的に削減できる。
 また、端末B502は、ビーコンの送信元の切替えを通知された場合であって、ビーコンの送信先が端末D504以外に存在しない場合、ビーコンの送信を停止することにより、端末B502によるビーコンの通信範囲(すなわち、カバーエリア507)が消失する。そのため、端末C503の通信範囲(すなわち、カバーエリア901)との重複が無くなり、全通信に消費される帯域の中でビーコンの送信に消費される帯域が占める割合が無駄に増大するのを防止できる。その結果、本来送信すべきデータに消費される帯域を効果的に確保できる。
 図12は、図11の状態におけるビーコンツリーを表した図である。図12を参照して、端末D504が端末C503に接続し、端末B502は中継端末ではなく受信端末となっている。
 図13は、図5から図12へ状態遷移していく過程のシーケンス図である。図13を参照して、端末B502は、ビーコン1301を端末D504へ中継している。ビーコンを受信できなかった端末F701は、ビーコン要求1304を周囲の端末へブロードキャストする。ここで、ブロードキャストとは、通信速度が最低速度の変調方式を用いて、且つ宛先アドレスとしてff:ff:ff:ff:ff:ffを用いて送信することを意味する。なお、端末F701がビーコン要求1304を送るタイミングは所定期間ビーコンを受信できなかった時でもよいし、端末起動時でもよい。
 ビーコン要求1304を受信した端末C503は、CE(CHANNEL ESTIMATION)要求1305を端末F701に送信し、CE要求1305の応答として端末F701からCE応答1306を受信する。これにより、端末C503は、端末F701と通信可能な変調方式のうち最高速度ものを推定する。最高速度の変調方式が判明すると、端末C503内の制御パケット送信部404は、送信処理部405を介して端末F701に対してその変調方式を用いてビーコン応答1307を返す。
 ビーコン応答を受信した端末F701は、ビーコンの中継端末を端末C503に確定し、端末F701内の制御パケット送信部404は、送信処理部405を介して端末C503に対してビーコンを中継してもらうための確定応答1308を送信する。ここでは、端末C503は、端末E505との間すでに通信をしているので(図7を参照)、端末E505と端末F701との間で共通して使用できる最高速度の変調方式を決定する。確定応答を受信した端末C503は、端末E505に加えて、端末F701をビーコン受信端末として登録し、双方が受信可能な最適変調方式でビーコン1302を送信する。
 このように、端末F701は、ネットワークで用いられる複数の変調方式の中で通信速度が一番低い変調方式を用いてビーコン要求パケットを送信する。これにより、端末F701がネットワーク上の他の端末と通信できるカバーエリアの外に存在する場合でも、ネットワークで用いられる複数の変調方式の中で通信速度が一番低い変調方式でビーコン要求パケットを送信すれば、ビーコン要求パケットの通信可能な範囲を最大限に拡大できる。その結果、ビーコン要求パケットがネットワーク上のいずれかの端末に届き、端末F701は、その端末との間で通信を開始することが可能となる。
 端末C503からのビーコン1302は低速な変調方式となったため、端末D504では、端末B502からのビーコン1302と端末C503からのビーコン1302との双方を受信可能となる。ここで、端末D504は、より高速な通信が可能な端末に中継元を切り替える。無線通信の分野のビーコンと異なって、どちらと高速な通信が可能であるかの情報は、ビーコンに経路情報として格納されているものとする。受信端末がある中継元からの中継を不要とした場合に、その中継元がビーコンの中継を停止してもよい。本実施形態では、より高速な変調方式で送信可能となるので、その中継元である端末B502からのビーコン中継を停止し、新しい中継元である端末C503からのビーコン中継を開始する。端末B502は、端末D504への中継を停止すると、他にビーコンを中継する端末が存在しないので、ビーコン中継を停止することが可能である。
 このように、本第1の実施形態では、端末D504は、端末B502からビーコンを受信する期間に、端末B502との間で用いられる通信速度より速い通信速度の変調方式により変調されたビーコンを端末C503から受信した場合、ビーコンの送信元を端末B502から端末C503に切替える。通信速度がより速い変調方式によりビーコンを変調する端末C503が存在する場合、端末C503からのビーコンの通信範囲の方が狭いので、よりビーコンの通信範囲が狭い端末C503を選択すれば、ビーコンの送信主体の数を削減できると共にネットワーク全体に占めるビーコンの通信範囲を狭めることができる。その結果、全通信に消費される帯域の中でビーコンの送信に消費される帯域が占める割合を効果的に削減できる。
 端末D504内の制御パケット送信部404は、送信処理部405を介して、端末B502へ登録情報更新パケット1309を送信して中継停止を要請し、端末C503へ登録情報更新パケット1310を送信して中継開始を要請する。その結果、ビーコン1303は、端末C503から端末D504及び端末F701の双方へ送信されることになる。なお、端末C503からのビーコンは、ブロードキャストで送信されているため、端末D504に届いている。端末D504が端末C503へ登録情報更新パケット1310を送信して中継開始を要請するのは、端末D504が端末C503からのビーコンを受信している端末であることを端末C503に知らせるためである。
 このように、ビーコンの送信元を端末B502から端末C503に切替える際、端末D504の制御パケット送信部404は、端末B502に対してビーコンの送信元の切替えのために登録情報更新パケット1309を送信する。端末B502は、ビーコンの送信元の切替えを通知された場合、ビーコンの送信先が端末D504以外に存在しないので、ビーコンの送信を停止する。
 また、ビーコンの送信元を端末B502から端末C503に切替える際、端末B502に対してビーコンの送信元の切替えを通知すると、ビーコンの送信元である端末B502は、登録情報更新パケット1309に基づいてビーコンの送信を停止することができる。これにより、ビーコンの送信主体の数を削減でき、その結果、全通信に消費される帯域の中でビーコンの送信に消費される帯域が占める割合を効果的に削減できる。
 さらに、端末B502がビーコンの送信を停止した場合、端末B502によるビーコンのカバーエリア507が消失する。これにより、端末C503のカバーエリア901との重複が無くなり(図11を参照)、全通信に消費される帯域の中でビーコンの送信に消費される帯域が占める割合が無駄に増大するのを防止できる。その結果、本来送信すべきデータに消費される帯域を効果的に確保できる。
 図14は、第1の実施形態において、各種状態における全ネットワークでのビーコンの消費する帯域を時間で表した図である。全ての送信に通信速度が最低速度の変調方式を用いた場合には、非常に多くの時間がかかり、本来のデータ通信が可能な時間を圧迫する(図14(a))。高速通信が可能な端末に対しては、高速な変調方式を用いることで(図5を参照)、ある程度の消費帯域削減効果が得られる(図14(b))。さらに、中継端末を選択する動作を組み合わせることにより(図11を参照)、消費帯域のさらなる削減を実現することが可能となる(図14(c))。
 図15は、各端末におけるビーコンの受信処理を説明するフローチャートである。図15を参照して、各端末は、一定時間ビーコン受信がなかった場合又は端末起動時に(ステップS1501)、通信速度が最低速度の変調方式でビーコン要求パケットを、ネットワークを介して周囲の端末に送信する(ステップS1502)。各端末は、いずれかの端末からビーコン応答パケットを受信した場合には、その端末に向けて確定応答パケットを送信する(ステップS1503)。ビーコン応答パケットを受信できかなかった場合には、ビーコン要求パケットを再送信する。ビーコン応答パケットを複数の端末から受信した場合(ステップS1504)には、それらの端末の中から最も高速な変調方式で通信可能な端末を選択し(ステップS1505)、その端末に確定応答パケットを送信する(ステップS1506)。
 これにより、各端末がネットワーク上の他の端末のカバーエリアの外に存在する場合でも、ネットワークで用いられる複数の変調方式の中で通信速度が一番低い変調方式でビーコン要求パケットを送信すれば、ビーコン要求パケットの通信可能な範囲を最大限に拡大できる。その結果、ビーコン要求パケットがネットワーク上のいずれかの端末に届き、各端末は、その端末との間で通信を再開又は開始することが可能となる。
 一方、各端末は、ビーコンを受信した場合には(ステップS1511)、変調方式が自端末に適合してペイロードを受信できるか否かを確認する(ステップS1512)。ペイロードの受信ができない場合は、ステップS1501の処理に戻る。ペイロードの受信が可能な場合は、ビーコンの送信元が、現在の中継端末と一致したら通常のビーコン受信処理に戻る。ビーコンの送信元が、現在の中継端末と不一致の場合には(ステップS1513)、現在の中継端末と、ビーコンの送信元の端末とのどちらが全体の消費帯域が少ないかを判断する(ステップS1514)。
 具体的には、ビーコンの送信元の端末が用いている通信速度と、現在の中継端末が用いる通信速度とを比較して、ビーコンの送信元の端末が用いている通信速度が、現在の中継端末が用いる通信速度より速い変調方式によりビーコンを変調する場合、ビーコンの送信元の端末によるビーコンの通信範囲の方が狭くなる。このような場合、現在の中継端末の代わりに、ビーコンの送信元の端末を選択すれば、ビーコンの送信主体の数を削減できると共に、ネットワーク全体に占めるビーコンの通信範囲を狭めることができる。この場合には、現在の中継端末より、ビーコンの送信元の端末に中継してもらった方が全体の消費帯域が少ないと判断できるので、現在の中継端末に、登録情報更新パケットを送信し、中継停止を要請する(ステップS1515)。それと同時に、ビーコンの送信元の端末に新しい中継端末になってもらうように、登録情報更新パケットを送信し、中継開始を要請する(ステップS1516)。その結果、全通信に消費される帯域の中でビーコンの送信に消費される帯域が占める割合を効果的に削減できる。なお、上記判断は、ビーコンに含まれる経路情報に基づいて行ってもよい。
 図16は、各端末におけるビーコン送信処理を説明するフローチャートである。図16を参照して、各端末は、ビーコン要求パケットを受信した場合には(ステップS1601)、ビーコン要求パケットの送信元に対する最適な変調方式を選択する(ステップS1602)。経路情報又は過去の通信履歴から最適な変調方式がわかっていた場合には、その変調方式を用いてビーコン応答パケットを送信する(ステップS1603)。最適な変調方式がわからなかった場合には、CE要求とCE応答とを用いて最適な変調方式を調べるものとする。各端末は、ビーコン応答パケットを送信した端末から確定応答パケットを受信した場合には(ステップS1604)、受信端末情報を更新する(ステップS1605)。受信端末情報から全ての端末が受信可能な変調方式のうち、最高速なものを最適な変調方式として選択する。その後、ビーコンの中継処理を開始する(ステップS1607)。
 登録情報更新パケットのうち中継開始を指示するものを受信した場合には(ステップS1611)、受信端末情報を更新し(ステップS1612)、受信端末情報から全ての端末が受信可能な変調方式のうち、最高速なものを最適な変調方式として選択する(ステップS1613)。その後、ビーコンの中継処理を開始する(ステップS1607)。
 登録情報更新パケットのうち中継停止を指示するものを受信した場合には(ステップS1621)、受信端末情報を更新したのち(ステップS1622)、中継停止の指示を送信した端末の他に、ビーコンを送信する端末の数を判定する(ステップS1623)。端末数がゼロになった場合には、ビーコンの中継処理を停止する(ステップS1625)。これにより、本端末によるビーコンの通信範囲が消失する。そのため、ビーコンの送信主体の数を削減して他の端末の通信範囲との重複を無くすことができる。その結果、全通信に消費される帯域の中でビーコンの送信に消費される帯域が占める割合が無駄に増大するのを防止でき、本来送信すべきデータに消費される帯域を効果的に確保できる。一方、他の受信端末が残っている場合には、登録された受信端末情報より最適な変調方式を選択し、ビーコン中継処理を継続する(ステップS1624)。
 (第2の実施形態)
 上記第1の実施形態では、ネットワークへの端末の新規参入時の動作について説明した。端末が移動しないPLCネットワークにおいて、状態の変化が発生するのはPLC端末を新たにPLCネットワークに接続した場合又はPLC端末をPLCネットワークから外した場合の他には、掃除機等の家電機器をPLCネットワークに接続した場合又はPLCネットワークに接続された電子レンジ等の家電機器をON/OFFした場合に雑音源が発生することによって、ネットワークの状況が変化する場合がある。本第2の実施態様では、家電機器の接続等により雑音源が発生した場合における動作について説明する。
 図17は、雑音源が発生する前のネットワーク図である。図17を参照して、端末A1701は、ビーコンの送信端末であり、通信速度が最低速度の変調方式を用いてビーコンを送信している。端末A1701の通信可能なカバーエリア1707に存在する端末B1702及び端末C1703は、ビーコンの中継を行っている。端末B1702は、端末D1704及び端末F1706に向けてビーコンを中継しており、端末D1704及び端末F1706の双方が受信可能な変調方式のうち最高速度の変調方式を用いてビーコンの中継を行っている。端末C1703は、端末E1705に向けて中継しており、端末E1705が受信可能な変調方式のうち最高速度の変調方式を用いてビーコン中継を行っている。
 図18は、図17の状態におけるビーコンツリーを表した図である。図18を参照して、端末B1702及び端末C1703は、端末A1701からビーコンを受信する。端末D1704及び端末F1706は、端末B1702からビーコンを受信する。また、端末E1705は、端末C1703からビーコンを受信する。
 図19は、図17の状態に雑音源1901が参入してきた場合のネットワーク図である。雑音源1901が参入した場合とは、例えば掃除機等の家電機器をPLCネットワークに接続した場合又はPLCネットワークに接続された電子レンジ等の家電機器をON/OFFした場合等をいう。雑音源1901が参入してきた場合には、その周囲のエリアのパケットロス率が飛躍的に上がる。そのロスエリア1902は、通信速度が高速な変調方式を用いている端末に対しては広く、通信速度が低速な変調方式を用いている端末に対しては狭くなる。そのため、通信速度が高速な変調方式を用いている端末B1702に対してロスエリア1902は広くなり、端末F1706はロスエリア1902に含まれる。すなわち、端末F1706は、端末B1702のカバーエリア1708に含まれているにもかかわらず、ビーコンを受信できないという状態が発生する。
 本第2の実施形態では、端末F1706は、ネットワークからビーコンを所定期間受信しないので、今までビーコンを送信していた端末B1702に対して、端末B1702との間で用いられる複数の変調方式の中で通信速度が一番低い変調方式を用いてビーコン要求パケットを送信する。これにより、端末F1706が端末B1702のカバーエリア1708内に存在する場合であっても、端末B1702からビーコンを受信できない場合に、端末B1702との間で用いられる複数の変調方式の中で通信速度が一番低い変調方式でビーコン要求パケットを送信すれば、ビーコン要求パケットの通信可能な範囲を最大限に拡大できる。その結果、ビーコン要求パケットが端末B1702に届き、端末F1706は、端末B1702との間で通信を再開することが可能となる。
 図20は、図19の状態におけるビーコンツリーを表した図である。図20を参照して、端末F1706は、端末B1702のカバーエリア1708から見れば端末B1702からビーコンを受信することになっているが、実際には受信できないという状況が発生する。
 図21は、雑音源1901の参入により端末B1702が低速な変調方式に切替えてビーコンの送信を始めた場合のネットワーク図である。本第2の実施形態では、端末F1706から送信されたビーコン要求パケットを端末B1702が受信する。そこで、端末B1702は、端末F1706がビーコンを受信できるように、ビーコンを送信する変調方式を通信速度が低い変調方式に変更する。ビーコンを送信する変調方式をより通信速度が低い変調方式に変更した場合、端末B1702のカバーエリア1708はカバーエリア2101へと広くなる。
 このように、通信速度が低速な変調方式を用いた場合には、パケットロスの発生するエリアが狭くなる。その結果、端末B1702は、端末F1706をカバーエリア2101内に入れることが出来き、端末F1706が端末B1702からのビーコンを受信することができるようになる。ビーコンツリーとしては図20から図18の状態に戻る。
 図22は、端末B1702が低速な変調方式に切替えて送信を始めたことにより、端末E1705がビーコンの中継元を端末C1703から端末B1702に切替えた場合のネットワーク図である。
 すなわち、端末E1705は、端末B1702がカバーエリア2101を広げたことにより、端末B1702及び端末C1703の双方のカバーエリア2101及び1709に属する。そのため、端末E1705は、端末B1702及び端末C1703の双方からビーコンを受信することになる。ここで、端末C1703が端末E1705へのビーコンの中継を中止すれば全体としての帯域消費を抑えることができる。そのため、本第2の実施形態では、端末E1705は、端末C1703からビーコンを受信する期間に、端末C1703との間で用いられる通信速度より遅い通信速度の変調方式により変調されたビーコンを端末B1702から受信した場合、ビーコンの送信元を端末C1703から端末B1702に切替える。
 通信速度がより遅い変調方式によりビーコンを変調する端末B1702が存在する場合、端末B1702のカバーエリア2101は、端末C1703のカバーエリア1709より広い。そのため、端末B1702からビーコンを受信できる端末も多いことから、より多くの端末が受信するビーコンの送信元である端末B1702を選択すれば、ビーコンの送信主体の数を削減できる。その結果、全通信に消費される帯域の中で制御パケットの送信に消費される帯域が占める割合を効果的に削減できる。
 また、ビーコンの送信元を端末C1703から端末B1702に切替える際、端末E1705内の制御パケット送信部404は、端末C1703に対してビーコンの送信元の切替えを通知する。端末C1703は、ビーコンの送信元の切替えを通知された場合であって、ビーコンの送信先が端末E1705以外に存在しない場合、ビーコンの送信を停止する。
 このように、ビーコンの送信元を端末C1703から端末B1702に切替える際、端末C1703に対してビーコンの送信元の切替えを通知すると、ビーコンの送信元である端末C1703では通知に基づいてビーコンの送信を停止することができる。これにより、ビーコンの送信主体の数を削減でき、その結果、全通信に消費される帯域の中でビーコンの送信に消費される帯域が占める割合を効果的に削減できる。
 また、端末C1703がビーコンの送信を停止した場合、端末C1703によるビーコンのカバーエリア1709が消失する。これにより、端末B1702のカバーエリア2101との重複が無くなり、全通信に消費される帯域の中でビーコンの送信に消費される帯域が占める割合が無駄に増大するのを防止できる。その結果、本来送信すべきデータに消費される帯域を効果的に確保できる。
 図23は、図22の状態におけるビーコンツリーを表した図である。図23を参照して、端末C1703は、受信のみを行う端末となり、端末B1702は、端末D1704、端末E1705、及び端末F1706に向けてビーコンを送信している。
 図24は、図22の状態から雑音源1901が離脱した場合のネットワーク図である。図24を参照して、雑音源1901が離脱した場合でも、端末E1705及び端末F1706は、端末B1702からビーコンを継続して受信する。なお、端末E1705がビーコンの送信元を端末B1702から端末C1703に切替えれば、端末E1705においては変調方式を高速なものに切替えることが可能となる。この場合、ビーコンに、端末E1705-端末C1703間の経路情報及び端末E1705-端末B1702間の経路情報を含ませ、端末E1705がこの経路情報に基づいて判断するようにしてもよい。
 図25は、図17から図24へ状態遷移していく過程のシーケンス図である。図25を参照して、端末E1705は、端末C1703からビーコン2501を受信しており、端末F1706は、端末B1702からビーコン2501を受信している。雑音源が参入したことにより、端末F1702は、端末B1702から送信されているビーコン2502を受信できない。端末F1706は、所定期間ビーコンを受信しないので、端末B1702との間で用いられる複数の変調方式の中で通信速度が一番低い変調方式を用いてビーコン要求2511を送信する。これにより、端末F1706が端末B1702のカバーエリア1708内に存在する場合であっても、端末B1702からビーコンを受信できない場合に、端末B1702との間で用いられる複数の変調方式の中で通信速度が一番低い変調方式でビーコン要求パケットを送信すれば、ビーコン要求2511の通信可能な範囲を最大限に拡大できる。その結果、ビーコン要求2511は端末B1702に届き、端末F1706は、端末B1702との間で通信を再開することが可能となる。
 ビーコン要求2511を受信した端末B1702は、CE要求2512を端末F1706に送信し、その応答としてCE応答2513を端末F1706から受信することにより、雑音源があった場合での最適な変調方式を選択する。端末B1702は、最適な変調方式にてビーコン応答2514を返す。端末F1706は、ビーコン応答2514が受信できた場合、確定応答2515を返信する。ここでは、端末B1702は、端末D1704との間すでに通信をしているので(図19を参照)、端末D1704及び端末F1706との間で共通して使用できる最高速度を決定する。確定応答を受信した端末B1702は、端末F1706をビーコン受信端末として再登録し、端末D1704をも含めて双方が受信可能な最適変調方式でビーコン1302を送信する。
 なお、ビーコン応答以下の動作は省略し、ビーコン自体の変調方式を変更してもよい。その場合に、ビーコンがロスするとビーコン要求を再び送信することになる。
 変調方式を変更した端末B1702からのビーコンは、端末F1706にロスせず届くようになる。この場合、端末E1705は、端末B1702及び端末C1703の双方からビーコン2503を受信するようになる。本第2の実施形態では、端末E1705が端末C1703からビーコンを受信する期間に、端末C1703との間で用いられる通信速度より遅い通信速度の変調方式により変調されたビーコンを端末B1702から受信した場合、ビーコンの送信元を端末C1703から端末B1702に切替える。
 通信速度がより遅い変調方式によりビーコンを変調する端末B1702が存在する場合、端末B1702のカバーエリア2101は、端末C1703のカバーエリア1709より広い。そのため、端末B1702からビーコンを受信できる端末も多いことから、より多くの端末が受信するビーコンの送信元である端末B1702を選択すれば、ビーコンの送信主体の数を削減できる。その結果、全通信に消費される帯域の中で制御パケットの送信に消費される帯域が占める割合を効果的に削減できる。
 端末E1705は、端末B1702を選択するために、端末C1703に向けて登録情報更新パケット2516を送信し、ビーコン中継の停止を要求する。端末C1703では、更新パケット2516を受信した場合であって、ビーコンの送信先が端末E1705以外に存在しない場合、ビーコンの送信を停止する。これにより、ビーコンの送信主体の数を削減でき、その結果、全通信に消費される帯域の中でビーコンの送信に消費される帯域が占める割合を効果的に削減できる。また、端末C1703がビーコンの送信を停止した場合、端末B502によるビーコンのカバーエリア1709が消失する。これにより、端末B1702のカバーエリア2101との重複が無くなり、全通信に消費される帯域の中でビーコンの送信に消費される帯域が占める割合が無駄に増大するのを防止できる。その結果、本来送信すべきデータに消費される帯域を効果的に確保できる。
 端末E1705は、端末B1702に向けて登録情報の更新パケット2517を送信し、ビーコン中継の開始を要求する。これにより、端末E1705は、ビーコン2504を端末B1702からのみ受信するようになる。なお、端末B1702からのビーコンは、ブロードキャストで送信されているため、端末E1705に届いている。端末E1705が端末B1702へ登録情報更新パケット2517を送信して中継開始を要請するのは、端末E1705が端末B1702からのビーコンを受信している端末であることを端末B1702に知らせるためである。
 図26は、第2の実施形態における、各種状態におけるネットワーク全体でのビーコンパケットの消費する帯域を時間で表した図である。雑音が無い場合においては、高速な変調を用いることによって、消費する帯域をおさえることが可能となっている(図26(a))。雑音が発生した場合には低速な変調を用いざるを得ないため、一時的に帯域消費が多くなっている(図26(b))。低速な変調を用いた場合には受信できる可能性のある端末数が増加するが、第2の実施形態のように、中継先の端末を選ぶことによって高速な変調を用いた場合と同様な効果を得られる(図26(c))。
 図27Aは、第2の実施態様における各端末のビーコンの受信処理を説明したフローチャートである。なお、本第2の実施形態における各端末におけるビーコン送信処理は、図16で説明した第1の実施形態の処理と同様であるので、省略する。
 図27Aを参照して、雑音によるパケットロスが発生していることを検知した各端末は、最低速度の変調方式でビーコン要求パケットを送信する(ステップS2701、S2702)。ここでは各端末は、所定期間ビーコンを受信しなくなったことにより、雑音によるパケットロスが発生したと判断する。なお、中継端末が最低速度でない変調方式でビーコン中継を行っていた場合には、中継端末のアドレスを宛先としてビーコン要求パケットをユニキャスト送信すればよい。それに対して中継端末からビーコン応答パケットを受信できた場合には(ステップS2703)、受信可能になったとして、確定応答パケットを中継端末に対して送り(ステップS2704)、引き続きその中継端末にビーコンを中継してもらえばよい。ビーコン応答パケットを受信できなかった場合でも、中継端末から次のビーコンが受信可能となった場合には、その中継端末からのビーコンの中継を継続する。中継端末から次のビーコンを受信できない場合は、ビーコン要求パケットを再送信する。
 一方、各端末は、ビーコンを受信した場合には(ステップS2711)、変調方式が自端末に適合してペイロードを受信できるか否かを確認する(ステップS2712)。ペイロードの受信ができない場合は、ステップS2701の処理に戻る。ペイロードの受信が可能な場合は、ビーコンの送信元が、現在の中継端末と一致したら通常のビーコン受信処理に戻る。ビーコンの送信元が、現在の中継端末と不一致の場合には(ステップS2713)、現在の中継端末と、ビーコンの送信元の端末とのどちらが全体の消費帯域が少ないかを判断する(ステップS2714)。
 ビーコンの送信元の端末が用いている通信速度と、現在の中継端末が用いる通信速度とを比較して、ビーコンの送信元の端末が用いている通信速度が、現在の中継端末が用いる通信速度より速い変調方式によりビーコンを変調する場合、ビーコンの送信元の端末によるビーコンの通信範囲の方が狭くなる。このような場合、現在の中継端末の代わりにビーコンの送信元の端末を選択すれば、ビーコンの送信主体の数を削減できると共に、ネットワーク全体に占めるビーコンの通信範囲を狭めることができる。この場合には、現在の中継端末より、ビーコンの送信元の端末に中継してもらった方が全体の消費帯域が少ないと判断できるので、現在の中継端末に、登録情報更新パケットを送信し、中継停止を要請する(ステップS2715)。それと同時に、ビーコンの送信元の端末に新しい中継端末になってもらうように、登録情報更新パケットを送信し、中継開始を要請する(ステップS2716)。その結果、全通信に消費される帯域の中でビーコンの送信に消費される帯域が占める割合を効果的に削減できる。なお、上記判断は、ビーコンに含まれる経路情報に基づいて行ってもよい。
 また、第2の実施形態における各端末のビーコン受信処理は、図27Aに示す以外にも、図27Bに示す動作を行うことも可能である。図27Bは、第2の実施態様における各端末のビーコンの受信処理を説明したフローチャートである。なお、本第2の実施形態における各端末におけるビーコン送信処理は、図16で説明した第1の実施形態の処理と同様であるので、省略する。
 図27Bを参照して、各端末は、雑音によるパケットロスが発生しているか否かを判定する(ステップS2701)。各端末は、雑音によるパケットロスが発生していると判定した場合は、他の端末からビーコンを受信したか否かを判定する(ステップS2711)。他の端末からビーコンを受信していないことを検知した各端末は、最低速度の変調方式でビーコン要求パケットを送信する(ステップS2702)。以降の動作は、図27Aを用いて説明したものと同様であるので、説明を省略する。
 (第3の実施形態)
 上記第1及び第2の実施形態では、中継先アドレスをff:ff:ff:ff:ff:ffとし、変調方式としては特定の端末に合わせた変調方式を用いる場合について説明した。この方式は、変調方式として低速から高速まで数段階にわかれており、自分の受信可能な変調より低速な変調方式は、全て受信できる場合に有効である。しかし、適応変調方式(OFDMにおけるサブキャリア毎に変調方式を変更するような方式)を用いた場合には、特定の2端末間に特化された変調方式となるため、非常に高速な通信が可能となる。従って、複数の端末に受信可能な変調方式で通信するよりも、特定の2端末間に特化する方がより帯域消費が少ない可能性がある。
 そこで、本第3の実施形態では、中継先アドレスをff:ff:ff:ff:ff:ffとし、変調方式としては通信速度が一番低い変調方式を用いる送信方法と(以下、「ブロードキャスト」という)と、中継先アドレスを特定端末のアドレスとし、変調方式としては中継元と中継先間で通信速度が一番高い変調方式を用いる送信方法(以下、「ユニキャスト」という)と、を併用して帯域消費を下げる場合の動作について説明する。なお、ユニキャストは受信端末より送信端末へデータが正常に受信完了したことを通知する肯定応答(Acknowledgement:以下、「ACK」という)が返されるものとし、再送を繰り返してもACKが返ってこない場合にパケットロスが発生したことがわかる。
 図28は、本第3の実施形態における各機能を説明する機能ブロック図である。基本的には、第1の実施形態の図4と同じである。第1の実施形態と異なる点は、図4では変調方式決定部402を備えていたが、図28ではその代わりに中継先アドレス決定部2802を設けた点である。図28において、中継先アドレス決定部2802は、利用効率判定部403から出力されたデータをもとに、中継先アドレスを決定する。変調方式は、中継先のアドレスが決定されると自動的に決定されるものとする。なお、中継先アドレス決定部2802は、第1の実施形態の変調方式決定部402と組み合わせて使用してもよい。
 図29は、雑音源が発生する前のネットワーク図である。図29を参照して、端末A1701は、ビーコンの送信端末であり、ブロードキャストを用いてビーコンを送信している。端末A1701の通信可能なカバーエリア2901に存在する端末B1702及び端末C1703は、ユニキャストを用いてビーコンの中継を行っている。端末B1702は、端末D1704及び端末F1706に向けてビーコンを中継している。端末B1702は、端末D1704には、端末D1704が受信可能な変調方式のうち最高速度の変調方式を用いてビーコンの中継を行っている。また、端末F1706に対しても同様である。端末C1703は、端末E1705に向けてビーコンを中継しており、端末E1705が受信可能な変調方式のうち最高速度の変調方式を用いてビーコンの中継を行っている。
 図30は、第2の実施形態における図19と同様に、図29の状態に雑音源1901が参入してきた場合のネットワーク図である。図30を参照して、端末B1702がビーコンをユニキャストで端末F1706に送信した場合であって、端末F1706からACKが返ってこなかった場合に、端末B1702による端末F1706へのビーコンの再送が行われる。さらに、ユニキャスト送信が送信先の端末に到達しない(複数回の送信を行ったがACKが返ってこない)場合には、端末B1702は、CE要求とCE応答とにより最適な変調速度を再決定する。端末D1704及び端末F1706に送信するためのユニキャストの帯域消費の合計がブロードキャストの帯域消費より大きい場合には、端末B1702は、端末D1704及び端末F1706へのビーコンの送信方式をブロードキャストに変更する。
 なお、本第3の実施形態では、ユニキャストによるビーコンの送信を複数回行ったがACKが返ってこない場合には、CE要求とCE応答とにより最適な変調速度を再決定するが、これに限られるものではなく、ユニキャストによるビーコンの送信に対するACKが所定期間返ってこない場合に上記再決定を行ってもよい。また、新規端末が参入した場合も同様の処理を行うことができる。すなわち、端末B1702が、端末D1704、端末F1706、及び新規端末を含めた3つの端末にビーコンをユニキャストで送信するよりもブロードキャストで送信した場合の方が、帯域消費が少ない場合も同様である。
 図31は、端末B1702がビーコン送信方式をブロードキャストに変更した場合のネットワーク図である。図31を参照して、端末B1702がブロードキャストにビーコンの送信方式を変更すると、変調方式としては通信速度が一番低い変調方式を用いるため、端末B1702のカバーエリア2902は、カバーエリア3101へと広くなる。
 このように、端末B1702は、端末F1706に対しビーコンをユニキャストで送信し、端末F1706からビーコンに対応するACKを所定回数又は所定期間受信しない場合、ネットワークで用いられる複数の変調方式の中で通信速度が一番低い変調方式でブロードキャストによりビーコンを端末F1706に対して送信する。これにより、ビーコンの送信端末B1702の方で受信端末F1706がビーコンを受信できない状態にあると判断し、ビーコンの通信可能な範囲を拡大して受信端末F1706がビーコンを受信できる態様でビーコンを送信し直す。そのため、ビーコンは受信端末F1706に届き、端末B1702は、受信端末F1706との間での通信を再開できる。
 図32は、端末B1702がブロードキャストに切替えて送信を始めたことにより、端末E1705がビーコンの中継元を端末C1703から端末B1702に切替えた場合のネットワーク図である。図32を参照して、端末B1702のカバーエリア2902がカバーエリア3101へと拡大したことにより、端末E1705は、端末B1702のカバーエリア3101及び端末C1703のカバーエリア2903の双方に含まれる。そのため、端末E1705は、端末B1702からブロードキャストでビーコンを受信すると共に、端末C1703からユニキャストでビーコンを受信することになる。ここで、端末C1703が端末E1705へのユニキャストによるビーコンの中継を中止すれば、全体としての帯域消費を抑えることができる。そのため、本第3の実施形態では、端末E1705は、端末C1703からユニキャストにてビーコンを受信する期間に、端末C1703との間で用いられる通信速度より遅い通信速度の変調方式により変調されたビーコンを端末B1702から受信した場合、ビーコンの送信元を端末C1703から端末B1702に切替える。
 通信速度がより遅い変調方式により、例えばブロードキャストでビーコンを送信する端末B1702が存在する場合、端末B1702のカバーエリア3101は端末C1703のカバーエリア2903より広い。そのため、端末B1702からビーコンを受信できる端末も多いことから、より多くの端末が受信するビーコンの送信元である端末B1702を選択すれば、ビーコンの送信主体の数を削減できる。その結果、全通信に消費される帯域の中で制御パケットの送信に消費される帯域が占める割合を効果的に削減できる。
 また、ビーコンの送信元を端末C1703から端末B1702に切替える際、端末E1705内の制御パケット送信部404は、端末C1703に対してビーコンの送信元の切替えを通知する。端末C1703は、ビーコンの送信元の切替えを通知された場合であって、ビーコンの送信先が端末E1705以外に存在しない場合、ビーコンの送信を停止する。
 このように、ビーコンの送信元を端末C1703から端末B1702に切替える際、端末C1703に対してビーコンの送信元の切替えを通知すると、ビーコンの送信元である端末C1703では通知に基づいてビーコンの送信を停止することができる。これにより、ビーコンの送信主体の数を削減でき、その結果、全通信に消費される帯域の中でビーコンの送信に消費される帯域が占める割合を効果的に削減できる。
 また、端末C1703がユニキャストによるビーコンの送信を停止した場合、端末C1703によるビーコンのカバーエリア2903が消失する。これにより、端末B1702のカバーエリア3101との重複が無くなり、全通信に消費される帯域の中でビーコンの送信に消費される帯域が占める割合が無駄に増大するのを防止できる。その結果、本来送信すべきデータに消費される帯域を効果的に確保できる。
 なお、この処理は実施の形態2と同様である。
 図33は、図29から図32へ状態遷移していく過程のシーケンス図である。図33を参照して、ビーコン3301は、端末B1702から端末D1704及び端末F1706へとユニキャストで送信され、また、端末C1703から端末E1705へとユニキャストで送信されている。ユニキャストで送信されたパケット3311、3313、及び3351に対してはそれぞれACK3312、3314、及び3352が返ってきており、正常に送信が完了されている。
 次に、ビーコン3302も端末B1702から端末D1704及び端末F1706へとユニキャストで送信され、また、端末C1703から端末E1705へとユニキャストで送信されている。ここで、パケット3315とパケット3353とに対しては、ACK3316とACK3354とが返信されており、正常に送信が完了されている。しかし、パケット3317に対しては、ACKが返信されていない。そのため、パケット3318及びパケット3319が再送されている。それでもACKパケットを受信できない場合、端末B1702は、その変調方式でパケットを伝達できないと判断する。
 本第3の実施形態では、雑音源1901が発生している。ネットワークの状態の変化を検知した端末B1702は、CE要求3320とCE応答3321とを端末F1706との間でやり取りして、その状態で伝達可能な最も速度の速い変調方式を調査する。端末B1702は、その結果を用いて、ユニキャストを複数用いてビーコンを送信した方がよいのか、ブロードキャストを用いてビーコンを送信した方が良いのかを判定する。ブロードキャストを用いてビーコンを送信した方が良いと判断した端末B1702は、ビーコン3303をブロードキャストで送信する。なお、ビーコン3302は、端末C1703から端末E1705へとユニキャストを用いてパケット3353により送信される。これに対して、端末E1705から端末C1703へとACKパケット3354が返信されている。
 次に、ビーコン3303を端末B1702がブロードキャスト送信したパケット3322は、端末D1704及び端末F1706だけではなく、端末E1705でも受信される。また、端末E1705は、端末C1703からビーコン3303をユニキャストしたパケット3355も受信している。端末E1705は、第2の実施形態と同様の方法によって、端末B1702からの受信に切り換える。すなわち、端末E1705は、端末C1703からビーコン3303のパケット3355をユニキャストで受信し、端末C1703へACKパケット3356を返信している期間に、端末C1703との間で用いられる通信速度より遅い通信速度の変調方式により変調されたビーコン3303のパケット3322を、例えばブロードキャストで端末B1702から受信した場合、ビーコンの送信元を端末C1703から端末B1702に切替える。
 通信速度がより遅い変調方式によりビーコン3303のパケット3322を変調する端末B1702が存在する場合、端末B1702のカバーエリア3101は、端末C1703のカバーエリア2903より広い。そのため、端末B1702からビーコン3303のパケット3322を受信できる端末も多いことから、より多くの端末が受信するビーコン3303のパケット3322の送信元である端末B1702を選択すれば、ビーコンの送信主体の数を削減できる。その結果、全通信に消費される帯域の中で制御パケットの送信に消費される帯域が占める割合を効果的に削減できる。
 端末E1705は、端末C1703に向けて登録情報更新パケット3358を送信し、ビーコン中継の開始を要求する。これにより、端末E1705は、ビーコン3304のパケット3323及びビーコン3305のパケット3324を端末B1702からのみ受信するようになる。なお、端末B1702からのビーコンは、ブロードキャストで送信されているため、端末E1705に届いている。端末E1705が端末B1702へ登録情報更新パケット3358を送信して中継開始を要請するのは、端末E1705が端末B1702からのビーコンを受信している端末であることを端末B1702に知らせるためである。
 また、ビーコンの送信元を端末C1703から端末B1702に切替える際、端末E1705内の制御パケット送信部404は、端末C1703に対してビーコンの送信元の切替えを登録情報更新パケット3357にて通知する。端末C1703は、ビーコンの送信元の切替えを通知された場合であって、ビーコンの送信先が端末E1705以外に存在しない場合、ビーコン3303の送信を停止する。
 その後、端末B1702からブロードキャストにて送信されるビーコン3304のパケット3323及びビーコン3305のパケット3324は、端末D1704、端末E1705、及び端末F1705に届くことになる。
 このように、ビーコンの送信元を端末C1703から端末B1702に切替える際、端末C1703に対してビーコンの送信元の切替えを通知すると、ビーコンの送信元である端末C1703では通知に基づいてビーコンの送信を停止することができる。これにより、ビーコンの送信主体の数を削減でき、その結果、全通信に消費される帯域の中でビーコンの送信に消費される帯域が占める割合を効果的に削減できる。
 また、端末C1703がビーコンの送信を停止した場合、端末C1703によるビーコンのカバーエリア2903が消失する。これにより、端末B1702のカバーエリア3101との重複が無くなり、全通信に消費される帯域の中でビーコンの送信に消費される帯域が占める割合が無駄に増大するのを防止できる。その結果、本来送信すべきデータに消費される帯域を効果的に確保できる。
 図34は、第3の実施形態における各種状態における全ネットワークでのビーコンパケットの消費する帯域を時間で表した図である。雑音が無い場合においては、各端末間で最高速な変調を用いてユニキャストすることにより、消費する帯域をおさえることが可能となっている(図34(a))。雑音が発生した場合には低速な変調を用いてユニキャストを行うことも可能であるが(図34(b))、本第3の実施形態では、ブロードキャストを用いて受信可能な端末数を増やす方が効率がよくなる(図34(c))。
 図35は、第3の実施形態における各端末のビーコンの送信処理を説明したフローチャートである。なお、本第3の実施形態における各端末におけるビーコン受信処理は、図27で説明した第2の実施形態の処理と同様であるので、省略する。具体的には、端末B1702のカバーエリアが拡大したことにより、端末B1702のカバーエリア3101及び端末C1703のカバーエリア2903の双方に端末E1705が含まれるようになった場合における端末E1705の処理は、図27A、BのステップS2711~S2716に示す処理と同様である。
 まず、中継端末は、受信端末との間でビーコンをユニキャストで送信している。所定回数又は所定期間ビーコンに対するACKを受信できなかった中継端末は、現在の変調方式ではビーコンを中継できないと判断する(ステップS3501)。次に、中継端末は、ビーコン送信先に対する最適変調方式をCE要求及びCE応答を用いて調査する(ステップS3502)。中継端末は、調査結果を踏まえて、全体の帯域消費が最も小さくなるのがユニキャストか、ブロードキャストなのかを判定する(ステップS3503)。判定した結果をもとにビーコン中継を開始する(ステップS3504)。
 このように、中継端末は、受信端末に対しビーコンをユニキャストで送信し、受信端末からビーコンに対応するACKを所定回数又は所定期間受信しない場合、ネットワークで用いられる複数の変調方式の中で通信速度が一番低い変調方式でビーコンを受信端末に対して送信する。これにより、ビーコンの中継端末の方で受信端末がビーコンを受信できない状態にあると判断し、ビーコンの通信可能な範囲を拡大して受信端末がビーコンを受信できる態様でビーコンを送信し直す。その結果、ビーコンは受信端末に届き、中継端末は受信端末との間での通信を再開できる。
 本発明によれば、電力線を用いたアドホックなネットワークにおいて、全通信に消費される帯域の中で制御パケットの送信に消費される帯域が占める割合を大幅に削減等して、本来送信したいデータの送信を確保できる通信端末装置及び通信方法等を提供できる。
101 サービスエリア
102~110、501~505、701、1701~1706 端末
201 メモリ
202 CPU
203 ネットワークインタフェース
301 PHYヘッダ
302 MACヘッダ
303 ペイロード
401 受信処理部
402 変調方式決定部
403 利用効率判定部
404 制御パケット送信部
405 送信処理部
506~508、901、1707~1709、2101、2901~2903、3101 カバーエリア
1301~1303、2501~2504、3301~3305 ビーコン
1304~1310、2511~2517、3311~3324、3351~3358 パケット
1901 雑音源
1902、2102 ロスエリア
2802 中継先アドレス決定部

Claims (16)

  1.  電力線通信のネットワークと接続された通信部と、
     前記ネットワーク上の端末との通信経路の設定に用いる制御パケットを前記ネットワークから所定期間受信しない場合、前記ネットワークで用いられる複数の変調方式の中で通信速度が一番低い変調方式で前記制御パケットの依頼パケットを変調して、前記ネットワークに送信する制御部とを備える、通信端末装置。
  2.  制御パケットを前記ネットワークから所定期間受信しない場合とは、起動時を含むことを特徴とする、請求項1に記載の通信端末装置。
  3.  前記制御部は、前記依頼パケットに応答した第1端末との間で用いられる通信速度が一番高い変調方式で変調された制御パケットを前記第1端末から受信することを特徴とする、請求項1に記載の通信端末装置。
  4.  前記制御部は、前記第1端末から前記制御パケットを受信する期間に、前記第1端末との間で用いられる通信速度が一番高い変調方式と比較して通信速度が異なる変調方式で変調された制御パケットを第2端末から受信した場合、前記制御パケットの送信元を前記第1端末から前記第2端末に切替えることを特徴とする、請求項3に記載の通信端末装置。
  5.  前記制御部は、前記制御パケットの送信元を前記第1端末から前記第2端末に切替える際、前記第1端末に対して前記制御パケットの送信元の切替えを通知することを特徴する、請求項4に記載の通信端末装置。
  6.  前記第1端末は、前記制御パケットの送信元の切替えを通知された場合、前記制御パケットの送信先が他に存在する場合、この他の端末との間で用いられる通信速度が一番高い変調方式で前記制御パケットを変調して前記他の端末に送信することを特徴とする、請求項5に記載の通信端末装置。
  7.  前記第1端末は、前記制御パケットの送信元の切替えを通知された場合、前記制御パケットの送信先が他に存在しない場合、前記制御パケットの送信を停止することを特徴とする、請求項5に記載の通信端末装置。
  8.  前記制御部は、前記第2端末から前記制御パケットを受信してから所定期間前記制御パケットを受信しなくなった場合に、前記ネットワークで用いられる複数の変調方式の中で通信速度が一番低い変調方式で前記依頼パケットを変調して、前記ネットワークに送信することを特徴とする、請求項1に記載の通信端末装置。
  9.  前記ネットワーク上の端末との通信経路に関する情報は、中継機を示す情報、前記中継機を介してどの経路を介して親機と接続できるかを示した経路情報、及び前記中継機を介してどの経路を介してネットワーク上の他の端末と接続できるかを示した経路情報の中の少なくともいずれか1つを含むことを特徴とする、請求項1に記載の通信端末装置。
  10.  前記ネットワークの中で用いられる変調方式の中で通信速度が一番低い変調方式で変調された前記制御パケットは、ブロードキャストパケットであり、
     前記第1端末との間で用いられる通信速度が一番高い変調方式で変調された前記制御パケットは、ユニキャストパケットであることを特徴とする、請求項3に記載の通信端末装置。
  11.  前記第1端末との間で用いられる通信速度が一番高い変調方式で変調された前記制御パケットは、ブロードキャストパケットであり、
     前記第1端末との間で用いられる通信速度が一番高い変調方式より通信速度が遅い変調方式で変調され、前記第2端末から受信する前記制御パケットは、ブロードキャストパケットであることを特徴とする、請求項4に記載の通信端末装置。
  12.  前記第1端末との間で用いられる通信速度が一番高い変調方式で変調された前記制御パケットは、ユニキャストパケットであり、
     前記第1端末との間で用いられる通信速度が一番高い変調方式より通信速度が遅い変調方式で変調され、前記第2端末から受信する前記制御パケットは、ブロードキャストパケットであることを特徴とする、請求項4に記載の通信端末装置。
  13.  電力線通信のネットワークと接続された端末に対して前記端末との通信経路の設定に用いる制御パケットを送信する通信部と、
     前記端末から前記制御パケットに対応する応答を所定期間受信しない場合、前記ネットワークで用いられる複数の変調方式の中で通信速度が一番低い変調方式で前記制御パケットを変調して、前記端末に対して送信する制御部とを備える、通信端末装置。
  14.  前記通信部は、前記端末に対して前記制御パケットをユニキャストで送信し、
     前記制御部は、前記端末から前記制御パケットに対応する応答を所定期間受信しない場合、ブロードキャストで前記制御パケットを送信することで、前記ネットワークで用いられる複数の変調方式の中で通信速度が一番低い変調方式で前記制御パケットを変調して、前記端末に対して送信することを特徴とする、請求項13に記載の通信端末装置。
  15.  前記端末から前記制御パケットに対応する応答を所定期間受信しない場合とは、前記制御部が、前記端末から前記制御パケットに対応する応答を所定回数受信しない場合を含むことを特徴とする、請求項13に記載の通信端末装置。
  16.  電力線通信のネットワークと接続された端末との間で通信経路の設定に用いる制御パケットを前記ネットワークから所定期間受信しない場合、前記ネットワークで用いられる複数の変調方式の中で通信速度が一番低い変調方式で前記制御パケットの依頼パケットを変調して、前記ネットワークに送信することを特徴とする、通信方法。
PCT/JP2009/001861 2008-04-25 2009-04-23 通信端末装置及び通信方法 WO2009130905A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2010509083A JPWO2009130905A1 (ja) 2008-04-25 2009-04-23 通信端末装置及び通信方法
CN200980000482A CN101689887A (zh) 2008-04-25 2009-04-23 通信终端装置及通信方法
EP09734243.0A EP2270999A4 (en) 2008-04-25 2009-04-23 COMMUNICATION TERMINAL DEVICE AND COMMUNICATION METHOD
US12/666,337 US20100195569A1 (en) 2008-04-25 2009-04-23 Communication terminal device and communication method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008115684 2008-04-25
JP2008-115684 2008-04-25

Publications (1)

Publication Number Publication Date
WO2009130905A1 true WO2009130905A1 (ja) 2009-10-29

Family

ID=41216646

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/001861 WO2009130905A1 (ja) 2008-04-25 2009-04-23 通信端末装置及び通信方法

Country Status (5)

Country Link
US (1) US20100195569A1 (ja)
EP (1) EP2270999A4 (ja)
JP (1) JPWO2009130905A1 (ja)
CN (1) CN101689887A (ja)
WO (1) WO2009130905A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015045388A1 (ja) * 2013-09-27 2015-04-02 パナソニックIpマネジメント株式会社 ビーコン信号を用いた通信装置
JP2016513439A (ja) * 2013-02-28 2016-05-12 クゥアルコム・インコーポレイテッドQualcomm Incorporated ポーリングビーコン

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009072175A1 (ja) * 2007-12-03 2009-06-11 Fujitsu Limited パケット通信装置及びパケット通信方法
US8929398B2 (en) 2011-06-20 2015-01-06 Texas Instruments Incorporated Data frame for PLC having destination address in the PHY header
US8836501B2 (en) * 2011-10-24 2014-09-16 Qualcomm Incorporated Methods and devices for serving as a proxy beacon for a tracking device
JP5962750B2 (ja) * 2012-03-22 2016-08-03 富士通株式会社 アドホックネットワークシステム、ノード、および通信方法
US9215570B2 (en) 2013-11-07 2015-12-15 Paypal, Inc. Beacon content propagation
US9788263B1 (en) * 2014-02-15 2017-10-10 Quantenna Communications, Inc. WiFi client with hybrid communication capabilities for wireless local area network
US20150372919A1 (en) * 2014-06-20 2015-12-24 Qualcomm Incorporated Systems and methods for enhanced signaling for beacon load reduction
SG10201500769UA (en) * 2015-01-30 2016-08-30 Gridcomm Pte Ltd A discovery method for a power line communication network
US10348806B2 (en) 2016-06-30 2019-07-09 Paypal, Inc. Transferring data using mobile devices

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005333378A (ja) * 2004-05-19 2005-12-02 Ntt Docomo Inc 無線lanモード切替方法及び無線lan端末
JP2006067557A (ja) * 2004-07-27 2006-03-09 Matsushita Electric Works Ltd 通信ルートの構築方法及び通信端末
JP2006319447A (ja) * 2005-05-10 2006-11-24 Hitachi Kokusai Electric Inc 無線局装置
JP2006345414A (ja) * 2005-06-10 2006-12-21 Ntt Docomo Inc 経路設定方法、データ集約ノード、データ送信ノード及び通信システム
JP2007158710A (ja) * 2005-12-05 2007-06-21 Shinko Electric Ind Co Ltd 端末装置および無線通信システム並びに送信電力設定方法
JP2007189636A (ja) * 2006-01-16 2007-07-26 Toshiba Corp 無線通信システムおよびこのシステムで用いられる基地局装置と移動無線端末装置
WO2008041291A1 (en) * 2006-09-29 2008-04-10 Fujitsu Limited Base station device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8238376B2 (en) * 2005-04-13 2012-08-07 Sony Corporation Synchronized audio/video decoding for network devices
KR100750173B1 (ko) * 2005-09-30 2007-08-17 삼성전자주식회사 전력선 통신 방법 및 장치
JP5094004B2 (ja) * 2005-10-20 2012-12-12 パナソニック株式会社 データ中継装置及びデータ中継方法
WO2007055399A1 (en) * 2005-11-10 2007-05-18 Matsushita Electric Industrial Co., Ltd. Method and apparatus for power line communication
US20070171925A1 (en) * 2006-01-25 2007-07-26 Murata Kikai Kabushiki Kaisha Multiplex superposed communication device
KR100750172B1 (ko) * 2006-03-31 2007-08-21 삼성전자주식회사 전력선 통신 네트워크 및 전력선 통신 방법
US8095131B2 (en) * 2008-03-26 2012-01-10 Symbol Technologies, Inc. Dynamic boolean channel masks

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005333378A (ja) * 2004-05-19 2005-12-02 Ntt Docomo Inc 無線lanモード切替方法及び無線lan端末
JP2006067557A (ja) * 2004-07-27 2006-03-09 Matsushita Electric Works Ltd 通信ルートの構築方法及び通信端末
JP2006319447A (ja) * 2005-05-10 2006-11-24 Hitachi Kokusai Electric Inc 無線局装置
JP2006345414A (ja) * 2005-06-10 2006-12-21 Ntt Docomo Inc 経路設定方法、データ集約ノード、データ送信ノード及び通信システム
JP2007158710A (ja) * 2005-12-05 2007-06-21 Shinko Electric Ind Co Ltd 端末装置および無線通信システム並びに送信電力設定方法
JP2007189636A (ja) * 2006-01-16 2007-07-26 Toshiba Corp 無線通信システムおよびこのシステムで用いられる基地局装置と移動無線端末装置
WO2008041291A1 (en) * 2006-09-29 2008-04-10 Fujitsu Limited Base station device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2270999A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016513439A (ja) * 2013-02-28 2016-05-12 クゥアルコム・インコーポレイテッドQualcomm Incorporated ポーリングビーコン
WO2015045388A1 (ja) * 2013-09-27 2015-04-02 パナソニックIpマネジメント株式会社 ビーコン信号を用いた通信装置

Also Published As

Publication number Publication date
US20100195569A1 (en) 2010-08-05
EP2270999A1 (en) 2011-01-05
EP2270999A4 (en) 2015-01-07
JPWO2009130905A1 (ja) 2011-08-11
CN101689887A (zh) 2010-03-31

Similar Documents

Publication Publication Date Title
WO2009130905A1 (ja) 通信端末装置及び通信方法
US9819393B2 (en) Joining process in a powerline communication (PLC) network
US20150163134A1 (en) Routing protocols for power line communications (plc)
TWI458279B (zh) 電力線通訊裝置及操作其裝置之方法
AU2007297050B2 (en) Selecting a leader node for an ad hoc network based on services
US7894378B2 (en) Method for updating a multicast state of a multicast group
US20130301649A1 (en) CSMA/CA for Channels in Power Line Communication (PLC) Networks
KR20050044307A (ko) 그물형 네트워크의 중앙 제어 장치 및 방법
CN108353464B (zh) 网状网络连接性
WO2007128206A1 (fr) Station relais, station de base et procédé pour étendre une zone de couverture d'une station de base dans un réseau radio
US10470100B2 (en) Node equipment, data packet forwarding method and mesh network system thereof
CN105873169A (zh) 一种无线自组网通信方法
CN102571149A (zh) 一种电力线通信的中继方法和节点
CN111757413A (zh) 无线Mesh网络中的广播与路由混合传输方法及系统
Park et al. Breath: a self-adapting protocol for wireless sensor networks in control and automation
CN110661550B (zh) 一种hplc通信链路中转发报文的方法、装置、存储介质和电子设备
EP2043300A1 (en) Data transmission network, method, network element and pro-gram
CN116614856A (zh) 一种适用于复杂环境的窄带无线信道动态组网的方法
CN105246128A (zh) 一种智能终端的组网方法及装置
CN110809276B (zh) 一种互不干扰的户用无线通信系统及其组网方法
CN111314239B (zh) 节点通信方法和装置
Müller et al. Towards Wireless HART Protocol Decentralization: A Proposal Overview
KR20160120025A (ko) 멀티 홉 N-스크린 서비스를 위한 WiMedia D-MAC에서의 효율적인 멀티 홉 자원 예약 방법
Dalal et al. MAC and Network Layer Issues and Challenges for IoT
JP2024111444A (ja) 無線端末、無線通信システム、無線通信方法およびプログラム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980000482.8

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2010509083

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2009734243

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09734243

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12666337

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE