WO2009125851A1 - Method for detection of effectiveness of phenylalanine derivative-type compound in diabetes patient - Google Patents

Method for detection of effectiveness of phenylalanine derivative-type compound in diabetes patient Download PDF

Info

Publication number
WO2009125851A1
WO2009125851A1 PCT/JP2009/057395 JP2009057395W WO2009125851A1 WO 2009125851 A1 WO2009125851 A1 WO 2009125851A1 JP 2009057395 W JP2009057395 W JP 2009057395W WO 2009125851 A1 WO2009125851 A1 WO 2009125851A1
Authority
WO
WIPO (PCT)
Prior art keywords
gene
diabetes
genotype
phenylalanine derivative
group
Prior art date
Application number
PCT/JP2009/057395
Other languages
French (fr)
Japanese (ja)
Inventor
義光 山▲崎▼
健 遅野井
Original Assignee
株式会社サインポスト
アステラス製薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社サインポスト, アステラス製薬株式会社 filed Critical 株式会社サインポスト
Publication of WO2009125851A1 publication Critical patent/WO2009125851A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • C07D209/44Iso-indoles; Hydrogenated iso-indoles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D295/00Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms
    • C07D295/04Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms
    • C07D295/12Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms substituted by singly or doubly bound nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/156Polymorphic or mutational markers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/04Endocrine or metabolic disorders
    • G01N2800/042Disorders of carbohydrate metabolism, e.g. diabetes, glucose metabolism
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/52Predicting or monitoring the response to treatment, e.g. for selection of therapy based on assay results in personalised medicine; Prognosis

Definitions

  • the present invention relates to a method for detecting the effectiveness of an antidiabetic agent comprising a phenylalanine derivative-based drug as an active ingredient for individual diabetic patients based on genetic information of the diabetic patients.
  • the present invention also relates to a therapeutic agent for diabetes comprising a phenylalanine derivative-based drug used as an active ingredient for a specific diabetic patient having a unique genetic polymorphism.
  • the above-described method of the present invention provides effective and accurate treatment guidelines for treating and improving diabetes to diabetic patients and medical professionals. As a result of selecting therapeutic agents suitable for individual patients, It is useful in that effective and accurate treatment can be performed and the mental, physical and economic burden caused by invalid treatment can be avoided.
  • the number of diabetic patients in Japan is approximately 7.4 million, including the reserve arm that is considered “a person who cannot be denied the possibility of diabetes”. It is estimated that it is about 16.2 million people, one in 6.3 people.
  • the increase in the number of diabetics is said to be greatly affected by changes in dietary habits and aging, and the number of people including the reserves increased by 2.5 million compared to the survey five years ago. Excluding diabetes, it is estimated that the number of people who are strongly suspected will reach 10.8 million.
  • the main pillars of diabetes treatment are diet, exercise, and medication. However, only 50% of people who are strongly suspected of having diabetes are being treated. In addition, there are not a few diabetic patients who once stop treatment after starting treatment, which is thought to lead to an increase in complications. In addition, there are reports that only about 30% of diabetic patients who have already undergone drug treatment have maintained a good state, and a more effective drug selection method is required.
  • HbA 1c hemoglobin A 1c
  • Oral preparations currently used for the treatment of diabetes can be roughly classified into the following three types according to their mechanism of action: (A) insulin secretagogue (sulfonylurea, phenylalanine derivative), (B) a drug (alpha glucosidase inhibitor) that delays the absorption of food and releases the sugar toxicity caused by hyperglycemia, (C) Insulin resistance improving drug (biguanide, thiazolidine drug).
  • EBM Evidence Based Medicine
  • doctors' expertise, experience, and technology evidence based on the latest and best medical technology confirmed by scientific methods
  • the most effective and safe medical care for individual patients is required, and therefore, effective patient groups for the administration of various antidiabetic drugs are based on scientific evidence. It is important to clarify. By doing so, the patient's compliance can be improved, an effective therapeutic effect can be obtained, and the medical expenses can be efficiently operated.
  • Non-patent Document 1 Adiponectin (G276T) (Non-patent document 1), PGC-1 (G1302A) (Non-patent document 2), beta3-Adrenergic Receptor (Trp64Arg) (Non-patent document 3) ), Resistin (C-420G) (Non-patent Document 4), etc. have been identified, and their polymorphisms [for example, SNPs (single nucleotide polymorphisms)] and diabetes have been reported. .
  • Non-Patent Documents 5-6 it has been reported that there are differences between individuals and side effects in the expression of drug effects due to differences in gene polymorphisms that are directly involved in the mechanism of action of specific drugs (for example, Non-Patent Documents 5-6).
  • Non-Patent Documents 5-6 it is not known that genetic polymorphisms of genes other than diabetes-related genes reported in these reports serve as selection indicators for evaluating the effectiveness of various antidiabetic drugs in advance. There is no idea yet to select an effective anti-diabetic drug suitable for the patient based on the genetic information.
  • Hara K.et al Genetic variation in the gene encoding adiponectin is associated with an increased risk of type 2 diabetes in the Japanese population. Diabetes. 2002 Feb; 51 (2): 536-40. Hara K.et al, A genetic variation in the PGC-1 gene could confer insulin resistance and susceptibility to Type II diabetes. Diabetologia. 2002 May; 45 (5): 740-3. Walston J. et al, Time of onset of non-insulin-dependent diabetes mellitus and genetic variation in the beta 3-adrenergic-receptor gene. N Engl J Med. 1995 Aug 10; 333 (6): 343-7. Osawa H.
  • the present invention provides a gene polymorphism related to the effectiveness of an antidiabetic agent comprising a phenylalanine derivative drug as an active ingredient among oral diabetes drugs. Based on this information, the phenylalanine derivative drug is effectively used. The purpose is to select and determine diabetic patients who respond.
  • an object of the present invention is to provide a method for detecting and determining in advance in advance the effectiveness of a therapeutic agent for diabetes comprising the above-described phenylalanine derivative-based drug as an active ingredient for diabetic patients.
  • Another object of the present invention is to provide a therapeutic agent for diabetes suitable for a diabetic patient having a specific gene polymorphism, and to provide a method for treating diabetes suitable for the patient.
  • GYS1 skeletal muscle glycogen synthase gene
  • EPHX2 Soluble epoxide hydrolase
  • BC011628 patients with A (adenine) at position 860 as homozygote (AA) or heterozygote (AG or GA); (3) C at position -159 of the CD14 gene (Genbank Accession No. AF097335) It has been found that patients having cytosine) as a homozygote (CC) or heterozygote (CT or TC) have a markedly improved diabetes-improving effect with a phenylalanine derivative.
  • the GENOTYPE of any of the genes (gene polymorphisms) (1) to (3) above is examined in vitro, and it is confirmed that the GENOTYPE is a specific TYPE. By doing so, it is possible to determine in advance the administration effectiveness of a therapeutic agent for diabetes containing a phenylalanine derivative drug as an active ingredient, and as a result, the therapeutic agent can be selected and determined as an effective therapeutic agent for diabetes for the patient.
  • the present invention has the following aspects.
  • a method for detecting in vitro the effectiveness of administration of a therapeutic agent for diabetes comprising a phenylalanine derivative-based drug as an active ingredient for a diabetic patient, wherein the diabetic patient has at least one of the genes (1) to (3) A method characterized by having the following GENOTYPE (1) as an index:
  • I-2 The method described in I-1, having the following steps: (A) a step of detecting GENOTYPE in a polymorphism of at least one gene described in (1) to (3) above for a biological sample of a diabetic patient; (B) A step of identifying whether the GENOTYPE in the polymorphism of at least one gene described in (1) to (3) is the GENOTYPE (1) described in I-1.
  • I-3 The method according to I-2, further comprising the following step (c): (c) Based on the result of (b) above, GENOTYPE in the polymorphism of at least one gene described in (1) to (3) above is described in (1) to (3) of I-1 above A step of determining that administration of a therapeutic agent for diabetes comprising a phenylalanine derivative-based drug as an active ingredient is effective for the treatment of the diabetic patient when the GENOTYPE (1) matches.
  • the phenylalanine derivative is at least one selected from the group consisting of nateglinide, mitiglinide, repaglinide, and pharmaceutically acceptable salts thereof, I-1 to I- 3.
  • Antidiabetic agent comprising phenylalanine derivative as active ingredient II-1.
  • Diabetes treatment comprising a phenylalanine derivative-based drug as an active ingredient, which is administered to a diabetic patient whose at least one gene of any one of (1) to (3) is confirmed to have the following GENOTYPE Agent:
  • diabetes therapeutic agent according to II-1 wherein the phenylalanine derivative is nateglinide, mitiglinide, repaglinide, or a pharmaceutically acceptable salt thereof.
  • a method for treating diabetes having:
  • the above-mentioned phenylalanine derivative drug is at least one selected from the group consisting of nateglinide, mitiglinide, repaglinide, and pharmaceutically acceptable salts thereof, described in III-1 How to treat diabetes.
  • phenylalanine derivatives for certain diabetics IV-1.
  • IV-2 Described in IV-1, wherein the phenylalanine derivative is at least one selected from the group consisting of nateglinide, mitiglinide, repaglinide, and pharmaceutically acceptable salts thereof. use.
  • phenylalanine derivative is at least one selected from the group consisting of nateglinide, mitiglinide, repaglinide, and pharmaceutically acceptable salts thereof. Phenylalanine derivative drugs to be described.
  • the GENOTYPE of at least one gene polymorphism of any one of (1) GYS1 (A260G), (2) EPHX2 (G860A), and (3) CD14 (T-159C) is examined for a diabetic patient.
  • the effectiveness of the diabetic patient with respect to the phenylalanine derivative can be detected or determined in advance in vitro.
  • administration of diabetes treatments containing phenylalanine derivative drugs as active ingredients enables accurate and effective treatment of diabetes according to individual patients. It becomes. This, on the other hand, reduces the burden of treatment costs (medical costs) caused by the treatment that is accurate and ineffective for the patient, reduces physical and mental distress due to possible side effects, and delays treatment. It is also effective in preventing diabetes progression and complications.
  • gene in this specification has double-stranded DNA including human genomic DNA, single-stranded DNA (sense strand), and a sequence complementary to the sense strand. Both single-stranded DNA (antisense strand) and fragments thereof are included, and “gene” in the present specification distinguishes a regulatory region, a coding region, an exon, and an intron unless otherwise specified. It shall be shown without doing.
  • GYS1 A260G
  • EPHX2 G860A
  • CD14 T-159C gene polymorphism information (base sequence, chromosome position, etc.) and gene polymorphism described in this specification
  • the position information of the mold is based on the following documents.
  • GYS1 (A260G) Shimomura H, et al.
  • M416V muscle glycogen synthase gene
  • EPHX2 (G860A) Ohtoshi K, et al. Association of soluble epoxide hydrolase gene polymorphism with insulin resistance in type 2 diabetic patients. Biochem Biophys Res Commun. 2005 May 27; 331 (1): 347-350.
  • CD14 T-159C Fernandez-Real JM, et al. CD14 monocyte receptor, involved in the inflammatory cascade, and insulin sensitivity. J Clin Endocrinol Metab. 2003 Apr; 88 (4): 1780-1784. Unkelbach K, et al., A new promoter polymorphism in the gene of lipopolysaccharide receptor CD14 is associated with expired myocardial infarction in patients with low atherosclerotic risk profile. Arterioscler Thromb Vasc Biol. 1999 Apr; 19 (4): 932-8.
  • GYS1 (A260G)
  • GYS1 human GYS1 gene (Genbank Accession No. BC002617) has a gene polymorphism in which the 260th base of the nucleotide sequence is A or G.
  • EPHX2 (G860A)
  • EPHX2 (G860A)
  • CD14 T-159C)
  • AF097335 has a gene polymorphism in which the -159th base of the nucleotide sequence is T or C, respectively. .
  • the SNP position relating to each gene is a position indicated by “+1” as the transcription start point of each gene. That is, the 260th base in the base sequence of the GYS1 gene means the 260th base downstream from the transcription start point of the GYS1 gene.
  • the 860th base in the base sequence of the EPHX2 gene refers to the EPHX2 gene transcription start point. It means the 860th base downstream.
  • the ⁇ 159th base in the base sequence of the CD14 gene means the 159th base upstream from the transcription start point of the CD14 gene, that is, the promoter region ⁇ 159th base of the CD14 gene.
  • Gene polymorphism means the diversity of genes in which two or more types of alleles exist at one locus in the same population. Specifically, it indicates a mutation of a gene that exists at a certain frequency or more in a certain population.
  • the gene mutation referred to here is not limited to the region transcribed as RNA, but includes mutations in all DNAs that can be identified on the human genome including regulatory regions such as promoters and enhancers. 99.9% of human genomic DNA is common among individuals, and the remaining 0.1% is responsible for such diversity, and is involved in individual differences in susceptibility to specific diseases, responsiveness to drugs and environmental factors. obtain.
  • a genetic polymorphism does not always make a difference in phenotype.
  • the SNP (single nucleotide polymorphism) targeted by the present invention is also a kind of genetic polymorphism.
  • the “diabetes” targeted in the present invention is mainly type 2 diabetes (insulin-independent diabetes).
  • type 2 diabetes insulin-independent diabetes
  • the blood glucose level is 200 mg / dL or higher
  • the fasting blood glucose level is 126 mg / dL or higher
  • the 75 g oral glucose tolerance test 2 hour value is 200 mg / dL or higher It can be judged as diabetes.
  • HbA 1c hemoglobin A 1c
  • the HbA 1c value is regarded as important, and the main determination is made based on this.
  • the HbA 1c value is an index that reflects the average blood glucose level of the patient over the past 1 to 2 months, and is the most important index of blood glucose control status with little variation in the value of one patient.
  • the present invention relates to the effectiveness of administration of a therapeutic agent for diabetes containing a phenylalanine derivative-based drug as an active ingredient for diabetic patients.
  • This method can be carried out by in vitro detection of GENOTYPE in at least one gene polymorphism of any one of the following (1) to (3) for a biological sample of a diabetic patient.
  • (1) GYS1 gene will be described as an example.
  • the method of the present invention uses the biological sample of a diabetic patient as a material, and position 260 of the GYS1 gene [GYS1 ( A260G)]) to detect GG homozygote, AG or GA heterozygote, or AA homozygote, and based on the description in Table 6 above, In the case of a homozygote or an AG or GA heterozygote, it can be determined in advance that administration of a phenylalanine derivative-based drug is effective for the treatment of the diabetic patient.
  • GYS1 A260G
  • AG or GA heterozygote ie, AA homozygote
  • a phenylalanine derivative is administered to treat the diabetic patient. Is not very effective and can be determined not to be the first choice.
  • the administration effectiveness of phenylalanine derivative drugs can be detected in advance in vitro in diabetic patients. .
  • the method of the present invention uses a biological sample of a diabetic patient as a material, detects the GENOTYPE at position 860 of the EPHX2 gene [EPHX2 (G860A)], and homozygotes for AA A method of identifying heterozygotes for AG, GA, or homozygotes for GG.
  • EPHX2 G860A
  • homozygotes for AA A method of identifying heterozygotes for AG, GA, or homozygotes for GG.
  • AA homozygote or AG or GA heterozygote it can be determined in advance that administration of a phenylalanine derivative is effective for the treatment of the diabetic patient.
  • a GG homozygote it can be determined that administration of a phenylalanine derivative-based drug is not very effective for the treatment of the diabetic patient and is not a first option.
  • the method of the present invention uses a biological sample of a diabetic patient as a material to detect the GENOTYPE at position -159 (CD14 (T-159C)) of the promoter region of the CD14 gene, and A method of identifying another homozygote, CT or TC heterozygote, or TT homozygote.
  • CD14 T-159C
  • TT TT homozygote
  • genes (1) to (3) are gene markers indicating the effectiveness of phenylalanine derivative drugs (sensitivity to phenylalanine derivative drugs) in diabetic patients.
  • the gene marker can be suitably used for diabetic patients to determine whether administration of phenylalanine derivative drugs is effective for the treatment of diabetes. If the target patient gene (gene polymorphism) matches the GENOTYPE (1) shown in Table 6 above, the patient is responsive (sensitive) to the phenylalanine derivative drug, that is, the phenylalanine derivative drug. Means that the patient is effective in treating diabetes.
  • phenylalanine derivative drug targeted here will be described in detail in (3) below.
  • Preferable phenylalanine derivative drugs include nateglinide, mitiglinide, repaglinide and pharmaceutically acceptable salts thereof.
  • these drugs are administered in an effective amount in one or a combination of two or more as necessary to diabetic patients determined to be responsive (sensitive) to phenylalanine derivative drugs by the method of the present invention. can do.
  • genotype detection is performed by (i) performing PCR in a region containing at least one gene polymorphism described in (1) to (3) on the subject's genomic DNA, and using the SSCP method.
  • the subject is genomic DNA of the subject
  • PCR is performed in the region containing the gene polymorphism of at least one gene described in (1) to (3), and the restriction enzyme cleavage pattern for the PCR product
  • Iii a method in which the PCR product is directly sequenced and sequenced
  • ASO allele specific oligonucleotide
  • the method of the present invention can be carried out by performing the following steps (a) and (b): (A) a step of detecting GENOTYPE in a genetic polymorphism of at least one gene described in (1) to (3) for a biological sample of a diabetic patient; (B) A step of identifying whether the GENOTYPE in the polymorphism of at least one gene described in (1) to (3) is GENOTYPE (1) described in Table 6 above.
  • step (a) can be performed specifically on genomic DNA extracted from a biological sample of a diabetic patient.
  • Such a determination step is not an essential step of the method of the present invention, but such a determination step can optionally be included as the following step (c): (c) Based on the result of (b) above, the GENOTYPE in the polymorphism of at least one gene described in (1) to (3) of diabetic patients matches the GENOTYPE (1) described in Table 6 above. If it is determined that the administration of a phenylalanine derivative is effective for the treatment of the diabetic patient, and conversely does not match the GENOTYPE (1) described in Table 6 above, A step of judging that administration of a phenylalanine derivative is not very effective.
  • the method of the present invention it is possible to determine the presence or absence of administration effectiveness of a phenylalanine derivative-based drug for diabetic patients. This decision can be made even by a specialist by determining whether the genetic polymorphisms of the above (1) to (3) genes in diabetes patients fall under the GENOTYPE (1) shown in Table 6 above. Extremely difficult decisions can be made automatically / mechanically.
  • steps (a) and (b) are known methods (for example, Bruce, et al., Geneme Analysis / A laboratory Manual (vol.4), Cold Spring Harbor Laboratory, NY., (1999)). Can be used.
  • genomic DNA can be any cell (including cultured cells, excluding germ cells), tissue (including cultured tissue), or body fluid (eg, blood, saliva, lymph, airway mucosa, semen, isolated from a diabetic patient. , Sweat, urine, etc.) can be prepared as a material. Preferably it is blood or urine.
  • extraction of the genomic DNA is not limited to the above method, methods well known in the art (e.g., Sambrook J. et al,.. "Molecular Cloning:. A Laboratry Manual (2 nd Ed)" Cold Spring Harbor Laboratory, NY) and commercially available DNA extraction kits can be used.
  • step (b) the base located at the gene polymorphic site of at least one gene of (1) to (3) is identified from the extract containing human genomic DNA obtained as described above.
  • the base located at the gene polymorphic site of at least one gene of (1) to (3) is identified from the extract containing human genomic DNA obtained as described above.
  • RFLP Method of determination
  • polymorphic-specific probes for example, a specific probe is stuck on a chip, glass slide, nylon membrane, and hybridization intensity for those probes
  • RFLP Method of determination
  • Fluorescence emitted by a certain type of double-strand-specific fluorescent dyes can be obtained by following the change in temperature.
  • a method in which a base-extension reaction is performed by polymerase from a template-specific primer and a base incorporated into a polymorphic site at that time is identified (by using dideoxynucleotide, each is fluorescently labeled, and each fluorescence is Detection method, method of detecting incorporated dideoxynucleotide by mass spectrometry), and further using template-specific primers followed by the presence or absence of base pairs complementary to the mutation site or non-complementary base pairs. There is a method to make it recognize.
  • gene polymorphism detection methods are typical gene polymorphism detection methods, but the method of the present invention is not limited to these, and other known or future gene polymorphism detection methods can be widely used. Moreover, when detecting the gene polymorphism of the present invention, these gene polymorphism detection methods may be used singly or in combination of two or more.
  • the method of the present invention is not limited to the method of directly detecting and identifying the GENOTYPE of the gene.
  • a method of detecting the amino acid sequence of a protein that is an expression product of a gene and identifying the presence or absence of an amino acid mutation can also be employed.
  • the GYS1 gene has a mutation in the 416th amino acid (Met) of exon 10 based on the above gene polymorphism (Met416Val) (Diabetologia.
  • the EPHX2 gene is known to have a mutation at the 287th amino acid (Arg) based on the above polymorphism (Arg287Gln) (Circulation. 2004 Jan 27; 109 (3): 335-9. Epub 2004 Jan19 .).
  • Probes and primers for example, for detecting and distinguishing gene polymorphisms of the above (1) to (3), for each diabetic patient, select whether or not the patient is a person who is effectively administered a phenylalanine derivative. Can be used as a tool for
  • the steps (b) and (c) of the method of the present invention can also be performed by electronic information processing.
  • a method using the electronic information processing will be described with reference to the flowchart shown in FIG.
  • Each processing described below includes a CPU, a memory, a recording device (for example, a hard disk), an input device (for example, a keyboard, a mouse, a flexible disk drive, a CD-ROM drive), a display device (for example, a liquid crystal display), and a communication device (for example).
  • a computer equipped with a network board is used.
  • the processing target data is input via the input device and the communication device and recorded in the recording device, and the CPU executes processing on the data read from the recording device using the memory as a work area.
  • the intermediate result of the process and the final result are recorded in a predetermined area of the recording unit as necessary.
  • the gene information includes at least one gene polymorphism (GENOTYPE) information selected from GYS1 (A260G), EPHX2 (G860A), and CD14 (T-590C). Specifically, it is a pair of text data representing a gene polymorphism name and text data representing its GENOTYPE.
  • the gene information may be input as a code. For example, a code (text data) assigned to each gene polymorphism name or GENOTYPE may be input.
  • the genetic information may be input via a keyboard, may be input via a read drive from a state recorded on a recording medium, or may be input via a communication line. Furthermore, the genetic information may be input by being selected from a plurality of candidates displayed on the display device, or may be input using other known methods.
  • step S2 the genetic polymorphism information table is read from the recording unit.
  • Table 7 shows an example of a table recorded in advance in the recording device.
  • genes (gene polymorphisms) and GENOTYPE are described.
  • the gene (gene polymorphism) and GENOTYPE correspond to the gene polymorphism information.
  • the data shown in Table 7 and the data indicating the corresponding relationship are recorded as text data, for example, in the recording device.
  • step S3 it is determined whether the genetic polymorphism information in the table read in step S2 is included in the patient genetic information input in step S1, and the result is temporarily stored in a predetermined area of the memory. Record. For example, in Table 7, “GYS1 (A260G)” and “GG or AG” in the first row are read, the gene (gene polymorphism) is “GYS1 (A260G)”, and GENOTYPE is “GG or AG”. It is determined whether the genetic polymorphism information is included in the patient genetic information. If it is included, for example, “1” is set in a flag corresponding to the genetic polymorphism information in the first row (assumed that the initial value is set to “0” on the memory).
  • the process may move to step S4 without processing the remaining genetic polymorphism information.
  • step S4 according to the determination result in step S3, whether or not the therapeutic agent for diabetes containing a phenylalanine derivative-based drug as an active ingredient is effective for the patient is displayed (for example, displayed on a display device). For example, if at least one of the above flag values is “1”, it indicates that it is valid, and if all the flag values are “0”, it indicates that it is not valid.
  • the effectiveness of administering a therapeutic agent for diabetes containing a phenylalanine derivative-based drug as an active ingredient to the patient can be determined in advance according to the genetic information possessed by the specific diabetic patient.
  • the present invention is to select a therapeutic agent for diabetes containing a phenylalanine derivative as an active ingredient as an effective drug for a specific diabetic patient having GENOTYPE (1) from a plurality of therapeutic agents for diabetes. It can also be used effectively.
  • the table used for the determination is not limited to the table shown in Table 7, but may be any table including the gene (gene polymorphism) and GENOTYPE information shown in Table 7.
  • the embodiment of the present invention has been described as processing performed using electronic data corresponding to a table according to the flowchart shown in FIG. 1, but the present invention is not limited to this. It is only necessary to use the table shown in the table or a table containing genetic polymorphism information equivalent to this (both are not limited to electronic data). It is also possible to determine whether the described gene (gene polymorphism) and GENOTYPE are included, and to determine the effectiveness of a therapeutic agent for diabetes containing a phenylalanine derivative as an active ingredient for the patient.
  • Diabetes therapeutic agent comprising phenylalanine derivative-based drug as active ingredient
  • the diabetes therapeutic agent provided by the present invention has at least one gene (gene polymorphism) of any of the following (1) to (3) shown below as GENOTYPE: (1) A drug containing a phenylalanine derivative as an active ingredient, which is effective for diabetic patients. The drug is administered to a diabetic patient in which at least one of the following genes (1) to (3) is confirmed to have the following GENOTYPE (1): .
  • a diabetic patient to be treated by the therapeutic agent for diabetes of the present invention has been confirmed to have the above-mentioned GENOTYPE (1) for at least one gene among the above (1) to (3) by genetic testing
  • the patient may be a patient having the above-described GENOTYPE (1) for any two or more genes.
  • the genetic test means a test for examining a genetic polymorphism of at least one gene described in the above (1) to (3). Specifically, an inspection method having the steps (a) and (b) described in the above (2), and an inspection method further having the step (c) in addition to the steps (a) and (b) are given. be able to.
  • the phenylalanine derivative-based drug which is an active ingredient of the therapeutic agent for diabetes of the present invention suppresses an ATP-dependent K channel composed of a sulfonylurea receptor (SUR1) and an inward rectifier K + channel in pancreatic ⁇ cells. It is a drug that promotes insulin secretion by allowing extracellular calcium to flow into the cell membrane.
  • the therapeutic agent for diabetes of the present invention is not particularly limited as long as it contains, as an active ingredient, a phenylalanine derivative based on such an action mechanism that induces insulin secretion and lowers blood glucose.
  • phenylalanine derivative drugs targeted here include the compounds represented by the following general formula (I) and related compounds:
  • R 1 is a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, an aryl group having 6 to 12 carbon atoms, or an aralkyl group having 6 to 12 carbon atoms;
  • R 2 may have a substituent
  • R 3 is a hydrogen atom or an alkyl group having 1 to 6 carbon atoms
  • A is —N— or —CH Means-).
  • the alkyl group having 1 to 5 carbon atoms represented by R 1 in the formula (I) is a methyl group, an ethyl group, an n-propyl group, an isopropyl group, or an n-butyl group.
  • an aryl group having 6 to 12 carbon atoms is a phenyl group, a tolyl group or a naphthyl group; and an aralkyl group having 6 to 12 carbon atoms is preferably a benzyl group:
  • the aryl group having 6 to 12 carbon atoms represented by R 2 is a phenyl group, a naphthyl group or an indanyl group;
  • the hetero 5-membered ring is a 2-benzofuranyl group;
  • the hetero 6-membered ring Is a quinolinyl group and a pyridyl group;
  • a cycloalkyl group is a cyclohexyl group and a cyclopentyl group; or a cycloalkenyl group is a 1-cyclohexenyl group, a 2-cyclohexenyl group, a 3-cyclohexenyl group, a 1-cyclopen
  • Substituents include halogen atoms (for example, fluorine atoms or chlorine atoms), alkyl groups having 1 to 5 carbon atoms (for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group) ), An alkenyl group having 1 to 5 carbon atoms (for example, ethenyl group, propenyl group, butenyl group), an alkyloxy group having 1 to 5 carbon atoms (for example, methoxy group, ethoxy group), an alkyloxy group having 1 to 5 carbon atoms An alkyl group having 1 to 5 carbon atoms (eg, methoxymethyl group, 1-ethoxyethyl group) substituted with a group, an alkylene group having 1 to 5 carbon atoms substituted with an alkyloxy group having 1 to 5 carbon atoms (eg, , A methoxyethylene group), and an
  • the alkyl group having 1 to 6 carbon atoms represented by R 3 is preferably the same as the alkyl group described for R 1 .
  • A is —N— (nitrogen atom) or —CH— (methylene group in which one hydrogen atom is substituted with R 3 ), and these can be arbitrarily selected.
  • the compound (I) in which A is —N— can also be defined as a D-phenylalanine derivative, and the compound (I) in which A is —CH— can be defined as a benzyl succinic acid derivative.
  • the phenylalanine derivative-based drug referred to in the present invention includes hydrates and pharmaceutically acceptable salts of the compound represented by the above formula (I).
  • the salt herein include alkali metal salts such as sodium and potassium, alkaline earth metal salts such as calcium and magnesium; non-ammonium such as ammonium, tetramethylammonium, tetraethylammonium, methylamine, dimethylamine, trimethylamine, triethylamine, and ethylamine. Toxic ammonium, quaternary ammonium and amine cations can be exemplified.
  • Preferred as a phenylalanine derivative-based drug is a compound corresponding to a D-phenylalanine derivative, and nateglinide represented by the following formula (1) [trade name “Starsys Tablets” (Astellas Pharma, etc.):
  • repaglinide represented by the following formula (3) [“SMP-508” (Dainippon Sumitomo Pharma Co., Ltd.), trade name “NovoNorm”: Novo Nordisk Can be mentioned:
  • the anti-diabetic agent of the present invention only needs to contain these phenylalanine derivative drugs in an effective amount that exerts a therapeutic effect on diabetes, and as long as other components, such as pharmaceutically acceptable carriers and additives, are used. May be contained.
  • the therapeutic agent for diabetes of the present invention can usually be administered orally and is in a form suitable for their administration (for example, tablets, pills, powders, solutions, suspensions, emulsions, granules, capsules, etc.). Can be taken.
  • the pharmaceutically acceptable carrier that can be blended in the antidiabetic agent
  • those commonly used in the art can be widely used depending on the above various administration forms.
  • a filler a bulking agent, a binder, a moistening agent, a disintegrating agent, a surfactant, a lubricant, a buffering agent, a chelating agent, a pH adjusting agent, a surfactant and the like can be mentioned.
  • stabilizers, bactericides, coloring agents, preservatives, fragrances, flavoring agents, sweetening agents, and the like can be blended with the antidiabetic agent of the present invention as necessary.
  • the therapeutic agent for diabetes of the present invention can be prepared in the form of a sustained-release preparation or a sustained-release preparation containing a phenylalanine derivative drug as an active ingredient according to a known method.
  • the amount of the phenylalanine derivative-based drug to be contained in the therapeutic agent for diabetes of the present invention is not particularly limited and is appropriately selected from a wide range, but is usually preferably about 1 to 70% by weight.
  • the dosage and mode of administration of the therapeutic agent for diabetes of the present invention depends on the type of phenylalanine derivative-based drug to be blended as an active ingredient, various pharmaceutical forms, patient age, sex and other conditions, and the degree of disease.
  • Administered by the method For example, nateglinide is administered 90 to 120 mg at a time, 3 times a day immediately before each meal (within 10 minutes before meal); mitiglinide calcium hydrate is administered at a dose of 10 mg, 3 times a day, immediately before each meal (within 10 minutes before a meal). It is recommended to do.
  • the present invention relates to a diabetic treatment method performed for diabetic patients. Specifically, the method is intended for patients with type 2 diabetes who have undergone genetic testing and have been confirmed that at least one of the following genes (1) to (3) has GENOTYPE (1). This can be carried out by administering a drug containing a phenylalanine derivative drug as an active ingredient to a patient.
  • the diabetic patient who is the target of the treatment method of the present invention is a patient who has undergone genetic testing and has been confirmed to have the above-mentioned GENOTYPE (1) for at least one of the genes (1) to (3). What is necessary is just to be a patient who has said GENOTYPE (1) about these arbitrary two or more genes.
  • the genetic test means a test for examining a genetic polymorphism of at least one gene described in the above (1) to (3). Specifically, an inspection method having the steps (a) and (b) described in the above (2), and an inspection method further having the step (c) in addition to the steps (a) and (b) are given. be able to.
  • phenylalanine derivative drugs to be administered to the patient and the administration method thereof are as described in (3) above.
  • phenylalanine is applied to a patient who has been subjected to a genetic test in advance and has been confirmed to have the GENOTYPE (1) for at least one of the genes (1) to (3).
  • the above-described genetic test is performed on patients with type 2 diabetes prior to the administration of the phenylalanine derivative drug, and the above (1) to (3)
  • a method including a step of detecting and selecting a patient having the above-described GENOTYPE (1) for at least one gene may be used.
  • GENOTYPE and hemoglobin A1c were measured. Based on the results, each patient was classified into GENOTYPE (1) and (2) for each gene shown in Table 10, and further classified into a group with HbA1c of 6.5% or more and a group with less than 6.5%. By the way, if HbA1c is reduced to less than 6.5%, it is recognized that the administration of phenylalanine derivatives is effective in the treatment of diabetes.
  • GYS (A260G) Patients with type 2 diabetes whose GENOTYPE is GENOTYPE (1) (ie, GG or AG or GA), the percentage of patients whose HbA 1c value was reduced to less than 6.5% by administering phenylalanine derivatives Is significantly more than type 2 diabetic patients with GENOTYPE (2) (ie AA). That is, the phenylalanine derivative drug is more effective for the treatment of diabetes in patients with type 2 diabetes whose GYS (A260G) is GENOTYPE (2).
  • EPHX2 (G860A) Patients with type 2 diabetes whose GENOTYPE is GENOTYPE (1) (ie, AA, AG, or GA), the percentage of patients whose HbA 1c value was reduced to less than 6.5% by administering phenylalanine derivatives was GENOTYPE Is significantly higher than type 2 diabetic patients with GENOTYPE (2) (ie GG). That is, the phenylalanine derivative-based drug is more effective in treating diabetes in patients with type 2 diabetes whose EPHX2 (G860A) is GENOTYPE (2).
  • CD14 Patients with type 2 diabetes whose GENOTYPE is GENOTYPE (1) (ie, CC, CT, or TC), the percentage of patients whose HbA 1c value was reduced to less than 6.5% by administering phenylalanine derivatives Is significantly higher than type 2 diabetic patients with GENOTYPE (2) (ie TT). That is, the phenylalanine derivative drug is more effective for the treatment of diabetes in patients with type 2 diabetes whose CD14 (T-159C) is GENOTYPE (2).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Diabetes (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Analytical Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biotechnology (AREA)
  • Hematology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Pathology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Endocrinology (AREA)
  • Obesity (AREA)
  • Biophysics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Immunology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Emergency Medicine (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Indole Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

Disclosed is a method for selecting and identifying a diabetes patient for who a phenylalanine derivative-type compound (e.g., nateglinide) is effective based on the gene polymorphism associated with the effectiveness of a therapeutic agent for diabetes comprising the compound as an active ingredient. Also disclosed is a substance which is effective for the treatment of diabetes. The method is achieved by employing, as an indicator, a matter that a diabetes patient of interest has a genotype shown in 'GENOTYPES (1)' with respect to at least one gene selected from the genes (1) to (3).

Description

糖尿病患者のフェニルアラニン誘導体系薬物有効性検出方法Phenylalanine derivative-based drug efficacy detection method for diabetic patients
 本発明は、個々の糖尿病患者に対するフェニルアラニン誘導体系薬物を有効成分とする糖尿病治療剤の有効性を、当該糖尿病患者の遺伝子情報に基づいて検出する方法に関する。また本発明は、固有の遺伝子多型を有する特定の糖尿病患者に対して用いられるフェニルアラニン誘導体系薬物を有効成分とする糖尿病治療剤に関する。 The present invention relates to a method for detecting the effectiveness of an antidiabetic agent comprising a phenylalanine derivative-based drug as an active ingredient for individual diabetic patients based on genetic information of the diabetic patients. The present invention also relates to a therapeutic agent for diabetes comprising a phenylalanine derivative-based drug used as an active ingredient for a specific diabetic patient having a unique genetic polymorphism.
 上記本発明の方法は、糖尿病を治療し改善するための有効かつ的確な治療指針を糖尿病患者並びに医療従事者に与えるものであり、個々の患者に適した治療薬が選択できる結果、当該患者に有効かつ的確な治療を行うことができるとともに、無効な治療による精神的、肉体的および経済的負担が回避できる点で有用なものである。 The above-described method of the present invention provides effective and accurate treatment guidelines for treating and improving diabetes to diabetic patients and medical professionals. As a result of selecting therapeutic agents suitable for individual patients, It is useful in that effective and accurate treatment can be performed and the mental, physical and economic burden caused by invalid treatment can be avoided.
 厚生労働省(日本国)の平成14年の糖尿病実態調査によると、日本の糖尿病患者数は、約740万人、「糖尿病の可能性が否定できない人」とされる予備軍まで含めると、成人の6.3人に一人にあたる約1620万人にも上ると推計されている。糖尿病患者の増加は、食生活の変化や高齢化の影響が大きいとされ、5年前の調査に比べると予備軍を含む全体で250万人も増加しており、2010年には予備軍を除く糖尿病が「強く疑われる人」の人数だけでも1080万人に達すると試算されている。 According to the 2002 diabetes fact-finding survey by the Ministry of Health, Labor and Welfare (Japan), the number of diabetic patients in Japan is approximately 7.4 million, including the reserve arm that is considered “a person who cannot be denied the possibility of diabetes”. It is estimated that it is about 16.2 million people, one in 6.3 people. The increase in the number of diabetics is said to be greatly affected by changes in dietary habits and aging, and the number of people including the reserves increased by 2.5 million compared to the survey five years ago. Excluding diabetes, it is estimated that the number of people who are strongly suspected will reach 10.8 million.
 糖尿病の治療の柱は、食事療法、運動療法、および薬物療法である。しかしながら、糖尿病が「強く疑われる人」の中でも治療を受けている人は5割に過ぎない。また、一旦治療を開始した後にそれを中断してしまう糖尿病患者も少なくなく、これが合併症の増加につながっていると考えられている。また、既に薬物治療を受けている糖尿病患者のなかでも良好な状態が維持できているのは3割程度にすぎないとの報告もあり、より有効な薬物選択法が求められている。 The main pillars of diabetes treatment are diet, exercise, and medication. However, only 50% of people who are strongly suspected of having diabetes are being treated. In addition, there are not a few diabetic patients who once stop treatment after starting treatment, which is thought to lead to an increase in complications. In addition, there are reports that only about 30% of diabetic patients who have already undergone drug treatment have maintained a good state, and a more effective drug selection method is required.
 一方、厚生労働省(日本国)発表の「国民医療費の概況」によると、平成16年度の糖尿病の医療費は1兆1168億円であり、その額は20年後には2兆円を超えると予測されている。世界的にも糖尿病の医療費は増大傾向にあり、国際糖尿病連合(IDF)が2003年に発表した全世界の成人糖尿病の医療費は1530億ドルであり、2025年にはその額が2130億から3960億ドルにまで増加すると試算されている。特に医療費がかさむのは、長期の治療が必要となる糖尿病の合併症(心臓病、脳血管疾患、腎臓障害、足の障害など)であり、なかでも腎臓障害の治療の負担は重く、合併症の治療費の約74%を占めるという報告もある。 On the other hand, according to the “National Health Care Expenditure” published by the Ministry of Health, Labor and Welfare (Japan), the medical cost of diabetes in FY 2004 was 1,116.8 billion yen, which would exceed 2 trillion yen in 20 years It is predicted. Diabetes health care costs are on the rise worldwide, and the International Diabetes Federation (IDF) announced in 2003 the global health care costs for adult diabetes was $ 153 billion, and in 2025 that amount would be 213 billion Is estimated to increase to $ 396 billion. Medical costs are particularly high because of complications of diabetes that require long-term treatment (heart disease, cerebrovascular disease, kidney disorders, foot disorders, etc.). There are also reports that account for about 74% of the cost of treating the disease.
 かかる合併症を予防するためにも、適確な治療選択により、長期間HbA1c(ヘモグロビンA1c)を6.5%未満に維持することが必要とされている。 In order to prevent such complications, it is necessary to maintain HbA 1c (hemoglobin A 1c ) for less than 6.5% for a long time by appropriate treatment selection.
 現在糖尿病の治療に使用されている経口剤(経口糖尿病薬)は、その作用メカニズムに応じて大きく下記の3種類に分類することができる:
(A)インスリン分泌促進薬(スルホニル尿素系薬剤、フェニルアラニン誘導体系薬剤)、
(B)食物の吸収を遅らせて高血糖による糖毒性を解除する薬剤(αグルコシダーゼ阻害剤)、
(C)インスリン抵抗性改善薬(ビグアナイド系薬剤、チアゾリジン系薬剤)。
Oral preparations (oral diabetes drugs) currently used for the treatment of diabetes can be roughly classified into the following three types according to their mechanism of action:
(A) insulin secretagogue (sulfonylurea, phenylalanine derivative),
(B) a drug (alpha glucosidase inhibitor) that delays the absorption of food and releases the sugar toxicity caused by hyperglycemia,
(C) Insulin resistance improving drug (biguanide, thiazolidine drug).
 しかしながら、これらの糖尿病治療薬を糖尿病患者に投与した場合、高い有効性を示す者(good responder)、有効性が低い者(poor responder)、または全く効果を示さない者(non responder)など、患者の応答はさまざまであり、個々の患者に適した薬剤を的確に選択し処方する必要性が認識されている。しかしながら、インスリン分泌促進薬の種類ならびに投与量の決定には客観的な選択基準が無く、医師の経験的な判断に大きく依存しているのが現状である。また、薬剤の種類によっては低血糖や心血管系への副作用も指摘されている。したがって患者に応じて適切な糖尿治療薬を処方するためのシステムの確立は医療において極めて重要である。特に、近年は、Evidence Based Medicine (EBM)という理念のもと、医師の専門知識、経験および技術に加えて、科学的方法で確かめられた最新、最良の医療技術に関するエビデンス(証拠)をもとに、個々の患者に対して最も効果的で且つ安全な医療を施すことが求められるようになっているため、各種の糖尿病治療薬の投与に対して有効な患者群を科学的根拠に基づいて明らかにすることは重要なことである。またそうすることによって、患者の服薬コンプライアンスを高め、有効な治療効果が得られるとともに、医療費の効率的な運用にもつながる。 However, when these antidiabetic drugs are administered to diabetic patients, patients such as those who show high efficacy (good responder), those who are poorly effective (poor responder), or those who do not show any effect (non responder) There are various responses, and it is recognized that there is a need to accurately select and prescribe drugs suitable for individual patients. However, there is no objective selection criterion for determining the type and dosage of insulin secretagogues, and the current situation is that it depends heavily on the empirical judgment of doctors. In addition, depending on the type of drug, hypoglycemia and side effects on the cardiovascular system have been pointed out. Therefore, the establishment of a system for prescribing appropriate antidiabetic drugs according to patients is extremely important in medicine. In particular, in recent years, based on the philosophy of Evidence Based Medicine (EBM), in addition to doctors' expertise, experience, and technology, evidence based on the latest and best medical technology confirmed by scientific methods In addition, the most effective and safe medical care for individual patients is required, and therefore, effective patient groups for the administration of various antidiabetic drugs are based on scientific evidence. It is important to clarify. By doing so, the patient's compliance can be improved, an effective therapeutic effect can be obtained, and the medical expenses can be efficiently operated.
 最近、糖尿病の発症には食事を含む生活習慣等の非遺伝的因子のみならず、いくつかの遺伝的因子が関わっていることが報告されている。例えば、糖尿病と関連する遺伝子(糖尿病関連遺伝子)として、Adiponectin(G276T)(非特許文献1)、PGC-1(G1302A)(非特許文献2)、beta3-Adrenergic Receptor(Trp64Arg)(非特許文献3)、Resistin(C-420G)(非特許文献4)などが同定され、それらの遺伝子多型〔例えば、SNPs(single nucleotide polymorphisms:単一塩基多型)〕と糖尿病との関連が報告されている。また、特定の薬効の作用機序に直接的に関与する遺伝子多型の違いによって、薬効発現に個人差と副作用の違いがあるということが報告されている(例えば非特許文献5-6)。しかし、これらで報告されている糖尿病関連遺伝子以外の遺伝子の遺伝子多型が各種の糖尿病治療薬の有効性を事前に評価する選別指標になることについては知られておらず、個々の糖尿病患者の遺伝子情報に基づいて、当該患者に適した有効な糖尿病治療薬を選択するという発想はまだない。 Recently, it has been reported that the development of diabetes involves not only non-genetic factors such as lifestyle including food, but also some genetic factors. For example, Adiponectin (G276T) (Non-patent document 1), PGC-1 (G1302A) (Non-patent document 2), beta3-Adrenergic Receptor (Trp64Arg) (Non-patent document 3) ), Resistin (C-420G) (Non-patent Document 4), etc. have been identified, and their polymorphisms [for example, SNPs (single nucleotide polymorphisms)] and diabetes have been reported. . In addition, it has been reported that there are differences between individuals and side effects in the expression of drug effects due to differences in gene polymorphisms that are directly involved in the mechanism of action of specific drugs (for example, Non-Patent Documents 5-6). However, it is not known that genetic polymorphisms of genes other than diabetes-related genes reported in these reports serve as selection indicators for evaluating the effectiveness of various antidiabetic drugs in advance. There is no idea yet to select an effective anti-diabetic drug suitable for the patient based on the genetic information.
 本発明は、経口糖尿病薬のなかでも、フェニルアラニン誘導体系薬物を有効成分とする糖尿病治療剤の有効性に関わる遺伝子多型を提供し、この情報をもとにして当該フェニルアラニン誘導体系薬物が有効に奏効する糖尿病患者を選別し決定することを目的とする。 The present invention provides a gene polymorphism related to the effectiveness of an antidiabetic agent comprising a phenylalanine derivative drug as an active ingredient among oral diabetes drugs. Based on this information, the phenylalanine derivative drug is effectively used. The purpose is to select and determine diabetic patients who respond.
 言い換えれば、糖尿病患者を対象として、上記のフェニルアラニン誘導体系薬物を有効成分とする糖尿病治療剤の有効性を事前にin vitroで検出し、また判定する方法を提供することを目的とする。 In other words, an object of the present invention is to provide a method for detecting and determining in advance in advance the effectiveness of a therapeutic agent for diabetes comprising the above-described phenylalanine derivative-based drug as an active ingredient for diabetic patients.
 また、本発明は、特定の遺伝子多型を有する糖尿病患者に対して適した糖尿病治療剤を提供すること、また当該患者に対して適した糖尿病治療方法を提供することを目的とする。 Another object of the present invention is to provide a therapeutic agent for diabetes suitable for a diabetic patient having a specific gene polymorphism, and to provide a method for treating diabetes suitable for the patient.
 本発明者らは、上記目的を達成するために鋭意検討を進めていたところ、糖尿病患者について薬剤応答性を規定している遺伝子多型、特にフェニルアラニン誘導体系薬物に対する応答性を規定する遺伝子多型を特定することに成功した。具体的には、本発明者らは、糖尿病患者のうち、(1)骨格筋グリコーゲン合成酵素(Muscle glycogen synthase)(以下、単に「GYS1」という)遺伝子(Genbank Accession No. BC002617)の260位にG(グアニン)をホモ接合体(GG) またはヘテロ接合体(AGまたはGA)として有する患者;(2)可溶性epoxide hydrolase遺伝子(Soluble epoxide hydrolase)(以下、単に「EPHX2」という)遺伝子(Genbank Accession No. BC011628)の860位にA(アデニン)をホモ接合体(AA) またはヘテロ接合体(AGまたはGA)として有する患者;(3)CD14遺伝子(Genbank Accession No.AF097335)の-159位にC(シトシン)をホモ接合体(CC)またはヘテロ接合体(CTまたはTC)として有する患者は、フェニルアラニン誘導体系薬物による糖尿病改善効果が顕著に優れていることを見出した。 The inventors of the present invention have been diligently studying to achieve the above-mentioned object. As a result, gene polymorphisms defining drug responsiveness for diabetic patients, particularly gene polymorphisms defining responsiveness to phenylalanine derivative drugs. Succeeded in identifying. Specifically, the present inventors, among diabetic patients, (1) skeletal muscle glycogen synthase (hereinafter simply referred to as “GYS1”) gene (Genbank Accession No. BC002617) position 260 Patients with G (guanine) as a homozygote (GG) or heterozygote (AG or GA); (2) Soluble epoxide hydrolase (hereinafter referred to simply as “EPHX2”) gene (Genbank Accession No . (BC011628) patients with A (adenine) at position 860 as homozygote (AA) or heterozygote (AG or GA); (3) C at position -159 of the CD14 gene (Genbank Accession No. AF097335) It has been found that patients having cytosine) as a homozygote (CC) or heterozygote (CT or TC) have a markedly improved diabetes-improving effect with a phenylalanine derivative.
 かかる知見から、個々の糖尿病患者について、上記(1)~(3)のいずれかの遺伝子(遺伝子多型)のGENOTYPEをin vitroで調べることによって、またそのGENOTYPEが特定のTYPEであることを確認することによって、事前にフェニルアラニン誘導体系薬物を有効成分とする糖尿病治療剤の投与有効性を判断することができ、その結果、当該患者に対する有効な糖尿病治療剤として当該治療剤を選択決定することができること(言い換えれば、当該糖尿病患者に対してフェニルアラニン誘導体系薬物を有効成分とする治療剤の投与有効者であるか否かを決定できること)、そして投与有効性が判断された患者(投与有効者)に対して選択的に当該治療剤を投与することによって、有効でしかも的確な糖尿病治療が可能になることを確信して、本発明を完成するにいたった。 Based on these findings, in each individual with diabetes, the GENOTYPE of any of the genes (gene polymorphisms) (1) to (3) above is examined in vitro, and it is confirmed that the GENOTYPE is a specific TYPE. By doing so, it is possible to determine in advance the administration effectiveness of a therapeutic agent for diabetes containing a phenylalanine derivative drug as an active ingredient, and as a result, the therapeutic agent can be selected and determined as an effective therapeutic agent for diabetes for the patient. What can be done (in other words, it is possible to determine whether or not the diabetic patient is effective in administering a therapeutic agent containing a phenylalanine derivative drug), and the patient whose administration effectiveness has been determined (effective administration) The present invention is completed with the conviction that effective and accurate treatment of diabetes can be achieved by selectively administering the therapeutic agent to It led to.
 すなわち、本発明は下記の態様を有するものである。 That is, the present invention has the following aspects.
 I.糖尿病患者についてフェニルアラニン誘導体系薬物を有効成分とする糖尿病治療剤の投与有効性を検出する方法
I-1.糖尿病患者について、フェニルアラニン誘導体系薬物を有効成分とする糖尿病治療剤の投与有効性をin vitroで検出する方法であって、当該糖尿病患者が(1)~(3)のいずれか少なくとも一つの遺伝子について下記のGENOTYPE(1)を有していることを指標とすることを特徴とする方法:
I. A method for detecting the administration effectiveness of an antidiabetic agent comprising a phenylalanine derivative as an active ingredient in diabetic patients
I-1. A method for detecting in vitro the effectiveness of administration of a therapeutic agent for diabetes comprising a phenylalanine derivative-based drug as an active ingredient for a diabetic patient, wherein the diabetic patient has at least one of the genes (1) to (3) A method characterized by having the following GENOTYPE (1) as an index:
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 I-2.下記の工程を有する、I-1に記載する方法:
(a)糖尿病患者の生体試料を対象として、上記(1)~(3)に記載する少なくとも1つの遺伝子の遺伝子多型におけるGENOTYPEを検出する工程、
(b)上記(1)~(3)に記載する少なくとも1つの遺伝子の遺伝子多型におけるGENOTYPEが、上記I-1に記載するGENOTYPE(1)であるかを識別する工程。
I-2. The method described in I-1, having the following steps:
(A) a step of detecting GENOTYPE in a polymorphism of at least one gene described in (1) to (3) above for a biological sample of a diabetic patient;
(B) A step of identifying whether the GENOTYPE in the polymorphism of at least one gene described in (1) to (3) is the GENOTYPE (1) described in I-1.
 I-3.さらに下記の工程(c)を有する、I-2に記載する方法:
(c)上記(b)の結果に基づいて、上記(1)~(3)に記載する少なくとも1つの遺伝子の遺伝子多型におけるGENOTYPEが、上記I-1の(1)~(3)に記載するGENOTYPE(1)と一致する場合に、当該糖尿病患者の治療に対してフェニルアラニン誘導体系薬物を有効成分とする糖尿病治療剤の投与が有効であると判定する工程。
I-3. The method according to I-2, further comprising the following step (c):
(c) Based on the result of (b) above, GENOTYPE in the polymorphism of at least one gene described in (1) to (3) above is described in (1) to (3) of I-1 above A step of determining that administration of a therapeutic agent for diabetes comprising a phenylalanine derivative-based drug as an active ingredient is effective for the treatment of the diabetic patient when the GENOTYPE (1) matches.
 I-4.上記フェニルアラニン誘導体系薬物が、ナテグリニド(nateglinide)、ミチグリニド(mitiglinide)、レパグリニド(repaglinide)およびこれらの薬学的に許容される塩からなる群から選択される少なくとも1種である、I-1乃至I-3のいずれかに記載する方法。 I-4. The phenylalanine derivative is at least one selected from the group consisting of nateglinide, mitiglinide, repaglinide, and pharmaceutically acceptable salts thereof, I-1 to I- 3. The method according to any one of 3.
 II.フェニルアラニン誘導体系薬物を有効成分とする糖尿病治療剤
II-1.(1)~(3)のいずれか少なくとも1つの遺伝子について下記のGENOTYPEを有することが確認された糖尿病患者を対象として投与されることを特徴とする、フェニルアラニン誘導体系薬物を有効成分とする糖尿病治療剤:
II. Antidiabetic agent comprising phenylalanine derivative as active ingredient
II-1. Diabetes treatment comprising a phenylalanine derivative-based drug as an active ingredient, which is administered to a diabetic patient whose at least one gene of any one of (1) to (3) is confirmed to have the following GENOTYPE Agent:
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 II-2.上記フェニルアラニン誘導体系薬物が、ナテグリニド(nateglinide)、ミチグリニド(mitiglinide)、レパグリニド(repaglinide)またはこれらの薬学的に許容される塩である、II-1に記載する糖尿病治療剤。 II-2. The diabetes therapeutic agent according to II-1, wherein the phenylalanine derivative is nateglinide, mitiglinide, repaglinide, or a pharmaceutically acceptable salt thereof.
 III.特定の糖尿病患者に対する糖尿病の治療方法
III-1.(1)~(3)のいずれか少なくとも1つの遺伝子について下記のGENOTYPE(1)を有することが確認された糖尿病患者に対して、フェニルアラニン誘導体系薬物を有効成分とする糖尿病治療剤を投与する工程を有する、糖尿病の治療方法:
III. Diabetes treatment method for specific diabetic patients
III-1. A step of administering a therapeutic agent for diabetes comprising a phenylalanine derivative-based drug as an active ingredient to a diabetic patient who has been confirmed to have the following GENOTYPE (1) for at least one gene of any one of (1) to (3) A method for treating diabetes having:
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 III-2.上記フェニルアラニン誘導体系薬物が、ナテグリニド(nateglinide)、ミチグリニド(mitiglinide)、レパグリニド(repaglinide)およびこれらの薬学的に許容される塩からなる群から選択される少なくとも1種である、III-1に記載する糖尿病の治療方法。 III-2. The above-mentioned phenylalanine derivative drug is at least one selected from the group consisting of nateglinide, mitiglinide, repaglinide, and pharmaceutically acceptable salts thereof, described in III-1 How to treat diabetes.
 IV.特定の糖尿病患者に対するフェニルアラニン誘導体系薬物の使用
IV-1.(1)~(3)のいずれか少なくとも1つの遺伝子について下記のGENOTYPE(1)を有することが確認された糖尿病患者に対する治療薬の製造のための、フェニルアラニン誘導体系薬物の使用:
IV. Use of phenylalanine derivatives for certain diabetics
IV-1. Use of a phenylalanine derivative-based drug for the manufacture of a therapeutic drug for a diabetic patient who has been confirmed to have the following GENOTYPE (1) for at least one gene of (1) to (3):
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 IV-2.上記フェニルアラニン誘導体系薬物が、ナテグリニド(nateglinide)、ミチグリニド(mitiglinide)、レパグリニド(repaglinide)およびこれらの薬学的に許容される塩からなる群から選択される少なくとも1種である、IV-1に記載する使用。 IV-2. Described in IV-1, wherein the phenylalanine derivative is at least one selected from the group consisting of nateglinide, mitiglinide, repaglinide, and pharmaceutically acceptable salts thereof. use.
 IV-3.(1)~(3)のいずれか少なくとも1つの遺伝子について下記のGENOTYPE(1)を有することが確認された糖尿病患者を治療するための、フェニルアラニン誘導体系薬物: IV-3. A phenylalanine derivative-based drug for treating a diabetic patient who is confirmed to have the following GENOTYPE (1) for at least one gene of any one of (1) to (3):
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 IV-4.上記フェニルアラニン誘導体系薬物が、ナテグリニド(nateglinide)、ミチグリニド(mitiglinide)、レパグリニド(repaglinide)およびこれらの薬学的に許容される塩からなる群から選択される少なくとも1種である、(IV-3)に記載するフェニルアラニン誘導体系薬物。 IV-4. (IV-3), wherein the phenylalanine derivative is at least one selected from the group consisting of nateglinide, mitiglinide, repaglinide, and pharmaceutically acceptable salts thereof. Phenylalanine derivative drugs to be described.
 本発明によれば、糖尿病患者について、(1)GYS1(A260G)、(2)EPHX2(G860A)、および(3)CD14(T-159C)のいずれか少なくとも1つの遺伝子多型のGENOTYPEを調べることで、当該糖尿病患者のフェニルアラニン誘導体系薬物に対する有効性を事前にin vitroで検出しまたは判定することができる。そして、当該薬物が有効であると判断された患者に対しては、フェニルアラニン誘導体系薬物を有効成分とする糖尿病治療剤を投与することにより、個々の患者に応じた的確かつ有効な糖尿病治療が可能となる。これは反面、その患者に的確かつ有効でない治療を行うことによって生じる治療費(医療費)の負担増を低減するとともに、生じ得る副作用などによる肉体的・精神的苦痛を低減し、また治療の遅れによる糖尿病の進行や合併症を防止するという面においても有効である。 According to the present invention, the GENOTYPE of at least one gene polymorphism of any one of (1) GYS1 (A260G), (2) EPHX2 (G860A), and (3) CD14 (T-159C) is examined for a diabetic patient. Thus, the effectiveness of the diabetic patient with respect to the phenylalanine derivative can be detected or determined in advance in vitro. In addition, for patients who are judged to be effective, administration of diabetes treatments containing phenylalanine derivative drugs as active ingredients enables accurate and effective treatment of diabetes according to individual patients. It becomes. This, on the other hand, reduces the burden of treatment costs (medical costs) caused by the treatment that is accurate and ineffective for the patient, reduces physical and mental distress due to possible side effects, and delays treatment. It is also effective in preventing diabetes progression and complications.
糖尿病治療剤の有効性の決定方法を示すフローチャートである。It is a flowchart which shows the determination method of the effectiveness of a diabetes therapeutic agent.
(1)用語の説明
 本明細書において「遺伝子」は、特に言及しない限り、ヒトゲノムDNAを含む2本鎖DNA、及び1本鎖DNA(センス鎖)、並びに当該センス鎖と相補的な配列を有する1本鎖DNA(アンチセンス鎖)、及びそれらの断片のいずれもが含まれる、また、本明細書で「遺伝子」とは、特に言及しない限り、調節領域、コード領域、エクソン、及びイントロンを区別することなく示すものとする。
(1) Explanation of terms Unless otherwise specified, “gene” in this specification has double-stranded DNA including human genomic DNA, single-stranded DNA (sense strand), and a sequence complementary to the sense strand. Both single-stranded DNA (antisense strand) and fragments thereof are included, and “gene” in the present specification distinguishes a regulatory region, a coding region, an exon, and an intron unless otherwise specified. It shall be shown without doing.
 本明細書に記載する(1)GYS1(A260G)、(2)EPHX2(G860A)、および(3)CD14(T-159C)の遺伝子多型に関する遺伝子情報(塩基配列や染色体位置など)ならびに遺伝子多型の位置情報はおのおの下記に示す文献に基づく。 (1) GYS1 (A260G), (2) EPHX2 (G860A), and (3) CD14 (T-159C) gene polymorphism information (base sequence, chromosome position, etc.) and gene polymorphism described in this specification The position information of the mold is based on the following documents.
 (1)GYS1(A260G)
Shimomura H, et al. A missense mutation of the muscle glycogen synthase gene (M416V) is associated with insulin resistance in the Japanese population. Diabetologia. 1997 Aug;40(8):947-952。
(1) GYS1 (A260G)
Shimomura H, et al. A missense mutation of the muscle glycogen synthase gene (M416V) is associated with insulin resistance in the Japanese population. Diabetologia. 1997 Aug; 40 (8): 947-952.
 (2) EPHX2(G860A)
Ohtoshi K, et al. Association of soluble epoxide hydrolase gene polymorphism with insulin resistance in type 2 diabetic patients. Biochem Biophys Res Commun. 2005 May 27;331(1):347-350。
(2) EPHX2 (G860A)
Ohtoshi K, et al. Association of soluble epoxide hydrolase gene polymorphism with insulin resistance in type 2 diabetic patients. Biochem Biophys Res Commun. 2005 May 27; 331 (1): 347-350.
 (3) CD14(T-159C)
・Fernandez-Real JM, et al. CD14 monocyte receptor, involved in the inflammatory cascade, and insulin sensitivity. J Clin Endocrinol Metab. 2003 Apr;88(4):1780-1784.
・Unkelbach K, et al., A new promoter polymorphism in the gene of lipopolysaccharide receptor CD14 is associated with expired myocardial infarction in patients with low atherosclerotic risk profile. Arterioscler Thromb Vasc Biol. 1999 Apr;19(4):932-8。
(3) CD14 (T-159C)
Fernandez-Real JM, et al. CD14 monocyte receptor, involved in the inflammatory cascade, and insulin sensitivity. J Clin Endocrinol Metab. 2003 Apr; 88 (4): 1780-1784.
Unkelbach K, et al., A new promoter polymorphism in the gene of lipopolysaccharide receptor CD14 is associated with expired myocardial infarction in patients with low atherosclerotic risk profile. Arterioscler Thromb Vasc Biol. 1999 Apr; 19 (4): 932-8.
 本明細書において、(1)「GYS1(A260G)」とは、ヒトGYS1遺伝子(Genbank Accession No. BC002617)が、その塩基配列の260番目の塩基がAまたはGである遺伝子多型を有することを意味する。同様に、(2)「EPHX2(G860A)」とは、ヒトEPHX2遺伝子(Genbank Accession No. BC011628)が、その塩基配列の860番目の塩基がGまたはAである遺伝子多型を有すること:(3)「CD14(T-159C)」とは、ヒトCD14遺伝子(Genbank Accession No. AF097335)が、その塩基配列の-159番目の塩基がTまたはCである遺伝子多型を有することを、各々意味する。なお、上記各遺伝子に関するSNP位置は、各遺伝子の転写開始点を「+1」として示した位置である。すなわちGYS1遺伝子の塩基配列の260番目の塩基とは、GYS1遺伝子転写開始点から下流260番目の塩基を意味し、同様にEPHX2遺伝子の塩基配列の860番目の塩基とは、EPHX2遺伝子転写開始点から下流860番目の塩基を意味する。またCD14遺伝子の塩基配列の-159番目の塩基とは、CD14遺伝子転写開始点から上流159番目の塩基、すなわちCD14遺伝子のプロモーター領域-159番目の塩基を意味する。 In this specification, (1) “GYS1 (A260G)” means that the human GYS1 gene (Genbank Accession No. BC002617) has a gene polymorphism in which the 260th base of the nucleotide sequence is A or G. means. Similarly, (2) “EPHX2 (G860A)” means that the human EPHX2 gene (Genbank Accession No. BC011628) has a gene polymorphism in which the 860th base of the nucleotide sequence is G or A: (3 ) “CD14 (T-159C)” means that the human CD14 gene (Genbank Accession No. AF097335) has a gene polymorphism in which the -159th base of the nucleotide sequence is T or C, respectively. . The SNP position relating to each gene is a position indicated by “+1” as the transcription start point of each gene. That is, the 260th base in the base sequence of the GYS1 gene means the 260th base downstream from the transcription start point of the GYS1 gene. Similarly, the 860th base in the base sequence of the EPHX2 gene refers to the EPHX2 gene transcription start point. It means the 860th base downstream. Further, the −159th base in the base sequence of the CD14 gene means the 159th base upstream from the transcription start point of the CD14 gene, that is, the promoter region −159th base of the CD14 gene.
 「遺伝子多型」とは、同一集団内において、一つの遺伝子座に2種類以上の対立遺伝子(アレル)が存在する遺伝子の多様性を意味する。具体的には、ある集団において一定の頻度以上で存在する遺伝子の変異を示す。ここでいう遺伝子の変異は、RNAとして転写される領域に限定されるものではなく、プロモーター、エンハンサー等の制御領域などを含むヒトゲノム上で特定しうるすべてのDNAにおける変異を含むものである。ヒトゲノムDNAの99.9%は各個人間で共通しており、残る0.1%がこのような多様性の原因となり、特定の疾患に対する感受性、薬物や環境因子に対する反応性の個人差として関与し得る。遺伝子多型があっても表現型に差が出るとは限らない。また、本発明対象とするSNP(一塩基多型)も遺伝子多型の一種である。 “Gene polymorphism” means the diversity of genes in which two or more types of alleles exist at one locus in the same population. Specifically, it indicates a mutation of a gene that exists at a certain frequency or more in a certain population. The gene mutation referred to here is not limited to the region transcribed as RNA, but includes mutations in all DNAs that can be identified on the human genome including regulatory regions such as promoters and enhancers. 99.9% of human genomic DNA is common among individuals, and the remaining 0.1% is responsible for such diversity, and is involved in individual differences in susceptibility to specific diseases, responsiveness to drugs and environmental factors. obtain. A genetic polymorphism does not always make a difference in phenotype. The SNP (single nucleotide polymorphism) targeted by the present invention is also a kind of genetic polymorphism.
 本発明で対象とする「糖尿病」は、主として2型糖尿病(インスリン非依存型糖尿病)である。日本糖尿病学会の指針(1999)によると、随時血糖値が200mg/dL以上、空腹時血糖値が126mg/dL以上、75g経口ブドウ糖負荷試験2時間値が200mg/dL以上のいずれかに該当する場合には、糖尿病と判断することができる。また、違う日の検査で上記基準に2回該当した場合、または1回の確認でも糖尿病の特徴的な症状がある場合、HbA1c(ヘモグロビンA1c)が6.5%以上の場合、若しくは糖尿病網膜症がある場合、糖尿病と判断することができる。血糖コントロール指標では、HbA1c値を重視し、主要な判定はこれによって行う。HbA1c値は患者の過去1~2ヵ月間の平均血糖値を反映する指標で、1人の患者での値のばらつきが少なく、血糖コントロール状態の最も重要な指標である。 The “diabetes” targeted in the present invention is mainly type 2 diabetes (insulin-independent diabetes). According to the guidelines of the Japan Diabetes Society (1999), if the blood glucose level is 200 mg / dL or higher, the fasting blood glucose level is 126 mg / dL or higher, and the 75 g oral glucose tolerance test 2 hour value is 200 mg / dL or higher It can be judged as diabetes. In addition, if the above criteria are met twice on a different day, or if there is a characteristic symptom of diabetes even after one check, HbA 1c (hemoglobin A 1c ) is 6.5% or more, or diabetic retinopathy If there is, it can be judged as diabetes. In the blood glucose control index, the HbA 1c value is regarded as important, and the main determination is made based on this. The HbA 1c value is an index that reflects the average blood glucose level of the patient over the past 1 to 2 months, and is the most important index of blood glucose control status with little variation in the value of one patient.
 (2)糖尿病患者についてフェニルアラニン誘導体系薬物を有効成分とする糖尿病治療剤の投与有効性を検出する方法
 本発明は、糖尿病患者について、フェニルアラニン誘導体系薬物を有効成分とする糖尿病治療剤の投与有効性を検出する方法を提供する。
(2) Method for detecting the administration effectiveness of a therapeutic agent for diabetes containing a phenylalanine derivative-based drug as an active ingredient for diabetic patients The present invention relates to the effectiveness of administration of a therapeutic agent for diabetes containing a phenylalanine derivative-based drug as an active ingredient for diabetic patients. Provide a method of detecting
 当該方法は、糖尿病患者の生体試料を対象として、下記の(1)~(3)のいずれか少なくとも1つの遺伝子の遺伝子多型におけるGENOTYPEをin vitro検出することによって実施することができる。 This method can be carried out by in vitro detection of GENOTYPE in at least one gene polymorphism of any one of the following (1) to (3) for a biological sample of a diabetic patient.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 上記(1)~(3)に示す遺伝子のうち、(1)GYS1遺伝子を例にして説明すれば、本発明の方法は、糖尿病患者の生体試料を材料として、GYS1遺伝子の260位〔GYS1(A260G)〕のGENOTYPEを検出して、GGのホモ接合体、AGまたはGAのヘテロ接合体、またはAAのホモ接合体の別を同定する方法であり、上記表6の記載に基づいて、GGのホモ接合体またはAGまたはGAのヘテロ接合体である場合に、当該糖尿病患者の治療にはフェニルアラニン誘導体系薬物の投与が有効であると事前に判定することができる。逆に、GYS1(A260G)がGGのホモ接合体でもAGまたはGAのヘテロ接合体でもない場合〔すなわち、AAのホモ接合体である場合〕は、当該糖尿病患者の治療にフェニルアラニン誘導体系薬物の投与はあまり有効でなく、第一選択肢とはならないと判定することができる。 Among the genes shown in (1) to (3) above, (1) GYS1 gene will be described as an example. The method of the present invention uses the biological sample of a diabetic patient as a material, and position 260 of the GYS1 gene [GYS1 ( A260G)]) to detect GG homozygote, AG or GA heterozygote, or AA homozygote, and based on the description in Table 6 above, In the case of a homozygote or an AG or GA heterozygote, it can be determined in advance that administration of a phenylalanine derivative-based drug is effective for the treatment of the diabetic patient. Conversely, when GYS1 (A260G) is neither a GG homozygote nor an AG or GA heterozygote (ie, AA homozygote), a phenylalanine derivative is administered to treat the diabetic patient. Is not very effective and can be determined not to be the first choice.
 同様に(2)~(3)の遺伝子を対象とする場合も、上記表6に記載するGENOTYPEに基づいて、糖尿病患者についてフェニルアラニン誘導体系薬物の投与有効性を事前にin vitro検出することができる。 Similarly, in the case of targeting the genes (2) to (3) as well, based on the GENOTYPE described in Table 6 above, the administration effectiveness of phenylalanine derivative drugs can be detected in advance in vitro in diabetic patients. .
 具体的には、(2)EPHX2遺伝子に関して、本発明の方法は、糖尿病患者の生体試料を材料として、EPHX2遺伝子の860位〔EPHX2(G860A)〕のGENOTYPEを検出して、AAのホモ接合体、AGまたはGAのヘテロ接合体、またはGGのホモ接合体の別を同定する方法である。上記の記載に基づいて、AAのホモ接合体またはAGまたはGAのヘテロ接合体である場合に、当該糖尿病患者の治療にはフェニルアラニン誘導体系薬物の投与が有効であると事前に判定することができる。逆に、GGのホモ接合体である場合は、当該糖尿病患者の治療にフェニルアラニン誘導体系薬物の投与はあまり有効でなく、第一選択肢とはならないと判定することができる。 Specifically, regarding (2) the EPHX2 gene, the method of the present invention uses a biological sample of a diabetic patient as a material, detects the GENOTYPE at position 860 of the EPHX2 gene [EPHX2 (G860A)], and homozygotes for AA A method of identifying heterozygotes for AG, GA, or homozygotes for GG. Based on the above description, in the case of AA homozygote or AG or GA heterozygote, it can be determined in advance that administration of a phenylalanine derivative is effective for the treatment of the diabetic patient. . Conversely, in the case of a GG homozygote, it can be determined that administration of a phenylalanine derivative-based drug is not very effective for the treatment of the diabetic patient and is not a first option.
 さらに、(3)CD14遺伝子に関して、本発明の方法は、糖尿病患者の生体試料を材料として、CD14遺伝子のプロモーター領域の-159位〔CD14(T-159C)〕のGENOTYPEを検出して、CCのホモ接合体、CTまたはTCのヘテロ接合体、またはTTのホモ接合体の別を同定する方法である。上記の記載に基づいて、CCのホモ接合体またはCTまたはTCのヘテロ接合体である場合に、当該糖尿病患者の治療にはフェニルアラニン誘導体系薬物の投与が有効であると事前に判定することができる。逆に、TTのホモ接合体である場合は、当該糖尿病患者の治療にフェニルアラニン誘導体系薬物の投与はあまり有効でなく、第一選択肢とはならないと判定することができる。 Further, (3) with respect to the CD14 gene, the method of the present invention uses a biological sample of a diabetic patient as a material to detect the GENOTYPE at position -159 (CD14 (T-159C)) of the promoter region of the CD14 gene, and A method of identifying another homozygote, CT or TC heterozygote, or TT homozygote. Based on the above description, in the case of CC homozygote or CT or TC heterozygote, it can be determined in advance that the administration of a phenylalanine derivative is effective for the treatment of the diabetic patient. . On the other hand, in the case of a TT homozygote, it can be determined that administration of a phenylalanine derivative is not very effective in treating the diabetic patient and does not become the first option.
 これら(1)~(3)の遺伝子(遺伝子多型)は、糖尿病患者についてフェニルアラニン誘導体系薬物の有効性(フェニルアラニン誘導体系薬物に対する感受性)を示す遺伝子マーカーである。当該遺伝子マーカーは、糖尿病患者について、その糖尿病治療にフェニルアラニン誘導体系薬物の投与が有効であるかを判定するために好適に用いることができる。対象とする患者の遺伝子(遺伝子多型)が、上記表6に示すGENOTYPE(1)と一致する場合、当該患者はフェニルアラニン誘導体系薬物に応答性(感受性)であること、すなわち、フェニルアラニン誘導体系薬物が当該患者の糖尿病治療に奏効することを意味する。 These genes (1) to (3) (gene polymorphisms) are gene markers indicating the effectiveness of phenylalanine derivative drugs (sensitivity to phenylalanine derivative drugs) in diabetic patients. The gene marker can be suitably used for diabetic patients to determine whether administration of phenylalanine derivative drugs is effective for the treatment of diabetes. If the target patient gene (gene polymorphism) matches the GENOTYPE (1) shown in Table 6 above, the patient is responsive (sensitive) to the phenylalanine derivative drug, that is, the phenylalanine derivative drug. Means that the patient is effective in treating diabetes.
 なお、ここで対象とするフェニルアラニン誘導体系薬物に関しては、下記(3)において詳述する。好ましいフェニルアラニン誘導体系薬物としては、ナテグリニド、ミチグリニド、レパグリニドおよびそれらの薬学的に許容される塩を挙げることができる。なお、これらの薬物は、本発明の方法でフェニルアラニン誘導体系薬物に応答性(感受性)であると判断された糖尿病患者に対して、1種または必要に応じて2種以上組み合わせて、有効量投与することができる。 The phenylalanine derivative drug targeted here will be described in detail in (3) below. Preferable phenylalanine derivative drugs include nateglinide, mitiglinide, repaglinide and pharmaceutically acceptable salts thereof. In addition, these drugs are administered in an effective amount in one or a combination of two or more as necessary to diabetic patients determined to be responsive (sensitive) to phenylalanine derivative drugs by the method of the present invention. can do.
 遺伝子型の検出は、具体的には、(i)被験者のゲノムDNAを対象として、(1)~(3)に記載する少なくとも1つの遺伝子の遺伝子多型を含む領域でPCRを行い、SSCP法で検出する方法、(ii) 被験者のゲノムDNAを対象として、(1)~(3)に記載する少なくとも1つの遺伝子の遺伝子多型を含む領域でPCRを行い、PCR産物に対する制限酵素の切断様式から検出する方法、(iii)同PCR産物を直接シーケンシングして、配列を決定する方法、(iv) 被験者のゲノムDNAを対象として、(1)~(3)に記載する少なくとも1つの遺伝子の遺伝子多型を含む領域にハイブリダイズするオリゴヌクレオチドをプローブとして使用し、個体のDNAとハイブリダイズさせるASO(allele specific oligonucleotide)法、(v) 被験者のゲノムDNAを対象として、(1)~(3)に記載する少なくとも1つの遺伝子の遺伝子多型を含む領域にハイブリダイズするオリゴヌクレオチドをプローブとして使用して、質量分析装置等で検出する方法など、公知の方法を用いることにより行うことができる。 Specifically, genotype detection is performed by (i) performing PCR in a region containing at least one gene polymorphism described in (1) to (3) on the subject's genomic DNA, and using the SSCP method. (Ii) The subject is genomic DNA of the subject, PCR is performed in the region containing the gene polymorphism of at least one gene described in (1) to (3), and the restriction enzyme cleavage pattern for the PCR product (Iii) a method in which the PCR product is directly sequenced and sequenced, and (iv) a genomic DNA of a subject subject to at least one gene described in (1) to (3) Using oligonucleotides that hybridize to regions containing genetic polymorphisms as probes and hybridizing with individual DNA, the ASO (allele specific oligonucleotide) method, (v) Inheritance of at least one gene described in The oligonucleotide that hybridizes to a region containing the polymorphism used as a probe, and a method of detecting in a mass spectrometer or the like, can be carried out by using a known method.
 本発明の方法は、より具体的には、以下の工程(a)及び(b)を行うことによって実施することができる:
(a)糖尿病患者の生体試料を対象として、(1)~(3)に記載する少なくとも1つの遺伝子の遺伝子多型におけるGENOTYPEを検出する工程、
(b)上記(1)~(3)に記載する少なくとも1つの遺伝子の遺伝子多型におけるGENOTYPEが、上記表6に記載するGENOTYPE(1)であるかを識別する工程。
More specifically, the method of the present invention can be carried out by performing the following steps (a) and (b):
(A) a step of detecting GENOTYPE in a genetic polymorphism of at least one gene described in (1) to (3) for a biological sample of a diabetic patient;
(B) A step of identifying whether the GENOTYPE in the polymorphism of at least one gene described in (1) to (3) is GENOTYPE (1) described in Table 6 above.
 なお、(a)の工程は、具体的には糖尿病患者の生体試料から抽出したゲノムDNAを対象として行うことができる。 Note that the step (a) can be performed specifically on genomic DNA extracted from a biological sample of a diabetic patient.
 これらの工程によって、(1)~(3)に記載する少なくとも1つの遺伝子の遺伝子多型におけるGENOTYPEが、上記表6に記載するGENOTYPE(1)に一致した場合、当該ゲノムDNA試料を提供した糖尿病患者の糖尿病治療には、フェニルアラニン誘導体系薬物の投与が有効であると判断することができる。逆に、上記表に記載するGENOTYPE(1)に一致しない場合は、フェニルアラニン誘導体系薬物は治療にあまり有効でなく、これ以外の糖尿病治療剤の投与を検討するという選択肢を与えることができる。 In these steps, when the GENOTYPE in the polymorphism of at least one gene described in (1) to (3) matches the GENOTYPE (1) described in Table 6 above, the diabetes that provided the genomic DNA sample It can be judged that administration of phenylalanine derivative drugs is effective for treating diabetes in patients. Conversely, if it does not match GENOTYPE (1) listed in the above table, the phenylalanine derivative is not very effective for treatment, and can give the option of considering administration of other therapeutic agents for diabetes.
 かかる判断工程は本発明の方法の必須工程ではないが、かかる判断工程を、下記工程(c)として任意に有することもできる:
 (c)上記(b)の結果に基づいて、糖尿病患者の(1)~(3)に記載する少なくとも1つの遺伝子の遺伝子多型におけるGENOTYPEが、上記表6に記載するGENOTYPE(1)と一致する場合に、当該糖尿病患者の治療にはフェニルアラニン誘導体系薬物の投与が有効であると判断し、逆に上記表6に記載するGENOTYPE(1)と一致しない場合に、当該糖尿病患者の治療にはフェニルアラニン誘導体系薬物の投与はあまり有効でないと判断する工程。
Such a determination step is not an essential step of the method of the present invention, but such a determination step can optionally be included as the following step (c):
(c) Based on the result of (b) above, the GENOTYPE in the polymorphism of at least one gene described in (1) to (3) of diabetic patients matches the GENOTYPE (1) described in Table 6 above. If it is determined that the administration of a phenylalanine derivative is effective for the treatment of the diabetic patient, and conversely does not match the GENOTYPE (1) described in Table 6 above, A step of judging that administration of a phenylalanine derivative is not very effective.
 すなわち、本発明の方法によれば、糖尿病患者に対するフェニルアラニン誘導体系薬物の投与有効性の有無を決定することができる。この決定は、糖尿病患者の上記(1)~(3)遺伝子の遺伝子多型が上記表6に示すGENOTYPE(1)に該当するか否かを判断基準(判断指標)とすることにより、専門医でも極めて困難な判断を、自動的/機械的に行なうことができる。 That is, according to the method of the present invention, it is possible to determine the presence or absence of administration effectiveness of a phenylalanine derivative-based drug for diabetic patients. This decision can be made even by a specialist by determining whether the genetic polymorphisms of the above (1) to (3) genes in diabetes patients fall under the GENOTYPE (1) shown in Table 6 above. Extremely difficult decisions can be made automatically / mechanically.
 なお、上記工程(a)と工程(b)は、公知の方法〔例えば、Bruce, et al., Geneme Analysis/A laboratory Manual (vol.4), Cold Spring Harbor Laboratory, NY., (1999)〕を用いて行うことができる。 Note that the above steps (a) and (b) are known methods (for example, Bruce, et al., Geneme Analysis / A laboratory Manual (vol.4), Cold Spring Harbor Laboratory, NY., (1999)). Can be used.
 工程(a)で対象とする生体試料としては、前述するように具体的にはゲノムDNAを挙げることができる。かかるゲノムDNAは、糖尿病患者から単離されたあらゆる細胞(培養細胞を含む。但し生殖細胞は除く)、組織(培養組織を含む)、または体液(例えば、血液、唾液、リンパ液、気道粘膜、精液、汗、尿等)などの生体試料を材料として調製することができる。好ましくは血液または尿である。なお、ゲノムDNAの抽出は、上記の方法に限定されず、当該技術分野で周知の方法(例えば、Sambrook J. et. al., “Molecular Cloning: A Laboratry Manual (2nd Ed.)”Cold Spring Harbor Laboratory, NY)や、市販のDNA抽出キット等を利用して行なうことができる。 Specific examples of the biological sample to be processed in step (a) include genomic DNA as described above. Such genomic DNA can be any cell (including cultured cells, excluding germ cells), tissue (including cultured tissue), or body fluid (eg, blood, saliva, lymph, airway mucosa, semen, isolated from a diabetic patient. , Sweat, urine, etc.) can be prepared as a material. Preferably it is blood or urine. Incidentally, extraction of the genomic DNA is not limited to the above method, methods well known in the art (e.g., Sambrook J. et al,.. "Molecular Cloning:. A Laboratry Manual (2 nd Ed)" Cold Spring Harbor Laboratory, NY) and commercially available DNA extraction kits can be used.
 工程(b)において、上記のようにして得られたヒトゲノムDNAを含む抽出物から、(1)~(3)のいずれか少なくとも1つの遺伝子の遺伝子多型部位に位置する塩基を識別する。目的の塩基を識別する方法としては、該当領域の遺伝子配列を直接決定する方法の他に、多型配列が制限酵素認識部位である場合は、制限酵素切断パターンの相違を利用して、GENOTYPEを決定する方法(以下、RFLPという)、多型特異的なプローブを用いハイブリダイゼーションを基本とする方法(例えば、チップやガラススライド、ナイロン膜上に特定なプローブを張り付け、それらのプローブに対するハイブリダイゼーション強度の差を検出することによって、多型の種類を決定する、または、特異的なプローブのハイブリダイゼーションの効率を、鋳型2本鎖増幅時にポリメレースが分解するプローブの量を検出することによりGENOTYPEを特定する方法、ある種の2本鎖特異的な蛍光色素が発する蛍光を、温度変化を追うことにより2本鎖融解の温度差を検出し、これにより多型を特定する方法、多型部位特異的なオリゴプローブの両端に相補的な配列を付け、温度によって該当プローブが自己分子内で2次構造をつくるか、ターゲット領域にハイブリダイズするかの差を利用して遺伝子型を特定する方法など)がある。また、さらに鋳型特異的なプライマーからポリメレースによって塩基伸長反応を行わせ、その際に多型部位に取り込まれる塩基を特定する方法(ダイデオキシヌクレオタイドを用い、それぞれを蛍光標識し、それぞれの蛍光を検出する方法、取り込まれたダイデオキシヌクレオタイドをマススペクトロメトリーにより検出する方法)、さらに鋳型特異的なプライマーに続いて変異部位に相補的な塩基対または非相補的な塩基対の有無を酵素によって認識させる方法などがある。 In step (b), the base located at the gene polymorphic site of at least one gene of (1) to (3) is identified from the extract containing human genomic DNA obtained as described above. As a method of identifying the target base, in addition to the method of directly determining the gene sequence of the corresponding region, if the polymorphic sequence is a restriction enzyme recognition site, the difference in restriction enzyme cleavage pattern is used to change GENOTYPE. Method of determination (hereinafter referred to as RFLP), method based on hybridization using polymorphic-specific probes (for example, a specific probe is stuck on a chip, glass slide, nylon membrane, and hybridization intensity for those probes) Determine the type of polymorphism by detecting the difference between them, or specify the efficiency of specific probe hybridization, and identify the GENOTYPE by detecting the amount of probe that polymerase degrades during template double-stranded amplification Fluorescence emitted by a certain type of double-strand-specific fluorescent dyes can be obtained by following the change in temperature. A method of detecting the temperature difference of the polymorphism, thereby identifying the polymorphism, attaching a complementary sequence to both ends of the polymorphic site-specific oligo probe, and depending on the temperature, the corresponding probe creates a secondary structure within the self molecule, There is a method of specifying a genotype using a difference of whether it hybridizes to a target region. In addition, a method in which a base-extension reaction is performed by polymerase from a template-specific primer and a base incorporated into a polymorphic site at that time is identified (by using dideoxynucleotide, each is fluorescently labeled, and each fluorescence is Detection method, method of detecting incorporated dideoxynucleotide by mass spectrometry), and further using template-specific primers followed by the presence or absence of base pairs complementary to the mutation site or non-complementary base pairs. There is a method to make it recognize.
 以下、従来公知の代表的な遺伝子多型の検出方法を列記するが、本発明はこれらに何ら限定されるものではない。 Hereinafter, well-known representative methods for detecting gene polymorphisms are listed below, but the present invention is not limited thereto.
 (a)RFLP(制限酵素切断断片長多型)法、(b)PCR-SSCP法(一本鎖DNA高次構造多型解析)〔Biotechniques, 16, 296-297 (1994)、及びBiotechniques, 21, 510-514 (1996)〕、(c)ASO(Allele Specific Oligonucleotide)ハイブリダイゼーション法〔Clin. Chim. Acta, 189, 153-157 (1990)〕、(d)ダイレクトシークエンス法〔Biotechniques, 11, 246-249 (1991)〕、(e)ARMS(Amplification Refracting Mutation System)法〔Nuc. Acids. Res., 19, 3561-3567 (1991);Nuc. Acids. Res., 20, 4831-4837 (1992)〕、
(f)変性剤濃度勾配ゲル電気泳動(Denaturing Gradient Gel Electrophoresis;DGGE)法〔Biotechniques, 27, 1016-1018 (1999)〕、(g)RNase  A切断法〔DNA Cell. Biol., 14, 87-94 (1995)〕、(h)化学切断法〔Biotechniques, 21, 216-218 (1996)〕、(i)DOL(Dye-labeled Oligonucleotide Ligation)法〔Genome Res., 8, 549-556 (1998)〕、(j)TaqMan-PCR法〔Genet. Anal., 14, 143-149 (1999);J. Clin. Microbiol., 34, 2933-2936 (1996)〕、(k)インベーダー法〔Science, 5109, 778-783 (1993);J.Biol.Chem., 30,21387-21394 (1999);Nat. Biotechnol., 17, 292-296 (1999)〕、(l)MALDI-TOF/MS法(Matrix Assisted Laser Desorption-time of Flight/Mass Spectrometry)法〔Genome Res., 7, 378-388 (1997);Eur.J.Clin.Chem.Clin.Biochem., 35, 545-548 (1997)〕、(m)TDI(Template-directed Dye-terminator Incorporation)法〔Proc. Natl. Acad. Sci. USA, 94, 10756-10761 (1997)〕、(n)モレキュラー・ビーコン(Molecular Beacons)法〔Nat. Biotechnol., 1, p49-53 (1998);遺伝子医学、4, p46-48 (2000)〕、(o)ダイナミック・アレル-スペシフィック・ハイブリダイゼーション(Dynamic Allele-Specific Hybridization;DASH)法〔Nat.Biotechnol.,1.p.87-88 (1999);遺伝子医学,4, 47-48 (2000)〕、(p)パドロック・プローブ(Padlock Probe)法〔Nat. Genet.,3,p225-232 (1998) ;遺伝子医学,4, p50-51 (2000)〕、(q)UCAN法〔タカラ酒造株式会社ホームぺージ(http://www.takara.co.jp)参照〕、(r)DNAチップまたはDNAマイクロアレイ(「SNP遺伝子多型の戦略」松原謙一・榊佳之、中山書店、p128-135)、(s)ECA法〔Anal. Chem., 72, 1334-1341, (2000)〕。
(a) RFLP (restriction fragment length polymorphism) method, (b) PCR-SSCP method (single-stranded DNA higher-order structure polymorphism analysis) [Biotechniques, 16, 296-297 (1994), and Biotechniques, 21 , 510-514 (1996)], (c) ASO (Allele Specific Oligonucleotide) hybridization method [Clin. Chim. Acta, 189, 153-157 (1990)], (d) Direct sequencing method [Biotechniques, 11, 246 -249 (1991)], (e) ARMS (Amplification Refracting Mutation System) method (Nuc. Acids. Res., 19, 3561-3567 (1991); Nuc. Acids. Res., 20, 4831-4837 (1992) ],
(F) Denaturing Gradient Gel Electrophoresis (DGGE) method [Biotechniques, 27, 1016-1018 (1999)], (g) RNase A cleavage method [DNA Cell. Biol., 14, 87- 94 (1995)], (h) Chemical cleavage method [Biotechniques, 21, 216-218 (1996)], (i) DOL (Dye-labeled Oligonucleotide Ligation) method [Genome Res., 8, 549-556 (1998) ], (J) TaqMan-PCR method [Genet. Anal., 14, 143-149 (1999); J. Clin. Microbiol., 34, 2933-2936 (1996)], (k) Invader method [Science, 5109 , 778-783 (1993); J. Biol. Chem., 30, 21387-21394 (1999); Nat. Biotechnol., 17, 292-296 (1999)], (l) MALDI-TOF / MS method (Matrix Assisted Laser Desorption-time of Flight / Mass Spectrometry (Genome Res., 7, 378-388 (1997); Eur. J. Clin. Chem. Clin. Biochem., 35, 545-548 (1997)), ( m) TDI (Template-directed Dye-terminator Incorporation) method [Proc. Natl. Acad. Sci. USA, 94, 10756-10761 (1997)], (n) Molecular Beacons method [N at. Biotechnol., 1, p49-53 (1998); gene medicine, 4, p46-48 (2000)], (o) Dynamic Allele-Specific Hybridization (DASH) method [Nat Biotechnol., 1.p.87-88 (1999); Gene Medicine, 4, 47-48 (2000)], (p) Padlock Probe method [Nat. Genet., 3, p225-232 (1998); gene medicine, 4, p50-51 (2000)], (q) UCAN method (see Takara Shuzo Co., Ltd. home page (http://www.takara.co.jp)), (r) DNA Chip or DNA microarray ("SNP gene polymorphism strategy" Kenichi Matsubara, Yoshiyuki Tsuji, Nakayama Shoten, p128-135), (s) ECA method [Anal. Chem., 72, 1334-1341, (2000)].
 以上は代表的な遺伝子多型検出方法であるが、本発明の方法には、これらに限定されず、他の公知または将来開発される遺伝子多型検出方法を広く用いることができる。また、本発明の遺伝子多型検出に際して、これらの遺伝子多型検出方法を単独で使用してもよいし、また2以上を組み合わせて使用することもできる。 The above are typical gene polymorphism detection methods, but the method of the present invention is not limited to these, and other known or future gene polymorphism detection methods can be widely used. Moreover, when detecting the gene polymorphism of the present invention, these gene polymorphism detection methods may be used singly or in combination of two or more.
 なお、 (1)~(3)の遺伝子多型の違いに基づいてコードするアミノ酸に変異が生じる場合は、本発明の方法は、当該遺伝子のGENOTYPEを直接検出し識別する方法に限らず、当該遺伝子の発現産物であるタンパク質のアミノ酸配列を検出し、アミノ酸の変異の有無を識別する方法を採用することもできる。例えば、GYS1遺伝子は、上記遺伝子多型に基づいてエクソン10の416番目のアミノ酸(Met)に変異が生じること(Met416Val)(Diabetologia. 1997 Aug;40(8):947-52.)が、またEPHX2遺伝子は、上記遺伝子多型に基づいて287番目のアミノ酸(Arg)に変異が生じること(Arg287Gln)が知られている(Circulation. 2004 Jan 27;109(3):335-9. Epub 2004 Jan19.)。 In the case where a mutation occurs in the encoded amino acid based on the difference in the genetic polymorphisms of (1) to (3), the method of the present invention is not limited to the method of directly detecting and identifying the GENOTYPE of the gene. A method of detecting the amino acid sequence of a protein that is an expression product of a gene and identifying the presence or absence of an amino acid mutation can also be employed. For example, the GYS1 gene has a mutation in the 416th amino acid (Met) of exon 10 based on the above gene polymorphism (Met416Val) (Diabetologia. 1997 Aug; 40 (8): 947-52.) The EPHX2 gene is known to have a mutation at the 287th amino acid (Arg) based on the above polymorphism (Arg287Gln) (Circulation. 2004 Jan 27; 109 (3): 335-9. Epub 2004 Jan19 .).
 上記(1)~(3)遺伝子の遺伝子多型を検出し識別するための例えばプローブやプライマーは、各糖尿病患者について、当該患者がフェニルアラニン誘導体系薬物の投与有効者であるか否かを選別するためのツールとして、使用することができる。 Probes and primers, for example, for detecting and distinguishing gene polymorphisms of the above (1) to (3), for each diabetic patient, select whether or not the patient is a person who is effectively administered a phenylalanine derivative. Can be used as a tool for
 なお、本発明の方法の前記(b)および(c)の工程は、電子情報処理により行うこともできる。当該電子情報処理を利用した方法を図1に示したフローチャートに従って説明する。以下に説明する各処理は、CPU、メモリ、記録装置(例えばハードディスク)、入力装置(例えば、キーボード、マウス、フレキシブルディスクドライブ、CD-ROMドライブ)、表示装置(例えば、液晶ディスプレイ)、通信装置(例えば、ネットワークボード)などを備えたコンピュータを用いて行うこととして説明する。即ち、処理対象データは、入力装置、通信装置を介して入力されて記録装置に記録され、CPUが、メモリをワーク領域として使用して記録装置から読み出したデータに対して処理を実行する。処理の途中結果、最終結果は、必要に応じて記録部の所定領域に記録される。 The steps (b) and (c) of the method of the present invention can also be performed by electronic information processing. A method using the electronic information processing will be described with reference to the flowchart shown in FIG. Each processing described below includes a CPU, a memory, a recording device (for example, a hard disk), an input device (for example, a keyboard, a mouse, a flexible disk drive, a CD-ROM drive), a display device (for example, a liquid crystal display), and a communication device (for example). For example, the description will be made assuming that a computer equipped with a network board) is used. That is, the processing target data is input via the input device and the communication device and recorded in the recording device, and the CPU executes processing on the data read from the recording device using the memory as a work area. The intermediate result of the process and the final result are recorded in a predetermined area of the recording unit as necessary.
 まず、ステップS1において、対象とする糖尿病患者に関する遺伝子情報の入力を受け付けて、入力されたデータを記録装置に記録する。ここで、遺伝子情報は少なくともGYS1(A260G)、EPHX2(G860A)およびCD14(T-590C)から選択される少なくとも一つの遺伝子多型(GENOTYPE)情報を含んでいる。具体的には、遺伝子多型名称を表すテキストデータとそのGENOTYPEを表すテキストデータとの対である。また、遺伝子情報は、コードで入力されてもよい。例えば、遺伝子多型名称毎、GENOTYPE毎に付与したコード(テキストデータ)で入力されてもよい。遺伝子情報は、キーボードを介して入力されても、記録媒体に記録された状態から読み出しドライブを介して入力されても、通信回線を介して入力されてもよい。さらに遺伝子情報は、表示装置に表示された複数の候補の中から選択されることで入力されてもよく、その他の公知の方法を用いて入力されてもよい。 First, in step S1, the input of genetic information relating to the target diabetic patient is accepted, and the input data is recorded in the recording device. Here, the gene information includes at least one gene polymorphism (GENOTYPE) information selected from GYS1 (A260G), EPHX2 (G860A), and CD14 (T-590C). Specifically, it is a pair of text data representing a gene polymorphism name and text data representing its GENOTYPE. The gene information may be input as a code. For example, a code (text data) assigned to each gene polymorphism name or GENOTYPE may be input. The genetic information may be input via a keyboard, may be input via a read drive from a state recorded on a recording medium, or may be input via a communication line. Furthermore, the genetic information may be input by being selected from a plurality of candidates displayed on the display device, or may be input using other known methods.
 ステップS2において、遺伝子多型情報のテーブルを記録部から読み出す。予め記録装置に記録されたテーブルの一例を表7に示す。 In step S2, the genetic polymorphism information table is read from the recording unit. Table 7 shows an example of a table recorded in advance in the recording device.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 これは、後述するように、フェニルアラニン誘導体系薬物、特にナテグリニドを有効成分とする糖尿病治療剤の投与有効性を示す遺伝子多型情報のテーブルである。表7のテーブルでは、遺伝子(遺伝子多型)、GENOTYPEが記載されている。この場合、遺伝子(遺伝子多型)及びGENOTYPEが遺伝子多型情報に該当する。即ち、記録装置には、表7に示した各情報及びそれらの対応関係を表すデータが、例えばテキストデータとして記録されているとする。 As will be described later, this is a table of genetic polymorphism information indicating the administration effectiveness of a therapeutic agent for diabetes containing phenylalanine derivative drugs, particularly nateglinide as an active ingredient. In the table of Table 7, genes (gene polymorphisms) and GENOTYPE are described. In this case, the gene (gene polymorphism) and GENOTYPE correspond to the gene polymorphism information. In other words, it is assumed that the data shown in Table 7 and the data indicating the corresponding relationship are recorded as text data, for example, in the recording device.
 ステップS3において、ステップS2で読み出したテーブル中の遺伝子多型情報が、ステップS1で入力された患者の遺伝子情報に含まれているか否かを判断し、その結果をメモリの所定領域に一時的に記録する。例えば、表7の場合、第1行の“GYS1(A260G)”および“GGまたはAG”を読み出し、遺伝子(遺伝子多型)が“GYS1(A260G)”でありGENOTYPEが“GGまたはAG”である遺伝子多型情報が、患者の遺伝子情報に含まれている否かを判断する。含まれている場合、例えば、第1行の遺伝子多型情報に対応するフラグ(初期値を“0”としてメモリ上に設定されているとする)に“1”をセットする。含まれていない場合、同フラグに対しては何もせずに、第2行の“EPHX2(G860A)”および“AAまたはAG”を読み出し、同様にそれらが患者の遺伝子情報に含まれている否かを判断し、含まれていれば第2行の遺伝子多型情報に対応するフラグに“1”をセットする。含まれていない場合、さらに次の遺伝子多型情報について同様に処理する。このようにして、表7のテーブル中の遺伝子多型情報が糖尿病患者の遺伝子情報に含まれているか否かを、例えばフラグとして一時的に記録する。 In step S3, it is determined whether the genetic polymorphism information in the table read in step S2 is included in the patient genetic information input in step S1, and the result is temporarily stored in a predetermined area of the memory. Record. For example, in Table 7, “GYS1 (A260G)” and “GG or AG” in the first row are read, the gene (gene polymorphism) is “GYS1 (A260G)”, and GENOTYPE is “GG or AG”. It is determined whether the genetic polymorphism information is included in the patient genetic information. If it is included, for example, “1” is set in a flag corresponding to the genetic polymorphism information in the first row (assumed that the initial value is set to “0” on the memory). If not included, do nothing for the flag and read “EPHX2 (G860A)” and “AA or AG” in the second row, and if they are included in the patient's genetic information as well If it is included, “1” is set in the flag corresponding to the gene polymorphism information in the second row. If not included, the following genetic polymorphism information is similarly processed. In this way, whether or not the genetic polymorphism information in the table of Table 7 is included in the genetic information of the diabetic patient is temporarily recorded as a flag, for example.
 ここで、表7中の全ての遺伝子多型情報が、患者の遺伝子情報に含まれているか否かを判断してもよいが、少なくとも1つの遺伝子多型情報が患者の遺伝子情報に含まれていれば、残りの遺伝子多型情報に関して処理することなく、ステップS4に移行してもよい。 Here, it may be determined whether all the genetic polymorphism information in Table 7 is included in the patient genetic information, but at least one genetic polymorphism information is included in the patient genetic information. If so, the process may move to step S4 without processing the remaining genetic polymorphism information.
 ステップS4において、ステップS3での判断の結果に応じて、フェニルアラニン誘導体系薬物を有効成分とする糖尿病治療剤がその患者にとって有効であるか否かを提示(例えば表示装置に表示)する。例えば、上記したフラグの値の少なくとも1つが“1”であれば有効であることを提示し、全てのフラグの値が“0”であれば有効でないことを提示する。 In step S4, according to the determination result in step S3, whether or not the therapeutic agent for diabetes containing a phenylalanine derivative-based drug as an active ingredient is effective for the patient is displayed (for example, displayed on a display device). For example, if at least one of the above flag values is “1”, it indicates that it is valid, and if all the flag values are “0”, it indicates that it is not valid.
 以上の処理によって、特定の糖尿病患者が持つ遺伝子情報に応じて、その患者に対してフェニルアラニン誘導体系薬物を有効成分とする糖尿病治療剤を投与する場合の有効性を予め決定することができる。 Through the above processing, the effectiveness of administering a therapeutic agent for diabetes containing a phenylalanine derivative-based drug as an active ingredient to the patient can be determined in advance according to the genetic information possessed by the specific diabetic patient.
 このため、本発明によれば、糖尿病患者毎のオーダーメイド治療が可能となる。また、本発明は、複数の糖尿病治療剤の中から、GENOTYPE(1)を有する特定の糖尿病患者に対して、有効な薬剤として、フェニルアラニン誘導体系薬物を有効成分とする糖尿病治療剤を選択するために有効に使用することもできる。 Therefore, according to the present invention, tailor-made treatment for each diabetic patient becomes possible. Further, the present invention is to select a therapeutic agent for diabetes containing a phenylalanine derivative as an active ingredient as an effective drug for a specific diabetic patient having GENOTYPE (1) from a plurality of therapeutic agents for diabetes. It can also be used effectively.
 なお、判定に用いるテーブルは、表7に示したテーブルに限定されず、表7に示した遺伝子(遺伝子多型)及びGENOTYPEの情報を含むテーブルであればよい。 Note that the table used for the determination is not limited to the table shown in Table 7, but may be any table including the gene (gene polymorphism) and GENOTYPE information shown in Table 7.
 またここでは、本発明の実施の形態を、図1に示したフローチャートに従って、表に対応する電子データを用いて行なう処理として説明したが、これに限定されない。表に示したテーブル又はこれと同等の遺伝子多型情報を含むテーブル(何れも電子データに限定されない)を用いさえすればよく、実施者などが、糖尿病患者の遺伝子情報中に表7のテーブルに記載された遺伝子(遺伝子多型)及びGENOTYPEが含まれているか否かを判断し、その患者に対してフェニルアラニン誘導体系薬物を有効成分とする糖尿病治療剤の有効性を決定することもできる。 Also, here, the embodiment of the present invention has been described as processing performed using electronic data corresponding to a table according to the flowchart shown in FIG. 1, but the present invention is not limited to this. It is only necessary to use the table shown in the table or a table containing genetic polymorphism information equivalent to this (both are not limited to electronic data). It is also possible to determine whether the described gene (gene polymorphism) and GENOTYPE are included, and to determine the effectiveness of a therapeutic agent for diabetes containing a phenylalanine derivative as an active ingredient for the patient.
 (3)フェニルアラニン誘導体系薬物を有効成分とする糖尿病治療剤
 本発明が提供する糖尿病治療剤は、下記の(1)~(3)のいずれか少なくとも1つの遺伝子(遺伝子多型)が下記のGENOTYPE(1)である糖尿病患者に対して有効な、フェニルアラニン誘導体系薬物を有効成分とする薬剤である。当該薬剤は、下記の(1)~(3)のいずれか少なくとも1つの遺伝子が下記のGENOTYPE(1)を有していることが確認された糖尿病患者に対して投与されることを特徴とする。
(3) Diabetes therapeutic agent comprising phenylalanine derivative-based drug as active ingredient The diabetes therapeutic agent provided by the present invention has at least one gene (gene polymorphism) of any of the following (1) to (3) shown below as GENOTYPE: (1) A drug containing a phenylalanine derivative as an active ingredient, which is effective for diabetic patients. The drug is administered to a diabetic patient in which at least one of the following genes (1) to (3) is confirmed to have the following GENOTYPE (1): .
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
 本発明の糖尿病治療剤が治療対象とする糖尿病患者は、遺伝子検査を受けて、上記(1)~(3)のうち少なくとも1つの遺伝子について上記のGENOTYPE(1)を有することが確認された患者であればよく、これら任意の2以上の遺伝子について上記のGENOTYPE(1)を有する患者であってもよい。ここで遺伝子検査とは、上記(1)~(3)に記載する少なくとも1つの遺伝子の遺伝子多型を調べる検査を意味する。具体的には前述する(2)において説明する工程(a)および(b)を有する検査方法、およびかかる工程(a)および(b)に加えて、更に工程(c)を有する検査方法を挙げることができる。 A diabetic patient to be treated by the therapeutic agent for diabetes of the present invention has been confirmed to have the above-mentioned GENOTYPE (1) for at least one gene among the above (1) to (3) by genetic testing The patient may be a patient having the above-described GENOTYPE (1) for any two or more genes. Here, the genetic test means a test for examining a genetic polymorphism of at least one gene described in the above (1) to (3). Specifically, an inspection method having the steps (a) and (b) described in the above (2), and an inspection method further having the step (c) in addition to the steps (a) and (b) are given. be able to.
 本発明の糖尿病治療剤が有効成分とするフェニルアラニン誘導体系薬物は、膵β細胞にあるスルホニル尿素受容体(SUR1)と内向き整流KチャンネルからなるATP依存性Kチャンネルを抑制することで、β細胞膜の脱分極細胞外カルシウムを流入させてインスリンの分泌を促進させる薬物である。本発明の糖尿病治療剤は、かかる作用機序に基づいてインスリンの分泌を誘導して血糖を降下させる作用を有するフェニルアラニン誘導体系薬物を有効成分として含むものであれば、特に制限されない。 The phenylalanine derivative-based drug which is an active ingredient of the therapeutic agent for diabetes of the present invention suppresses an ATP-dependent K channel composed of a sulfonylurea receptor (SUR1) and an inward rectifier K + channel in pancreatic β cells. It is a drug that promotes insulin secretion by allowing extracellular calcium to flow into the cell membrane. The therapeutic agent for diabetes of the present invention is not particularly limited as long as it contains, as an active ingredient, a phenylalanine derivative based on such an action mechanism that induces insulin secretion and lowers blood glucose.
 なお、ここで対象とするフェニルアラニン誘導体系薬物には、下記一般式(I)で示される化合物およびその類縁物が含まれる:  Note that the phenylalanine derivative drugs targeted here include the compounds represented by the following general formula (I) and related compounds:
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
(式中、Rは水素原子、炭素数1~5のアルキル基、炭素数6~12のアリール基、または炭素数6~12のアラルキル基;Rは置換基を有していてもよい、炭素数6~12のアリール基、ヘテロ5若しくは6員環、シクロアルキル基、またはシクロアルケニル基;Rは水素原子、または炭素数1~6のアルキル基;Aは-N-または-CH-を意味する。)。 (Wherein R 1 is a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, an aryl group having 6 to 12 carbon atoms, or an aralkyl group having 6 to 12 carbon atoms; R 2 may have a substituent) , An aryl group having 6 to 12 carbon atoms, a hetero 5- or 6-membered ring, a cycloalkyl group, or a cycloalkenyl group; R 3 is a hydrogen atom or an alkyl group having 1 to 6 carbon atoms; A is —N— or —CH Means-).
 一般式(I)で示される化合物において、式(I)中、Rで示される炭素数1~5のアルキル基としてはメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、またはsec-ブチル基を;炭素数6~12のアリール基としてはフェニル基、トリル基、またはナフチル基を;炭素数6~12のアラルキル基としては好ましくはベンジル基を挙げることができる:
 また、式(I)中、Rで示される炭素数6~12のアリール基としてはフェニル基、ナフチル基、インダニル基を;ヘテロ5員環としては2-ベンゾフラニル基を;ヘテロ6員環としてはキノリニル基およびピリジル基を;シクロアルキル基としてはシクロヘキシル基およびシクロペンチル基を;またはシクロアルケニル基としては1-シクロヘキセニル基、2-シクロヘキセニル基、3-シクロヘキセニル基、1-シクロペンテニル基、2-シクロペンテニル基を挙げることができる。なお、これらの基はいずれも1または2以上の置換基を有することができる。
In the compound represented by the general formula (I), the alkyl group having 1 to 5 carbon atoms represented by R 1 in the formula (I) is a methyl group, an ethyl group, an n-propyl group, an isopropyl group, or an n-butyl group. Or a sec-butyl group; an aryl group having 6 to 12 carbon atoms is a phenyl group, a tolyl group or a naphthyl group; and an aralkyl group having 6 to 12 carbon atoms is preferably a benzyl group:
In the formula (I), the aryl group having 6 to 12 carbon atoms represented by R 2 is a phenyl group, a naphthyl group or an indanyl group; the hetero 5-membered ring is a 2-benzofuranyl group; the hetero 6-membered ring Is a quinolinyl group and a pyridyl group; a cycloalkyl group is a cyclohexyl group and a cyclopentyl group; or a cycloalkenyl group is a 1-cyclohexenyl group, a 2-cyclohexenyl group, a 3-cyclohexenyl group, a 1-cyclopentenyl group, A 2-cyclopentenyl group can be mentioned. Any of these groups can have one or more substituents.
 置換基としてはハロゲン原子(例えば、フッ素原子または塩素原子)、炭素数1~5のアルキル基(例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基)、炭素数1~5のアルケニル基(例えば、エテニル基、プロペニル基、ブテニル基)、炭素数1~5のアルキルオキシ基(例えば、メトキシ基、エトキシ基)、炭素数1~5のアルキルオキシ基で置換された炭素数1~5のアルキル基(例えば、メトキシメチル基、1-エトキシエチル基)、炭素数1~5のアルキルオキシ基で置換された炭素数1~5のアルキレン基(例えば、メトキシエチレン基)、および下式で示されるアルキリデン基を挙げることができる。 Substituents include halogen atoms (for example, fluorine atoms or chlorine atoms), alkyl groups having 1 to 5 carbon atoms (for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group) ), An alkenyl group having 1 to 5 carbon atoms (for example, ethenyl group, propenyl group, butenyl group), an alkyloxy group having 1 to 5 carbon atoms (for example, methoxy group, ethoxy group), an alkyloxy group having 1 to 5 carbon atoms An alkyl group having 1 to 5 carbon atoms (eg, methoxymethyl group, 1-ethoxyethyl group) substituted with a group, an alkylene group having 1 to 5 carbon atoms substituted with an alkyloxy group having 1 to 5 carbon atoms (eg, , A methoxyethylene group), and an alkylidene group represented by the following formula.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 また、式(I)中、Rで示される炭素数1~6のアルキル基としては、好ましくはRに関して説明したアルキル基を同様に挙げることができる。 In the formula (I), the alkyl group having 1 to 6 carbon atoms represented by R 3 is preferably the same as the alkyl group described for R 1 .
 式(I)中、Aは-N-(窒素原子)または-CH-(一つの水素原子がRで置換されたメチレン基)であり、これらは任意に選択することができる。なお、Aが-N-である化合物(I)はD-フェニルアラニン誘導体として、またAが-CH-である化合物(I)はベンジルコハク酸誘導体として、各々定義することもできる。 In the formula (I), A is —N— (nitrogen atom) or —CH— (methylene group in which one hydrogen atom is substituted with R 3 ), and these can be arbitrarily selected. The compound (I) in which A is —N— can also be defined as a D-phenylalanine derivative, and the compound (I) in which A is —CH— can be defined as a benzyl succinic acid derivative.
 なお、本発明でいうフェニルアラニン誘導体系薬物には、上記式(I)で表される化合物の水和物および薬学的に許容される塩も含まれる。ここで塩としては、例えばナトリウムやカリウムなどのアルカリ金属塩、カルシウムやマグネシウムなどのアルカリ土類金属塩;アンモニウム、テトラメチルアンモニウム、テトラエチルアンモニウム、メチルアミン、ジメチルアミン、トリメチルアミン、トリエチルアミン、エチルアミンなどの非毒性アンモニウム、第4級アンモニウムおよびアミンカチオンを例示することができる。 The phenylalanine derivative-based drug referred to in the present invention includes hydrates and pharmaceutically acceptable salts of the compound represented by the above formula (I). Examples of the salt herein include alkali metal salts such as sodium and potassium, alkaline earth metal salts such as calcium and magnesium; non-ammonium such as ammonium, tetramethylammonium, tetraethylammonium, methylamine, dimethylamine, trimethylamine, triethylamine, and ethylamine. Toxic ammonium, quaternary ammonium and amine cations can be exemplified.
 フェニルアラニン誘導体系薬物として好ましくは、D-フェニルアラニン誘導体に相当する化合物であって下式(1)で示されるナテグリニド(nateglinide)〔商品名「スターシス錠」(アステラス製薬)等〕: Preferred as a phenylalanine derivative-based drug is a compound corresponding to a D-phenylalanine derivative, and nateglinide represented by the following formula (1) [trade name “Starsys Tablets” (Astellas Pharma, etc.):
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 また、ベンジルコハク酸誘導体に相当する化合物であって、下式(2)で示されるミチグリニド(mitiglinide)またはそのカルシウム水和物〔商品名「グルファスト」(キッセイ薬品)等〕: Moreover, it is a compound corresponding to a benzyl succinic acid derivative, and mitiglinide represented by the following formula (2) or its calcium hydrate [trade name “Glufast” (Kissei Pharmaceutical, etc.)]:
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
を挙げることができる。 Can be mentioned.
 また、フェニルアラニン誘導体の類縁体として好ましいフェニルアラニン誘導体系薬物としては、下式(3)で示されるレパグリニド(repaglinide)〔「SMP-508」(大日本住友製薬)、商品名「NovoNorm」:ノボノルディスク社〕を挙げることができる: Moreover, as a phenylalanine derivative-type drug preferable as an analog of the phenylalanine derivative, repaglinide (repaglinide) represented by the following formula (3) [“SMP-508” (Dainippon Sumitomo Pharma Co., Ltd.), trade name “NovoNorm”: Novo Nordisk Can be mentioned:
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
 本発明の糖尿病治療剤は、これらのフェニルアラニン誘導体系薬物を糖尿病の治療効果を発揮する有効量含有するものであればよく、その限りにおいて他の成分、例えば薬学的に許容される担体や添加剤を含有していてもよい。本発明の糖尿病治療剤は、通常経口的に投与することができ、それらの投与に適した形態〔例えば、錠剤、丸剤、散剤、液剤、懸濁剤、乳剤、顆粒剤、カプセル剤など〕をとることができる。 The anti-diabetic agent of the present invention only needs to contain these phenylalanine derivative drugs in an effective amount that exerts a therapeutic effect on diabetes, and as long as other components, such as pharmaceutically acceptable carriers and additives, are used. May be contained. The therapeutic agent for diabetes of the present invention can usually be administered orally and is in a form suitable for their administration (for example, tablets, pills, powders, solutions, suspensions, emulsions, granules, capsules, etc.). Can be taken.
 当該糖尿病治療剤に配合できる薬学的に許容される担体としては、上記各種の投与形態に応じて、当業界で通常使用されるものを広く挙げることができる。例えば、充填剤、増量剤、結合剤、付湿剤、崩壊剤、表面活性剤、滑沢剤、緩衝剤、キレート剤、pH調整剤、界面活性剤等を挙げることができる。また、本発明の糖尿病治療剤には、必要に応じて安定剤、殺菌剤、着色剤、保存剤、香料、風味剤、甘味料等を配合することもできる。 As the pharmaceutically acceptable carrier that can be blended in the antidiabetic agent, those commonly used in the art can be widely used depending on the above various administration forms. For example, a filler, a bulking agent, a binder, a moistening agent, a disintegrating agent, a surfactant, a lubricant, a buffering agent, a chelating agent, a pH adjusting agent, a surfactant and the like can be mentioned. In addition, stabilizers, bactericides, coloring agents, preservatives, fragrances, flavoring agents, sweetening agents, and the like can be blended with the antidiabetic agent of the present invention as necessary.
 なお、本発明の糖尿病治療剤は、公知の方法に従ってフェニルアラニン誘導体系薬物を有効成分とする徐放性製剤または持続性製剤の形態として調製することもできる。 In addition, the therapeutic agent for diabetes of the present invention can be prepared in the form of a sustained-release preparation or a sustained-release preparation containing a phenylalanine derivative drug as an active ingredient according to a known method.
 本発明の糖尿病治療剤中に含有されるべきフェニルアラニン誘導体系薬物の量としては、特に限定されず広範囲から適宜選択されるが、通常約1~70重量%とするのがよい。 The amount of the phenylalanine derivative-based drug to be contained in the therapeutic agent for diabetes of the present invention is not particularly limited and is appropriately selected from a wide range, but is usually preferably about 1 to 70% by weight.
 本発明の糖尿病治療剤の投与量および投与形態は特に制限はなく、例えば有効成分として配合するフェニルアラニン誘導体系薬物の種類、各種製剤形態、患者の年齢、性別その他の条件、疾患の程度に応じた方法で投与される。例えば、ナテグリニドは1回90~120mg程度を1日3回毎食直前(食前10分以内)に;ミチグリニドカルシウム水和物は1回10mg程度を1日3回毎食直前(食前10分以内)に投与することが推奨される。 There are no particular restrictions on the dosage and mode of administration of the therapeutic agent for diabetes of the present invention. For example, it depends on the type of phenylalanine derivative-based drug to be blended as an active ingredient, various pharmaceutical forms, patient age, sex and other conditions, and the degree of disease. Administered by the method. For example, nateglinide is administered 90 to 120 mg at a time, 3 times a day immediately before each meal (within 10 minutes before meal); mitiglinide calcium hydrate is administered at a dose of 10 mg, 3 times a day, immediately before each meal (within 10 minutes before a meal). It is recommended to do.
 (4)特定の糖尿病患者に対する糖尿病の治療方法
 本発明は、下記の(1)~(3)のいずれか少なくとも1つの遺伝子(遺伝子多型)が下記のGENOTYPE(1)であることが確認された糖尿病患者に対して行われる糖尿法治療方法に関する。具体的には、当該方法は、遺伝子検査を受けて、下記(1)~(3)のうち少なくとも1つの遺伝子がGENOTYPE(1)を有することが確認された2型糖尿病患者を対象として、当該患者にフェニルアラニン誘導体系薬物を有効成分とする薬剤を投与することによって実施することができる。
(4) Diabetes Treatment Method for Specific Diabetes Patients In the present invention, it is confirmed that at least one gene (gene polymorphism) of any of the following (1) to (3) is the following GENOTYPE (1) The present invention relates to a diabetic treatment method performed for diabetic patients. Specifically, the method is intended for patients with type 2 diabetes who have undergone genetic testing and have been confirmed that at least one of the following genes (1) to (3) has GENOTYPE (1). This can be carried out by administering a drug containing a phenylalanine derivative drug as an active ingredient to a patient.
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
 本発明の治療方法の対象となる糖尿病患者は、遺伝子検査を受けて、上記(1)~(3)のうち少なくとも1つの遺伝子について上記のGENOTYPE(1)を有することが確認された患者であればよく、これら任意の2以上の遺伝子について上記のGENOTYPE(1)を有する患者であってもよい。ここで遺伝子検査とは、上記(1)~(3)に記載する少なくとも1つの遺伝子の遺伝子多型を調べる検査を意味する。具体的には前述する(2)において説明する工程(a)および(b)を有する検査方法、およびかかる工程(a)および(b)に加えて、更に工程(c)を有する検査方法を挙げることができる。 The diabetic patient who is the target of the treatment method of the present invention is a patient who has undergone genetic testing and has been confirmed to have the above-mentioned GENOTYPE (1) for at least one of the genes (1) to (3). What is necessary is just to be a patient who has said GENOTYPE (1) about these arbitrary two or more genes. Here, the genetic test means a test for examining a genetic polymorphism of at least one gene described in the above (1) to (3). Specifically, an inspection method having the steps (a) and (b) described in the above (2), and an inspection method further having the step (c) in addition to the steps (a) and (b) are given. be able to.
 当該患者に投与するフェニルアラニン誘導体系薬物の種類、およびその投与方法については、前述する(3)の記載の通りである。 The types of phenylalanine derivative drugs to be administered to the patient and the administration method thereof are as described in (3) above.
 なお、本発明の治療方法には、予め遺伝子検査を受けて上記(1)~(3)のうち少なくとも1つの遺伝子について上記のGENOTYPE(1)を有することが確認された患者に対して、フェニルアラニン誘導体系薬物を有効成分とする糖尿病治療剤を投与する方法のほか、フェニルアラニン誘導体系薬物の投薬に先立って、2型糖尿病患者に前述する遺伝子検査を実施し、上記(1)~(3)のうち少なくとも1つの遺伝子について上記のGENOTYPE(1)を有する患者を検出し、選別する工程を含む方法であってもよい。 In the treatment method of the present invention, phenylalanine is applied to a patient who has been subjected to a genetic test in advance and has been confirmed to have the GENOTYPE (1) for at least one of the genes (1) to (3). In addition to the method of administering a therapeutic agent for diabetes containing a derivative drug as an active ingredient, the above-described genetic test is performed on patients with type 2 diabetes prior to the administration of the phenylalanine derivative drug, and the above (1) to (3) A method including a step of detecting and selecting a patient having the above-described GENOTYPE (1) for at least one gene may be used.
 以下、実験例により本発明をより具体的に説明する。
同意の得られた1320名の2型糖尿病患者を対象として、糖尿病の程度、投与薬物及び糖尿病合併症に関連すると考えられる環境要因と遺伝要因を調査した。このうち、2型糖尿病治療薬であるフェニルアラニン誘導体系薬物(ナテグリド)を有効成分とする糖尿病治療剤〔商品名「スターシス錠」:アステラス製薬(株)〕を投与した例は、136例(男82例、女54例)であった。なお、各患者の年齢(歳)、罹病期間(年)、およびBMI(kg/m2)の平均値はそれぞれ63.2(±8.0)歳、11.4(±6.8)年、および22.9(±2.7)kg/m2であった(括弧内は標準偏差)。
Hereinafter, the present invention will be described more specifically by experimental examples.
In 1320 type 2 diabetic patients with consent, the environmental factors and genetic factors considered to be related to the degree of diabetes, drugs administered, and diabetic complications were investigated. Of these, 136 patients (82 males) were administered a therapeutic agent for diabetes (trade name “Starsys Tablets”: Astellas Pharma Inc.) containing a phenylalanine derivative (nateglide), a type 2 diabetes drug. Example, 54 women). Each patient's age (years), disease duration (years), and average BMI (kg / m 2 ) are 63.2 (± 8.0) years, 11.4 (± 6.8) years, and 22.9 (± 2.7) kg, respectively. / m 2 (standard deviation in parentheses).
 かかる136名の2型糖尿病患者(フェニルアラニン誘導体系薬物投与者)について、GYS1遺伝子、EPHX2遺伝子、およびCD14遺伝子の各遺伝子多型のGENOTYPEとヘモグロビンA1c (HbA1c)を測定した。その結果に基づいて、各患者を表10に示すそれぞれ遺伝子についてGENOTYPE(1)および(2)に分類し、さらにHbA1cが6.5%以上の群と6.5%未満の群とに分類した。ちなみに、HbA1cが6.5%未満に低減していると、フェニルアラニン誘導体系薬物投与が糖尿病治療に有効に働いているものと認められる。 For these 136 type 2 diabetic patients (phenylalanine derivative-based drug recipients), GYS1 gene, EPHX2 gene, and CD14 gene polymorphisms GENOTYPE and hemoglobin A1c (HbA1c) were measured. Based on the results, each patient was classified into GENOTYPE (1) and (2) for each gene shown in Table 10, and further classified into a group with HbA1c of 6.5% or more and a group with less than 6.5%. By the way, if HbA1c is reduced to less than 6.5%, it is recognized that the administration of phenylalanine derivatives is effective in the treatment of diabetes.
 またフェニルアラニン誘導体系薬物投与の有効性を示すために、各遺伝子についてGENOTYPE(1)とGENOTYPE(2)、さらにこれをHbA1c≧6.5%とHbA1c<6.5%の別に合計4つに分割した結果に基づいて、Fisherの直接確率計算法により独立性の検定を行った。結果を表10に併せて示す。P<0.05の場合は、有意差があること、具体的にはGENOTYPE(1)の患者はGENOTYPE(2)の患者に比べて、HbA1cが6.5%未満になるようにコントロールされている割合が有意に多かったことを意味する。 In addition, in order to show the efficacy of phenylalanine derivative-based drug administration, GENOTYPE (1) and GENOTYPE (2) for each gene, and based on the result of dividing this into four parts in total, HbA1c ≧ 6.5% and HbA1c <6.5% Independence was tested by Fisher's exact probability calculation. The results are also shown in Table 10. When P <0.05, there is a significant difference. Specifically, the percentage of patients with GENOTYPE (1) that are controlled to have HbA1c less than 6.5% is significant compared to patients with GENOTYPE (2). It means that there were many.
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
 表10から各遺伝子の遺伝子多型について下記のことが分かる。 From Table 10, the following can be seen for the gene polymorphism of each gene.
 (1)GYS(A260G)
 そのGENOTYPEがGENOTYPE(1)(すなわちGGまたはAG若しくはGA)である2型糖尿病患者は、フェニルアラニン誘導体系薬物を投与することによって、HbA1c値が6.5%未満に低減された患者の割合が、GENOTYPEがGENOTYPE(2)(すなわちAA)である2型糖尿病患者に比べて有意に多い。すなわち、フェニルアラニン誘導体系薬物は、GYS(A260G)が上記GENOTYPE(2)である2型糖尿病患者の糖尿病の治療に対して、より有効に奏功する。
(1) GYS (A260G)
Patients with type 2 diabetes whose GENOTYPE is GENOTYPE (1) (ie, GG or AG or GA), the percentage of patients whose HbA 1c value was reduced to less than 6.5% by administering phenylalanine derivatives Is significantly more than type 2 diabetic patients with GENOTYPE (2) (ie AA). That is, the phenylalanine derivative drug is more effective for the treatment of diabetes in patients with type 2 diabetes whose GYS (A260G) is GENOTYPE (2).
 (2)EPHX2(G860A)
 そのGENOTYPEがGENOTYPE(1)(すなわちAAまたはAG若しくはGA)である2型糖尿病患者は、フェニルアラニン誘導体系薬物を投与することによって、HbA1c値が6.5%未満に低減された患者の割合が、GENOTYPEがGENOTYPE(2)(すなわちGG)である2型糖尿病患者に比べて有意に多い。すなわち、フェニルアラニン誘導体系薬物は、EPHX2(G860A)が上記GENOTYPE(2)である2型糖尿病患者の糖尿病の治療に対して、より有効に奏功する。
(2) EPHX2 (G860A)
Patients with type 2 diabetes whose GENOTYPE is GENOTYPE (1) (ie, AA, AG, or GA), the percentage of patients whose HbA 1c value was reduced to less than 6.5% by administering phenylalanine derivatives was GENOTYPE Is significantly higher than type 2 diabetic patients with GENOTYPE (2) (ie GG). That is, the phenylalanine derivative-based drug is more effective in treating diabetes in patients with type 2 diabetes whose EPHX2 (G860A) is GENOTYPE (2).
 (3)CD14(T-159C)
 そのGENOTYPEがGENOTYPE(1)(すなわちCCまたはCT若しくはTC)である2型糖尿病患者は、フェニルアラニン誘導体系薬物を投与することによって、HbA1c値が6.5%未満に低減された患者の割合が、GENOTYPEがGENOTYPE(2)(すなわちTT)である2型糖尿病患者に比べて有意に多い。すなわち、フェニルアラニン誘導体系薬物は、CD14(T-159C)が上記GENOTYPE(2)である2型糖尿病患者の糖尿病の治療に対して、より有効に奏功する。
(3) CD14 (T-159C)
Patients with type 2 diabetes whose GENOTYPE is GENOTYPE (1) (ie, CC, CT, or TC), the percentage of patients whose HbA 1c value was reduced to less than 6.5% by administering phenylalanine derivatives Is significantly higher than type 2 diabetic patients with GENOTYPE (2) (ie TT). That is, the phenylalanine derivative drug is more effective for the treatment of diabetes in patients with type 2 diabetes whose CD14 (T-159C) is GENOTYPE (2).

Claims (10)

  1. 糖尿病患者について、フェニルアラニン誘導体系薬物を有効成分とする糖尿病治療剤の投与有効性をin vitroで検出する方法であって、当該糖尿病患者が(1)~(3)のいずれか少なくとも一つの遺伝子について下記のGENOTYPE(1)を有していることを指標とすることを特徴とする方法:
    Figure JPOXMLDOC01-appb-I000001
    A method for detecting in vitro the effectiveness of administration of a therapeutic agent for diabetes comprising a phenylalanine derivative-based drug as an active ingredient for a diabetic patient, wherein the diabetic patient has at least one of the genes (1) to (3) A method characterized by having the following GENOTYPE (1) as an index:
    Figure JPOXMLDOC01-appb-I000001
  2. 下記の工程を有する、請求項1記載する方法:
    (a)糖尿病患者の生体試料を対象として、(1)~(3)に記載する少なくとも1つの遺伝子の遺伝子多型におけるGENOTYPEを検出する工程、
    (b)(1)~(3)に記載する少なくとも1つの遺伝子の遺伝子多型におけるGENOTYPEが、下記のGENOTYPE(1)であるかを識別する工程
    Figure JPOXMLDOC01-appb-I000002
    The method according to claim 1, comprising the following steps:
    (A) a step of detecting GENOTYPE in a genetic polymorphism of at least one gene described in (1) to (3) for a biological sample of a diabetic patient;
    (B) A step of identifying whether the GENOTYPE in the polymorphism of at least one gene described in (1) to (3) is the following GENOTYPE (1)
    Figure JPOXMLDOC01-appb-I000002
  3. さらに下記の工程(c)を有する、請求項2に記載する方法:
    (c)上記(b)の結果に基づいて、上記(1)~(3)に記載する少なくとも1つの遺伝子の遺伝子多型におけるGENOTYPEが、GENOTYPE(1)と一致する場合に、当該糖尿病患者の治療に対してフェニルアラニン誘導体系薬物を有効成分とする糖尿病治療剤の投与が有効であると判定する工程。
    The method according to claim 2, further comprising the following step (c):
    (c) Based on the result of (b) above, when the GENOTYPE in the polymorphism of at least one gene described in (1) to (3) matches GENOTYPE (1), A step of determining that administration of an antidiabetic agent comprising a phenylalanine derivative-based drug as an active ingredient is effective for treatment.
  4. 上記フェニルアラニン誘導体系薬物が、ナテグリニド(nateglinide)、ミチグリニド(mitiglinide)、レパグリニド(repaglinide)およびこれらの薬学的に許容される塩からなる群から選択される少なくとも1種である、請求項1に記載する方法。 The phenylalanine derivative-based drug is at least one selected from the group consisting of nateglinide, mitiglinide, repaglinide, and pharmaceutically acceptable salts thereof. Method.
  5. (1)~(3)のいずれか少なくとも1つの遺伝子について下記のGENOTYPE(1)を有することが確認された糖尿病患者を対象として投与されることを特徴とする、フェニルアラニン誘導体系薬物を有効成分とする糖尿病治療剤:
    Figure JPOXMLDOC01-appb-I000003
    A phenylalanine derivative-based drug, which is administered to a diabetic patient who has been confirmed to have the following GENOTYPE (1) for at least one gene of any one of (1) to (3) as an active ingredient Diabetes treatment:
    Figure JPOXMLDOC01-appb-I000003
  6. 上記フェニルアラニン誘導体系薬物が、ナテグリニド(nateglinide)、ミチグリニド(mitiglinide)、レパグリニド(repaglinide)およびこれらの薬学的に許容される塩からなる群から選択される少なくとも1種である、請求項5に記載する糖尿病治療剤。 6. The phenylalanine derivative-based drug is at least one selected from the group consisting of nateglinide, mitiglinide, repaglinide, and pharmaceutically acceptable salts thereof. Antidiabetic agent.
  7.  (1)~(3)のいずれか少なくとも1つの遺伝子について下記のGENOTYPE(1)を有することが確認された糖尿病患者に対して、フェニルアラニン誘導体系薬物を有効成分とする糖尿病治療剤を投与する工程を有する、糖尿病の治療方法:
    Figure JPOXMLDOC01-appb-I000004
    A step of administering a therapeutic agent for diabetes comprising a phenylalanine derivative-based drug as an active ingredient to a diabetic patient who has been confirmed to have the following GENOTYPE (1) for at least one gene of any one of (1) to (3) A method for treating diabetes having:
    Figure JPOXMLDOC01-appb-I000004
  8. 上記フェニルアラニン誘導体系薬物が、ナテグリニド(nateglinide)、ミチグリニド(mitiglinide)、レパグリニド(repaglinide)およびこれらの薬学的に許容される塩からなる群から選択される少なくとも1種である、請求項7に記載する糖尿病の治療方法。 The phenylalanine derivative-based drug is at least one selected from the group consisting of nateglinide, mitiglinide, repaglinide, and pharmaceutically acceptable salts thereof. How to treat diabetes.
  9. (1)~(3)のいずれか少なくとも1つの遺伝子について下記のGENOTYPE(1)を有することが確認された糖尿病患者に対する治療薬の製造のための、フェニルアラニン誘導体系薬物の使用:
    Figure JPOXMLDOC01-appb-I000005
    Use of a phenylalanine derivative-based drug for the manufacture of a therapeutic drug for a diabetic patient who has been confirmed to have the following GENOTYPE (1) for at least one gene of (1) to (3):
    Figure JPOXMLDOC01-appb-I000005
  10. 上記フェニルアラニン誘導体系薬物が、ナテグリニド(nateglinide)、ミチグリニド(mitiglinide)、レパグリニド(repaglinide)およびこれらの薬学的に許容される塩からなる群から選択される少なくとも1種である、請求項9に記載する使用。 The phenylalanine derivative-based drug is at least one selected from the group consisting of nateglinide, mitiglinide, repaglinide, and pharmaceutically acceptable salts thereof. use.
PCT/JP2009/057395 2008-04-11 2009-04-10 Method for detection of effectiveness of phenylalanine derivative-type compound in diabetes patient WO2009125851A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008103692A JP2011125218A (en) 2008-04-11 2008-04-11 Method for anticipating sensitivity to phenylalanine derivative-based compound in diabetes patient
JP2008-103692 2008-04-11

Publications (1)

Publication Number Publication Date
WO2009125851A1 true WO2009125851A1 (en) 2009-10-15

Family

ID=41161982

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/057395 WO2009125851A1 (en) 2008-04-11 2009-04-10 Method for detection of effectiveness of phenylalanine derivative-type compound in diabetes patient

Country Status (2)

Country Link
JP (1) JP2011125218A (en)
WO (1) WO2009125851A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6296752B2 (en) * 2013-10-24 2018-03-20 株式会社サインポスト Method, apparatus, program and recording medium for determining dosage of antidiabetic drug
JP6253560B2 (en) * 2014-10-01 2017-12-27 株式会社サインポスト Apparatus, program and recording medium for determining effectiveness of antidiabetic drug

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001032928A2 (en) * 1999-11-05 2001-05-10 Phase-1 Molecular Toxicology Methods of determining individual hypersensitivity to an agent
JP2005526788A (en) * 2002-03-22 2005-09-08 ノバルティス アクチエンゲゼルシャフト Combination of organic compounds
WO2006126618A1 (en) * 2005-05-26 2006-11-30 Signpost Corporation Method of determining gene polymorphism for judgment of disease risk level, method of judging disease risk level and array for relevant judgment
JP2008148666A (en) * 2006-12-20 2008-07-03 Japan Health Science Foundation Method for examining drug-metabolizing capacity of cyp2c8, and probe and examination kit used in the method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001032928A2 (en) * 1999-11-05 2001-05-10 Phase-1 Molecular Toxicology Methods of determining individual hypersensitivity to an agent
JP2005526788A (en) * 2002-03-22 2005-09-08 ノバルティス アクチエンゲゼルシャフト Combination of organic compounds
WO2006126618A1 (en) * 2005-05-26 2006-11-30 Signpost Corporation Method of determining gene polymorphism for judgment of disease risk level, method of judging disease risk level and array for relevant judgment
JP2008148666A (en) * 2006-12-20 2008-07-03 Japan Health Science Foundation Method for examining drug-metabolizing capacity of cyp2c8, and probe and examination kit used in the method

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
KENTARO YAMADA: "Tailor Made Chiryo no Tenbo", JAPANESE JOURNAL OF CLINICAL MEDICINE, vol. 66, no. 7, 28 September 2008 (2008-09-28), pages 493 - 496 *
MANUEL, J. ET AL.: "CD14 monocyte receptor, involved in the inflammatory cascade, and insulin sensitivity", J. CLIN. ENDOCRINOL. METAB., vol. 88, no. 4, 2003, pages 1780 - 1784 *
MASAHIRO HIRATSUKA ET AL.: "Yakuzai Hannosei ni Eikyo o Oyobosu Idenshi Tagata no Kan'i Jinsoku Kenshutsuho no Kaihatsu to sono Rinsho Oyo", YAKUGAKU ZASSHI, vol. 122, no. 7, 2002, pages 451 - 463 *
OHTOSHI, K. ET AL.: "Association of soluble epoxide hydrolase gene polymorphism with insulin resistance in type 2 diabetic patients", BIOCHM. BIOPHYS. RES. COMM., vol. 331, 2005, pages 347 - 350 *
RISSANEN, J. ET AL.: "New variants in the glycogen synthase gene (Gln71His, Met416Val) in patients with NIDDM from eastern Finland", DIABETOLOGIA, vol. 40, 1997, pages 1313 - 1319 *
SHIMOMURA, H. ET AL.: "A missense mutation of the muscle glycogen synthase gene (M416V) is associated with insulin resistace in the Japanese population", DIABETOLOGIA, vol. 40, 1997, pages 947 - 952 *
TAKEHITO YAMAMOTO ET AL.: "Tonyo Byoyaku ni Kakawaru Taisha Koso to Iden Soin", DIABETES FRONTIER, vol. 16, no. 3, 2005, pages 314 - 318 *

Also Published As

Publication number Publication date
JP2011125218A (en) 2011-06-30

Similar Documents

Publication Publication Date Title
Eley et al. Association analysis of MAOA and COMT with neuroticism assessed by peers
KR102035877B1 (en) Assays for selecting a treatment regimen for a subject with depression and methods for treatment
US8187811B2 (en) Polymorphisms associated with Parkinson&#39;s disease
Dracheva et al. Increased serotonin 2C receptor mRNA editing: a possible risk factor for suicide
KR101668122B1 (en) Genetic markers for weight management and methods of use thereof
JP2018023391A (en) Genetic polymorphisms associated with liver fibrosis, and methods of detection and uses thereof
US20140272951A1 (en) Methods of identifying mutations in nucleic acid
Aydin et al. Single nucleotide polymorphism map of five long-QT genes
US20070254289A1 (en) Genetic polymorphisms associated with Alzheimer&#39;s Disease, methods of detection and uses thereof
US20150278438A1 (en) Genetic predictors of response to treatment with crhr1 antagonists
Arun Kumar et al. Endothelial nitric oxide synthase gene polymorphisms and the risk of acute myocardial infarction in a South Indian population
EP3011048B1 (en) Method for predicting a treatment response to a v1b antagonist in a patient with depressive and/or anxiety symptoms
JP2013078314A (en) Genetic polymorphism associated with coronary heart disease, method of detection and use thereof
Polgár et al. Triglyceride level modifying functional variants of GALTN2 and MLXIPL in patients with ischaemic stroke
US20040203034A1 (en) Optimization of cancer treatment with irinotecan
Tabassum et al. Genetic variants of FOXA2: risk of type 2 diabetes and effect on metabolic traits in North Indians
JP2009518035A (en) Diagnostic methods for pain sensitivity and chronicity and diagnostic methods for tetrahydrobiopterin-related disorders
WO2009125851A1 (en) Method for detection of effectiveness of phenylalanine derivative-type compound in diabetes patient
US20110294680A1 (en) Methods and compositions for predicting success in addictive substance cessation and for predicting a risk of addiction
Chiu et al. Hepatic glucokinase promoter polymorphism is associated with hepatic insulin resistance in Asian Indians.
Lazar et al. Lower prevalence of the OCT2 Ser270 allele in patients with essential hypertension
US8236497B2 (en) Methods of diagnosing cardiovascular disease
US20020143162A1 (en) Methods
EP1673472B1 (en) Use of genetic polymorphisms to predict drug-induced hepatotoxicity
JP2009186425A (en) Evolution suppression of arteriosclerosis by pioglitazone or its salt, or sideration suppression of cardiovascular event

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09731446

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09731446

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP