WO2009127141A1 - 数据传输方法 - Google Patents

数据传输方法 Download PDF

Info

Publication number
WO2009127141A1
WO2009127141A1 PCT/CN2009/071205 CN2009071205W WO2009127141A1 WO 2009127141 A1 WO2009127141 A1 WO 2009127141A1 CN 2009071205 W CN2009071205 W CN 2009071205W WO 2009127141 A1 WO2009127141 A1 WO 2009127141A1
Authority
WO
WIPO (PCT)
Prior art keywords
node
data
feedback
relay node
relay
Prior art date
Application number
PCT/CN2009/071205
Other languages
English (en)
French (fr)
Inventor
刘扬
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2009127141A1 publication Critical patent/WO2009127141A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1887Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/155Ground-based stations
    • H04B7/15521Ground-based stations combining by calculations packets received from different stations before transmitting the combined packets as part of network coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L2001/0092Error control systems characterised by the topology of the transmission link
    • H04L2001/0097Relays

Definitions

  • the present invention relates to the field of communications, and more particularly to a data transmission method.
  • a wireless multi-hop communication system is designed to enable a wife to receive complete information quickly while making full use of limited wireless network resources.
  • Network coding is a technology in wireless multi-hop communication systems. Broadly speaking, network coding is a multicast technology in which a node in a network encodes the received information and then forwards it out. A comparison of traditional transit and network coding examples is shown in Figure 1.
  • Figure la is an example of a conventional relay. Node A sends data a to the relay node R, and then the node B 4 data b is sent to the relay node R.
  • the relay node R transmits 4 bar data b to node A in turn, and sends data a to node B.
  • a and B can receive their respective data b and a.
  • the network coding technology is applied, and the relay node R performs network coding (for example, XOR) on the received data a and data b, and uses the same time and frequency resources (ie, the same link). ) Broadcast out.
  • Node A can use the locally transmitted data a to solve the required data b (network decoding) based on the received information.
  • Node B can use the locally sent data b to solve the required data a based on the received information.
  • the data transmission method includes: the relay node determines whether it successfully receives the data a from the node A and the data b from the node B; if the judgment result is yes, the relay node respectively pairs the data a and The data b is network-coded, and the encoded data a and the relay node receiving data for indicating that the Node B receives the data from the relay node are successfully sent back to the Node B, and the encoded data b is used to indicate the node.
  • a relay node receiving data from the relay node receives feedback data and sends it to node A; and node A and node B respectively receive the encoded data b and the encoded data a in response to the indication of the relay node, respectively
  • the encoded data b and the encoded data a are respectively decoded by the network, and when the decoding is successful, the data receiving success feedback is sent to the relay node, and when the decoding fails, the data receiving failure feedback is sent to the relay node.
  • the method further includes: the relay node receives the data reception success feedback from the node A and the node B, respectively, and successfully receives the data from the node A and the node B respectively.
  • the feedback is forwarded to the node B and the node A respectively; after receiving the data reception success feedback, the node A and the node B respectively send new data to the relay node.
  • the method further includes: the relay node receives the data reception success feedback from the node B and the data reception failure feedback from the node A, and successfully receives the data from the node B.
  • the feedback is forwarded to the node A, and the data reception failure feedback from the node A is forwarded to the node B.
  • the node A sends new data to the relay node, and the node B receives the data reception failure from the node A. After feedback, no processing is done.
  • the method further includes: the relay node receives the data reception failure feedback from the node A and the node B, respectively, and forwards the data reception failure feedback from the node A to the node B, The data reception failure feedback from the Node B is forwarded to the node A; after receiving the data reception failure feedback, the node A and the node B respectively do nothing.
  • the relay node successfully receives the data a and fails to receive the data b
  • the relay node does not encode the data a, and uses the data a and the node A to indicate that the node B receives the data from the relay node.
  • the node data reception success feedback is sent to the node B; the node B receives the data a in response to the indication of the relay node, receives the data a, and sends a data reception success feedback to the relay node if the reception is successful, and the reception fails.
  • the data reception failure feedback is sent to the relay node.
  • the relay node further generates relay node data reception failure feedback for indicating to the node A and the node B that the relay node has not successfully received the data b.
  • the relay node sends the relay node data reception failure feedback to the node A simultaneously or after transmitting the encoded data a and the relay node data reception success feedback to the node B.
  • the method further includes: the relay node receives the data reception success feedback from the Node B, and sends the data reception success feedback and the relay node reception data failure feedback to the node A and the node B, respectively; After receiving the data reception success feedback, A sends new data to the relay node, and after receiving the feedback failure of the relay node receiving data, the node B retransmits the data b to the relay node.
  • the method further includes: the relay node receives the data reception failure feedback from the node B, and sends the data reception failure feedback and the relay node reception data failure feedback to the node A and the node B, respectively; After receiving the data reception failure feedback, A does not perform any processing. After receiving the feedback failure of the relay node receiving data, the Node B retransmits the data b to the relay node. Wherein, in the case that the relay node fails to receive the data a and the data b, the relay node generates a relay node data reception for indicating to the node A and the node B that the relay node does not successfully receive the data b and the data a.
  • Fail feedback and send relay node data reception failure feedback to node A and node B; node A and node B do not send any data; node A does not receive any data after receiving relay node receiving data b failure feedback; After receiving the failure feedback of the relay node receiving data a, B does not receive any data; the relay node generates a relay node data reception failure feedback for indicating to the node A and the node B that the relay node has not successfully received the data a and the data b.
  • the node A After receiving the failure feedback of the relay node receiving the data a, the node A retransmits the data a to the relay node; the node B receives the relay node receiving the data.
  • the data b is retransmitted to the relay node.
  • the relay node receives the data reception failure feedback from the node A or the node B
  • the relay node retransmits the data b or the data a/encoded data b or the encoded data to the node A or the node B.
  • the operation of retransmitting the data b includes: retransmitting part or all of the content of the data b, and the data encoding and modulation method of the retransmission may be the same as or different from the first transmission.
  • FIG. 1 and FIG. 1b are schematic diagrams of configuration of a wireless relay network in a data transmission method according to the related art
  • FIG. 2 is a schematic flowchart of a data transmission method implemented in scenario 1 according to the first embodiment of the present invention
  • 3 is a schematic flowchart of a data transmission method implemented in scenario 2 according to the first embodiment of the present invention
  • FIG. 1 and FIG. 1b are schematic diagrams of configuration of a wireless relay network in a data transmission method according to the related art
  • FIG. 2 is a schematic flowchart of a data transmission method implemented in scenario 1 according to the first embodiment of the present invention
  • 3 is a schematic flowchart of a data transmission method implemented in scenario 2 according to the first embodiment of the present invention
  • FIG. 1 and FIG. 1b are schematic diagrams of configuration of a wireless relay network in a data transmission method according to the related art
  • FIG. 2 is a schematic flowchart of a data transmission method implemented in scenario 1 according to the first embodiment of the present invention
  • 3 is a
  • FIG. 4 is a schematic flowchart of a data transmission method implemented in scenario 3 according to the first embodiment of the present invention
  • FIG. 5 is a schematic diagram of a configuration of a wireless relay network using a data transmission method of a network coding technology in the related art
  • FIG. 6 is a schematic diagram of a configuration of a wireless relay network using a data transmission method of a network coding technology in the related art
  • FIG. 2 is a flow chart showing a case where the data transmission method according to the second embodiment of the present invention fails to correctly receive the MS data b0
  • 8 is that the data transmission method according to the second embodiment of the present invention fails to receive correctly in MS a
  • the relay node determines whether it successfully receives the data a from the node A and the data b from the node B; if the judgment result is yes, the relay node performs network on the data a and the data b, respectively.
  • the relay node receiving data of the node data is successfully sent back to the node A; and the node A and the node B respectively receive the encoded data b and the encoded data a in response to the indication of the relay node, respectively
  • the data b and the encoded data a are subjected to network decoding, and when the decoding is successful, the data receiving success feedback is sent to the relay node, and in the case of the decoding failure, the data receiving failure feedback is sent to the relay node.
  • the above relay node may be a base station (BS), a relay station (RS), or a mobile station (MS) in a wireless relay communication system
  • the nodes A and B may be a relay station or a mobile station
  • the present invention may be applied to an automatic repeat request. (ARQ) or hybrid automatic repeat request (HARQ).
  • ARQ automatic repeat request
  • HARQ hybrid automatic repeat request
  • the data transmission method mainly includes the following steps 1-6: Step 1: The relay node separately receives data sent by the other two nodes, and determines whether the reception is successful, and the relay node saves the successfully received data. For retransmission in the future; Step 2: The relay node sends feedback to the corresponding receiving node on whether the other node data is successfully received by the relay node, and accordingly, the other node determines whether to receive the subsequent multicast data according to the feedback.
  • the relay node If the relay node correctly receives all other node data, the multicast data is network coded data; otherwise, the multicast data is only the data that is successfully received; Step 3, the other node receives the relay node receiving data success feedback, receives the multicast data, No, it does not receive multicast data; Step 4: After receiving the multicast data, other nodes should use the transmitted data to decode and send feedback to the relay node whether the decoding is successful or not; if other nodes do not receive the multicast data, No feedback is sent; Step 5: After receiving the feedback that other nodes receive the decoding success of the multicast data, the relay node should forward the feedback to the node that sends the corresponding data. If the relay node does not receive feedback from other nodes, it should send a locally generated error reception feedback to the sending node, indicating whether the relay is
  • Step 6 After receiving the received data feedback sent by the relay node, the other node decides to send new data, or resend the data according to the feedback, or does not send any data.
  • the transmission and feedback channels in the above method are end-to-end. That is, a complete transmission and feedback process can be scheduled before the transmission begins. In this way, a variety of different scenarios can be completed in a unified process. After a node receives data, regardless of whether it is successfully decoded or not, the corresponding feedback should be scheduled in advance, and it cannot always be fed back immediately.
  • each node is required to determine in real time whether to use the network decoding method to decode the received multicast data according to the control information.
  • Negative feedback that requires reception failure can indicate: Whether the retransmission should start from the relay node or from the sending node. It should be noted that, for data that needs to be retransmitted, part or all of the data may be retransmitted, and the data encoding and modulation manner of the retransmission may be the same as or different from the previous transmission method.
  • the embodiments of the present invention are described in detail below in three different scenarios. In practical applications, other scenes are only linear combinations of these three scenarios, and can be superimposed according to the analysis of these three scenarios.
  • FIG. 2 is a schematic flowchart of the data transmission method according to the first embodiment of the present invention implemented in scenario 1.
  • the relay node R correctly receives the data sent by nodes A and B.
  • the correct feedback of b0 is sent to node A
  • the correct feedback of a0 is sent to node B
  • the data encoded by a0 and b0 network is multicasted by the same resource.
  • node A After receiving the correct feedback from b0, node A will receive the network coded data and use a0 for network decoding.
  • Node A receives the correct feedback from a0 before receiving the network coded data and using b0 for network decoding. After node A correctly decodes, it sends b0 correct connection feedback to R; after node B decodes correctly, it sends a0 correct reception feedback to R.
  • the relay node R forwards the correct reception feedback of a0 sent by the node B to the node A; the relay node R
  • the two feedbacks can be sent using different time and frequency resources, or they can be transmitted simultaneously using different frequencies.
  • the physical characteristics (such as polarity) of the signal can be used to identify whether the reception is correct, and the feedback information can identify whether the reception is correct, one signal can identify two feedbacks, so the two feedbacks can also be transmitted simultaneously using the same frequency.
  • FIG. 3 is a schematic flowchart of the data transmission method according to the first embodiment of the present invention implemented in scenario 2. As shown in FIG. 3, the relay node R The data a0 sent by the node A is correctly received, but the data b0 sent by the B is not correctly received.
  • R sends the b0 reception error feedback to node A, and sends the correct feedback of a0 reception to node B, and then multicasts the correctly received information a0 with the same resource multicast.
  • Node A receives b0 receiving error feedback and does not receive multicast data.
  • Node A receives the correct feedback from a0 before receiving multicast data.
  • Node B does not use network decoding to receive multicast data.
  • Node A does not receive multicast data and does not send any feedback. After Node B decodes correctly, it sends a0 correct reception feedback to R.
  • the relay node R forwards the a0 correct reception feedback sent by the node B to the node A; the relay node R generates b0 to receive the feedback error at the relay node R and sends it to the node B.
  • the two feedbacks can be sent using different time and frequency resources, or they can be transmitted simultaneously using different frequencies.
  • the physical characteristics (such as polarity) of the signal can be used to identify whether the reception is correct, and the feedback information can identify whether the reception is correct, one signal can identify two feedbacks, so the two feedbacks can also be transmitted simultaneously using the same frequency.
  • the node A After receiving the correct reception feedback from the node A forwarded by the relay node R, the node A clears the data a0 buffer and transmits the data a1; the node B determines the retransmission according to the negative feedback of the data b0 sent by the received relay node R. Starting from the sending node, the data b0 is found from the buffer and resent. If the relay node R correctly receives the data a1, b0 sent by the nodes A and B, R sends the correct feedback of the b0 reception to the node A, and sends the correct feedback of the al reception to the node B, and then multicasts and transmits with the same resource. And b0 network encoded data.
  • FIG. 4 is a schematic flowchart of the data transmission method according to the first embodiment of the present invention implemented in scenario 3, as shown in FIG.
  • node R After receiving the data a0 and b0 sent by nodes A and B respectively, node R sends the correct feedback of bO reception to node A, and sends the correct feedback of aO reception to node B, and then multicasts the same resource according to aO and bO.
  • Network encoded data Node A receives the correct feedback from bO, receives the network coded data, and uses aO to perform network decoding.
  • Node A receives the correct feedback from aO, receives network coded data, and uses bO for network decoding. Node A does not correctly receive the network coded data sent by the relay node, so the transmit data bO does not receive the correct feedback: Node B correctly decodes and sends a0 correct link feedback to R.
  • the relay node R forwards the a0 correct reception feedback sent by the node B to the node A; the relay node R sends the feedback to the node B that the processed data bO is not correctly received, and this feedback indicates that the retransmission should start from the relay node R.
  • the two feedbacks can be sent using different time and frequency resources, or they can be transmitted simultaneously using different frequencies.
  • the node A After receiving the correct reception feedback from the node A forwarded by the relay node R, the node A clears the data aO buffer and transmits the data a1; the node B determines the retransmission slave relay according to the negative feedback of the data bO sent by the relay node R. Node R starts without any processing waiting for feedback from the next data bO.
  • the relay node R If the relay node R correctly receives the data a1 sent by the node A, the relay node R sends the correct feedback of the al reception to the node B. Since the relay node R has already saved the correctly received data bO, the bO can be directly received correctly. The feedback is sent to node A, and then the data encoded according to the al and bO networks is multicasted with the same resources.
  • RSs relay stations
  • MR-BS multi-hop relay base station
  • MS mobile station
  • network coding can be used to handle data interaction between two MSs.
  • the present invention will be further described in detail below by taking MS a and MS b as the same upstream RS as an example. Where, if there is data interaction between MS a and MS b, then RS relay can be used instead.
  • MR-BS 8 P25445 Through MR-BS.
  • the MR-BS can schedule resources for data exchange between MSs.
  • the upstream RS can schedule resources for data interaction between MSs.
  • Fig. 5a is a schematic diagram showing the configuration of a wireless relay network of the data transmission method in the related art. As shown in Fig. 5a, MS a transmits MS data a to the RS, and then MS b transmits the MS data b to the RS. Then, the RS sequentially transmits the MS data a to the MS b and the MS data b to the MS a. Thus, through the transmission of 4 links, MS b and MS a can obtain their respective data.
  • the RS performs network coding (for example, XOR) on the received MS data b and the MS data a, and then encodes the code. Data is sent out with the same time and frequency resources (ie the same link).
  • the MS a can solve the required MS data b with the locally transmitted MS data a based on the received information.
  • the MS b can solve the required MS data a with the locally transmitted MS data b based on the received information.
  • all the communication requirements of the traditional mode can be realized by using only three links.
  • the RS relays data and feedback between the MSs and transmits local network coded data and related feedback.
  • the data transmission method according to the second embodiment of the present invention mainly includes the following steps 1 -6: Step 1: The RS receives the data sent by MS a and MS b respectively, and determines whether the reception is successful, and the RS saves the successfully received data for future use.
  • Step 2 the RS sends feedback to the corresponding receiving node whether the other node data is successfully received or not, and MS a or MS b determines whether to receive subsequent multicast data according to the feedback; if the RS correctly receives all other nodes Data, the multicast data is network coded data, otherwise, the multicast data only contains the data that is successfully received; Step 3, MS a or MS b receives the RS received data successfully feedback, receives the multicast data, no Bay
  • the RS sends feedback of whether the decoding succeeds or not; MS a or MS b does not send any feedback if it does not receive the multicast data; Step 5, after receiving the feedback that the MS a or MS b receives the decoding success of the multicast data, The feedback process can be forwarded to the node that sent the corresponding data; if the RS does not receive the MS a
  • the locally generated error receiving feedback may be sent to the sending node to indicate that the relay needs to re-receive the corresponding data; Step 6, after receiving the received data feedback sent by the RS, the MS a or the MS b sends the feedback according to the feedback. New data, or resend data, or do not send any data.
  • the transmission and feedback channels according to embodiments of the present invention are end-to-end. That is, a complete transmission and feedback process can be scheduled by MS a before the transmission begins. In this way, a variety of different scenarios can be completed in a unified process.
  • each node is required to determine in real time whether to use the network decoding method to decode the received multicast data according to the control information. For example, a bit can be used in the header of the multicast packet to identify whether the packet is network coded. Negative feedback that requires reception failure can indicate whether the retransmission should start from the RS or from the sending node.
  • FIG. 6 is a schematic flowchart of the data transmission method according to the second embodiment of the present invention in the case where both MS data are successfully received.
  • the RS correctly receives MS a and MS b.
  • the MS data bO receiving correct feedback is sent to the MS a
  • the MS data aO receiving correct feedback is sent to the MS b
  • multicasting is performed according to the MS data by using the same resource.
  • MS a receives the correct feedback from the MS data bO of the RS, and then receives the network encoded data and uses the MS data aO for network decoding;
  • MS b receives the correct feedback from the MS data aO of the RS, and then receives the network encoded data and uses the MS.
  • the data bO is network decoded.
  • the RS forwards the MS data sent by the MS b to the MS a.
  • the ao correctly receives the feedback; the RS forwards the MS data sent by the MS a to the MS b.
  • the b0 correctly receives the feedback.
  • Two forwardings can be sent using different time and frequency resources, or they can be transmitted simultaneously using different frequencies.
  • the physical characteristics (such as polarity) of the signal can be used to identify whether the reception is correct, plus the feedback information can identify whether the reception is correct, one signal can identify the two feedbacks, so the two feedbacks can also be transmitted simultaneously using the same frequency.
  • the MS data ao of the MS b received by the RS receives the feedback, clears the data MS data ao buffer, and sends the data MS data a;
  • MS b ⁇ after the MS data bO of the MS a forwarded by the RS correctly receives the feedback, The data MS data bO buffer is cleared, and the data MS data bl is transmitted.
  • Scenario 2 The RS fails to correctly receive the MS data.
  • the figure is a schematic diagram of the data transmission method according to the second embodiment of the present invention in the case where the relay fails to correctly receive the MS data bO. As shown in FIG. 7, the RS is correct.
  • the data MS data a0 transmitted by the MS a is received, but the data MS data b0 transmitted by the MS b is not correctly received.
  • the RS sends the MS data bO reception error feedback to the MS a, and sends the MS data aO receiving correct feedback to the MS b, and then multicasts the correctly received information MS data a0 with the same resource.
  • MS a receives the MS data bO receives the error feedback, does not receive the multicast data;
  • MS b receives the MS data ao receives the correct feedback, receives the multicast data, at this time MS b does not use the network decoding mode to receive the multicast data.
  • MS a does not receive multicast data and does not send any feedback; after MS b is correctly decoded, MS data is sent to RS ao correctly receives feedback.
  • the RS forwards the MS data sent by the MS b to the MS a.
  • the ao receives the feedback correctly; the RS generates the MS data.
  • the b0 receives the feedback in the RS error and sends it to the MS b.
  • the two feedbacks can be sent using different time and frequency resources, or they can be transmitted simultaneously using different frequencies.
  • the physical characteristics of the signal such as polarity
  • the feedback information can identify whether the reception is correct
  • one signal can identify the two feedbacks, so the two feedbacks can also be transmitted simultaneously using the same frequency.
  • MS a receives the MS data forwarded by the RS to the MS b. After the correct receiving feedback, the data is cleared.
  • the MS data aO buffer the transmission data MS data a1; the MS b receives the data MS data bO negative feedback sent by the RS, determines that the retransmission starts from the transmitting node, and the MS b finds the data MS data bO from the buffer to resend. If the RS correctly receives the data MS data a1 and the MS data bO sent by the MS a and the MS b, respectively, the RS sends the correct feedback of the MS data bO to the MS a, and sends the correct feedback of the MS data a1 to the MS b, and then The data encoded according to the MS data a1 and the MS data bO network is multicasted by the same resource.
  • FIG. 8 is a schematic flowchart of the data transmission method according to the second embodiment of the present invention, in which the MS a fails to correctly receive the MS data bO. It is shown that the RS correctly receives the data (MS data aO, MS data bO) sent by the MS a and the MS b, respectively, and sends the correct feedback of the MS data bO to the MS a, and sends the correct feedback of the MS data aO to the MS b, The data encoded according to the MS data aO and the MS data bO network is then multicasted with the same resources.
  • the MS a After receiving the correct feedback from the MS data bO of the RS, the MS a receives the network encoded data and performs network decoding using the MS data aO; the MS b receives the correct feedback from the MS data a0 of the RS, receives the network encoded data, and uses the MS.
  • the data bO is network decoded.
  • MS a does not correctly receive the network coded data sent by the RS, so the MS data bO receives the error feedback to the RS; after the MS b is correctly decoded, the MS data is sent to the RS ao correctly receives the feedback.
  • the RS forwards the MS data sent by the MS b to the MS a.
  • the ao correctly receives the feedback; the RS sends the processed data to the MS b.
  • the MS data bO does not receive the feedback correctly. This feedback indicates that the retransmission should start from the RS.
  • the two feedbacks can be sent using different time and frequency resources, or they can be sent simultaneously using different frequencies.
  • one signal can identify two feedbacks, so the two feedbacks can also be transmitted simultaneously using the same frequency.
  • the MS a After receiving the feedback of the MS data a0 of the MS b forwarded by the RS, the MS a clears the data MS data ao buffer, and sends the data MS data a1; the MS b determines the retransmission according to the negative feedback of the data MS data bO sent by the received RS.
  • the RS starts with no processing waiting for feedback from the next MS data bO.
  • the shell 'J RS sends the correct feedback of the MS data a1 to the MS b. Since the RS has already saved the correctly received data MS data b0, the MS data b0 can be directly received. The correct feedback is sent to the MS a, and then the data encoded by the MS data a1 and the MS data b0 is multicasted by the same resource.
  • the present invention provides a processing solution after data transmission in a multi-hop relay system after network coding is used, which fills a gap in the prior art.
  • modules or steps of the present invention can be implemented by a general-purpose computing device, which can be concentrated on a single computing device or distributed over a network composed of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device, such that they may be stored in the storage device by the computing device, or they may be separately fabricated into individual integrated circuit modules, or they may be Multiple modules or steps are made into a single integrated circuit module.
  • the invention is not limited to any specific combination of hardware and software.
  • the above is only the embodiment of the present invention, and is not intended to limit the present invention, and various modifications and changes can be made to the present invention. Any modifications, equivalents, improvements, etc., made within the spirit and scope of the invention are intended to be included within the scope of the appended claims.

Description

数据传输方法
技术领域 本发明涉及通信领域, 更具体地涉及一种数据传输方法。 背景技术 无线多跳通信系统的设计目标是:在充分利用有限的无线网络资源的前 提下, 使^妻收节点能快速接收到完整信息。 网络编码就是无线多跳通信系 统中的一种技术。 从广义上讲, 网络编码是网络中的节点将接收到的信息进 行编码后再转发出去的多点传送技术。 一个传统中转和网络编码的例子对比 如图 1所示。 图 la是传统中转的例子, 节点 A把数据 a发送给中继节点 R, 然后节点 B 4巴数据 b发送给中继节点 R。 中继节点 R依次分别 4巴数据 b发送 给节点 A、 和把数据 a发送给节点 B。 这样经过 4条链路的传输, A和 B可 以收到各自的数据 b和 a。 而在图 lb中, 应用网络编码技术, 中继节点 R将 收到的数据 a和数据 b进行网络编码 (例如异或) 再把编码的数据用同样的 时间和频率资源 (即同一条链路 )多播出去。 节点 A可以根据接收到的信息 用本地发送的数据 a解出所需要的数据 b (网络解码)。 同样的, 节点 B可以 根据接收到的信息用本地发送的数据 b解出所需要的数据 a。 这样, 采用了 网络编码技术后 (见图 lb所示), 只需要使用 3条链路就可以实现传统方式 的所有通信要求。 但是, 在现有技术中, 并没有定义采用网络编码后, 多 兆中继系统数据 传输出现错误时应该如何处理的方案。 例如, ^_如中继节点 R没有正确收到 节点 A或者节点 B发送的数据应该如何处理? 或者, 即使 R正确接收了节 点 A和节点 B发送的数据, 但是节点 A或者节点 B无法进行网络解码又应 该怎么处理? 因此需要一种数据传输方法来解决这些问题。 发明内容 鉴于现有技术中缺少在采用网络编码后,多跳中继系统数据传输出现错 误后的处理方案而提出本发明, 为此,本发明旨在提供了一种数据传输方案。
1 P25445 为了实现上述目的, 根据本发明, 提供了一种数据传输方法。 根据本发明实施例的数据传输方法, 包括: 中继节点判断其是否成功接 收了来自节点 A的数据 a和来自节点 B的数据 b; 如果判断结果为是, 则中 继节点分别对数据 a和数据 b进行网络编码, 并将编码后的数据 a和用于指 示节点 B接收来自中继节点的数据的中继节点接收数据成功反馈发送至节点 B , 将编码后的数据 b和用于指示节点 A接收来自中继节点的数据的中继节 点接收数据成功反馈发送至节点 A; 以及节点 A和节点 B分别响应于中继节 点的指示, 分别接收编码后的数据 b和编码后的数据 a, 分别对编码后的数 据 b和编码后的数据 a进行网络解码, 并在解码成功的情况下向中继节点发 送数据接收成功反馈, 在解码失败的情况下向中继节点发送数据接收失败反 馈。 其中, 在节点 A和所述节点 B都解码成功的情况下, 还包括: 中继节 点接收分别来自节点 A和节点 B的数据接收成功反馈,并将分别来自节点 A 和节点 B的数据接收成功反馈分别转发至节点 B和节点 A;节点 A和节点 B 接收到数据接收成功反馈后, 分别向中继节点发送新的数据。 其中, 在节点 A解码失败、 节点 B解码成功的情况下, 还包括: 中继 节点接收来自节点 B 的数据接收成功反馈和来自节点 A的数据接收失败反 馈, 并将来自节点 B的数据接收成功反馈转发至节点 A, 将来自节点 A的数 据接收失败反馈转发至节点 B; 节点 A接收到数据接收成功反馈后, 向中继 节点发送新的数据, 节点 B接收到来自节点 A的数据接收失败反馈后, 不作 任何处理。 其中, 在节点 A和节点 B都解码失败的情况下, 还包括: 中继节点接 收分别来自节点 A和节点 B的数据接收失败反馈, 并将来自节点 A的数据 接收失败反馈转发至节点 B , 将来自节点 B的数据接收失败反馈转发至节点 A; 节点 A和节点 B分别接收到数据接收失败反馈后, 不作任何处理。 其中, 在中继节点成功接收所述数据 a、 未成功接收数据 b的情况下, 中继节点不对数据 a进行编码, 并将数据 a和用于指示节点 B接收来自中继 节点的数据的中继节点数据接收成功反馈发送至节点 B; 节点 B响应于中继 节点的指示接收数据 a, 对数据 a进行接收, 并在接收成功的情况下向中继 节点发送数据接收成功反馈, 在接收失败的情况下向中继节点发送数据接收 失败反馈。
2 P25445 其中, 中继节点还生成用于向节点 A和节点 B指示中继节点未成功接 收数据 b的中继节点数据接收失败反馈。 其中, 中继节点在将编码后的数据 a和中继节点数据接收成功反馈发送至节点 B的同时或之后, 向节点 A发送 中继节点数据接收失败反馈。 其中, 在节点 B接收成功的情况下, 还包括: 中继节点接收来自节点 B 的数据接收成功反馈, 并将数据接收成功反馈和中继节点接收数据失败反馈 分别发送至节点 A和节点 B; A接收到数据接收成功反馈后, 向中继节点发 送新的数据, 节点 B接收到中继节点接收数据失败反馈后, 向中继节点重传 数据 b。 其中, 在节点 B接收失败的情况下, 还包括: 中继节点接收来自节点 B 的数据接收失败反馈, 并将数据接收失败反馈和中继节点接收数据失败反馈 分别发送至节点 A和节点 B; A接收到数据接收失败反馈后,不作任何处理, 节点 B接收到中继节点接收数据失败反馈后, 向中继节点重传数据 b。 其中, 在中继节点对数据 a和数据 b的接收均未成功情况下, 中继节点 生成用于向节点 A和节点 B指示中继节点未成功接收数据 b和数据 a的中继 节点数据接收失败反馈, 并将中继节点数据接收失败反馈发送至节点 A和节 点 B; 节点 A和节点 B不发送任何数据; 节点 A接收到中继节点接收数据 b 失败反馈后, 不接收任何数据; 节点 B接收到中继节点接收数据 a失败反馈 后, 不接收任何数据; 中继节点生成用于向节点 A和节点 B指示中继节点未 成功接收数据 a和数据 b的中继节点数据接收失败反馈, 并将中继节点数据 接收失败反馈发送至节点 A和节点 B; 节点 A接收到中继节点接收数据 a失 败反馈后, 向中继节点重传数据 a; 节点 B接收到中继节点接收数据 b失败 反馈后, 向中继节点重传数据 b。
以及, 在中继节点接收到来自节点 A或节点 B的数据接收失败反馈的 情况下,中继节点重新向节点 A或节点 B发送数据 b或数据 a/编码后的数据 b或编码后的数据&。 另夕卜, 重传数据 b的操作包括: 重传数据 b的部分内容或全部内容, 重 传的数据编码和调制方式可以和第一次传输相同, 也可以不同。 借助于上述技术方案至少之一, 本发明为在采用网络编码后, 多跳中继 系统数据传输出现错误后提供了处理方案, 填补了现有技术中的空白。
3 P25445 附图说明 此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部 分, 本发明的示意性实施例及其说明用于解释本发明, 并不构成对本发明的 不当限定。 在附图中: 图 la和图 lb是相关技术中的数据传输方法的无线中继网络的配置示意 图; 图 2 是根据本发明第一实施例的数据传输方法在场景一中实现的流程 示意图; 图 3 是根据本发明第一实施例的数据传输方法在场景二中实现的流程 示意图; 图 4 是根据本发明第一实施例的数据传输方法在场景三中实现的流程 示意图; 图 5a是相关技术中的数据传输方法的无线中继网络的配置示意图; 图 5b是相关技术中的应用网络编码技术的数据传输方法的无线中继网 络的配置示意图; 图 6是根据本发明第二实施例的数据传输方法在两个 MS数据接收都成 功情况下的流程示意图; 图 Ί是根据本发明第二实施例的数据传输方法在中继未能正确接收 MS 数据 b0的情况下的流程示意图; 以及 图 8 是根据本发明第二实施例的数据传输方法在 MS a未能正确接收
MS数据 b0的情况下的流程示意图。 具体实施方式 功能相克述 由于现有技术中缺少在采用网络编码后,多跳中继系统数据传输出现错 误后的处理方案, 基于此, 本发明提供了一种数据传输方案, 通过中继节点 中继其他节点之间的数据和反馈并发送本地的网络编码数据和有关反馈。 数
4 P25445 据传输方案的基本思想是: 中继节点判断其是否成功接收了来自节点 A的数 据 a和来自节点 B的数据 b; 如果判断结果为是, 则中继节点分别对数据 a 和数据 b进行网络编码, 并将编码后的数据 a和用于指示节点 B接收来自中 继节点的数据的中继节点接收数据成功反馈发送至节点 B , 将编码后的数据 b和用于指示节点 A接收来自中继节点的数据的中继节点接收数据成功反馈 发送至节点 A; 以及节点 A和节点 B分别响应于中继节点的指示, 分别接收 编码后的数据 b和编码后的数据 a,分别对编码后的数据 b和编码后的数据 a 进行网络解码, 并在解码成功的情况下向中继节点发送数据接收成功反馈, 在解码失败的情况下向中继节点发送数据接收失败反馈。 上述中继节点可以是无线中继通信系统中的基站(BS )、 中继站(RS )、 或移动站(MS ), 节点 A和 B可以是中继站或移动站, 本发明可以应用于自 动重传请求 ( ARQ ) 或混合自动重传请求 ( HARQ )。 下面参考附图, 详细说明本发明的具体实施方式。 需要说明的是, 如果 不沖突, 本申请中的实施例以及实施例中的特征可以相互组合。 根据本发明第一实施例的数据传输方法主要包括以下步骤 1-6: 步骤 1 , 中继节点分别接收其他两个节点发送的数据, 并判断是否接收 成功, 中继节点保存成功接收的数据, 以供将来重传使用; 步骤 2 , 中继节点向相应接收节点发送其他节点数据在中继节点接收成 功与否的反馈, 相应地, 其他节点根据这个反馈决定是否要接收随后的多播 数据。如果中继节点正确接收所有其他节点数据, 多播数据为网络编码数据, 否则, 多播数据只是接收成功的数据; 步骤 3 , 其他节点收到中继节点接收数据成功反馈, 接收多播数据, 否 贝 |J , 不接收多播数据; 步骤 4 , 其他节点接收多播数据后, 应该使用发送数据解码并向中继节 点发送解码成功与否的反馈; 其他节点如果不接收多播数据, 则不发送任何 反馈; 步骤 5 , 中继节点收到其他节点接收多播数据解码成功与否的反馈后, 应该将反馈处理后, 转发到发送相应数据的节点。 如果中继节点没有收到其 他节点反馈, 应该向发送节点发送本地产生的错误接收反馈, 表示中继是否
5 P25445 需要重新接收相应数据; 步骤 6, 其他节点收到中继节点发送的接收数据反馈后, 根据反馈决定 发送新的数据、 或重发数据、 或不发送任何数据。 其中, 上述方法中的传输和反馈信道是端到端的。 即,一个完整的传输 和反馈过程可以在传输开始前调度。 这样, 各种不同的场景都可以在一个统 一的过程中完成。 某个节点接收数据后, 不管成功解码与否, 相应反馈应该 事先的调度进行, 而不能总是立刻反馈。 在本发明实施例中,要求各个节点能够根据控制信息实时决定是否采用 网络解码方法解码接收到的多播数据。 要求接收失败的负反馈能够表示: 重 传应该从中继节点开始还是从发送节点开始。 需要说明的是, 对于需要进行重传的数据, 可以重传该数据的部分内容 或全部内容, 重传的数据编码和调制方式可以和之前的传输方式相同, 也可 以不同。 下面以三种不同场景分别详细描述本发明实施例。 在实际应用中, 其他 场景只是这三种场景的线性组合, 可以才艮据这三种场景的分析 ^故叠加处理。 在以下三种场景分析中, 除非特别说明, 总是假定数据被正确解码且反馈总 是被成功接 4史。 场景一: 所有数据解码都成功 图 2 是根据本发明第一实施例的数据传输方法在场景一中实现的流程 示意图, 如图 2所示, 中继节点 R正确接收节点 A和 B发送的数据 a0, b0 后, 将 b0接收正确反馈发送给节点 A, 并将 a0接收正确反馈发送给节点 B , 然后用同样的资源多播发送根据 a0和 b0网络编码后的数据。 节点 A收到 b0接收正确反馈, 才会接收网络编码数据并利用 a0进行 网络解码; 节点 B收到 a0接收正确反馈, 才会接收网络编码数据并利用 b0 进行网络解码。 节点 A正确解码后, 向 R发送 b0正确接 ^lt反馈; 节点 B正确解码后 , 向 R发送 a0正确接收反馈。 中继节点 R向节点 A转发节点 B发来的 a0正确接收反馈; 中继节点 R
6 P25445 向节点 B转发节点 A发来的 b0正确接收反馈。 两个反馈可以利用不同的时 间和频率资源发送, 也可以同时利用不同频率发送。 此外, 如果能够用信号 的物理特性 (例如极性) 标识接收是否正确, 加上反馈的信息可以标识接收 是否正确, 一个信号可以标识两个反馈, 因此两个反馈还可以同时利用相同 频率发送。 节点 A收到中继节点 R转发来的节点 B的 a0正确接收反馈后,清空数 据 a0緩沖, 发送数据 al ; 节点 B收到中继节点 R转发来的节点 A的 b0正 确接收反馈后, 清空数据 b0緩沖, 发送数据 bl。 场景二: 中继节点未能正确接收某个其他节点发送的数据 图 3 是根据本发明第一实施例的数据传输方法在场景二中实现的流程 示意图, 如图 3所示, 中继节点 R正确接收节点 A发送的数据 a0 , 但是未 能正确接收 B发送的数据 b0。 R将 b0接收错误反馈发送给节点 A, 并将 a0 接收正确反馈发送给节点 B ,然后用同样的资源多播发送正确接收的信息 a0。 节点 A收到 b0接收错误反馈, 不会接收多播数据; 节点 B收到 a0接 收正确反馈,才会接收多播数据,此时节点 B不采用网络解码接收多播数据。 节点 A没有接收多播数据, 不发送任何反馈; 节点 B正确解码后, 向 R发送 a0正确接收反馈。 中继节点 R向节点 A转发节点 B发来的 a0正确接收反馈; 中继节点 R 生成 b0在中继节点 R错误接收反馈并发给节点 B。 两个反馈可以利用不同 的时间和频率资源发送, 也可以同时利用不同频率发送。 此外, 如果能够用 信号的物理特性 (例如极性) 标识接收是否正确, 加上反馈的信息可以标识 接收是否正确, 一个信号可以标识两个反馈, 因此两个反馈还可以同时利用 相同频率发送。 节点 A收到中继节点 R转发来的节点 B的 a0正确接收反馈后,清空数 据 a0緩沖, 发送数据 al ; 节点 B根据接收到的中继节点 R发来的数据 b0 负反馈, 确定重传从发送节点开始, 从緩沖中找到数据 b0并重新发送。 如果中继节点 R正确接收节点 A和 B发送的数据 al、 b0, R将 b0接 收正确反馈发送给节点 A, 并将 al接收正确反馈发送给节点 B , 然后用同样 的资源多播发送利用 al和 b0网络编码后的数据。
P25445 场景三: 某个其他节点未能正确接收中继节点发送的网络编码数据 图 4 是根据本发明第一实施例的数据传输方法在场景三中实现的流程 示意图, 如图 4所示, 中继节点 R分别正确接收节点 A和 B发送的数据 a0、 bO后, 将 bO接收正确反馈发送给节点 A, 并将 aO接收正确反馈发送给节点 B , 然后用同样的资源多播发送根据 aO和 bO网络编码后的数据。 节点 A接收到 bO接收正确反馈, 才会接收网络编码数据, 并利用 aO 进行网络解码; 节点 B收到 aO接收正确反馈, 才会接收网络编码数据, 并 利用 bO进行网络解码。 节点 A没有正确接收中继节点发来的网络编码数据, 因此发送数据 bO 没有正确接^:的反馈; 节点 B正确解码后向 R发送 aO正确接 ^lt反馈。 中继节点 R向节点 A转发节点 B发来的 aO正确接收反馈; 中继节点 R 向节点 B发送处理后的数据 bO没有正确接收的反馈, 这个反馈表示重传应 该从中继节点 R开始。 两个反馈可以利用不同的时间和频率资源发送, 也可 以同时利用不同频率发送。 此外, 如果能够用信号的物理特性 (例如极性) 标识接收是否正确, 加上反馈的信息可以标识接收是否正确, 一个信号可以 标识两个反馈, 因此两个反馈还可以同时利用相同频率发送。 节点 A收到中继节点 R转发来的节点 B的 aO正确接收反馈后,清空数 据 aO緩沖,发送数据 al; 节点 B根据接收到中继节点 R发送的数据 bO负反 馈, 确定重传从中继节点 R开始, 不作任何处理等待下一个数据 bO的反馈。 如果中继节点 R正确接收节点 A发送的数据 al , 中继节点 R将 al接 收正确反馈发送给节点 B , 由于中继节点 R已经保存了正确接收的数据 bO, 此时可以直接将 bO接收正确反馈发送给节点 A,然后用同样的资源多播发送 根据 al和 bO网络编码后的数据。 为了扩大系统覆盖范围并增加系统容量, 一个或者多个中继站( Relay Station ,简称 RS ,即中继节点)被设置在支持多跳中继的基站( Multi-hop Relay Base Station, 简称 MR-BS ) 和终端 ( Mobile Station, 简称 MS )之间。 因此, 网络编码可以用来处理两个 MS之间的数据交互。 下面以 MS a和 MS b有同一个上游 RS为例对本发明进行进一步的详细 说明。 其中, 如果 MS a 和 MS b之间有数据交互, 则可以通过 RS中继而不
8 P25445 通过 MR-BS。 在集中控制式网络中, MR-BS可以调度 MS之间数据交互的 资源, 在分布控制式网络中, 上游 RS可以调度 MS之间数据交互的资源。 图 5a是相关技术中的数据传输方法的无线中继网络的配置示意图, 如 图 5a所示, MS a把 MS数据 a发送给 RS , 然后 MS b把 MS数据 b发送给 RS。 然后, RS依次分别把 MS数据 a发送给 MS b、 和把 MS数据 b发送给 MS a。 这样经过 4条链路的传输, MS b和 MS a可以获得各自的数据。 而在 图 5b 所示的应用网络编码技术的数据传输方法的无线中继网络的配置中, RS将收到的 MS数据 b和 MS数据 a进行网络编码 (例如异或)后, 再把编 码的数据用同样的时间和频率资源(即同一条链路)发送出去。 MS a可以才艮 据接收到的信息用本地发送的 MS数据 a解出所需要的 MS数据 b。 同样的, MS b可以根据接收到的信息用本地发送的 MS数据 b解出所需要的 MS数据 a。 这样, 采用了网络编码技术后 (见图 5b ), 只需要使用 3条链路就可以实 现传统方式的所有通信要求。 在本发明实施例中, RS中继 MS之间的数据和反馈并发送本地的网络 编码数据和有关反馈。 根据本发明第二实施例的数据传输方法主要包括以下步骤 1 -6: 步骤 1 , RS分别接收 MS a和 MS b发送的数据, 并判断是否接收成功, RS保存成功接收的数据, 以供将来重传使用; 步骤 2, RS向相应接收节点发送其他节点数据在 RS接收成功与否的反 馈, MS a或 MS b根据这个反馈决定是否要接收随后的多播数据; 如果 RS 正确接收所有其他节点数据, 则多播数据为网络编码数据, 否则, 多播数据 只包含接收成功的数据; 步骤 3 , MS a或 MS b收到 RS接收数据成功反馈, 接收多播数据, 否 贝 |J , 不接收多播数据; 步骤 4, MS a或 MS b接收多播数据后, 可以使用发送数据解码并向
RS发送解码成功与否的反馈; MS a或 MS b如果不接收多播数据, 则不发 送任何反馈; 步骤 5 , RS收到 MS a或 MS b接收多播数据解码成功与否的反馈后, 可以将反馈处理后转发到发送相应数据的节点; 如果 RS 没有接收到 MS a
9 P25445 或 MS b的反馈, 可以向发送节点发送本地产生的错误接收反馈, 以表示中 继需要重新接收相应数据; 步骤 6, MS a或 MS b接收到 RS发送的接收数据反馈后, 根据反馈决 定发送新的数据、 或重发数据、 或不发送任何数据。 其中, 才艮据本发明实施例的传输和反馈信道是端到端的。 即, 一个完整 的传输和反馈过程可以在传输开始前就由 MS a安排。 这样, 各种不同的场 景都可以在一个统一的过程中完成。 某个节点接收数据后, 不管成功解码与 否, 相应反馈应该按照事先的调度进行, 而不能总是立刻反馈。 在本发明实施例中,要求各个节点能够根据控制信息实时决定是否采用 网络解码方法解码接收到的多播数据。 例如, 可以在多播数据包头里用一个 bit标识该数据包是否采用了网络编码。要求接收失败的负反馈能够表示重传 应该从 RS开始还是从发送节点开始。 需要说明的是, 对于需要进行重传的数据, 可以重传该数据的部分内容 或全部内容, 重传的数据编码和调制方式可以和之前的传输方式相同, 也可 以不同。 下面用以三种不同场景分别详细描述介绍根据本发明实施例的方法的 细节。 在实际应用中, 其他场景只是这三种场景的线性组合, 可以才艮据这三 种场景的分析做叠加处理。 在以下三种场景分析中, 除非特别说明, 总是假 定数据被正确解码且反馈总是被正确接收。 MS数据 a和 MS数据 b后的 0 和 1表示数据序号而不是比特 ( bit )。 场景一: 所有数据解码都成功 图 6是根据本发明第二实施例的数据传输方法在两个 MS数据接收都成 功情况下的流程示意图, 如图 6所示, RS正确接收 MS a和 MS b发送的数 据 ( MS数据 aO, MS数据 bO ) 后, 将 MS数据 bO接收正确反馈发送给 MS a, 并将 MS数据 aO接收正确反馈发送给 MS b, 然后用同样的资源多播发送 根据 MS数据 aO和 MS数据 bO网络编码后的数据。
MS a收到 RS的 MS数据 bO接收正确反馈, 才会接收网络编码数据并 利用 MS数据 aO进行网络解码; MS b收到 RS的 MS数据 aO接收正确反馈, 才会接收网络编码数据并利用 MS数据 bO进行网络解码。
10 P25445 MS a正确解码后, 向 RS发送 MS数据 bO正确接收反馈; MS b正确解 码后, 向 RS发送 MS数据 aO正确接收反馈。
RS向 MS a转发 MS b发来的 MS数据 aO正确接收反馈; RS向 MS b 转发 MS a发来的 MS数据 bO正确接收反馈。 两个转发可以利用不同的时间 和频率资源发送, 也可以同时利用不同频率发送。 此外, 如果能够用信号的 物理特性 (例如极性) 标识接收是否正确, 加上反馈的信息可以标识接收是 否正确, 一个信号可以标识两个反馈, 因此两个反馈还可以同时利用相同频 率发送。
MS a收到 RS转发的 MS b的 MS数据 aO正确接收反馈后, 清空数据 MS数据 aO緩沖, 发送数据 MS数据 al ; MS b ^:到 RS转发的 MS a的 MS 数据 bO正确接收反馈后,清空数据 MS数据 bO緩沖,发送数据 MS数据 bl。 场景二: RS未能正确接收 MS数据 bO 图 Ί是根据本发明第二实施例的数据传输方法在中继未能正确接收 MS 数据 bO的情况下的流程示意图, 如图 7所示, RS正确接收 MS a发送的数 据 MS数据 aO , 但是未能正确接收 MS b发送的数据 MS数据 b0。 RS将 MS 数据 bO接收错误反馈发送给 MS a, 并将 MS数据 aO接收正确反馈发送给 MS b , 然后用同样的资源多播发送正确接收的信息 MS数据 a0。
MS a收到 MS数据 bO接收错误反馈, 不会接收多播数据; MS b收到 MS数据 aO接收正确反馈, 接收多播数据, 此时 MS b不采用网络解码方式 接收多播数据。
MS a没有接收多播数据, 不发送任何反馈; MS b正确解码后, 向 RS 发送 MS数据 aO正确接收反馈。
RS向 MS a转发 MS b发来的 MS数据 aO正确接收反馈; RS生成 MS 数据 bO在 RS错误接收反馈并发给 MS b。 两个反馈可以利用不同的时间和 频率资源发送, 也可以同时利用不同频率发送。 此外, 如果能够用信号的物 理特性 (例如极性) 标识接收是否正确, 加上反馈的信息可以标识接收是否 正确, 一个信号可以标识两个反馈, 因此两个反馈还可以同时利用相同频率 发送。
MS a收到 RS转发来 MS b的 MS数据 aO正确接收反馈后, 清空数据
11 P25445 MS数据 aO緩沖, 发送数据 MS数据 al ; MS b根据接收到 RS发送的数据 MS数据 bO负反馈, 确定重传从发送节点开始, MS b从緩沖中找到数据 MS 数据 bO重新发送。 如果 RS分别正确接收 MS a和 MS b发送的数据 MS数据 al、 和 MS 数据 bO, 则 RS将 MS数据 bO接收正确反馈发送给 MS a, 并将 MS数据 al 接收正确反馈发送给 MS b, 然后用同样的资源多播发送根据 MS数据 al和 MS数据 bO网络编码后的数据。 场景三: MS a未能正确接收 RS发送的网络编码数据 图 8 是根据本发明第二实施例的数据传输方法在 MS a未能正确接收 MS数据 bO的情况下的流程示意图, 如图 8所示, RS分别正确接收 MS a和 MS b发送的数据 ( MS数据 aO , MS数据 bO ) 后, 将 MS数据 bO接收正确 反馈发送给 MS a, 并将 MS数据 aO接收正确反馈发送给 MS b, 然后用同样 的资源多播发送根据 MS数据 aO和 MS数据 bO网络编码后的数据。
MS a收到 RS的 MS数据 bO接收正确反馈后, 接收网络编码数据, 并 利用 MS数据 aO进行网络解码; MS b收到 RS的 MS数据 aO接收正确反馈 后, 接收网络编码数据, 并利用 MS数据 bO进行网络解码。
MS a没有正确接收 RS发来的网络编码数据, 因此发送 MS数据 bO接 收错误的反馈给 RS; MS b正确解码后, 向 RS发送 MS数据 aO正确接收反 馈。 RS向 MS a转发 MS b发送的 MS数据 aO正确接收反馈; RS向 MS b 发送处理后的数据 MS数据 bO没有正确接收的反馈,这个反馈表示重传应该 从 RS开始。 两个反馈可以利用不同的时间和频率资源发送, 也可以同时利 用不同频率发送。 此外, 如果能够用信号的物理特性 (例如极性) 标识接收 是否正确, 加上反馈的信息可以标识接收是否正确, 一个信号可以标识两个 反馈, 因此两个反馈还可以同时利用相同频率发送。
MS a收到 RS转发的 MS b的 MS数据 aO正确接收反馈后, 清空数据 MS数据 aO緩沖, 发送数据 MS数据 al ; MS b根据接收的 RS发送的数据 MS数据 bO负反馈, 确定重传从 RS开始, 不作任何处理等待下一个 MS数 据 bO的反馈。
12 P25445 如果 RS正确接收 MS a发送的 MS数据 al , 贝' J RS将 MS数据 al接收 正确反馈发送给 MS b , 由于 RS已经保存了正确接收的数据 MS数据 b0 , 此 时可以直接将 MS数据 b0接收正确反馈发送给 MS a, 然后用同样的资源多 播发送利用 MS数据 al和 MS数据 b0网络编码后的数据。 综上所述, 本发明为在采用网络编码后, 多跳中继系统数据传输出现错 误后提供了处理方案, 填补了现有技术中的空白。 显然, 本领域的技术人员应该明白, 上述的本发明的各模块或各步骤可 以用通用的计算装置来实现, 它们可以集中在单个的计算装置上, 或者分布 在多个计算装置所组成的网络上, 可选地, 它们可以用计算装置可执行的程 序代码来实现, 从而, 可以将它们存储在存储装置中由计算装置来执行, 或 者将它们分别制作成各个集成电路模块, 或者将它们中的多个模块或步骤制 作成单个集成电路模块来实现。 这样, 本发明不限制于任何特定的硬件和软 件结合。 以上所述仅为本发明的实施例而已, 并不用于限制本发明, 对于本领域 的技术人员来说, 本发明可以有各种更改和变化。 凡在本发明的精神和原则 之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的权利要求 范围之内。
13 P25445

Claims

权 利 要 求 书
1. 一种数据传输方法, 其特征在于, 包括:
中继节点判断其是否成功接收了来自节点 A的数据 a和来自节点 B 的数据 b;
如果判断结果为是, 则所述中继节点分别对所述数据 a和所述数据 b进行网络编码, 并将编码后的数据 a和用于指示所述节点 B接收来自 所述中继节点的数据的中继节点接收数据成功反馈发送至所述节点 B , 将编码后的数据 b和用于指示所述节点 A接收来自所述中继节点的数据 的所述中继节点接收数据成功反馈发送至所述节点 A; 以及
所述节点 A和所述节点 B分别响应于所述中继节点的指示, 分别 接收所述编码后的数据 b和所述编码后的数据 a, 分别对所述编码后的 数据 b和所述编码后的数据 a进行网络解码, 并在解码成功的情况下向 所述中继节点发送数据接收成功反馈, 在解码失败的情况下向所述中继 节点发送数据接收失败反馈。
2. 4艮据权利要求 1所述的数据传输方法, 其特征在于, 在所述节点 A和所 述节点 B都解码成功的情况下, 所述方法还包括:
所述中继节点接收分别来自所述节点 A和所述节点 B的所述数据 接收成功反馈, 并将来自所述节点 A的所述数据接收成功反馈转发至所 述节点 B , 将来自所述节点 B的所述数据接收成功反馈转发至所述节点 A;
所述节点 A和所述节点 B接收到所述数据接收成功反馈后, 分别 向所述中继节点发送新的数据。
3. 根据权利要求 1所述的数据传输方法, 其特征在于, 在所述节点 A解码 失败、 所述节点 B解码成功的情况下, 所述方法还包括:
所述中继节点接收来自所述节点 B 的所述数据接收成功反馈和来 自所述节点 A的所述数据接收失败反馈,并将来自所述节点 B的所述数 据接收成功反馈转发至所述节点 A, 将来自所述节点 A的所述数据接收 失败反馈转发至所述节点 B;
14 P25445 所述节点 A接收到所述数据接收成功反馈后, 向所述中继节点发 送新的数据,所述节点 B接收到来自所述节点 A的所述数据接收失败反 馈后, 不作任何处理。
4. 根据权利要求 1所述的数据传输方法, 其特征在于, 在所述节点 A和所 述节点 B都解码失败的情况下, 所述方法还包括:
所述中继节点接收分别来自所述节点 A和所述节点 B的所述数据 接收失败反馈, 并将来自所述节点 A的所述数据接收失败反馈转发至所 述节点 B , 将来自所述节点 B的所述数据接收失败反馈转发至所述节点 A;
所述节点 A和所述节点 B分别接收到所述数据接收失败反馈后, 不作任何处理。
5. 根据权利要求 1所述的数据传输方法, 其特征在于, 在所述中继节点成 功接收所述数据&、 未成功接收所述数据 b的情况下, 所述方法还包括: 所述中继节点不对所述数据 a进行编码, 并将所述数据 a和用于指 示所述节点 B接收来自所述中继节点的数据的所述中继节点数据接收成 功反馈发送至所述节点 B;
所述节点 B响应于所述中继节点的指示对所述数据 a进行接收,并 在接收成功的情况下向所述中继节点发送所述数据接收成功反馈, 在接 收失败的情况下向所述中继节点发送所述数据接收失败反馈。
6. 根据权利要求 5所述的数据传输方法, 其特征在于, 所述中继节点还生 成用于向所述节点 A指示所述中继节点未成功接收所述数据 b的中继节 点数据接收失败反馈。
7. 根据权利要求 5所述的数据传输方法, 其特征在于, 所述中继节点在将 所述数据 a和所述中继节点数据接收成功反馈发送至所述节点 B的同时 或之后, 向所述节点 A发送所述中继节点数据接收失败反馈。
8. 根据权利要求 5所述的数据传输方法, 其特征在于, 在所述节点 B接收 成功的情况下, 所述方法还包括:
所述中继节点接收来自所述节点 B的所述数据接收成功反馈,并将 所述数据接收成功反馈和所述中继节点接收数据失败反馈分别发送至所 述节点 A和所述节点 B;
15 P25445 所述节点 A接收到所述数据接收成功反馈后, 向所述中继节点发 送新的数据, 所述节点 B接收到所述中继节点接收数据失败反馈后, 向 所述中继节点重传所述数据 b。
9. 根据权利要求 5所述的数据传输方法, 其特征在于, 在所述节点 B接收 失败的情况下, 所述方法还包括:
所述中继节点接收来自所述节点 B的所述数据接收失败反馈,并将 所述数据接收失败反馈和所述中继节点接收数据失败反馈分别发送至所 述节点 A和所述节点 B;
所述节点 A接收到所述数据接收失败反馈后, 不作任何处理, 所 述节点 B接收到所述中继节点接收数据失败反馈后, 向所述中继节点重 传所述数据 b。
10. 根据权利要求 1所述的数据传输方法, 其特征在于, 在所述中继节点对 所述数据 a和所述数据 b的接收均未成功情况下, 所述方法还包括: 所述中继节点生成用于向所述节点 A和所述节点 B指示所述中继 节点未成功接收所述数据 b和所述数据 a的中继节点数据接收失败反馈, 并将所述中继节点数据接收失败反馈发送至所述节点 A和所述节点 B; 所述节点 A和所述节点 B不发送任何数据;
所述节点 A接收到所述中继节点接收数据 b失败反馈后, 不接收 任何数据;
所述节点 B接收到所述中继节点接收数据 a失败反馈后,不接收任 何数据;
所述中继节点生成用于向所述节点 A和所述节点 B指示所述中继 节点未成功接收所述数据 a和所述数据 b的中继节点数据接收失败反馈, 并将所述中继节点数据接收失败反馈发送至所述节点 A和所述节点 B; 所述节点 A接收到所述中继节点接收数据 a失败反馈后,向所述中 继节点重传所述数据 a。
所述节点 B接收到所述中继节点接收数据 b失败反馈后,向所述中 继节点重传所述数据 b。
16 P25445
11. 根据权利要求 1至 10中任一项所述的数据传输方法, 其特征在于, 在所 述中继节点接收到来自所述节点 A或所述节点 B的所述数据接收失败反 馈的情况下,所述中继节点重新向所述节点 A或所述节点 B发送所述数
12 根据权利要求 8至 10中任一项所述的数据传输方法, 其特征在于, 重传 所述数据 b的操作包括: 重传所述数据 b的部分内容或全部内容。
17 P25445
PCT/CN2009/071205 2008-04-14 2009-04-09 数据传输方法 WO2009127141A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN 200810088685 CN101562506B (zh) 2008-04-14 2008-04-14 数据传输方法
CN200810088685.4 2008-04-14

Publications (1)

Publication Number Publication Date
WO2009127141A1 true WO2009127141A1 (zh) 2009-10-22

Family

ID=41198782

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/071205 WO2009127141A1 (zh) 2008-04-14 2009-04-09 数据传输方法

Country Status (2)

Country Link
CN (1) CN101562506B (zh)
WO (1) WO2009127141A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8953517B2 (en) 2010-06-23 2015-02-10 Futurewei Technologies, Inc. System and method for adapting code rate
WO2019169596A1 (en) * 2018-03-08 2019-09-12 Nokia Technologies Oy Method, apparatus and computer program

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102684818A (zh) * 2011-03-11 2012-09-19 华为技术有限公司 数据重传方法、中继站、基站和通信系统
CN104219030B (zh) * 2013-05-31 2019-06-14 中兴通讯股份有限公司 一种传输网络编码数据的方法及装置
CN108347310B (zh) * 2017-01-25 2020-04-14 中国移动通信有限公司研究院 一种分组数据的实时重传方法、实时重传系统及相关装置
CN109905447B (zh) * 2017-12-11 2022-05-13 华为技术有限公司 信息传输的方法和装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1881965A (zh) * 2005-06-01 2006-12-20 株式会社Ntt都科摩 通信中继设备和通信接收机
US20070217432A1 (en) * 2006-03-16 2007-09-20 Molisch Andreas F Cooperative relay networks using rateless codes
JP2007325320A (ja) * 2007-09-10 2007-12-13 Sumitomo Electric Ind Ltd 中継装置及び自律型誤り訂正ネットワーク

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1881965A (zh) * 2005-06-01 2006-12-20 株式会社Ntt都科摩 通信中继设备和通信接收机
US20070217432A1 (en) * 2006-03-16 2007-09-20 Molisch Andreas F Cooperative relay networks using rateless codes
JP2007325320A (ja) * 2007-09-10 2007-12-13 Sumitomo Electric Ind Ltd 中継装置及び自律型誤り訂正ネットワーク

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8953517B2 (en) 2010-06-23 2015-02-10 Futurewei Technologies, Inc. System and method for adapting code rate
US9509467B2 (en) 2010-06-23 2016-11-29 Futurewei Technologies, Inc. System and method for adapting code rate
US9917674B2 (en) 2010-06-23 2018-03-13 Futurewei Technologies, Inc. System and method for adapting code rate
US10615906B2 (en) 2010-06-23 2020-04-07 Futurewei Technologies, Inc. System and method for adapting code rate
WO2019169596A1 (en) * 2018-03-08 2019-09-12 Nokia Technologies Oy Method, apparatus and computer program
US11784757B2 (en) 2018-03-08 2023-10-10 Nokia Technologies Oy Method, apparatus and computer program

Also Published As

Publication number Publication date
CN101562506A (zh) 2009-10-21
CN101562506B (zh) 2013-08-07

Similar Documents

Publication Publication Date Title
US10912148B2 (en) System and method for UE fountain relay based network
US7975199B2 (en) Relay-assisted HARQ transmission system
EP2057775B1 (en) Relay-assisted harq transmission system
US7940712B2 (en) Method and arrangement for coding and scheduling in packet data communication systems
EP1863210B1 (en) Retransmission apparatus and method in wireless relay communication system
CN104871569B (zh) 针对蜂窝集成设备到设备通信的基于终端组的混合自动重复请求的系统和方法
WO2009127144A1 (zh) 数据传输方法
WO2009006092A1 (en) Method and system for a reliable relay-associated and opportunistic cooperative transmission schemes
EP1982455A2 (en) A bandwidth efficient harq scheme in relay network
KR20110069838A (ko) 멀티 홉 무선 통신 시스템들 내에서 협력 중계를 위한 방법
US20140010147A1 (en) Data retransmission method, relay station, base station, and communication system
CN101911569A (zh) 用于维持无线通信系统中的连接的服务质量的技术
WO2009127141A1 (zh) 数据传输方法
CN103546245B (zh) 一种基于网络编码的数据包重传方法
WO2009089664A1 (en) A method for relaying and forwarding the feedback information in harq scene
CN109936424A (zh) 基于混合网络编码的多中继协作重传算法
WO2008148293A1 (fr) Procédé et dispositif permettant d'effectuer une requête de répétition automatique de paquets de données dans un réseau de communication sans fil
WO2012106842A1 (zh) 一种数据传输方法、无线通信系统、目的节点和中继节点
CN104539402A (zh) 一种无线网络中的广播传输方法
Chen et al. ARQ protocols for two-way relay systems
KR101316622B1 (ko) 무선 통신망을 통한 멀티캐스트 패킷의 송수신 방법 및상기 무선 통신망 시스템
KR101766531B1 (ko) Harq 및 인덱스 코딩을 이용한 패킷 재전송 방법
Pu et al. Performance analysis of joint Chase combining and network coding in wireless broadcast retransmission
WO2012094881A1 (zh) 一种无线网络及无线通信中的编码协作方法
US11546100B2 (en) Operation of automatic repeat request

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09731802

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09731802

Country of ref document: EP

Kind code of ref document: A1