WO2009128255A1 - プラズマディスプレイ装置 - Google Patents

プラズマディスプレイ装置 Download PDF

Info

Publication number
WO2009128255A1
WO2009128255A1 PCT/JP2009/001717 JP2009001717W WO2009128255A1 WO 2009128255 A1 WO2009128255 A1 WO 2009128255A1 JP 2009001717 W JP2009001717 W JP 2009001717W WO 2009128255 A1 WO2009128255 A1 WO 2009128255A1
Authority
WO
WIPO (PCT)
Prior art keywords
discharge
plane
panel
subfield
sustain
Prior art date
Application number
PCT/JP2009/001717
Other languages
English (en)
French (fr)
Inventor
村田充弘
福井裕介
若林俊一
浅野洋
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to US12/596,757 priority Critical patent/US8531357B2/en
Priority to CN2009800003577A priority patent/CN101681773B/zh
Publication of WO2009128255A1 publication Critical patent/WO2009128255A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/28Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels
    • G09G3/288Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels
    • G09G3/291Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels controlling the gas discharge to control a cell condition, e.g. by means of specific pulse shapes
    • G09G3/292Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels controlling the gas discharge to control a cell condition, e.g. by means of specific pulse shapes for reset discharge, priming discharge or erase discharge occurring in a phase other than addressing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/20Constructional details
    • H01J11/34Vessels, containers or parts thereof, e.g. substrates
    • H01J11/40Layers for protecting or enhancing the electron emission, e.g. MgO layers
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/28Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels
    • G09G3/288Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels
    • G09G3/291Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels controlling the gas discharge to control a cell condition, e.g. by means of specific pulse shapes
    • G09G3/292Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels controlling the gas discharge to control a cell condition, e.g. by means of specific pulse shapes for reset discharge, priming discharge or erase discharge occurring in a phase other than addressing
    • G09G3/2927Details of initialising
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/28Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels
    • G09G3/288Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels
    • G09G3/296Driving circuits for producing the waveforms applied to the driving electrodes
    • G09G3/2965Driving circuits for producing the waveforms applied to the driving electrodes using inductors for energy recovery
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/10AC-PDPs with at least one main electrode being out of contact with the plasma
    • H01J11/12AC-PDPs with at least one main electrode being out of contact with the plasma with main electrodes provided on both sides of the discharge space
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/06Details of flat display driving waveforms
    • G09G2310/066Waveforms comprising a gently increasing or decreasing portion, e.g. ramp

Definitions

  • the present invention relates to a plasma display device which is an image display device using a plasma display panel.
  • Plasma display panels are capable of high-speed display among thin image display elements and are easy to increase in size, and thus are put into practical use as large-screen display devices.
  • the panel consists of a front plate and a back plate bonded together.
  • the front plate is a glass substrate, a display electrode pair composed of scan electrodes and sustain electrodes formed on the glass substrate, a dielectric layer formed so as to cover the display electrode pair, and a protection formed on the dielectric layer And having a layer.
  • the protective layer is provided for the purpose of protecting the dielectric layer from ion collision and facilitating discharge.
  • the back plate includes a glass substrate, a data electrode formed on the glass substrate, a dielectric layer covering the data electrode, a partition formed on the dielectric layer, and red, green and blue formed between the partitions. And a phosphor layer that emits light.
  • the front plate and the rear plate face each other so that the display electrode pair and the data electrode intersect with each other across the discharge space, and the periphery is sealed with a low-melting glass.
  • a discharge gas containing xenon is sealed in the discharge space.
  • a discharge cell is formed in a portion where the display electrode pair and the data electrode face each other.
  • the plasma display device using the panel having such a configuration selectively generates gas discharge in each discharge cell of the panel, and excites and emits phosphors of red, green, and blue colors by ultraviolet rays generated at this time. Color display is performed.
  • a subfield method that is, a method in which one field period is divided into a plurality of subfields and gradation display is performed by a combination of subfields that emit light is generally used.
  • Each subfield has an initialization period, an address period, and a sustain period.
  • a predetermined voltage is applied to the scan electrode and the sustain electrode to generate an initialization discharge, and wall charges necessary for the subsequent address operation are formed on each electrode.
  • a scan pulse is sequentially applied to the scan electrode and an address pulse is selectively applied to the data electrode to generate an address discharge and form wall charges.
  • a sustain pulse is alternately applied to the display electrode pair, a sustain discharge is selectively generated in the discharge cell, and the phosphor layer of the corresponding discharge cell is caused to emit light, thereby displaying an image.
  • Patent Document 1 discloses a panel in which a magnesium oxide layer having a cathodoluminescence emission peak at 200 nm to 300 nm is formed by vapor-phase oxidation of magnesium vapor, and a display electrode constituting all display lines in an address period
  • a plasma display device including an electrode driving circuit that sequentially applies a scan pulse to one of each pair and supplies an address pulse corresponding to a display line to which the scan pulse is applied to a data electrode.
  • the present invention includes a front plate in which a display electrode pair is formed on a first glass substrate, a dielectric layer is formed so as to cover the display electrode pair, and a protective layer is formed on the dielectric layer, and a second glass substrate
  • a panel on which a back plate on which data electrodes are formed is arranged opposite to each other, and a discharge cell is formed at a position where the display electrode pair and the data electrode face each other, and an initialization period and address for generating an initializing discharge in the discharge cell
  • a plasma display apparatus comprising: a panel driving circuit for driving a panel by arranging a plurality of subfields having an address period for generating a discharge and a sustain period for generating a sustain discharge in time to form one field period
  • the protective layer includes a base protective layer formed of a metal oxide thin film containing at least one of magnesium oxide, strontium oxide, calcium oxide, and barium oxide, and a (100) plane.
  • One of the selective initializing operations for generating an initializing discharge in the performed discharge cell and from the subfield performing the all-cell initializing operation to the subfield immediately before the subfield performing the next all-cell initializing operation It is characterized in that the panel is driven by temporally arranging the subfields so that the magnitude of the luminance weight monotonously decreases.
  • FIG. 1 is a perspective view showing a structure of a panel according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing the configuration of the front plate of the panel.
  • FIG. 3A is a diagram showing an example of the shape of single crystal particles of the panel.
  • FIG. 3B is a diagram showing an example of the shape of single crystal particles of the panel.
  • FIG. 3C is a diagram showing an example of the shape of the single crystal particles of the panel.
  • FIG. 3D is a diagram showing an example of the shape of single crystal particles of the panel.
  • FIG. 4A is a view showing an electron micrograph showing the shape of magnesium oxide single crystal particles contained in the particle layer of the panel.
  • FIG. 4A is a view showing an electron micrograph showing the shape of magnesium oxide single crystal particles contained in the particle layer of the panel.
  • FIG. 4B is an electron micrograph showing the shape of magnesium oxide single crystal particles contained in the particle layer of the panel.
  • FIG. 4C is an electron micrograph showing the shape of magnesium oxide single crystal particles contained in the particle layer of the panel.
  • FIG. 5A is a diagram showing another shape of single crystal particles contained in the particle layer of the panel.
  • FIG. 5B is a diagram showing another shape of single crystal particles contained in the particle layer of the panel.
  • FIG. 5C is a diagram showing another shape of single crystal particles contained in the particle layer of the panel.
  • FIG. 5D is a view showing another shape of single crystal particles contained in the particle layer of the panel.
  • FIG. 5E is a diagram showing another shape of single crystal particles contained in the particle layer of the panel.
  • FIG. 5F is a diagram showing another shape of single crystal particles contained in the particle layer of the panel.
  • FIG. 6 is a diagram showing an electrode arrangement of the panel.
  • FIG. 7 is a drive voltage waveform diagram applied to each electrode of the panel.
  • FIG. 8 is a diagram showing a subfield configuration in the embodiment of the present invention.
  • FIG. 9A is a diagram showing the relationship between the discharge delay time of the panel and the elapsed time from the all-cell initialization operation in the embodiment of the present invention.
  • FIG. 9B is a diagram showing the relationship between the discharge delay time and the number of sustain pulses of the panel.
  • FIG. 10 is a diagram showing the lowest voltage applied to the data electrodes when the panel is configured in a descending coding subfield configuration and in an ascending coding subfield configuration.
  • FIG. 10 is a diagram showing the lowest voltage applied to the data electrodes when the panel is configured in a descending coding subfield configuration and in an ascending coding subfield configuration.
  • FIG. 11 is a circuit block diagram of the plasma display device in accordance with the exemplary embodiment of the present invention.
  • FIG. 12 is a circuit diagram of a scan electrode drive circuit and a sustain electrode drive circuit of the plasma display device.
  • FIG. 13 is a diagram showing a subfield configuration in another embodiment of the present invention.
  • FIG. 1 is a perspective view showing the structure of panel 10 in accordance with the exemplary embodiment of the present invention.
  • a front plate 20 and a back plate 30 are disposed so as to face each other, and an outer peripheral portion thereof is sealed with a low-melting glass sealing material.
  • the discharge space 15 inside the panel 10 is filled with a discharge gas such as xenon at a pressure of 400 Torr to 600 Torr.
  • a plurality of display electrode pairs 24 composed of the scanning electrodes 22 and the sustain electrodes 23 are arranged in parallel.
  • a dielectric layer 25 is formed on the glass substrate 21 so as to cover the display electrode pair 24, and a protective layer 26 mainly composed of magnesium oxide is formed on the dielectric layer 25.
  • a plurality of data electrodes 32 are arranged in parallel to each other in a direction orthogonal to the display electrode pair 24, and this is covered with the dielectric layer 33. ing. Further, a partition wall 34 is formed on the dielectric layer 33. A phosphor layer 35 that emits red, green, and blue light by ultraviolet rays is formed on the dielectric layer 33 and on the side surfaces of the partition wall 34.
  • a discharge cell is formed at a position where the display electrode pair 24 and the data electrode 32 intersect with each other, and a set of discharge cells having red, green, and blue phosphor layers 35 is a pixel for color display.
  • the dielectric layer 33 is not essential, and a configuration in which the dielectric layer 33 is omitted may be used.
  • FIG. 2 is a cross-sectional view showing the configuration of the front plate 20 of the panel 10 according to the embodiment of the present invention, which is shown upside down with respect to the front plate 20 shown in FIG.
  • a display electrode pair 24 including a scan electrode 22 and a sustain electrode 23 is formed on the glass substrate 21, a display electrode pair 24 including a scan electrode 22 and a sustain electrode 23 is formed.
  • the scan electrode 22 includes a transparent electrode 22a formed from indium tin oxide, tin oxide, or the like, and a bus electrode 22b formed on the transparent electrode 22a.
  • the sustain electrode 23 includes a transparent electrode 23a and a bus electrode 23b formed thereon.
  • the bus electrode 22b and the bus electrode 23b are provided to impart conductivity in the longitudinal direction of the transparent electrode 22a and the transparent electrode 23a, and are formed of a conductive material mainly composed of silver.
  • the dielectric layer 25 is formed by applying low-melting glass or the like mainly composed of lead oxide, bismuth oxide, or phosphorus oxide by screen printing, die coating, or the like, and baking it.
  • a protective layer 26 is formed on the dielectric layer 25. Details of the protective layer 26 will be described below.
  • the protective layer 26 is a base protective layer 26a formed on the dielectric layer 25. And a particle layer 26b formed on the base protective layer 26a.
  • the base protective layer 26a is a thin film mainly composed of magnesium oxide formed by a thin film forming method such as a vacuum deposition method or an ion plating method, and the thickness thereof is, for example, 0.3 ⁇ m to 1.0 ⁇ m.
  • the base protective layer 26a may be formed of a metal oxide containing at least one of magnesium oxide, strontium oxide, calcium oxide, and barium oxide.
  • the particle layer 26b is configured by adhering the single crystal particles 27 of magnesium oxide so as to be distributed almost uniformly over the entire surface of the base protective layer 26a.
  • FIG. 3A is a diagram showing an example of the shape of the single crystal particle 27 of the panel 10 according to the embodiment of the present invention.
  • the shape is a tetrahedral shape having a hexahedron as a basic shape and a truncated surface with each vertex cut off.
  • the single crystal particle 27a is shown.
  • the main surface 41a is the (100) plane
  • the top surface 42a is the (111) plane.
  • FIG. 3B is a diagram showing an example of the shape of the single crystal particle 27, and shows a tetrahedral single crystal particle 27 b having a truncated shape with an octahedron as a basic shape and each vertex being cut off.
  • the main surface 42b is a (111) plane
  • the top surface 41b is a (100) plane.
  • the single crystal particles 27a and the single crystal particles 27b have an NaCl crystal structure surrounded by a specific two-orientation plane composed of a (100) plane and a (111) plane.
  • FIG. 3C is a diagram showing an example of the shape of the single crystal particle 27.
  • the main surface 42c is the (111) surface
  • the top surface 41c is the (100) surface
  • the oblique surface 43c is the (110) surface.
  • FIG. 3D is a diagram illustrating an example of the shape of the single crystal particle 27, and a 26-sided single crystal particle having an oblique surface with a ridge line of the (100) plane further adjacent to the shape of the single crystal particle 27 a. 27d is shown.
  • the main surface 41d is the (100) surface
  • the top surface 42d is the (111) surface
  • the oblique surface 43d is the (110) surface.
  • the single crystal particles 27c and the single crystal particles 27d have a NaCl crystal structure surrounded by specific three kinds of orientation planes including the (100) plane, the (110) plane, and the (111) plane.
  • FIG. 4A is a diagram showing an electron micrograph showing the shape of the magnesium oxide single crystal particles 27a included in the particle layer 26b of the panel 10 in the embodiment of the present invention.
  • FIG. 4B is an electron micrograph showing the shape of the magnesium oxide single crystal particles 27b included in the particle layer 26b.
  • FIG. 4C is an electron micrograph showing the magnesium oxide single crystal particles 27c included in the particle layer 26b.
  • the single crystal particles 27 having a slightly distorted shape are actually included.
  • FIG. 5A is a diagram showing another shape of the single crystal particle 27 included in the particle layer 26b of the panel 10 according to the embodiment of the present invention, which is a variation of the single crystal particle 27a and has one truncated surface. It shows the existing shape.
  • FIG. 5B is a variation of the single crystal particle 27a and shows a shape having two truncated surfaces.
  • FIG. 5C is a diagram showing another shape of the single crystal particle 27 included in the particle layer 26b of the panel 10 according to the embodiment of the present invention, which is a variation of the single crystal particle 27b and has one truncated surface. It shows the existing shape.
  • FIG. 5A is a diagram showing another shape of the single crystal particle 27 included in the particle layer 26b of the panel 10 according to the embodiment of the present invention, which is a variation of the single crystal particle 27b and has one truncated surface. It shows the existing shape.
  • FIG. 5A is a diagram showing another shape of the single crystal particle 27 included in the particle layer
  • FIG. 5D shows a variation of the single crystal particle 27b, in which there are two truncated surfaces.
  • FIG. 5E is a diagram showing another shape of the single crystal particle 27 included in the particle layer 26b of the panel 10 according to the embodiment of the present invention, which is a variation of the single crystal particle 27c and has a top face of 6 In addition, a shape having one oblique surface is shown.
  • FIG. 5F is a diagram showing another shape of the single crystal particle 27 included in the particle layer 26b of the panel 10 according to the embodiment of the present invention, which is a variation of the single crystal particle 27d and has a top face of 8. In addition, a shape having one oblique surface is shown.
  • the magnesium oxide single crystal has a cubic lattice NaCl crystal structure and has (100) plane, (110) plane, and (111) plane as main orientation planes.
  • the (100) plane is the most dense surface, and impure gases such as water, hydrocarbons and carbon dioxide are difficult to adsorb over a wide temperature range from low to high. Therefore, when the single crystal particles 27 having a (100) plane are mainly used, the particle layer 26b having both good electron emission performance and charge retention performance can be stably formed over a wide temperature range.
  • the single crystal particles 27 having the (111) plane are important in realizing the panel 10 that can be driven at high speed.
  • Single crystal particles having a NaCl crystal structure surrounded by a seed orientation plane can be produced by a liquid phase method.
  • magnesium hydroxide which is a precursor of magnesium oxide
  • a magnesium hydroxide gel is prepared by adding a small amount of acid to an aqueous solution of magnesium alkoxide or magnesium acetylacetone having a purity of 99.95% or more and hydrolyzing it. And the powder of the single crystal particle 27 is produced
  • Liquid phase method 2 An alkaline solution is added to an aqueous solution in which magnesium nitrate having a purity of 99.95% or more is dissolved to precipitate magnesium hydroxide. Next, the magnesium hydroxide precipitate is separated from the aqueous solution, and calcined in air to be dehydrated, whereby powder of single crystal particles 27 is generated.
  • the firing temperature is preferably 700 ° C. or higher, more preferably 1000 ° C. or higher. This is because below 700 ° C., the crystal plane does not develop sufficiently and defects increase. Further, when firing at 700 ° C. or more and less than 1500 ° C., the generation frequency of the single crystal particles 27c and 27d surrounded by the specific three kinds of orientation planes is high, and when firing at a temperature of 1500 ° C. or more, the (110) plane is reduced. Thus, it was found that the generation frequency of the single crystal particles 27a and 27b surrounded by the specific two kinds of orientation planes tends to increase. However, if the firing temperature is too high, oxygen vacancies occur and the number of defects in the magnesium oxide crystal increases.
  • magnesium oxide precursor in addition to the magnesium hydroxide described above, one or more of magnesium alkoxide, magnesium acetylacetone, magnesium nitrate, magnesium chloride, magnesium carbonate, magnesium sulfate, magnesium oxalate, magnesium acetate, etc. should be used. Can do.
  • the purity of the magnesium compound as the magnesium oxide precursor is desirably 99.95% or more, and more desirably 99.98% or more. This is because if a large amount of an impurity element such as alkali metal, boron, silicon, iron, or aluminum is contained, fusion or sintering between particles occurs during firing, and particles with high crystallinity are difficult to grow.
  • the single crystal particles 27 produced by these liquid phase methods are single crystal particles 27 surrounded by a specific two-orientation plane or a specific three-orientation plane, and a crystal with few defects is obtained.
  • the liquid phase method when used, there is a feature that a powder with a relatively small variation in particle diameter of the single crystal particles 27 can be obtained.
  • Magnesium oxide crystals can be produced by vapor phase oxidation, but the magnesium oxide single crystal particles produced by vapor phase oxidation mainly grow (100) planes, and other orientation planes are difficult to grow.
  • the magnesium oxide single crystal particles produced by vapor phase oxidation mainly grow (100) planes, and other orientation planes are difficult to grow.
  • drawbacks For example, when magnesium oxide is produced by a gas phase oxidation method, for example, in a tank filled with an inert gas, a small amount of oxygen gas is flowed while heating the metal magnesium to a high temperature, and the metal magnesium is directly oxidized to oxidize.
  • the (100) plane which is the most dense surface, preferentially grows.
  • magnesium hydroxide which is a precursor of magnesium oxide
  • the crystal growth process in which magnesium hydroxide is thermally decomposed to produce magnesium oxide crystals is complicated, but a magnesium oxide single crystal is formed while leaving a hexagonal crystal form. It is considered that a (111) plane and a (110) plane are formed.
  • magnesium compounds such as magnesium alkoxide, magnesium nitrate, magnesium chloride, magnesium carbonate, magnesium sulfate, magnesium oxalate, and magnesium acetate are not cubic systems, so these are thermally decomposed as magnesium oxide precursors and magnesium oxide.
  • the (OR) 2 group, Cl 2 group, (NO 3) 2 group, CO 3 group, C 2 O 4 group and the like coordinated to the magnesium element are eliminated, not only the (100) plane but also (110 ) And (111) planes are also considered to be formed.
  • the magnesium oxide single crystal particles produced by the gas phase oxidation method tend to have a large variation in particle size. For this reason, in the manufacturing process of magnesium oxide using the vapor phase oxidation method, a classification process for aligning the particle sizes is necessary.
  • liquid phase method in the present embodiment single crystal particles having relatively large particle diameters and relatively large particles can be obtained.
  • crystal particles having a particle size of 0.3 ⁇ m to 2 ⁇ m can be obtained. For this reason, it is possible to omit the classification step of removing fine particles.
  • the specific surface area is smaller than the magnesium oxide crystal produced by the vapor phase oxidation method, and the magnesium oxide having excellent adsorption resistance. Crystals can be obtained.
  • the particle layer 26b in the present embodiment includes the single crystal particle 27 having the NaCl crystal structure surrounded by the specific two-orientation plane composed of the (100) plane and the (111) plane, or the (100) plane, A single crystal particle 27d having a NaCl crystal structure surrounded by a specific three-type orientation plane composed of a (110) plane and a (111) plane is adhered to the base protective layer 26a.
  • the panel 10 capable of high-speed driving is realized by combining stable and good electron emission performance and charge retention performance over a wide temperature range.
  • FIG. 6 is a diagram showing an electrode arrangement of the panel 10 according to the embodiment of the present invention.
  • M data electrodes D1 to Dm (data electrode 32 in FIG. 1) long in the column direction are arranged.
  • M ⁇ n are formed.
  • the panel 10 performs gradation display by dividing the one-field period into a plurality of subfields and controlling light emission / non-light emission of each discharge cell for each subfield.
  • Each subfield has an initialization period, an address period, and a sustain period.
  • ⁇ Initialization discharge is generated in the initialization period, and wall charges necessary for subsequent address discharge are formed on each electrode.
  • the initializing operation at this time includes an initializing operation for generating an initializing discharge in all discharge cells (hereinafter abbreviated as “all-cell initializing operation”), and a sustain discharge in the sustain period of the immediately preceding subfield.
  • There is an initializing operation hereinafter abbreviated as “selective initializing operation” in which initializing discharge is generated in the discharged cells.
  • address discharge is selectively generated in the discharge cells to be lit to form wall charges.
  • sustain period a number of sustain pulses corresponding to the luminance weight are alternately applied to the display electrode pairs, and a sustain discharge is generated in the discharge cells that have generated the address discharge to emit light.
  • FIG. 7 is a waveform diagram of drive voltage applied to each electrode of panel 10 in the embodiment of the present invention.
  • FIG. 7 shows a subfield for performing the all-cell initializing operation and a subfield for performing the selective initializing operation.
  • 0 (V) is applied to the data electrodes D1 to Dm and the sustain electrodes SU1 to SUn, respectively, and the scan electrodes SC1 to SCn are below the discharge start voltage with respect to the sustain electrodes SU1 to SUn.
  • a ramp waveform voltage that gently rises from the voltage Vi1 toward the voltage Vi2 that exceeds the discharge start voltage is applied.
  • the wall voltage on the electrode represents a voltage generated by wall charges accumulated on the dielectric layer covering the electrode, the protective layer, the phosphor layer, and the like. In the initialization discharge at this time, the wall voltage is excessively stored in anticipation of optimizing the wall voltage in the second half of the subsequent initialization period.
  • voltage Ve1 is applied to sustain electrodes SU1 to SUn, and scan electrodes SC1 to SCn have a voltage exceeding discharge start voltage from voltage Vi3 that is lower than discharge start voltage with respect to sustain electrodes SU1 to SUn.
  • a ramp waveform voltage that gently falls toward Vi4 is applied.
  • a weak initializing discharge occurs between scan electrodes SC1 to SCn, sustain electrodes SU1 to SUn, and data electrodes D1 to Dm.
  • the negative wall voltage on scan electrodes SC1 to SCn and the positive wall voltage on sustain electrodes SU1 to SUn are weakened, and the positive wall voltage on data electrodes D1 to Dm is adjusted to a value suitable for the write operation.
  • the all-cell initializing operation for performing the initializing discharge on all the discharge cells is completed.
  • voltage Ve2 is applied to sustain electrodes SU1 to SUn, and voltage Vc is applied to scan electrodes SC1 to SCn.
  • a positive address pulse voltage Vd is applied.
  • the voltage difference at the intersection between the data electrode Dk and the scan electrode SC1 is the difference between the wall voltage on the data electrode Dk and the wall voltage on the scan electrode SC1 due to the difference between the externally applied voltages (Vd ⁇ Va). It becomes the sum and exceeds the discharge start voltage.
  • address discharge occurs between data electrode Dk and scan electrode SC1, and between sustain electrode SU1 and scan electrode SC1, positive wall voltage is accumulated on scan electrode SC1, and negative wall is applied on sustain electrode SU1.
  • a voltage is accumulated, and a negative wall voltage is also accumulated on the data electrode Dk.
  • discharge delay time the time from when the scan pulse voltage Va and the address pulse voltage Vd are applied until the address discharge is generated. If the electron emission performance of the panel is low and the discharge delay period is long, the time for applying the scan pulse voltage Va and the address pulse voltage Vd, that is, the scan pulse width and the address pulse width, is set longer in order to perform the address operation reliably. This makes it impossible to perform a write operation at high speed. Also, if the charge retention performance of the panel is low, it is necessary to set the voltage values of the scan pulse voltage Va and the write pulse voltage Vd high in order to compensate for the decrease in wall voltage.
  • the scan pulse width and the write pulse width can be set shorter than those of the conventional panel, and the write operation can be performed stably and at high speed.
  • the voltage values of the scan pulse voltage Va and the write pulse voltage Vd can be set lower than those of the conventional panel.
  • the address operation is performed in which the address discharge is caused in the discharge cell to be lit in the first line and the wall voltage is accumulated on each electrode.
  • the voltage at the intersection of the data electrodes D1 to Dm to which the address pulse voltage Vd is not applied and the scan electrode SC1 does not exceed the discharge start voltage, so that address discharge does not occur.
  • the above address operation is performed up to the discharge cell on the nth line, and the address period ends.
  • a sustain discharge occurs between scan electrode SCi and sustain electrode SUi, and phosphor layer 35 emits light due to the ultraviolet rays generated at this time. Then, a negative wall voltage is accumulated on scan electrode SCi, and a positive wall voltage is accumulated on sustain electrode SUi. Further, a positive wall voltage is accumulated on the data electrode Dk. In the discharge cells in which no address discharge has occurred during the address period, no sustain discharge occurs, and the wall voltage at the end of the initialization period is maintained.
  • the address discharge is applied in the address period by applying the number of sustain pulses corresponding to the luminance weight alternately to the scan electrodes SC1 to SCn and the sustain electrodes SU1 to SUn, and applying a potential difference between the electrodes of the display electrode pair.
  • the sustain discharge is continuously performed in the discharge cell that has caused the failure.
  • a so-called narrow pulse voltage difference or a ramp-shaped potential difference is applied between scan electrodes SC1 to SCn and sustain electrodes SU1 to SUn, and the positive wall on data electrode Dk is applied.
  • the wall voltage on scan electrode SCi and sustain electrode SUi is erased while leaving the voltage.
  • the voltage Ve1 is applied to the sustain electrodes SU1 to SUn, 0 (V) is applied to the data electrodes D1 to Dm, and the scan electrodes SC1 to SCn gradually decrease toward the voltage Vi4. Apply the ramp voltage. Then, a weak initializing discharge is generated in the discharge cell that has caused the sustain discharge in the sustain period of the previous subfield, and the wall voltage on scan electrode SCi and sustain electrode SUi is weakened. For data electrode Dk, a sufficient positive wall voltage is accumulated on data electrode Dk by the last sustain discharge, so that an excessive portion of this wall voltage is discharged, and the wall voltage suitable for the write operation is obtained. Adjusted to
  • the selective initializing operation is an operation for selectively performing initializing discharge on the discharge cells that have undergone the sustain operation in the sustain period of the immediately preceding subfield.
  • the operation in the subsequent address period is the same as the operation in the address period of the subfield in which the all-cell initializing operation is performed, description thereof is omitted.
  • the operation in the subsequent sustain period is the same except for the number of sustain pulses.
  • the feature of the driving method in this embodiment is that the subfield is temporally reduced so that the intensity weight from the all-cell initialization subfield to the subfield immediately before the next all-cell initialization subfield monotonously decreases. It is a point arranged in. That is, the selection initialization subfield subsequent to the all-cell initialization subfield has the luminance weight set to be smaller or equal to the luminance weight of the immediately preceding subfield, and the selection initialization subsequent to the selection initialization subfield. The luminance weight of the subfield is set to be smaller or equal to the luminance weight of the immediately preceding subfield. In this way, the subfield configuration in which the magnitude of the luminance weight from the all-cell initializing subfield to the subfield before the next all-cell initializing subfield is monotonically decreased is referred to as “descending coding” below. ".
  • FIG. 8 is a diagram showing a subfield configuration in the embodiment of the present invention.
  • one field is divided into 10 subfields (first SF, second SF,..., 10th SF), and each subfield is (80, 60, 44, 30, 18, 11, 6, 3, 2, 1).
  • the first SF is an all-cell initializing subfield
  • the second SF to the tenth SF are selective initializing subfields.
  • FIG. 8 shows an outline of one field of the drive voltage waveform applied to the scan electrode 22, and details of the drive voltage waveform in each period of each subfield are as shown in FIG.
  • the panel 10 is driven in descending order coding, but by driving in descending order coding, it is possible to perform faster and more stable writing operation while taking advantage of the performance of the panel 10 that can be driven at high speed. And a plasma display device with excellent image display quality can be realized. Further, by driving in descending order coding, the write pulse voltage can be further reduced, and the power consumption of the plasma display device can be reduced.
  • the inventors measured the discharge delay time of panel 10 in the present embodiment.
  • the measured panel consists of a single crystal particle having a NaCl crystal structure surrounded by a specific two-orientation plane composed of (100) plane and (111) plane, and (100) plane, (110) plane and (111) plane.
  • a panel in which a protective layer 26 having a particle layer 26b in which single crystal particles having an NaCl crystal structure surrounded by specific three kinds of orientation planes are deposited so as to be distributed almost uniformly over the entire surface of the underlying protective layer 26a (this book)
  • a 42-inch high-luminance, high-definition panel whose discharge gas is 100% xenon gas.
  • the discharge delay time was also measured for a conventional panel having only the base protective layer 26a and no particle layer 26b.
  • the discharge delay time of the address discharge was measured in the discharge cells controlled so as not to generate the address discharge in the adjacent discharge cells so as not to be affected by the discharge from the surrounding discharge cells.
  • the discharge delay time was affected by the phosphor material, but the measurement was performed in a discharge cell coated with a green phosphor that has a strong tendency to increase the discharge delay time.
  • the discharge delay time when the address operation is performed in only one subfield of the first SF to the tenth SF was measured. did.
  • the number of sustain pulses at this time was 2 pulses regardless of the subfield.
  • the address operation was performed only with the fifth SF, and the discharge delay time was measured by changing the number of sustain pulses in the subsequent sustain period from 2 pulses to 256 pulses.
  • FIG. 9A is a diagram showing the relationship between the discharge delay time of panel 10 in the embodiment of the present invention and the elapsed time from the all-cell initialization operation
  • FIG. 9B is a diagram of panel 10 in the embodiment of the present invention. It is a figure which shows the relationship between discharge delay time and the number of sustain pulses.
  • FIG. 9A and FIG. 9B the characteristic of the conventional panel for comparison is shown by a broken line.
  • the panel 10 in the present embodiment has a very short discharge delay time compared to the conventional panel. This is because the discharge delay time is shortened because the electron emission performance of the panel 10 in the present embodiment is high. Further, according to FIG. 9A, the panel 10 in the present embodiment tends to increase the discharge delay time with the elapsed time from the all-cell initialization operation. This tendency is the same for the conventional panel. This is considered to be because the priming generated in the all-cell initializing operation decreases with time, and it is difficult for discharge to occur.
  • the conventional panel tends to increase the number of sustain pulses and shorten the discharge delay time.
  • the panel 10 in the form tends to have a longer discharge delay time as the number of sustain pulses increases. In general, it is considered that as the number of sustain pulses increases, priming associated with the sustain discharge increases, so that the discharge delay time is shortened.
  • the reverse tendency appears in panel 10 in the present embodiment. Although the reason why such a tendency appears in the panel 10 of the present embodiment has not been completely elucidated, one possibility can be considered as follows.
  • the statistical delay time that is greatly affected by the priming is already sufficiently short, so that the priming associated with the sustain discharge does not greatly contribute to the discharge delay time.
  • the panel 10 in the present embodiment has higher charge retention performance than the conventional panel, the wall voltage does not decrease at all, so that the wall voltage decreases due to the sustain discharge, and substantially between the electrodes. It is considered that the discharge delay time is increased as a result of the decrease in applied voltage and the increase in discharge formation delay time.
  • the influence of priming on the statistical delay time is as large as 100 ns to 1000 ns, while the influence of the wall voltage reduction on the formation delay time is relatively small, about 100 ns. For this reason, it is considered that a panel with low electron emission performance has a superior effect of priming on the statistical delay time, and the discharge delay time becomes shorter as the number of sustain pulses increases.
  • the influence of priming on the discharge delay is small, and even if the charge retention performance is high, the influence of the reduction of the wall voltage on the statistical delay time wins. It is considered that the discharge delay time becomes longer as the number of sustain pulses increases.
  • the discharge delay time tends to increase as the sustain pulse increases, and the discharge delay time tends to increase as the elapsed time from the all-cell initialization operation increases. . Therefore, by adopting a descending coding subfield configuration in which the number of sustain pulses is increased when the elapsed time from the all-cell initialization operation is short, and the number of sustain pulses decreases as the elapsed time from the all-cell initialization operation becomes longer.
  • the condition for increasing the discharge delay time and the condition for decreasing the discharge delay time are offset, and high-speed driving utilizing the characteristics of the panel 10 in the present embodiment becomes possible.
  • FIG. 10 shows a case where the panel 10 according to the embodiment of the present invention is driven in a descending coding subfield configuration in which subfields are arranged so that the luminance weight is monotonously decreased, and the luminance weight is monotonous. It is a figure which shows the minimum voltage of the voltage applied to the data electrodes D1-Dm when it drives with the subfield structure of the ascending order coding which has arrange
  • the write pulse voltage Vd can be lowered by about 5 (V) by adopting the subfield configuration of descending coding. Thereby, the power of the data electrode driving circuit can be reduced.
  • FIG. 11 is a circuit block diagram of plasma display device 100 in accordance with the exemplary embodiment of the present invention.
  • the plasma display device 100 includes a panel 10 and a panel drive circuit.
  • the protective layer 26 of the panel 10 is a magnesium oxide having a NaCl crystal structure surrounded by a base protective layer 26a formed of a thin film containing magnesium oxide and a specific two-orientation plane composed of a (100) plane and a (111) plane. Or a single crystal particle 27 of magnesium oxide having a NaCl crystal structure surrounded by a specific three-orientation plane composed of (100) plane, (110) plane and (111) plane. And a particle layer 26b formed by adhering thereto.
  • the panel driving circuit includes an all-cell initializing operation in which initializing discharge is generated in all discharge cells in an initializing period, and a selective initializing operation in which initializing discharge is generated in discharge cells that have previously undergone sustain discharge.
  • the subfield is set so that the intensity weight from the subfield performing the all-cell initialization operation to the subfield immediately before the subfield performing the next all-cell initialization operation decreases monotonously.
  • the panel 10 is driven in a temporal arrangement.
  • the panel drive circuit includes an image signal processing circuit 41, a data electrode drive circuit 42, a scan electrode drive circuit 43, a sustain electrode drive circuit 44, a timing generation circuit 45, and a power supply circuit (not shown) that supplies necessary power to each circuit block. ).
  • the image signal processing circuit 41 converts the input image signal into image data indicating light emission / non-light emission for each subfield.
  • the data electrode drive circuit 42 converts the image data for each subfield into signals corresponding to the data electrodes D1 to Dm, and drives the data electrodes D1 to Dm.
  • the timing generation circuit 45 generates various timing signals for controlling the operation of each circuit block based on the horizontal synchronization signal and the vertical synchronization signal, and supplies them to the respective circuit blocks.
  • Scan electrode drive circuit 43 drives each of scan electrodes SC1 to SCn based on the timing signal, and sustain electrode drive circuit 44 drives sustain electrodes SU1 to SUn based on the timing signal.
  • FIG. 12 is a circuit diagram of scan electrode drive circuit 43 and sustain electrode drive circuit 44 of plasma display device 100 in accordance with the exemplary embodiment of the present invention.
  • the scan electrode drive circuit 43 includes a sustain pulse generation circuit 50, an initialization waveform generation circuit 60, and a scan pulse generation circuit 70.
  • Sustain pulse generating circuit 50 includes a switching element Q55 for applying voltage Vs to scan electrodes SC1 to SCn, a switching element Q56 for applying 0 (V) to scan electrodes SC1 to SCn, and scan electrodes SC1 to SCn.
  • a power recovery unit 59 for recovering power when applying the sustain pulse.
  • Initialization waveform generation circuit 60 includes Miller integration circuit 61 for applying an up-slope waveform voltage to scan electrodes SC1 to SCn, and Miller integration circuit 62 for applying a down-slope waveform voltage to scan electrodes SC1 to SCn. Have.
  • Switching element Q63 and switching element Q64 are provided in order to prevent a current from flowing back through a parasitic diode or the like of another switching element.
  • Scan pulse generating circuit 70 includes floating power source E71, switching elements Q72H1 to Q72Hn and Q72L1 to Q72Ln for applying a high voltage side voltage or a low voltage side voltage of floating power supply E71 to each of scan electrodes SC1 to SCn, It has a switching element Q73 that fixes the voltage on the low voltage side of the power supply E71 to the voltage Va.
  • the sustain electrode driving circuit 44 includes a sustain pulse generating circuit 80 and an initialization / writing voltage generating circuit 90.
  • Sustain pulse generation circuit 80 includes a switching element Q85 for applying voltage Vs to sustain electrodes SU1 to SUn, a switching element Q86 for applying 0 (V) to sustain electrodes SU1 to SUn, and sustain electrodes SU1 to SUn. And a power recovery unit 89 for recovering power when a sustain pulse is applied.
  • Initialization / writing voltage generation circuit 90 includes switching element Q92 and diode D92 for applying voltage Ve1 to sustain electrodes SU1 to SUn, and switching element Q94 and diode D94 for applying voltage Ve2 to sustain electrodes SU1 to SUn. And have.
  • these switching elements can be configured using generally known elements such as MOSFETs and IGBTs. These switching elements are controlled by timing signals corresponding to the respective switching elements generated by the timing generation circuit 45.
  • the drive circuit shown in FIG. 12 is an example of a circuit configuration for generating the drive voltage waveform shown in FIG. 7, and the plasma display device of the present invention is not limited to this circuit configuration.
  • FIG. 13 is a diagram showing a subfield configuration according to another embodiment of the present invention.
  • the number of subfields is set to “14”
  • the all-cell initialization subfields are set to the first SF and the seventh SF
  • the luminance weights from the first SF to the sixth SF are set so as to monotonously decrease.
  • the luminance weights from the seventh SF to the fourteenth SF are also set so as to monotonously decrease.
  • the luminance weight from the all-cell initialization subfield is important to set the luminance weight from the all-cell initialization subfield to the subfield before the next all-cell initialization subfield so that the number of subfields is monotonously decreased. It may be arbitrarily set as required, and the subfields for performing the all-cell initialization operation and the number thereof may be arbitrarily set.
  • the plasma display device of the present invention is useful as a display device because it can perform a high-speed and stable writing operation and display an image with excellent display quality.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Gas-Filled Discharge Tubes (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Control Of Gas Discharge Display Tubes (AREA)

Abstract

 プラズマディスプレイパネルの前面板(20)の保護層(26)は、酸化マグネシウム、酸化ストロンチウム、酸化カルシウム、酸化バリウムの少なくとも1つを含む金属酸化物の薄膜で形成された下地保護層(26a)と、(100)面および(111)面からなる特定2種配向面、または(100)面、(110)面および(111)面からなる特定3種配向面で囲まれたNaCl結晶構造を有する酸化マグネシウムの単結晶粒子(27)を、下地保護層に付着させて形成した粒子層(26b)とから構成され、パネル駆動回路は、全セル初期化動作を行うサブフィールドから次の全セル初期化動作を行うサブフィールドの直前のサブフィールドまでの輝度重みの大きさが単調減少となるようにサブフィールドを時間的に配置してパネルを駆動するように構成したことを特徴とする。該構成により、書込みパルス電圧を下げることができる。

Description

プラズマディスプレイ装置
 本発明は、プラズマディスプレイパネルを用いた画像表示装置であるプラズマディスプレイ装置に関する。
 プラズマディスプレイパネル(以下、「パネル」と略記する)は薄型の画像表示素子の中でも高速表示が可能であり、かつ大型化が容易であることから、大画面表示装置として実用化されている。
 パネルは前面板と背面板とを貼り合わせて構成されている。前面板はガラス基板と、ガラス基板上に形成された走査電極および維持電極からなる表示電極対と、表示電極対を覆うように形成された誘電体層と、誘電体層上に形成された保護層とを有する。保護層は誘電体層をイオン衝突から保護するとともに放電を発生しやすくする目的で設けられている。
 背面板は、ガラス基板と、ガラス基板上に形成されたデータ電極と、データ電極を覆う誘電体層と、誘電体層上に形成された隔壁と、隔壁間に形成された赤色、緑色および青色のそれぞれに発光する蛍光体層とを有する。前面板と背面板とは、表示電極対とデータ電極とが放電空間をはさんで交差するように対向され、周囲を低融点ガラスで封着されている。放電空間にはキセノンを含む放電ガスが封入されている。ここで表示電極対とデータ電極との対向する部分に放電セルが形成される。
 このような構成のパネルを用いたプラズマディスプレイ装置は、パネルの各放電セルで選択的にガス放電を発生させ、このとき生じた紫外線で赤色、緑色および青色の各色の蛍光体を励起発光させてカラー表示を行っている。
 パネルを駆動する方法としてはサブフィールド法、すなわち、1フィールド期間を複数のサブフィールドに分割し、発光させるサブフィールドの組み合わせによって階調表示を行う方法が一般的である。各サブフィールドは、初期化期間、書込み期間および維持期間を有する。初期化期間では走査電極および維持電極に所定の電圧を印加して初期化放電を発生し、続く書込み動作に必要な壁電荷を各電極上に形成する。書込み期間では走査電極に走査パルスを順次印加するとともに選択的にデータ電極に書込みパルスを印加して書込み放電を発生し壁電荷を形成する。そして維持期間では表示電極対に交互に維持パルスを印加し、放電セルで選択的に維持放電を発生させ、対応する放電セルの蛍光体層を発光させることにより画像表示を行う。
 ここで、発光させるべき放電セルを確実に発光させ、発光させるべきでない放電セルでは確実に発光させないように制御して品質の高い画像を表示するためには、割り当てられた時間内に確実な書込み動作を行う必要がある。そのために高速駆動の可能なパネルの開発が進められるとともに、そのパネルの性能を引き出して品質の高い画像を表示するための駆動方法および駆動回路についての検討が進められている。
 パネルの放電特性は保護層の特性に大きく依存しており、特に高速駆動の可否を左右する電子放出性能と電荷保持性能を改善するために、保護層の材料、構成、製造方法等について多くの検討がなされている。例えば特許文献1には、マグネシウム蒸気を気相酸化して生成することにより200nm~300nmにカソードルミネッセンス発光ピークを有する酸化マグネシウム層が設けられたパネルと、書込み期間において全表示ラインを構成する表示電極対各々の一方に走査パルスを順に印加するとともに走査パルスが印加される表示ラインに対応した書込みパルスをデータ電極に供給する電極駆動回路とを備えたプラズマディスプレイ装置が開示されている。
 近年は、大画面に加えて高精細度プラズマディスプレイ装置が要望されており、例えば1920画素×1080ラインの高精細度プラズマディスプレイ装置、さらには2160ラインあるいは4320ラインといった超高精細度プラズマディスプレイ装置が望まれている。このようにライン数が増加する一方で、滑らかな階調を表示するためのサブフィールド数も確保しなければならない。そのため、1ラインあたりの書込み動作に割り当てられる時間はますます短くなる傾向にある。そこで、割り当てられた時間内に確実な書込み動作を行うために、従来以上に高速かつ安定した書込み動作が可能なパネル、その駆動方法、それを実現する駆動回路を備えたプラズマディスプレイ装置が望まれている。
特開2006-54158号公報
 本発明は、第1のガラス基板上に表示電極対を形成し表示電極対を覆うように誘電体層を形成し誘電体層の上に保護層を形成した前面板と、第2のガラス基板上にデータ電極を形成した背面板とを対向配置して、表示電極対とデータ電極とが対向する位置に放電セルを形成したパネルと、放電セルで初期化放電を発生させる初期化期間と書込み放電を発生させる書込み期間と維持放電を発生させる維持期間とを有する複数のサブフィールドを時間的に配置して1フィールド期間を構成してパネルを駆動するパネル駆動回路とを備えたプラズマディスプレイ装置であって、保護層は、酸化マグネシウム、酸化ストロンチウム、酸化カルシウム、酸化バリウムの少なくとも1つを含む金属酸化物の薄膜で形成された下地保護層と、(100)面および(111)面からなる特定2種配向面、または(100)面、(110)面および(111)面からなる特定3種配向面で囲まれたNaCl結晶構造を有する酸化マグネシウムの単結晶粒子を、下地保護層に付着させて形成した粒子層とから構成され、パネル駆動回路は、初期化期間において全ての放電セルで初期化放電を発生させる全セル初期化動作とそれ以前に維持放電を行った放電セルで初期化放電を発生させる選択初期化動作とのいずれかを行い、かつ全セル初期化動作を行うサブフィールドから次の全セル初期化動作を行うサブフィールドの直前のサブフィールドまでの輝度重みの大きさが単調減少となるようにサブフィールドを時間的に配置してパネルを駆動するように構成することを特徴とする。
図1は本発明の実施の形態におけるパネルの構造を示す斜視図である。 図2は同パネルの前面板の構成を示す断面図である。 図3Aは同パネルの単結晶粒子の形状の一例を示す図である。 図3Bは同パネルの単結晶粒子の形状の一例を示す図である。 図3Cは同パネルの単結晶粒子の形状の一例を示す図である。 図3Dは同パネルの単結晶粒子の形状の一例を示す図である。 図4Aは同パネルの粒子層に含まれる酸化マグネシウム単結晶粒子の形状を示す電子顕微鏡写真を示す図である。 図4Bは同パネルの粒子層に含まれる酸化マグネシウム単結晶粒子の形状を示す電子顕微鏡写真を示す図である。 図4Cは同パネルの粒子層に含まれる酸化マグネシウム単結晶粒子の形状を示す電子顕微鏡写真を示す図である。 図5Aは同パネルの粒子層に含まれる単結晶粒子の他の形状を示す図である。 図5Bは同パネルの粒子層に含まれる単結晶粒子の他の形状を示す図である。 図5Cは同パネルの粒子層に含まれる単結晶粒子の他の形状を示す図である。 図5Dは同パネルの粒子層に含まれる単結晶粒子の他の形状を示す図である。 図5Eは同パネルの粒子層に含まれる単結晶粒子の他の形状を示す図である。 図5Fは同パネルの粒子層に含まれる単結晶粒子の他の形状を示す図である。 図6は同パネルの電極配列を示す図である。 図7は同パネルの各電極に印加する駆動電圧波形図である。 図8は本発明の実施の形態におけるサブフィールド構成を示す図である。 図9Aは本発明の実施の形態におけるパネルの放電遅れ時間と全セル初期化動作からの経過時間との関係を示す図である。 図9Bは同パネルの放電遅れ時間と維持パルス数との関係を示す図である。 図10は同パネルを降順コーディングのサブフィールド構成とした場合と昇順コーディングのサブフィールド構成とした場合とのデータ電極に印加する電圧の最低の電圧を示す図である。 図11は本発明の実施の形態におけるプラズマディスプレイ装置の回路ブロック図である。 図12は同プラズマディスプレイ装置の走査電極駆動回路および維持電極駆動回路の回路図である。 図13は本発明の他の実施の形態におけるサブフィールド構成を示す図である。
符号の説明
 10  パネル
 20  前面板
 21  (第1の)ガラス基板
 22  走査電極
 22a,23a  透明電極
 22b,23b  バス電極
 23  維持電極
 24  表示電極対
 25  誘電体層
 26  保護層
 26a  下地保護層
 26b  粒子層
 27  単結晶粒子
 30  背面板
 31  (第2の)ガラス基板
 32  データ電極
 34  隔壁
 35  蛍光体層
 41  画像信号処理回路
 42  データ電極駆動回路
 43  走査電極駆動回路
 44  維持電極駆動回路
 45  タイミング発生回路
 50,80  維持パルス発生回路
 60  初期化波形発生回路
 70  走査パルス発生回路
 100  プラズマディスプレイ装置
 以下、本発明の一実施の形態におけるプラズマディスプレイ装置について図面を用いて説明する。
 (実施の形態)
 図1は、本発明の実施の形態におけるパネル10の構造を示す斜視図である。パネル10は前面板20と背面板30とが対向して配置され、その外周部を低融点ガラスの封着材によって封着されている。パネル10内部の放電空間15には、キセノン等の放電ガスが400Torr~600Torrの圧力で封入されている。
 前面板20のガラス基板(第1のガラス基板)21上には、走査電極22および維持電極23よりなる表示電極対24が平行に複数配置されている。ガラス基板21上には表示電極対24を覆うように誘電体層25が形成され、さらにその誘電体層25の上に酸化マグネシウムを主成分とする保護層26が形成されている。
 また、背面板30のガラス基板(第2のガラス基板)31上には、表示電極対24と直交する方向に複数のデータ電極32が互いに平行に配置され、これを誘電体層33が被覆している。さらに誘電体層33上には隔壁34が形成されている。誘電体層33上および隔壁34の側面には紫外線によって赤色、緑色および青色にそれぞれ発光する蛍光体層35が形成されている。ここで、表示電極対24とデータ電極32とが交差する位置に放電セルが形成され、赤色、緑色、青色の蛍光体層35を有する放電セルの一組がカラー表示のための画素になる。なお誘電体層33は必須ではなく、誘電体層33を省略した構成であってもよい。
 図2は、本発明の実施の形態におけるパネル10の前面板20の構成を示す断面図であり、図1に示した前面板20と上下を逆にして示している。ガラス基板21上に、走査電極22と維持電極23よりなる表示電極対24が形成されている。走査電極22は、インジウムスズ酸化物や酸化スズ等から形成された透明電極22aと、透明電極22a上に形成されたバス電極22bとにより構成されている。同様に維持電極23は、透明電極23aとその上に形成されたバス電極23bとにより構成されている。バス電極22b、バス電極23bは透明電極22a、透明電極23aの長手方向に導電性を付与するために設けられ、銀を主成分とする導電性材料によって形成されている。
 誘電体層25は、酸化鉛または酸化ビスマスまたは酸化リンを主成分とする低融点ガラス等を、スクリーン印刷、ダイコート等により塗布し、焼成して形成されている。
 そして誘電体層25上には保護層26が形成されている。以下に、保護層26の詳細について説明する。誘電体層25をイオン衝突から保護するとともに駆動の速度を大きく左右する電子放出性能と電荷保持性能を改善するために、保護層26は、誘電体層25の上に形成された下地保護層26aと、下地保護層26a上に形成された粒子層26bとから構成されている。
 下地保護層26aは、真空蒸着法、イオンプレーティング法等の薄膜形成法で形成された酸化マグネシウムを主成分とする薄膜であり、その厚みは、例えば0.3μm~1.0μmである。なお下地保護層26aとしては、酸化マグネシウム、酸化ストロンチウム、酸化カルシウム、酸化バリウムの少なくとも1つを含む金属酸化物で形成してもよい。
 粒子層26bは、酸化マグネシウムの単結晶粒子27を下地保護層26aの全面にわたってほぼ均一に分布するように付着させることにより構成している。
 図3Aは、本発明の実施の形態におけるパネル10の単結晶粒子27の形状の一例を示す図であり、6面体を基本形状とし、その各頂点が切除された切頂面をもつ14面体形状の単結晶粒子27aを示す。ここで主要面41aは(100)面、切頂面42aは(111)面である。図3Bは、同単結晶粒子27の形状の一例を示す図であり、8面体を基本形状とし、その各頂点が切除された切頂面をもつ14面体形状の単結晶粒子27bを示す。ここで主要面42bは(111)面、切頂面41bは(100)面である。このように単結晶粒子27a、単結晶粒子27bは(100)面および(111)面からなる特定2種配向面で囲まれたNaCl結晶構造を有する。
 図3Cは、同単結晶粒子27の形状の一例を示す図であり、単結晶粒子27bの形状にさらに(111)面の境界が切除された斜方面をもつ26面体形状の単結晶粒子27cを示す。ここで主要面42cは(111)面、切頂面41cは(100)面、斜方面43cは(110)面である。図3Dは、同単結晶粒子27の形状の一例を示す図であり、単結晶粒子27aの形状にさらに隣接する(100)面の稜線が切除された斜方面をもつ26面体形状の単結晶粒子27dを示す。ここで主要面41dは(100)面、切頂面42dは(111)面、斜方面43dは(110)面である。このように単結晶粒子27c、単結晶粒子27dは(100)面、(110)面および(111)面からなる特定3種配向面で囲まれたNaCl結晶構造を有する。
 図4Aは、本発明の実施の形態におけるパネル10の粒子層26bに含まれる酸化マグネシウム単結晶粒子27aの形状を示す電子顕微鏡写真を示す図である。図4Bは、同粒子層26bに含まれる酸化マグネシウム単結晶粒子27bの形状を示す電子顕微鏡写真を示す図である。図4Cは、同粒子層26bに含まれる酸化マグネシウム単結晶粒子27cを示す電子顕微鏡写真を示す図である。このように実際にはややひずんだ形状の単結晶粒子27も含まれている。
 また切頂面は全ての頂点に形成されるわけではなく、斜方面も全ての稜線に形成されるわけではない。図5Aは、本発明の実施の形態におけるパネル10の粒子層26bに含まれる単結晶粒子27の他の形状を示す図であり、単結晶粒子27aのバリエーションであって、切頂面が1つ存在する形状を示している。図5Bは、同単結晶粒子27aのバリエーションであって、切頂面が2つ存在する形状を示している。図5Cは、本発明の実施の形態におけるパネル10の粒子層26bに含まれる単結晶粒子27の他の形状を示す図であり、単結晶粒子27bのバリエーションであって、切頂面が1つ存在する形状を示している。図5Dは、同単結晶粒子27bのバリエーションであって、切頂面が2つ存在する形状を示している。また図5Eは、本発明の実施の形態におけるパネル10の粒子層26bに含まれる単結晶粒子27の他の形状を示す図であり、単結晶粒子27cのバリエーションであって、切頂面が6つ、斜方面が1つ存在する形状を示している。また図5Fは、本発明の実施の形態におけるパネル10の粒子層26bに含まれる単結晶粒子27の他の形状を示す図であり、単結晶粒子27dのバリエーションであって、切頂面が8つ、斜方面が1つ存在する形状を示している。
 上述したように、酸化マグネシウム単結晶は立方格子のNaCl結晶構造であり、主要な配向面として(100)面、(110)面、(111)面をもつ。このうち(100)面は最稠密面であって、低温から高温までの広い温度範囲にわたり水、炭化水素、炭酸ガス等の不純ガスが吸着しにくい。そのため主として(100)面をもつ単結晶粒子27を用いると、広い温度範囲にわたり安定して良好な電子放出性能と電荷保持性能とをあわせもつ粒子層26bを形成することができる。
 一方(111)面は、常温以上で特に良好な電子放出性能を示すため、主として(111)面をもつ単結晶粒子27は、高速駆動の可能なパネル10を実現する上で重要である。
 上述した(100)面および(111)面からなる特定2種配向面で囲まれたNaCl結晶構造を有する単結晶粒子、あるいは(100)面、(110)面および(111)面からなる特定3種配向面で囲まれたNaCl結晶構造を有する単結晶粒子は、液相法により生成することができる。
 具体的には、例えば以下のように酸化マグネシウムの前駆体である水酸化マグネシウムを高温の酸素含有雰囲気中で均一に焼成して生成することができる。
 (液相法1)
 純度99.95%以上のマグネシウムアルコキシドまたはマグネシウムアセチルアセトンの水溶液に少量の酸を加えて加水分解して、水酸化マグネシウムのゲルを作製する。そして、そのゲルを空気中で焼成して脱水することにより、単結晶粒子27の粉体を生成する。
 (液相法2)
 純度99.95%以上の硝酸マグネシウムを溶かした水溶液にアルカリ溶液を添加して水酸化マグネシウムを沈殿させる。次に、水酸化マグネシウムの沈殿物を水溶液から分離し、それを空気中で焼成して脱水することにより、単結晶粒子27の粉体を生成する。
 (液相法3)
 純度99.95%以上の塩化マグネシウムを溶かした水溶液に水酸化カルシウムを添加して水酸化マグネシウムを沈殿させる。次に、水酸化マグネシウムの沈殿物を水溶液から分離し、それを空気中で焼成して脱水することにより、単結晶粒子27の粉体を生成する。
 焼成温度としては、700℃以上が望ましく1000℃以上がさらに望ましい。これは、700℃未満では、結晶面が十分発達せず欠陥が多くなるためである。また、700℃以上1500℃未満で焼成すると特定3種配向面で囲まれた単結晶粒子27c、27dの生成頻度が高く、1500℃以上の温度で焼成を行うと、(110)面が縮小して特定2種配向面で囲まれた単結晶粒子27a、27bの生成頻度が高くなる傾向がみられることがわかった。ただし、焼成温度を高くしすぎると酸素欠損が生じ酸化マグネシウム結晶の欠陥が多くなるため、1800℃以下に設定することが望ましい。
 酸化マグネシウム前駆体としては、上述した水酸化マグネシウム以外にも、マグネシウムアルコキシド、マグネシウムアセチルアセトン、硝酸マグネシウム、塩化マグネシウム、炭酸マグネシウム、硫酸マグネシウム、シュウ酸マグネシウム、酢酸マグネシウム等のうちの1種以上を用いることができる。ここで酸化マグネシウム前駆体としてのマグネシウム化合物の純度は99.95%以上が望ましく、99.98%以上がさらに望ましい。これは、アルカリ金属、ホウ素、珪素、鉄、アルミニウム等の不純物元素が多く含まれると、焼成時に粒子間の融着や焼結が起こり、結晶性の高い粒子が成長しにくいからである。
 これら液相法で生成される単結晶粒子27は、特定2種配向面または特定3種配向面で囲まれた単結晶粒子27であり、かつ欠陥の少ない結晶が得られる。加えて液相法を用いると、単結晶粒子27の粒径のばらつきが比較的少ない粉体が得られるという特徴がある。
 酸化マグネシウムの結晶は気相酸化法で生成することもできるが、気相酸化法で生成された酸化マグネシウム単結晶粒子は主に(100)面が成長し、その他の配向面は成長しにくいという欠点がある。これは、気相酸化法で酸化マグネシウムを生成する場合、例えば、不活性ガスが満たされた槽中で、金属マグネシウムを高温に加熱しながら酸素ガスを少量流し、金属マグネシウムを直接酸化させて酸化マグネシウム結晶粉体を生成するため、最稠密面である(100)面が優先的に成長するものと考えられる。
 しかし本実施の形態における液相法によれば、酸化マグネシウムの前駆体である水酸化マグネシウムは六方晶系の化合物であり、酸化マグネシウムの立方晶系の構造とは異なっている。水酸化マグネシウムが熱分解して酸化マグネシウムの結晶を生成する結晶成長過程は複雑であるが、六方晶系の形態を残しながら酸化マグネシウム単結晶が形成されるため、結晶面として(100)面および(111)面、さらに(110)面が形成されるものと考えられる。
 同様に、マグネシウムアルコキシド、硝酸マグネシウム、塩化マグネシウム、炭酸マグネシウム、硫酸マグネシウム、シュウ酸マグネシウム、酢酸マグネシウム等のマグネシウム化合物も立方晶系ではないため、これらを酸化マグネシウムの前駆体として熱分解して酸化マグネシウム結晶を生成すると、マグネシウム元素に配位している(OR)2基、Cl2基、(NO3)2基、CO3基、C2O4基等が脱離する際に、(100)面だけでなく(110)面や(111)面も形成されると考えられる。
 また、気相酸化法で生成された酸化マグネシウム単結晶粒子は粒径のばらつきが大きくなる傾向がある。このため気相酸化法を用いた酸化マグネシウムの製造工程では、粒径をそろえるための分級工程が必要であった。
 しかし本実施の形態における液相法を用いれば、比較的粒径のそろった、かつ比較的大きい単結晶粒子を得ることができる。例えば、上述した液相法を用いると粒径が0.3μm~2μmの結晶粒子が得られる。このため、微小粒子を取り除く分級工程を省略することが可能である。加えて本実施の形態における液相法を用いれば大きな粒径の結晶が得られるので、気相酸化法で生成された酸化マグネシウム結晶よりも比表面積が小さくなり、耐吸着性に優れた酸化マグネシウム結晶を得ることができる。
 このように、本実施の形態における粒子層26bは、(100)面および(111)面からなる特定2種配向面で囲まれたNaCl結晶構造を有する単結晶粒子27、あるいは(100)面、(110)面および(111)面からなる特定3種配向面で囲まれたNaCl結晶構造を有する単結晶粒子27dを下地保護層26aに付着させることにより構成している。そして、広い温度範囲にわたり安定して良好な電子放出性能と電荷保持性能とをあわせもち、高速駆動の可能なパネル10を実現している。
 次に、本発明の実施の形態におけるパネル10の駆動方法について説明する。
 図6は、本発明の実施の形態におけるパネル10の電極配列を示す図である。パネル10には、行方向(ライン方向)に長いn本の走査電極SC1~SCn(図1の走査電極22)およびn本の維持電極SU1~SUn(図1の維持電極23)が配列され、列方向に長いm本のデータ電極D1~Dm(図1のデータ電極32)が配列されている。そして、1対の走査電極SCi(i=1~n)および維持電極SUiと1つのデータ電極Dj(j=1~m)とが交差した部分に放電セルが形成され、放電セルは放電空間内にm×n個形成されている。放電セルの数は、高精細度プラズマディスプレイ装置に用いるパネルであれば、例えば、m=1920×3=5760、n=1080である。
 次に、パネル10を駆動するために各電極に印加する駆動電圧波形について説明する。パネル10は、サブフィールド法、すなわち1フィールド期間を複数のサブフィールドに分割し、サブフィールド毎に各放電セルの発光・非発光を制御することによって階調表示を行う。それぞれのサブフィールドは初期化期間、書込み期間および維持期間を有する。
 初期化期間では初期化放電を発生し、続く書込み放電に必要な壁電荷を各電極上に形成する。このときの初期化動作には、全ての放電セルで初期化放電を発生させる初期化動作(以下、「全セル初期化動作」と略記する)と、直前のサブフィールドの維持期間に維持放電を行った放電セルで初期化放電を発生させる初期化動作(以下、「選択初期化動作」と略記する)とがある。
 書込み期間では、発光させるべき放電セルで選択的に書込み放電を発生し壁電荷を形成する。そして維持期間では、輝度重みに応じた数の維持パルスを表示電極対に交互に印加して、書込み放電を発生した放電セルで維持放電を発生させて発光させる。なお、サブフィールド構成の詳細については後述することとし、ここではサブフィールドにおける駆動電圧波形とその動作について説明する。
 図7は、本発明の実施の形態におけるパネル10の各電極に印加する駆動電圧波形図である。図7には、全セル初期化動作を行うサブフィールドと選択初期化動作を行うサブフィールドとを示している。
 まず、全セル初期化動作を行うサブフィールド(全セル初期化サブフィールド)について説明する。
 初期化期間の前半部では、データ電極D1~Dm、維持電極SU1~SUnにそれぞれ0(V)を印加し、走査電極SC1~SCnには、維持電極SU1~SUnに対して放電開始電圧以下の電圧Vi1から、放電開始電圧を超える電圧Vi2に向かって緩やかに上昇する傾斜波形電圧を印加する。
 この傾斜波形電圧が上昇する間に、走査電極SC1~SCnと維持電極SU1~SUn、データ電極D1~Dmとの間でそれぞれ微弱な初期化放電が起こる。そして、走査電極SC1~SCn上に負の壁電圧が蓄積されるとともに、データ電極D1~Dm上および維持電極SU1~SUn上には正の壁電圧が蓄積される。ここで、電極上の壁電圧とは電極を覆う誘電体層上、保護層上、蛍光体層上等に蓄積された壁電荷により生じる電圧を表す。このときの初期化放電では、続く初期化期間の後半部において壁電圧の最適化を図ることを見越して、過剰に壁電圧を蓄えておく。
 初期化期間後半部では、維持電極SU1~SUnに電圧Ve1を印加し、走査電極SC1~SCnには、維持電極SU1~SUnに対して放電開始電圧以下となる電圧Vi3から放電開始電圧を超える電圧Vi4に向かって緩やかに下降する傾斜波形電圧を印加する。この間に、走査電極SC1~SCnと維持電極SU1~SUn、データ電極D1~Dmとの間でそれぞれ微弱な初期化放電が起こる。そして、走査電極SC1~SCn上の負の壁電圧および維持電極SU1~SUn上の正の壁電圧が弱められ、データ電極D1~Dm上の正の壁電圧は書込み動作に適した値に調整される。以上により、全ての放電セルに対して初期化放電を行う全セル初期化動作が終了する。
 続く書込み期間では、維持電極SU1~SUnに電圧Ve2を、走査電極SC1~SCnに電圧Vcを印加する。
 次に、1ライン目の走査電極SC1に負の走査パルス電圧Vaを印加するとともに、データ電極D1~Dmのうち1ライン目に発光させるべき放電セルのデータ電極Dk(k=1~m)に正の書込みパルス電圧Vdを印加する。このときデータ電極Dk上と走査電極SC1上との交差部の電圧差は、外部印加電圧の差(Vd-Va)にデータ電極Dk上の壁電圧と走査電極SC1上の壁電圧の差とが加算されたものとなり放電開始電圧を超える。そして、データ電極Dkと走査電極SC1との間および維持電極SU1と走査電極SC1との間に書込み放電が起こり、走査電極SC1上に正の壁電圧が蓄積され、維持電極SU1上に負の壁電圧が蓄積され、データ電極Dk上にも負の壁電圧が蓄積される。
 ここで、走査パルス電圧Vaと書込みパルス電圧Vdを印加した後、書込み放電が発生するまでの時間を「放電遅れ時間」と称する。仮にパネルの電子放出性能が低く放電遅れ期間が長くなると、確実に書込み動作を行うために走査パルス電圧Vaと書込みパルス電圧Vdとを印加する時間、すなわち走査パルス幅と書込みパルス幅とを長く設定する必要があり、高速に書込み動作を行うことができなくなる。また仮にパネルの電荷保持性能が低いと、壁電圧の減少を補うために走査パルス電圧Vaと書込みパルス電圧Vdとの電圧値を高く設定する必要がある。しかしながら本実施の形態におけるパネル10は電子放出性能が高いので、走査パルス幅および書込みパルス幅を従来のパネルより短く設定することができ、安定して高速に書込み動作を行うことができる。また本実施の形態におけるパネル10は電荷保持性能が高いので、走査パルス電圧Vaと書込みパルス電圧Vdとの電圧値を従来のパネルより低く設定することができる。
 このようにして、1ライン目に発光させるべき放電セルで書込み放電を起こして各電極上に壁電圧を蓄積する書込み動作が行われる。一方、書込みパルス電圧Vdを印加しなかったデータ電極D1~Dmと走査電極SC1との交差部の電圧は放電開始電圧を超えないので、書込み放電は発生しない。以上の書込み動作をnライン目の放電セルに至るまで行い、書込み期間が終了する。
 続く維持期間では、まず走査電極SC1~SCnに正の維持パルス電圧Vsを印加するとともに維持電極SU1~SUnに0(V)を印加する。すると書込み放電を起こした放電セルでは、走査電極SCi上と維持電極SUi上との電圧差が維持パルス電圧Vsに走査電極SCi上の壁電圧と維持電極SUi上の壁電圧との差が加算されたものとなり放電開始電圧を超える。
 そして、走査電極SCiと維持電極SUiとの間に維持放電が起こり、このとき発生した紫外線により蛍光体層35が発光する。そして走査電極SCi上に負の壁電圧が蓄積され、維持電極SUi上に正の壁電圧が蓄積される。さらにデータ電極Dk上にも正の壁電圧が蓄積される。書込み期間において書込み放電が起きなかった放電セルでは維持放電は発生せず、初期化期間の終了時における壁電圧が保たれる。
 続いて、走査電極SC1~SCnには0(V)を、維持電極SU1~SUnには維持パルス電圧Vsをそれぞれ印加する。すると、維持放電を起こした放電セルでは、維持電極SUi上と走査電極SCi上との電圧差が放電開始電圧を超えるので再び維持電極SUiと走査電極SCiとの間に維持放電が起こり、維持電極SUi上に負の壁電圧が蓄積され走査電極SCi上に正の壁電圧が蓄積される。以降同様に、走査電極SC1~SCnと維持電極SU1~SUnとに交互に輝度重みに応じた数の維持パルスを印加し、表示電極対の電極間に電位差を与えることにより、書込み期間において書込み放電を起こした放電セルで維持放電が継続して行われる。
 そして、維持期間の最後には走査電極SC1~SCnと維持電極SU1~SUnとの間にいわゆる細幅パルス状の電圧差、または傾斜波形状の電位差を与えて、データ電極Dk上の正の壁電圧を残したまま、走査電極SCiおよび維持電極SUi上の壁電圧を消去している。
 次に、選択初期化動作を行うサブフィールド(選択初期化サブフィールド)の動作について説明する。
 選択初期化動作を行う初期化期間では、維持電極SU1~SUnに電圧Ve1を、データ電極D1~Dmに0(V)をそれぞれ印加し、走査電極SC1~SCnに電圧Vi4に向かって緩やかに下降するランプ電圧を印加する。すると前のサブフィールドの維持期間で維持放電を起こした放電セルでは微弱な初期化放電が発生し、走査電極SCi上および維持電極SUi上の壁電圧が弱められる。またデータ電極Dkに対しては、直前の維持放電によってデータ電極Dk上に十分な正の壁電圧が蓄積されているので、この壁電圧の過剰な部分が放電され、書込み動作に適した壁電圧に調整される。
 一方、前のサブフィールドで維持放電を起こさなかった放電セルについては放電することはなく、前のサブフィールドの初期化期間終了時における壁電荷がそのまま保たれる。このように選択初期化動作は、直前のサブフィールドの維持期間で維持動作を行った放電セルに対して選択的に初期化放電を行う動作である。
 続く書込み期間の動作は全セル初期化動作を行うサブフィールドの書込み期間の動作と同様であるため説明を省略する。続く維持期間の動作も維持パルスの数を除いて同様である。
 次に、本実施の形態における駆動方法のサブフィールド構成について説明する。本実施の形態における駆動方法の特徴は、全セル初期化サブフィールドから次の全セル初期化サブフィールドの直前のサブフィールドまでの輝度重みの大きさが単調減少となるようにサブフィールドが時間的に配置されている点である。すなわち、全セル初期化サブフィールドに続く選択初期化サブフィールドの輝度重みの大きさが直前のサブフィールドの輝度重みの大きさより小さくまたは等しく設定されており、選択初期化サブフィールドに続く選択初期化サブフィールドの輝度重みの大きさが直前のサブフィールドの輝度重みの大きさより小さくまたは等しく設定されている点である。このように、全セル初期化サブフィールドから次の全セル初期化サブフィールドの前のサブフィールドまでの輝度重みの大きさが単調減少となるように設定されたサブフィールド構成を、以下「降順コーディング」と略称する。
 図8は本発明の実施の形態におけるサブフィールド構成を示す図である。本実施の形態においては、1フィールドを10のサブフィールド(第1SF、第2SF、・・・、第10SF)に分割し、各サブフィールドはそれぞれ(80、60、44、30、18、11、6、3、2、1)の輝度重みをもつ。また第1SFは全セル初期化サブフィールドであり、第2SF~第10SFは選択初期化サブフィールドである。なお、図8は走査電極22に印加する駆動電圧波形の1フィールドの概略を示すもので、各サブフィールドの各々の期間における駆動電圧波形の詳細は図7に示したとおりである。
 このように本実施の形態においてはパネル10を降順コーディングで駆動するが、降順コーディングで駆動することにより、高速駆動可能なパネル10の性能を生かしつつ、さらに高速かつ安定した書込み動作を行うことができ、画像表示品質の優れたプラズマディスプレイ装置を実現することができる。また降順コーディングで駆動することにより、さらに書込みパルス電圧を下げることができ、プラズマディスプレイ装置の消費電力を下げることができる。
 以下、その理由について説明する。本発明者らは、本実施の形態におけるパネル10の放電遅れ時間を測定した。測定したパネルは、(100)面および(111)面からなる特定2種配向面で囲まれたNaCl結晶構造を有する単結晶粒子、および(100)面、(110)面および(111)面からなる特定3種配向面で囲まれたNaCl結晶構造を有する単結晶粒子を下地保護層26aの全面にわたってほぼ均一に分布するように付着させた粒子層26bを有する保護層26を形成したパネル(本発明のパネル)であり、放電ガスがキセノンガス100%の42インチ高輝度、高精細度パネルである。また比較のために、下地保護層26aのみを有し粒子層26bを有しない従来のパネルについても放電遅れ時間を測定した。
 周囲の放電セルからの放電の影響を受けないように、隣接する放電セルで書込み放電を発生させないように制御した放電セルで書込み放電の放電遅れ時間を測定した。また放電遅れ時間は蛍光体材料の影響を受けるが、放電遅れ時間が長くなる傾向の強い緑色の蛍光体を塗布された放電セルで測定を行った。
 まず、放電遅れ時間と全セル初期化動作からの経過時間との関係を知るために、第1SFから第10SFのうちの1つのサブフィールドのみで書込み動作を行ったときの放電遅れ時間をそれぞれ測定した。このときの維持パルス数はサブフィールドにかかわらず2パルスとした。また放電遅れ時間と維持パルス数との関係を知るために、第5SFのみで書込み動作を行い、その後の維持期間の維持パルス数を2パルスから256パルスまで変化させて放電遅れ時間を測定した。
 図9Aは、本発明の実施の形態におけるパネル10の放電遅れ時間と全セル初期化動作からの経過時間との関係を示す図であり、図9Bは、本発明の実施の形態におけるパネル10の放電遅れ時間と維持パルス数との関係を示す図である。図9Aおよび図9Bには、比較のための従来のパネルの特性を破線で示している。
 このように、本実施の形態におけるパネル10は、従来のパネルに比較して放電遅れ時間が非常に短くなっていることがわかる。これは、本実施の形態におけるパネル10の電子放出性能が高いため放電遅れ時間が短くなったためである。また図9Aによれば、本実施の形態におけるパネル10は、全セル初期化動作からの経過時間とともに放電遅れ時間が長くなる傾向がある。この傾向は従来のパネルも同様である。これは全セル初期化動作で発生したプライミングが時間とともに減少し、放電が発生しにくくなるためであると考えられる。
 一方、放電遅れ時間と維持パルス数との関係について注目すると、図9Bに示すように、従来のパネルでは維持パルス数が増加するとともに放電遅れ時間が短くなる傾向があるのに対し、本実施の形態におけるパネル10は維持パルス数が増加するとともに放電遅れ時間が長くなる傾向がある。一般的には維持パルス数が多くなると維持放電にともなうプライミングが増加するので放電遅れ時間が短くなると考えられている。しかし本実施の形態におけるパネル10では、逆の傾向が現れている。本実施の形態のパネル10でこのような傾向が現れる原因について完全に解明されたわけではないが、1つの可能性として以下のように考えることができる。放電遅れ時間を決める形成遅れ時間と統計遅れ時間のうち、プライミングの影響を大きく受ける統計遅れ時間はすでに十分短いため、維持放電にともなうプライミングが放電遅れ時間に大きく寄与することはない。しかし本実施の形態におけるパネル10は従来のパネルに比べて電荷保持性能は高いものの、壁電荷の減少が全くないわけではないので、維持放電にともない壁電圧が減少し、電極間に実質的に印加される電圧が低下して放電形成遅れ時間が増加した結果、放電遅れ時間が長くなったと考えられる。
 電子放出性能の低いパネルでは、プライミングが統計遅れ時間に及ぼす影響は大きく100nsから1000nsに及ぶことがあるのに対し、壁電圧の減少が形成遅れ時間に及ぼす影響は100ns程度と比較的小さい。そのために、電子放出性能の低いパネルでは統計遅れ時間に及ぼすプライミングの影響が勝り、維持パルス数が増えるにつれて放電遅れ時間が短くなるものと考えられる。しかし本実施の形態のパネル10のように電子放出性能の高いパネルではプライミングが放電遅れに及ぼす影響は小さく、電荷保持性能が高くても統計遅れ時間に及ぼす壁電圧の減少の影響が勝って、維持パルス数が増えるにつれて放電遅れ時間が長くなるものと考えられる。
 このように、本実施の形態におけるパネル10では、維持パルスが増えると放電遅れ時間が長くなる傾向があり、かつ全セル初期化動作からの経過時間が長くなるほど放電遅れ時間が長くなる傾向がある。従って、全セル初期化動作からの経過時間が短いときは維持パルス数を多く、全セル初期化動作からの経過時間が長くなるにつれて維持パルス数が少なくなる降順コーディングのサブフィールド構成とすることにより、放電遅れ時間の長くなる条件と短くなる条件とが相殺されて、本実施の形態におけるパネル10の特徴を生かした高速駆動が可能となる。
 またこのように降順コーディングのサブフィールド構成とすることにより、データ電極D1~Dmに印加する電圧を下げることができる。図10は、本発明の実施の形態におけるパネル10を、輝度重みの大きさが単調減少となるようにサブフィールドを配置した降順コーディングのサブフィールド構成で駆動した場合と輝度重みの大きさが単調増加となるようにサブフィールドを配置した昇順コーディングのサブフィールド構成で駆動した場合とのデータ電極D1~Dmに印加する電圧の最低の電圧を示す図である。このように、点灯率の増加に応じて必要な書込みパルスの電圧は増加するものの、降順コーディングのサブフィールド構成とすることにより、書込みパルス電圧Vdをおよそ5(V)下げることができる。これによりデータ電極駆動回路の電力を削減することができる。
 次に、上述した駆動電圧を発生してパネル10を駆動するパネル駆動回路の一例について説明する。
 図11は、本発明の実施の形態におけるプラズマディスプレイ装置100の回路ブロック図である。プラズマディスプレイ装置100は、パネル10とパネル駆動回路とを備えている。パネル10の保護層26は、酸化マグネシウムを含む薄膜で形成された下地保護層26aと、(100)面および(111)面からなる特定2種配向面で囲まれたNaCl結晶構造を有する酸化マグネシウムの単結晶粒子27、あるいは(100)面、(110)面および(111)面からなる特定3種配向面で囲まれたNaCl結晶構造を有する酸化マグネシウムの単結晶粒子27を、下地保護層26aに付着させて形成した粒子層26bとから構成されている。パネル駆動回路は、初期化期間において、全ての放電セルで初期化放電を発生させる全セル初期化動作と、それ以前に維持放電を行った放電セルで初期化放電を発生させる選択初期化動作とのいずれかを行い、かつ全セル初期化動作を行うサブフィールドから次の全セル初期化動作を行うサブフィールドの直前のサブフィールドまでの輝度重みの大きさが単調減少となるようにサブフィールドを時間的に配置してパネル10を駆動する。パネル駆動回路は、画像信号処理回路41、データ電極駆動回路42、走査電極駆動回路43、維持電極駆動回路44、タイミング発生回路45および各回路ブロックに必要な電源を供給する電源回路(図示せず)を備えている。
 画像信号処理回路41は、入力された画像信号をサブフィールド毎の発光・非発光を示す画像データに変換する。データ電極駆動回路42はサブフィールド毎の画像データを各データ電極D1~Dmに対応する信号に変換し各データ電極D1~Dmを駆動する。タイミング発生回路45は水平同期信号および垂直同期信号をもとにして各回路ブロックの動作を制御する各種のタイミング信号を発生し、それぞれの回路ブロックへ供給する。走査電極駆動回路43はタイミング信号にもとづいて各走査電極SC1~SCnをそれぞれ駆動し、維持電極駆動回路44はタイミング信号にもとづいて維持電極SU1~SUnを駆動する。
 図12は、本発明の実施の形態におけるプラズマディスプレイ装置100の走査電極駆動回路43および維持電極駆動回路44の回路図である。
 走査電極駆動回路43は、維持パルス発生回路50、初期化波形発生回路60、走査パルス発生回路70を備えている。維持パルス発生回路50は、走査電極SC1~SCnに電圧Vsを印加するためのスイッチング素子Q55と、走査電極SC1~SCnに0(V)を印加するためのスイッチング素子Q56と、走査電極SC1~SCnに維持パルスを印加する際の電力を回収するための電力回収部59とを有する。初期化波形発生回路60は、走査電極SC1~SCnに上り傾斜波形電圧を印加するためのミラー積分回路61と、走査電極SC1~SCnに下り傾斜波形電圧を印加するためのミラー積分回路62とを有する。なおスイッチング素子Q63およびスイッチング素子Q64は、他のスイッチング素子の寄生ダイオード等を介して電流が逆流することを防ぐために設けている。走査パルス発生回路70は、フローティング電源E71と、フローティング電源E71の高圧側の電圧または低圧側の電圧を走査電極SC1~SCnのそれぞれに印加するためのスイッチング素子Q72H1~Q72Hn、Q72L1~Q72Lnと、フローティング電源E71の低圧側の電圧を電圧Vaに固定するスイッチング素子Q73を有する。
 維持電極駆動回路44は、維持パルス発生回路80、初期化・書込み電圧発生回路90を備えている。維持パルス発生回路80は、維持電極SU1~SUnに電圧Vsを印加するためのスイッチング素子Q85と、維持電極SU1~SUnに0(V)を印加するためのスイッチング素子Q86と、維持電極SU1~SUnに維持パルスを印加する際の電力を回収するための電力回収部89とを有する。初期化・書込み電圧発生回路90は、維持電極SU1~SUnに電圧Ve1を印加するためのスイッチング素子Q92およびダイオードD92と、維持電極SU1~SUnに電圧Ve2を印加するためのスイッチング素子Q94およびダイオードD94とを有する。
 なお、これらのスイッチング素子は、MOSFETやIGBT等の一般に知られた素子を用いて構成することができる。またこれらのスイッチング素子は、タイミング発生回路45で発生したそれぞれのスイッチング素子に対応するタイミング信号により制御される。
 なお、図12に示した駆動回路は、図7に示した駆動電圧波形を発生させる回路構成の一例であって、本発明のプラズマディスプレイ装置は、この回路構成に限定されるものではない。
 また、本実施の形態においては、1フィールドを10のサブフィールドに分割し、第1SFのみが全セル初期化サブフィールドであるものとして説明したが、本発明はこれに限定されるものではない。図13は、本発明の他の実施の形態におけるサブフィールド構成を示す図である。図13には、サブフィールド数を「14」とし、全セル初期化サブフィールドを第1SFおよび第7SFとし、第1SFから第6SFまでの輝度重みの大きさが単調減少となるように設定されており、また第7SFから第14SFまでの輝度重みの大きさも単調減少となるように設定されている。このように、全セル初期化サブフィールドから次の全セル初期化サブフィールドの前のサブフィールドまでの輝度重みの大きさが単調減少となるように設定することが重要であり、サブフィールド数は必要に応じて任意に設定してもよく、また全セル初期化動作を行うサブフィールド、およびその数も任意に設定してもよい。
 また、本実施の形態において用いた具体的な各数値は、単に一例を挙げたに過ぎず、パネルの特性やプラズマディスプレイ装置の仕様等に合わせて、適宜最適な値に設定することが望ましい。
 本発明のプラズマディスプレイ装置は、高速かつ安定した書込み動作を行い、表示品質の優れた画像を表示することができるのでディスプレイ装置として有用である。

Claims (2)

  1.    第1のガラス基板上に表示電極対を形成し前記表示電極対を覆うように誘電体層を形成し前記誘電体層の上に保護層を形成した前面板と、第2のガラス基板上にデータ電極を形成した背面板とを対向配置して、前記表示電極対と前記データ電極とが対向する位置に放電セルを形成したプラズマディスプレイパネルと、
       前記放電セルで初期化放電を発生させる初期化期間と書込み放電を発生させる書込み期間と維持放電を発生させる維持期間とを有する複数のサブフィールドを時間的に配置して1フィールド期間を構成して前記プラズマディスプレイパネルを駆動するパネル駆動回路とを備えたプラズマディスプレイ装置であって、
       前記保護層は、酸化マグネシウム、酸化ストロンチウム、酸化カルシウム、酸化バリウムの少なくとも1つを含む金属酸化物の薄膜で形成された下地保護層と、(100)面および(111)面からなる特定2種配向面、または(100)面、(110)面および(111)面からなる特定3種配向面で囲まれたNaCl結晶構造を有する酸化マグネシウムの単結晶粒子を、前記下地保護層に付着させて形成した粒子層とから構成され、
       前記パネル駆動回路は、前記初期化期間において、全ての放電セルで初期化放電を発生させる全セル初期化動作とそれ以前に維持放電を行った放電セルで初期化放電を発生させる選択初期化動作とのいずれかを行い、かつ全セル初期化動作を行うサブフィールドから次の全セル初期化動作を行うサブフィールドの直前のサブフィールドまでの輝度重みの大きさが単調減少となるようにサブフィールドを時間的に配置して前記プラズマディスプレイパネルを駆動するように構成したことを特徴とするプラズマディスプレイ装置。
  2.    前記粒子層は酸化マグネシウム前駆体の焼成生成物であることを特徴とする請求項1に記載のプラズマディスプレイ装置。
PCT/JP2009/001717 2008-04-15 2009-04-14 プラズマディスプレイ装置 WO2009128255A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/596,757 US8531357B2 (en) 2008-04-15 2009-04-14 Method of driving a plasma display panel to compensate for the increase in the discharge delay time as the number of sustain pulses increases
CN2009800003577A CN101681773B (zh) 2008-04-15 2009-04-14 等离子显示装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-105420 2008-04-15
JP2008105420A JP2009259513A (ja) 2008-04-15 2008-04-15 プラズマディスプレイ装置

Publications (1)

Publication Number Publication Date
WO2009128255A1 true WO2009128255A1 (ja) 2009-10-22

Family

ID=41198960

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/001717 WO2009128255A1 (ja) 2008-04-15 2009-04-14 プラズマディスプレイ装置

Country Status (5)

Country Link
US (1) US8531357B2 (ja)
JP (1) JP2009259513A (ja)
KR (1) KR101078144B1 (ja)
CN (1) CN101681773B (ja)
WO (1) WO2009128255A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1195718A (ja) * 1997-09-18 1999-04-09 Fujitsu Ltd Ac型pdpの駆動方法及びプラズマ表示装置
JP2000105568A (ja) * 1998-07-29 2000-04-11 Hitachi Ltd 表示パネルの駆動方法と放電式表示装置
JP2006098751A (ja) * 2004-09-29 2006-04-13 Pioneer Electronic Corp プラズマディスプレイ装置
JP2006251337A (ja) * 2005-03-10 2006-09-21 Pioneer Electronic Corp プラズマディスプレイパネルの駆動方法
WO2007139184A1 (ja) * 2006-05-31 2007-12-06 Panasonic Corporation プラズマディスプレイパネルとその製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3891499B2 (ja) * 1995-04-14 2007-03-14 パイオニア株式会社 プラズマディスプレイパネルにおける輝度調整装置
JPH1124628A (ja) * 1997-07-07 1999-01-29 Matsushita Electric Ind Co Ltd プラズマディスプレイパネルの階調表示方法
TW527576B (en) * 1998-07-29 2003-04-11 Hitachi Ltd Display panel driving method and discharge type display apparatus
TW516014B (en) * 1999-01-22 2003-01-01 Matsushita Electric Ind Co Ltd Driving method for AC plasma display panel
EP1194919A2 (en) * 1999-11-26 2002-04-10 Koninklijke Philips Electronics N.V. Method and unit for processing images
JP3560143B2 (ja) * 2000-02-28 2004-09-02 日本電気株式会社 プラズマディスプレイパネルの駆動方法及び駆動回路
JP2003345293A (ja) * 2002-05-27 2003-12-03 Fujitsu Hitachi Plasma Display Ltd プラズマディスプレイパネルの駆動方法
JP4481131B2 (ja) 2004-05-25 2010-06-16 パナソニック株式会社 プラズマディスプレイ装置
KR100570971B1 (ko) * 2004-12-01 2006-04-14 엘지전자 주식회사 플라즈마 디스플레이 패널의 구동방법
US20080157673A1 (en) * 2006-12-28 2008-07-03 Yusuke Fukui Plasma display panel and manufacturing method therefor
JP4715859B2 (ja) * 2008-04-15 2011-07-06 パナソニック株式会社 プラズマディスプレイ装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1195718A (ja) * 1997-09-18 1999-04-09 Fujitsu Ltd Ac型pdpの駆動方法及びプラズマ表示装置
JP2000105568A (ja) * 1998-07-29 2000-04-11 Hitachi Ltd 表示パネルの駆動方法と放電式表示装置
JP2006098751A (ja) * 2004-09-29 2006-04-13 Pioneer Electronic Corp プラズマディスプレイ装置
JP2006251337A (ja) * 2005-03-10 2006-09-21 Pioneer Electronic Corp プラズマディスプレイパネルの駆動方法
WO2007139184A1 (ja) * 2006-05-31 2007-12-06 Panasonic Corporation プラズマディスプレイパネルとその製造方法

Also Published As

Publication number Publication date
KR20090130340A (ko) 2009-12-22
CN101681773B (zh) 2011-07-27
US20100134453A1 (en) 2010-06-03
CN101681773A (zh) 2010-03-24
US8531357B2 (en) 2013-09-10
KR101078144B1 (ko) 2011-10-28
JP2009259513A (ja) 2009-11-05

Similar Documents

Publication Publication Date Title
KR101078083B1 (ko) 플라즈마 디스플레이 장치
WO2009128247A1 (ja) プラズマディスプレイ装置
JP4715859B2 (ja) プラズマディスプレイ装置
WO2009128255A1 (ja) プラズマディスプレイ装置
WO2009128254A1 (ja) プラズマディスプレイ装置
WO2009128256A1 (ja) プラズマディスプレイ装置
KR101094517B1 (ko) 플라즈마 디스플레이 장치
WO2009128248A1 (ja) プラズマディスプレイ装置
KR101115831B1 (ko) 플라즈마 디스플레이 장치
WO2009128235A1 (ja) プラズマディスプレイ装置
JP2011175826A (ja) プラズマディスプレイパネルおよびプラズマディスプレイ装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980000357.7

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 12596757

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20097025181

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09731620

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09731620

Country of ref document: EP

Kind code of ref document: A1