WO2006126618A1 - Method of determining gene polymorphism for judgment of disease risk level, method of judging disease risk level and array for relevant judgment - Google Patents

Method of determining gene polymorphism for judgment of disease risk level, method of judging disease risk level and array for relevant judgment Download PDF

Info

Publication number
WO2006126618A1
WO2006126618A1 PCT/JP2006/310405 JP2006310405W WO2006126618A1 WO 2006126618 A1 WO2006126618 A1 WO 2006126618A1 JP 2006310405 W JP2006310405 W JP 2006310405W WO 2006126618 A1 WO2006126618 A1 WO 2006126618A1
Authority
WO
WIPO (PCT)
Prior art keywords
disease
gene polymorphism
gene
risk
polymorphism
Prior art date
Application number
PCT/JP2006/310405
Other languages
French (fr)
Japanese (ja)
Inventor
Yoshimitsu Yamasaki
Atsuhiko Kurokawa
Muneo Takiguchi
Yuuri Arakawa
Li Yang
Original Assignee
Signpost Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Signpost Corporation filed Critical Signpost Corporation
Priority to JP2007517881A priority Critical patent/JP5121449B2/en
Publication of WO2006126618A1 publication Critical patent/WO2006126618A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B40/00ICT specially adapted for biostatistics; ICT specially adapted for bioinformatics-related machine learning or data mining, e.g. knowledge discovery or pattern finding
    • G16B40/10Signal processing, e.g. from mass spectrometry [MS] or from PCR
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B20/00ICT specially adapted for functional genomics or proteomics, e.g. genotype-phenotype associations
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B20/00ICT specially adapted for functional genomics or proteomics, e.g. genotype-phenotype associations
    • G16B20/20Allele or variant detection, e.g. single nucleotide polymorphism [SNP] detection
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/156Polymorphic or mutational markers
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B40/00ICT specially adapted for biostatistics; ICT specially adapted for bioinformatics-related machine learning or data mining, e.g. knowledge discovery or pattern finding

Definitions

  • the present invention relates to a method for determining a genetic polymorphism for disease risk determination.
  • the present invention also relates to a method for determining a disease risk level for an individual subject using a genetic polymorphism determined by a method that can be used, and a method for presenting a predicted onset value obtained using the method. More specifically, the present invention relates to a disease risk determination method that can be used for prevention, treatment, and diagnosis of various diseases, a disease risk determination device that can be used to execute the disease, a disease risk determination program, and an onset prediction presentation method.
  • the present invention provides an array for determining a disease risk, which can be used for determination of a disease risk related to arteriosclerotic disease, myocardial infarction, nephropathy, or retinopathy caused by diabetes as the above-mentioned disease, disease
  • the present invention relates to a risk determination method, a genetic marker, and an analysis kit.
  • the disease of the subject can be determined. If the so-called “disease risk” such as the ease of progression and the ease of progression can be determined, pre-measures can be taken to prevent the onset of the disease or to suppress the progression. In other words, subjects who are determined to have a high risk of the disease can try to prevent illness at an early stage. In addition, the possibility of the onset of the disease and the degree of progression after the onset can be predicted, enabling more detailed diagnosis and treatment depending on the subject. In addition, if the predicted values of the current disease risk level and future disease level can be presented in an easy-to-understand manner, It is possible to promote awareness and make diagnosis and treatment by doctors and nurses efficient and effective.
  • Patent Document 1 discloses a method for determining arteriosclerotic diseases by combining a plurality of gene polymorphisms having a significant positive relationship with the carotid intima-media thickness.
  • All of the documents (Non-Patent Documents 2 to 6) listed in the international survey of Patent Document 1 are gene polymorphisms that have a significant positive relationship with the carotid intima-media thickness. It is only mentioned, and if a genetic polymorphism having a “negative association” opposite to the “positive association” is used for the determination of disease risk, the idea is completely described.
  • Patent Document 2 discloses a method for determining a genetic polymorphism for determining a disease risk level specific to various diseases using a genetic polymorphism having “negative association”. ing. Patent Document 2 listed below describes a disease risk determination method, a disease risk determination device, a disease risk level that can be used for prevention and treatment of a disease because it is possible to determine the ease of onset and progression of various diseases. Judgment programs, and, in particular, arteriosclerotic diseases that develop due to diabetes, among other diseases, disease risk assessment arrays, disease risk assessment methods, genetic markers, and disease-specific gene polymorphisms and gene polymorphisms An analytical kit for detecting a mold set is disclosed.
  • Patent document 1 International publication WO2003Z087360
  • Patent Document 2 International Publication WO2005Z036443
  • Non-Patent Document 1 Yamada Y, Izawa H, Ichihara S, Takatsu F, Ishihara H, Hirayama H, S one T, Tanaka M, Yokota M. Prediction of the risk of myocardial infarction from pol ymorphisms in candidate genes.N.Engl .J.Med. 2002; 347 (24): 1916-23
  • Non-Patent Document 2 Rauramaa R, et al., Arterioscler Thromb Vase Biol. 2000 Dec, vol. 20, no. 12, p.2657-2662
  • Non-Patent Document 3 Chapman CM, et al "Arteriosclerosis. 2001 Nov, vol.159, no.l, p.209 -217
  • Non-Patent Document 4 McQuillan BM, et al "Circulation. 1999 May 11, vol.99, no.18, p.238 3-2388
  • Non-Patent Document 5 Terry JG, et al., Stroke. 1996 Oct. vol.27, no.10, p.1755-1759
  • Non-Patent Document 6 Castellano M, et al, Circulation. 1995 Jun 1, vol.91 , no. ll, p.2721-27
  • the genetic polymorphism is processed by distinguishing between positive association and negative association. This is necessary and the processing becomes complicated. Therefore, it is desirable that the genetic polymorphism for disease risk determination can be determined by the same processing without distinguishing the positive / negative relationship of the genetic polymorphism.
  • An object of the present invention is to solve the conventional problems related to the determination of disease risk such as the likelihood of disease progression and the ease of progression, and to achieve the following object.
  • the present invention provides a method for accurately determining a genetic polymorphism for determining a disease risk level unique to various diseases without distinguishing the positive / negative relevance of the genetic polymorphism.
  • the present invention reflects the influence of environmental factors, A highly accurate disease risk assessment method, disease risk assessment device and disease risk that can be used for the prevention and treatment of diseases by determining the ease of onset and progression of various diseases. The purpose is to provide a degree determination program.
  • the present invention relates to a disease risk determination array, disease risk determination method, arteriosclerotic disease, myocardial infarction, nephropathy, or retinopathy that develops due to diabetes, among other diseases. It is an object of the present invention to provide an analysis kit for detecting genetic markers and disease-specific gene polymorphisms and gene polymorphism sets.
  • the current disease risk level and the predicted value of the future disease level can be presented in an easy-to-understand manner, which encourages the subject's awareness and makes effective diagnosis and treatment by doctors and nurses. And it aims to provide a method that helps to make it effective.
  • a fifth object is to provide a method for determining the necessity of coping with a disease according to an individual.
  • a first step of designating a gene polymorphism by designating a gene polymorphism by designating a genotype from a plurality of gene polymorphisms designated in advance,
  • One or more gene polymorphisms related to a disease and having a genotype Reference table power consisting of a first gene polymorphism set comprising a gene polymorphism having a genotype of a test sample
  • a first step of collating the power / disability including a second set of genetic polymorphisms configured by reading out a predetermined number of genetic polymorphisms from the types;
  • the disease risk is an expression obtained by multiple regression analysis of a set of patient data using the disease degree as an objective variable and at least the first gene polymorphism set included in the reference table as an explanatory variable. Degree determination method.
  • a recording unit that records a reference table composed of a first gene polymorphism set comprising at least one gene polymorphism having a genotype and having an association with a disease;
  • the processing unit calculates a risk level for the test sample using a regression equation determined in advance by multiple regression analysis;
  • the disease risk is an expression obtained by multiple regression analysis of a set of patient data using the disease degree as an objective variable and at least the first gene polymorphism set included in the reference table as an explanatory variable. Degree determination device.
  • a function of accepting an input of a genetic polymorphism having a genotype of a test sample
  • the regression equation uses the disease degree as an objective variable and is included in at least the reference table.
  • a disease risk assessment program which is an expression obtained by multiple regression analysis of a set of patient data using the gene polymorphism set of 1 as an explanatory variable.
  • a function of accepting an input of a genetic polymorphism having a genotype of a test sample
  • the regression equation is an equation obtained by performing multiple regression analysis on a set of patient data with the disease degree as an objective variable and at least the first gene polymorphism set included in the reference table as an explanatory variable.
  • Degree judgment program
  • a computer-readable recording medium on which is recorded.
  • Probes for detection of gene polymorphisms constituting at least one gene polymorphism set selected from the group consisting of the gene polymorphism sets shown in FIGS. 2-A and 2-B and FIG. An array for determining the risk of myocardial infarction caused by diabetes.
  • a gene constituting at least one gene polymorphism set selected from the group consisting of the gene polymorphism sets described in FIGS. 1-A and 1-B and FIG. 17 can be specifically amplified.
  • a kit for analysis of a gene polymorphism associated with arteriosclerotic disease caused by diabetes comprising a primer pair or a nucleic acid probe capable of specifically hybridizing to the gene or its amplification product.
  • a gene constituting at least one gene polymorphism set selected from the group consisting of the gene polymorphism sets described in FIGS. 2-A and 2-B and FIG. 18 can be specifically amplified.
  • a gene constituting at least one gene polymorphism set selected from the group consisting of the gene polymorphism sets described in FIGS. 3A and 3B and FIG. 19 can be specifically amplified.
  • a gene polymorphism analysis kit related to nephropathy caused by diabetes comprising a primer pair or a nucleic acid probe capable of specifically hybridizing to the gene or its amplification product.
  • An axis corresponding to each disease risk of a plurality of diseases is drawn radially, a line segment connecting points on the axis corresponding to the average value of the disease risk for each disease is drawn, and A second step of creating a first radar chart by drawing a line segment connecting the points on the axis corresponding to the first disease risk for each disease;
  • An onset prediction presentation method including:
  • a value obtained by adding a predetermined time to an environmental factor related to time among the environmental factors of the second patient, the environmental factor of the second patient not related to time, and the second patient A first step of determining a second disease risk as a predicted value in the future from the risk judgment formula using the genetic polymorphism information of
  • An axis corresponding to each of the disease risks of a plurality of diseases is drawn radially, a line segment connecting the points on the axis corresponding to the first disease risk for each disease is drawn, and And a second step of drawing a line segment connecting the points on the axis corresponding to the second disease risk level for each patient to create a radar chart.
  • the risk determination formula includes an interaction term between a gene polymorphism set and an environmental factor, and a predetermined number of patient detection values related to the environmental factor included in the first interaction term among the interaction terms.
  • the value of the first interaction term is calculated using the value obtained by changing as the value of the environmental factor, and the calculated value of the first interaction term exceeds a predetermined value by V
  • a presentation method for predicting onset including a first step of presenting the necessity of coping with a case.
  • Information regarding the presence or absence of a gene polymorphism set having at least one gene polymorphism that has a genotype and is related to a disease, and environmental factors that can change in an individual are variables.
  • a determination formula for a disease risk, an ID for identifying a subject, information on the genetic polymorphism set of the subject corresponding to the ID, and a reference value for determining the necessity of treatment for the disease In a computer having a recording unit for recording, A first step of accepting designation of the subject's ID;
  • a disease risk determination method disease risk that can be used for the prevention and treatment of disease onset, which can accurately determine the likelihood of disease onset and the ease of progression as the disease risk.
  • a degree determination device and a disease risk determination program can be provided. This method can accurately determine the ease of onset or progression of arteriosclerotic disease, myocardial infarction, nephropathy or retinopathy, etc. in patients with diabetes or those who tend to have such disease. It can be used effectively for prevention and treatment.
  • the conventional method for determining the risk of a disease is to determine the risk of the disease using only the susceptibility (positive association) and resistance (negative association) to the genetic polymorphism as an index.
  • a judgment formula is used in consideration of environmental factors and further considering the interaction between genetic polymorphisms related to diseases and environmental factors. As a result, in the present invention, it is possible to make a comprehensive judgment without classifying the disease risk into sensitivity and resistance, and obtain a more accurate and accurate result regarding the disease risk. It becomes possible.
  • the present invention is also useful for determining the risk of arteriosclerotic disease, particularly arteriosclerotic disease caused by diabetes, and determining the risk of myocardial infarction, particularly myocardial infarction caused by diabetes.
  • Related polymorphisms useful factors for assessing the risk of nephropathy, particularly nephropathy caused by diabetes; and related factors useful for assessing the risk of retinopathy, particularly retinopathy caused by diabetes Clarified, arteriosclerotic disease-related gene polymorphism set, myocardial infarction-related gene polymorphism set, nephropathy-related gene polymorphism set, and retina This is provided as a disease-related gene polymorphism set.
  • the disease risk determination method, disease risk determination array, disease-related gene marker, or disease-related gene polymorphism analysis kit provided by the present invention is an arteriosclerotic disease, myocardial infarction, nephropathy, or retina. This is useful for the assessment of the risk of illness.
  • the predicted value of the future disease level is calculated using a radar chart, a disease prediction graph, and a bubble chart. It can be presented visually and easily. Therefore, the subject's own awareness can be promoted, motivation can be improved, and diagnosis and treatment by doctors and nurses can be made efficient and effective.
  • the environmental factor test results have been selected.
  • the value of the term related to the environmental factor in the disease risk judgment formula taking into account the genetic factor can be used to present the necessity of coping. Therefore, according to the present invention, it is possible to present the necessity of treatment even when the environmental factor test results are within the range where treatment is not required and treatment is not performed conventionally. Therefore, it is possible to provide a tailor-made environment where patients can receive appropriate treatment.
  • the powerful technique of the present invention can be similarly applied to arteriosclerotic diseases, myocardial infarction, nephropathy, and other diseases other than retinopathy as exemplified in the present specification.
  • the present invention can be similarly applied to cerebral infarction, diabetic neuropathy, etc. caused by diabetes.
  • FIG. 1-A A table showing gene polymorphism sets having a positive association with arteriosclerotic diseases caused by diabetes.
  • FIG. 1-B is a table showing a set of gene polymorphisms that have a negative association with arteriosclerosis caused by diabetes.
  • FIG. 2-A is a table showing a set of gene polymorphisms that have a positive association with myocardial infarction caused by diabetes.
  • FIG. 2-B is a table showing a set of gene polymorphisms that have a negative association with myocardial infarction caused by diabetes.
  • FIG. 3-A A table showing a set of gene polymorphisms that have a positive association with nephropathy caused by diabetes.
  • FIG. 3-B is a table showing a set of gene polymorphisms that have a negative association with diabetes caused by diabetes.
  • FIG. 4-A A table showing a set of gene polymorphisms positively associated with retinopathy caused by diabetes.
  • FIG. 4-B A table showing a set of gene polymorphisms that have a positive association with retinopathy caused by diabetes.
  • FIG. 4-C A table showing a set of gene polymorphisms negatively associated with retinopathy caused by diabetes.
  • FIG. 5-A A table summarizing genetic polymorphisms related to arteriosclerotic diseases, myocardial infarction, nephropathy or retinopathy caused by diabetes, and the polymorphic sites.
  • FIG. 5-B A table summarizing genetic polymorphisms related to arteriosclerotic diseases, myocardial infarction, nephropathy or retinopathy caused by diabetes, and the polymorphic sites.
  • FIG. 5-C A table summarizing gene polymorphisms associated with arteriosclerotic diseases, myocardial infarction, nephropathy or retinopathy caused by diabetes, and the polymorphic sites.
  • SNP-No. a common gene polymorphism number (SNP-No.) Is used throughout FIGS. In other words, in FIGS. 1 to 5, if the SNP-No. Is the same, it means that the polymorphism is the same.
  • FIG. 6 shows a method for determining a genetic polymorphism for disease risk determination according to an embodiment of the present invention. It is a flowchart.
  • FIG. 7 is a block diagram showing the entire system including the disease risk determination apparatus according to the embodiment of the present invention.
  • FIG. 8 is a flowchart showing risk determination processing performed by the disease risk determination apparatus according to the embodiment of the present invention.
  • FIG. 9 is a table showing an example of the degree of disease related to nephropathy.
  • FIG. 10 is a table showing an example of the degree of disease related to retinopathy.
  • FIG. 15 is a diagram showing a bubble chart created by the onset prediction presenting function according to the embodiment of the present invention.
  • FIG. 16 A table showing an example of criteria used to determine the size of a circle in a bubble chart.
  • FIG. 18 is a table showing an example of a set of gene polymorphisms that can be used to determine the risk of myocardial infarction caused by diabetes.
  • FIG. 19 is a table showing an example of a gene polymorphism set that can be used to determine the risk of nephropathy caused by diabetes.
  • FIG. 20 is a table showing an example of a set of genetic polymorphisms that can be used to determine the risk of retinopathy caused by diabetes.
  • FIG. 21 is a graph showing differences in disease risk judgment formulas depending on subjects.
  • FIG. 22 is a flowchart showing a method for determining the necessity of coping with a disease according to an embodiment of the present invention.
  • FIG. 1 is composed of two diagrams indicated by branch numbers “FIG. 1-A” and subsequent “FIG. 1-B”.
  • branch numbers FIG. 1
  • FIG. 1 B the simple reference to “FIG. 1” refers to both “FIG. 1 A” and “FIG. 1 B”.
  • FIG. 1 the same applies to items including a plurality of diagrams indicated by branch numbers other than those in FIG.
  • Gene polymorphism refers to the diversity of genes in which two or more allelic genes (alleles) exist at one locus in the same population. Specifically, it indicates a mutation in a gene that exists at a certain frequency in a certain population.
  • the gene mutations mentioned here are not limited to the region transcribed as RNA, but the promoter, It includes mutations in all DNAs that can be identified on the human genome, including the regulatory regions. 99.9% of human genomic DNA is common among individuals, and the remaining 0.1% is responsible for this diversity and is involved in individual differences in susceptibility to specific diseases, responsiveness to drugs and environmental factors. obtain. Even if there is a genetic polymorphism, the phenotype does not necessarily differ.
  • SNP base polymorphism
  • SNP base polymorphism
  • “1” is a polymorphic homology having a base that precedes the bases in alphabetical order (A, C, G, T) among the substituted bases.
  • “2” represents heterogeneity
  • “3” represents a polymorphism homozygote having a base that follows in alphabetical order of the substitution bases.
  • the genetic polymorphism is shown as ABCAKG1051A) (SNP-No “SNP- ⁇ .1” in Fig. 5)
  • GZG homozygous is genotype 1
  • heterozygous (GZA) is genotype 2
  • homozygous of ⁇ Is called gene type 3.
  • “12” represents the genotypes of both the genotypes 1 and 2
  • “23” represents the genotypes of both the 2 and 3 genotypes.
  • the "gene polymorphism set” refers to a combination of a plurality of gene polymorphisms.
  • a plurality of gene polymorphisms means two or more gene polymorphisms having different loci.
  • gene polymorphism here refers to and includes genotypes. That is, in the present invention, “gene polymorphism” means a gene polymorphism having a specific genotype.
  • the "gene polymorphism set” is particularly a "gene polymorphism combination” that is related to the target disease as an entire combination! Uh.
  • An example of such a gene polymorphism set (combination) Figure 1 and Figure 17 [Group of gene polymorphism sets that are related to arteriosclerotic disease caused by diabetes], Figure 2 and Figure 18 (Groups of gene polymorphism sets showing relevance for heart muscle infarction caused by diabetes), Fig. 3 and Fig. 19 (Groups of gene polymorphism sets showing relevance for nephropathy caused by diabetes) FIG. 4 and FIG. 20 [Group of gene polymorphism sets showing relevance for retinopathy caused by diabetes].
  • gene polymorphism set groups show a positive (susceptibility) association between gene polymorphism sets (positive t value) and a negative (resistance) association with the target disease. Both gene polymorphism sets (t value negative) are included. That is, in each of these figures, each row (one horizontal column) As a result, a combination of genetic polymorphisms (SNPs) showing a positive or negative association with the disease is shown. In Figs. 1 to 4 and Figs. 18 to 20, two or three gene polymorphisms are shown in one line! There is a case.
  • the gene polymorphism alone is an arteriosclerotic disease caused by diabetes ( Figures 1 and 17), myocardial infarction ( Figures 2 and 18), nephropathy ( Figures 3 and 19), or retinopathy. It can be said that it is a gene polymorphism showing a positive or negative association with ( Figures 4 and 20).
  • the single gene polymorphism is also described as a “gene polymorphism set” in order to avoid complicated explanation.
  • each row of the figure describes a set of gene polymorphisms that are positively or negatively related to an index of arteriosclerotic disease.
  • alycoprotein la (C807T) j Glycoprotein la gene: SNP-No.51 (Genotype: 23) and“ VEGF (C— 634G) "(VEGF gene: SNP-No. 73) (Genotype: 3) is described.
  • Glycoprotein la (C807T) j (SNP-No. 51) contains an allele that is at position 807 or T (see Fig. 5-A).
  • VEGF (C- 63 4G) J SNP-No.73 has an allele whose position -634 is C or G (see Fig. 5-A).
  • genotype 3 GZG of the gene polymorphism of “VEGF (C-634G” is described.Therefore, considering the combination of genotypes of these two gene polymorphisms, C Two types of gene polymorphisms are described, the combination (set) of / T (glycoprotein la) and GZG (VEGF), and the combination (set) of T / T (glycoprotein la) and GZG (VEGF). Clearly, C Two types of gene polymorphisms are described, the combination (set) of / T (glycoprotein la) and GZG (VEGF), and the combination (set) of T / T (glycoprotein la) and GZG (VEGF). Become.
  • Atherosclerotic disease broadly includes ischemic disease, such as angina pectoris, myocardial infarction, brain Infarctions and peripheral arterial occlusion are included.
  • the arteriosclerotic disease targeted by the present invention is an arteriosclerotic disease that develops in particular due to glucoseuria.
  • Atherosclerotic disease risk is an index representing the ease of onset and progression of the arteriosclerotic disease.
  • Myocardial infarction is a type of the above-mentioned arteriosclerotic diseases.
  • Myocardial infarction risk refers to myocardial infarction among arteriosclerotic diseases, and its ease of onset and progression. It is an index that represents.
  • Nephropathy and retinopathy targeted by the present invention are nephropathy and retinopathy that develops due to diabetes.
  • “Nephropathy risk” is an index indicating the likelihood of developing nephropathy due to diabetes and the progression of retinopathy.
  • “Retinopathy risk” is the likelihood of developing retinopathy due to diabetes. It is an index representing the ease of progress.
  • the method for determining a genetic polymorphism for determining a disease risk is used to determine how easily a subject suffers from a disease !, or how easily a disease progresses, and determines a disease (risk risk).
  • a method for determining a genetic polymorphism for determining a disease risk to be used.
  • an arteriosclerotic disease will be described as an example, but the present invention is not limited to this, and can be applied to a disease having an association with a gene.
  • the determination index according to the disease for example, carotid intima-media complex thickness for arteriosclerotic disease, urinary albumin excretion rate for nephropathy, ECG for myocardial infarction
  • the relevance described below may be evaluated (for example, edited by Japan Diabetes Society) Diabetes Treatment Guide 20 04—2005, Bunkodo).
  • the method for determining a genetic polymorphism for determining the risk of arteriosclerotic disease according to the present invention will be described with reference to the flowchart shown in FIG.
  • the processing here is described as being performed using a computer equipped with a CPU, memory, recording device (eg, hard disk), operation device (eg, keyboard, mouse), display device (eg, CRT display), and the like.
  • the processing target data is input from the operation device or the like and recorded in the recording device.
  • the CPU executes each process using the memory as a work area, and the intermediate result of the process is the maximum.
  • the final result is recorded in a predetermined area of the recording unit as necessary.
  • FIG. 5 lists 133 gene polymorphisms selected from experience among about 200 gene polymorphisms obtained from various documents (detailed explanation of FIG. 5 will be described later). .
  • the flowchart shown in FIG. 6 is performed using a predetermined number of gene polymorphisms selected by the above-described preliminary selection.
  • the degree of carotid arterial sclerosis is used as an index for determining arteriosclerotic diseases, and the relationship between this and genetic polymorphism is statistically analyzed.
  • the method for measuring the strength of carotid artery thickening is not particularly limited, but measurement of carotid intima-media complex thickness (IMT) using an ultrasonic tomograph is common. This method is a non-invasive and quantitative measurement method for measuring the thickness of the carotid artery that can be reached ultrasonically. It is desirable to use an ultrasonic tomography apparatus having a linear pulse echo probe with a center frequency of 7.5 MHz or higher. Since the extracranial carotid artery is located in the subcutaneous layer, a frequency of 7.5 MHz or higher can be used, and high resolution (distance resolution 0.1 mm) can be obtained. However, this is an example.
  • the blood vessel wall is analyzed on an echo image as a two-layer structure of a low echo luminance portion of one layer on the side of the blood vessel lumen and a high echo luminance layer on the other side.
  • the present inventor confirmed from the observation of 104 healthy cases that the IMT of the common carotid artery increased almost linearly with age from the 10s to the 70s, and the thickness did not exceed 1. Omm. is doing.
  • the common carotid artery IMT in healthy individuals is determined by age as follows:
  • IMT 0.008 X Age + 0.3 (3 ⁇ Age ⁇ 80)
  • Age is the age (in years).
  • I is a disease determination index of each person who is a constituent element of the population. It is assumed that the MT value and the genetic polymorphism (having the genotype, the same applies hereinafter) possessed by each person are associated and recorded as data to be analyzed.
  • the data to be analyzed is recorded in the form of ⁇ personal ID, IMT value, multiple gene polymorphisms ⁇ using, for example, the personal ID assigned to each person.
  • step S1 an upper limit value kmax of the counter of the iterative process used in the processes after step S2 is set, and 1 is set as an initial value in counter k.
  • k is the number of gene polymorphisms combined, and kmax is the upper limit.
  • kmax 3 is set.
  • step S2 k gene polymorphisms having a genotype are selected from the preselected gene polymorphisms and set as one set.
  • a disease determination index for the set of analyzed data including the set selected in step S2 and its complement A t-test on the value determined according to the above (hereinafter referred to as “disease degree”) is performed to determine the significance of the set.
  • the disease determination index value itself may be used as the disease degree.
  • the IMT value as the determination index is used as the disease degree. That is, using the IMT measurement value (disease degree), calculate the t value (t) and the significance level (risk rate) P corresponding to t, where P is the predetermined significance level cal cal cal cal cal cal cal cal
  • step S5 it is determined whether or not the processing of steps S2 to S4 has been completed for all sets having k gene polymorphisms, and the processing of steps S2 to S4 is repeated until the processing is completed.
  • the gene polymorphism set for determining the risk of arteriosclerosis shown in FIG. 1 was obtained.
  • the t value shown in the rightmost column of the table is the t value of each set (the same applies to Figs. 2 to 4).
  • a t test may be performed only when a predetermined condition is satisfied. For example, Odds (odds ratio) and Kai (chi-square value) are calculated for the set specified in step S2, and Odds and Kai are determined according to predetermined conditions (for example, Odds ⁇ 2 and Kai ⁇ 3.8, Alternatively, it may be determined whether or not Odds ⁇ 0.5 and Kai ⁇ 3.8), and only when this condition is satisfied, the process proceeds to step S4 and a t-test may be performed.
  • the number of & 36 cases is calculated as 7 times 0 1 "01.
  • the average value of IMT of healthy subjects is different from IMT.
  • ⁇ ⁇ ⁇ — ⁇ force ⁇ ⁇ 0.2 If it is, then Case, and if ⁇ ⁇ ⁇ 0.2, it will be Control.
  • the calculation method of Odds is described in the literature (Yamada Y, Izawa H, Ichihara S, Takatsu F, Ishihara H, Hirayama H, Sone T, Tana ka M, Yokota M.
  • step S3 A significant set may be determined by performing a t-test on all sets.
  • the carotid intima-media thickness is used as an index indicating the degree of carotid sclerosis.
  • the index indicating the degree of sclerosis of the carotid artery includes the maximum IMT (Max—IMT) that represents the maximum value of IMT, and the average IMT that represents the average value of IMT. (AvglMT), plaque score (PS), carotid stiffness, etc.
  • Max—IMT the maximum IMT
  • AvglMT plaque score
  • PS plaque score
  • carotid stiffness etc.
  • Max-IMT The maximum intima-media thickness in the longitudinal, lateral, and posterior longitudinal images is Max-IMT, and the central 1cm and the distal 1cm are centered on the site showing the Max-IMT.
  • AvglMT is the average of the three points; left and right common carotid (CC) force carotid bifurcation, internal carotid (internal carotid: IC) 3 longitudinal cross-section proximal wall to the skin (near wall ) And the distal wall (far wall) in total 12 thicknesses, the maximum value is AvglMT; and the left and right average thickness is AvglMT.
  • CC common carotid
  • IC internal carotid
  • the maximum value is AvglMT
  • the left and right average thickness is AvglMT.
  • the average thickness of a certain section of the far wall is defined as mean IMT.
  • the thickness of the far wall 10 mm from the central side of the bifurcation of the carotid artery on the one side is used as the target.
  • the plaque score is the sum of both the left and right carotid arteries with a plaque thickness of 1.1 mm or more at each site, with the carotid artery divided into four sections each 15 mm from the bifurcation. Also, The total number of plaques (IMT of 1.1 cm or more) in each of the above 3 to 4 sections can be called a plaque number (PN) and used as an index.
  • the carotid artery stiffness is a numerical value measured from the diameter of the carotid artery during systole and diastole.
  • the method using the thickening of the far wall 10mm central from the bifurcation of one carotid artery as an index is easy to measure, and it is said that the measurement error is small because there are few lesions in the common carotid artery.
  • IMT is an index indicating the largest lesion of the carotid artery.
  • PS can show the whole image of the carotid artery where arteriosclerosis has progressed, but in non-progressive cases (thickness is less than 1.1 mm), it is disadvantageous in that it becomes 0, etc. Different indicators are different. In cases with diabetes or hyperlipidemia, the carotid wall is often thickened relatively uniformly. AvglMT and mean IMT are important indicators. PS, PN and Max—IMT can be useful indicators.
  • ⁇ IMT average IMT increment
  • ⁇ PIMT maximum IMT increment
  • is a particularly preferable index as a comprehensive expression of the risk of arteriosclerotic disease.
  • is positioned as a clinical finding that is closely related to arteriosclerotic disease, and the method using it can determine the risk of arteriosclerotic disease very effectively.
  • the increased amount of carotid intima-media complex thickness can be used as it is to evaluate the risk of arteriosclerotic disease, but the increased amount of carotid intima-media complex thickness Therefore, it may be used for the evaluation using a function as appropriate.
  • the amount of increase in carotid intima-media thickness was calculated by the multiple regression analysis method based on the threshold value or threshold value measured from the population. It can be expressed by a coefficient.
  • the urinary albumin excretion rate g / mg'Cr is used as a disease determination index, the case or control determination based on the criteria shown in FIG. 9, and the disease degree used in the t-test To decide.
  • retinopathy the criteria shown in Fig. 10 are used to determine the degree of disease to be used in Case or Control judgment and t-test.
  • the gene polymorphism sets for disease risk determination for each disease are shown in Figs.
  • the table shown in Fig. 4 was obtained.
  • another disease risk determination gene polymorphism set can be determined using a positive t value.
  • a gene polymorphism set for determining the disease risk of arteriosclerotic disease, myocardial infarction, nephropathy, and retinopathy Fig. 17 to Fig. 20 respectively.
  • the gene polymorphism set shown in was obtained.
  • the present invention provides an array for determining a disease risk, which is used to determine the ease of disease progression and the ease of progression (disease risk) for a subject based on a genetic polymorphism possessed by the subject.
  • probes for detecting a gene polymorphism to be formed are aligned at high density and fixed on a support such as a silicon wafer or a glass slide.
  • the probe may be any probe that specifically recognizes and captures a gene polymorphism associated with a specific disease.
  • a probe having a base sequence corresponding to a gene polymorphism or a base sequence that is a part or all of a complementary sequence thereof can be mentioned.
  • the present invention particularly relates to an array for determining the risk of arteriosclerosis caused by diabetes, an array for determining the risk of myocardial infarction resulting from diabetes, and an array for determining the risk of nephropathy resulting from diabetes. And an array for determining the risk of retinopathy due to diabetes.
  • the arteriosclerotic disease risk determination array of the present invention can be used to determine the ease of developing an arteriosclerotic disease (ease of onset) and the ease of progression. Preferably, it can be used to determine the risk of arteriosclerotic disease in a subject with diabetes or its tendency.
  • the arteriosclerotic disease risk determination array of the present invention has a significant positive (susceptibility) relationship with the carotid intima-media thickness (IMT), which is a determination index for arteriosclerotic diseases.
  • IMT carotid intima-media thickness
  • Detection probes for gene polymorphisms that make up a positive (susceptible) gene polymorphism set and a negative (resistance) gene polymorphism set that has a significant negative (resistance) association
  • a probe for detecting a polymorphism of the gene is determined by the method for determining a genetic polymorphism for disease risk determination described in (1) above.
  • the t-value force shown in the explanation in can also be judged. In other words, it can be determined that there is a “negative relevance” when the t value is negative, and conversely when the t value is positive, there is a “positive relevance”.
  • the gene polymorphism set shown in FIG. 1 and FIG. 17 As a “gene polymorphism set” having a significant association with strenuous arteriosclerotic disease, Examples of the gene polymorphism set shown in FIG. 1 and FIG. More specifically, in FIG. 1 and FIG. 17, the combined force of gene polymorphisms (SNPs) listed in each row (one horizontal column) means one “gene polymorphism set significantly related to arteriosclerotic disease”.
  • the gene polymorphism set having a positive t value shown in FIGS. 1A and 17 is a “positive (susceptibility) gene polymorphism set for arteriosclerotic disease”, and the t value shown in FIG. 1B is A gene polymorphism set that is negative means “a negative (resistance) gene polymorphism set for arteriosclerotic disease”.
  • gene polymorphism means a gene polymorphism including a genotype, that is, a gene polymorphism having a specific genotype, as described above.
  • the gene polymorphism is shown as “GENE (abbreviation)” and the genotype is shown as “Genotype”. Detailed information on each gene polymorphism is shown in Figure 5.
  • the arteriosclerotic disease risk determination array of the present invention is a gene comprising at least one gene polymorphism set selected from the group power consisting of the gene polymorphism sets described in FIG. 1 and FIG. It has a probe for detecting polymorphism.
  • the selection of a gene polymorphism set is not particularly limited and can be arbitrarily performed. At that time, the t value described for each gene polymorphism set in each figure is used as an index.
  • the arteriosclerotic disease risk determination array of the present invention is a gene polymorphism that constitutes a gene polymorphism set highly related to IMT (that is, arteriosclerotic disease), as evaluated from such t values. It is preferable to provide a detection probe for IMT (that is, arteriosclerotic disease), as evaluated from such t values. It is preferable to provide a detection probe for IMT (that is, arteriosclerotic disease), as evaluated from such t values. It is preferable to provide a detection probe for
  • the forward force with a large I) is selected with priority.
  • the arteriosclerotic disease risk determination array of the present invention comprises a detection probe for a gene polymorphism constituting a positive (susceptibility) gene polymorphism set and a negative (resistance) gene polymorphism set. It is preferable to have both detection probes for the gene polymorphisms that constitute.
  • the arteriosclerotic disease risk determination array of the present invention may have detection probes for 133 gene polymorphisms shown in FIG. 5 as detection probes.
  • the arteriosclerotic disease risk determination array of the present invention can be used to evaluate the sensitivity and resistance to arteriosclerotic disease for a subject. Specifically, for example, the detection probe on the array and the probe prepared from the test sample are hybridized, and the gene polymorphism detected for the subject is corrected with the IMT, which is an index for determining arteriosclerotic disease. It can be carried out by collating with a gene polymorphism set having a negative association with IMT and a gene polymorphism set having a negative association with IMT.
  • Information obtained at this time can be used to assess a subject's susceptibility and resistance to arteriosclerotic disease.
  • the arteriosclerotic disease risk determination array of the present invention is used to evaluate the presence or absence of a risk for an arteriosclerotic disease and the level (existence and degree of progression). Can be used for This is because, for example, a detection probe on the array is hybridized with a probe whose test sample force is also prepared, the detected gene polymorphism is collated with a set of gene polymorphisms related to IMT, and the collation result has a predetermined result. It can be implemented by applying the judgment formula. Details on how to determine the risk of a disease are given below.
  • the myocardial infarction risk determination array according to the present invention can be used to determine the ease with which a myocardial infarction is applied (the likelihood of onset) and the ease with which it progresses. Preferably, it is used to determine the risk of myocardial infarction for diabetics or borderline diabetics. You can.
  • the myocardial infarction risk determination array of the present invention is a gene polymorphism that constitutes a “positive (susceptibility) gene polymorphism set” having a significant positive (susceptibility) relationship with a myocardial infarction determination index.
  • a detection probe for a gene polymorphism constituting a “negative (resistance) gene polymorphism set” having a negative (resistance) relationship is not particularly limited as long as it is conventionally used in the industry, but preferably, there is an old myocardial infarction wavelength (abnorma 1 Q) observed on an electrocardiogram. Alternatively, a history of myocardial infarction for the subject can be used.
  • t Value power can be judged. That is, it can be determined that there is a “positive relevance” when the t value is positive, and conversely when the t value is negative, there is a “negative relevance”.
  • the "gene polymorphism set” having a significant association with a strong myocardial infarction can include the gene polymorphism sets listed in Figs. More specifically, in FIG. 2 and FIG. 18, the combined power of gene polymorphisms (SNPs) listed in each row (one horizontal column) means one “gene polymorphism set significantly associated with myocardial infarction”.
  • the gene polymorphism set with positive t values shown in Fig. 2-A and Fig. 18 is the "positive (susceptibility) gene polymorphism set for myocardial infarction", and the t value shown in Fig. 2-B is negative. This means that the gene polymorphism set is “negative (resistance) gene polymorphism set for myocardial infarction”.
  • the myocardial infarction risk determination array of the present invention is a gene that constitutes at least one gene polymorphism set selected from the group power consisting of the gene polymorphism sets described in FIG. 2 and FIG. It has a probe for detecting polymorphism.
  • the selection of a gene polymorphism set is not particularly limited and can be arbitrarily performed. In this case, the t value described for each gene polymorphism set in FIGS. 2 and 18 can be used as an index.
  • the myocardial infarction risk determination array includes a detection probe for a gene polymorphism that constitutes a gene polymorphism set that is highly relevant to a myocardial infarction determination index by evaluating a powerful t-value force. I prefer that.
  • the myocardial infarction risk determination array of the present invention comprises a detection probe for a gene polymorphism constituting a positive (susceptibility) gene polymorphism set and a gene constituting a negative (resistance) gene polymorphism set. It is preferable to have both detection probes for polymorphism.
  • the present inventor is also useful for determining the risk of myocardial infarction, in particular, myocardial infarction caused by diabetes, and the gene polymorphism shown in Fig. 5 is useful. From the above, it was confirmed that the risk of myocardial infarction can be determined with high accuracy. Therefore, the myocardial infarction risk determination array of the present invention can also have detection probes for 133 gene polymorphisms shown in FIG. 5 as detection probes.
  • the myocardial infarction risk determination array of the present invention can be used for evaluating the resistance (hardness) to myocardial infarction for a subject, and for the subject to resistance to myocardial infarction and Can be used to assess susceptibility (susceptibility). Furthermore, the myocardial infarction risk determination array of the present invention can be used to evaluate the presence or absence of the risk of myocardial infarction and its level (presence or absence and degree of progression).
  • the risk of myocardial infarction can be determined by the same method as the above-described method for determining the risk of myocardial infarction.
  • the array for determining the risk of nephropathy of the present invention can be used to determine how easily diabetic nephropathy is likely to be exerted (easy to develop) or easily progress. Preferably, it can be used to determine the risk of nephropathy for diabetics or borderline diabetics.
  • the array for determining the risk of nephropathy of the present invention relates to gene polymorphisms constituting a “positive (susceptibility) gene polymorphism set” having a significant positive (sensitivity) relationship with a nephropathy determination index. It has a detection probe and a detection probe for a gene polymorphism constituting a “negative (resistance) gene polymorphism set” having a negative (resistance) relationship.
  • the index for determining nephropathy is not particularly limited as long as it is commonly used in the art, and preferably the urinary albumin excretion rate g / mg′Cr) can be used.
  • Whether the genetic polymorphism set has a “positive association” or “negative association” for nephropathy is shown in the explanation in the determination method in (1) above.
  • the t-value force can also be judged. That is, it can be determined that there is a “positive relevance” when the t value is positive, and conversely when the t value is negative, there is a “negative relevance”.
  • the “gene polymorphism set” having a significant association with striking nephropathy include the gene polymorphism sets shown in FIG. 3 and FIG. More specifically, in FIG. 3 and FIG. 19, it means “a set of gene polymorphisms significantly associated with nephropathy”, which is a combination of gene polymorphisms (SNPs) listed in each row (one horizontal column).
  • the gene polymorphism set with positive t values shown in Fig. 3-A and Fig. 19 is the "positive (susceptibility) gene polymorphism set for nephropathy", and the t value shown in Fig. 3-B is negative.
  • a gene polymorphism set means “a negative (resistance) gene polymorphism set for nephropathy”.
  • the array for determining the risk of nephropathy of the present invention comprises gene polymorphisms constituting at least one gene polymorphism set selected from the group consisting of gene polymorphism sets described in FIG. 3 and FIG. Has a probe for detection.
  • the ability to select a gene polymorphism set is not particularly limited and can be arbitrarily performed.
  • the t value described for each gene polymorphism set in FIGS. 3 and 19 can be used as an index.
  • the array for determining the risk of nephropathy of the present invention includes a detection probe for a gene polymorphism that constitutes a gene polymorphism set that is highly relevant to nephropathy by evaluating a powerful t-value force. Is preferred.
  • the nephropathy risk determination array of the present invention comprises a detection probe for a gene polymorphism set that constitutes a positive (susceptibility) gene polymorphism set and a negative (resistance) gene polymorphism set. It is preferable to have both detection probes for gene polymorphism.
  • the present inventor uses the gene polymorphism shown in Fig. 5 for the determination of the risk of nephropathy, particularly nephropathy due to diabetes, and uses the gene polymorphism to be effective alone or in combination. This confirmed that the risk of nephropathy can be determined with high accuracy. Therefore, the nephropathy risk determination array of the present invention may have detection probes for 133 gene polymorphisms shown in FIG. 5 as detection probes.
  • the nephropathy risk determination array of the present invention can be used for evaluating resistance to nephropathy for a subject, and also for nephropathy for a subject. Can be used to assess resistance and sensitivity (easy to apply). Furthermore, the nephropathy risk determination array of the present invention can be used to evaluate the risk of nephropathy in a subject and its level (presence / absence and degree of progression).
  • Determination of nephropathy can be performed by the same method as the above-described risk determination method for nephropathy.
  • the array for determining the risk of retinopathy of the present invention can be used to determine the likelihood of developing retinopathy (ease of onset) and the ease of progression. Preferably, it can be used to determine the risk of retinopathy for diabetics or borderline diabetics.
  • the array for determining the risk of retinopathy of the present invention comprises a gene constituting a “positive (susceptibility) gene polymorphism set” having a significant positive (susceptibility) relationship with a retinopathy determination index.
  • a detection probe for a polymorphism and a detection probe for a gene polymorphism constituting a “negative (resistance) gene polymorphism set” having a negative (resistance) relationship are included.
  • the determination index of retinopathy is not particularly limited as long as it is commonly used in the industry, but preferably clinical findings (normal, simple retinopathy, preproliferative retinopathy, proliferative retinopathy) ) Can be used as a determination index.
  • t Value power can be judged. In other words, it can be determined that there is a “positive relevance” when the t value is positive, and conversely when there is a negative t value, there is a “negative relevance”.
  • Specific examples of the "gene polymorphism set" that has a significant relationship with active retinopathy include the gene polymorphism sets listed in Figs. More specifically, in FIG. 4 and FIG.
  • the gene polymorphism sets with positive t values shown in FIG. 4A, FIG. 4B and FIG. 20 are “positive (susceptibility) gene polymorphism sets for retinopathy”, and the t values shown in FIG.
  • a negative polymorphism set means a negative (resistance) polymorphism set for retinopathy.
  • the array for determining the risk of retinopathy of the present invention is a gene polymorphism constituting at least one gene polymorphism set selected from the group consisting of gene polymorphism sets described in FIG. 4 and FIG. It has a detection probe for the mold.
  • the selection of gene polymorphism sets is not particularly limited and can be performed arbitrarily.
  • the t value described for each gene polymorphism set in FIGS. 4 and 20 can be used as an index.
  • the array for determining the risk of retinopathy of the present invention includes a probe for detecting a gene polymorphism that constitutes a gene polymorphism set that is highly relevant to retinopathy by evaluating a powerful t-value force. Is preferred.
  • the retinopathy risk determination array of the present invention comprises a detection probe for a gene polymorphism constituting a positive (susceptibility) gene polymorphism set and a gene constituting a negative (resistance) gene polymorphism set. It is preferable to have both detection probes for polymorphism.
  • the present inventor is also useful for determining the risk of retinopathy, in particular, retinopathy caused by diabetes, and the gene polymorphism shown in Fig. 5 is useful. It was confirmed that the risk of retinopathy can be determined with high accuracy. Therefore, the retinopathy risk determination array according to the present invention may have detection probes for 133 gene polymorphisms shown in FIG. 5 as detection probes.
  • the retinopathy risk degree determination array of the present invention is used for evaluating the resistance (reluctance) to retinopathy for a subject, similarly to the above-described atherosclerotic disease risk determination array. It can also be used to assess resistance and susceptibility (susceptibility) to retinopathy for a subject. Furthermore, the retinopathy risk determination array of the present invention should be used to evaluate the presence or absence of retinopathy and the level (existence and degree of ease of force and progression) of the subject. Is possible.
  • the determination of the risk of retinopathy can be performed by the same method as the method of determining the risk of retinopathy described above.
  • the disease risk determination array of the present invention described above has a probe other than the above within the scope of achieving the object of the present invention as long as it has a gene polymorphism detection probe corresponding to each disease. Or you may have a well-known probe suitably. In addition, the gene polymorphism detection probe may be appropriately labeled and used.
  • the disease determination array of the present invention can be prepared by a method of Affimetrix, which is synthesized on a base material in addition to a method of fixing a probe prepared on the base material.
  • a method of Affimetrix which is synthesized on a base material in addition to a method of fixing a probe prepared on the base material.
  • the substrate on which the probe is fixed there are no particular restrictions on the substrate on which the probe is fixed, and known materials such as a glass plate and a filter can be used.
  • the length of the probe to be immobilized and the type of nucleic acid to be used are not particularly limited as long as the gene polymorphism can be detected. It is desirable to amplify the region containing the gene polymorphism by PCR in advance.
  • the method of amplifying a region containing a gene polymorphism using a labeled primer can also preferably use points such as sensitivity and simplicity.
  • a region containing a gene polymorphism is amplified using a primer labeled with piotin, this is added to an array and hybridized, and then nucleic acid that has not been hybridized is washed. Excluded. Subsequently, the hybridized probe is detected with an avidin-labeled fluorescent dye.
  • gene polymorphism can be detected with high sensitivity.
  • the array for disease determination of the present invention includes the following embodiments:
  • the group power consisting of the gene polymorphism set described in Fig. 1 and Fig. 17 is also selected at least.
  • (B) Genes constituting a gene polymorphism set of more than half of the group consisting of the gene polymorphism set described in Fig. 1-A and Fig. 17 or the group consisting of the gene polymorphism set described in Fig. 1-B
  • (C) Myocardial infarction risk determination having a detection probe for a gene polymorphism constituting at least one gene polymorphism set in which the group power consisting of the gene polymorphism set described in FIG. 2 and FIG. 18 is also selected Array.
  • (D) Genes constituting the gene polymorphism set of more than half of the group consisting of the gene polymorphism set described in Fig. 2-A and Fig. 18 or the group consisting of the gene polymorphism set described in Fig. 2-B
  • Test specimen strength is also hybridized with the prepared probe and detected for the subject.
  • the detected polymorphisms are compared with the gene polymorphism sets that are significantly related to arteriosclerotic diseases, and the detected gene polymorphism sets!
  • the test sample force is also hybridized with the prepared probe, the gene polymorphism detected for the subject is compared with the gene polymorphism set significantly related to myocardial infarction, and the detected gene polymorphism set against myocardial infarction
  • test polymorphism is also hybridized with the prepared probe, and the gene polymorphism detected for the subject is compared with the gene polymorphism set significantly related to diabetic nephropathy, and the detected gene polymorphism
  • the test sample force is also hybridized with the prepared probe, and the gene polymorphism detected for the subject is matched with a gene polymorphism set significantly related to diabetic retinopathy to detect the detected gene polymorphism.
  • the determination apparatus, determination program, and determination method of the disease risk according to the present invention determine the degree of the subject's strength S, how easily the disease is affected, or how easily the disease progresses, and the determination of the disease (disease risk). Is to do.
  • an arteriosclerotic disease will be described as an example, but the present invention is not limited to this, and can be applied to a disease associated with a gene.
  • FIG. 7 shows an atherosclerotic disease risk determination device (hereinafter referred to as a determination device) according to the present invention. It is a block diagram which shows the whole system including. The configuration shown in FIG.
  • FIG. 7 is the same as the configuration disclosed in Patent Document 2. As shown in Fig. 7, blood collection means 11 and computer 12 installed in hospital 1, gene polymorphism analysis array 21 and computer 22 installed in analysis facility 2, and judgment installed in service provider 3 Device 31. Here, the computers 11 and 21 and the determination device 31 are connected to a communication line 4 such as the Internet.
  • the determination device 31 includes a CPU 32, a memory 33, a recording unit 34 such as a hard disk, a communication interface (hereinafter referred to as IZF) unit 35 for communication with the outside, an operation unit 36 such as a keyboard, A display unit 37 such as a CRT display, an input / output IZF unit 38, and an internal bus 39 for exchanging data between each unit are provided.
  • IZF communication interface
  • a display unit 37 such as a CRT display
  • an input / output IZF unit 38 an internal bus 39 for exchanging data between each unit are provided.
  • information on the genetic polymorphism set for determining disease risk is recorded as a reference table.
  • the reference table for each of arteriosclerotic disease, myocardial infarction, nephropathy, and retinopathy uses 133 gene polymorphisms, and the above-mentioned gene polymorphism for disease risk determination is used. This corresponds to the gene polymorphism set for disease risk determination shown in Figs.
  • the present invention uses a judgment formula determined by performing multiple regression analysis using environmental factors in addition to a gene polymorphism set for disease risk judgment. Thereby, the evaluation accuracy of the disease risk can be improved.
  • the details of the risk determination processing by the determination device 31 will be described later.
  • the overall operation of the system is the same as that disclosed in Patent Document 2, and the outline of the system is as follows.
  • the blood of the subject hereinafter referred to as a test sample
  • clinical data (subject ID, test value, medical history information, blood collection information, etc.) is recorded in the recording unit of the computer 12.
  • the test sample is provided to the analysis facility 2 and analyzed using the gene polymorphism analysis array 21 to detect a gene polymorphism having a genotype.
  • the array 21 for gene polymorphism analysis for example, the above-described array for determining the degree of risk of arteriosclerosis can be used.
  • the detected genetic polymorphism information is once recorded in the recording means of the computer 22, and then the service provider 3 via the communication line 4. It is transmitted to the judgment device 31.
  • the determination device 31 receives the genetic polymorphism information via the communication IZF unit 35 and records it in the recording unit 34. Further, the determination device 31 receives clinical data from the computer 12 and records it in the recording unit 34. Thereafter, the determination device 31 searches whether or not the received gene polymorphism is included in the reference table recorded in the recording unit 34 in advance, and the risk of arteriosclerotic disease is determined according to the result. Determine. Further, the determination device 31 transmits the determination result to the computer 12 of the hospital 1 via the communication line 4.
  • the determination result received by the computer 12 is recorded in the recording unit of the computer 12 in association with the clinical data (at least the subject ID), and is appropriately called and used (for example, presented to the subject).
  • Information specifying the computer 12 of the hospital 1 that transmits the determination result may be included in the clinical data from the computer 12 of the hospital 1 and transmitted.
  • any method can be used as long as it is a method for detecting the genotype of the subject.
  • a test sample containing DNA such as blood, sputum, skin, bronchoalveolar lavage fluid, other body fluids or tissues of the subject is used.
  • Many analysis methods are known, for example, sequencing method, PCR method, ASP-PCR method, TaqMan method, Invader Atsey method, MALDI-TOF ZMS method, molecular beacon method, ligation method, etc. (Clin. Chem. 43: 1114—1120, 1997).
  • the sequencing method is a method for directly sequencing a DNA region containing a gene polymorphism.
  • a specific gene polymorphism is specifically amplified using primers specific to the gene polymorphism.
  • Allele Specific Primer (ASP) The second gene from the 3' end as in the PCR method.
  • Primer design such as how to place a polymorphism in a primer, and what kind of nucleic acid sequence to put in addition to the gene to be detected There is no particular limitation as long as the gene polymorphism can be identified.
  • an allele-specific probe labeled at both ends with a fluorescent dye and a quenching substance is hybridized to the target site, and a PCR reaction is performed with primers designed to amplify the region containing this site.
  • Taq polymerase's 5 prime nuclease activity The fluorescent dye present at the 5 'end of the hybridized probe is cleaved and separated from the quencher to generate fluorescence. This technique shows how much the allele-specific probe was hybridized.
  • an allele probe that has a specific sequence 5 'from the ⁇ type gene polymorphic site and a flap sequence on the 3' side, and 3 'of the ⁇ ⁇ ⁇ type gene polymorphic site force.
  • an invader probe with a specific sequence on the other side and three oligonucleotides with a FRET probe containing a sequence complementary to the flap sequence, allele probes are hybridized on the same principle as the TaqMan method. Can be identified.
  • the MALDI-TOF / MS method a primer adjacent to the gene polymorphic site is prepared and amplified, and then only one base of the gene polymorphic site is amplified using ddNTP.
  • the polymorphism is identified by identifying the type of ddNTP attached.
  • DNA chip methods such as the Hybrigene method, an oligonucleotide probe containing a gene polymorphism is placed on the array, and hybridization with sample DNA amplified by PCR is detected. .
  • FIG. 8 is a flowchart showing the determination process performed by the determination device 31.
  • the risk determination processing by the determination device 31 will be specifically described with reference to the flowchart of FIG. In the following, it is described as processing performed by the CPU 32 unless otherwise specified.
  • the CPU 32 uses the memory 33 as a work area or an area for temporarily storing data in the middle of processing, and records data in the middle of processing and processing results in the recording unit 34 as necessary.
  • step S21 genetic polymorphism information is acquired from the analysis organization 2 via the communication line 4, and recorded in the recording unit 34.
  • a set of genetic polymorphism codes (each set represented by G) is recorded as a reference table corresponding to Fig. 1.
  • step S23 it is determined whether or not the plurality of flags in which the processing results in step S22 are recorded for each set are all 0, and the flags are all 0, that is, the gene polymorphism code set is referenced. If it is not in the table, the process proceeds to step S25. If any flag is set to a value other than 0, the process proceeds to step S24.
  • step S24 the degree of risk is determined using a predetermined determination formula according to the value of each flag in which the processing result in step S22 is recorded.
  • the determined risk is recorded in the recording unit 34 in association with ⁇ Hospital Code, Subject ID ⁇ .
  • the degree of disease value determined according to the disease judgment index
  • the regression equation determined by conducting multiple regression analysis is used as a variable. That is, for the calculation of the value of the judgment formula, the value of the environmental factor included in the clinical data recorded in the recording unit 34 and the value of the flag that is information on the gene polymorphism set are used.
  • is i i j j mn m n for each i, j, m, n
  • A, b, d and c are partial regression coefficients determined by multiple regression analysis.
  • Sex sex, age, disease duration, systolic blood pressure, blood total cholesterol level, blood neutrality, respectively. They are fat level, blood HbAlc level, blood HDL level, BMI (Body-mass-index), and smoking calendar.
  • CSNP is a gene
  • the IMT value is used as the objective variable, and the set shown in Fig. 1 is used as the gene polymorphism set.
  • Environmental factors include, for example, sex, age, BMKBody-mass-index), disease duration, systolic blood pressure (SBP), blood HDL level, blood HbAlc level, blood total cholesterol level, blood neutrality. Use fat level (TG), smoking calendar, etc.
  • SBP systolic blood pressure
  • TG blood total cholesterol level
  • smoking calendar etc.
  • the value y obtained by this judgment formula can be used as the risk level as it is, but it can be classified into multiple ranks according to y.
  • Steps S22 to S24 are repeated until it is determined in step S25 that all ⁇ hospital code, subject ID ⁇ have been completed.
  • step S26 When processing is completed for all ⁇ hospital code, subject ID ⁇ , in step S26, a risk code corresponding to the risk determined in step S24 (for example, a high risk level or a low risk level). (Corresponding code) and the subject ID are transmitted to the computer 12 corresponding to the hospital code via the communication line 4.
  • any other index may be used as long as it indicates the degree of sclerosis of the carotid artery.
  • Max-IMT maximum IMT
  • AvglMT average IMT
  • PS plaque score
  • cervical heart rate etc.
  • the apparatus of the present invention can be an apparatus to which other means are appropriately added as necessary as long as the above-described determination function can be realized.
  • the value y determined by the above judgment formula is an analog value, it can be used for future prediction. For example, for a specific individual, the explanatory variable age can be changed, and the change in risk due to the age of calories can be predicted. Therefore, it is possible to predict the future risk level for younger subjects who have not yet thickened at the time of measurement. As a result, when the degree of risk is high, prevention of lifestyle habits can be performed, and the onset of arteriosclerotic diseases can be prevented.
  • the average value used at this time for example, the average value of the corresponding explanatory variable can be used for each patient data that is an element of the set used to determine the determination formula.
  • the average value of the entire set of test values can be obtained, and for sex, for example, 1 and 2 can be assigned to men and women, respectively, and the average can be obtained.
  • sex for example, 1 and 2 can be assigned to men and women, respectively, and the average can be obtained.
  • gene polymorphism sets for example, assign a value of 1 or 0 according to the presence or absence, and calculate the average value of the entire set.
  • the determination apparatus of the service providing organization uses the genetic polymorphism information of the subject acquired from the analysis organization as a determination target.
  • the individual's genetic polymorphism information analyzed in the past is recorded in some recording means (for example, portable recording means such as an IC card or a memory card provided for each individual). It may be read out and the disease risk determination process may be performed. Since the genetic information of living organisms does not change, if genetic polymorphism information that has been analyzed once is recorded, even if the reference table or risk criteria is changed and the accuracy of judgment is improved, genetic information is again obtained. The burden on subjects who do not need to collect blood for child analysis is reduced.
  • the individual's genetic polymorphism information obtained from the analysis institution is recorded in the database of the service provider in correspondence with the individual ID, and the individual ID is notified to each individual. It is possible to determine the risk level again using the corresponding gene polymorphism recorded in the database.
  • the application target of the disease risk determination method according to the present invention is not limited to arteriosclerotic diseases, and can also be applied to myocardial infarction, nephropathy, and retinopathy as described below.
  • the myocardial infarction risk determination method of the present invention can be used to determine the likelihood of myocardial infarction and the ease of progression. Preferably, it can be used to determine the risk of myocardial infarction (e.g., predisposition to progression, etc.) for diabetic patients or prone patients (boundary diabetes).
  • myocardial infarction e.g., predisposition to progression, etc.
  • a table corresponding to Fig. 2 may be used as a reference table used to determine the risk level related to myocardial infarction.
  • the disease index is binary data (0 or 1)
  • multiple logistic regression analysis is used instead of normal multiple regression analysis. Since multiple logistic regression analysis is well-known, description is abbreviate
  • the nephropathy risk determination method of the present invention can be used to determine the likelihood of nephropathy and the ease of progression. Suitably, it can be used to determine the risk of nephropathy (ease of susceptibility, ease of progression, etc.) for diabetics or prone patients (boundary diabetes).
  • the reference table used to determine the risk level for nephropathy is a table corresponding to FIG. Use a single bull.
  • the retinopathy risk determination method of the present invention can be used to determine the likelihood of retinopathy and the likelihood of progression. Preferably, it can be used to determine the risk of retinopathy (susceptibility, ease of progression, etc.) for diabetics or prone patients (boundary diabetes).
  • tables corresponding to Figs. 1 to 4 are used as reference tables for determining the risk of arteriosclerotic disease, myocardial infarction, nephropathy and retinopathy, respectively.
  • tables corresponding to FIGS. 17 to 20 may be used as reference tables for determining the risk of arteriosclerotic disease, myocardial infarction, nephropathy and retinopathy, respectively.
  • the present invention provides genetic markers that are significantly related to arteriosclerotic diseases caused by diabetes.
  • the gene marker can be suitably used for detection and selection of a genetic polymorphism associated with arteriosclerotic disease for a test sample.
  • Such genetic markers include genetic markers that are resistant to and sensitive to arteriosclerotic diseases. Specifically, it includes gene polymorphisms constituting at least one gene polymorphism set selected from the group power consisting of the gene polymorphism sets described in FIG. 1 and FIG.
  • the gene polymorphisms constituting the gene polymorphism set shown in FIGS. 1A and 17 are used as gene markers that are resistant to arteriosclerotic diseases.
  • Can include gene polymorphisms constituting the gene polymorphism set shown in FIG. 1B.
  • the present invention also provides a genetic marker that is significantly related to myocardial infarction due to diabetes.
  • the gene marker can be suitably used for the detection or selection of a genetic polymorphism associated with myocardial infarction for a test sample.
  • the powerful genetic markers include a genetic marker that exhibits resistance to myocardial infarction and a genetic marker that exhibits sensitivity.
  • the gene polymorphism sets included in FIG. 2 and FIG. 18 include gene polymorphisms constituting at least one gene polymorphism set to be selected.
  • the gene polymorphisms constituting the gene polymorphism set shown in Fig. 2-A and Fig. 18 are used.
  • As gene markers that show resistance to myocardial infarction Fig. 2 is used.
  • the gene polymorphisms that make up the gene polymorphism set shown in B can be listed.
  • the present invention further provides genetic markers that are significantly related to nephropathy caused by diabetes.
  • the gene marker can be suitably used for detecting or selecting a gene polymorphism associated with nephropathy in a test sample.
  • Energetic genetic markers include genetic markers that are resistant to and sensitive to nephropathy. Specifically, it includes gene polymorphisms constituting at least one gene polymorphism set from which the group power consisting of the gene polymorphism sets described in FIG. 3 and FIG. 19 is also selected.
  • the gene polymorphisms that make up the gene polymorphism set shown in Fig. 3-A and Fig. 19 are used as gene markers that are resistant to nephropathy.
  • genetic markers that are significantly related to nephropathy are used for detection and selection of genetic polymorphisms associated with nephropathy, as well as genetic markers for the determination and measurement of nephropathy. It can also be used as such.
  • the present invention further provides a genetic marker that is significantly related to retinopathy caused by diabetes.
  • the gene marker can be suitably used for detection or selection of a gene polymorphism associated with retinopathy in a test sample.
  • Such genetic markers include genetic markers that are resistant to retinopathy and genetic markers that are sensitive. Specifically, it includes gene polymorphisms constituting at least one gene polymorphism set selected from the group power consisting of the gene polymorphism sets described in FIG. 4 and FIG.
  • the gene polymorphisms that make up the gene polymorphism set shown in Figure 4-A, Figure 4-B, and Figure 20 are resistant to retinopathy. Examples of gene markers include gene polymorphisms constituting the gene polymorphism set shown in FIG. 4C.
  • the gene polymorphism analysis kit of the present invention is a primer pair capable of specifically amplifying a gene constituting at least one gene polymorphism set selected from a gene polymorphism set group significantly related to a disease. Or a nucleic acid probe capable of specifically hybridizing to the gene or its amplification product.
  • the analysis kit can be suitably used as an analysis kit for detecting a disease-related gene polymorphism.
  • the gene polymorphism set there can be mentioned at least one gene polymorphism set in which the group power consisting of the gene polymorphism sets described in Fig. 1 and Fig. 17 is also selected.
  • An analysis kit comprising a primer pair that can specifically amplify a gene constituting such a gene polymorphism set, or a nucleic acid probe that can specifically hybridize to the gene or its amplification product, is an arterial disease caused by diabetes. It can be suitably used as an analytical kit for detecting genetic polymorphisms significantly related to sclerotic diseases.
  • the gene polymorphism set there can be mentioned at least one gene polymorphism set in which the group power composed of the gene polymorphism sets shown in Fig. 2 and Fig. 18 is also selected.
  • an analysis kit containing a nucleic acid probe capable of specifically hybridizing to the gene or its amplification product is preferably used as an analysis kit for detecting a gene polymorphism significantly associated with myocardial infarction caused by diabetes. it can.
  • At least one gene polymorphism set in which the group power of the gene polymorphism set described in Fig. 3 and Fig. 19 is also selected can be mentioned.
  • An analytical kit containing a primer pair that can specifically amplify a gene that constitutes a gene polymorphism set, or a nucleic acid probe that can specifically hybridize to the gene or its amplification product is caused by diabetes It can be suitably used as an analytical kit for detecting genetic polymorphisms significantly related to nephropathy.
  • At least one gene polymorphism set selected from the group power of the gene polymorphism set described in FIG. 4 and FIG. 20 can be mentioned.
  • An analysis kit comprising a primer pair that can specifically amplify a gene constituting such a gene polymorphism set, or a nucleic acid probe that can specifically hybridize to the gene or its amplification product, is a retina caused by diabetes. It can be suitably used as an analysis kit for detecting a genetic polymorphism significantly associated with the disease.
  • the gene polymorphism analysis kit of the present invention comprises a primer pair or a nucleic acid probe as described above, other nucleic acids or reagents, etc. within the range not impairing the object of the present invention. May be included as appropriate.
  • primers or probes for detecting the gene polymorphisms constituting these sets it is necessary to have primers or probes for detecting the gene polymorphisms constituting these sets. Even if one gene polymorphism includes a gene polymorphism detection primer and the other gene polymorphism includes a gene polymorphism detection probe, as long as the gene polymorphism can be analyzed, Included in genetic polymorphism analysis kit
  • the detection of a gene polymorphism can be performed using the method described in the above gene polymorphism detection step, but the hybrigene method using PCR, TaqMan method, invader method, and gene polymorphism.
  • An ASP-PCR method using a nucleic acid probe that specifically hybridizes to a gene having an amino acid can be suitably used.
  • the gene polymorphism analysis kit includes a process for detecting these gene polymorphisms. At least one of the primers and probes to be used must be included. In PCR methods for detecting genetic polymorphism, it is common to place the polymorphic nucleic acid at the 3 'end. Allele Specific Primer (ASP) — Like the PCR method, the 3' end As in the method of placing a primer with gene polymorphism in the second side, the primer where the gene polymorphism is placed in the primer, and what nucleic acid sequence other than the gene to be detected is inserted There is no particular limitation on the design of the gene as long as it can identify the gene polymorphism. Similarly, in the design of a probe, as long as a gene polymorphism can be identified, the sequence can be used without restriction.
  • the disease risk determination formula y is an analog value, and the time-related factors are It can be used to predict the future of the disease. Therefore, if the disease risk obtained by changing environmental factors related to time can be presented so that it can be easily understood by the patient, it is effective in clinical practice.
  • the method will be described below.
  • similar to the risk determination process for four diseases myocardial infarction, nephropathy, retinopathy, and arteriosclerotic disease caused by diabetes explained using the flowchart shown in FIG.
  • the processing performed by the determination device 31 will be described. Further, unless otherwise specified, it is described as a process performed by the CPU 32 of the determination device 31.
  • FIG. 11 is a flowchart showing the onset prediction presentation function of the determination apparatus 31.
  • step S31 in order to designate a subject (also referred to as a patient) who is a subject of the onset prediction, the subject ID entered by operating the operation unit 36 is temporarily stored in the memory 33.
  • step S32 information corresponding to the subject ID temporarily stored in the memory 33 in step S31 is read from the recording unit 34 to the memory 33.
  • the information read out at this time includes the subject's genetic information (presence of genetic polymorphism), environmental factors (sex, age, BMI, disease duration, systolic blood pressure (SBP), blood HDL level, blood HbAlc value, This is a test value of blood total cholesterol level, blood neutral fat level (TG), smoking calendar, etc.).
  • step S33 the risk determination equation (regression equation) y corresponding to the disease is read from the recording unit 34 to the memory 33.
  • step S24 ⁇ a G + ⁇ b E + ⁇ d EG + c, where each coefficient a, b, d, c is a given population
  • step S34 the subject information (presence / absence of gene polymorphism set, environmental factor value) read in step S32 is applied to the judgment formula y read in step S33, and the same as in step S24.
  • Calculate the risk At this time, for the environmental factors (age, disease duration, etc.) related to time that is not just calculated by using the current environmental factor value of the subject, the value obtained by adding the predetermined time to the current value is used. To calculate the risk. For example, the risk is calculated using the value obtained by adding 5 to each of the current age and disease duration.
  • the calculated risk can be considered as a predictive value of the subject's disease severity 5 years from now.
  • the current inspection data is used for environmental factors not related to time.
  • step S35 it is determined whether or not the current risk level and the predicted value of the future disease level have been calculated for all the four diseases described above. Return to step S33. As a result, the processes in steps S33 to S34 are repeated, and the current state and future degree of disease related to myocardial infarction, nephropathy, retinopathy, and arteriosclerotic disease are obtained.
  • step S36 the calculation results are recorded in the recording unit 34, the calculation result presentation method menu is displayed on the display unit 37, and the selection from the operation unit 36 is accepted. .
  • step 37 it is determined whether or not "radar chart display" is selected. If it is determined that the radar chart display is selected, the process proceeds to step S38 , and step S33.
  • FIG. 12 is a diagram showing an example of a radar chart displayed on the display unit 37.
  • Fig. 12 on each of the left and right radar charts, an axis representing the disease degree of each disease is drawn radially from the central origin, and the grade of each disease (degree of disease) is shown near each axis. Is displayed.
  • the radar chart on the left displays the current risk level (solid line) for each subject along with the mean (dashed line) of the same generation of diabetics!
  • the risk of each disease after 5 years (dotted line) is displayed along with the current risk of each disease (solid line).
  • the average value of each disease is an average value obtained in advance from the disease level of a diabetic patient of the same age as the subject with respect to the data set of the diabetic patient used to determine the risk assessment formula y. Recorded in Part 34.
  • the grade display differs depending on the disease, and also depends on the objective variable used to derive the risk judgment formula y for each disease.
  • Fig. 12 shows the case where Max-IMT is used as the objective variable for arteriosclerotic diseases, and the Max-IMT value is at the position on the axis corresponding to 0.8, 1.4, and 2.8. Each value (0.8, 1.4, 2.8) is displayed.
  • the urinary albumin excretion rate (g / mg'Cr) is used as the objective variable, and the criteria shown in Fig. 9 indicate ⁇ None '' at the positions on the axes corresponding to the disease degrees 1, 2, and 3, respectively. ”,“ Early ”, and“ obvious ”.
  • “None”, “early”, and “apparent” mean “no nephropathy (normal)”, “early nephropathy”, and “apparent nephropathy”, respectively, and are used in actual practice Is an expression.
  • the expression used in actual practice is “none” at the position on the axis corresponding to the degree of disease 1, 2, 3, 4 , “Simpleness”, “Preproliferative”, and “Proliferative” are displayed.
  • myocardial infarction myocardial infarction incidence is used as the objective variable, and myocardial infarction incidence (disease degree) by age shown in Fig.
  • the myocardial infarction incidence corresponding to the age of the subject is 1Z8 times , 1x, 3x, and 5x on the axis corresponding to the values, ⁇ Same as healthy people '', ⁇ Same as diabetics of the same generation '', ⁇ History of myocardial infarction '', ⁇ First time recurrence “Risk”.
  • the myocardial infarction incidence value corresponding to the age of the subject and the above magnification are displayed side by side. In FIG.
  • step 39 it is determined whether or not “onset prediction graph display” is selected, and if it is determined that onset prediction graph display is selected, the process proceeds to step S40, and the recording unit 34 as in step S38. The risk level of each disease related to the subject is read out from this, and an onset prediction graph is created and displayed on the display unit 37.
  • FIG. 14 is a diagram illustrating an example of the onset prediction graph displayed on the display unit 37.
  • Fig. 14 four graphs present information for each disease, the horizontal axis represents the disease degree of each disease, and the vertical axis represents the onset frequency (number of corresponding data) corresponding to the disease degree. is there.
  • the curve is a graph showing the incidence of patients of the same age as the subject in the diabetic patient data set used to determine the risk criterion y, and this is superimposed on the subject's current risk and 5 years later. The predicted value of the disease degree and the average value of each disease of the same age are drawn.
  • the horizontal axis for each disease is accompanied by a letter indicating the Great.
  • step 41 it is determined whether or not “presentation of therapy” is selected, and if it is determined that presentation of therapy is selected, the process proceeds to step S42.
  • step S42 the risk level of each disease related to the subject is read from the recording unit 34 in the same manner as in step S38, and a bubble chart is created.
  • step S43 a treatment method corresponding to each examination data is read from the recording unit 34 and displayed on the display unit 37 together with the bubble chart created in step S42.
  • FIG. 15 is a diagram showing an example of a bubble chart displayed on the display unit 37.
  • Fig. 15 four partial forces (a) to (d) arranged in the horizontal direction are also configured.
  • the names of environmental factors that can be changed by treatment among the environmental factors included in the risk assessment formula y for the four diseases are displayed.
  • the test values of each environmental factor obtained by the test are classified using known guidelines for each disease, and a circle with a size corresponding to the classification is drawn (No. 1). 1 bubble chart).
  • four diseases are arranged in the horizontal direction, and a circle with a size corresponding to the contribution of environmental factors in each disease is drawn in the vertical direction (second bubble chart).
  • part (d) a list of countermeasures (including treatment methods) for bringing the test values of each environmental factor closer to those of healthy individuals is displayed.
  • the indication “HbAlc (disease duration)” The HbAlc test value is used to determine the size of the circle drawn in the first bubble chart on the right, and the disease duration is used to determine the size of the circle drawn in the second bubble chart on the left. Indicates that it is used.
  • the size (for example, diameter) of the circle drawn in the first bubble chart shown in (c) is disclosed in, for example, “Diabetic Treatment Guidelines” (edited by the Japan Diabetes Society). It can be determined according to the classification. In other words, if the range of each test value and the parameter for designating a circle having a size indicating the degree of disease corresponding to the range are recorded in the recording unit 34 in advance as a table corresponding to each other. When the test value of each environmental factor of the subject is determined to which test value range in the table of the recording unit 34, the corresponding parameter is determined and the size of the circle to be drawn is determined. .
  • the treatment ranking shown in (d) will be described.
  • the degree of disease is classified according to each test value, and there are usually several known countermeasures to improve each test value. Accordingly, the range of each inspection value and the text data indicating the countermeasure corresponding to the range are associated with each other, and the rank information is attached to the countermeasure, and the table is previously stored in the recording unit 34 as a table. If it is recorded, the test value of each environmental factor of the patient. If the test value range in the table of the recording unit 34 is determined, the corresponding countermeasure (including rank information) is determined and the response Text data to be presented.
  • CSNP3 SNP-No.l-3 and SNP-No.89-3 (ie ABCA1-3 and IL-10 (C-819T) -3)
  • CSNP6 SNP-No.l-3 and SNP-No.121 — 23 (ie ABCA1—3 and GLUT (Xbal) —23)
  • CSNP10 SNP-No.3-1— and SNP-No.69—1 (ie ACE-1 and CD18 (C1323T) _ 1)
  • CSNP14 SNP -No.4—23 and SNP-No.86—12 (ie a-estrogen—23 and IL-18 (C-607A) —12)
  • CSNP16 SNP-No.5-3 and SNP-No.32-3 (ie Enos786-3 and MTHFR (C677T) _3)
  • CSNP26 SNP-No.17-12 and SNP-No.28-1 (ie , Fractalkine—receptor-12 and angio tensinogen_l)
  • CSNP90 SNP-No.86—12 and SNP-No.125—1 (ie IL-18 (C-607A) —12 and RANTES (-28CG) —1)
  • the size of the circle to be drawn is determined according to the size of the product of each environmental factor and the coefficient including the gene polymorphism set. That is, the size of the circle is determined by whether the value of this product is less than the first quartile, greater than the first quartile, less than the third quartile, or greater than the third quartile. .
  • the first quartile and the third quartile are the distribution products of the product of each environmental factor and the coefficient including the gene polymorphism set in the diabetic patient data set used to determine the criterion y. Calculated from the above.
  • the first and third quartiles used to determine the size of the circle drawn for total cholesterol are the product of the coefficients that include the total cholesterol and gene polymorphism sets for the entire data set. Is done.
  • the total cholesterol with interaction term is as follows. Calculate the product of the coefficients including total cholesterol and gene polymorphism set in the judgment formula y, and if the product value is 0 and the first quartile holds, If the quantile product value ⁇ the third quartile holds, the second circle is drawn. If the third quartile product value holds, the third circle is drawn. Where the three circles are number 1, The second and third circles increase in order. For each environmental factor that has an interaction term, the same calculation is performed to determine the size of the circle to be drawn.
  • Fig. 16 shows an example of the criteria for determining the size of the circle for each disease.
  • the numbers 1 to 3 at the beginning of each criterion correspond to the size of the circle to be drawn.
  • the circles drawn in the order of 1, 2, and 3 become larger.
  • step S44 it is determined whether or not an end instruction is given, and steps S37 to S43 are repeated until an end instruction is given.
  • the predicted value of the future disease level can be presented as a radar chart and an onset prediction graph to the patient in an easy manner.
  • the countermeasures corresponding to the test results can be ranked and presented, and the effect of each change in the test results on the risk level of each disease can be presented in a bubble chart.
  • the process performed by the determination device 31 has been described, and the case where the process result is displayed on the display unit 37 has been described.
  • the present invention is not limited to this. Instead of displaying the results processed by the judgment device 31 on the display unit 37, the radar chart, the symptom prediction graph, and the bubble chart as shown in FIGS. 12, 14, and 15 are printed on paper or electronic data. May be recorded on a recording medium and sent to Hospital 1.
  • the processing result may be transmitted from the determination device 31 to the computer 12 of the hospital 1 via the communication line 4 (see FIG. 7).
  • the doctor operates the computer 12 to access the determination device 31 and designates the patient's ID, and the corresponding processing result, i.e., a radar created in advance. Request charts, onset prediction graphs, and bubble charts.
  • the computer 12 can present the received processing result to the patient by displaying it on a graphical display device.
  • hospital 1 computer In response to the access from 12, the determination device 31 performs processing in real time, generates a radar chart, an onset prediction graph, and a bubble chart, and transmits the result to the computer 12 via the communication line 4. ,.
  • the risk judgment formula is a regression formula determined by multiple regression analysis using a patient data set.
  • the judgment formula is not limited to this.
  • the judgment formula is a formula including genetic factors (gene polymorphism set) and environmental factors, and at least some of the environmental factors may be environmental factors (age, disease duration, etc.) related to time.
  • obtaining the predicted value of the future disease degree in step S34 is not limited to five years later. Also, calculate the predicted values after multiple years, and generate a radar chart and an onset prediction graph.
  • onset prediction graphs are presented side by side as shown in FIG. 14 .
  • the present invention is not limited to this, and one onset prediction graph may be presented.
  • the predicted value of the disease level after 5 years, and the average value of each disease of the same age instead of drawing all of the current risk level of the subject, the predicted value of the disease level after 5 years, and the average value of each disease of the same age, only a part may be presented. For example, you may draw only the subject's current risk and the average value of each disease of the same age, or the subject's current risk and only the predicted value of the disease after 5 years. .
  • the environmental factors shown in Fig. 15 are examples, and bubble charts may be generated including other environmental factors.
  • a bubble chart with a different circle size has been described.
  • the present invention is not limited to this, and the influence on the risk determination formula y when each inspection value changes is large.
  • Any bubble chart may be used to visually represent this.
  • a different color circle may be drawn according to the classified values of 0 to 3 in FIG. 16, or a circle of a different color may be drawn depending on 0 to 3. .
  • polygons such as triangles and squares and other shapes may be drawn.
  • the above describes a bubble chart in which a plurality of diseases are arranged in a horizontal direction. It is not limited to this, and it may be a bubble chart related to one disease.
  • test result of the environmental factor is within a range that does not require treatment, and the necessity of treatment can be presented according to the present invention even when treatment is not performed conventionally. Therefore, it is possible to provide a tailor-made environment where patients can receive appropriate treatment.
  • Predictive presentation method there is a term related to environmental factors and gene polymorphism sets, especially an interaction term between environmental factors that can change over time and variables indicating the presence or absence of gene polymorphism sets. He explained that by focusing his attention, he can predict the onset of disease at an early stage and present the need for treatment. In the following, we will explain a method for determining the necessity of coping with the disease, further expanding this idea.
  • the determination formula of the disease risk can be obtained by a method other than the multiple regression analysis. Therefore, it is assumed here that the judgment formula is expressed by a more general function. However, the judgment formula shall include at least the product of the environmental factor function and the gene polymorphism set.
  • the disease risk criterion R is an arbitrary function f (x) whose environmental factor E is a variable X, and a variable G that represents the presence or absence of a gene polymorphism set (hereinafter, simply Gene polymorphism set G)).
  • R ⁇ ⁇ f (E) XG ⁇ + ⁇ ⁇ ⁇ ⁇ (Equation 1)
  • represents the addition for each i and j, that is, the addition for each environmental factor and gene polymorphism set.
  • does not include the genetic polymorphism set G at all, and is a function consisting of only environmental factors ⁇ and constants.
  • the gene polymorphism set is, for example, a gene polymorphism set determined according to the disease by, for example, “(1) Method for determining gene polymorphism for disease risk determination” (for example, FIG. 1 to FIG. Fig. 4 and Figs. 17-20).
  • Each function f (x) may be various functions such as a higher-order polynomial, a trigonometric function, and an exponential function in addition to the linear expression described above.
  • FIG. 21 are graphs showing the judgment formula R of two different subjects (referred to as A and B) related to a certain disease.
  • the vertical axis represents the disease risk level R
  • the horizontal axis X represents the environmental factors that can change among the environmental factors E.
  • the judgment formula R contains a plurality of variable environmental factors, so the judgment formula R is a multidimensional curved surface.
  • a is the current value of the environmental factor X
  • X b is the value of the environmental factor x changed by the ⁇ force predetermined value ⁇
  • R The value of R is represented by R and R. Therefore, ⁇ is not a single value (scalar) Change value ⁇ relates; environmental factors E represents a set of a vector quantity.
  • r is a reference value for determining the necessity of coping according to the degree of disease. Here, it is assumed that some treatment is necessary when R> r.
  • the degree R is sufficiently smaller than the reference value r (R ⁇ r) force If the value of the environmental factor x changes to x,
  • Risk R is expected to exceed the reference value r (R> r) and be considered as needing treatment d
  • FIG. 22 is a flowchart relating to a method for determining the necessity of coping with a disease using the determination formula of Formula 1.
  • a specific description will be given with reference to FIG.
  • each process is executed using the CPU power memory 33 of the determination device 31 as a work area, and the intermediate result and final result of the process are recorded in a predetermined area of the recording unit 34 as necessary.
  • the judgment formula and reference value r expressed by Equation 1 are recorded in the recording unit 34 for each disease, and subject information (test values of environmental factors, presence / absence of genetic polymorphism set) corresponds to the subject ID. And recorded in the recording unit 34.
  • step S51 the subject ID inputted by operating the operation unit 36 to designate the subject is temporarily stored in the memory 33.
  • step S52 information corresponding to the subject ID temporarily stored in the memory 33 in step S51 is read from the recording unit 34 to the memory 33.
  • Information read at this time includes the subject's genetic information (presence or absence of gene polymorphism set), environmental factors (sex, age, BMI, disease duration, systolic blood pressure (SBP), blood HDL value, blood HbAlc value , Blood total cholesterol level, blood triglyceride level (TG), smoking calendar, etc.).
  • step S53 designation of the disease is accepted, and in step S54, the disease risk judgment formula R and the reference value!: Corresponding to the disease designated in step S53 are stored in the memory 33 from the recording unit 34. read out.
  • step S55 the determination formula R for the subject specified in step S51 is applied to the determination formula scale read in step S54 by applying the presence or absence of the gene polymorphism set in the subject information read in step S52. From the relationship between the degree of change in this criterion R and the reference value r, the necessity of countermeasures is determined.
  • Subject has a specific gene polymorphism set G
  • the current risk factor R (R, R in Fig. 21) is first calculated by substituting the current environmental factor value into the judgment formula R.
  • Necessity of handling can be determined.
  • the current environmental factor value (X in Fig. 21) and the environmental factor value (X in Fig. 21) when the risk R is equal to the reference value r are obtained, and a c
  • step S56 it is determined whether or not there is an end instruction. If not, the process returns to step S53 in order to make a determination on another subject, and steps S53 to S55 are repeated.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical & Material Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Genetics & Genomics (AREA)
  • Analytical Chemistry (AREA)
  • Theoretical Computer Science (AREA)
  • Evolutionary Biology (AREA)
  • Organic Chemistry (AREA)
  • Public Health (AREA)
  • Wood Science & Technology (AREA)
  • Software Systems (AREA)
  • Bioethics (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Computation (AREA)
  • Epidemiology (AREA)
  • Databases & Information Systems (AREA)
  • Data Mining & Analysis (AREA)
  • Zoology (AREA)
  • Signal Processing (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Microbiology (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

A method of judging a disease risk level in which the disease development tendency, progression tendency, etc. can be judged as a disease risk level with high precision to thereby render the method useful in the prevention and therapy of disease. It is also intended to provide a relevant method of determining a gene polymorphism for judgment of disease risk level, array for judgment, kit for gene polymorphism analysis and disease risk level judging apparatus. In the method of determining a gene polymorphism for judgment of disease risk level, a gene polymorphism set associated with the disease is determined by a t-test using a disease level of analog value, and according to a method of judging a disease risk level, the disease risk level is judged with the use of, as a judgment formula, a regression formula determined by multiple regression analysis employing, as explanatory variables, gene polymorphism set, environmental factor and gene polymorphism set/environmental factor interaction.

Description

明 細 書  Specification
疾患危険度判定用遺伝子多型の決定方法、疾患危険度判定方法及び 判定用アレイ  Method for determining genetic polymorphism for disease risk determination, disease risk determination method, and determination array
技術分野  Technical field
[0001] 本発明は、疾患危険度判定用遺伝子多型の決定方法に関する。また本発明は、か 力る方法によって決定された遺伝子多型を用いて、個々の被験者について疾患危 険度を判定する方法及びそれを用いて求めた発症予測値を提示する方法に関する 。より詳しくは各種の疾患の予防、治療および診断に利用できる疾患危険度判定方 法、それを実行するために使用できる疾患危険度判定装置、疾患危険度判定プログ ラム、および発症予測提示方法に関する。  [0001] The present invention relates to a method for determining a genetic polymorphism for disease risk determination. The present invention also relates to a method for determining a disease risk level for an individual subject using a genetic polymorphism determined by a method that can be used, and a method for presenting a predicted onset value obtained using the method. More specifically, the present invention relates to a disease risk determination method that can be used for prevention, treatment, and diagnosis of various diseases, a disease risk determination device that can be used to execute the disease, a disease risk determination program, and an onset prediction presentation method.
[0002] さらに本発明は、上記疾患として糖尿病に起因して生じる動脈硬化性疾患、心筋 梗塞、腎症、または網膜症に関する疾患危険度の判定に使用できる、疾患危険度判 定用アレイ、疾患危険度判定方法、遺伝子マーカー、及び分析キットに関する。 背景技術  [0002] Further, the present invention provides an array for determining a disease risk, which can be used for determination of a disease risk related to arteriosclerotic disease, myocardial infarction, nephropathy, or retinopathy caused by diabetes as the above-mentioned disease, disease The present invention relates to a risk determination method, a genetic marker, and an analysis kit. Background art
[0003] 動脈硬化性疾患 (虚血性心疾患)の発症には、高血圧、糖尿病、高脂血症、肥満、 喫煙などの環境要件が、危険因子として関係することが知られているが、家族歴もま た、危険因子の一つである。近年の分子生物学的手法の発展により、動脈硬化に関 係する遺伝子上に存在する種々の遺伝子多型が明らかになっており、疾病への関 与が研究されている。  [0003] It is known that environmental requirements such as hypertension, diabetes, hyperlipidemia, obesity, and smoking are related as risk factors in the development of arteriosclerotic disease (ischemic heart disease). History is also a risk factor. Recent developments in molecular biology techniques have revealed various genetic polymorphisms on genes related to arteriosclerosis, and their involvement in diseases has been studied.
[0004] このような動脈硬化性疾患を始めとして、各種の疾患にっ 、て、被験者が有する個 々の疾患に関与する遺伝子多型の遺伝子型等の情報に基づいて、当該被験者の 疾患のなりやすさや進行しやすさ等の 、わゆる「疾患危険度」が判定できれば、疾患 の発症を予防したり進行を抑えるための事前対策が可能となる。すなわち、その疾患 危険度の高いと判定された被験対象は、早期に日常力 疾病の予防に心がけること ができる。また、疾患の発症の可能性や発症後の進行度なども予測することもでき、 被験者に応じてよりきめ細かい診断や治療が可能となる。また、現在の疾患危険度 及び将来の疾患度の予測値を、分かり易く提示することができれば、被験者本人の 自覚を促し、医師、看護師による診断'治療を効率的且つ有効なものとすることがで きる。 [0004] Based on information such as the genotypes of genetic polymorphisms related to each disease possessed by various subjects, such as arteriosclerotic diseases, the disease of the subject can be determined. If the so-called “disease risk” such as the ease of progression and the ease of progression can be determined, pre-measures can be taken to prevent the onset of the disease or to suppress the progression. In other words, subjects who are determined to have a high risk of the disease can try to prevent illness at an early stage. In addition, the possibility of the onset of the disease and the degree of progression after the onset can be predicted, enabling more detailed diagnosis and treatment depending on the subject. In addition, if the predicted values of the current disease risk level and future disease level can be presented in an easy-to-understand manner, It is possible to promote awareness and make diagnosis and treatment by doctors and nurses efficient and effective.
[0005] しかし、動脈硬化疾患を始めとする各種の疾患に関して、これまで報告されてきた S NPを含む遺伝子多型の臨床関連研究においては、単一の遺伝子多型を調べて、 該遺伝子多型について一の遺伝子型の集団と、他の遺伝子型の集団とにおいて、 それぞれ患者と健常者との割合を調べることにより、疾患になりやすさのォッズ比を 算出している (非特許文献 1)。このような調査方法では、ほとんどの多型は有意差が なぐ遺伝子多型力 疾患のなりやすさや進行しやすさ等の疾患危険度を予測する ことはできな力 た。  [0005] However, in the clinically related studies of gene polymorphisms including SNPs that have been reported so far with respect to various diseases including arteriosclerosis, single gene polymorphisms are investigated and the gene polymorphisms are examined. The odds ratio of the likelihood of developing a disease is calculated by examining the ratio of patients to healthy individuals in a population of one genotype and a population of other genotypes (Non-patent Document 1). ). In such a survey method, it was impossible to predict the risk of disease such as the likelihood of disease progression and the probability of progression of most genetic polymorphisms with no significant difference.
[0006] ましてや、検査を受ければ、そのうちの多くの被験者について高い確率で疾患危険 度 (疾患のなりやすさや進行しやすさ)を予測することができるような方法は存在しな かった。  [0006] In addition, there has been no method that can predict the risk of disease (the likelihood of developing a disease or the likelihood of progression) with a high probability for many subjects if they are tested.
[0007] 下記特許文献 1には、頸動脈内膜中膜複合体肥厚度との間に有意な正の関連性 を有する複数の遺伝子多型を組み合わせて動脈硬化性疾患を判定する方法が開示 されている。また、特許文献 1の国際調査で挙げられた文献 (非特許文献 2〜6)はい ずれも頸動脈内膜中膜複合体肥厚度との間に有意な正の関連性を有する遺伝子多 型に言及するものにすぎず、疾患危険度の判定に「正の関連性」とは逆の「負の関連 性」を有する遺伝子多型を用いると 、う発想は全く記載されて 、な 、。  [0007] Patent Document 1 below discloses a method for determining arteriosclerotic diseases by combining a plurality of gene polymorphisms having a significant positive relationship with the carotid intima-media thickness. Has been. In addition, all of the documents (Non-Patent Documents 2 to 6) listed in the international survey of Patent Document 1 are gene polymorphisms that have a significant positive relationship with the carotid intima-media thickness. It is only mentioned, and if a genetic polymorphism having a “negative association” opposite to the “positive association” is used for the determination of disease risk, the idea is completely described.
[0008] これに対して、下記特許文献 2には、「負の関連性」を有する遺伝子多型を用い、 各種の疾患について固有の疾患危険度判定用遺伝子多型を決定する方法が開示 されている。下記特許文献 2には、各種の疾患について、発症しやすさや進行しや すさ等が判定できて、疾患の予防および治療に利用できる疾患危険度判定方法、疾 患危険度判定装置、疾患危険度判定プログラム、さらには、疾患の中でも特に糖尿 病に起因して発症する動脈硬化性疾患について、疾患危険度判定用アレイ、疾患 危険度判定方法、遺伝子マーカー、並びに疾患固有の遺伝子多型及び遺伝子多 型セットを検出するための分析キットが開示されている。  [0008] On the other hand, Patent Document 2 below discloses a method for determining a genetic polymorphism for determining a disease risk level specific to various diseases using a genetic polymorphism having “negative association”. ing. Patent Document 2 listed below describes a disease risk determination method, a disease risk determination device, a disease risk level that can be used for prevention and treatment of a disease because it is possible to determine the ease of onset and progression of various diseases. Judgment programs, and, in particular, arteriosclerotic diseases that develop due to diabetes, among other diseases, disease risk assessment arrays, disease risk assessment methods, genetic markers, and disease-specific gene polymorphisms and gene polymorphisms An analytical kit for detecting a mold set is disclosed.
特許文献 1:国際公開 WO2003Z087360  Patent document 1: International publication WO2003Z087360
特許文献 2:国際公開 WO2005Z036443 非特許文献 1: Yamada Y, Izawa H, Ichihara S, Takatsu F, Ishihara H, Hirayama H, S one T, Tanaka M, Yokota M. Prediction of the risk of myocardial infarction from pol ymorphisms in candidate genes.N.Engl.J.Med. 2002; 347(24): 1916—23 Patent Document 2: International Publication WO2005Z036443 Non-Patent Document 1: Yamada Y, Izawa H, Ichihara S, Takatsu F, Ishihara H, Hirayama H, S one T, Tanaka M, Yokota M. Prediction of the risk of myocardial infarction from pol ymorphisms in candidate genes.N.Engl .J.Med. 2002; 347 (24): 1916-23
非特許文献 2 : Rauramaa R, et al., Arterioscler Thromb Vase Biol. 2000 Dec,vol.20, no.12, p.2657-2662  Non-Patent Document 2: Rauramaa R, et al., Arterioscler Thromb Vase Biol. 2000 Dec, vol. 20, no. 12, p.2657-2662
非特許文献 3 : Chapman CM, et al" Arteriosclerosis. 2001 Nov, vol.159, no.l, p.209 -217  Non-Patent Document 3: Chapman CM, et al "Arteriosclerosis. 2001 Nov, vol.159, no.l, p.209 -217
非特許文献 4 : McQuillan BM, et al" Circulation. 1999 May 11, vol.99, no.18, p.238 3-2388  Non-Patent Document 4: McQuillan BM, et al "Circulation. 1999 May 11, vol.99, no.18, p.238 3-2388
非特許文献 5 : Terry JG, et al., Stroke. 1996 Oct. vol.27, no.10, p.1755-1759 非特許文献 6 : Castellano M, et al, Circulation. 1995 Jun 1, vol.91, no. l l,p.2721-27 Non-Patent Document 5: Terry JG, et al., Stroke. 1996 Oct. vol.27, no.10, p.1755-1759 Non-Patent Document 6: Castellano M, et al, Circulation. 1995 Jun 1, vol.91 , no. ll, p.2721-27
24) twenty four)
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0009] 上記特許文献 2に開示された疾患にっ 、て固有の疾患危険度判定用遺伝子多型 を決定する方法では、遺伝子多型を正の関連性、負の関連性に区別して処理するこ とが必要であり、処理が煩雑となる。従って、遺伝子多型の正負の関連性を区別する ことなく、同じ処理によって疾患危険度判定用遺伝子多型を決定することができるの が望ましい。 [0009] According to the method for determining a genetic polymorphism for determining a disease risk specific to the disease disclosed in Patent Document 2, the genetic polymorphism is processed by distinguishing between positive association and negative association. This is necessary and the processing becomes complicated. Therefore, it is desirable that the genetic polymorphism for disease risk determination can be determined by the same processing without distinguishing the positive / negative relationship of the genetic polymorphism.
[0010] また、上記特許文献 2に開示された疾患危険度判定方法は、遺伝子多型セットを いくつ含むかを基に判定するので、簡単ではあるが精度が十分ではな力つた。さらに 、遺伝子多型のみを用いて疾患危険度を判定しており、環境因子の影響を反映させ ることができなかった。  [0010] In addition, since the disease risk determination method disclosed in Patent Document 2 is determined based on how many gene polymorphism sets are included, the method is simple but sufficient in accuracy. Furthermore, the disease risk level was determined using only the gene polymorphism, and the influence of environmental factors could not be reflected.
[0011] 本発明は、疾患のなりやすさや進行しやすさ等の疾患危険度の判定に関する従来 の問題を解決し、以下の目的を達成することを課題とする。  [0011] An object of the present invention is to solve the conventional problems related to the determination of disease risk such as the likelihood of disease progression and the ease of progression, and to achieve the following object.
[0012] すなわち、第 1に本発明は、各種の疾患について固有の疾患危険度判定用遺伝 子多型を、遺伝子多型の正負の関連性を区別することなぐ精度良く決定する方法 を提供することを目的とする。また第 2に本発明は、環境因子の影響を反映させて、 各種の疾患について、発症しやすさや進行しやすさ等が判定できて、疾患の予防お よび治療に利用できる、精度の高い疾患危険度判定方法、それに使用できる疾患危 険度判定装置および疾患危険度判定プログラム等を提供することを目的とする。さら に第 3に本発明は、疾患の中でも特に糖尿病に起因して発症する動脈硬化性疾患、 心筋梗塞、腎症、または網膜症について、疾患危険度判定用アレイ、疾患危険度判 定方法、遺伝子マーカー、並びに疾患固有の遺伝子多型及び遺伝子多型セットを 検出するための分析キットを提供することを目的とする。 [0012] That is, firstly, the present invention provides a method for accurately determining a genetic polymorphism for determining a disease risk level unique to various diseases without distinguishing the positive / negative relevance of the genetic polymorphism. For the purpose. Second, the present invention reflects the influence of environmental factors, A highly accurate disease risk assessment method, disease risk assessment device and disease risk that can be used for the prevention and treatment of diseases by determining the ease of onset and progression of various diseases. The purpose is to provide a degree determination program. Thirdly, the present invention relates to a disease risk determination array, disease risk determination method, arteriosclerotic disease, myocardial infarction, nephropathy, or retinopathy that develops due to diabetes, among other diseases. It is an object of the present invention to provide an analysis kit for detecting genetic markers and disease-specific gene polymorphisms and gene polymorphism sets.
[0013] さらに第 4として、現在の疾患危険度及び将来の疾患度の予測値を、分かり易く提 示することができ、被験者本人の自覚を促し、医師、看護師による診断'治療を効率 的且つ有効なものとするための助けとなる方法を提供することを目的とする。  [0013] Fourthly, the current disease risk level and the predicted value of the future disease level can be presented in an easy-to-understand manner, which encourages the subject's awareness and makes effective diagnosis and treatment by doctors and nurses. And it aims to provide a method that helps to make it effective.
[0014] 第 5として、個人に応じた、疾患への対処の必要性の判定方法を提供することを目 的とする。  [0014] A fifth object is to provide a method for determining the necessity of coping with a disease according to an individual.
課題を解決するための手段  Means for solving the problem
[0015] 前記課題を解決するための手段は以下のとおりである。 [0015] Means for solving the above-described problems are as follows.
[0016] (1)予め指定された複数の遺伝子多型の中から、遺伝子型を指定して所定数の遺 伝子多型を抜き出し、遺伝子多型セットとする第 1ステップと、  (1) A first step of designating a gene polymorphism by designating a gene polymorphism by designating a genotype from a plurality of gene polymorphisms designated in advance,
疾患度、及び遺伝子型を有する遺伝子多型を対応させて要素とした集合を、前記 遺伝子多型セットの有無に応じて 2つの部分集合に分割する第 2ステップと、  A second step of dividing a set of elements corresponding to a disease polymorphism and a genetic polymorphism having a genotype into two subsets according to the presence or absence of the genetic polymorphism set;
2つの前記部分集合を対象として、前記疾患度を用いて t検定を行う第 3ステップと 前記 t検定の結果、 2つの前記部分集合に有意差があると判断された場合に、前記 遺伝子多型セットを疾患危険度判定用遺伝子多型として採用する第 4ステップとを含 む、疾患危険度判定用遺伝子多型の決定方法。  The third step of performing a t-test using the disease degree for the two subsets and the t-test result, and if the two polymorphisms are determined to have a significant difference, the gene polymorphism A method for determining a genetic polymorphism for disease risk determination, comprising a fourth step of adopting the set as a genetic polymorphism for disease risk determination.
[0017] (2)疾患と関連性を有し、遺伝子型を有する 1以上の遺伝子多型力 構成される第 1の遺伝子多型セットからなる参照テーブル力 被験試料の遺伝子型を有する遺伝 子多型の中から、所定数の遺伝子多型を読み出して構成した第 2の遺伝子多型セッ トを含む力否力を照合する第 1ステップと、 [0017] (2) One or more gene polymorphisms related to a disease and having a genotype Reference table power consisting of a first gene polymorphism set comprising a gene polymorphism having a genotype of a test sample A first step of collating the power / disability including a second set of genetic polymorphisms configured by reading out a predetermined number of genetic polymorphisms from the types;
前記照合の結果、一致する前記第 1及び第 2の遺伝子多型セットがある場合に、予 め重回帰分析によって決定された回帰式を用いて、前記被験試料に関する危険度 を計算する第 2ステップとを含み、 As a result of the matching, if there is a matching set of the first and second gene polymorphisms, a prediction is made. A second step of calculating a risk for the test sample using a regression equation determined by multiple regression analysis;
前記回帰式が、疾患度を目的変数とし、少なくとも前記参照テーブルに含まれる第 1の遺伝子多型セットを説明変数として、患者データの集合を重回帰分析して得られ た式である、疾患危険度判定方法。  The disease risk is an expression obtained by multiple regression analysis of a set of patient data using the disease degree as an objective variable and at least the first gene polymorphism set included in the reference table as an explanatory variable. Degree determination method.
[0018] (3)疾患と関連性を有し、遺伝子型を有する 1以上の遺伝子多型力 構成される第 1の遺伝子多型セットからなる参照テーブルを記録した記録部と、 [0018] (3) a recording unit that records a reference table composed of a first gene polymorphism set comprising at least one gene polymorphism having a genotype and having an association with a disease;
被験試料の遺伝子型を有する遺伝子多型を取得するインタフェース部と、 取得された前記被験試料の遺伝子多型の中の所定数の遺伝子多型力 構成され る第 2の遺伝子多型セットと、前記参照テーブルにおける前記第 1の遺伝子多型セッ トとを照合する処理部とを備え、  An interface unit for obtaining a genetic polymorphism having a genotype of a test sample; a second genetic polymorphism set comprising a predetermined number of genetic polymorphisms in the obtained genetic polymorphism of the test sample; and A processing unit that matches the first gene polymorphism set in the reference table,
前記処理部が、前記照合の結果一致する前記第 1の遺伝子多型セットがある場合 に、予め重回帰分析によって決定された回帰式を用いて、前記被験試料に関する危 険度を計算し、  When there is the first genetic polymorphism set that matches as a result of the collation, the processing unit calculates a risk level for the test sample using a regression equation determined in advance by multiple regression analysis;
前記回帰式が、疾患度を目的変数とし、少なくとも前記参照テーブルに含まれる第 1の遺伝子多型セットを説明変数として、患者データの集合を重回帰分析して得られ た式である、疾患危険度判定装置。  The disease risk is an expression obtained by multiple regression analysis of a set of patient data using the disease degree as an objective variable and at least the first gene polymorphism set included in the reference table as an explanatory variable. Degree determination device.
[0019] (4)コンピュータに、 [0019] (4)
被験試料の遺伝子型を有する遺伝子多型の入力を受け付ける機能、  A function of accepting an input of a genetic polymorphism having a genotype of a test sample,
遺伝子型を有する 1以上の遺伝子多型カゝら構成される第 1の遺伝子多型セットから なる参照テーブルを記録部に記録する機能、  A function of recording a reference table consisting of a first gene polymorphism set composed of one or more gene polymorphism models having a genotype in a recording unit;
前記被験試料の遺伝子多型の中の所定数の遺伝子多型から構成される第 2の遺 伝子多型セットと、前記参照テーブルにおける前記第 1の遺伝子多型セットとを照合 する機能、及び  A function of collating a second gene polymorphism set composed of a predetermined number of gene polymorphisms in the gene polymorphism of the test sample with the first gene polymorphism set in the reference table; and
前記照合の結果一致する前記第 1の遺伝子多型セットがある場合に、予め重回帰 分析によって決定された回帰式を用いて、前記被験試料に関する危険度を計算する 機能とを実現させるためのプログラムであり、  A program for realizing a function of calculating a risk level for the test sample using a regression equation determined in advance by multiple regression analysis when there is the first genetic polymorphism set that matches as a result of the matching And
前記回帰式が、疾患度を目的変数とし、少なくとも前記参照テーブルに含まれる第 1の遺伝子多型セットを説明変数として、患者データの集合を重回帰分析して得られ た式である、疾患危険度判定プログラム。 The regression equation uses the disease degree as an objective variable and is included in at least the reference table. A disease risk assessment program, which is an expression obtained by multiple regression analysis of a set of patient data using the gene polymorphism set of 1 as an explanatory variable.
[0020] (5)コンピュータに、  [0020] (5)
被験試料の遺伝子型を有する遺伝子多型の入力を受け付ける機能、  A function of accepting an input of a genetic polymorphism having a genotype of a test sample,
遺伝子型を有する 1以上の遺伝子多型カゝら構成される第 1の遺伝子多型セットから なる参照テーブルを記録部に記録する機能、  A function of recording a reference table consisting of a first gene polymorphism set composed of one or more gene polymorphism models having a genotype in a recording unit;
前記被験試料の遺伝子多型の中の所定数の遺伝子多型から構成される第 2の遺 伝子多型セットと、前記参照テーブルにおける前記第 1の遺伝子多型セットとを照合 する機能、及び  A function of collating a second gene polymorphism set composed of a predetermined number of gene polymorphisms in the gene polymorphism of the test sample with the first gene polymorphism set in the reference table; and
前記照合の結果一致する前記第 1の遺伝子多型セットがある場合に、予め重回帰 分析によって決定された回帰式を用いて、前記被験試料に関する危険度を計算する 機能とを実現させるためのプログラムであり、  A program for realizing a function of calculating a risk level for the test sample using a regression equation determined in advance by multiple regression analysis when there is the first genetic polymorphism set that matches as a result of the matching And
前記回帰式が、疾患度を目的変数とし、少なくとも前記参照テーブルに含まれる第 1の遺伝子多型セットを説明変数として、患者データの集合を重回帰分析して得られ た式である、患危険度判定プログラム  The regression equation is an equation obtained by performing multiple regression analysis on a set of patient data with the disease degree as an objective variable and at least the first gene polymorphism set included in the reference table as an explanatory variable. Degree judgment program
を記録したコンピュータ読取可能な記録媒体。  A computer-readable recording medium on which is recorded.
[0021] (6)図 1— A及び 1— B、並びに図 17に記載する遺伝子多型セットからなる群から 選択される少なくとも一の遺伝子多型セットを構成する遺伝子多型に対する検出用 プローブを有する、糖尿病に起因する動脈硬化性疾患危険度判定用アレイ。 (6) Probes for detecting a gene polymorphism constituting at least one gene polymorphism set selected from the group consisting of the gene polymorphism sets shown in FIGS. 1-A and 1-B and FIG. An array for determining the risk of atherosclerotic disease caused by diabetes.
[0022] (7)図 1— A及び図 17に記載される遺伝子多型セットからなる群、または図 1— Bに 記載される遺伝子多型セットからなる群の半数以上の遺伝子多型セットを構成する 遺伝子多型に対する検出用プローブを有するものである、 (6)記載の動脈硬化性疾 患危険度判定用アレイ。  [0022] (7) More than half of the group consisting of the gene polymorphism set described in FIG. 1-A and FIG. 17 or the group consisting of the gene polymorphism set described in FIG. The array for determining atherosclerotic disease risk according to (6), comprising a probe for detection of a gene polymorphism that constitutes the gene polymorphism.
[0023] (8)図 2— A及び 2— B、並びに図 18に記載する遺伝子多型セットからなる群から 選択される少なくとも一の遺伝子多型セットを構成する遺伝子多型に対する検出用 プローブを有する、糖尿病に起因する心筋梗塞危険度判定用アレイ。  [0023] (8) Probes for detection of gene polymorphisms constituting at least one gene polymorphism set selected from the group consisting of the gene polymorphism sets shown in FIGS. 2-A and 2-B and FIG. An array for determining the risk of myocardial infarction caused by diabetes.
[0024] (9)図 2— A及び図 18に記載される遺伝子多型セットからなる群、または図 2— Bに 記載される遺伝子多型セットからなる群の、半数以上の遺伝子多型セットを構成する 遺伝子多型に対する検出用プローブを有するものである、 (8)記載の心筋梗塞危険 度判定用アレイ。 [0024] (9) More than half of the gene polymorphism set in the group consisting of the gene polymorphism set described in FIG. 2-A and FIG. 18 or the group consisting of the gene polymorphism set described in FIG. 2-B Configure The array for determining the risk of myocardial infarction according to (8), comprising a probe for detection of a gene polymorphism.
[0025] (10)図 3— A及び 3— B、並びに図 19に記載する遺伝子多型セットからなる群から 選択される少なくとも一の遺伝子多型セットを構成する遺伝子多型に対する検出用 プローブを有する、糖尿病に起因する腎症危険度判定用アレイ。  [10] (10) Probes for detection of gene polymorphisms constituting at least one gene polymorphism set selected from the group consisting of the gene polymorphism sets described in FIGS. 3A and 3B and FIG. An array for determining the risk of nephropathy caused by diabetes.
[0026] (11)図 3— A及び図 19に記載される遺伝子多型セットからなる群、または図 3— B に記載される遺伝子多型セットからなる群の、半数以上の遺伝子多型セットを構成す る遺伝子多型に対する検出用プローブを有するものである、(10)記載の腎症疾患 危険度判定用アレイ。  [0026] (11) More than half of the gene polymorphism set in the group consisting of the gene polymorphism set described in FIG. 3-A and FIG. 19 or the group consisting of the gene polymorphism set described in FIG. 3-B The array for determining a risk of nephropathy disease according to (10), which has a probe for detection of a polymorphism constituting the gene.
[0027] (12)図 4— A、 4— B及び 4— C、並びに図 20に記載する遺伝子多型セットからな る群から選択される少なくとも一の遺伝子多型セットを構成する遺伝子多型に対する 検出用プローブを有する、糖尿病に起因する網膜症危険度判定用アレイ。  [0027] (12) Gene polymorphisms constituting at least one gene polymorphism set selected from the group consisting of the gene polymorphism sets described in FIGS. 4A, 4B and 4C, and FIG. An array for determining the risk of retinopathy caused by diabetes, comprising a probe for detection of diabetes.
[0028] (13)図 4— A、 4— B及び図 20に記載される遺伝子多型群セットからなる群、また は図 4— Cに記載される遺伝子多型セットからなる群の、半数以上の遺伝子多型セッ トを構成する遺伝子多型に対する検出用プローブを有するものである、(12)記載の 網膜症危険度判定用アレイ。 [0028] (13) Half of the group consisting of the gene polymorphism group set shown in Fig. 4-A, 4-B and Fig. 20 or the group consisting of the gene polymorphism set shown in Fig. 4-C The array for determining the risk of retinopathy according to (12), comprising a probe for detecting a gene polymorphism constituting the gene polymorphism set.
[0029] (14)図 1— A及び 1— B、並びに図 17に記載する遺伝子多型セットからなる群から 選択される少なくとも一の遺伝子多型セットを構成する遺伝子多型を含む糖尿病に 起因する動脈硬化性疾患に関連する遺伝子マーカー。 [0029] (14) Due to diabetes including genetic polymorphisms constituting at least one genetic polymorphism set selected from the group consisting of genetic polymorphism sets described in FIGS. 1-A and 1-B and FIG. Markers associated with arteriosclerotic disease.
[0030] (15)図 2— A及び 2— B、並びに図 18に記載する遺伝子多型セットからなる群から 選択される少なくとも一の遺伝子多型セットを構成する遺伝子多型を含む糖尿病に 起因する心筋梗塞に関連する遺伝子マーカー。 [15] (15) Due to diabetes including genetic polymorphisms constituting at least one genetic polymorphism set selected from the group consisting of the genetic polymorphism sets shown in FIGS. 2-A and 2-B and FIG. Genetic marker associated with myocardial infarction.
[0031] (16)図 3— A及び 3— B、並びに図 19に記載する遺伝子多型セットからなる群から 選択される少なくとも一の遺伝子多型セットを構成する遺伝子多型を含む糖尿病に 起因する腎症に関連する遺伝子マーカー。 [0031] (16) Caused by diabetes including a gene polymorphism constituting at least one gene polymorphism set selected from the group consisting of the gene polymorphism set described in FIGS. 3A and 3B and FIG. Genetic markers associated with nephropathy.
[0032] (17)図 4— A、 4— B及び 4— C、並びに図 20に記載する遺伝子多型セットからな る群から選択される少なくとも一の遺伝子多型セットを構成する遺伝子多型を含む糖 尿病に起因する網膜症に関連する遺伝子マーカー。 [0033] (18)図 1— A及び 1— B、並びに図 17に記載する遺伝子多型セットからなる群から 選択される少なくとも一の遺伝子多型セットを構成する遺伝子を特異的に増幅し得る プライマー対、あるいは当該遺伝子またはその増幅産物に特異的にハイブリダィズし 得る核酸プローブを含む、糖尿病に起因する動脈硬化性疾患に関連する遺伝子多 型の分析用キット。 [0032] (17) Gene polymorphisms constituting at least one gene polymorphism set selected from the group consisting of the gene polymorphism sets shown in FIGS. 4-A, 4-B and 4-C, and FIG. A genetic marker related to retinopathy caused by uricuria. [18] (18) A gene constituting at least one gene polymorphism set selected from the group consisting of the gene polymorphism sets described in FIGS. 1-A and 1-B and FIG. 17 can be specifically amplified. A kit for analysis of a gene polymorphism associated with arteriosclerotic disease caused by diabetes, comprising a primer pair or a nucleic acid probe capable of specifically hybridizing to the gene or its amplification product.
[0034] (19)図 2— A及び 2— B、並びに図 18に記載する遺伝子多型セットからなる群から 選択される少なくとも一の遺伝子多型セットを構成する遺伝子を特異的に増幅し得る プライマー対、あるいは当該遺伝子またはその増幅産物に特異的にハイブリダィズし 得る核酸プローブを含む、糖尿病に起因する心筋梗塞に関連する遺伝子多型の分 析用キット。  [19] (19) A gene constituting at least one gene polymorphism set selected from the group consisting of the gene polymorphism sets described in FIGS. 2-A and 2-B and FIG. 18 can be specifically amplified. A kit for analyzing a gene polymorphism associated with myocardial infarction caused by diabetes, comprising a primer pair or a nucleic acid probe capable of specifically hybridizing to the gene or its amplification product.
[0035] (20)図 3— A及び 3— B、並びに図 19に記載する遺伝子多型セットからなる群から 選択される少なくとも一の遺伝子多型セットを構成する遺伝子を特異的に増幅し得る プライマー対、あるいは当該遺伝子またはその増幅産物に特異的にハイブリダィズし 得る核酸プローブを含む、糖尿病に起因する腎症に関連する遺伝子多型の分析用 やット。  [0035] (20) A gene constituting at least one gene polymorphism set selected from the group consisting of the gene polymorphism sets described in FIGS. 3A and 3B and FIG. 19 can be specifically amplified. A gene polymorphism analysis kit related to nephropathy caused by diabetes, comprising a primer pair or a nucleic acid probe capable of specifically hybridizing to the gene or its amplification product.
[0036] (21)図 4— A、 4— B及び 4— C、並びに図 20に記載する遺伝子多型セットからな る群から選択される少なくとも一の遺伝子多型セットを構成する遺伝子を特異的に増 幅し得るプライマー対、あるいは当該遺伝子またはその増幅産物に特異的にハイブ リダィズし得る核酸プローブを含む、糖尿病に起因する網膜症に関連する遺伝子多 型の分析用キット。  [21] (21) Specific genes constituting at least one gene polymorphism set selected from the group consisting of the gene polymorphism sets described in FIGS. 4-A, 4-B and 4-C, and FIG. A kit for analyzing a polymorphism associated with retinopathy caused by diabetes, comprising a primer pair that can be amplified, or a nucleic acid probe that can specifically hybridize to the gene or its amplification product.
[0037] (22)疾患と関連性を有し、遺伝子型を有する 1以上の遺伝子多型から構成される 遺伝子多型セット及び環境因子を変数とする疾患の危険度判定式と、第 1の患者の データの集合における、前記第 1の患者の年齢別の疾患度の平均値とを記録した記 録咅を備えるコンピュータにぉ ヽて、  [0037] (22) a disease risk assessment formula using a genetic polymorphism set and environmental factors as variables, the genetic polymorphism set having one or more genetic polymorphisms that are related to the disease and having a genotype; In a computer with a record that records the mean value of disease severity by age of the first patient in the patient data set,
前記集合を構成しない第 2の患者の遺伝子多型の情報および環境因子を用いて、 前記危険度判定式から第 1の疾患危険度を求める第 1ステップと、  Using the information of the genetic polymorphism of the second patient that does not constitute the set and environmental factors, a first step of determining a first disease risk from the risk determination formula;
複数の疾患の疾患危険度の各々に対応する軸を放射状に描画し、疾患毎の疾患 危険度の前記平均値に対応する前記軸上の点を相互に結ぶ線分を描画し、且つ、 疾患毎の前記第 1の疾患危険度に対応する前記軸上の点を相互に結ぶ線分を描画 して、第 1のレーダーチャートを作成する第 2ステップと An axis corresponding to each disease risk of a plurality of diseases is drawn radially, a line segment connecting points on the axis corresponding to the average value of the disease risk for each disease is drawn, and A second step of creating a first radar chart by drawing a line segment connecting the points on the axis corresponding to the first disease risk for each disease;
を含む発症予測提示方法。  An onset prediction presentation method including:
[0038] (23)疾患と関連性を有し、遺伝子型を有する 1以上の遺伝子多型から構成される 遺伝子多型セット及び環境因子を変数とする疾患の危険度判定式と、第 1の患者の データの集合に関する年齢別の疾患度の平均値とを記録した記録部を備えるコンビ ユータにおいて、 [23] (23) a disease risk judgment formula having a genetic polymorphism set and environmental factors as variables, the genetic polymorphism set having one or more genetic polymorphisms that are related to the disease and having a genotype; In a computer equipped with a recording unit that records the average value of disease levels by age for a set of patient data,
前記第 2の患者の前記環境因子のうち時間に関係する環境因子に所定時間を加 算して得られた値、時間に関係しない前記第 2の患者の前記環境因子、及び前記第 2の患者の前記遺伝子多型の情報を用いて、前記危険度判定式から将来の予測値 として第 2の疾患危険度を求める第 1ステップと、  A value obtained by adding a predetermined time to an environmental factor related to time among the environmental factors of the second patient, the environmental factor of the second patient not related to time, and the second patient A first step of determining a second disease risk as a predicted value in the future from the risk judgment formula using the genetic polymorphism information of
複数の疾患の疾患危険度の各々に対応する軸を放射状に描画し、疾患毎の前記 第 1の疾患危険度に対応する前記軸上の点を相互に結ぶ線分を描画し、且つ、疾 患毎の前記第 2の疾患危険度に対応する前記軸上の点を相互に結ぶ線分を描画し て、レーダーチャートを作成する第 2ステップとを含む発症予測提示方法。  An axis corresponding to each of the disease risks of a plurality of diseases is drawn radially, a line segment connecting the points on the axis corresponding to the first disease risk for each disease is drawn, and And a second step of drawing a line segment connecting the points on the axis corresponding to the second disease risk level for each patient to create a radar chart.
[0039] (24)疾患と関連性を有し、遺伝子型を有する 1以上の遺伝子多型から構成される 遺伝子多型セット及び環境因子を変数とする疾患の危険度判定式を記録した記録 咅を備えるコンピュータにぉ ヽて、 [0039] (24) A record that records a risk assessment formula for a disease having a genetic polymorphism set and environmental factors as variables, and a genetic polymorphism set that is related to the disease and has a genotype. On a computer equipped with
前記危険度判定式が、遺伝子多型セットと環境因子との交互作用項を含み、 前記交互作用項のうち第 1の交互作用項に含まれる環境因子に関する、患者の検 查値を所定数だけ変化させて求めた値を前記環境因子の値として用いて前記第 1の 交互作用項の値を計算し、計算された該第 1の交互作用項の値が所定の値を超えて Vヽる場合に、対処の必要性を提示する第 1ステップを含む発症予測提示方法。  The risk determination formula includes an interaction term between a gene polymorphism set and an environmental factor, and a predetermined number of patient detection values related to the environmental factor included in the first interaction term among the interaction terms. The value of the first interaction term is calculated using the value obtained by changing as the value of the environmental factor, and the calculated value of the first interaction term exceeds a predetermined value by V A presentation method for predicting onset including a first step of presenting the necessity of coping with a case.
[0040] (25)疾患と関連性を有し、遺伝子型を有する 1以上の遺伝子多型から構成される 遺伝子多型セットの有無を表す情報、及び個人において変化し得る環境因子を変数 とする疾患危険度の判定式と、被験者を特定する ID及び該 IDに対応させた前記被 験者が有する前記遺伝子多型セットの情報と、前記疾患に対する治療の要否を決定 するための基準値とを記録した記録部を備えるコンピュータにおいて、 前記被験者の前記 IDの指定を受け付ける第 1ステップと、 [0040] (25) Information regarding the presence or absence of a gene polymorphism set having at least one gene polymorphism that has a genotype and is related to a disease, and environmental factors that can change in an individual are variables. A determination formula for a disease risk, an ID for identifying a subject, information on the genetic polymorphism set of the subject corresponding to the ID, and a reference value for determining the necessity of treatment for the disease In a computer having a recording unit for recording, A first step of accepting designation of the subject's ID;
指定された前記 IDに対応する前記遺伝子多型セットの情報及び前記判定式を、前 記記録部から読み出す第 2ステップと、  A second step of reading out information on the genetic polymorphism set corresponding to the specified ID and the determination formula from the recording unit;
読み出した前記遺伝子多型セットの情報に応じて、読み出した前記判定式から前 記被験者用の判定式を決定する第 3ステップと、  A third step of determining a determination formula for the subject from the read determination formula according to the read information of the genetic polymorphism set;
変数である前記環境因子の変化による前記被験者用の判定式の変化の程度及び 前記基準値を用いて、前記被験者に対して、前記疾患への対処の要否を決定する 第 4ステップとを含む疾患への対処の必要性の判定方法。  And a fourth step of determining whether or not the subject needs to cope with the disease using the degree of change of the judgment formula for the subject due to the change of the environmental factor that is a variable and the reference value. A method for determining the necessity of dealing with a disease.
発明の効果  The invention's effect
[0041] 本発明によると、疾患の発症しやすさや、進行しやすさ等を疾患危険度として高精 度に判定でき、疾患発症の予防および治療に利用できる疾患危険度判定方法、疾 患危険度判定装置および疾患危険度判定プログラムを提供することができる。当該 方法は、糖尿病患者またはその傾向のある患者について、動脈硬化性疾患、心筋梗 塞、腎症または網膜症の発症しやすさや進行しやすさ等を精度高く判定でき、これら の疾患の発症の予防や治療に有効に利用することができる。  [0041] According to the present invention, a disease risk determination method, disease risk that can be used for the prevention and treatment of disease onset, which can accurately determine the likelihood of disease onset and the ease of progression as the disease risk. A degree determination device and a disease risk determination program can be provided. This method can accurately determine the ease of onset or progression of arteriosclerotic disease, myocardial infarction, nephropathy or retinopathy, etc. in patients with diabetes or those who tend to have such disease. It can be used effectively for prevention and treatment.
[0042] 従来の疾患危険度の判定方法は、遺伝子多型の疾患に対する感受性 (正の関連 性)及び抵抗性 (負の関連性)のみを指標として疾患の危険度を判定するものであつ たのに対し、本発明においては、環境因子を考慮し、さらには疾患に関連性を有す る遺伝子多型と環境因子との交互作用を考慮した判定式を用いるものである。これに より、本発明においては、疾患危険度を感受性及び抵抗性に区分しなくとも、総合的 に判断することが可能になり、疾患の危険度についてより的確でかつ精度の高い結 果を得ることが可能になる。  [0042] The conventional method for determining the risk of a disease is to determine the risk of the disease using only the susceptibility (positive association) and resistance (negative association) to the genetic polymorphism as an index. On the other hand, in the present invention, a judgment formula is used in consideration of environmental factors and further considering the interaction between genetic polymorphisms related to diseases and environmental factors. As a result, in the present invention, it is possible to make a comprehensive judgment without classifying the disease risk into sensitivity and resistance, and obtain a more accurate and accurate result regarding the disease risk. It becomes possible.
[0043] また、本発明は、動脈硬化性疾患、特に糖尿病に起因する動脈硬化性疾患の危 険度判定に有用な関連因子;心筋梗塞、特に糖尿病に起因する心筋梗塞の危険度 判定に有用な関連因子;腎症、特に糖尿病に起因する腎症の危険度判定に有用な 関連因子;並びに網膜症、特に糖尿病に起因する網膜症の危険度判定に有用な関 連因子を、遺伝子多型の点力 明らかにし、動脈硬化性疾患関連性遺伝子多型セッ ト、心筋梗塞関連性遺伝子多型セット、腎症関連性遺伝子多型セット、並びに網膜 症関連性遺伝子多型セットとして、これを提供するものである。これにより、被験者、 特に糖尿病患者またはその傾向のある患者について、動脈硬化性疾患、心筋梗塞、 腎症、並びに網膜症の危険度の判定、予防及び治療などを、被験者の特質に応じ て、より適切な態様で行うことが可能となる。本発明が提供する疾患危険度判定方法 、疾患危険度判定用アレイ、疾患関連性遺伝子マーカー、または疾患関連性遺伝 子多型分析用キットは、動脈硬化性疾患、心筋梗塞、腎症、または網膜症の危険度 の判定の実施に有用なものである。 [0043] The present invention is also useful for determining the risk of arteriosclerotic disease, particularly arteriosclerotic disease caused by diabetes, and determining the risk of myocardial infarction, particularly myocardial infarction caused by diabetes. Related polymorphisms; useful factors for assessing the risk of nephropathy, particularly nephropathy caused by diabetes; and related factors useful for assessing the risk of retinopathy, particularly retinopathy caused by diabetes Clarified, arteriosclerotic disease-related gene polymorphism set, myocardial infarction-related gene polymorphism set, nephropathy-related gene polymorphism set, and retina This is provided as a disease-related gene polymorphism set. As a result, the risk assessment, prevention and treatment of arteriosclerotic diseases, myocardial infarction, nephropathy, and retinopathy, etc. for subjects, especially diabetic patients or prone patients, can be more It can be performed in an appropriate manner. The disease risk determination method, disease risk determination array, disease-related gene marker, or disease-related gene polymorphism analysis kit provided by the present invention is an arteriosclerotic disease, myocardial infarction, nephropathy, or retina. This is useful for the assessment of the risk of illness.
[0044] また、本発明に係る疾患予測提示方法によれば、患者の現在の疾患危険度に加え て、将来の疾患度の予測値を、レーダーチャート、疾患予測グラフ、バブルチャート を用いて、視覚的に分力り易く提示することができる。従って、被験者本人の自覚を 促し、モチベーションを向上させることができ、医師、看護師による診断'治療を効率 的且つ有効なものとすることができる。  [0044] Further, according to the disease prediction presentation method according to the present invention, in addition to the current disease risk level of the patient, the predicted value of the future disease level is calculated using a radar chart, a disease prediction graph, and a bubble chart. It can be presented visually and easily. Therefore, the subject's own awareness can be promoted, motivation can be improved, and diagnosis and treatment by doctors and nurses can be made efficient and effective.
[0045] また、従来の環境因子の検査結果のみに基づ!/、て疾患の治療法など、対処法が 選択されていたのに対して、本発明によれば、環境因子の検査結果に加えて、遺伝 子因子を考慮した疾患危険度判定式の中の、その環境因子と関連する項の値をも 用いて、対処の必要性を提示することができる。従って、環境因子の検査結果が治 療を必要としない範囲内にあり、従来では治療が行われない場合であっても、本発 明によれば、治療の必要性を提示することができる。従って、患者に対して、適切な 治療を受けることができる、オーダーメイドの環境を提供することができる。  [0045] Further, on the basis of the conventional environmental factor test results only! / And countermeasures such as treatment of diseases have been selected, according to the present invention, the environmental factor test results have been selected. In addition, the value of the term related to the environmental factor in the disease risk judgment formula taking into account the genetic factor can be used to present the necessity of coping. Therefore, according to the present invention, it is possible to present the necessity of treatment even when the environmental factor test results are within the range where treatment is not required and treatment is not performed conventionally. Therefore, it is possible to provide a tailor-made environment where patients can receive appropriate treatment.
[0046] また、本発明によれば、患者の遺伝子情報 (遺伝子多型セットの有無)に基づき、そ の患者の疾患への対処の必要性をより適切に判断することができる。従って、患者に 対して、疾患に対する適切な観察、指導、治療などを行うことができ、上記と同様にォ 一ダーメイドの環境を提供することができる。  [0046] Further, according to the present invention, it is possible to more appropriately determine the necessity of dealing with a disease of the patient based on the patient's genetic information (presence / absence of gene polymorphism set). Accordingly, appropriate observation, guidance, treatment, etc. for the disease can be performed on the patient, and a customized environment can be provided in the same manner as described above.
[0047] なお、力かる本発明の技術は、本明細書に一例として掲げる動脈硬化性疾患、心 筋梗塞、腎症、及び網膜症だけでなぐ他の疾患においても同様に適用できる。特に 、糖尿病に起因して発症する、脳梗塞、糖尿病性神経症などにおいても同様に適用 することができる。  [0047] It should be noted that the powerful technique of the present invention can be similarly applied to arteriosclerotic diseases, myocardial infarction, nephropathy, and other diseases other than retinopathy as exemplified in the present specification. In particular, the present invention can be similarly applied to cerebral infarction, diabetic neuropathy, etc. caused by diabetes.
図面の簡単な説明 [0048] [図 1-A]糖尿病に起因する動脈硬化性疾患に対して正の関連性を有する遺伝子多 型セットを示す表である。 Brief Description of Drawings [0048] [FIG. 1-A] A table showing gene polymorphism sets having a positive association with arteriosclerotic diseases caused by diabetes.
[図 1-B]糖尿病に起因する動脈硬化性疾患に対して負の関連性を有する遺伝子多 型セットを示す表である。  FIG. 1-B is a table showing a set of gene polymorphisms that have a negative association with arteriosclerosis caused by diabetes.
[図 2-A]糖尿病に起因する心筋梗塞に対して正の関連性を有する遺伝子多型セット を示す表である。  FIG. 2-A is a table showing a set of gene polymorphisms that have a positive association with myocardial infarction caused by diabetes.
[図 2-B]糖尿病に起因する心筋梗塞に対して負の関連性を有する遺伝子多型セット を示す表である。  FIG. 2-B is a table showing a set of gene polymorphisms that have a negative association with myocardial infarction caused by diabetes.
[図 3-A]糖尿病に起因する腎症に対して正の関連性を有する遺伝子多型セットを示 す表である。  [Fig. 3-A] A table showing a set of gene polymorphisms that have a positive association with nephropathy caused by diabetes.
[図 3-B]糖尿病に起因する腎症に対して負の関連性を有する遺伝子多型セットを示 す表である。  FIG. 3-B is a table showing a set of gene polymorphisms that have a negative association with diabetes caused by diabetes.
[図 4-A]糖尿病に起因する網膜症に対して正の関連性を有する遺伝子多型セットを 示す表である。  [Fig. 4-A] A table showing a set of gene polymorphisms positively associated with retinopathy caused by diabetes.
[図 4-B]糖尿病に起因する網膜症に対して正の関連性を有する遺伝子多型セットを 示す表である。  [Fig. 4-B] A table showing a set of gene polymorphisms that have a positive association with retinopathy caused by diabetes.
[図 4-C]糖尿病に起因する網膜症に対して負の関連性を有する遺伝子多型セットを 示す表である。  [Fig. 4-C] A table showing a set of gene polymorphisms negatively associated with retinopathy caused by diabetes.
[図 5-A]糖尿病に起因する動脈硬化性疾患、心筋梗塞、腎症または網膜症に関連 性を有する遺伝子多型、およびその多型部位を纏めた表である。  [Fig. 5-A] A table summarizing genetic polymorphisms related to arteriosclerotic diseases, myocardial infarction, nephropathy or retinopathy caused by diabetes, and the polymorphic sites.
[図 5-B]糖尿病に起因する動脈硬化性疾患、心筋梗塞、腎症または網膜症に関連 性を有する遺伝子多型、およびその多型部位を纏めた表である。  [Fig. 5-B] A table summarizing genetic polymorphisms related to arteriosclerotic diseases, myocardial infarction, nephropathy or retinopathy caused by diabetes, and the polymorphic sites.
[図 5-C]糖尿病に起因する動脈硬化性疾患、心筋梗塞、腎症または網膜症に関連 性を有する遺伝子多型、およびその多型部位を纏めた表である。  [Fig. 5-C] A table summarizing gene polymorphisms associated with arteriosclerotic diseases, myocardial infarction, nephropathy or retinopathy caused by diabetes, and the polymorphic sites.
[0049] 以上、図 1〜5を通じて共通の遺伝子多型番号 (SNP-No.)を使用している。すなわ ち、図 1〜5において、 SNP-No.が同じであれば、同一の遺伝子多型であることを意 味する。 [0049] As described above, a common gene polymorphism number (SNP-No.) Is used throughout FIGS. In other words, in FIGS. 1 to 5, if the SNP-No. Is the same, it means that the polymorphism is the same.
[図 6]本発明の実施の形態に係る疾患危険度判定用遺伝子多型の決定方法を示す フローチャートである。 FIG. 6 shows a method for determining a genetic polymorphism for disease risk determination according to an embodiment of the present invention. It is a flowchart.
[図 7]本発明の実施の形態に係る疾患危険度判定装置を含むシステム全体を示すブ ロック図である。  FIG. 7 is a block diagram showing the entire system including the disease risk determination apparatus according to the embodiment of the present invention.
[図 8]本発明の実施の形態に係る疾患危険度判定装置が行う危険度の判定処理を 示すフローチャートである。  FIG. 8 is a flowchart showing risk determination processing performed by the disease risk determination apparatus according to the embodiment of the present invention.
[図 9]腎症に関する疾患度の一例を示す表である。  FIG. 9 is a table showing an example of the degree of disease related to nephropathy.
[図 10]網膜症に関する疾患度の一例を示す表である。 FIG. 10 is a table showing an example of the degree of disease related to retinopathy.
圆 11]本発明の実施の形態に係る発症予測提示機能を示すフローチャートである。 圆 12]本発明の実施の形態に係る発症予測提示機能によって作成されるレーダー チャートを示す図である。 [11] It is a flowchart showing the onset prediction presenting function according to the embodiment of the present invention.圆 12] A diagram showing a radar chart created by the onset prediction presenting function according to the embodiment of the present invention.
圆 13]糖尿病患者の集合における心筋梗塞の発症率を年齢別に示した表である。 圆 14]本発明の実施の形態に係る発症予測提示機能によって作成される発症予測 グラフを示す図である。 [13] Table showing the incidence of myocardial infarction in a group of diabetic patients by age. 14] A diagram showing an onset prediction graph created by the onset prediction presenting function according to the embodiment of the present invention.
圆 15]本発明の実施の形態に係る発症予測提示機能によって作成されるバブルチ ヤートを示す図である。 FIG. 15 is a diagram showing a bubble chart created by the onset prediction presenting function according to the embodiment of the present invention.
[図 16]バブルチャートにおける円の大きさの決定に使用される判断基準の一例を示 す表である。  [FIG. 16] A table showing an example of criteria used to determine the size of a circle in a bubble chart.
圆 17]糖尿病に起因する動脈硬化性疾患の危険度の判定に使用可能な遺伝子多 型セットの一例を示す表である。 [17] Table showing an example of a set of genetic polymorphisms that can be used to determine the risk of arteriosclerotic disease caused by diabetes.
[図 18]糖尿病に起因する心筋梗塞の危険度の判定に使用可能な遺伝子多型セット の一例を示す表である。  FIG. 18 is a table showing an example of a set of gene polymorphisms that can be used to determine the risk of myocardial infarction caused by diabetes.
[図 19]糖尿病に起因する腎症の危険度の判定に使用可能な遺伝子多型セットの一 例を示す表である。  FIG. 19 is a table showing an example of a gene polymorphism set that can be used to determine the risk of nephropathy caused by diabetes.
[図 20]糖尿病に起因する網膜症の危険度の判定に使用可能な遺伝子多型セットの 一例を示す表である。  FIG. 20 is a table showing an example of a set of genetic polymorphisms that can be used to determine the risk of retinopathy caused by diabetes.
[図 21]被験者の違いによる疾患危険の判定式の違いを示すグラフである。  FIG. 21 is a graph showing differences in disease risk judgment formulas depending on subjects.
[図 22]本発明の実施の形態に係る疾患への対処の必要性の判定方法を示すフロー チャートである。 [0050] 尚、図面において、図 1は「図 1— A」とそれに続く「図 1— B」という枝番で示された 2 つ図から構成されている。本明細書で、単に「図 1」という場合は「図 1 A」と「図 1 B」の両方を指すものである。図 1以外の、枝番で示される複数の図を含むものにつ いても同様である。 FIG. 22 is a flowchart showing a method for determining the necessity of coping with a disease according to an embodiment of the present invention. In the drawings, FIG. 1 is composed of two diagrams indicated by branch numbers “FIG. 1-A” and subsequent “FIG. 1-B”. In this specification, the simple reference to “FIG. 1” refers to both “FIG. 1 A” and “FIG. 1 B”. The same applies to items including a plurality of diagrams indicated by branch numbers other than those in FIG.
符号の説明  Explanation of symbols
1 病院  1 Hospital
2 分析機関  2 Analytical organization
3 サービス提供機関  3 Service provider
4 通信回線  4 Communication line
11 採血手段  11 Blood collection method
12、 22 コンピュータ  12, 22 computer
21 遺伝子多型解析用アレイ  21 Array for gene polymorphism analysis
31 判定装置  31 Judgment device
32 CPU  32 CPU
33 メモリ  33 memory
34 記録部  34 Recording section
35 通信インタフェース咅  35 Communication interface
36 操作部  36 Operation unit
37 表示部  37 Display
38 人出力インタフェース部  38-person output interface
39 内部バス  39 Internal bus
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0052] 以下、本発明をより詳細に説明する。  [0052] Hereinafter, the present invention will be described in more detail.
(用語)  (the term)
「遺伝子多型」とは、同一集団内において、一つの遺伝子座に 2種類以上の対立遺 伝子 (アレル)が存在する遺伝子の多様性を意味する。具体的には、ある集団におい て一定の頻度以上で存在する遺伝子の変異を示す。ここでいう遺伝子の変異は、 R NAとして転写される領域に限定されるものではなぐプロモーター、ェンハンサ一等 の制御領域などを含むヒトゲノム上で特定しうるすベての DNAにおける変異を含む ものである。ヒトゲノム DNAの 99. 9%は各個人間で共通しており、残る 0. 1%がこの ような多様性の原因となり、特定の疾患に対する感受性、薬物や環境因子に対する 反応性の個人差として関与し得る。遺伝子多型があっても表現型に差が出るとは限 らない。なお、 SNP (—塩基多型)も遺伝子多型の一種である力 本発明が対象とす る遺伝子多型はこれに限られない。 “Gene polymorphism” refers to the diversity of genes in which two or more allelic genes (alleles) exist at one locus in the same population. Specifically, it indicates a mutation in a gene that exists at a certain frequency in a certain population. The gene mutations mentioned here are not limited to the region transcribed as RNA, but the promoter, It includes mutations in all DNAs that can be identified on the human genome, including the regulatory regions. 99.9% of human genomic DNA is common among individuals, and the remaining 0.1% is responsible for this diversity and is involved in individual differences in susceptibility to specific diseases, responsiveness to drugs and environmental factors. obtain. Even if there is a genetic polymorphism, the phenotype does not necessarily differ. SNP (-base polymorphism) is also a kind of gene polymorphism The gene polymorphism targeted by the present invention is not limited to this.
[0053] 本明細書で示す遺伝子型(Genotype)は、「1」は置換塩基のうち塩基のアルファべ ット順 (A、 C、 G、 T)で前にくる塩基を有する多型のホモを、「2」はへテロを、「3」は、 置換塩基のうち塩基のアルファベット順で後にくる塩基を有する多型のホモを表す。 例えば遺伝子多型が、 ABCAKG1051A) (図 5の SNP- Noの「SNP- Νο.1」)と示され る場合、 GZGのホモを遺伝子型 1、ヘテロ(GZA)を遺伝子型 2、 ΑΖΑのホモを遺 伝子型 3という。「12」は前記 1と 2の遺伝子型(Genotype)の両方の遺伝子型、「23」 は前記 2と 3の遺伝子型(Genotype)の両方の遺伝子型を表す。  [0053] In the genotype shown in this specification, “1” is a polymorphic homology having a base that precedes the bases in alphabetical order (A, C, G, T) among the substituted bases. “2” represents heterogeneity, and “3” represents a polymorphism homozygote having a base that follows in alphabetical order of the substitution bases. For example, if the genetic polymorphism is shown as ABCAKG1051A) (SNP-No “SNP-Νο.1” in Fig. 5), GZG homozygous is genotype 1, heterozygous (GZA) is genotype 2, and homozygous of ΑΖΑ. Is called gene type 3. “12” represents the genotypes of both the genotypes 1 and 2, and “23” represents the genotypes of both the 2 and 3 genotypes.
[0054] 「遺伝子多型セット」とは、複数の遺伝子多型の組合せを 、う。ここで複数の遺伝子 多型とは、異なる遺伝子座を有する 2種以上の遺伝子多型を意味する。また、ここで「 遺伝子多型」は、遺伝子型 (Genotype)を考慮したものであって、それを含むものであ る。すなわち、本発明において「遺伝子多型」とは特定の遺伝子型 (Genotype)を有 する遺伝子多型を意味する。  [0054] The "gene polymorphism set" refers to a combination of a plurality of gene polymorphisms. Here, a plurality of gene polymorphisms means two or more gene polymorphisms having different loci. In addition, “gene polymorphism” here refers to and includes genotypes. That is, in the present invention, “gene polymorphism” means a gene polymorphism having a specific genotype.
[0055] 本発明にお 、て「遺伝子多型セット」とは特に、対象とする疾患に対して、組合せ全 体として関連性を示す「遺伝子多型の組合せ」を!、う。こうした遺伝子多型セット (組 合せ)の一例を示したもの力 図 1及び図 17〔糖尿病に起因する動脈硬化性疾患に 対して関連性を示す遺伝子多型セットの群〕、図 2及び図 18〔糖尿病に起因する心 筋梗塞に対して関連性を示す遺伝子多型セットの群〕、図 3及び図 19〔糖尿病に起 因する腎症に対して関連性を示す遺伝子多型セットの群〕、図 4及び図 20〔糖尿病に 起因する網膜症に対して関連性を示す遺伝子多型セットの群〕である。なお、これら の遺伝子多型セットの群には、対象とする疾患に対して、正 (感受性)の関連を示す 遺伝子多型セット (t値が正)と負 (抵抗性)の関連性を示す遺伝子多型セット (t値が 負)の両方が含まれる。すなわち、これらの各図において、各行 (横一列)には、全体 として疾患に対して正または負の関連性を示す、遺伝子多型 (SNP)の組合せが示さ れていることになる。なお、図 1〜4及び図 18〜20には、一行に、 2または 3つの遺伝 子多型が示されて!/ヽる場合のほカゝ、単一の遺伝子多型が示されて ヽる場合がある。 この場合、当該遺伝子多型は、単独で糖尿病に起因する動脈硬化性疾患(図 1及び 図 17)、心筋梗塞(図 2及び図 18)、腎症(図 3及び図 19)、または網膜症(図 4及び 図 20)に対して正または負の関連性を示す遺伝子多型であるといえる。なお、本明 細書では、説明が複雑になるのを避けるために、当該単一の遺伝子多型についても 「遺伝子多型セット」として説明する。 [0055] In the present invention, the "gene polymorphism set" is particularly a "gene polymorphism combination" that is related to the target disease as an entire combination! Uh. An example of such a gene polymorphism set (combination) Figure 1 and Figure 17 [Group of gene polymorphism sets that are related to arteriosclerotic disease caused by diabetes], Figure 2 and Figure 18 (Groups of gene polymorphism sets showing relevance for heart muscle infarction caused by diabetes), Fig. 3 and Fig. 19 (Groups of gene polymorphism sets showing relevance for nephropathy caused by diabetes) FIG. 4 and FIG. 20 [Group of gene polymorphism sets showing relevance for retinopathy caused by diabetes]. These gene polymorphism set groups show a positive (susceptibility) association between gene polymorphism sets (positive t value) and a negative (resistance) association with the target disease. Both gene polymorphism sets (t value negative) are included. That is, in each of these figures, each row (one horizontal column) As a result, a combination of genetic polymorphisms (SNPs) showing a positive or negative association with the disease is shown. In Figs. 1 to 4 and Figs. 18 to 20, two or three gene polymorphisms are shown in one line! There is a case. In this case, the gene polymorphism alone is an arteriosclerotic disease caused by diabetes (Figures 1 and 17), myocardial infarction (Figures 2 and 18), nephropathy (Figures 3 and 19), or retinopathy. It can be said that it is a gene polymorphism showing a positive or negative association with (Figures 4 and 20). In this specification, the single gene polymorphism is also described as a “gene polymorphism set” in order to avoid complicated explanation.
[0056] 図 1を例にすると、当該図の各行には、動脈硬化性疾患の指標に対して正または 負の関連性を示す遺伝子多型セットが記載されている。具体的には、図 1—Aの 8番 目には、左欄から「glycoprotein la (C807T)j (Glycoprotein la遺伝子: SNP- No.51) (G enotype : 23)、及び「VEGF (C— 634G)」(VEGF遺伝子: SNP- No.73) (Genotype : 3)からなる遺伝子多型セットが記載されている。「glycoprotein la (C807T)j (SNP- No. 51)には、 807位力 または Tである対立遺伝子が存在するので(図 5— A参照)、上 記定義に従うと、左欄には「glycoprotein la (C807T)」の遺伝子多型の遺伝子型 2 : C ZTと遺伝子多型 3: ΤΖΤの 2つが記載されて ヽることになる。また「VEGF (C— 63 4G) J (SNP-No.73)には、 -634位が Cまたは Gである対立遺伝子が存在するので(図 5— A参照)、同様に上記定義に従うと、中欄には「VEGF (C— 634G」の遺伝子多 型の遺伝子型 3 : GZGが記載されていることになる。そこで、これらの 2つの遺伝子 多型が有する遺伝子型の組合せを考えると、 C/T (glycoprotein la)と GZG (VEGF )の組合せ(セット)、 T/T (glycoprotein la)と GZG (VEGF)の組合せ(セット)、の 2 通りの遺伝子多型セットが記載されていることになる。  [0056] Taking FIG. 1 as an example, each row of the figure describes a set of gene polymorphisms that are positively or negatively related to an index of arteriosclerotic disease. Specifically, in the eighth column of Fig. 1-A, “glycoprotein la (C807T) j (Glycoprotein la gene: SNP-No.51) (Genotype: 23) and“ VEGF (C— 634G) "(VEGF gene: SNP-No. 73) (Genotype: 3) is described. “Glycoprotein la (C807T) j (SNP-No. 51) contains an allele that is at position 807 or T (see Fig. 5-A). According to the definition above, "la (C807T)" gene polymorphism genotype 2: CZT and gene polymorphism 3: ΤΖΤ will be described. “VEGF (C- 63 4G) J (SNP-No.73) has an allele whose position -634 is C or G (see Fig. 5-A). In the middle column, genotype 3: GZG of the gene polymorphism of “VEGF (C-634G” is described.Therefore, considering the combination of genotypes of these two gene polymorphisms, C Two types of gene polymorphisms are described, the combination (set) of / T (glycoprotein la) and GZG (VEGF), and the combination (set) of T / T (glycoprotein la) and GZG (VEGF). Become.
[0057] なお、ここでこれら 2通りの遺伝子多型セットを、個々に遺伝子多型セットとして用い ることもできるが、 C/T (glycoprotein la)と T/T (glycoprotein la)とを、? /T(glyco protein la)〔?は可能な候補、ここでは Cと Tを意味する〕として統合して、? /T(glyc oprotein la)、及び GZG (VEGF)の一通りの遺伝子多型セットとして、用いることもで きる。  [0057] It should be noted that these two types of gene polymorphism sets can be used individually as gene polymorphism sets, but what are C / T (glycoprotein la) and T / T (glycoprotein la)? / T (glyco protein la) [? Are possible candidates, here we mean C and T)? It can also be used as a set of gene polymorphisms for / T (glycoprotein la) and GZG (VEGF).
[0058] 「動脈硬化性疾患」とは、広く虚血性疾患を含むものであり、狭心症、心筋梗塞、脳 梗塞、末梢動脈閉塞症が含まれる。本発明が対象とする動脈硬化性疾患は、特に糖 尿病に起因して発症する動脈硬化性疾患である。「動脈硬化性疾患危険度」とは、 上記動脈硬化性疾患の発症しやすさ、進行しやすさを表す指標である。また、「心筋 梗塞」は上記の動脈硬化性疾患の一種であるが、「心筋梗塞危険度」とは動脈硬化 性疾患の中でも特に心筋梗塞に注目して、その発症しやすさや進行しやすさを表す 指標である。 [0058] "Atherosclerotic disease" broadly includes ischemic disease, such as angina pectoris, myocardial infarction, brain Infarctions and peripheral arterial occlusion are included. The arteriosclerotic disease targeted by the present invention is an arteriosclerotic disease that develops in particular due to glucoseuria. “Atherosclerotic disease risk” is an index representing the ease of onset and progression of the arteriosclerotic disease. “Myocardial infarction” is a type of the above-mentioned arteriosclerotic diseases. “Myocardial infarction risk” refers to myocardial infarction among arteriosclerotic diseases, and its ease of onset and progression. It is an index that represents.
[0059] 本発明が対象とする「腎症」及び「網膜症」は、糖尿病に起因して発症する腎症及 び網膜症である。「腎症危険度」とは、糖尿病に起因する腎症の発症しやすさ、進行 しゃすさを表す指標であり、また「網膜症危険度」とは、糖尿病に起因する網膜症の 発症しやすさ、進行しやすさを表す指標である。  [0059] "Nephropathy" and "retinopathy" targeted by the present invention are nephropathy and retinopathy that develops due to diabetes. “Nephropathy risk” is an index indicating the likelihood of developing nephropathy due to diabetes and the progression of retinopathy. “Retinopathy risk” is the likelihood of developing retinopathy due to diabetes. It is an index representing the ease of progress.
[0060] (1)疾患危険度判定用遺伝子多型の決定方法  [0060] (1) Determination method of genetic polymorphism for disease risk determination
本発明に係る疾患危険度判定用遺伝子多型の決定方法は、被験者がどの程度疾 患にかかり易!、か、若しくはどの程度疾患が進行し易!、カゝ (疾患危険度)の判定に使 用される、疾患危険度判定用遺伝子多型の決定方法を提供する。以下においては、 動脈硬化性疾患を例に説明するが、本発明はこれに限定されず、遺伝子との関連性 を有する疾患に適用することができる。その場合、疾患に応じた判定指標 (例えば、 動脈硬化性疾患であれば頸動脈内膜中膜複合体肥厚度、腎症であれば尿中のァ ルブミン排泄率、心筋梗塞であれば心電図上の陳旧性 (abnormal Q)心筋梗塞波形 の有無又は心筋梗塞の既往の有無、網膜症であれば臨床的所見)を用いて、後述 する関連性を評価すればよい(例えば、日本糖尿病学会編 糖尿病治療ガイド 20 04— 2005、文光堂参照)。  The method for determining a genetic polymorphism for determining a disease risk according to the present invention is used to determine how easily a subject suffers from a disease !, or how easily a disease progresses, and determines a disease (risk risk). Provided is a method for determining a genetic polymorphism for determining a disease risk to be used. In the following, an arteriosclerotic disease will be described as an example, but the present invention is not limited to this, and can be applied to a disease having an association with a gene. In that case, the determination index according to the disease (for example, carotid intima-media complex thickness for arteriosclerotic disease, urinary albumin excretion rate for nephropathy, ECG for myocardial infarction Using the presence or absence of myocardial infarction waveform or history of myocardial infarction, or clinical findings for retinopathy, the relevance described below may be evaluated (for example, edited by Japan Diabetes Society) Diabetes Treatment Guide 20 04—2005, Bunkodo).
[0061] (1 - 1)動脈硬化性疾患危険度判定用遺伝子多型の場合  [0061] (1-1) In the case of gene polymorphism for risk determination of arteriosclerotic disease
本発明に係る動脈硬化性疾患危険度判定用遺伝子多型の決定方法に関して、図 6に示したフローチャートに従って説明する。尚、ここでの処理は、 CPU,メモリ、記録 装置 (例えばハードディスク)、操作装置 (例えば、キーボード、マウス)、表示装置 (例 えば、 CRTディスプレイ)などを備えたコンピュータを用いて行うこととして説明する。 即ち、処理対象データは、操作装置などから入力されて記録装置に記録されており 、 CPUが、メモリをワーク領域として使用して各処理を実行し、処理の途中結果、最 終結果は、必要に応じて記録部の所定領域に記録される。 The method for determining a genetic polymorphism for determining the risk of arteriosclerotic disease according to the present invention will be described with reference to the flowchart shown in FIG. The processing here is described as being performed using a computer equipped with a CPU, memory, recording device (eg, hard disk), operation device (eg, keyboard, mouse), display device (eg, CRT display), and the like. To do. That is, the processing target data is input from the operation device or the like and recorded in the recording device. The CPU executes each process using the memory as a work area, and the intermediate result of the process is the maximum. The final result is recorded in a predetermined area of the recording unit as necessary.
[0062] まず、事前に目的疾患である動脈硬化性疾患に関係する遺伝子の情報を、文献、 患者カルテなどカゝら収集し、本決定方法で使用する遺伝子多型を選択する。この予 備選択は、当業者の経験に基づき行うこともできるが、疾患名称又はこれに関連する 言葉をキーワードとして、コンピュータを用いて種々の専門機関で構築されたデータ ベースを検索し、ヒット件数などに応じて選択してもよい。予備選択された遺伝子多型 の一例を、図 5に示す。  [0062] First, information on genes related to the arteriosclerotic disease, which is the target disease, is collected in advance such as literatures and patient charts, and gene polymorphisms used in this determination method are selected. This preliminary selection can be made based on the experience of a person skilled in the art, but by searching the database constructed by various specialized institutions using a computer with a disease name or related words as a keyword, the number of hits You may select according to. An example of a preselected genetic polymorphism is shown in FIG.
[0063] 図 5には、種々の文献から取得した約 200の遺伝子多型の中から、経験によって選 択した 133の遺伝子多型がリストされている(図 5の詳細な説明は後述する)。  [0063] FIG. 5 lists 133 gene polymorphisms selected from experience among about 200 gene polymorphisms obtained from various documents (detailed explanation of FIG. 5 will be described later). .
[0064] 図 6に示したフローチャートは、上記の予備選択によって選択された所定数の遺伝 子多型を用いて行われる。  [0064] The flowchart shown in FIG. 6 is performed using a predetermined number of gene polymorphisms selected by the above-described preliminary selection.
[0065] また、動脈硬化性疾患の判定指標として頸動脈の硬化度、特に頸動脈の肥厚度を 用い、これと遺伝子多型との関連性を統計的に解析する。力かる頸動脈の肥厚度を 計測する方法としては、特に制限はないが、超音波断層装置による頸動脈内膜中膜 複合体肥厚度 (IMT)の測定が一般的である。当該方法は、超音波的に到達可能な 頸動脈の肥厚度を計測する無侵襲なかつ定量的計測法である。前記超音波断層装 置は、 7. 5MHz以上の中心周波数のリニア型パルスエコープローブを有するものを 使用することが望ましい。頭蓋外頸動脈は皮下浅層に存在すため、 7. 5MHz以上 の周波数のものが使用可能で、高解像度 (距離分解能 0. 1mm)を得ることができる 。但し、これは一例である。  [0065] Further, the degree of carotid arterial sclerosis, particularly the carotid arterial hyperplasia, is used as an index for determining arteriosclerotic diseases, and the relationship between this and genetic polymorphism is statistically analyzed. The method for measuring the strength of carotid artery thickening is not particularly limited, but measurement of carotid intima-media complex thickness (IMT) using an ultrasonic tomograph is common. This method is a non-invasive and quantitative measurement method for measuring the thickness of the carotid artery that can be reached ultrasonically. It is desirable to use an ultrasonic tomography apparatus having a linear pulse echo probe with a center frequency of 7.5 MHz or higher. Since the extracranial carotid artery is located in the subcutaneous layer, a frequency of 7.5 MHz or higher can be used, and high resolution (distance resolution 0.1 mm) can be obtained. However, this is an example.
[0066] 血管壁は、血管内腔側の 1層の低エコー輝度部分と、その外の高エコー輝度層の 2層構造としてエコー像上解析される。本発明者は 104例の健常例の観察より、総頸 動脈の IMTが 10歳代より 70歳代まで加齢とともにほぼ直線的に増加し、その肥厚度 は 1. Ommを越えないことを確認している。健常人の総頸動脈 IMTは年齢より次式 の如く求められる:  [0066] The blood vessel wall is analyzed on an echo image as a two-layer structure of a low echo luminance portion of one layer on the side of the blood vessel lumen and a high echo luminance layer on the other side. The present inventor confirmed from the observation of 104 healthy cases that the IMT of the common carotid artery increased almost linearly with age from the 10s to the 70s, and the thickness did not exceed 1. Omm. is doing. The common carotid artery IMT in healthy individuals is determined by age as follows:
IMT = 0.008 X Age + 0.3 ( 3 < Age < 80 )  IMT = 0.008 X Age + 0.3 (3 <Age <80)
ここで、 Ageは年齢 (年単位)である。  Where Age is the age (in years).
[0067] また、予め記録部には、母集団の構成要素である各人の疾患の判定指標である I MTの値と、各人が持っている遺伝子多型 (遺伝子型を有する。以下同じ)とが対応 付けられて、被解析データとして記録されていることとする。被解析データは、例えば 各人に付与した個人 IDを用い、 {個人 ID, IMT値,複数の遺伝子多型 }の形式で記 録されている。 [0067] In addition, in the recording unit in advance, I is a disease determination index of each person who is a constituent element of the population. It is assumed that the MT value and the genetic polymorphism (having the genotype, the same applies hereinafter) possessed by each person are associated and recorded as data to be analyzed. The data to be analyzed is recorded in the form of {personal ID, IMT value, multiple gene polymorphisms} using, for example, the personal ID assigned to each person.
[0068] ステップ S1において、ステップ S2以降の処理で使用する繰り返し処理のカウンタの 上限値 kmaxを設定し、カウンタ kに初期値として 1を設定する。 kは、遺伝子多型を組 み合わせる数であり、 kmaxはその上限値である。ここでは kmax= 3と設定する。解析 が煩雑にはなるが、上限値 kmax力 以上、即ち遺伝子多型 4個以上カゝら構成される 遺伝子多型セットに対して以下に説明する処理を行ってもよい。  [0068] In step S1, an upper limit value kmax of the counter of the iterative process used in the processes after step S2 is set, and 1 is set as an initial value in counter k. k is the number of gene polymorphisms combined, and kmax is the upper limit. Here, kmax = 3 is set. Although the analysis becomes complicated, the processing described below may be performed on a gene polymorphism set composed of four or more gene polymorphisms, ie, an upper limit value of kmax force or more.
[0069] ステップ S2において、予備選択した遺伝子多型の中から、遺伝子型を有する遺伝 子多型を k個選択し、これを 1つのセットとする。セットは、遺伝子多型を重複無く含む 組合せとする。最初は k= lであるから、 1個の遺伝子多型のみを選択する。従って、 本明細書において「セット」とは、複数の遺伝子多型からなる場合に限定されず、 1個 の遺伝子多型のみの場合をも含むものとする。  [0069] In step S2, k gene polymorphisms having a genotype are selected from the preselected gene polymorphisms and set as one set. The set is a combination that includes genetic polymorphisms without duplication. Initially k = l, so only one gene polymorphism is selected. Therefore, the term “set” in the present specification is not limited to a case of being composed of a plurality of gene polymorphisms, but includes a case of only one gene polymorphism.
[0070] ステップ S3において、ステップ S2で選択されたセットが、それより以前の繰り返し処 理にお 、て、後述するステップ S4の処理で有意性ありと判断された遺伝子多型セッ トを含んでいるか否かを判断し、含んでいると判断した場合、ステップ S5に移行し、 含んでいないと判断した場合、ステップ S4に移行する。 k= lの場合にはステップ S4 に移行することになる。また、例えば、 k= 2の場合には、 k= lでの処理で既に特定 のセットが有意性ありと判断されていた場合、その遺伝子多型 (遺伝子型を有する)を 含むセットに関してはステップ S4の処理を行わずに、ステップ S 5に移行する。  [0070] In step S3, the set selected in step S2 includes the gene polymorphism set determined to be significant in the processing in step S4 described later in the previous iteration. If it is determined that it is included, the process proceeds to step S5. If it is determined that it is not included, the process proceeds to step S4. If k = l, the process moves to step S4. Also, for example, in the case of k = 2, if a specific set has already been determined to be significant in the treatment with k = l, the step including the gene polymorphism (having the genotype) is performed. The process proceeds to step S5 without performing the process of S4.
[0071] ステップ S4にお!/、て、全ての被解析データのうち、ステップ S 2で選択されたセット を含む被解析データの集合と、その補集合とを対象にして、疾患の判定指標に応じ て決定した値 (以下「疾患度」と記す)に関する t検定を行い、そのセットの有意性の有 無を判定する。尚、疾患の判定指標の値そのものを疾患度として用いてもよぐここで は、判定指標である IMT値を疾患度とする。即ち、 IMTの測定値 (疾患度)を用いて t値 (t )、及び t に対応する有意水準 (危険率) P を計算し、 P が所定の有意水準 cal cal cal cal  [0071] In step S4, out of all the analyzed data, a disease determination index for the set of analyzed data including the set selected in step S2 and its complement A t-test on the value determined according to the above (hereinafter referred to as “disease degree”) is performed to determine the significance of the set. Note that the disease determination index value itself may be used as the disease degree. Here, the IMT value as the determination index is used as the disease degree. That is, using the IMT measurement value (disease degree), calculate the t value (t) and the significance level (risk rate) P corresponding to t, where P is the predetermined significance level cal cal cal cal
P以下 ≤P )であれば、 2つの集合に有意差があり、そのセットは有意性ありと決 定し、判定結果を残すために、例えばセット毎の所定のフラグ (初期設定で" 0"に設 定されているとする)に" 1"を設定する。ここで、 t値の計算方法、 t検定は周知である ので説明を省略する。 If P is less than or equal to ≤P), there is a significant difference between the two sets, and the set is determined to be significant. In order to leave the determination result, for example, set “1” to a predetermined flag for each set (assuming that it is set to “0” by default). Here, since the t value calculation method and t test are well known, the description thereof is omitted.
[0072] ステップ S5において、 k個の遺伝子多型力もなる全てのセットに関して、ステップ S2 〜S4の処理を終了したか否かを判断し、終了するまでステップ S2〜S4の処理を繰 り返す。  [0072] In step S5, it is determined whether or not the processing of steps S2 to S4 has been completed for all sets having k gene polymorphisms, and the processing of steps S2 to S4 is repeated until the processing is completed.
[0073] ステップ S6において、 kが上限値 kmax( = 3)以上か否かを判断し、 k≥kmaxでない と判断した場合、ステップ S7に移行してカウンタ kを 1増カロさせてステップ S2に戻る。 これによつて、 k= l〜kmax ( = 3)まで、ステップ S2〜S5での処理が繰り返される。  [0073] In step S6, it is determined whether or not k is not less than the upper limit value kmax (= 3). If it is determined that k is not kmax, the process proceeds to step S7 and the counter k is incremented by one and Return. As a result, the processes in steps S2 to S5 are repeated until k = l to kmax (= 3).
[0074] 以上のステップ S2〜S7の処理によって、動脈硬化性疾患の危険度の判定に有効 である遺伝子多型のセット (動脈硬化性疾患危険度判定用遺伝子多型セット)が決 定される。例えば、図 5に示した遺伝子多型を用い、 kmax= 3、 P = 0. 05として上記 の処理を  [0074] A set of gene polymorphisms (gene polymorphism set for determining the risk of arteriosclerotic disease) that is effective in determining the risk of arteriosclerotic disease is determined by the processing of steps S2 to S7 described above. . For example, if the gene polymorphism shown in Fig. 5 is used and kmax = 3 and P = 0.05, the above process is performed.
行った結果、図 1に示した動脈硬化性疾患危険度判定用遺伝子多型セットが得られ た。図 1において、表の右端列に示した t valueは、各セットの t値である(図 2〜4に関 しても同様)。  As a result, the gene polymorphism set for determining the risk of arteriosclerosis shown in FIG. 1 was obtained. In Fig. 1, the t value shown in the rightmost column of the table is the t value of each set (the same applies to Figs. 2 to 4).
[0075] 尚、図 6に示したフローチャートに対して、例えば、以下に示すように種々の修正を 行い、または処理の追カ卩を行うことができる。  [0075] It should be noted that various modifications can be made to the flowchart shown in FIG. 6 as described below, or additional processing can be performed.
[0076] 例えば、ステップ S3の後に直ちに t検定を行うのではなぐステップ S2で選択された 遺伝子多型セットの疾患の判定指標との関連性、及びその関連性の統計的有意性 を判定し、所定の条件を満たす場合にのみ t検定を行うようにしてもよい。例えば、ス テツプ S2で指定されたセットに対して、 Odds (ォッズ比)及び Kai (カイ二乗値)を計算 し、 Odds及び Kaiが所定の条件(例えば、 Odds≥ 2且つ Kai≥3. 8、若しくは Odds≤ 0. 5且つ Kai≥3. 8)を満たすか否かを判断し、この条件を満たす場合にのみステツ プ S4に移行して t検定を行うようにしてもよい。各セットの Oddsは、そのセットを構成す る遺伝子多型を全て含む個人 IDに対応する IMTを用いて疾患の発症 (Case)又は 未発症(control)を決定し、 0(1(13 =じ&36の件数7じ0 1"01の件数 で計算する。ここ で、健常者の IMTの平均値 IMT との差 Δ ΙΜΤ=ΙΜΤ—ΙΜΤ 力 Δ ΙΜΤ≥0. 2 であれば Caseとし、 Δ ΙΜΤ< 0. 2であれば Controlとする。 Oddsの計算方法は、文献 (Yamada Y, Izawa H, Ichihara S, Takatsu F, Ishihara H, Hirayama H, Sone T, Tana ka M, Yokota M. Prediction of the risk of myocardial infarction from polymorphisms in candidate genes.N.Engl.J.Med. 2002; 347(24): 1916- 23)などにより公知である。ま た、 Kai (カイ二乗値)の計算方法は統計学上周知であるので、計算方法の詳細は省 略する。 [0076] For example, determining whether the genetic polymorphism set selected in step S2 immediately after step S3 does not perform a t-test, and the statistical significance of the association with the disease determination index, A t test may be performed only when a predetermined condition is satisfied. For example, Odds (odds ratio) and Kai (chi-square value) are calculated for the set specified in step S2, and Odds and Kai are determined according to predetermined conditions (for example, Odds ≥ 2 and Kai ≥ 3.8, Alternatively, it may be determined whether or not Odds≤0.5 and Kai≥3.8), and only when this condition is satisfied, the process proceeds to step S4 and a t-test may be performed. Each set of Odds determines the onset (Case) or non-occurrence (control) of the disease using the IMT corresponding to the individual ID including all of the polymorphisms constituting the set, and 0 (1 (13 = same The number of & 36 cases is calculated as 7 times 0 1 "01. The average value of IMT of healthy subjects is different from IMT. Δ ΙΜΤ = ΙΜΤ—ΙΜΤ force Δ ΙΜΤ≥0.2 If it is, then Case, and if Δ ΙΜΤ <0.2, it will be Control. The calculation method of Odds is described in the literature (Yamada Y, Izawa H, Ichihara S, Takatsu F, Ishihara H, Hirayama H, Sone T, Tana ka M, Yokota M. Prediction of the risk of myocardial infarction from polymorphisms in candidate genes.N . Engl. J. Med. 2002; 347 (24): 1916-23). Also, the calculation method of Kai (chi-square value) is well known in statistics, so the details of the calculation method are omitted.
[0077] また、上記では、計算した t値 (t )に対応する有意水準 P と、所定の有意水準 Pと  [0077] Further, in the above, the significance level P corresponding to the calculated t value (t), the predetermined significance level P, and
cal cal 0 を比較して、セットの有意性を判定したが、計算した t値 (t )の絶対値と、所定の有意  cal cal 0 was compared to determine the significance of the set, but the absolute value of the calculated t value (t) and the given significance
cal  cal
水準 Pに対応する t値 (t >0)とを比較して、 | t  T value (t> 0) corresponding to level P
0 0 cal I ≥tであれば、そのセットが有意  If 0 0 cal I ≥t, the set is significant
0  0
性ありと決定してもよい。  It may be determined that there is sex.
[0078] また、有意性ありと既に判断された遺伝子多型セットを含んでいるセットに関しては 、 t検定を行わない場合を説明したが、これに限定されず、ステップ S3の判断を行わ ずに、全てのセットに関して t検定を行って有意なセットを決定してもよい。  [0078] Regarding the set including the genetic polymorphism set that has already been determined to be significant, the case where the t-test is not performed has been described. However, the present invention is not limited to this, and the determination in step S3 is not performed. A significant set may be determined by performing a t-test on all sets.
[0079] また、上記では、頸動脈の硬化度を示す指標として頸動脈内膜中膜複合体肥厚度  [0079] In the above, the carotid intima-media thickness is used as an index indicating the degree of carotid sclerosis.
(IMT)を用いる場合を説明したが、これに限定されず、頸動脈の硬化度を示す指標 としては、 IMTの最大値を表す最大 IMT (Max— IMT)、 IMTの平均値を表す平均 IMT (AvglMT)、プラークスコア(PS)、頸動脈スティッフネス等がある。これらの各 指標についても種々の計測方法が確立されている。前斜位、側面、後斜位の各縦断 像で最大の内膜中膜肥厚度を Max— IMTとし、該 Max— IMTを示す部位を中心と して中枢側 1cmおよび遠位側 1cmの計 3ポイントの平均を AvglMTとする方法;左 右の総頸動脈(common carotid:CC)力 頸動脈分岐部、内頸動脈(internal carotid: IC)の 3縦断面の皮膚に対する近位壁 (near wall)および遠位壁 (far wall)の合計 12 の肥厚度の中、最大値を AvglMTとする方法;また、左右の肥厚度の平均を AvglM Tとする方法などである。さらに、 far wallの一定区画の平均肥厚度を mean IMTとす る方法もある。また、一側の頸動脈の分岐部より中枢側 10mmの far wallの肥厚度を 旨標とすることちでさる。  (IMT) has been explained, but the present invention is not limited to this. The index indicating the degree of sclerosis of the carotid artery includes the maximum IMT (Max—IMT) that represents the maximum value of IMT, and the average IMT that represents the average value of IMT. (AvglMT), plaque score (PS), carotid stiffness, etc. Various measurement methods have been established for each of these indicators. The maximum intima-media thickness in the longitudinal, lateral, and posterior longitudinal images is Max-IMT, and the central 1cm and the distal 1cm are centered on the site showing the Max-IMT. AvglMT is the average of the three points; left and right common carotid (CC) force carotid bifurcation, internal carotid (internal carotid: IC) 3 longitudinal cross-section proximal wall to the skin (near wall ) And the distal wall (far wall) in total 12 thicknesses, the maximum value is AvglMT; and the left and right average thickness is AvglMT. In addition, there is a method in which the average thickness of a certain section of the far wall is defined as mean IMT. In addition, the thickness of the far wall 10 mm from the central side of the bifurcation of the carotid artery on the one side is used as the target.
[0080] プラークスコア(PS)は、分岐部を基準として 15mmずつ頸動脈を 4区画に区分し、 各々の部位での 1.1mm以上のプラーク厚の左右頸動脈両方での総和をいう。また、 上述の 3〜4区画の各部位でのプラーク(IMTが 1. 1cm以上)の数の総和をプラー クナンバー(PN)と呼んで指標とすることもできる。 [0080] The plaque score (PS) is the sum of both the left and right carotid arteries with a plaque thickness of 1.1 mm or more at each site, with the carotid artery divided into four sections each 15 mm from the bifurcation. Also, The total number of plaques (IMT of 1.1 cm or more) in each of the above 3 to 4 sections can be called a plaque number (PN) and used as an index.
[0081] 頸動脈ステイツフネスは、収縮期および拡張期の頸動脈の径から計測される数値で ある。一側の頸動脈の分岐部より中枢側 10mmの far wallの肥厚度を指標とする方法 は、測定が簡便であり、総頸動脈には病変が少ないことより測定誤差が少ないといわ れる。 IMTは、頸動脈の最大の病変を示す指標である。 PSは、動脈硬化の進展した 頸動脈の全体像を示すことができるが、非進展例 (肥厚度が 1.1mm未満)では、 0と なる点で不利である等、測定する対象、疾患により好適な指標が異なる。糖尿病や高 脂血症を伴う場合には、頸動脈壁は比較的に均一に肥厚することが多ぐ AvglMT や mean IMTが重要な指標になるが、高血圧症を伴う場合は、プラークを認めること が多ぐ PS、 PNおよび Max— IMTが有効な指標となり得る。  [0081] The carotid artery stiffness is a numerical value measured from the diameter of the carotid artery during systole and diastole. The method using the thickening of the far wall 10mm central from the bifurcation of one carotid artery as an index is easy to measure, and it is said that the measurement error is small because there are few lesions in the common carotid artery. IMT is an index indicating the largest lesion of the carotid artery. PS can show the whole image of the carotid artery where arteriosclerosis has progressed, but in non-progressive cases (thickness is less than 1.1 mm), it is disadvantageous in that it becomes 0, etc. Different indicators are different. In cases with diabetes or hyperlipidemia, the carotid wall is often thickened relatively uniformly. AvglMT and mean IMT are important indicators. PS, PN and Max—IMT can be useful indicators.
[0082] また、動脈硬化性疾患と密接に関係する臨床的所見としては、頸動脈内膜中膜複 合体肥厚度の増加量を挙げることもできる。頸動脈内膜中膜複合体肥厚度の増加量 として、上記した平均 IMTの増分( Δ IMT)や最大 IMTの増分( Δ PIMT)等を指標 として用いることができる。中でも Δ ΙΜΤは、総合的に動脈硬化性疾患の危険度を表 すものとして特に好ましい指標である。頸動脈内膜中膜複合体肥厚度の増加量と動 脈硬化性疾患との関連性については、多くの報告がなされており、特に Δ ΙΜΤにつ いては、 Δ ΙΜΤが 0. 339mm増加するごとに心筋梗塞のォッズが 4. 9倍になること が知られている(Yamasaki. Diabetes Care 2000 (9))。ゆえに、 Δ ΙΜΤは、動脈硬化 性疾患と密接に関係する臨床的所見として位置づけられ、これを用いる方法は、極 めて有効に動脈硬化性疾患の危険度を判定し得るものである。なお、頸動脈内膜中 膜複合体肥厚度の増加量は、そのまま、動脈硬化性疾患の危険度の評価に利用す ることができるが、頸動脈内膜中膜複合体肥厚度の増加量から、適宜関数を用いて 上記評価に利用してもよい。頸動脈内膜中膜複合体肥厚度の増加量( Δ ΙΜΤおよ び Δ ΡΙΜΤ等)は、集団より計測された ΙΜΤ値または ΡΙΜΤ値力ゝら重回帰分析の方 法により計算される偏回帰係数により表すことができる。  [0082] Further, as clinical findings closely related to arteriosclerotic diseases, an increased amount of carotid intima-media thickening can also be mentioned. As the amount of increase in carotid intima-media thickness, the above-mentioned average IMT increment (ΔIMT), maximum IMT increment (ΔPIMT), and the like can be used as indices. Among them, ΔΙΜΤ is a particularly preferable index as a comprehensive expression of the risk of arteriosclerotic disease. There have been many reports on the relationship between the increase in carotid intima-media thickness and arteriosclerotic disease, especially for ΔΙΜΤ, ΔΙΜΤ increases by 0.339 mm. It is known that the odds of myocardial infarction increase 4.9 times each time (Yamasaki. Diabetes Care 2000 (9)). Therefore, ΔΙΜΤ is positioned as a clinical finding that is closely related to arteriosclerotic disease, and the method using it can determine the risk of arteriosclerotic disease very effectively. The increased amount of carotid intima-media complex thickness can be used as it is to evaluate the risk of arteriosclerotic disease, but the increased amount of carotid intima-media complex thickness Therefore, it may be used for the evaluation using a function as appropriate. The amount of increase in carotid intima-media thickness (Δ ΙΜΤ and Δ ΡΙΜΤ, etc.) was calculated by the multiple regression analysis method based on the threshold value or threshold value measured from the population. It can be expressed by a coefficient.
[0083] また、臨床データが増えた場合、それらを含む新たな被解析データの集合に対して 、上記した疾患危険度判定用遺伝子多型決定方法を適用することによって、より有 効な遺伝子多型セットを決定することができ、疾患危険度の判定精度を向上すること ができる。 [0083] Further, when clinical data increases, it is more effective by applying the above-described method for determining a genetic polymorphism for disease risk determination to a set of new analyzed data including them. An effective gene polymorphism set can be determined, and the accuracy of determination of disease risk can be improved.
[0084] (1 - 2)心筋梗塞危険度判定用遺伝子多型の場合  [0084] (1-2) In the case of genetic polymorphism for risk assessment of myocardial infarction
心筋梗塞に関しても、疾患の判定指標として、心電図上の陳旧性 (abnormal Q)心 筋梗塞波形の有無又は心筋梗塞の既往の有無を使用して、上記と同様の処理を行 うことによって、危険度の判定に有効な遺伝子多型、及び遺伝子多型のセットを決定 することができる。例えば、心筋梗塞を未発症であれば疾患度 = 1、発症であれば疾 患度 = 2とする。この 1又は 2の値を実数値として用いて、上記と同様 (kmax= 3、 P = 0. 05)に t検定を行うことによって、図 2に示した心筋梗塞危険度判定用遺伝子多型 セットが得られた。  With regard to myocardial infarction, by using the presence or absence of an abdominal myocardial infarction waveform on the electrocardiogram or the history of myocardial infarction as a disease determination index, It is possible to determine a genetic polymorphism and a set of genetic polymorphisms that are effective for risk assessment. For example, if the myocardial infarction has not yet occurred, the disease degree = 1, and if it has the disease, the disease degree = 2. Using the value of 1 or 2 as a real value, the t-test is performed in the same manner as above (kmax = 3, P = 0.05), so that the gene polymorphism set for risk assessment of myocardial infarction shown in Fig. 2 is set. was gotten.
[0085] (1 - 3)腎症危険度判定用遺伝子多型の場合  [0085] (1-3) In the case of genetic polymorphism for nephropathy risk assessment
腎症の場合には、例えば疾患の判定指標として尿中のアルブミン排泄率 g/mg' Cr)を用い、図 9に示した基準で Case又は Controlの判定、及び t検定で使用する疾 患度を決定する。  In the case of nephropathy, for example, the urinary albumin excretion rate g / mg'Cr) is used as a disease determination index, the case or control determination based on the criteria shown in FIG. 9, and the disease degree used in the t-test To decide.
[0086] 図 9によって決定された疾患度 = 1〜3の値を実数値として用いて、上記と同様 (km ax= 3、 P = 0. 05)に t検定を行うことによって、図 3に示した腎症危険度判定用遺伝 子多型セットを得ることができた。  [0086] Using the values of disease degree determined by Fig. 9 = 1 to 3 as real values, the t-test is performed in the same manner as above (km ax = 3, P = 0.05) to obtain Fig. 3. The gene polymorphism set for determining the risk of nephropathy shown could be obtained.
[0087] (1 4)網膜症危険度判定用遺伝子多型の場合  [0087] (1 4) In the case of genetic polymorphism for retinopathy risk assessment
網膜症の場合には、図 10に示した基準で、 Case又は Controlの判定、及び t検定で 使用する疾患度を決定する。  In the case of retinopathy, the criteria shown in Fig. 10 are used to determine the degree of disease to be used in Case or Control judgment and t-test.
[0088] 図 10によって決定された疾患度 = 1〜4の値を実数値として用いて、上記と同様 (k max= 3、 P = 0. 05)に t検定を行うことによって、図 4に示した網膜症危険度判定用 遺伝子多型セットを得ることができた。  [0088] By using t-test as described above (k max = 3, P = 0.05) using the values of disease degree = 1 to 4 determined by Fig. 10 as real values, Fig. 4 The gene polymorphism set for judging the risk of retinopathy shown can be obtained.
[0089] 以上では、図 5に示した 133の遺伝子多型を用い、 t値の正'負を考慮することによ つて、疾患毎に疾患危険度判定用遺伝子多型セットとして、図 1〜図 4に示した表が 得られたことを説明した。同様に、 t値の正の値を用いて、別の疾患危険度判定用遺 伝子多型セットを決定することもできる。例えば、動脈硬化性疾患、心筋梗塞、腎症 および網膜症の疾患危険度判定用遺伝子多型セットとして、それぞれ図 17〜図 20 に示す遺伝子多型セットが得られた。 [0089] In the above, by using the 133 gene polymorphisms shown in Fig. 5 and considering the positive and negative t values, the gene polymorphism sets for disease risk determination for each disease are shown in Figs. We explained that the table shown in Fig. 4 was obtained. Similarly, another disease risk determination gene polymorphism set can be determined using a positive t value. For example, as a gene polymorphism set for determining the disease risk of arteriosclerotic disease, myocardial infarction, nephropathy, and retinopathy, Fig. 17 to Fig. 20 respectively. The gene polymorphism set shown in was obtained.
[0090] (2)疾患危険度判定用アレイ  [0090] (2) Disease risk assessment array
本発明は、被験者が保有する遺伝子多型に基づいて、当該被験者について疾患 の力かりやすさや進行しやすさ(疾患危険度)を判定するために使用される、疾患危 険度判定用アレイを提供する。本発明に係るアレイは、カゝかる遺伝子多型を検出す るためのプローブを高密度に整列させて、シリコンウェハーやガラススライド等の支持 体上に固定ィ匕したものである。ここでプローブとしては、特定の疾患に関連する遺伝 子多型を特異的に認識して捕捉するものであればよい。具体的には、遺伝子多型に 対応する塩基配列又はその相補配列の全部又は一部力 なる塩基配列を有するプ ローブを挙げることができる。  The present invention provides an array for determining a disease risk, which is used to determine the ease of disease progression and the ease of progression (disease risk) for a subject based on a genetic polymorphism possessed by the subject. provide. In the array according to the present invention, probes for detecting a gene polymorphism to be formed are aligned at high density and fixed on a support such as a silicon wafer or a glass slide. Here, the probe may be any probe that specifically recognizes and captures a gene polymorphism associated with a specific disease. Specifically, a probe having a base sequence corresponding to a gene polymorphism or a base sequence that is a part or all of a complementary sequence thereof can be mentioned.
[0091] 本発明は特に、糖尿病に起因する動脈硬化性疾患の危険度判定用アレイ、糖尿 病に起因する心筋梗塞の危険度判定用アレイ、糖尿病に起因する腎症の危険度判 定用アレイ、及び糖尿病に起因する網膜症の危険度判定用アレイを提供する。  The present invention particularly relates to an array for determining the risk of arteriosclerosis caused by diabetes, an array for determining the risk of myocardial infarction resulting from diabetes, and an array for determining the risk of nephropathy resulting from diabetes. And an array for determining the risk of retinopathy due to diabetes.
[0092] (2- 1)動脈硬化性疾患危険度判定用アレイ  [2-1] (2-1) Arteriosclerotic disease risk assessment array
本発明の動脈硬化性疾患危険度判定用アレイは、動脈硬化性疾患の力かりやす さ (発症しやすさ)や進行しやすさを判定するために使用することができる。好適には 、糖尿病またはその傾向がある被験者に対して、動脈硬化性疾患の危険度を判定す るために使用することができる。本発明の動脈硬化性疾患危険度判定用アレイは、 動脈硬化性疾患の判定指標となる"頸動脈内膜中膜複合体肥厚度 (IMT) "との間 に有意な正 (感受性)の関連性を有する「正 (感受性)の遺伝子多型セット」を構成す る遺伝子多型に対する検出用プローブと、有意な負 (抵抗性)の関連性を有する「負 (抵抗性)の遺伝子多型セット」を構成する遺伝子多型に対する検出用プローブとを 有する。遺伝子多型セットが IMTに対して「正の関連性」がある力否力、「負の関連性 」がある力否かは、上記(1)の疾患危険度判定用遺伝子多型の決定方法における説 明で示した t値力も判断することができる。すなわち、 t値が負である場合を「負の関連 性」があるとし、逆に t値が正である場合は「正の関連性」があると判定することができ る。  The arteriosclerotic disease risk determination array of the present invention can be used to determine the ease of developing an arteriosclerotic disease (ease of onset) and the ease of progression. Preferably, it can be used to determine the risk of arteriosclerotic disease in a subject with diabetes or its tendency. The arteriosclerotic disease risk determination array of the present invention has a significant positive (susceptibility) relationship with the carotid intima-media thickness (IMT), which is a determination index for arteriosclerotic diseases. Detection probes for gene polymorphisms that make up a positive (susceptible) gene polymorphism set and a negative (resistance) gene polymorphism set that has a significant negative (resistance) association And a probe for detecting a polymorphism of the gene. Whether or not a gene polymorphism set has a “positive association” or “negative association” with respect to IMT is determined by the method for determining a genetic polymorphism for disease risk determination described in (1) above. The t-value force shown in the explanation in can also be judged. In other words, it can be determined that there is a “negative relevance” when the t value is negative, and conversely when the t value is positive, there is a “positive relevance”.
[0093] 力かる動脈硬化性疾患と有意な関連性を有する「遺伝子多型セット」として、具体的 には、図 1及び図 17に掲げる遺伝子多型セットを例示することができる。より詳細に は、図 1及び図 17において、各行 (横一列)に列記した遺伝子多型(SNP)の組合せ 力 一つの「動脈硬化性疾患に有意に関連する遺伝子多型セット」を意味する。ここ で図 1—A及び図 17に示す t値が正である遺伝子多型セットは「動脈硬化性疾患に 関する正 (感受性)の遺伝子多型セット」であり、図 1 Bに示す t値が負である遺伝子 多型セットは「動脈硬化性疾患に関する負(抵抗性)の遺伝子多型セット」であること を意味する。 [0093] As a “gene polymorphism set” having a significant association with strenuous arteriosclerotic disease, Examples of the gene polymorphism set shown in FIG. 1 and FIG. More specifically, in FIG. 1 and FIG. 17, the combined force of gene polymorphisms (SNPs) listed in each row (one horizontal column) means one “gene polymorphism set significantly related to arteriosclerotic disease”. Here, the gene polymorphism set having a positive t value shown in FIGS. 1A and 17 is a “positive (susceptibility) gene polymorphism set for arteriosclerotic disease”, and the t value shown in FIG. 1B is A gene polymorphism set that is negative means “a negative (resistance) gene polymorphism set for arteriosclerotic disease”.
[0094] なお、ここで「遺伝子多型」とは、前述するように、遺伝子型 (Genotype)を包含する もの、すなわち特有の遺伝子型を有する遺伝子多型を意味する。上記各図において 、遺伝子多型を「GENE (略称)」として、また遺伝子型を「Genotype」として示す。各遺 伝子多型に関する詳細な情報は、図 5に示す通りである。  [0094] Here, "gene polymorphism" means a gene polymorphism including a genotype, that is, a gene polymorphism having a specific genotype, as described above. In each of the above figures, the gene polymorphism is shown as “GENE (abbreviation)” and the genotype is shown as “Genotype”. Detailed information on each gene polymorphism is shown in Figure 5.
[0095] 本発明の動脈硬化性疾患危険度判定用アレイは、かかる図 1及び図 17に記載さ れる遺伝子多型セットからなる群力 選択される少なくとも一の遺伝子多型セットを構 成する遺伝子多型に対する検出用プローブを有する。また、遺伝子多型セットの選 択は、特に制限されず任意に行うことができるが、その際に各図において遺伝子多 型セット毎に記載されて 、る t値を指標  [0095] The arteriosclerotic disease risk determination array of the present invention is a gene comprising at least one gene polymorphism set selected from the group power consisting of the gene polymorphism sets described in FIG. 1 and FIG. It has a probe for detecting polymorphism. The selection of a gene polymorphism set is not particularly limited and can be arbitrarily performed. At that time, the t value described for each gene polymorphism set in each figure is used as an index.
とすることができる。本発明の動脈硬化性疾患危険度判定用アレイは、かかる t値か ら評価して、 IMTに対して (すなわち動脈硬化性疾患)との関連性が高い遺伝子多 型セットを構成する遺伝子多型に対する検出用プローブを備えていることが好ましい  It can be. The arteriosclerotic disease risk determination array of the present invention is a gene polymorphism that constitutes a gene polymorphism set highly related to IMT (that is, arteriosclerotic disease), as evaluated from such t values. It is preferable to provide a detection probe for
[0096] 図 1— A及び図 17に示される遺伝子多型セットからなる群の中から、または図 1— B に示される遺伝子多型セットからなる群の中から、それぞれ半数以上、 6割以上、 7割 以上、 8割以上、または 9割以上の遺伝子多型セットを選択する場合は、制限はされ ないが、「動脈硬化性疾患に関する正 (感受性)の遺伝子多型セット」および「動脈硬 化性疾患に関する負(抵抗性)の遺伝子多型セット」のいずれも t値の絶対値( I t値[0096] From the group consisting of the gene polymorphism set shown in Fig. 1-A and Fig. 17 or from the group consisting of the gene polymorphism set shown in Fig. 1-B, more than half, 60% or more, respectively. When selecting a genetic polymorphism set of 70% or more, 80% or more, or 90% or more, there is no limitation, but “positive (susceptibility) gene polymorphism set for arteriosclerotic disease” and “arteriosclerosis” The absolute value of the t value (I t value)
I )の大きい順力も重点的に選択されることが好ましい。 It is preferable that the forward force with a large I) is selected with priority.
[0097] 本発明の動脈硬化性疾患危険度判定用アレイは、正 (感受性)の遺伝子多型セット を構成する遺伝子多型に対する検出用プローブと負(抵抗性)の遺伝子多型セットを 構成する遺伝子多型に対する検出用プローブの両方を有するものであることが好ま しい。 [0097] The arteriosclerotic disease risk determination array of the present invention comprises a detection probe for a gene polymorphism constituting a positive (susceptibility) gene polymorphism set and a negative (resistance) gene polymorphism set. It is preferable to have both detection probes for the gene polymorphisms that constitute.
[0098] 本発明者は、上記種々の要件を検討した結果、図 5に記載する遺伝子多型が、動 脈硬化性疾患、特に糖尿病に起因する動脈硬化性疾患の危険度の判定に有用で あり、力かる遺伝子多型を単独または組み合わせて用いることによって、動脈硬化性 疾患の危険度が高い精度で判定できることを確認した。よって、本発明の動脈硬化 性疾患危険度判定用アレイは、検出用プローブとして、図 5に記載する 133個の遺 伝子多型に対する検出用プローブを有するものとすることもできる。  As a result of examining the above various requirements, the present inventor has found that the genetic polymorphism shown in FIG. 5 is useful for determining the risk of arteriosclerotic diseases, particularly arteriosclerotic diseases caused by diabetes. It was confirmed that the risk of arteriosclerotic disease can be determined with high accuracy by using powerful polymorphisms alone or in combination. Therefore, the arteriosclerotic disease risk determination array of the present invention may have detection probes for 133 gene polymorphisms shown in FIG. 5 as detection probes.
[0099] 本発明の動脈硬化性疾患危険度判定用アレイは、被験者につ!、て動脈硬化性疾 患に対する感受性及び抵抗性を評価するために使用することができる。これは、具体 的には、例えばアレイ上の検出用プローブと被験試料から調製したプローブとをハイ ブリダィズさせ、被験者について検出された遺伝子多型を、動脈硬化性疾患の判定 指標である IMTと正の関連性を有する遺伝子多型セット、並びに IMTと負の関連性 を有する遺伝子多型セットと照合することにより実施することができる。このとき得られ る情報 (被験者が IMTと正の関連性を有する遺伝子多型セットを有して 、るか否か、 IMTと負の関連性を有する遺伝子多型セットを有している力否かの情報)は、被験者 の動脈硬化性疾患に対する感受性及び抵抗性を評価するために使用できる。  [0099] The arteriosclerotic disease risk determination array of the present invention can be used to evaluate the sensitivity and resistance to arteriosclerotic disease for a subject. Specifically, for example, the detection probe on the array and the probe prepared from the test sample are hybridized, and the gene polymorphism detected for the subject is corrected with the IMT, which is an index for determining arteriosclerotic disease. It can be carried out by collating with a gene polymorphism set having a negative association with IMT and a gene polymorphism set having a negative association with IMT. Information obtained at this time (whether or not the subject has a gene polymorphism set that has a positive association with IMT and whether or not the subject has a gene polymorphism set that has a negative association with IMT. Such information) can be used to assess a subject's susceptibility and resistance to arteriosclerotic disease.
[0100] また本発明の動脈硬化性疾患危険度判定用アレイは、被験者について動脈硬化 性疾患に対する危険度の有無やその高低 (かかりやすさや進行のしゃすさの有無及 びその程度)を評価するために使用することができる。これは、例えばアレイ上の検出 用プローブと被験試料力も調製したプローブとをハイブリダィズさせ、検出された遺伝 子多型を、 IMTと関連性を有する遺伝子多型セットと照合し、照合結果に所定の判 定式を適用することによって実施することができる。疾患の危険度の判定方法に関す る詳細は後述する。  [0100] The arteriosclerotic disease risk determination array of the present invention is used to evaluate the presence or absence of a risk for an arteriosclerotic disease and the level (existence and degree of progression). Can be used for This is because, for example, a detection probe on the array is hybridized with a probe whose test sample force is also prepared, the detected gene polymorphism is collated with a set of gene polymorphisms related to IMT, and the collation result has a predetermined result. It can be implemented by applying the judgment formula. Details on how to determine the risk of a disease are given below.
[0101] (2— 2)心筋梗塞危険度判定用アレイ [0101] (2-2) Myocardial infarction risk assessment array
本発明の心筋梗塞危険度判定用アレイは、心筋梗塞の力かりやすさ (発症しやす さ)や進行しやすさを判定するために使用することができる。好適には、糖尿病患者 または境界型糖尿病患者に対して、心筋梗塞の危険度を判定するために使用するこ とができる。本発明の心筋梗塞危険度判定用アレイは、心筋梗塞の判定指標との間 に有意な正 (感受性)の関連性を有する「正 (感受性)の遺伝子多型セット」を構成す る遺伝子多型に対する検出用プローブと、負 (抵抗性)の関連性を有する「負 (抵抗 性)の遺伝子多型セット」を構成する遺伝子多型に対する検出用プローブを有する。 なお、ここで心筋梗塞の判定指標としては、当業界で慣用されているものであれば特 に制限されないが、好ましくは心電図上で観察される陳旧性心筋梗塞波長 (abnorma 1 Q)の有無または被験者に関する心筋梗塞の既往歴を利用することができる。 The myocardial infarction risk determination array according to the present invention can be used to determine the ease with which a myocardial infarction is applied (the likelihood of onset) and the ease with which it progresses. Preferably, it is used to determine the risk of myocardial infarction for diabetics or borderline diabetics. You can. The myocardial infarction risk determination array of the present invention is a gene polymorphism that constitutes a “positive (susceptibility) gene polymorphism set” having a significant positive (susceptibility) relationship with a myocardial infarction determination index. And a detection probe for a gene polymorphism constituting a “negative (resistance) gene polymorphism set” having a negative (resistance) relationship. Note that the myocardial infarction determination index is not particularly limited as long as it is conventionally used in the industry, but preferably, there is an old myocardial infarction wavelength (abnorma 1 Q) observed on an electrocardiogram. Alternatively, a history of myocardial infarction for the subject can be used.
[0102] 遺伝子多型セットが心筋梗塞に対して「正の関連性」がある力否力、「負の関連性」 がある力否かは、上記(1)の決定方法における説明で示した t値力 判断することが できる。すなわち、 t値が正である場合を「正の関連性」があるとし、逆に t値が負であ る場合は「負の関連性」があると判定することができる。  [0102] Whether the genetic polymorphism set has “positive relevance” or “negative relevance” for myocardial infarction is shown in the explanation in the determination method in (1) above. t Value power can be judged. That is, it can be determined that there is a “positive relevance” when the t value is positive, and conversely when the t value is negative, there is a “negative relevance”.
[0103] 力かる心筋梗塞と有意な関連性を有する「遺伝子多型セット」として、具体的には、 図 2及び図 18に掲げる遺伝子多型セットを例示することができる。より詳細には、図 2 及び図 18において、各行 (横一列)に列記した遺伝子多型(SNP)の組合せ力 一 つの「心筋梗塞に有意に関連する遺伝子多型セット」を意味する。ここで図 2— A及 び図 18に示す t値が正である遺伝子多型セットは「心筋梗塞に関する正 (感受性)の 遺伝子多型セット」であり、図 2— Bに示す t値が負である遺伝子多型セットは「心筋梗 塞に関する負(抵抗性)の遺伝子多型セット」であることを意味する。  [0103] Specific examples of the "gene polymorphism set" having a significant association with a strong myocardial infarction can include the gene polymorphism sets listed in Figs. More specifically, in FIG. 2 and FIG. 18, the combined power of gene polymorphisms (SNPs) listed in each row (one horizontal column) means one “gene polymorphism set significantly associated with myocardial infarction”. Here, the gene polymorphism set with positive t values shown in Fig. 2-A and Fig. 18 is the "positive (susceptibility) gene polymorphism set for myocardial infarction", and the t value shown in Fig. 2-B is negative. This means that the gene polymorphism set is “negative (resistance) gene polymorphism set for myocardial infarction”.
[0104] 本発明の心筋梗塞危険度判定用アレイは、力かる図 2及び図 18に記載される遺伝 子多型セットからなる群力 選択される少なくとも一の遺伝子多型セットを構成する遺 伝子多型に対する検出用プローブを有する。遺伝子多型セットの選択には、特に制 限されず任意に行うことができるが、その際図 2及び図 18において遺伝子多型セット 毎に記載されている t値を指標とすることができる。本発明の心筋梗塞危険度判定用 アレイは、力かる t値力 評価して、心筋梗塞判定指標に対して関連性が高い遺伝子 多型セットを構成する遺伝子多型に対する検出用プローブを備えていることが好まし い。  [0104] The myocardial infarction risk determination array of the present invention is a gene that constitutes at least one gene polymorphism set selected from the group power consisting of the gene polymorphism sets described in FIG. 2 and FIG. It has a probe for detecting polymorphism. The selection of a gene polymorphism set is not particularly limited and can be arbitrarily performed. In this case, the t value described for each gene polymorphism set in FIGS. 2 and 18 can be used as an index. The myocardial infarction risk determination array according to the present invention includes a detection probe for a gene polymorphism that constitutes a gene polymorphism set that is highly relevant to a myocardial infarction determination index by evaluating a powerful t-value force. I prefer that.
[0105] 図 2— A及び図 18に示される遺伝子多型セットからなる群の中から、または図 2— B に示される遺伝子多型セットからなる群の中から、それぞれ半数以上、 6割以上、 7割 以上、 8割以上、または 9割以上の遺伝子多型セットを選択する場合は、制限はされ ないが、「心筋梗塞に関する正 (感受性)の遺伝子多型セット」および「心筋梗塞に関 する負(抵抗性)の遺伝子多型セット」のいずれも t値の絶対値( I t値 I )の大きい順 力も重点的に選択されることが好ましい。 [0105] From the group consisting of the gene polymorphism set shown in Fig. 2-A and Fig. 18, or from the group consisting of the gene polymorphism set shown in Fig. 2-B, more than half, 60% or more, respectively. 70% As mentioned above, when selecting a gene polymorphism set of 80% or more, or 90% or more, there is no limitation, but “positive (susceptibility) gene polymorphism set for myocardial infarction” and “negative for myocardial infarction ( In any of the (resistance) gene polymorphism sets, it is preferable that an order having a large absolute value of t value (I t value I) is also selected with priority.
[0106] 本発明の心筋梗塞危険度判定用アレイは、正 (感受性)の遺伝子多型セットを構成 する遺伝子多型に対する検出用プローブと、負(抵抗性)の遺伝子多型セットを構成 する遺伝子多型に対する検出用プローブの両方を有するものであることが好ましい。  [0106] The myocardial infarction risk determination array of the present invention comprises a detection probe for a gene polymorphism constituting a positive (susceptibility) gene polymorphism set and a gene constituting a negative (resistance) gene polymorphism set. It is preferable to have both detection probes for polymorphism.
[0107] 本発明者は、心筋梗塞、特に糖尿病に起因する心筋梗塞の危険度の判定にも図 5 に記載する遺伝子多型が有用であり、力かる遺伝子多型を単独または組み合わせて 用いることによって、心筋梗塞の危険度が高い精度で判定できることを確認した。よ つて、本発明の心筋梗塞危険度判定用アレイは、検出用プローブとして、図 5に記載 する 133個の遺伝子多型に対する検出用プローブを有するものとすることもできる。  [0107] The present inventor is also useful for determining the risk of myocardial infarction, in particular, myocardial infarction caused by diabetes, and the gene polymorphism shown in Fig. 5 is useful. From the above, it was confirmed that the risk of myocardial infarction can be determined with high accuracy. Therefore, the myocardial infarction risk determination array of the present invention can also have detection probes for 133 gene polymorphisms shown in FIG. 5 as detection probes.
[0108] 本発明の心筋梗塞危険度判定用アレイは、被験者について心筋梗塞に対する抵 抗性 (かかりにくさ)を評価するために使用することができるし、また、被験者について 心筋梗塞に対する抵抗性及び感受性 (かかり易さ)を評価するために使用することが できる。さらに本発明の心筋梗塞危険度判定用アレイは、被験者について心筋梗塞 に対する危険度の有無やその高低 (かかりやすさや進行のしゃすさの有無及びその 程度)を評価するために使用することができる。  [0108] The myocardial infarction risk determination array of the present invention can be used for evaluating the resistance (hardness) to myocardial infarction for a subject, and for the subject to resistance to myocardial infarction and Can be used to assess susceptibility (susceptibility). Furthermore, the myocardial infarction risk determination array of the present invention can be used to evaluate the presence or absence of the risk of myocardial infarction and its level (presence or absence and degree of progression).
[0109] 心筋梗塞危険度の判定は、前述の心筋梗塞の危険度判定方法と同様な方法で行 うことができる。  [0109] The risk of myocardial infarction can be determined by the same method as the above-described method for determining the risk of myocardial infarction.
[0110] (2— 3)腎症危険度判定用アレイ  [0110] (2-3) Array for determining the risk of nephropathy
本発明の腎症危険度判定用アレイは、糖尿病性の腎症の力かりやすさ (発症しや すさ)や進行しやすさを判定するために使用することができる。好適には、糖尿病患 者または境界型糖尿病患者に対して、腎症の危険度を判定するために使用すること ができる。本発明の腎症危険度判定用アレイは、腎症の判定指標との間に有意な正 (感受性)の関連性を有する「正 (感受性)の遺伝子多型セット」を構成する遺伝子多 型に対する検出用プローブと、負 (抵抗性)の関連性を有する「負 (抵抗性)の遺伝子 多型セット」を構成する遺伝子多型に対する検出用プローブを有する。なお、ここで 腎症の判定指標としては、当業界で慣用されているものであれば特に制限されない 力 好ましくは尿中のアルブミン排泄率 g/mg'Cr)を利用することができる。 The array for determining the risk of nephropathy of the present invention can be used to determine how easily diabetic nephropathy is likely to be exerted (easy to develop) or easily progress. Preferably, it can be used to determine the risk of nephropathy for diabetics or borderline diabetics. The array for determining the risk of nephropathy of the present invention relates to gene polymorphisms constituting a “positive (susceptibility) gene polymorphism set” having a significant positive (sensitivity) relationship with a nephropathy determination index. It has a detection probe and a detection probe for a gene polymorphism constituting a “negative (resistance) gene polymorphism set” having a negative (resistance) relationship. Where The index for determining nephropathy is not particularly limited as long as it is commonly used in the art, and preferably the urinary albumin excretion rate g / mg′Cr) can be used.
[0111] 遺伝子多型セットが腎症に対して「正の関連性」がある力否力、「負の関連性」があ る力否かは、上記(1)の決定方法における説明で示した t値力も判断することができ る。すなわち、 t値が正である場合を「正の関連性」があるとし、逆に t値が負である場 合は「負の関連性」があると判定することができる。  [0111] Whether the genetic polymorphism set has a “positive association” or “negative association” for nephropathy is shown in the explanation in the determination method in (1) above. The t-value force can also be judged. That is, it can be determined that there is a “positive relevance” when the t value is positive, and conversely when the t value is negative, there is a “negative relevance”.
[0112] 力かる腎症と有意な関連性を有する「遺伝子多型セット」として、具体的には、図 3 及び図 19に掲げる遺伝子多型セットを例示することができる。より詳細には、図 3及 び図 19において、各行 (横一列)に列記した遺伝子多型(SNP)の組合せ力 一つ の「腎症に有意に関連する遺伝子多型セット」を意味する。ここで図 3— A及び図 19 に示す t値が正である遺伝子多型セットは「腎症に関する正 (感受性)の遺伝子多型 セット」であり、図 3— Bに示す t値が負である遺伝子多型セットは「腎症に関する負( 抵抗性)の遺伝子多型セット」であることを意味する。  [0112] Specific examples of the “gene polymorphism set” having a significant association with striking nephropathy include the gene polymorphism sets shown in FIG. 3 and FIG. More specifically, in FIG. 3 and FIG. 19, it means “a set of gene polymorphisms significantly associated with nephropathy”, which is a combination of gene polymorphisms (SNPs) listed in each row (one horizontal column). Here, the gene polymorphism set with positive t values shown in Fig. 3-A and Fig. 19 is the "positive (susceptibility) gene polymorphism set for nephropathy", and the t value shown in Fig. 3-B is negative. A gene polymorphism set means “a negative (resistance) gene polymorphism set for nephropathy”.
[0113] 本発明の腎症危険度判定用アレイは、力かる図 3及び図 19に記載される遺伝子多 型セットからなる群から選択される少なくとも一の遺伝子多型セットを構成する遺伝子 多型に対する検出用プローブを有する。遺伝子多型セットの選択には、特に制限さ れず任意に行うことができる力 その際、図 3及び図 19において遺伝子多型セット毎 に記載されている t値を指標とすることができる。本発明の腎症危険度判定用アレイ は、力かる t値力も評価して、腎症に対して関連性が高い遺伝子多型セットを構成す る遺伝子多型に対する検出用プローブを備えていることが好ましい。  [0113] The array for determining the risk of nephropathy of the present invention comprises gene polymorphisms constituting at least one gene polymorphism set selected from the group consisting of gene polymorphism sets described in FIG. 3 and FIG. Has a probe for detection. The ability to select a gene polymorphism set is not particularly limited and can be arbitrarily performed. At that time, the t value described for each gene polymorphism set in FIGS. 3 and 19 can be used as an index. The array for determining the risk of nephropathy of the present invention includes a detection probe for a gene polymorphism that constitutes a gene polymorphism set that is highly relevant to nephropathy by evaluating a powerful t-value force. Is preferred.
[0114] 図 3— A及び図 19に示される遺伝子多型セットからなる群の中から、または図 3— B に示される遺伝子多型セットからなる群の中から、それぞれ半数以上、 6割以上、 7割 以上、 8割以上、または 9割以上の遺伝子多型セットを選択する場合は、制限はされ ないが、「腎症に関する正 (感受性)の遺伝子多型セット」および「腎症に関する負 (抵 抗性)の遺伝子多型セット」のいずれも t値の絶対値( I t値 I )の大きい順カゝら重点 的に選択されることが好ま 、。  [0114] From the group consisting of the gene polymorphism set shown in Fig. 3-A and Fig. 19 or from the group consisting of the gene polymorphism set shown in Fig. 3-B, more than half, 60% or more, respectively. When selecting a genetic polymorphism set of 70% or more, 80% or more, or 90% or more, there is no limitation, but “positive (susceptibility) gene polymorphism set for nephropathy” and “negative nephropathy set” It is preferable that all of the (resistance) gene polymorphism sets be selected with priority given to the descending order of the absolute value of the t value (I t value I).
[0115] 本発明の腎症危険度判定用アレイは、正 (感受性)の遺伝子多型セットを構成する 遺伝子多型に対する検出用プローブと負(抵抗性)の遺伝子多型セットを構成する 遺伝子多型に対する検出用プローブの両方を有するものであることが好ましい。 [0115] The nephropathy risk determination array of the present invention comprises a detection probe for a gene polymorphism set that constitutes a positive (susceptibility) gene polymorphism set and a negative (resistance) gene polymorphism set. It is preferable to have both detection probes for gene polymorphism.
[0116] 本発明者は、腎症、特に糖尿病に起因する腎症の危険度の判定にも図 5に記載す る遺伝子多型が有用であり、力かる遺伝子多型を単独または組み合わせて用いるこ とによって、腎症の危険度が高い精度で判定できることを確認した。よって、本発明 の腎症危険度判定用アレイは、検出用プローブとして、図 5に記載する 133個の遺 伝子多型に対する検出用プローブを有するものとすることもできる。  [0116] The present inventor uses the gene polymorphism shown in Fig. 5 for the determination of the risk of nephropathy, particularly nephropathy due to diabetes, and uses the gene polymorphism to be effective alone or in combination. This confirmed that the risk of nephropathy can be determined with high accuracy. Therefore, the nephropathy risk determination array of the present invention may have detection probes for 133 gene polymorphisms shown in FIG. 5 as detection probes.
[0117] 本発明の腎症危険度判定用アレイは、被験者について腎症に対する抵抗性 (かか りにくさ)を評価するために使用することができるし、また、被験者について腎症に対 する抵抗性及び感受性 (かかり易さ)を評価するために使用することができる。さらに 本発明の腎症危険度判定用アレイは、被験者について腎症に対する危険度の有無 やその高低 (かかりやすさや進行のしゃすさの有無及びその程度)を評価するために 使用することができる。  [0117] The nephropathy risk determination array of the present invention can be used for evaluating resistance to nephropathy for a subject, and also for nephropathy for a subject. Can be used to assess resistance and sensitivity (easy to apply). Furthermore, the nephropathy risk determination array of the present invention can be used to evaluate the risk of nephropathy in a subject and its level (presence / absence and degree of progression).
[0118] 腎症の判定は、前述の腎症の危険度判定方法と同様な方法で行うことができる。  Determination of nephropathy can be performed by the same method as the above-described risk determination method for nephropathy.
[0119] (2— 4)網膜症危険度判定用アレイ  [0119] (2—4) Retinopathy risk array
本発明の網膜症危険度判定用アレイは、糖尿性網膜症のかかりやすさ (発症しや すさ)や進行しやすさを判定するために使用することができる。好適には、糖尿病患 者または境界型糖尿病患者に対して、網膜症の危険度を判定するために使用するこ とができる。本発明の網膜症危険度判定用アレイは、網膜症の判定指標との間に有 意な正 (感受性)の関連性を有する「正 (感受性)の遺伝子多型セット」を構成する遺 伝子多型に対する検出用プローブと、負 (抵抗性)の関連性を有する「負 (抵抗性)の 遺伝子多型セット」を構成する遺伝子多型に対する検出用プローブを有する。なお、 ここで網膜症の判定指標としては、当業界で慣用されているものであれば特に制限さ れないが、好ましくは臨床的所見 (正常、単純網膜症、増殖前網膜症、増殖網膜症) を判定指標とすることができる。  The array for determining the risk of retinopathy of the present invention can be used to determine the likelihood of developing retinopathy (ease of onset) and the ease of progression. Preferably, it can be used to determine the risk of retinopathy for diabetics or borderline diabetics. The array for determining the risk of retinopathy of the present invention comprises a gene constituting a “positive (susceptibility) gene polymorphism set” having a significant positive (susceptibility) relationship with a retinopathy determination index. A detection probe for a polymorphism and a detection probe for a gene polymorphism constituting a “negative (resistance) gene polymorphism set” having a negative (resistance) relationship are included. Here, the determination index of retinopathy is not particularly limited as long as it is commonly used in the industry, but preferably clinical findings (normal, simple retinopathy, preproliferative retinopathy, proliferative retinopathy) ) Can be used as a determination index.
[0120] 遺伝子多型セットが網膜症に対して「正の関連性」がある力否力、「負の関連性」が あるか否かは、上記(1)の決定方法における説明で示した t値力 判断することがで きる。すなわち、 t値が正である場合を「正の関連性」があるとし、逆に t値が負である 場合は「負の関連性」があると判定することができる。 [0121] 力かる網膜症と有意な関連性を有する「遺伝子多型セット」として、具体的には、図 4及び図 20に掲げる遺伝子多型セットを例示することができる。より詳細には、図 4及 び図 20において、各行 (横一列)に列記した遺伝子多型(SNP)の組合せ力 一つ の「網膜症に有意に関連する遺伝子多型セット」を意味する。ここで図 4 A、図 4 B及び図 20に示す t値が正である遺伝子多型セットは「網膜症に関する正 (感受性) の遺伝子多型セット」であり、図 4 Cに示す t値が負である遺伝子多型セットは「網膜 症に関する負(抵抗性)の遺伝子多型セット」であることを意味する。 [0120] Whether the genetic polymorphism set has a “positive association” or “negative association” for retinopathy is shown in the explanation in the determination method in (1) above. t Value power can be judged. In other words, it can be determined that there is a “positive relevance” when the t value is positive, and conversely when there is a negative t value, there is a “negative relevance”. [0121] Specific examples of the "gene polymorphism set" that has a significant relationship with active retinopathy include the gene polymorphism sets listed in Figs. More specifically, in FIG. 4 and FIG. 20, it means “a set of gene polymorphisms significantly related to retinopathy” that is one of the combination powers of gene polymorphisms (SNPs) listed in each row (one horizontal column). Here, the gene polymorphism sets with positive t values shown in FIG. 4A, FIG. 4B and FIG. 20 are “positive (susceptibility) gene polymorphism sets for retinopathy”, and the t values shown in FIG. A negative polymorphism set means a negative (resistance) polymorphism set for retinopathy.
[0122] 本発明の網膜症危険度判定用アレイは、力かる図 4及び図 20に記載される遺伝子 多型セットからなる群から選択される少なくとも一の遺伝子多型セットを構成する遺伝 子多型に対する検出用プローブを有する。遺伝子多型セットの選択には、特に制限 されず任意に行うことができる力 その際、図 4及び図 20において遺伝子多型セット 毎に記載されている t値を指標とすることができる。本発明の網膜症危険度判定用ァ レイは、力かる t値力も評価して、網膜症に対して関連性が高い遺伝子多型セットを 構成する遺伝子多型に対する検出用プローブを備えていることが好ましい。  [0122] The array for determining the risk of retinopathy of the present invention is a gene polymorphism constituting at least one gene polymorphism set selected from the group consisting of gene polymorphism sets described in FIG. 4 and FIG. It has a detection probe for the mold. The selection of gene polymorphism sets is not particularly limited and can be performed arbitrarily. At that time, the t value described for each gene polymorphism set in FIGS. 4 and 20 can be used as an index. The array for determining the risk of retinopathy of the present invention includes a probe for detecting a gene polymorphism that constitutes a gene polymorphism set that is highly relevant to retinopathy by evaluating a powerful t-value force. Is preferred.
[0123] 図 4— A、 4— B及び図 20に示される遺伝子多型セットからなる群の中から、または 図 4— Cに示される遺伝子多型セットからなる群の中から、それぞれ半数以上、 6割 以上、 7割以上、 8割以上、または 9割以上の遺伝子多型セットを選択する場合は、 制限はされないが、「網膜症に関する正 (感受性)の遺伝子多型セット」および「網膜 症に関する負(抵抗性)の遺伝子多型セット」のいずれも t値の絶対値( I t値 I )の大 き 、順力も重点的に選択されることが好ま 、。  [0123] More than half each from the group consisting of the gene polymorphism set shown in Fig. 4-A, 4-B and Fig. 20, or from the group consisting of the gene polymorphism set shown in Fig. 4-C When selecting a polymorphism set of 60% or more, 70% or more, 80% or more, or 90% or more, there is no restriction, but “positive (susceptibility) gene polymorphism set for retinopathy” and “retina” “Negative (resistance) polymorphism set for disease” has a large t-value (It value I), and it is preferable to select strength.
[0124] 本発明の網膜症危険度判定用アレイは、正 (感受性)の遺伝子多型セットを構成す る遺伝子多型に対する検出用プローブと負(抵抗性)の遺伝子多型セットを構成する 遺伝子多型に対する検出用プローブの両方を有するものであることが好ましい。  [0124] The retinopathy risk determination array of the present invention comprises a detection probe for a gene polymorphism constituting a positive (susceptibility) gene polymorphism set and a gene constituting a negative (resistance) gene polymorphism set. It is preferable to have both detection probes for polymorphism.
[0125] 本発明者は、網膜症、特に糖尿病に起因する網膜症の危険度の判定にも図 5に記 載する遺伝子多型が有用であり、力かる遺伝子多型を単独または組み合わせて用い ることによって、網膜症の危険度が高い精度で判定できることを確認した。よって、本 発明の網膜症危険度判定用アレイは、検出用プローブとして、図 5に記載する 133 個の遺伝子多型に対する検出用プローブを有するものとすることもできる。 [0126] 本発明の網膜症危険度判定用アレイは、前述する動脈硬化性疾患危険度判定用 アレイと同様に、被験者について網膜症に対する抵抗性 (かかりにくさ)を評価するた めに使用することができるし、また、被験者について網膜症に対する抵抗性及び感 受性 (かかり易さ)を評価するために使用することができる。さらに本発明の網膜症危 険度判定用アレイは、被験者について網膜症に対する危険度の有無やその高低 (か 力りやすさや進行のしゃすさの有無及びその程度)を評価するために使用することが できる。 [0125] The present inventor is also useful for determining the risk of retinopathy, in particular, retinopathy caused by diabetes, and the gene polymorphism shown in Fig. 5 is useful. It was confirmed that the risk of retinopathy can be determined with high accuracy. Therefore, the retinopathy risk determination array according to the present invention may have detection probes for 133 gene polymorphisms shown in FIG. 5 as detection probes. [0126] The retinopathy risk degree determination array of the present invention is used for evaluating the resistance (reluctance) to retinopathy for a subject, similarly to the above-described atherosclerotic disease risk determination array. It can also be used to assess resistance and susceptibility (susceptibility) to retinopathy for a subject. Furthermore, the retinopathy risk determination array of the present invention should be used to evaluate the presence or absence of retinopathy and the level (existence and degree of ease of force and progression) of the subject. Is possible.
[0127] 網膜症危険度の判定は、前述の網膜症の危険度判定方法と同様な方法で行うこと ができる。  [0127] The determination of the risk of retinopathy can be performed by the same method as the method of determining the risk of retinopathy described above.
[0128] 以上説明する本発明の疾患危険度判定用アレイは、各疾患に応じた遺伝子多型 検出用プローブを有するものであれば、本発明の目的を達成する範囲内において、 上記以外のプローブ又は公知のプローブを適宜有していてもよい。また、遺伝子多 型検出用プローブは、適宜標識ィ匕して用いてもよい。  [0128] The disease risk determination array of the present invention described above has a probe other than the above within the scope of achieving the object of the present invention as long as it has a gene polymorphism detection probe corresponding to each disease. Or you may have a well-known probe suitably. In addition, the gene polymorphism detection probe may be appropriately labeled and used.
[0129] 本発明の疾患判定用アレイは、あら力じめ準備したプローブを基材に固定する方 法のほか、基材上で合成する Affimetrix社の方法で調製することもでき、その調製 方法に特に制限はされない。また、プローブを固定する基板にも特に制限はなぐ例 えばガラスプレートやフィルタ一等公知のものを用いることができる。また、固定される プローブの長さや用いる核酸の種類も、遺伝子多型を検出できる限りにおいて、特に 制限はない。遺伝子多型を含む領域は、あらかじめ PCRで増幅しておくことが感度 の点力 望ましい。  [0129] The disease determination array of the present invention can be prepared by a method of Affimetrix, which is synthesized on a base material in addition to a method of fixing a probe prepared on the base material. There are no particular restrictions on Also, there are no particular restrictions on the substrate on which the probe is fixed, and known materials such as a glass plate and a filter can be used. The length of the probe to be immobilized and the type of nucleic acid to be used are not particularly limited as long as the gene polymorphism can be detected. It is desirable to amplify the region containing the gene polymorphism by PCR in advance.
[0130] 特に、標識したプライマーを用いて遺伝子多型を含む領域を増幅する方法は、感 度、簡便さ等の点力も好適に用いることができる。たとえば、 Hybrigene法において は、ピオチンにて標識したプライマーを用いて遺伝子多型を含む領域を増幅し、これ をアレイに添カ卩してハイブリダィズさせたのちに、ハイブリダィズしなかった核酸を洗 浄して除く。ついで、ハイブリダィズしたプローブを、アビジン標識した蛍光色素にて 検出する。この方法により遺伝子多型が感度よく検出できる。  [0130] In particular, the method of amplifying a region containing a gene polymorphism using a labeled primer can also preferably use points such as sensitivity and simplicity. For example, in the Hybrigene method, a region containing a gene polymorphism is amplified using a primer labeled with piotin, this is added to an array and hybridized, and then nucleic acid that has not been hybridized is washed. Excluded. Subsequently, the hybridized probe is detected with an avidin-labeled fluorescent dye. By this method, gene polymorphism can be detected with high sensitivity.
[0131] 本発明の疾患判定用アレイには、下記の態様が含まれる:  [0131] The array for disease determination of the present invention includes the following embodiments:
(A) 図 1及び図 17に記載される遺伝子多型セットからなる群力も選択される少なくと も一の遺伝子多型セットを構成する遺伝子多型に対する検出用プローブを有する、 動脈硬化性疾患危険度判定用アレイ。 (A) The group power consisting of the gene polymorphism set described in Fig. 1 and Fig. 17 is also selected at least. An array for determining the risk of atherosclerotic disease, comprising a detection probe for a gene polymorphism constituting one gene polymorphism set.
(B) 図 1— A及び図 17に記載される遺伝子多型セットからなる群、または図 1— Bに 記載される遺伝子多型セットからなる群の半数以上の遺伝子多型セットを構成する 遺伝子多型に対する検出用プローブを有するものである、 (A)記載の動脈硬化性疾 患危険度判定用アレイ。  (B) Genes constituting a gene polymorphism set of more than half of the group consisting of the gene polymorphism set described in Fig. 1-A and Fig. 17 or the group consisting of the gene polymorphism set described in Fig. 1-B The array for determining atherosclerotic disease risk according to (A), which has a probe for detection of a polymorphism.
(C) 図 2及び図 18に記載される遺伝子多型セットからなる群力も選択される少なくと も一の遺伝子多型セットを構成する遺伝子多型に対する検出用プローブを有する、 心筋梗塞危険度判定用アレイ。  (C) Myocardial infarction risk determination having a detection probe for a gene polymorphism constituting at least one gene polymorphism set in which the group power consisting of the gene polymorphism set described in FIG. 2 and FIG. 18 is also selected Array.
(D) 図 2— A及び図 18に記載される遺伝子多型セットからなる群、または図 2— Bに 記載される遺伝子多型セットからなる群の半数以上の遺伝子多型セットを構成する 遺伝子多型に対する検出用プローブを有するものである、 (C)記載の心筋梗塞危険 度判定用アレイ。  (D) Genes constituting the gene polymorphism set of more than half of the group consisting of the gene polymorphism set described in Fig. 2-A and Fig. 18 or the group consisting of the gene polymorphism set described in Fig. 2-B The array for determining the risk of myocardial infarction according to (C), comprising a probe for detecting a polymorphism.
(E) 図 3及び図 19に記載される遺伝子多型セットからなる群力も選択される少なくと も一の遺伝子多型セットを構成する遺伝子多型に対する検出用プローブを有する、 腎症危険度判定用アレイ。  (E) Nephropathy risk assessment having a detection probe for a gene polymorphism constituting at least one gene polymorphism set in which the group power consisting of the gene polymorphism set described in FIG. 3 and FIG. 19 is also selected Array.
(F) 図 3— A及び図 19に記載される遺伝子多型セットからなる群、または図 3— Bに 記載される遺伝子多型セットからなる群の半数以上の遺伝子多型セットを構成する 遺伝子多型に対する検出用プローブを有するものである、 (E)記載の腎症危険度判 定用アレイ。  (F) Genes constituting the gene polymorphism set of more than half of the group consisting of the gene polymorphism set described in Fig. 3-A and Fig. 19 or the group consisting of the gene polymorphism set described in Fig. 3-B The array for determining the risk of nephropathy according to (E), which has a probe for detecting a polymorphism.
(G) 図 4及び図 20に記載する遺伝子多型セットからなる群力 選択される少なくとも 一の遺伝子多型セットを構成する遺伝子多型に対する検出用プローブを有する、網 膜症危険度判定用アレイ。  (G) Group power consisting of the gene polymorphism set described in FIG. 4 and FIG. 20 An array for determining the degree of risk of reticulitis having a detection probe for the gene polymorphism constituting at least one selected gene polymorphism set .
(H) 図 4— A、図 4— B、及び図 20に記載される遺伝子多型セットからなる群、また は図 4— Cに記載される遺伝子多型セットからなる群の半数以上の遺伝子多型セット を構成する遺伝子多型に対する検出用プローブを有するものである、 (G)記載の網 膜症危険度判定用アレイ。  (H) More than half the genes in the group consisting of the gene polymorphism set described in Fig. 4-A, Fig. 4-B, and Fig. 20 or the group consisting of the gene polymorphism set described in Fig. 4-C. The array for determining the risk of retinopathy according to (G), which has a probe for detecting a gene polymorphism constituting the polymorphism set.
(I) 被験試料力も調製したプローブとハイブリダィズさせ、被験者について検出され た遺伝子多型を、動脈硬化性疾患と有意に関連性を有する遺伝子多型セットと照合 して、検出された遺伝子多型セットにつ!、て動脈硬化性疾患に対する関連性を評価 するために使用される、(A)または (B)に記載する動脈硬化性疾患危険度判定用ァ レイ。 (I) Test specimen strength is also hybridized with the prepared probe and detected for the subject. The detected polymorphisms are compared with the gene polymorphism sets that are significantly related to arteriosclerotic diseases, and the detected gene polymorphism sets! The array for determining the risk of atherosclerotic disease according to (A) or (B), which is used for evaluating the relevance to arteriosclerotic disease.
ω 被験試料力も調製したプローブとハイブリダィズさせ、被験者について検出され た遺伝子多型を、心筋梗塞と有意に関連性を有する遺伝子多型セットと照合して、 検出された遺伝子多型セットについて心筋梗塞に対する関連性を評価するために使 用される、(C)または (D)に記載する心筋梗塞危険度判定用アレイ。 ω The test sample force is also hybridized with the prepared probe, the gene polymorphism detected for the subject is compared with the gene polymorphism set significantly related to myocardial infarction, and the detected gene polymorphism set against myocardial infarction The myocardial infarction risk determination array described in (C) or (D), which is used to evaluate relevance.
(Κ) 被験試料力も調製したプローブとハイブリダィズさせ、被験者について検出さ れた遺伝子多型を、糖尿性腎症と有意に関連性を有する遺伝子多型セットと照合し て、検出された遺伝子多型セットについて糖尿病性腎症に対する関連性を評価する ために使用される、(Ε)乃至 (F)のいずれかに記載する糖尿病性腎症危険度判定 用アレイ。 (Iii) The test polymorphism is also hybridized with the prepared probe, and the gene polymorphism detected for the subject is compared with the gene polymorphism set significantly related to diabetic nephropathy, and the detected gene polymorphism The array for determining the risk of diabetic nephropathy according to any one of (i) to (F), which is used for evaluating the relevance of the set to diabetic nephropathy.
(L) 被験試料力も調製したプローブとハイブリダィズさせ、被験者について検出さ れた遺伝子多型を、糖尿病性網膜症と有意に関連性を有する遺伝子多型セットと照 合して、検出された遺伝子多型セットについて糖尿病性網膜症に対する関連性を評 価するために使用される、(G)または (Η)に記載する糖尿性網膜症危険度判定用ァ レイ。  (L) The test sample force is also hybridized with the prepared probe, and the gene polymorphism detected for the subject is matched with a gene polymorphism set significantly related to diabetic retinopathy to detect the detected gene polymorphism. The array for determining the risk of diabetic retinopathy described in (G) or (Η), which is used to evaluate the relevance to diabetic retinopathy for the type set.
(3)疾患危険度の判定装置、判定プログラム、及び判定方法  (3) Disease risk determination device, determination program, and determination method
本発明に係る疾患危険度の判定装置、判定プログラム、及び判定方法は、被験者 力 Sどの程度疾患にかかり易 、か、若しくはどの程度疾患が進行し易 、カゝ (疾患危険 度)の判定を行うためのものである。以下においては、動脈硬化性疾患を例に説明す るが、本発明はこれに限定されず、遺伝子との関連性を有する疾患に適用することが できる。その場合、疾患に応じて、その疾患の判定指標 (例えば、動脈硬化性疾患で あれば頸動脈内膜中膜複合体肥厚度、腎症であれば尿中のアルブミン排泄率、心 筋梗塞であれば心電図上の陳旧性 (abnormal Q)心筋梗塞波形の有無及び心筋梗 塞の既往の有無、網膜症であれば臨床的所見)を用いて、関連性を評価すればよい [0133] (3— 1)動脈硬化性疾患危険度の判定装置、判定プログラム、及び判定方法 図 7は、本発明に係る動脈硬化性疾患危険度の判定装置 (以下、判定装置と記す )を含むシステム全体を示すブロック図である。図 7に示した構成は、特許文献 2に開 示された構成と同じである。図 7に示したように、病院 1に設置された採血手段 11及 びコンピュータ 12、分析機関 2に設置された遺伝子多型解析用アレイ 21及びコンビ ユータ 22、サービス提供機関 3に設置された判定装置 31とを備えている。ここで、コ ンピュータ 11、 21、及び判定装置 31は、インターネットなどの通信回線 4に接続され ている。 The determination apparatus, determination program, and determination method of the disease risk according to the present invention determine the degree of the subject's strength S, how easily the disease is affected, or how easily the disease progresses, and the determination of the disease (disease risk). Is to do. In the following, an arteriosclerotic disease will be described as an example, but the present invention is not limited to this, and can be applied to a disease associated with a gene. In that case, depending on the disease, the disease determination index (for example, carotid intima-media thickness in the case of atherosclerotic disease, urinary albumin excretion rate in nephropathy, cardiac infarction If there is, the relationship can be evaluated using the presence or absence of an abnormal EC waveform on the electrocardiogram and the presence or absence of a myocardial infarction, or clinical findings in the case of retinopathy. (3-1) Determination Device, Determination Program, and Determination Method for Arteriosclerotic Disease Risk FIG. 7 shows an atherosclerotic disease risk determination device (hereinafter referred to as a determination device) according to the present invention. It is a block diagram which shows the whole system including. The configuration shown in FIG. 7 is the same as the configuration disclosed in Patent Document 2. As shown in Fig. 7, blood collection means 11 and computer 12 installed in hospital 1, gene polymorphism analysis array 21 and computer 22 installed in analysis facility 2, and judgment installed in service provider 3 Device 31. Here, the computers 11 and 21 and the determination device 31 are connected to a communication line 4 such as the Internet.
[0134] 判定装置 31は、 CPU32と、メモリ 33と、ハードディスクなどの記録部 34と、外部と の通信を行う通信インタフェース(以下、 IZFと記す)部 35と、キーボードなどの操作 部 36と、 CRTディスプレイなどの表示部 37と、入出力 IZF部 38と、各部間でデータ を交換するための内部バス 39とを備えている。記録部 34には、疾患危険度判定用 遺伝子多型セットの情報が参照テーブルとして記録されている。ここで、特許文献 2と 異なり、動脈硬化性疾患、心筋梗塞、腎症、網膜症のそれぞれに対する参照テープ ルは、 133個の遺伝子多型を用いて、上記した疾患危険度判定用遺伝子多型の決 定方法によって決定された図 1〜4に示した疾患危険度判定用遺伝子多型セットに 対応するものである。また、特許文献 2と異なり本発明では、疾患危険度判定用遺伝 子多型セットに加えて環境因子を用いて、重回帰分析を行って決定した判定式を用 いる。これによつて、疾患危険度の評価精度を向上させることができる。  [0134] The determination device 31 includes a CPU 32, a memory 33, a recording unit 34 such as a hard disk, a communication interface (hereinafter referred to as IZF) unit 35 for communication with the outside, an operation unit 36 such as a keyboard, A display unit 37 such as a CRT display, an input / output IZF unit 38, and an internal bus 39 for exchanging data between each unit are provided. In the recording unit 34, information on the genetic polymorphism set for determining disease risk is recorded as a reference table. Here, unlike Patent Document 2, the reference table for each of arteriosclerotic disease, myocardial infarction, nephropathy, and retinopathy uses 133 gene polymorphisms, and the above-mentioned gene polymorphism for disease risk determination is used. This corresponds to the gene polymorphism set for disease risk determination shown in Figs. Also, unlike Patent Document 2, the present invention uses a judgment formula determined by performing multiple regression analysis using environmental factors in addition to a gene polymorphism set for disease risk judgment. Thereby, the evaluation accuracy of the disease risk can be improved.
[0135] 判定装置 31による危険度判定処理の詳細は後述する。システム全体の動作は特 許文献 2の開示内容と同様であり、その概要を説明すれば、次の通りである。まず、 病院 1において、採血手段 11によって被験者の血液 (以下、被験試料と記す)が採 取される。このとき、臨床データ (被験者 ID、検査値、病歴情報、採血情報など)がコ ンピュータ 12の記録部に記録される。被験試料は、分析機関 2に提供され、遺伝子 多型解析用アレイ 21を用いて分析され、遺伝子型を有する遺伝子多型が検出され る。ここで、遺伝子多型解析用アレイ 21には、例えば、上記した動脈硬化性疾患危 険度判定用アレイを用いることができる。検出された遺伝子多型情報は、一旦コンビ ユータ 22の記録手段に記録され、その後通信回線 4を介してサービス提供機関 3の 判定装置 31に送信される。判定装置 31は、通信 IZF部 35を介して遺伝子多型情 報を受信し、ー且記録部 34に記録する。また、判定装置 31は、コンピュータ 12から 臨床データを受信して、記録部 34に記録する。その後、判定装置 31は、受信した遺 伝子多型が、予め記録部 34に記録されている参照テーブルに含まれているか否か を検索し、その結果に応じて動脈硬化性疾患の危険度を判定する。さらに、判定装 置 31は、判定結果を、通信回線 4を介して病院 1のコンピュータ 12に送信する。コン ピュータ 12によって受信された判定結果は、臨床データ (少なくとも被験者 ID)と関 連させて、コンピュータ 12の記録部に記録され、適宜呼び出されて利用(例えば、被 験者に提示)される。判定結果を送信する病院 1のコンピュータ 12を特定する情報は 、例えば、病院 1のコンピュータ 12から、臨床データに含めて送信すればよい。 The details of the risk determination processing by the determination device 31 will be described later. The overall operation of the system is the same as that disclosed in Patent Document 2, and the outline of the system is as follows. First, in the hospital 1, the blood of the subject (hereinafter referred to as a test sample) is collected by the blood collection means 11. At this time, clinical data (subject ID, test value, medical history information, blood collection information, etc.) is recorded in the recording unit of the computer 12. The test sample is provided to the analysis facility 2 and analyzed using the gene polymorphism analysis array 21 to detect a gene polymorphism having a genotype. Here, as the array 21 for gene polymorphism analysis, for example, the above-described array for determining the degree of risk of arteriosclerosis can be used. The detected genetic polymorphism information is once recorded in the recording means of the computer 22, and then the service provider 3 via the communication line 4. It is transmitted to the judgment device 31. The determination device 31 receives the genetic polymorphism information via the communication IZF unit 35 and records it in the recording unit 34. Further, the determination device 31 receives clinical data from the computer 12 and records it in the recording unit 34. Thereafter, the determination device 31 searches whether or not the received gene polymorphism is included in the reference table recorded in the recording unit 34 in advance, and the risk of arteriosclerotic disease is determined according to the result. Determine. Further, the determination device 31 transmits the determination result to the computer 12 of the hospital 1 via the communication line 4. The determination result received by the computer 12 is recorded in the recording unit of the computer 12 in association with the clinical data (at least the subject ID), and is appropriately called and used (for example, presented to the subject). Information specifying the computer 12 of the hospital 1 that transmits the determination result may be included in the clinical data from the computer 12 of the hospital 1 and transmitted.
上記の被験試料の分析に関して、被験者の遺伝子型を検出する方法であればい 力なる方法も使用することができる。一般的な方法としては、被験者の血液、痰、皮 膚、気管支肺胞洗浄液、その他の体液、あるいは組織等、 DNAを含むものを被験試 料として用いる。解析方法としては多くの方法が知られており、例えばシークェンス法 、 PCR法、 ASP— PCR法、 TaqMan法、インベーダーアツセィ法、 MALDI— TOF ZMS法、分子ビーコン法、ライゲーシヨン法などを例示することができる(Clin. Che m. 43 : 1114— 1120, 1997)。なお、シークェンス法とは、遺伝子多型を含む DN A領域を直接にシークェンスする方法である。 PCR法においては、遺伝子多型に特 異的なプライマーをもちいて、ある遺伝子多型のみを特異的に増幅する。 PCR法に おいては、もっとも 3'側に遺伝子多型の核酸を配置するのが一般的である力 Allel e Specific Primer (ASP)— PCR法のように、 3'末端側から 2番目に遺伝子多型 を有するプライマーを配置する方法などのように、遺伝子多型をプライマーのどの領 域に置くか、また、検出する遺伝子以外にどのような核酸配列を入れる力などプライ マーのデザインには、遺伝子多型を識別できる限り、特に制限はない。 TaqMan法 において蛍光色素と消光物質により両端を標識したアレル特異的プローブを標的部 位にハイブリダィズさせて、この部位を含む領域を増幅するように設計したプライマー で PCR反応を行う。プライマーからの PCR反応がこのアレル特異的プローブがハイ ブリダィズした領域に達すると、 Taqポリメラーゼの 5プライムヌクレアーゼ活性により ノ、イブリダィズしたプローブの 5'末端に存在する蛍光色素が切断され、消光物質か ら離れることにより蛍光が生ずる。この手法により、アレル特異的プローブがどの程度 ハイブリダィズしていたかがわかる。インベーダーアツセィ法においては、铸型の遺伝 子多型部位から 5 '側に特異的配列を持ち、 3 '側にフラップ配列を持つアレルプロ一 ブと、铸型の遺伝子多型部位力 の 3 '側の特異的配列を有するインベーダープロ一 ブ、さらに、フラップ配列に相補的な配列を含む FRETプローブとの 3種類のオリゴヌ クレオチドを使 、、 TaqMan法と同様の原理にてどのアレルプローブがハイブリズダ ィズしたかを特定できる。 MALDI— TOF/MS法においては、遺伝子多型部位に 隣接するプライマーを作成してこの領域を増幅させた後、遺伝子多型部位の 1塩基 のみを ddNTPを用いて増幅する。ついで、 MALDI—TOF/MSを用いて、付カロし た ddNTPの種類を識別することにより遺伝子多型を同定する。 Hybrigene法などの DNAチップ法と総称される方法にぉ ヽては、アレイ上に遺伝子多型を含むオリゴヌ クレオチドプローブを配置し、 PCR増幅させたサンプル DNAとのハイブリダィゼーシ ヨンを検出する。 For the analysis of the test sample, any method can be used as long as it is a method for detecting the genotype of the subject. As a general method, a test sample containing DNA such as blood, sputum, skin, bronchoalveolar lavage fluid, other body fluids or tissues of the subject is used. Many analysis methods are known, for example, sequencing method, PCR method, ASP-PCR method, TaqMan method, Invader Atsey method, MALDI-TOF ZMS method, molecular beacon method, ligation method, etc. (Clin. Chem. 43: 1114—1120, 1997). The sequencing method is a method for directly sequencing a DNA region containing a gene polymorphism. In the PCR method, a specific gene polymorphism is specifically amplified using primers specific to the gene polymorphism. In PCR methods, it is common to place genetic polymorphic nucleic acids on the 3 'side. Allele Specific Primer (ASP) — The second gene from the 3' end as in the PCR method. Primer design, such as how to place a polymorphism in a primer, and what kind of nucleic acid sequence to put in addition to the gene to be detected There is no particular limitation as long as the gene polymorphism can be identified. In the TaqMan method, an allele-specific probe labeled at both ends with a fluorescent dye and a quenching substance is hybridized to the target site, and a PCR reaction is performed with primers designed to amplify the region containing this site. When the PCR reaction from the primer reaches the hybridized region of this allele-specific probe, Taq polymerase's 5 prime nuclease activity The fluorescent dye present at the 5 'end of the hybridized probe is cleaved and separated from the quencher to generate fluorescence. This technique shows how much the allele-specific probe was hybridized. In the Invader Atsey method, an allele probe that has a specific sequence 5 'from the 铸 type gene polymorphic site and a flap sequence on the 3' side, and 3 'of the 遺 伝 子 type gene polymorphic site force. Using an invader probe with a specific sequence on the other side and three oligonucleotides with a FRET probe containing a sequence complementary to the flap sequence, allele probes are hybridized on the same principle as the TaqMan method. Can be identified. In the MALDI-TOF / MS method, a primer adjacent to the gene polymorphic site is prepared and amplified, and then only one base of the gene polymorphic site is amplified using ddNTP. Then, using MALDI-TOF / MS, the polymorphism is identified by identifying the type of ddNTP attached. For methods generally called DNA chip methods such as the Hybrigene method, an oligonucleotide probe containing a gene polymorphism is placed on the array, and hybridization with sample DNA amplified by PCR is detected. .
[0137] 図 8は、判定装置 31が行う判定処理を示すフローチャートである。以下、図 8のフロ 一チャートに従って、判定装置 31による危険度判定処理を具体的に説明する。尚、 以下においては、特に断らない限り、 CPU32が行う処理として記載する。また、 CPU 32は、メモリ 33を、ワーク領域や、処理途中のデータを一時記憶する領域として使用 し、必要に応じて処理途中及び処理結果のデータを記録部 34に記録する。  FIG. 8 is a flowchart showing the determination process performed by the determination device 31. Hereinafter, the risk determination processing by the determination device 31 will be specifically described with reference to the flowchart of FIG. In the following, it is described as processing performed by the CPU 32 unless otherwise specified. In addition, the CPU 32 uses the memory 33 as a work area or an area for temporarily storing data in the middle of processing, and records data in the middle of processing and processing results in the recording unit 34 as necessary.
[0138] ステップ S21において、分析機関 2から通信回線 4経由で、遺伝子多型情報を取得 し、記録部 34に記録する。ここで、遺伝子多型情報は、遺伝子型を有する遺伝子多 型毎に付与した遺伝子多型コードとして伝送され、データ形式は、例えば、依頼元の 病院毎に付与した病院コード及び被験者毎に付与した被験者 IDの組の各々に、複 数の遺伝子多型コード g (i= l〜n)が対応付けられた形式である。  [0138] In step S21, genetic polymorphism information is acquired from the analysis organization 2 via the communication line 4, and recorded in the recording unit 34. Here, the gene polymorphism information is transmitted as a gene polymorphism code assigned to each gene polymorphism having a genotype, and the data format is assigned to each hospital code given to each requesting hospital and each subject, for example. This is a format in which a plurality of genetic polymorphism codes g (i = l to n) are associated with each set of subject IDs.
[0139] ステップ S22において、一つの {病院コード,被験者 ID}に関する複数の遺伝子多 型コード g (i= l〜n)を記録部 34から読み出し、遺伝子多型コード g力 予め記録部 34に記録された参照テーブルに含まれている力否かを判断する。例えば、参照テー ブルとして図 1に対応させて遺伝子多型コードのセット (各セットを Gで表す)が記録さ れているとすると、複数の遺伝子多型コード gi (i= l〜n)の中から 1つ、 2つ若しくは 3 つの遺伝子多型コード g 1 [0139] In step S22, a plurality of gene polymorphism codes g (i = l to n) relating to one {hospital code, subject ID} are read from the recording unit 34, and the gene polymorphism code g force is recorded in the recording unit 34 in advance. It is determined whether or not the force is included in the reference table. For example, a set of genetic polymorphism codes (each set represented by G) is recorded as a reference table corresponding to Fig. 1. The gene polymorphism codes gi (i = l to n), one, two or three gene polymorphism codes g 1
iを選択し、それらのセット {g  select i and set them {g
k }が、図 に対応する参照テー ブル (セット Gを含む)に含まれているか否かを判断し、含まれていれば、そのセット{ g } (Gと同じ)に対応するフラグに" 1"を設定する (フラグは予め" 0"に設定されてい k j  Determine whether k} is included in the reference table (including set G) corresponding to the figure, and if it is included, the flag corresponding to that set {g} (same as G) Set 1 "(The flag is set to" 0 "in advance.
るとする)。  Suppose).
[0140] ステップ S23において、ステップ S22での処理結果をセット毎に記録した複数のフ ラグが全て 0であるか否かを判断し、フラグが全て 0、即ち、遺伝子多型コードのセット が参照テーブルに無ければ、ステップ S25に移行し、何れかのフラグに 0以外の値が 設定されていれば、ステップ S24に移行する。  [0140] In step S23, it is determined whether or not the plurality of flags in which the processing results in step S22 are recorded for each set are all 0, and the flags are all 0, that is, the gene polymorphism code set is referenced. If it is not in the table, the process proceeds to step S25. If any flag is set to a value other than 0, the process proceeds to step S24.
[0141] ステップ S24において、ステップ S22での処理結果を記録した各フラッグの値に応 じて、所定の判定式を用いて危険度を決定する。決定された危険度は、 {病院コード ,被験者 ID}に対応させて記録部 34に記録する。ここで、判定式には、疾患度 (疾患 の判定指標に応じて決定された値)を目的変数とし、遺伝子多型セット、環境因子、 及び遺伝子多型セットと環境因子との交互作用を説明変数とし、重回帰分析を行うこ とによって決定された回帰式を用いる。即ち、判定式の値の計算には、記録部 34に 記録された臨床データに含まれる環境因子の値、遺伝子多型セットの情報であるフ ラッグの値を使用する。疾患度 、各遺伝子多型セットを G、各環境因子を Eで表し  [0141] In step S24, the degree of risk is determined using a predetermined determination formula according to the value of each flag in which the processing result in step S22 is recorded. The determined risk is recorded in the recording unit 34 in association with {Hospital Code, Subject ID}. Here, in the judgment formula, the degree of disease (value determined according to the disease judgment index) is used as the objective variable, and the gene polymorphism set, environmental factor, and the interaction between the gene polymorphism set and the environmental factor are explained. The regression equation determined by conducting multiple regression analysis is used as a variable. That is, for the calculation of the value of the judgment formula, the value of the environmental factor included in the clinical data recorded in the recording unit 34 and the value of the flag that is information on the gene polymorphism set are used. Degree of disease, G for each gene polymorphism set, and E for each environmental factor
1 J 1 J
、遺伝子多型セットと環境因子との交互作用を両者の積とし、 E G , The interaction between the gene polymorphism set and the environmental factor is the product of both, E G
m nで表すと、判定式 m n
(回帰式)は y=∑a G +∑b E +∑d E G +c となる。ここで、∑は各 i、 j、 m、 nに i i j j mn m n The (regression equation) is y = ∑a G + ∑b E + ∑d E G + c. Where ∑ is i i j j mn m n for each i, j, m, n
関する加算を表し、 a、 b、 d 、 cは、重回帰分析によって決定される偏回帰係数であ  A, b, d and c are partial regression coefficients determined by multiple regression analysis.
1 j mn  1 j mn
る。重回帰分析は周知なので、説明を省略する。  The Since multiple regression analysis is well known, the description is omitted.
[0142] 具体的には、判定式は、 [0142] Specifically, the determination formula is
y = c X (l +∑a X CSNP ) X  y = c X (l + ∑a X CSNP) X
k k  k k
(1 +b X Sex + b XAge + b X Dur+b X SBP+b X Tch + b X TG +  (1 + b X Sex + b XAge + b X Dur + b X SBP + b X Tch + b X TG +
1 2 3 4 5 6  1 2 3 4 5 6
b X HbAlc + b X HDLC + b X BMI + b X SM)  (b X HbAlc + b X HDLC + b X BMI + b X SM)
7 8 9 10  7 8 9 10
である。ここで、 Sex、 Age、 Dur、 SBP、 Tch、 TG、 HbAlc、 HDLC、 BMI、及び SMはそ れぞれ、性別、年齢、罹病期間、収縮期血圧、血中総コレステロール値、血中中性 脂肪値、血中 HbAlc値、血中 HDL値、 BMI (Body-mass-index)、及び喫煙暦である。 性別に関しては、男性の場合 Sex= l、女性の場合 Sex= 2とする。 CSNPは、遺伝子 It is. Where Sex, Age, Dur, SBP, Tch, TG, HbAlc, HDLC, BMI, and SM are sex, age, disease duration, systolic blood pressure, blood total cholesterol level, blood neutrality, respectively. They are fat level, blood HbAlc level, blood HDL level, BMI (Body-mass-index), and smoking calendar. As for gender, Sex = 1 for men and Sex = 2 for women. CSNP is a gene
k  k
多型セットの有無に応じて 1又は 0を取る変数である。さらに、上記の判定式の左辺を 、 yのかわりに log(p/(l- p》で置き換えてもよい。 pは、発現率である。  A variable that takes 1 or 0 depending on the presence or absence of a polymorphic set. Further, the left side of the above judgment formula may be replaced with log (p / (l-p) instead of y. P is the expression rate.
[0143] 動脈硬化性疾患の場合には、目的変数として IMT値を用い、遺伝子多型セットとし て図 1に示したセットを用いる。また、環境因子には、例えば、性別、年齢、 BMKBody -mass-index)、罹病期間、収縮期血圧(SBP)、血中 HDL値、血中 HbAlc値、血中総 コレステロール値、血中中性脂肪値 (TG)、喫煙暦などを用いる。この判定式で得ら れた値 yをそのまま危険度とすることができるが、 yに応じて複数ランクの危険度に分 類してちょい。 [0143] In the case of arteriosclerotic disease, the IMT value is used as the objective variable, and the set shown in Fig. 1 is used as the gene polymorphism set. Environmental factors include, for example, sex, age, BMKBody-mass-index), disease duration, systolic blood pressure (SBP), blood HDL level, blood HbAlc level, blood total cholesterol level, blood neutrality. Use fat level (TG), smoking calendar, etc. The value y obtained by this judgment formula can be used as the risk level as it is, but it can be classified into multiple ranks according to y.
[0144] ステップ S25において、全ての {病院コード,被験者 ID}に関して終了したと判断す るまで、ステップ S22〜S24の処理を繰り返す。  [0144] Steps S22 to S24 are repeated until it is determined in step S25 that all {hospital code, subject ID} have been completed.
[0145] 全ての {病院コード,被験者 ID}に関して処理が終了すれば、ステップ S26におい て、ステップ S24で決定された危険度に対応する危険度コード (例えば、高危険度又 は低危険度を表すコード)と被験者 IDとを対応させて、通信回線 4を介して、病院コ ードに対応するコンピュータ 12に送信する。 [0145] When processing is completed for all {hospital code, subject ID}, in step S26, a risk code corresponding to the risk determined in step S24 (for example, a high risk level or a low risk level). (Corresponding code) and the subject ID are transmitted to the computer 12 corresponding to the hospital code via the communication line 4.
[0146] 以上の処理によって、判定装置 31による一連の危険度判定処理が完了する。尚、 以上の危険度判定処理は、汎用コンピュータを使用して、ハードディスク、 CD-RO[0146] With the above processing, a series of risk determination processing by the determination device 31 is completed. The above risk determination process is performed using a general-purpose computer, hard disk, CD-RO
Mなどのコンピュータ読取可能な記録媒体に記録されたコンピュータプログラムを読 み出し、または、通信回線を介してコンピュータプログラムを取得し、それを CPUが実 行することによって行うことも可能である。 It is also possible to read a computer program recorded on a computer-readable recording medium such as M or obtain a computer program via a communication line and execute it by the CPU.
[0147] 上記では、目的変数として IMT値を使用する場合を説明したが、これに限定されず[0147] Although the case where the IMT value is used as the objective variable has been described above, the present invention is not limited to this.
、頸動脈の硬化度を示す指標であれば、その他の指標を用いてもよい。例えば上記 した、最大 IMT(Max— IMT)、平均 IMT(AvglMT)、プラークスコア(PS)、頸動 脈ステイツフネス等を目的変数とすることができる。 Any other index may be used as long as it indicates the degree of sclerosis of the carotid artery. For example, the above-mentioned maximum IMT (Max-IMT), average IMT (AvglMT), plaque score (PS), cervical heart rate, etc. can be used as objective variables.
[0148] また、本発明の装置は、上記した判定機能を実現可能なものである限り、必要に応 じて、他の手段を適宜追加した装置とすることができる。 [0148] Further, the apparatus of the present invention can be an apparatus to which other means are appropriately added as necessary as long as the above-described determination function can be realized.
[0149] また、上記のステップ S24で使用する判定式力 遺伝子多型セットと環境因子との 交互作用を含めて重回帰分析を行って得られる回帰式である場合を説明したが、遺 伝子多型セットと環境因子との交互作用を含まずに、又は環境因子を含まずに重回 帰分析を行って得られる回帰式を使用してもよ ヽ。 [0149] In addition, the case where the regression equation is obtained by performing multiple regression analysis including the interaction between the judgment formula force gene polymorphism set used in step S24 and the environmental factor has been described. You may use the regression equation obtained by performing multiple regression analysis without the interaction between the gene polymorphism set and the environmental factor, or without the environmental factor.
[0150] また、上記の判定式で決定される値 yはアナログ値であるので、将来予測に使用す ることができる。例えば、特定の個人に関して、説明変数である年齢を変化させ、カロ 齢による危険度の変化を予測することができる。従って、まだ測定時点においては肥 厚が進んでいない若年齢の対象者に関して、将来の危険度の予測することができる 。これによつて、危険度が高い場合には生活習慣の改善などの予防を行うことができ 、動脈硬化性疾患の発病を防ぐことができる。  [0150] Further, since the value y determined by the above judgment formula is an analog value, it can be used for future prediction. For example, for a specific individual, the explanatory variable age can be changed, and the change in risk due to the age of calories can be predicted. Therefore, it is possible to predict the future risk level for younger subjects who have not yet thickened at the time of measurement. As a result, when the degree of risk is high, prevention of lifestyle habits can be performed, and the onset of arteriosclerotic diseases can be prevented.
[0151] また、被験試料の遺伝子検査の結果、一部の遺伝子多型の有無が判断できなかつ た場合や、一部の環境因子の検査値が無力つた場合、即ち、判定式に含まれる、遺 伝子多型セットを構成する遺伝子多型の有無や、環境因子の情報が不明であれば、 上記の判定式を用いて危険度を計算することができない。しかしその場合でも、判定 式において、不明な説明変数 (遺伝子多型セット及び環境因子)の値を、所定の平 均値で置き換えて計算することができる。この計算値は、全ての遺伝子多型の有無 及び環境因子の値が分力つている場合よりも精度は低いが、危険度の判断に使用す ることができる。このときに使用する平均値には、例えば、判定式の決定に用いた集 合の要素である各患者データに関して、該当する説明変数の平均値を用いることが できる。環境因子のうち、検査値に関しては検査値の集合全体の平均値を求め、性 別に関しては、例えば男女にそれぞれ 1、 2の値を割当て、その平均を求めればよい 。また、遺伝子多型セットに関しては、その有無に応じて、例えば 1、 0の値を割当て、 集合全体の平均値を求めればょ 、。  [0151] In addition, as a result of genetic testing of the test sample, the presence or absence of some genetic polymorphisms could not be determined, or the test values of some environmental factors were ineffective, that is, included in the judgment formula. If the genetic polymorphisms that make up the gene polymorphism set and the information on environmental factors are unknown, the risk cannot be calculated using the above judgment formula. However, even in that case, the value of unknown explanatory variables (gene polymorphism set and environmental factor) in the judgment formula can be replaced with a predetermined average value. This calculated value is less accurate than when all genetic polymorphisms and environmental factors are divided, but can be used for risk assessment. As the average value used at this time, for example, the average value of the corresponding explanatory variable can be used for each patient data that is an element of the set used to determine the determination formula. Among environmental factors, for test values, the average value of the entire set of test values can be obtained, and for sex, for example, 1 and 2 can be assigned to men and women, respectively, and the average can be obtained. For gene polymorphism sets, for example, assign a value of 1 or 0 according to the presence or absence, and calculate the average value of the entire set.
[0152] また、上記では、サービス提供機関の判定装置が、分析機関から取得した被験者 の遺伝子多型情報を判定の対象とする場合を説明したが、これに限定されない。過 去に解析された個人の遺伝子多型情報を何らかの記録手段 (例えば、個人毎に付 与した ICカード、メモリカードなどの携帯型記録手段)に記録しておき、これから遺伝 子多型情報を読み出して、疾患危険度の判定処理を行ってもよい。生体の遺伝子情 報は変わらないので、一度解析された遺伝子多型情報を記録しておけば、参照テー ブル又は危険度の判定基準が変更されて判定精度が向上した場合にも、再び遺伝 子解析のために採血などを行う必要が無ぐ被験者の負担が軽減される。 [0152] In the above description, the case has been described in which the determination apparatus of the service providing organization uses the genetic polymorphism information of the subject acquired from the analysis organization as a determination target. However, the present invention is not limited to this. The individual's genetic polymorphism information analyzed in the past is recorded in some recording means (for example, portable recording means such as an IC card or a memory card provided for each individual). It may be read out and the disease risk determination process may be performed. Since the genetic information of living organisms does not change, if genetic polymorphism information that has been analyzed once is recorded, even if the reference table or risk criteria is changed and the accuracy of judgment is improved, genetic information is again obtained. The burden on subjects who do not need to collect blood for child analysis is reduced.
[0153] また、分析機関から取得した個人の遺伝子多型情報を、サービス提供機関のデー タベースに個人 IDと対応させて記録しておき、各個人に個人 IDを通知しておけば、 個人 IDのみの連絡を受けるだけで、データベースに記録された対応する遺伝子多 型を用いて、再度の危険度判定が可能となる。  [0153] In addition, the individual's genetic polymorphism information obtained from the analysis institution is recorded in the database of the service provider in correspondence with the individual ID, and the individual ID is notified to each individual. It is possible to determine the risk level again using the corresponding gene polymorphism recorded in the database.
[0154] また、遺伝子多型情報自体を IDとして使用することによって、個人 IDを使用するこ となぐ新たに取得した被解析データ (例えば、動脈硬化性疾患であれば IMTの測 定値)に加えて過去の被解析データを利用することができる。従って、危険度の判定 精度の履歴を追跡することや、履歴を考慮した危険度の判定を行うことが可能となる 。ここで、被解析データには、疾患指標の値以外に種々の臨床データなどが付加さ れていてもよい。  [0154] Furthermore, by using the gene polymorphism information itself as an ID, in addition to newly acquired analysis data (for example, IMT measurement values in the case of arteriosclerotic diseases), it is necessary to use a personal ID. Past analysis data can be used. Therefore, it becomes possible to track the history of risk determination accuracy and to determine the risk considering the history. Here, in addition to the value of the disease index, various clinical data may be added to the data to be analyzed.
[0155] 本発明に係る疾患危険度の判定方法の適用対象は、動脈硬化性疾患に限定され ず、以下に示すように心筋梗塞、腎症、網膜症にも適用可能である。  [0155] The application target of the disease risk determination method according to the present invention is not limited to arteriosclerotic diseases, and can also be applied to myocardial infarction, nephropathy, and retinopathy as described below.
[0156] (3— 2)心筋梗塞危険度判定方法  [0156] (3-2) Myocardial infarction risk assessment method
本発明の心筋梗塞危険度判定方法は、心筋梗塞のかかりやすさや進行しやすさを 判定するために使用することができる。好適には、糖尿病患者またはその傾向のある 患者 (境界型糖尿病)に対して心筋梗塞の危険度 (かかりやすさ、進行のしゃすさな ど)を判定するために使用することができる。  The myocardial infarction risk determination method of the present invention can be used to determine the likelihood of myocardial infarction and the ease of progression. Preferably, it can be used to determine the risk of myocardial infarction (e.g., predisposition to progression, etc.) for diabetic patients or prone patients (boundary diabetes).
[0157] 心筋梗塞に関する危険度の判定に使用する参照テーブルとしては、図 2に対応す るテーブルを使用すればよい。心筋梗塞に関しては、その疾患指数がバイナリーデ ータ(0又は 1)なので、通常の多重回帰分析ではなく多重ロジスティック回帰分析を 用いる。多重ロジスティック回帰分析は公知であるので、説明を省略する。  [0157] A table corresponding to Fig. 2 may be used as a reference table used to determine the risk level related to myocardial infarction. For myocardial infarction, since the disease index is binary data (0 or 1), multiple logistic regression analysis is used instead of normal multiple regression analysis. Since multiple logistic regression analysis is well-known, description is abbreviate | omitted.
[0158] (3- 3)腎症危険度判定方法  [0158] (3-3) Nephropathy risk assessment method
本発明の腎症危険度判定方法は、腎症のかかりやすさや進行しやすさを判定する ために使用することができる。好適には、糖尿病患者またはその傾向のある患者 (境 界型糖尿病)に対して腎症の危険度 (かかりやすさ、進行のしゃすさなど)を判定する ために使用することができる。  The nephropathy risk determination method of the present invention can be used to determine the likelihood of nephropathy and the ease of progression. Suitably, it can be used to determine the risk of nephropathy (ease of susceptibility, ease of progression, etc.) for diabetics or prone patients (boundary diabetes).
[0159] 腎症に関する危険度の判定に使用する参照テーブルとしては、図 3に対応するテ 一ブルを使用すればよい。 [0159] The reference table used to determine the risk level for nephropathy is a table corresponding to FIG. Use a single bull.
[0160] (3— 4)網膜症危険度判定方法  [0160] (3-4) Retinopathy risk assessment method
本発明の網膜症危険度判定方法は、網膜症のかかりやすさや進行しやすさを判定 するために使用することができる。好適には、糖尿病患者またはその傾向のある患者 (境界型糖尿病)に対して網膜症の危険度 (かかりやすさ、進行のしゃすさなど)を判 定するために使用することができる。  The retinopathy risk determination method of the present invention can be used to determine the likelihood of retinopathy and the likelihood of progression. Preferably, it can be used to determine the risk of retinopathy (susceptibility, ease of progression, etc.) for diabetics or prone patients (boundary diabetes).
[0161] 網膜症に関する危険度の判定に使用する参照テーブルとしては、図 4に対応する テーブルを使用すればょ ヽ。  [0161] Use a table corresponding to Fig. 4 as a reference table for determining the risk of retinopathy.
[0162] 以上では、動脈硬化性疾患、心筋梗塞、腎症および網膜症の危険度の判定に使 用する参照テーブルとして、それぞれ図 1〜図 4に対応するテーブルを使用する場 合を説明したが、これらに限定されない。例えば、動脈硬化性疾患、心筋梗塞、腎症 および網膜症の危険度の判定に使用する参照テーブルとして、それぞれ図 17〜図 20に対応するテーブルを使用しても良!、。  [0162] The above describes the case where the tables corresponding to Figs. 1 to 4 are used as reference tables for determining the risk of arteriosclerotic disease, myocardial infarction, nephropathy and retinopathy, respectively. However, it is not limited to these. For example, tables corresponding to FIGS. 17 to 20 may be used as reference tables for determining the risk of arteriosclerotic disease, myocardial infarction, nephropathy and retinopathy, respectively.
[0163] (4)遺伝子マーカー  [0163] (4) Genetic markers
(4- 1)動脈硬化性疾患に有意に関連性を示す遺伝子マーカー  (4-1) Genetic markers that are significantly related to atherosclerotic disease
本発明は、糖尿病に起因する動脈硬化性疾患に対して有意に関連性を示す遺伝 子マーカーを提供する。当該遺伝子マーカーは、被験試料について、動脈硬化性 疾患に関連性のある遺伝子多型の検出および選択に好適に用いることができる。か カゝる遺伝子マーカーには、動脈硬化性疾患に対して抵抗性を示す遺伝子マーカー と感受性を示す遺伝子マーカーが含まれる。具体的には、図 1及び図 17に記載の遺 伝子多型セットからなる群力 選択される少なくとも一の遺伝子多型セットを構成する 遺伝子多型を含む。なお、動脈硬化性疾患に対して感受性を示す遺伝子マーカー としては図 1 A及び図 17に示す遺伝子多型セットを構成する遺伝子多型を、動脈 硬化性疾患に対して抵抗性を示す遺伝子マーカーとしては図 1 Bに示す遺伝子多 型セットを構成する遺伝子多型を挙げることができる。  The present invention provides genetic markers that are significantly related to arteriosclerotic diseases caused by diabetes. The gene marker can be suitably used for detection and selection of a genetic polymorphism associated with arteriosclerotic disease for a test sample. Such genetic markers include genetic markers that are resistant to and sensitive to arteriosclerotic diseases. Specifically, it includes gene polymorphisms constituting at least one gene polymorphism set selected from the group power consisting of the gene polymorphism sets described in FIG. 1 and FIG. As gene markers that are sensitive to arteriosclerotic diseases, the gene polymorphisms constituting the gene polymorphism set shown in FIGS. 1A and 17 are used as gene markers that are resistant to arteriosclerotic diseases. Can include gene polymorphisms constituting the gene polymorphism set shown in FIG. 1B.
[0164] これらの動脈硬化性疾患に有意に関連性を示す遺伝子マーカーは、動脈硬化性 疾患と関連性のある遺伝子多型の検出や選択に用いられるほか、動脈硬化性疾患 の判定や測定のための遺伝子マーカーなどとしても用いることができる。 [0165] (4 2)心筋梗塞性疾患に有意に関連性を示す遺伝子マーカー [0164] These genetic markers that are significantly related to arteriosclerotic diseases are used for detection and selection of genetic polymorphisms associated with arteriosclerotic diseases, as well as for determination and measurement of arteriosclerotic diseases. It can also be used as a genetic marker for the purpose. [0165] (4 2) Genetic marker showing significant association with myocardial infarction disease
本発明は、また糖尿病に起因する心筋梗塞に有意に関連性を示す遺伝子マーカ 一を提供する。当該遺伝子マーカーは、被験試料について、心筋梗塞と関連性のあ る遺伝子多型の検出や選択に好適に用いることができる。力かる遺伝子マーカーに は、心筋梗塞に対して抵抗性を示す遺伝子マーカーと感受性を示す遺伝子マーカ 一が含まれる。具体的には、図 2及び図 18に記載の遺伝子多型セット群力 選択さ れる少なくとも一の遺伝子多型セットを構成する遺伝子多型を含む。なお、心筋梗塞 に対して感受性を示す遺伝子マーカーとしては図 2—A及び図 18に示す遺伝子多 型セットを構成する遺伝子多型を、心筋梗塞に対して抵抗性を示す遺伝子マーカー としては図 2— Bに示す遺伝子多型セットを構成する遺伝子多型を挙げることができ る。  The present invention also provides a genetic marker that is significantly related to myocardial infarction due to diabetes. The gene marker can be suitably used for the detection or selection of a genetic polymorphism associated with myocardial infarction for a test sample. The powerful genetic markers include a genetic marker that exhibits resistance to myocardial infarction and a genetic marker that exhibits sensitivity. Specifically, the gene polymorphism sets included in FIG. 2 and FIG. 18 include gene polymorphisms constituting at least one gene polymorphism set to be selected. As gene markers that are sensitive to myocardial infarction, the gene polymorphisms constituting the gene polymorphism set shown in Fig. 2-A and Fig. 18 are used. As gene markers that show resistance to myocardial infarction, Fig. 2 is used. — The gene polymorphisms that make up the gene polymorphism set shown in B can be listed.
[0166] これらの心筋梗塞に有意に関連性を示す遺伝子マーカーは、心筋梗塞と関連性の ある遺伝子多型の検出や選択に用いられるほか、心筋梗塞の判定や測定のための 遺伝子マーカーなどとしても用いることができる。  [0166] These genetic markers that are significantly associated with myocardial infarction are used for detection and selection of genetic polymorphisms associated with myocardial infarction, as well as genetic markers for determining and measuring myocardial infarction. Can also be used.
[0167] (4- 3)腎症に有意に関連性を示す遺伝子マーカー  [0167] (4- 3) Genetic marker showing significant association with nephropathy
本発明は、さらに糖尿病に起因する腎症に有意に関連性を示す遺伝子マーカーを 提供する。当該遺伝子マーカーは、被験試料について、腎症と関連性のある遺伝子 多型の検出や選択に好適に用いることができる。力かる遺伝子マーカーには、腎症 に対して抵抗性を示す遺伝子マーカーと感受性を示す遺伝子マーカーが含まれる。 具体的には、図 3に及び図 19記載の遺伝子多型セットからなる群力も選択される少 なくとも一の遺伝子多型セットを構成する遺伝子多型を含む。なお、腎症に対して感 受性を示す遺伝子マーカーとしては図 3— A及び図 19に示す遺伝子多型セットを構 成する遺伝子多型を、腎症に対して抵抗性を示す遺伝子マーカーとしては図 3— B に示す遺伝子多型セットを構成する遺伝子多型を挙げることができる。  The present invention further provides genetic markers that are significantly related to nephropathy caused by diabetes. The gene marker can be suitably used for detecting or selecting a gene polymorphism associated with nephropathy in a test sample. Energetic genetic markers include genetic markers that are resistant to and sensitive to nephropathy. Specifically, it includes gene polymorphisms constituting at least one gene polymorphism set from which the group power consisting of the gene polymorphism sets described in FIG. 3 and FIG. 19 is also selected. As gene markers that are sensitive to nephropathy, the gene polymorphisms that make up the gene polymorphism set shown in Fig. 3-A and Fig. 19 are used as gene markers that are resistant to nephropathy. Can include the gene polymorphisms that make up the gene polymorphism set shown in Figure 3-B.
[0168] これらの腎症に有意に関連性を示す遺伝子マーカーは、腎症と関連性のある遺伝 子多型の検出や選択に用いられるほか、腎症の判定や測定のための遺伝子マーカ 一などとしても用いることができる。  [0168] These genetic markers that are significantly related to nephropathy are used for detection and selection of genetic polymorphisms associated with nephropathy, as well as genetic markers for the determination and measurement of nephropathy. It can also be used as such.
[0169] (4 4)網膜症に有意に関連性を示す遺伝子マーカー 本発明は、さらに糖尿病に起因する網膜症に有意に関連性を示す遺伝子マーカ 一を提供する。当該遺伝子マーカーは、被験試料について、網膜症と関連性のある 遺伝子多型の検出や選択に好適に用いることができる。かかる遺伝子マーカーには 、網膜症に対して抵抗性を示す遺伝子マーカーと感受性を示す遺伝子マーカーが 含まれる。具体的には、図 4及び図 20に記載の遺伝子多型セットからなる群力 選 択される少なくとも一の遺伝子多型セットを構成する遺伝子多型を含む。なお、網膜 症に対して感受性を示す遺伝子マーカーとしては図 4— A、図 4— B及び図 20に示 す遺伝子多型セットを構成する遺伝子多型を、網膜症に対して抵抗性を示す遺伝子 マーカーとしては図 4 Cに示す遺伝子多型セットを構成する遺伝子多型を挙げるこ とがでさる。 [0169] (4 4) Genetic markers significantly related to retinopathy The present invention further provides a genetic marker that is significantly related to retinopathy caused by diabetes. The gene marker can be suitably used for detection or selection of a gene polymorphism associated with retinopathy in a test sample. Such genetic markers include genetic markers that are resistant to retinopathy and genetic markers that are sensitive. Specifically, it includes gene polymorphisms constituting at least one gene polymorphism set selected from the group power consisting of the gene polymorphism sets described in FIG. 4 and FIG. As genetic markers that are susceptible to retinopathy, the gene polymorphisms that make up the gene polymorphism set shown in Figure 4-A, Figure 4-B, and Figure 20 are resistant to retinopathy. Examples of gene markers include gene polymorphisms constituting the gene polymorphism set shown in FIG. 4C.
[0170] これらの網膜症に有意に関連性を示す遺伝子マーカーは、網膜症と関連性のある 遺伝子多型の検出や選択に用いられるほか、網膜症の判定や測定のための遺伝子 マーカーなどとしても用いることができる。  [0170] These genetic markers that are significantly associated with retinopathy are used for detection and selection of genetic polymorphisms associated with retinopathy, as well as genetic markers for the determination and measurement of retinopathy. Can also be used.
[0171] (5)遺伝子多型分析用キット  [0171] (5) Genetic polymorphism analysis kit
本発明の遺伝子多型分析用キットは、疾患に有意に関連性のある遺伝子多型セッ ト群から選択される少なくとも一の遺伝子多型セットを構成する遺伝子を特異的に増 幅し得るプライマー対、あるいは当該遺伝子またはその増幅産物に特異的にハイブ リダィズし得る核酸プローブを含むことを特徴とする。当該分析用キットは、疾患関連 遺伝子多型を検出する分析用キットとして好適に用いることができる。  The gene polymorphism analysis kit of the present invention is a primer pair capable of specifically amplifying a gene constituting at least one gene polymorphism set selected from a gene polymorphism set group significantly related to a disease. Or a nucleic acid probe capable of specifically hybridizing to the gene or its amplification product. The analysis kit can be suitably used as an analysis kit for detecting a disease-related gene polymorphism.
[0172] 遺伝子多型セットの一例として、図 1及び図 17に記載する遺伝子多型セットからな る群力も選択される少なくとも一の遺伝子多型セットを挙げることができる。かかる遺 伝子多型セットを構成する遺伝子を特異的に増幅し得るプライマー対、あるいは当該 遺伝子またはその増幅産物に特異的にハイブリダィズし得る核酸プローブを含む分 析用キットは、糖尿病に起因する動脈硬化性疾患に有意に関連する遺伝子多型を 検出する分析用キットとして好適に用いることができる。  [0172] As an example of the gene polymorphism set, there can be mentioned at least one gene polymorphism set in which the group power consisting of the gene polymorphism sets described in Fig. 1 and Fig. 17 is also selected. An analysis kit comprising a primer pair that can specifically amplify a gene constituting such a gene polymorphism set, or a nucleic acid probe that can specifically hybridize to the gene or its amplification product, is an arterial disease caused by diabetes. It can be suitably used as an analytical kit for detecting genetic polymorphisms significantly related to sclerotic diseases.
[0173] さらに遺伝子多型セットの他の一例として、図 2及び図 18に記載する遺伝子多型セ ットからなる群力も選択される少なくとも一の遺伝子多型セットを挙げることができる。 力かる遺伝子多型セットを構成する遺伝子を特異的に増幅し得るプライマー対、ある いは当該遺伝子またはその増幅産物に特異的にハイブリダィズし得る核酸プローブ を含む分析用キットは、糖尿病に起因する心筋梗塞に有意に関連する遺伝子多型 を検出する分析用キットとして好適に用いることができる。 [0173] Furthermore, as another example of the gene polymorphism set, there can be mentioned at least one gene polymorphism set in which the group power composed of the gene polymorphism sets shown in Fig. 2 and Fig. 18 is also selected. There is a primer pair that can specifically amplify the genes that make up a powerful polymorphism set. Alternatively, an analysis kit containing a nucleic acid probe capable of specifically hybridizing to the gene or its amplification product is preferably used as an analysis kit for detecting a gene polymorphism significantly associated with myocardial infarction caused by diabetes. it can.
[0174] さらにまた遺伝子多型セットの他の一例として、図 3及び図 19に記載する遺伝子多 型セットの群力も選択される少なくとも一の遺伝子多型セットを挙げることができる。か 力る遺伝子多型セットを構成する遺伝子を特異的に増幅し得るプライマー対、ある ヽ は当該遺伝子またはその増幅産物に特異的にハイブリダィズし得る核酸プローブを 含む分析用キットは、糖尿病に起因する腎症に有意に関連する遺伝子多型を検出 する分析用キットとして好適に用いることができる。  [0174] Furthermore, as another example of the gene polymorphism set, at least one gene polymorphism set in which the group power of the gene polymorphism set described in Fig. 3 and Fig. 19 is also selected can be mentioned. An analytical kit containing a primer pair that can specifically amplify a gene that constitutes a gene polymorphism set, or a nucleic acid probe that can specifically hybridize to the gene or its amplification product is caused by diabetes It can be suitably used as an analytical kit for detecting genetic polymorphisms significantly related to nephropathy.
[0175] また遺伝子多型セットの他の一例として、図 4及び図 20に記載する遺伝子多型セッ トの群力 選択される少なくとも一の遺伝子多型セットを挙げることができる。かかる遺 伝子多型セットを構成する遺伝子を特異的に増幅し得るプライマー対、あるいは当該 遺伝子またはその増幅産物に特異的にハイブリダィズし得る核酸プローブを含む分 析用キットは、糖尿病に起因する網膜症に有意に関連する遺伝子多型を検出する分 析用キットとして好適に用いることができる。  [0175] As another example of the gene polymorphism set, at least one gene polymorphism set selected from the group power of the gene polymorphism set described in FIG. 4 and FIG. 20 can be mentioned. An analysis kit comprising a primer pair that can specifically amplify a gene constituting such a gene polymorphism set, or a nucleic acid probe that can specifically hybridize to the gene or its amplification product, is a retina caused by diabetes. It can be suitably used as an analysis kit for detecting a genetic polymorphism significantly associated with the disease.
[0176] 本発明の遺伝子多型分析用キットは、上記のようなプライマー対あるいは核酸プロ ーブを含んでなるものであれば、本発明の目的を損なわない範囲で、他の核酸又は 試薬等を適宜含んでいてもよい。なお、遺伝子多型セットを検出するためには、これ らのセットを構成する遺伝子多型を検出するためのプライマーまたはプローブを有す ることが必要である。一つの遺伝子多型について遺伝子多型検出用プライマーを含 み、他の遺伝子多型について遺伝子多型検出用プローブを含むようなものであって も、前記遺伝子多型を分析できる限り、本発明の遺伝子多型分析用キットに含まれる  [0176] If the gene polymorphism analysis kit of the present invention comprises a primer pair or a nucleic acid probe as described above, other nucleic acids or reagents, etc. within the range not impairing the object of the present invention. May be included as appropriate. In order to detect gene polymorphism sets, it is necessary to have primers or probes for detecting the gene polymorphisms constituting these sets. Even if one gene polymorphism includes a gene polymorphism detection primer and the other gene polymorphism includes a gene polymorphism detection probe, as long as the gene polymorphism can be analyzed, Included in genetic polymorphism analysis kit
[0177] 遺伝子多型の検出は上記遺伝子多型検出工程で記載した 、ずれの方法をも用 、 ることができるが、 PCRを用いる hybrigene法、 TaqMan法、インベーダー法や、遺 伝子多型を有する遺伝子に特異的にハイブリダィズする核酸プローブを用いる ASP — PCR法などを好適に用いることができる。 [0177] The detection of a gene polymorphism can be performed using the method described in the above gene polymorphism detection step, but the hybrigene method using PCR, TaqMan method, invader method, and gene polymorphism. An ASP-PCR method using a nucleic acid probe that specifically hybridizes to a gene having an amino acid can be suitably used.
[0178] したがって、遺伝子多型分析用キットには、これらの遺伝子多系を検出する工程に 用いるプライマーおよびプローブの少なくとも 、ずれかが含まれる必要がある。遺伝 子多型を検出するための PCR法においては、もっとも 3'側に遺伝子多型の核酸を 配置するのが一般的である力 Allele Specific Primer (ASP)— PCR法のように 、 3'末端側力 2番目に遺伝子多型を有するプライマーを配置する方法などのように 、遺伝子多型をプライマーのどの領域に置くか、また、検出する遺伝子以外にどのよ うな核酸配列を入れるカゝなどプライマーのデザインには、遺伝子多型を識別できる限 りとくに制限はない。プローブのデザインにおいても同様に、遺伝子多型を識別でき る限りその配列に制限なぐ用いることができる。 [0178] Therefore, the gene polymorphism analysis kit includes a process for detecting these gene polymorphisms. At least one of the primers and probes to be used must be included. In PCR methods for detecting genetic polymorphism, it is common to place the polymorphic nucleic acid at the 3 'end. Allele Specific Primer (ASP) — Like the PCR method, the 3' end As in the method of placing a primer with gene polymorphism in the second side, the primer where the gene polymorphism is placed in the primer, and what nucleic acid sequence other than the gene to be detected is inserted There is no particular limitation on the design of the gene as long as it can identify the gene polymorphism. Similarly, in the design of a probe, as long as a gene polymorphism can be identified, the sequence can be used without restriction.
[0179] (6)発症予測提示方法  [0179] (6) Onset prediction presentation method
上記の「 (3)疾患危険度の判定装置、判定プログラム、及び判定方法」にお!、て説 明したように、疾患危険度の判定式 yはアナログ値であり、時間に関係する因子を含 んでいるので、疾患の発症の将来予測に利用することができる。従って、時間に関係 する環境因子を変化させて得られた疾患危険度を、患者にも容易に理解できるよう に提示することができれば、診療において有効である。以下に、その方法を説明する 。以下においては、図 8に示したフローチャートを用いて説明した、糖尿病に起因す る 4つの疾患 (心筋梗塞、腎症、網膜症、動脈硬化性疾患)の危険度の判定処理と同 様に、判定装置 31が行う処理として説明する。また、特に断らない限り、判定装置 31 の CPU32が行う処理として記載する。  As explained in “(3) Disease risk determination device, determination program, and determination method” above, the disease risk determination formula y is an analog value, and the time-related factors are It can be used to predict the future of the disease. Therefore, if the disease risk obtained by changing environmental factors related to time can be presented so that it can be easily understood by the patient, it is effective in clinical practice. The method will be described below. In the following, similar to the risk determination process for four diseases (myocardial infarction, nephropathy, retinopathy, and arteriosclerotic disease) caused by diabetes explained using the flowchart shown in FIG. The processing performed by the determination device 31 will be described. Further, unless otherwise specified, it is described as a process performed by the CPU 32 of the determination device 31.
[0180] 図 11は、判定装置 31の発症予測提示機能を示すフローチャートである。  FIG. 11 is a flowchart showing the onset prediction presentation function of the determination apparatus 31.
[0181] ステップ S31にお 、て、発症予測の対象者である被験者 (患者とも記す)を指定す るために操作部 36が操作されて入力される被験者 IDを、メモリ 33に一時記憶する。  [0181] In step S31, in order to designate a subject (also referred to as a patient) who is a subject of the onset prediction, the subject ID entered by operating the operation unit 36 is temporarily stored in the memory 33.
[0182] ステップ S32において、ステップ S31でメモリ 33に一時記憶された被験者 IDに対応 する情報を記録部 34からメモリ 33に読み出す。このとき読み出される情報は、被験 者の遺伝子情報 (遺伝子多型の有無)、環境因子 (性別、年齢、 BMI、罹病期間、収 縮期血圧(SBP)、血中 HDL値、血中 HbAlc値、血中総コレステロール値、血中中性 脂肪値 (TG)、喫煙暦など)の検査値である。  [0182] In step S32, information corresponding to the subject ID temporarily stored in the memory 33 in step S31 is read from the recording unit 34 to the memory 33. The information read out at this time includes the subject's genetic information (presence of genetic polymorphism), environmental factors (sex, age, BMI, disease duration, systolic blood pressure (SBP), blood HDL level, blood HbAlc value, This is a test value of blood total cholesterol level, blood neutral fat level (TG), smoking calendar, etc.).
[0183] ステップ S33において、疾患に応じた危険度判定式(回帰式) yを記録部 34からメ モリ 33に読み出す。判定式 yは、ステップ S24 (図 8)の説明において示したように、 y =∑a G +∑b E +∑d E G +c で表され、各係数 a、 b、 d 、 cは、所定の母集[0183] In step S33, the risk determination equation (regression equation) y corresponding to the disease is read from the recording unit 34 to the memory 33. As shown in the explanation of step S24 (Fig. 8), = ∑a G + ∑b E + ∑d EG + c, where each coefficient a, b, d, c is a given population
1 1 j j mn m n 1 j mn 1 1 j j mn m n 1 j mn
団を用いて重回帰分析によって疾患毎に決定された値である。  It is a value determined for each disease by multiple regression analysis using a group.
[0184] ステップ S34において、ステップ S33で読み出した判定式 yに、ステップ S32で読み 出した被験者の情報 (遺伝子多型セットの有無、環境因子の値)を適用して、ステツ プ S24と同様に危険度を計算する。このとき、被験者の現在の環境因子の値を用い て危険度を計算するだけではなぐ時間に関係する環境因子 (年齢、罹病期間など) に関しては、現在の値に所定時間を加算した値を用いて危険度を計算する。例えば 、現在の年齢及び罹病期間のそれぞれに 5を加算した値を用いて危険度を計算する[0184] In step S34, the subject information (presence / absence of gene polymorphism set, environmental factor value) read in step S32 is applied to the judgment formula y read in step S33, and the same as in step S24. Calculate the risk. At this time, for the environmental factors (age, disease duration, etc.) related to time that is not just calculated by using the current environmental factor value of the subject, the value obtained by adding the predetermined time to the current value is used. To calculate the risk. For example, the risk is calculated using the value obtained by adding 5 to each of the current age and disease duration.
。計算された危険度は、その被験者の、現在から 5年後の疾患度の予測値であると 考えることができる。尚、危険度の計算において、時間に関係しない環境因子につい ては、現状の検査データを使用する。 . The calculated risk can be considered as a predictive value of the subject's disease severity 5 years from now. In the risk calculation, the current inspection data is used for environmental factors not related to time.
[0185] ステップ S35において、上記した 4つの疾患全てに関して、現在の危険度及び将来 の疾患度の予測値を計算したか否かを判断し、計算して 、な 、疾患が残って 、れば 、ステップ S33に戻る。これによつて、ステップ S33〜34の処理を繰り返し、心筋梗塞 、腎症、網膜症、および動脈硬化性疾患に関する、現状及び将来の疾患度が求めら れる。 [0185] In step S35, it is determined whether or not the current risk level and the predicted value of the future disease level have been calculated for all the four diseases described above. Return to step S33. As a result, the processes in steps S33 to S34 are repeated, and the current state and future degree of disease related to myocardial infarction, nephropathy, retinopathy, and arteriosclerotic disease are obtained.
[0186] 4つの疾患に関して計算が終れば、ステップ S36において、計算結果を記録部 34 に記録し、計算結果の提示方法のメニューを表示部 37に表示し、操作部 36からの 選択を持ち受ける。  [0186] When the calculations for the four diseases are completed, in step S36, the calculation results are recorded in the recording unit 34, the calculation result presentation method menu is displayed on the display unit 37, and the selection from the operation unit 36 is accepted. .
[0187] 以下では、記録部 34に記録された計算結果を、操作部 36からの指示に応じて効 果的に表示部 37に提示する処理に関して説明する。  In the following, a description will be given of a process for effectively presenting the calculation result recorded in the recording unit 34 on the display unit 37 in accordance with an instruction from the operation unit 36.
[0188] ステップ 37において、「レーダーチャート表示」が選択されたか否かを判断し、レー ダーチャート表示が選択されたと判断した場合、ステップ S38に移行し、ステップ S33 [0188] In step 37, it is determined whether or not "radar chart display" is selected. If it is determined that the radar chart display is selected, the process proceeds to step S38 , and step S33.
〜S34で求めた被験者に関する各疾患の現在及び将来の危険度を記録部 34から 読み出し、これらを用いてレーダーチャートを作成し、表示部 37に表示する。図 12は 、表示部 37に表示されるレーダーチャートの一例を示す図である。 The current and future risk levels of each disease relating to the subject determined in S34 are read from the recording unit 34, and a radar chart is created using these, and displayed on the display unit 37. FIG. 12 is a diagram showing an example of a radar chart displayed on the display unit 37.
[0189] 図 12では、左右のレーダーチャートのそれぞれに、中央の原点から放射状に各疾 患の疾患度を表す軸を描画し、各軸の付近に各疾患のグレード (疾患の程度)を示 す表示を付している。左側のレーダーチャートには、被験者に関する、現在の各疾患 の危険度 (実線)力 同世代の糖尿病患者の平均値 (破線)とともに表示されて!ヽる。 右側のレーダーチャートには、被験者の 5年後の各疾患の危険度(一点鎖線)が、現 在の各疾患の危険度(実線)とともに表示されている。ここで、各疾患の平均値は、危 険度判定式 yの決定に使用した糖尿病患者のデータ集合に関して、被験者と同年代 の糖尿病患者の疾患度から、予め求めた平均値であり、例えば予め記録部 34に記 録されている。 [0189] In Fig. 12, on each of the left and right radar charts, an axis representing the disease degree of each disease is drawn radially from the central origin, and the grade of each disease (degree of disease) is shown near each axis. Is displayed. The radar chart on the left displays the current risk level (solid line) for each subject along with the mean (dashed line) of the same generation of diabetics! In the radar chart on the right, the risk of each disease after 5 years (dotted line) is displayed along with the current risk of each disease (solid line). Here, the average value of each disease is an average value obtained in advance from the disease level of a diabetic patient of the same age as the subject with respect to the data set of the diabetic patient used to determine the risk assessment formula y. Recorded in Part 34.
グレードの表示は疾患毎に異なり、また、疾患毎の危険度判定式 yを導出するとき に使用した目的変数によって異なる。図 12は、動脈硬化性疾患に関して目的変数と して Max— IMTを用いた場合であり、 Max— IMTの値が 0. 8、 1. 4、 2. 8に対応す る軸上の位置に、それぞれの数値 (0. 8、 1. 4、 2. 8)を表示している。腎症に関して は、目的変数として尿中のアルブミン排泄率 g/mg'Cr)を用い、図 9に示した基準 で疾患度が 1、 2、 3に対応する軸上の位置に、それぞれ「無」、「早期」、「顕性」と表 示している。「無」、「早期」、「顕性」とは、それぞれ「腎症無し (正常)」、「早期の腎症 」、「顕性の腎症」を意味し、実際の診療において使用される表現である。同様に、網 膜症に関しては、図 10に示した基準に従って、疾患度が 1、 2、 3、 4に対応する軸上 の位置に、実際の診療において使用されている表現である「無」、「単純性」、「増殖 性前」、「増殖性」を表示している。一方、心筋梗塞に関しては、目的変数として心筋 梗塞発症率を用い、図 13に示した年齢別の心筋梗塞発症率 (疾患度)を用い、被験 者の年齢に該当する心筋梗塞発症率の 1Z8倍、 1倍、 3倍、 5倍の値に対応する軸 上の位置に、それぞれ「健常者と同じ」、「同世代の糖尿病患者と同じ」、「心筋梗塞 既往歴あり」、「初発 ·再発リスク」と表示している。また、これらの表示に対応する、軸 の左側の位置には、被験者の年齢に該当する心筋梗塞発症率の値と、上記の倍率 とを、並べて表示している。図 12では、被験者の年齢に該当する心筋梗塞発症率の 値が 0. 8の場合であり、「同世代の糖尿病患者と同じ」に対応する位置に、倍率 1倍 を表す 1と 0. 8とを並べて表示している。尚、 1Z8倍は 0. 1と表示している。このよう に表示したレーダーチャートは、医師、看護師にとってはもちろん、患者にとっても理 解し易い表示となっている。 [0191] ステップ 39において、「発症予測グラフ表示」が選択された力否かを判断し、発症 予測グラフ表示が選択されたと判断した場合、ステップ S40に移行し、ステップ S38と 同様に記録部 34から被験者に関する各疾患の危険度を読み出し、発症予測グラフ を作成し、表示部 37に表示する。図 14は、表示部 37に表示される発症予測グラフ の一例を示す図である。 The grade display differs depending on the disease, and also depends on the objective variable used to derive the risk judgment formula y for each disease. Fig. 12 shows the case where Max-IMT is used as the objective variable for arteriosclerotic diseases, and the Max-IMT value is at the position on the axis corresponding to 0.8, 1.4, and 2.8. Each value (0.8, 1.4, 2.8) is displayed. For nephropathy, the urinary albumin excretion rate (g / mg'Cr) is used as the objective variable, and the criteria shown in Fig. 9 indicate `` None '' at the positions on the axes corresponding to the disease degrees 1, 2, and 3, respectively. ”,“ Early ”, and“ obvious ”. “None”, “early”, and “apparent” mean “no nephropathy (normal)”, “early nephropathy”, and “apparent nephropathy”, respectively, and are used in actual practice Is an expression. Similarly, with respect to retinopathy, according to the criteria shown in FIG. 10, the expression used in actual practice is “none” at the position on the axis corresponding to the degree of disease 1, 2, 3, 4 , “Simpleness”, “Preproliferative”, and “Proliferative” are displayed. On the other hand, for myocardial infarction, myocardial infarction incidence is used as the objective variable, and myocardial infarction incidence (disease degree) by age shown in Fig. 13 is used, and the myocardial infarction incidence corresponding to the age of the subject is 1Z8 times , 1x, 3x, and 5x on the axis corresponding to the values, `` Same as healthy people '', `` Same as diabetics of the same generation '', `` History of myocardial infarction '', `` First time recurrence “Risk”. In addition, at the position on the left side of the axis corresponding to these displays, the myocardial infarction incidence value corresponding to the age of the subject and the above magnification are displayed side by side. In FIG. 12, the value of the incidence of myocardial infarction corresponding to the age of the subject is 0.8, and 1 and 0.8 representing a magnification of 1 are placed at the positions corresponding to “same as diabetes of the same generation”. Are displayed side by side. In addition, 1Z8 times is displayed as 0.1. The radar chart displayed in this way is easy to understand not only for doctors and nurses but also for patients. [0191] In step 39, it is determined whether or not “onset prediction graph display” is selected, and if it is determined that onset prediction graph display is selected, the process proceeds to step S40, and the recording unit 34 as in step S38. The risk level of each disease related to the subject is read out from this, and an onset prediction graph is created and displayed on the display unit 37. FIG. 14 is a diagram illustrating an example of the onset prediction graph displayed on the display unit 37.
[0192] 図 14において、 4つのグラフは、疾患毎に情報を提示したものであり、横軸は各疾 患の疾患度、縦軸は疾患度に対応する発症頻度 (該当するデータ数)である。曲線 は、危険度判定式 yの決定に使用した糖尿病患者のデータ集合における、被験者と 同年代の患者の発症頻度を表すグラフであり、これに重ねて、被験者の現在の危険 度及び 5年後の疾患度の予測値と、同年代の各疾患の平均値とを描画している。各 疾患に関する横軸には、上記したレーダーチャート (例えば図 12)と同様に、グレート を表す文字が付記されて 、る。  [0192] In Fig. 14, four graphs present information for each disease, the horizontal axis represents the disease degree of each disease, and the vertical axis represents the onset frequency (number of corresponding data) corresponding to the disease degree. is there. The curve is a graph showing the incidence of patients of the same age as the subject in the diabetic patient data set used to determine the risk criterion y, and this is superimposed on the subject's current risk and 5 years later. The predicted value of the disease degree and the average value of each disease of the same age are drawn. Like the radar chart (eg, Fig. 12), the horizontal axis for each disease is accompanied by a letter indicating the Great.
[0193] ステップ 41にお 、て、「治療法提示」が選択された力否かを判断し、治療法提示が 選択されたと判断した場合、ステップ S42に移行する。ステップ S42において、ステツ プ S38と同様に記録部 34から被験者に関する各疾患の危険度を読み出し、バブル チャートを作成する。次にステップ S43において、各検査データに応じた治療法を記 録部 34から読み出し、ステップ S42で作成したバブルチャートと合わせて、表示部 3 7に表示する。図 15は、表示部 37に表示されるバブルチャートの一例を示す図であ る。  [0193] In step 41, it is determined whether or not “presentation of therapy” is selected, and if it is determined that presentation of therapy is selected, the process proceeds to step S42. In step S42, the risk level of each disease related to the subject is read from the recording unit 34 in the same manner as in step S38, and a bubble chart is created. Next, in step S43, a treatment method corresponding to each examination data is read from the recording unit 34 and displayed on the display unit 37 together with the bubble chart created in step S42. FIG. 15 is a diagram showing an example of a bubble chart displayed on the display unit 37.
[0194] 図 15は、横方向に並んだ (a)〜(d)の 4つの部分力も構成されている。(b)の部分 には、 4つの疾患の危険度判定式 yに含まれる環境因子のうち、治療によって変化し 得る環境因子の名称を表示している。(c)の部分には、検査で得られた被験者の各 環境因子の検査値を、各疾患に関する公知のガイドラインを用いて分類し、分類に 対応する大きさの円を描画している(第 1のバブルチャート)。また、(a)の部分には、 横方向に 4つの疾患を配置し、縦方向に各疾患における環境因子の寄与に応じた 大きさの円を描画している(第 2のバブルチャート)。また、(d)の部分には、各環境因 子の検査値を健常人の値に近づけるための対処法 (治療法を含む)をリスト表示して いる。尚、(b)の部分に示した環境因子のうち、「HbAlc (罹病期間)」との表示は、 右側の第 1のバブルチャートで描画する円の大きさを決定するのに、 HbAlcの検査 値を用い、左側の第 2のバブルチャートで描画する円の大きさを決定するのに、罹病 期間を使用することを表している。 [0194] In Fig. 15, four partial forces (a) to (d) arranged in the horizontal direction are also configured. In (b), the names of environmental factors that can be changed by treatment among the environmental factors included in the risk assessment formula y for the four diseases are displayed. In part (c), the test values of each environmental factor obtained by the test are classified using known guidelines for each disease, and a circle with a size corresponding to the classification is drawn (No. 1). 1 bubble chart). In part (a), four diseases are arranged in the horizontal direction, and a circle with a size corresponding to the contribution of environmental factors in each disease is drawn in the vertical direction (second bubble chart). In part (d), a list of countermeasures (including treatment methods) for bringing the test values of each environmental factor closer to those of healthy individuals is displayed. Of the environmental factors shown in part (b), the indication “HbAlc (disease duration)” The HbAlc test value is used to determine the size of the circle drawn in the first bubble chart on the right, and the disease duration is used to determine the size of the circle drawn in the second bubble chart on the left. Indicates that it is used.
[0195] ここで、(c)に示した第 1のバブルチャートにおいて描画する円の大きさ(例えば、直 径)は、例えば、「糖尿病治療ガイドライン」(日本糖尿病学会編)に開示されている分 類に対応させて決定することができる。即ち、各検査値の範囲と、その範囲に対応す る疾患の程度を表す大きさの円を指定するパラメータとを、相互に対応させたテープ ルとして、予め記録部 34に記録しておけば、被験者の各環境因子の検査値が、記録 部 34のテーブル中のどの検査値範囲に該当するかを決定すれば、対応するパラメ ータが決定され、描画する円の大きさが決定される。  [0195] Here, the size (for example, diameter) of the circle drawn in the first bubble chart shown in (c) is disclosed in, for example, “Diabetic Treatment Guidelines” (edited by the Japan Diabetes Society). It can be determined according to the classification. In other words, if the range of each test value and the parameter for designating a circle having a size indicating the degree of disease corresponding to the range are recorded in the recording unit 34 in advance as a table corresponding to each other. When the test value of each environmental factor of the subject is determined to which test value range in the table of the recording unit 34, the corresponding parameter is determined and the size of the circle to be drawn is determined. .
[0196] 次に、 (d)に示した治療法ランキングに関して説明する。上記したように各検査値に 応じて疾患の程度が分類されており、各検査値を改善するための対処法が、通常複 数知られている。従って、各検査値の範囲と、その範囲に対応する対処法を示すテ キストデータとを、相互に対応させて、且つ対処法にランク情報を付して、テーブルと して予め記録部 34に記録しておけば、患者の各環境因子の検査値力 記録部 34の テーブル中のどの検査値範囲に該当するかを決定すれば、対応する対処法 (ランク 情報を含む)を決定し、対応するテキストデータを提示することができる。  Next, the treatment ranking shown in (d) will be described. As described above, the degree of disease is classified according to each test value, and there are usually several known countermeasures to improve each test value. Accordingly, the range of each inspection value and the text data indicating the countermeasure corresponding to the range are associated with each other, and the rank information is attached to the countermeasure, and the table is previously stored in the recording unit 34 as a table. If it is recorded, the test value of each environmental factor of the patient. If the test value range in the table of the recording unit 34 is determined, the corresponding countermeasure (including rank information) is determined and the response Text data to be presented.
[0197] 次に、 (a)に示した第 2のバブルチャートに関して説明する。各疾患の危険度判定 式 yが、(c)の部分に表示された環境因子を説明変数とする場合にのみ、円を描画 する。例えば、動脈硬化性疾患に関して Max— IMTを目的変数とした場合、判定式 yは、次式で表すことができる。  Next, the second bubble chart shown in (a) will be described. Draw a circle only if the risk assessment formula y for each disease uses the environmental factors displayed in part (c) as explanatory variables. For example, when Max-IMT is used as an objective variable for arteriosclerotic diseases, the judgment formula y can be expressed by the following formula.
y = Sex X (al X CSNP3 + a2 X CSNP14 + a3 X CSNP26) + Age X (bl X CSNP90 + b2) + HbAlc X c+Dur X (dl X CSNP6 + d2 X CSNP10 + d3) + Tch X (el X CSNP16 + e y = Sex X (al X CSNP3 + a2 X CSNP14 + a3 X CSNP26) + Age X (bl X CSNP90 + b2) + HbAlc X c + Dur X (dl X CSNP6 + d2 X CSNP10 + d3) + Tch X (el X CSNP16 + e
2) 2)
+ HDLC X f+g  + HDLC X f + g
ここで、 Sex、 Age、 HbAlc, Dur、 Tch、及び HDLCはそれぞれ、性別、年齢(年)、血 中 HbAlc値(%)、罹病期間(年)、血中総コレステロール値 (mg/dl)、及び血中 HDL 値 (mg/dl)である。性別に関しては、男性の場合 Sex= l、女性の場合 Sex= 2とする。 CSNP3、 CSNP6、 CSNP10、 CSNP14、 CSNP16、 CSNP26、 CSNP90は、遺伝子多型セ ットの有無に応じて 1又は 0を取る変数であり、図 5— A及び図 5— Bに示したテープ ルの表記を用いて次のように定義される。例えば、被験者が ABCA1_3及び IL-10(C - 819T)_3を持つ場合には、 CSNP3 = 1とし、それ以外の場合には、 CSNP3 = 0である Where Sex, Age, HbAlc, Dur, Tch and HDLC are gender, age (year), blood HbAlc value (%), disease duration (year), blood total cholesterol level (mg / dl), And blood HDL level (mg / dl). As for gender, Sex = 1 for men and Sex = 2 for women. CSNP3, CSNP6, CSNP10, CSNP14, CSNP16, CSNP26, and CSNP90 are variables that take 1 or 0 depending on the presence or absence of the gene polymorphism set, and are shown in Fig. 5-A and 5-B. It is defined as follows using the notation. For example, if the subject has ABCA1_3 and IL-10 (C-819T) _3, CSNP3 = 1, otherwise CSNP3 = 0
CSNP3 : SNP- No.l— 3及び SNP- No.89— 3 (即ち、 ABCA1— 3及び IL- 10(C- 819T)— 3) CSNP6 : SNP- No.l— 3及び SNP- No.121— 23 (即ち、 ABCA1— 3及び GLUT(Xbal)— 23) CSNP10 : SNP- No.3— 1及び SNP- No.69— 1 (即ち、 ACE— 1及び CD18(C1323T)_ 1) CSNP14: SNP- No.4— 23及び SNP- No.86— 12 (即ち、 a- estrogen— 23及び IL- 18(C- 607A )—12) CSNP3: SNP-No.l-3 and SNP-No.89-3 (ie ABCA1-3 and IL-10 (C-819T) -3) CSNP6: SNP-No.l-3 and SNP-No.121 — 23 (ie ABCA1—3 and GLUT (Xbal) —23) CSNP10: SNP-No.3-1— and SNP-No.69—1 (ie ACE-1 and CD18 (C1323T) _ 1) CSNP14: SNP -No.4—23 and SNP-No.86—12 (ie a-estrogen—23 and IL-18 (C-607A) —12)
CSNP16 : SNP- No.5— 3及び SNP- No.32— 3 (即ち、 Enos786— 3及び MTHFR(C677T)_ 3) CSNP26 : SNP- No.17— 12及び SNP- No.28— 1 (即ち、 fractalkine— receptor— 12及び angio tensinogen_l)  CSNP16: SNP-No.5-3 and SNP-No.32-3 (ie Enos786-3 and MTHFR (C677T) _3) CSNP26: SNP-No.17-12 and SNP-No.28-1 (ie , Fractalkine—receptor-12 and angio tensinogen_l)
CSNP90 : SNP- No.86— 12及び SNP- No.125— 1 (即ち、 IL- 18(C- 607A)— 12及び RANTES (- 28CG)— 1)  CSNP90: SNP-No.86—12 and SNP-No.125—1 (ie IL-18 (C-607A) —12 and RANTES (-28CG) —1)
また、描画する円の大きさは、各環境因子と遺伝子多型セットを含む係数の積の値 の大きさに応じて決定する。即ち、この積の値が、第 1四分位以下か、第 1四分位より 大きく第 3四分位以下か、第 3四分位より大きいかによつて、円の大きさを決定する。こ こで、第 1四分位と第 3四分位は、判定式 yの決定に使用した糖尿病患者のデータ集 合における、各環境因子と遺伝子多型セットを含む係数の積の分布カゝら算出したも のである。例えば、総コレステロールに関して描画する円の大きさを決定するときに使 用する第 1四分位と第 3四分位は、データ集合全体の総コレステロールと遺伝子多型 セットを含む係数の積力 算出される。  The size of the circle to be drawn is determined according to the size of the product of each environmental factor and the coefficient including the gene polymorphism set. That is, the size of the circle is determined by whether the value of this product is less than the first quartile, greater than the first quartile, less than the third quartile, or greater than the third quartile. . Here, the first quartile and the third quartile are the distribution products of the product of each environmental factor and the coefficient including the gene polymorphism set in the diabetic patient data set used to determine the criterion y. Calculated from the above. For example, the first and third quartiles used to determine the size of the circle drawn for total cholesterol are the product of the coefficients that include the total cholesterol and gene polymorphism sets for the entire data set. Is done.
例えば、動脈硬化性疾患の場合、例えば、交互作用項が存在する総コレステロ一 ルについては以下のようになる。判定式 yのうち総コレステロールと遺伝子多型セット を含む係数の積を計算し、この積の値に関して、 0く積の値≤第 1四分位が成り立て ば第 1の円を、第 1四分位く積の値≤第 3四分位が成り立てば第 2の円を、第 3四分 位く積の値が成り立てば第 3の円を描画すると決定する。ここで、 3つの円は、第 1、 第 2、第 3の円の順に大きくなる。交互作用項が存在する各環境因子について、同様 に計算し、描画する円の大きさを決定する。 For example, in the case of arteriosclerotic disease, for example, the total cholesterol with interaction term is as follows. Calculate the product of the coefficients including total cholesterol and gene polymorphism set in the judgment formula y, and if the product value is 0 and the first quartile holds, If the quantile product value ≤ the third quartile holds, the second circle is drawn. If the third quartile product value holds, the third circle is drawn. Where the three circles are number 1, The second and third circles increase in order. For each environmental factor that has an interaction term, the same calculation is performed to determine the size of the circle to be drawn.
[0199] 腎症、網膜症、心筋梗塞に関しても、同様にして、円の大きさを決定することができ る。各疾患に関して、円の大きさを決定するときの判断基準の一例を図 16に示す。 各判断基準の先頭の数字 1〜3は、描画する円の大きさに対応しており、 1、 2、 3の 順に描画される円が大きくなる。  [0199] Regarding nephropathy, retinopathy, and myocardial infarction, the size of the circle can be similarly determined. Fig. 16 shows an example of the criteria for determining the size of the circle for each disease. The numbers 1 to 3 at the beginning of each criterion correspond to the size of the circle to be drawn. The circles drawn in the order of 1, 2, and 3 become larger.
[0200] 以上によって、(a)の第 1バブルチャート及び(c)の第 2バブルチャートにおける各 円の大きさ、(d)に提示するランキング付けした対処法が決定されるので、ステップ S 43において、決定された条件に従って、図 15に示したような画像データを作成し、 表示部 37にを表示する。  [0200] As described above, the size of each circle in the first bubble chart in (a) and the second bubble chart in (c) and the ranked countermeasures presented in (d) are determined. Then, according to the determined conditions, image data as shown in FIG. 15 is created and displayed on the display unit 37.
[0201] 最後にステップ S44において、終了の指示があつたか否かを判断し、終了の指示 があるまでステップ S37〜S43を繰り返す。これによつて、被験者の各疾患に対する 現在の危険度に加えて、将来の疾患度の予測値を、レーダーチャート及び発症予測 グラフとして、患者に分力りやすく提示することができる。また、検査結果に対応する 対処法をランク付けして提示し、検査結果の変化による各疾患の危険度への影響を バブルチャートで提示することができるので、医師がこれら提示された情報を参考に して、その患者にあつたより望ましい治療方法を決定することができる。  [0201] Finally, in step S44, it is determined whether or not an end instruction is given, and steps S37 to S43 are repeated until an end instruction is given. Thus, in addition to the current risk level for each disease of the subject, the predicted value of the future disease level can be presented as a radar chart and an onset prediction graph to the patient in an easy manner. In addition, the countermeasures corresponding to the test results can be ranked and presented, and the effect of each change in the test results on the risk level of each disease can be presented in a bubble chart. Thus, it is possible to determine a more desirable treatment method for the patient.
[0202] 以上においては、判定装置 31が行う処理として説明し、処理結果が表示部 37に表 示される場合を説明したが、これに限定されない。判定装置 31が処理した結果を表 示部 37に表示する代わりに、図 12、図 14、図 15に示したようなレーダーチャート、発 症予測グラフ、バブルチャートを紙に印刷し、若しくは電子データとして記録媒体に 記録して、病院 1に送付してもよい。  [0202] In the above, the process performed by the determination device 31 has been described, and the case where the process result is displayed on the display unit 37 has been described. However, the present invention is not limited to this. Instead of displaying the results processed by the judgment device 31 on the display unit 37, the radar chart, the symptom prediction graph, and the bubble chart as shown in FIGS. 12, 14, and 15 are printed on paper or electronic data. May be recorded on a recording medium and sent to Hospital 1.
[0203] また、判定装置 31から、処理結果を通信回線 4を介して病院 1のコンピュータ 12に 伝送してもよい(図 7参照)。例えば、患者が再度病院 1を受診したときに、医師がコン ピュータ 12を操作して判定装置 31にアクセスし、患者の IDを指定して、対応する処 理結果、即ち、予め作成されたレーダーチャート、発症予測グラフ、バブルチャートを 要求することができる。コンピュータ 12が、受信した処理結果をグラフィカルな表示装 置に表示することによって、患者に提示することができる。また、病院 1のコンピュータ 12からのアクセスに応じて、判定装置 31がリアルタイムに処理を行い、レーダーチヤ ート、発症予測グラフ、バブルチャートを生成し、その結果を通信回線 4を介してコン ピュータ 12に伝送してもよ 、。 [0203] The processing result may be transmitted from the determination device 31 to the computer 12 of the hospital 1 via the communication line 4 (see FIG. 7). For example, when a patient visits Hospital 1 again, the doctor operates the computer 12 to access the determination device 31 and designates the patient's ID, and the corresponding processing result, i.e., a radar created in advance. Request charts, onset prediction graphs, and bubble charts. The computer 12 can present the received processing result to the patient by displaying it on a graphical display device. Also hospital 1 computer In response to the access from 12, the determination device 31 performs processing in real time, generates a radar chart, an onset prediction graph, and a bubble chart, and transmits the result to the computer 12 via the communication line 4. ,.
[0204] また、以上では危険度の判定式が、患者のデータ集合を用いて、重回帰分析によ つて決定された回帰式である場合を説明したが、これに限定されず、危険度の判定 式が、遺伝子因子 (遺伝子多型セット)と環境因子とを含んだ式であり、少なくとも一 部の環境因子が時間に関係する環境因子 (年齢、罹病期間など)であればよい。  [0204] In the above description, the risk judgment formula is a regression formula determined by multiple regression analysis using a patient data set. However, the risk judgment formula is not limited to this. The judgment formula is a formula including genetic factors (gene polymorphism set) and environmental factors, and at least some of the environmental factors may be environmental factors (age, disease duration, etc.) related to time.
[0205] また、ステップ S34において将来の疾患度の予測値を求めるのは、 5年後に限定さ れない。また、複数年後の予測値を計算して、レーダーチャート、発症予測グラフを 生成してちょい。  [0205] Further, obtaining the predicted value of the future disease degree in step S34 is not limited to five years later. Also, calculate the predicted values after multiple years, and generate a radar chart and an onset prediction graph.
[0206] また、以上では、図 12に示したように 2つのレーダーチャートを並べて提示する場 合を説明したが、これに限定されず、何れか一方のレーダーチャートだけを提示して ちょい。  [0206] In the above description, the case where two radar charts are presented side by side as shown in FIG. 12 has been described. However, the present invention is not limited to this, and only one of the radar charts may be presented.
[0207] また、以上では、図 14に示したように 4つの発症予測グラフを並べて提示する場合 を説明したが、これに限定されず、 1つの発症予測グラフを提示してもよい。さら〖こ、 被験者の現在の危険度、 5年後の疾患度の予測値、及び同年代の各疾患の平均値 の全てを描画せずに、一部のみを提示してもよい。例えば、被験者の現在の危険度 および同年代の各疾患の平均値のみを描画してもよぐ被験者の現在の危険度およ び 5年後の疾患度の予測値のみを描画してもよ 、。  [0207] In the above, the case where four onset prediction graphs are presented side by side as shown in FIG. 14 has been described. However, the present invention is not limited to this, and one onset prediction graph may be presented. Furthermore, instead of drawing all of the current risk level of the subject, the predicted value of the disease level after 5 years, and the average value of each disease of the same age, only a part may be presented. For example, you may draw only the subject's current risk and the average value of each disease of the same age, or the subject's current risk and only the predicted value of the disease after 5 years. .
[0208] また、図 15に示した環境因子は一例であり、その他の環境因子を含んでバブルチ ヤートを生成してもよい。  [0208] The environmental factors shown in Fig. 15 are examples, and bubble charts may be generated including other environmental factors.
[0209] また、図 15では、円の大きさが異なるバブルチャートを表示する場合を説明したが 、これに限定されず、各検査値が変化した場合の危険度判定式 yへの影響の大きさ を視覚的に表わすバブルチャートであればよい。例えば、図 16の分類された 0〜3の 値に応じて、異なる色の円を描画してもよぐさらには、 0〜3に応じて大きくなり且つ 異なる色の円を描画してもよい。また、円に限らず、三角、四角などの多角形やそれ 以外の図形を描画してもよ ヽ。  [0209] In Fig. 15, the case where a bubble chart with a different circle size is displayed has been described. However, the present invention is not limited to this, and the influence on the risk determination formula y when each inspection value changes is large. Any bubble chart may be used to visually represent this. For example, a different color circle may be drawn according to the classified values of 0 to 3 in FIG. 16, or a circle of a different color may be drawn depending on 0 to 3. . In addition to circles, polygons such as triangles and squares and other shapes may be drawn.
[0210] また、上記では、複数の疾患を横方向に配列させたバブルチャートに関して説明し た力 これに限定されず、 1つの疾患に関するバブルチャートであってもよい。 [0210] In addition, the above describes a bubble chart in which a plurality of diseases are arranged in a horizontal direction. It is not limited to this, and it may be a bubble chart related to one disease.
[0211] また、上記では、バブルチャートとして描画する図形の大きさで、疾患の危険度に 対する環境因子の影響の程度を表現する場合を説明したが、これに限定されない。 即ち、バブルチャートによる提示の根源には、従来では所定の環境因子の検査結果 に基づき治療法を選択していたのに対して、本発明では、環境因子の検査結果に加 えて、遺伝子因子を考慮した疾患危険度判定式の中の、その環境因子と遺伝子因 子とが関連する項 (例えば、環境因子と遺伝子多型セットとの交互作用項)の値が所 定の値を超えていた場合に、治療などの対処の必要性を提示することにある。これに よって、環境因子の検査結果が治療を必要としない範囲内にあり、従来では治療が 行われない場合であっても、本発明によれば、治療の必要性を提示することができる 。従って、患者に対して、適切な治療を受けることができる、オーダーメイドの環境を 提供することができる。 [0211] In the above description, a case has been described in which the size of a graphic drawn as a bubble chart represents the degree of the influence of environmental factors on the risk of a disease. However, the present invention is not limited to this. In other words, in the past, a therapeutic method was selected based on the test result of a predetermined environmental factor as the basis of the presentation by the bubble chart, whereas in the present invention, a genetic factor is added to the test result of the environmental factor. The value of the term related to the environmental factor and the genetic factor in the considered disease risk judgment formula (for example, the interaction term between the environmental factor and the gene polymorphism set) exceeded the predetermined value. In some cases, it is necessary to present treatment needs such as treatment. As a result, the test result of the environmental factor is within a range that does not require treatment, and the necessity of treatment can be presented according to the present invention even when treatment is not performed conventionally. Therefore, it is possible to provide a tailor-made environment where patients can receive appropriate treatment.
[0212] (7)疾患への対処の必要性の判定方法 [0212] (7) Judgment method of the necessity of coping with the disease
上記の「 (3)疾患危険度の判定装置、判定プログラム、及び判定方法」にお!、て、 疾患危険度の判定式 yを重回帰分析によって決定する場合について説明した。その 場合、判定式は y=∑a G +∑b E +∑d E G +c と表現できる。さらに、上記の  In the above “(3) Disease risk determination device, determination program, and determination method”, the case where the disease risk determination formula y is determined by multiple regression analysis has been described. In this case, the judgment formula can be expressed as y = ∑a G + ∑b E + ∑d E G + c. In addition, the above
1 1 j j mn m n  1 1 j j mn m n
「(6)発症予測提示方法」では、環境因子と遺伝子多型セットとが関連する項、特に、 時間的に変化し得る環境因子と遺伝子多型セットの有無を表す変数との交互作用項 に着目することによって、早期に疾患の発症を予測し、治療などの対処の必要性を 提示できることを説明した。以下では、この考えをさらに拡張した、疾患への対処の必 要性の判定方法について説明する。  In “(6) Predictive presentation method”, there is a term related to environmental factors and gene polymorphism sets, especially an interaction term between environmental factors that can change over time and variables indicating the presence or absence of gene polymorphism sets. He explained that by focusing his attention, he can predict the onset of disease at an early stage and present the need for treatment. In the following, we will explain a method for determining the necessity of coping with the disease, further expanding this idea.
[0213] 疾患危険度の判定式は、重回帰分析以外の方法で求めることも可能である。従つ て、ここでは、判定式がより一般的な関数で表現される場合を想定する。ただし、判 定式は、少なくとも環境因子の関数と遺伝子多型セットとの積を含むこととする。  [0213] The determination formula of the disease risk can be obtained by a method other than the multiple regression analysis. Therefore, it is assumed here that the judgment formula is expressed by a more general function. However, the judgment formula shall include at least the product of the environmental factor function and the gene polymorphism set.
[0214] まず、疾患危険度の判定式 Rが式 1のように、環境因子 Eを変数 Xとする任意の関 数 f(x)と遺伝子多型セットの有無を表す変数 G (以下、単に遺伝子多型セット Gとも 記す)との積を含むとする。  [0214] First, as shown in Equation 1, the disease risk criterion R is an arbitrary function f (x) whose environmental factor E is a variable X, and a variable G that represents the presence or absence of a gene polymorphism set (hereinafter, simply Gene polymorphism set G)).
[0215] R=∑{f (E) X G } + α · · · (式 1) ここで、∑は各 i、 jに関する加算、即ち、それぞれの環境因子及び遺伝子多型セッ トに関する加算を表す。 αは遺伝多型セット Gを全く含まず、環境因子 Ε及び定数の み力 なる関数である。 [0215] R = ∑ {f (E) XG} + α · · · (Equation 1) Here, ∑ represents the addition for each i and j, that is, the addition for each environmental factor and gene polymorphism set. α does not include the genetic polymorphism set G at all, and is a function consisting of only environmental factors Ε and constants.
[0216] ここで、遺伝子多型セットは、例えば上記の「(1)疾患危険度判定用遺伝子多型の 決定方法」によって、疾患に応じて決定された遺伝子多型セット(例えば、図 1〜図 4 、図 17〜20)である。  Here, the gene polymorphism set is, for example, a gene polymorphism set determined according to the disease by, for example, “(1) Method for determining gene polymorphism for disease risk determination” (for example, FIG. 1 to FIG. Fig. 4 and Figs. 17-20).
[0217] 上記で示した判定式  [0217] Judgment formula shown above
y=SexX (al X CSNP3 + a2 X CSNP14 + a3 X CSNP26) + Age X (bl X CSNP90 + b2 y = SexX (al X CSNP3 + a2 X CSNP14 + a3 X CSNP26) + Age X (bl X CSNP90 + b2
) )
+ HbAlc X c+DurX (dl X CSNP6 + d2 X CSNP10 + d3) + Tch X (el X CSNP16 + e + HbAlc X c + DurX (dl X CSNP6 + d2 X CSNP10 + d3) + Tch X (el X CSNP16 + e
2) 2)
+ HDLC Xf+g  + HDLC Xf + g
であれば、関数 f(x)は、遺伝多型セット CSNP3に関しては f(x) = al X x (ここで xは Sex )であり、遺伝多型セット CSNP90に関しては f(x) = bl X x (ここで Xは Age)であり、遺伝 多型セット CSNP6に関しては f(x) = dl X x (ここで Xは Dur)である。  Then the function f (x) is f (x) = al X x (where x is Sex) for the genetic polymorphism set CSNP3 and f (x) = bl X for the genetic polymorphism set CSNP90 x (where X is Age), and f (x) = dl X x (where X is Dur) for the genetic polymorphism set CSNP6.
[0218] 各関数 f(x)は、上記の一次式以外に、高次の多項式、三角関数、指数関数など種 々の関数であり得る。 [0218] Each function f (x) may be various functions such as a higher-order polynomial, a trigonometric function, and an exponential function in addition to the linear expression described above.
[0219] ある疾患の判定式が 1つであっても、被験者が持っている遺伝子多型セット Gは一 般に異なるので、それぞれの被験者に対する具体的な判定式も異なることになる。ま た、環境因子には、患者毎に変化しない因子 (例えば性別)と、変化し得る因子 (例 えば血中 HDL値、血中 HbAlc値などの測定値)とがある。  [0219] Even if there is only one judgment formula for a disease, since the genetic polymorphism set G that the subject has is generally different, the specific judgment formula for each subject is also different. Environmental factors include factors that do not change from patient to patient (for example, gender) and factors that can change (eg, measured values of blood HDL, blood HbAlc, etc.).
[0220] 図 21の(a)、 (b)は、ある疾患に関する異なる 2人の被験者 (A、 Bとする)の判定式 Rを示すグラフである。縦軸は疾患危険度 Rであり、横軸 Xは、環境因子 Eのうち変化 し得る環境因子を表している。実際には判定式 Rには複数の変化し得る環境因子が 含まれているので、判定式 Rは多次元曲面であるが、便宜上図 21では複数の環境 因子を代表的に一つの変数 Xで示している。 X  [0220] (a) and (b) of FIG. 21 are graphs showing the judgment formula R of two different subjects (referred to as A and B) related to a certain disease. The vertical axis represents the disease risk level R, and the horizontal axis X represents the environmental factors that can change among the environmental factors E. Actually, the judgment formula R contains a plurality of variable environmental factors, so the judgment formula R is a multidimensional curved surface. However, for convenience, in FIG. Show. X
aは環境因子 Xの現在の値であり、 X bは χ力 所定の値 Δだけ変化した環境因子 xの値であり、それぞれに対応する判定式 a  a is the current value of the environmental factor X, X b is the value of the environmental factor x changed by the χ force predetermined value Δ, and the corresponding judgment formula a
Rの値を R、 Rで表している。したがって、 Δは一つの値 (スカラー)ではなぐ個々の 環境因子 E;に関する変化値 Δ;の集合を表す、ベクトル量である。 rは疾患の程度に 応じて対処の要否を判断するための基準値であり、ここでは、 R>rとなると何らかの 治療が必要と判断されるとする。 The value of R is represented by R and R. Therefore, Δ is not a single value (scalar) Change value Δ relates; environmental factors E represents a set of a vector quantity. r is a reference value for determining the necessity of coping according to the degree of disease. Here, it is assumed that some treatment is necessary when R> r.
[0221] A、 B2人の被験者に関する判定式のグラフ力 図 21の(a)、(b)のように異なるの は、 2人が持つ遺伝子多型セット Gが異なるからである。図 21の(a)、(b)を比較する と、被験者 A (図 21の(a) )では、現在の危険度 Rは治療が必要と判断される基準値 r よりも十分〖こ小さく (Rく r)、環境因子 Xの値が Xまで変化したとしても、危険度 Rは基 a b [0221] Graph power of judgment formulas for two subjects, A and B. As shown in (a) and (b) of Fig. 21, the difference in gene polymorphism set G between the two is different. Comparing (a) and (b) in Fig. 21, in subject A (Fig. 21 (a)), the current risk R is sufficiently smaller than the reference value r that is judged to require treatment ( R r), even if the value of the environmental factor X changes to X, the risk R is the basis ab
準値 rよりも十分に小さい (Rく r)。一方、被験者 B (図 21の (b) )では、現在の危険 b  It is sufficiently smaller than the quasi-value r (R r). On the other hand, for subject B (Fig. 21 (b)), the current risk b
度 Rは基準値 rよりも十分に小さい (R <r)力 環境因子 xの値が xまで変化すれば、  The degree R is sufficiently smaller than the reference value r (R <r) force If the value of the environmental factor x changes to x,
C b  C b
危険度 Rが基準値 rを越え (R >r)て、治療が必要と判断される状態になると予想さ d  Risk R is expected to exceed the reference value r (R> r) and be considered as needing treatment d
れる。このように、現在の環境因子の値が同じであっても、被験者によって現在及び 将来の危険度が異なる。従って、この判定式を用いて、個人に応じた疾患への対処 の必要性を判断することができる。  It is. In this way, even if the current environmental factor value is the same, the present and future risks vary depending on the subject. Therefore, it is possible to determine the necessity of dealing with the disease according to the individual using this determination formula.
[0222] 例えば、図 21の(a)、 (b)力 Δとして容易に変化し得る範囲の値を用いて評価し た結果であれば、被験者 Aに関しては、現在及び将来において正常であり、現時点 では対処は不要と判断できる。一方、被験者 Bに関しては、現在正常ではある力 容 易に治療が必要な状態になり得るので、より慎重に観察する必要があり、場合による と早期に治療する必要性があると判断できる。  [0222] For example, if the results are evaluated using values in a range that can be easily changed as (a) and (b) force Δ in FIG. 21, subject A is normal in the present and future, At present, it can be judged that no action is required. On the other hand, it can be judged that subject B needs to be observed more carefully because it can be easily treated as it is normally normal, and it needs to be treated early.
[0223] 図 22は、式 1の判定式を用いた疾患への対処の必要性の判定方法に関するフロ 一チャートである。以下、図 22に従って具体的に説明する。ここでは、上記した疾患 危険度の判定方法、発症予測提示方法と同様に、判定装置 31 (図 7参照)が行う処 理として記載する。即ち、判定装置 31の CPU力 メモリ 33をワーク領域として使用し て各処理を実行し、処理の途中結果、最終結果を、必要に応じて記録部 34の所定 領域に記録する。また、式 1で表される判定式及び基準値 rが疾患毎に記録部 34に 記録されており、被験者の情報 (環境因子の検査値、遺伝子多型セットの有無)は被 験者 IDに対応させて記録部 34に記録されているとする。  FIG. 22 is a flowchart relating to a method for determining the necessity of coping with a disease using the determination formula of Formula 1. Hereinafter, a specific description will be given with reference to FIG. Here, it is described as a process performed by the determination device 31 (see FIG. 7), similarly to the above-described disease risk determination method and onset prediction presentation method. That is, each process is executed using the CPU power memory 33 of the determination device 31 as a work area, and the intermediate result and final result of the process are recorded in a predetermined area of the recording unit 34 as necessary. In addition, the judgment formula and reference value r expressed by Equation 1 are recorded in the recording unit 34 for each disease, and subject information (test values of environmental factors, presence / absence of genetic polymorphism set) corresponds to the subject ID. And recorded in the recording unit 34.
[0224] ステップ S51にお 、て、被験者を指定するために操作部 36が操作されて入力され る被験者 IDを、メモリ 33に一時記憶する。 [0225] ステップ S52において、ステップ S51でメモリ 33に一時記憶された被験者 IDに対応 する情報を記録部 34からメモリ 33に読み出す。このとき読み出される情報は、被験 者の遺伝子情報 (遺伝子多型セットの有無)、環境因子 (性別、年齢、 BMI、罹病期 間、収縮期血圧(SBP)、血中 HDL値、血中 HbAlc値、血中総コレステロール値、血 中中性脂肪値 (TG)、喫煙暦など)の検査値である。 [0224] In step S51, the subject ID inputted by operating the operation unit 36 to designate the subject is temporarily stored in the memory 33. In step S52, information corresponding to the subject ID temporarily stored in the memory 33 in step S51 is read from the recording unit 34 to the memory 33. Information read at this time includes the subject's genetic information (presence or absence of gene polymorphism set), environmental factors (sex, age, BMI, disease duration, systolic blood pressure (SBP), blood HDL value, blood HbAlc value , Blood total cholesterol level, blood triglyceride level (TG), smoking calendar, etc.).
[0226] ステップ S53において、疾患の指定を受け付けて、ステップ S54において、ステップ S53で指定された疾患に対応する疾患危険度の判定式 R及び基準値!:を、記録部 3 4からメモリ 33に読み出す。  [0226] In step S53, designation of the disease is accepted, and in step S54, the disease risk judgment formula R and the reference value!: Corresponding to the disease designated in step S53 are stored in the memory 33 from the recording unit 34. read out.
[0227] ステップ S55において、ステップ S54で読み出した判定式尺に、ステップ S52で読 み出した被験者の情報のうち遺伝子多型セットの有無を適用し、ステップ S51で指定 された被験者に対する判定式 Rを決定し、この判定式 Rの変化の程度と基準値 rとの 関係から、対処の必要性を判断する。被験者が特定の遺伝子多型セット Gを持って  [0227] In step S55, the determination formula R for the subject specified in step S51 is applied to the determination formula scale read in step S54 by applying the presence or absence of the gene polymorphism set in the subject information read in step S52. From the relationship between the degree of change in this criterion R and the reference value r, the necessity of countermeasures is determined. Subject has a specific gene polymorphism set G
k  k
いれば、式 1は R=∑f (Ε )+ α となる(ここで、∑は kについての加算を表す)。  If so, Equation 1 becomes R = ∑f (Ε) + α (where 表 す represents the addition for k).
k k  k k
[0228] 対処の必要性の判断には種々の方法を用いることができる。例えば、まず、現在の 環境因子の値を判定式 Rに代入して、現在の危険度 R (図 21の R、 R )を求め、これ  [0228] Various methods can be used to determine the necessity of countermeasures. For example, the current risk factor R (R, R in Fig. 21) is first calculated by substituting the current environmental factor value into the judgment formula R.
a c  a c
を基準値 rと比較する。次に、環境因子を所定値だけ変化させて危険度 R (図 21の R  Is compared with the reference value r. Next, change the environmental factor by a predetermined value to change the risk R (R in Figure 21).
b b
、 R )を求め、これを基準値 rと比較する。最終的に、これら比較の結果に基づいて、 d , R) and compare this with the reference value r. Finally, based on the results of these comparisons, d
対処の要否を決定することができる。また、別の方法では、現状の環境因子の値(図 21の X )と、危険度 Rが基準値 rに等しくなるときの環境因子の値(図 21の X )を求め、 a c  Necessity of handling can be determined. In another method, the current environmental factor value (X in Fig. 21) and the environmental factor value (X in Fig. 21) when the risk R is equal to the reference value r are obtained, and a c
その差(Δ ' = χ —X )の大きさに応じて、対処の要否を決定してもよい。具体的には、  Depending on the magnitude of the difference (Δ ′ = χ −X), the necessity of handling may be determined. In particular,
c a  c a
危険度 Rが基準値 rに等しくなるときの各環境因子の値は ∑f (E )+ a =r で指定  The value of each environmental factor when the risk R is equal to the reference value r is specified by ∑f (E) + a = r
k k  k k
され、これは局面を表すので、この局面との最短距離を求める。また、現時点(環境 因子が Xの時点)での判定式 Rの傾き (全微分を求め)、これと基準値 rとを用いて対 a  Since this represents a situation, the shortest distance from this situation is obtained. In addition, the slope of the judgment formula R at the present time (when the environmental factor is X) (calculate the total derivative), and the reference value r
処の要否を決定してもよ 、。  You can decide whether or not you need it.
[0229] ステップ S56において、終了の指示の有無を判断し、終了しない場合、別の被験者 に関して判定を行うためにステップ S53に戻り、ステップ S53〜S55を繰り返す。  [0229] In step S56, it is determined whether or not there is an end instruction. If not, the process returns to step S53 in order to make a determination on another subject, and steps S53 to S55 are repeated.
[0230] 以上のように、環境因子と遺伝子多型セットとを含む疾患危険度の判定式 Rにお!/ヽ て、遺伝子多型セットの有無によって個人毎の判定式を決定し、個人毎の判定式の 変化の程度と基準値 rとを考慮して、どのように対処すべきかを決定することができる 。本実施の形態に係る疾患への対処の必要性の判定方法によれば、遺伝子多型セ ットの有無を考慮しな 、従来の判断方法ではできなかった、個人に応じた対処の必 要性を判断することができ、オーダーメイドの医療環境を提供することができる。特に 、環境因子の関数と遺伝子多型セットの有無を表す変数との積を含む判定式 Rを用 いること〖こよって、精度良く疾患への対処の必要性を判断することができる。 [0230] As described above, the judgment formula R for disease risk including environmental factors and gene polymorphism sets! Of judgment formula Taking into account the degree of change and the reference value r, it is possible to decide how to deal with it. According to the method for determining the necessity of coping with a disease according to the present embodiment, the necessity of coping with individual needs, which was not possible with the conventional method of judgment, without considering the presence or absence of a gene polymorphism set, is required. Sex can be judged, and a custom-made medical environment can be provided. In particular, the necessity of coping with the disease can be determined with high accuracy by using the judgment formula R including the product of the function of the environmental factor and the variable indicating the presence or absence of the gene polymorphism set.

Claims

請求の範囲 The scope of the claims
[1] 予め指定された複数の遺伝子多型の中から、遺伝子型を指定して所定数の遺伝 子多型を抜き出し、遺伝子多型セットとする第 1ステップと、  [1] A first step in which a predetermined number of gene polymorphisms are selected from a plurality of gene polymorphisms designated in advance and a predetermined number of gene polymorphisms are extracted to form a gene polymorphism set;
疾患度、及び遺伝子型を有する遺伝子多型を対応させて要素とした集合を、前記 遺伝子多型セットの有無に応じて 2つの部分集合に分割する第 2ステップと、  A second step of dividing a set of elements corresponding to a disease polymorphism and a genetic polymorphism having a genotype into two subsets according to the presence or absence of the genetic polymorphism set;
2つの前記部分集合を対象として、前記疾患度を用いて t検定を行う第 3ステップと 前記 t検定の結果、 2つの前記部分集合に有意差があると判断された場合に、前記 遺伝子多型セットを疾患危険度判定用遺伝子多型として採用する第 4ステップとを含 む、疾患危険度判定用遺伝子多型の決定方法。  The third step of performing a t-test using the disease degree for the two subsets and the t-test result, and if the two polymorphisms are determined to have a significant difference, the gene polymorphism A method for determining a genetic polymorphism for disease risk determination, comprising a fourth step of adopting the set as a genetic polymorphism for disease risk determination.
[2] 前記第 1ステップにおいて重複せずに前記遺伝子多型セットを決定する毎に、前記 第 2〜第 4ステップを繰り返し、 [2] Repeat the second to fourth steps each time the genetic polymorphism set is determined without duplication in the first step,
前記第 1ステップが、前記遺伝子多型セットよりも少な 、数の遺伝子多型から構成 される遺伝子多型セットが既に、前記第 4ステップにおいて採用されている力否かを 判断する第 5ステップを含み、  The first step includes a fifth step of determining whether or not a gene polymorphism set composed of a number of gene polymorphisms, which is smaller than the gene polymorphism set, is already adopted in the fourth step. Including
前記判断の結果、採用されていると判断した場合、前記第 3及び第 4ステップを実 行しな!、、請求項 1に記載の疾患危険度判定用遺伝子多型の決定方法。  The method for determining a genetic polymorphism for disease risk determination according to claim 1, wherein if it is determined as a result of the determination, the third and fourth steps are not executed!
[3] 前記疾患が動脈硬化性疾患であり、且つ [3] The disease is an arteriosclerotic disease, and
前記疾患度が頸動脈内膜中膜複合体肥厚度である、請求項 1又は 2に記載の疾 患危険度判定用遺伝子多型の決定方法。  The method for determining a genetic polymorphism for determining a disease risk according to claim 1 or 2, wherein the disease degree is a carotid intima-media thickness.
[4] 前記疾患が心筋梗塞であり、且つ [4] the disease is myocardial infarction, and
前記疾患度が、正常な場合 0であり、発症の場合 1である、請求項 1又は 2に記載の 疾患危険度判定用遺伝子多型の決定方法。  The method for determining a genetic polymorphism for disease risk determination according to claim 1 or 2, wherein the disease degree is 0 when normal and 1 when onset.
[5] 前記疾患が腎症であり、且つ [5] the disease is nephropathy, and
前記疾患度が、尿中のアルブミン蛋白が 30 g/mg'Cr)未満の場合 1であり、尿 中のアルブミン蛋白が 30 g/mg-Cr)以上 300 ( μ g/mg-Cr)未満の場合 2であり、 尿中のアルブミン蛋白が 300 g/mg'Cr)以上の場合 3である、請求項 1又は 2に記 載の疾患危険度判定用遺伝子多型の決定方法。 The disease level is 1 when the urinary albumin protein is less than 30 g / mg'Cr), and the urine albumin protein is 30 g / mg-Cr) or more and less than 300 (μg / mg-Cr). The method for determining a genetic polymorphism for disease risk determination according to claim 1 or 2, wherein Case 2 is 3, and the amount of albumin protein in urine is 300 g / mg'Cr) or more.
[6] 前記疾患が網膜症であり、且つ [6] the disease is retinopathy, and
前記疾患度が、正常な場合 1であり、単純網膜症の場合 2であり、増殖前網膜症で ある場合 3であり、増殖網膜症である場合 4である、請求項 1又は 2に記載の疾患危 険度判定用遺伝子多型の決定方法。  The disease degree is 1 for normal, 2 for simple retinopathy, 3 for preproliferative retinopathy, and 4 for proliferative retinopathy. A method for determining genetic polymorphisms for disease risk assessment.
[7] 疾患と関連性を有し、遺伝子型を有する 1以上の遺伝子多型から構成される第 1の 遺伝子多型セットからなる参照テーブルが、被験試料の遺伝子型を有する遺伝子多 型の中から、所定数の遺伝子多型を読み出して構成した第 2の遺伝子多型セットを 含むか否力を照合する第 1ステップと、 [7] A reference table consisting of a first set of genetic polymorphisms composed of one or more genetic polymorphisms associated with a disease and having a genotype is included in A first step of checking whether or not a second set of genetic polymorphisms configured by reading out a predetermined number of genetic polymorphisms is included,
前記照合の結果、一致する前記第 1及び第 2の遺伝子多型セットがある場合に、予 め重回帰分析によって決定された回帰式を用いて、前記被験試料に関する危険度 を計算する第 2ステップとを含み、  As a result of the matching, when there is a matching set of the first and second gene polymorphisms, a second step of calculating a risk level for the test sample using a regression equation determined by preliminary multiple regression analysis Including
前記回帰式が、疾患度を目的変数とし、少なくとも前記参照テーブルに含まれる第 The regression equation has a disease degree as an objective variable and is included in at least the reference table.
1の遺伝子多型セットを説明変数として、患者データの集合を重回帰分析して得られ た式である、疾患危険度判定方法。 A method for determining a disease risk, which is an expression obtained by performing multiple regression analysis on a set of patient data using the gene polymorphism set of 1 as an explanatory variable.
[8] 前記説明変数が、環境因子、及び前記環境因子と前記参照テーブルに含まれる 第 1の遺伝子多型セットとの交互作用をさらに含む、請求項 7に記載の疾患危険度 判定方法。 8. The disease risk determination method according to claim 7, wherein the explanatory variable further includes an environmental factor and an interaction between the environmental factor and the first genetic polymorphism set included in the reference table.
[9] 判定対象の疾患が動脈硬化性疾患であり、  [9] The disease to be judged is an arteriosclerotic disease,
前記第 1の遺伝子多型セットが、図 1— A及び 1— B、又は図 17に記載するセットで あり、  The first gene polymorphism set is a set described in FIG. 1-A and 1-B, or FIG.
前記説明変数が、環境因子として、年齢、罹病期間、性別、血中 HDL値、血中 HbA lc値、及び血中総コレステロール値力もなる群の中力 選択された少なくとも 1つを含 む、請求項 8に記載の疾患危険度判定方法。  The explanatory variable includes at least one selected as an environmental factor selected from the group consisting of age, disease duration, sex, blood HDL level, blood HbAlc value, and blood total cholesterol level. Item 9. The disease risk determination method according to Item 8.
[10] 判定対象の疾患が心筋梗塞であり、 [10] The disease to be judged is myocardial infarction,
前記第 1の遺伝子多型セットが、図 2— A及び 2— B、又は図 18に記載するセットで あり、  The first gene polymorphism set is the set described in FIG. 2-A and 2-B, or FIG.
前記重回帰分析が多重口ジスティック回帰分析である、請求項 7に記載の疾患危 険度判定方法。 8. The disease risk determination method according to claim 7, wherein the multiple regression analysis is a multiple mouth istic regression analysis.
[11] 判定対象の疾患が網膜症であり、 [11] The disease to be judged is retinopathy,
前記第 1の遺伝子多型セットが、図 4— A、 4— B及び 4— C、又は図 20に記載する セットであり、  The first gene polymorphism set is a set described in FIG. 4-A, 4-B and 4-C, or FIG.
前記説明変数が、環境因子として、罹病期間及び収縮期血圧の少なくとも一方を 含む、請求項 8に記載の疾患危険度判定方法。  9. The disease risk determination method according to claim 8, wherein the explanatory variable includes at least one of disease duration and systolic blood pressure as an environmental factor.
[12] 判定対象の疾患が腎症であり、 [12] The target disease is nephropathy,
前記第 1の遺伝子多型セットが、図 3— A及び 3— B、又は図 19に記載するセットで あり、  The first genetic polymorphism set is a set described in FIG. 3A and 3B or FIG.
前記説明変数が、環境因子として、年齢、罹病期間、性別、血中 HDL値、血中 HbA lc値、血中総コレステロール値、血中中性脂肪、及び喫煙暦力 なる群の中力 選 択された少なくとも 1つを含む、請求項 8に記載の疾患危険度判定方法。  The above explanatory variables are environmental factors such as age, disease duration, gender, blood HDL level, blood HbA lc value, blood total cholesterol level, blood triglyceride, and smoking calendar power. 9. The disease risk determination method according to claim 8, comprising at least one of the above.
[13] 前記説明変数が、時間に関連する環境因子をさらに含み、 [13] The explanatory variable further includes an environmental factor related to time,
前記被験試料が採取された第 1の時に所定時間を加算して得られた第 2の時に対 応する、時間に関連する前記環境因子の値を用いて、前記回帰式から前記被験試 料に関する危険度を計算し、将来の予測値とする第 3ステップをさらに含む請求項 7 に記載の疾患危険度判定方法。  Using the value of the environmental factor related to the time corresponding to the second time obtained by adding a predetermined time at the first time when the test sample was collected, the regression equation relates to the test sample. The disease risk determination method according to claim 7, further comprising a third step of calculating a risk level and setting it as a predicted value in the future.
[14] 第 2ステップにお 、て、前記回帰式から前記被験試料に関する危険度を計算する σ、 [14] In the second step, σ, which calculates the risk related to the test sample from the regression equation,
前記被験試料が所定の遺伝子多型を有する力否かが不明な場合、若しくは所定の 環境因子の値が不明な場合、前記回帰式中の、この不明な遺伝子多型を含む前記 第 1の遺伝子多型セットの有無を表す値、若しくは環境因子の値を、前記集合の要 素である前記患者データを用いて計算した平均値で置き換えて、前記回帰式から前 記被験試料に関する危険度を計算する請求項 7に記載の疾患危険度判定方法。  When it is unknown whether the test sample has a predetermined genetic polymorphism or when the value of a predetermined environmental factor is unknown, the first gene containing the unknown genetic polymorphism in the regression equation The risk value for the test sample is calculated from the regression equation by replacing the value indicating the presence or absence of the polymorphism set or the value of the environmental factor with the average value calculated using the patient data that is an element of the set. The disease risk determination method according to claim 7.
[15] 疾患と関連性を有し、遺伝子型を有する 1以上の遺伝子多型から構成される第 1の 遺伝子多型セットからなる参照テーブルを記録した記録部と、 [15] a recording unit that records a reference table composed of a first gene polymorphism set composed of one or more gene polymorphisms that are related to a disease and have a genotype;
被験試料の遺伝子型を有する遺伝子多型を取得するインタフェース部と、 取得された前記被験試料の遺伝子多型の中の所定数の遺伝子多型力 構成され る第 2の遺伝子多型セットと、前記参照テーブルにおける前記第 1の遺伝子多型セッ トとを照合する処理部とを備え、 An interface unit for obtaining a genetic polymorphism having a genotype of a test sample; a second genetic polymorphism set comprising a predetermined number of genetic polymorphisms in the obtained genetic polymorphism of the test sample; and The first genetic polymorphism set in the lookup table And a processing unit for matching
前記処理部が、前記照合の結果一致する前記第 1の遺伝子多型セットがある場合 に、予め重回帰分析によって決定された回帰式を用いて、前記被験試料に関する危 険度を計算し、  When there is the first genetic polymorphism set that matches as a result of the collation, the processing unit calculates a risk level for the test sample using a regression equation determined in advance by multiple regression analysis;
前記回帰式が、疾患度を目的変数とし、少なくとも前記参照テーブルに含まれる第 The regression equation has a disease degree as an objective variable and is included in at least the reference table.
1の遺伝子多型セットを説明変数として、患者データの集合を重回帰分析して得られ た式である、疾患危険度判定装置。 A disease risk determination apparatus, which is an expression obtained by multiple regression analysis of a set of patient data, with the gene polymorphism set of 1 as an explanatory variable.
[16] 前記説明変数が、環境因子、及び前記環境因子と前記参照テーブルに含まれる 第 1の遺伝子多型セットとの交互作用をさらに含む、請求項 15に記載の疾患危険度 判定装置。  16. The disease risk determination apparatus according to claim 15, wherein the explanatory variable further includes an environmental factor and an interaction between the environmental factor and a first genetic polymorphism set included in the reference table.
[17] コンピュータに、 [17] On the computer,
被験試料の遺伝子型を有する遺伝子多型の入力を受け付ける機能、  A function of accepting an input of a genetic polymorphism having a genotype of a test sample,
遺伝子型を有する 1以上の遺伝子多型カゝら構成される第 1の遺伝子多型セットから なる参照テーブルを記録部に記録する機能、  A function of recording a reference table consisting of a first gene polymorphism set composed of one or more gene polymorphism models having a genotype in a recording unit;
前記被験試料の遺伝子多型の中の所定数の遺伝子多型から構成される第 2の遺 伝子多型セットと、前記参照テーブルにおける前記第 1の遺伝子多型セットとを照合 する機能、及び  A function of collating a second gene polymorphism set composed of a predetermined number of gene polymorphisms in the gene polymorphism of the test sample with the first gene polymorphism set in the reference table; and
前記照合の結果一致する前記第 1の遺伝子多型セットがある場合に、予め重回帰 分析によって決定された回帰式を用いて、前記被験試料に関する危険度を計算する 機能とを実現させるためのプログラムであり、  A program for realizing a function of calculating a risk level for the test sample using a regression equation determined in advance by multiple regression analysis when there is the first genetic polymorphism set that matches as a result of the matching And
前記回帰式が、疾患度を目的変数とし、少なくとも前記参照テーブルに含まれる第 1の遺伝子多型セットを説明変数として、患者データの集合を重回帰分析して得られ た式である、疾患危険度判定プログラム。  The disease risk is an expression obtained by multiple regression analysis of a set of patient data using the disease degree as an objective variable and at least the first gene polymorphism set included in the reference table as an explanatory variable. Degree judgment program.
[18] 前記説明変数が、環境因子、及び前記環境因子と前記参照テーブルに含まれる 第 1の遺伝子多型セットとの交互作用をさらに含む、請求項 17に記載の疾患危険度 判定プログラム。 18. The disease risk determination program according to claim 17, wherein the explanatory variable further includes an environmental factor and an interaction between the environmental factor and a first genetic polymorphism set included in the reference table.
[19] コンピュータに、 [19] On the computer,
被験試料の遺伝子型を有する遺伝子多型の入力を受け付ける機能、 遺伝子型を有する 1以上の遺伝子多型カゝら構成される第 1の遺伝子多型セットから なる参照テーブルを記録部に記録する機能、 A function of accepting an input of a genetic polymorphism having a genotype of a test sample, A function for recording a reference table comprising a first gene polymorphism set composed of one or more gene polymorphism models having a genotype in a recording unit;
前記被験試料の遺伝子多型の中の所定数の遺伝子多型から構成される第 2の遺 伝子多型セットと、前記参照テーブルにおける前記第 1の遺伝子多型セットとを照合 する機能、及び  A function of collating a second gene polymorphism set composed of a predetermined number of gene polymorphisms in the gene polymorphism of the test sample with the first gene polymorphism set in the reference table; and
前記照合の結果一致する前記第 1の遺伝子多型セットがある場合に、予め重回帰 分析によって決定された回帰式を用いて、前記被験試料に関する危険度を計算する 機能とを実現させるためのプログラムであり、  A program for realizing a function of calculating a risk level for the test sample using a regression equation determined in advance by multiple regression analysis when there is the first genetic polymorphism set that matches as a result of the matching And
前記回帰式が、疾患度を目的変数とし、少なくとも前記参照テーブルに含まれる第 The regression equation has a disease degree as an objective variable and is included in at least the reference table.
1の遺伝子多型セットを説明変数として、患者データの集合を重回帰分析して得られ た式である、患危険度判定プログラム Patient risk assessment program, which is an expression obtained by multiple regression analysis of a set of patient data using the gene polymorphism set of 1 as an explanatory variable
を記録したコンピュータ読取可能な記録媒体。  A computer-readable recording medium on which is recorded.
[20] 図 1— A及び 1— B、並びに図 17に記載される遺伝子多型セットからなる群力も選 択される少なくとも一の遺伝子多型セットを構成する遺伝子多型に対する検出用プロ ーブを有する、動脈硬化性疾患危険度判定用アレイ。 [20] Probes for detection of gene polymorphisms constituting at least one gene polymorphism set in which the group power consisting of the gene polymorphism sets described in FIGS. 1-A and 1-B and FIG. 17 is also selected. An array for determining atherosclerotic disease risk.
[21] 図 1— A及び図 17に記載される遺伝子多型セットからなる群、または図 1— Bに記 載される遺伝子多型セットからなる群の、半数以上の遺伝子多型セットを構成する遺 伝子多型に対する検出用プローブを有するものである、請求項 20に記載の動脈硬 化性疾患危険度判定用アレイ。 [21] Configure more than half of the gene polymorphism set of the group consisting of the gene polymorphism set described in Fig. 1-A and Fig. 17 or the group consisting of the gene polymorphism set described in Fig. 1-B 21. The arteriosclerotic disease risk determination array according to claim 20, comprising a detection probe for the gene polymorphism to be detected.
[22] 図 2— A及び 2— B、並びに図 18に記載される遺伝子多型セットからなる群力 選 択される少なくとも一の遺伝子多型セットを構成する遺伝子多型に対する検出用プロ ーブを有する、心筋梗塞危険度判定用アレイ。 [22] Fig. 2-A and 2-B, and the group power consisting of the gene polymorphism set described in Fig. 18 Detection probe for the gene polymorphism constituting at least one gene polymorphism set selected An array for determining myocardial infarction risk.
[23] 図 2— A及び図 18に記載される遺伝子多型セットからなる群、または図 2— Bに記 載される遺伝子多型セットからなる群の、半数以上の遺伝子多型セットを構成する遺 伝子多型に対する検出用プローブを有するものである、請求項 22に記載の心筋梗 塞危険度判定用アレイ。 [23] Configure more than half of the gene polymorphism set in the group consisting of the gene polymorphism set described in Fig. 2-A and Fig. 18 or the group consisting of the gene polymorphism set described in Fig. 2-B 23. The myocardial infarction risk determination array according to claim 22, further comprising a detection probe for the gene polymorphism to be detected.
[24] 図 3— A及び 3— B、並びに図 19に記載される遺伝子多型セットからなる群力 選 択される少なくとも一の遺伝子多型セットを構成する遺伝子多型に対する検出用プロ ーブを有する、腎症危険度判定用アレイ。 [24] Group power consisting of the gene polymorphism set shown in Fig. 3-A and 3-B, and Fig. 19 A detection program for the gene polymorphism constituting at least one selected gene polymorphism set An array for determining the risk of nephropathy.
[25] 図 3— A及び図 19に記載される遺伝子多型セットからなる群、または図 3— Bに記 載される遺伝子多型セットからなる群の、半数以上の遺伝子多型セットを構成する遺 伝子多型に対する検出用プローブを有するものである、請求項 24に記載の腎症危 険度判定用アレイ。  [25] Configure more than half of the gene polymorphism set in the group consisting of the gene polymorphism set described in Fig. 3-A and Fig. 19 or the group consisting of the gene polymorphism set described in Fig. 3-B 25. The array for determining the risk of nephropathy according to claim 24, comprising a probe for detecting a polymorphism of the gene polymorphism to be detected.
[26] 図 4— A、 4— B及び 4— C、並びに図 20に記載する遺伝子多型セットからなる群か ら選択される少なくとも一の遺伝子多型セットを構成する遺伝子多型に対する検出用 プローブを有する、網膜症危険度判定用アレイ。  [26] For detection of gene polymorphisms constituting at least one gene polymorphism set selected from the group consisting of the gene polymorphism sets shown in Fig. 4-A, 4-B and 4-C, and Fig. 20. An array for determining the risk of retinopathy having a probe.
[27] 図 4— A、 4— B及び図 20に記載される遺伝子多型セットからなる群、または図 4—[27] Fig. 4-A, 4-B and the group consisting of the gene polymorphism sets described in Fig. 20, or Fig. 4-
Cに記載される遺伝子多型セットからなる群の、半数以上の遺伝子多型セットを構成 する遺伝子多型に対する検出用プローブを有するものである、請求項 26に記載の 網膜症危険度判定用アレイ。 27. The array for risk determination of retinopathy according to claim 26, comprising a detection probe for a gene polymorphism constituting a gene polymorphism set of more than half of the group consisting of the gene polymorphism set described in C. .
[28] 図 1— A及び 1— B、並びに図 17に記載される遺伝子多型セットからなる群力も選 択される少なくとも一の遺伝子多型セットを構成する遺伝子多型を含む動脈硬化性 疾患関連性の遺伝子マーカー。 [28] Arteriosclerotic diseases including gene polymorphisms constituting at least one gene polymorphism set in which the group power consisting of the gene polymorphism sets described in FIG. 1-A and 1-B and FIG. 17 is also selected Related genetic markers.
[29] 図 2— A及び 2— B、並びに図 18に記載される遺伝子多型セットからなる群力 選 択される少なくとも一の遺伝子多型セットを構成する遺伝子多型を含む心筋梗塞関 連性の遺伝子マーカー。 [29] Group power consisting of the gene polymorphism set described in Fig. 2-A and 2-B and Fig. 18 Myocardial infarction-related including a gene polymorphism constituting at least one gene polymorphism set selected Sex genetic marker.
[30] 図 3— A及び 3— B、並びに図 19に記載される遺伝子多型セットからなる群力 選 択される少なくとも一の遺伝子多型セットを構成する遺伝子多型を含む腎症関連性 の遺伝子マーカー。 [30] Group power consisting of the gene polymorphism set described in Fig. 3-A and 3-B, and Fig. 19 Nephropathy-related including gene polymorphism constituting at least one gene polymorphism set selected Genetic markers.
[31] 図 4— A、 4— B、及び 4— C、並びに図 20に記載される遺伝子多型セットからなる 群から選択される少なくとも一の遺伝子多型セットを構成する遺伝子多型を含む網膜 症関連性の遺伝子マーカー。  [31] Includes gene polymorphisms constituting at least one gene polymorphism set selected from the group consisting of the gene polymorphism sets described in FIGS. 4A, 4B and 4C, and FIG. Retinopathy related genetic marker.
[32] 図 1— A及び 1— B、並びに図 17に記載する遺伝子多型セットからなる群力も選択 される少なくとも一の遺伝子多型セットを構成する遺伝子を特異的に増幅し得るブラ イマ一対、ある 、は当該遺伝子またはその増幅産物に特異的にハイブリダィズし得る 核酸プローブを含む、動脈硬化性疾患関連性遺伝子多型分析用キット。 [32] A pair of primers capable of specifically amplifying genes constituting at least one gene polymorphism set in which the group power consisting of the gene polymorphism sets described in FIGS. 1-A and 1-B and FIG. 17 is also selected. A kit for analyzing an arteriosclerotic disease-related gene polymorphism comprising a nucleic acid probe capable of specifically hybridizing to the gene or its amplification product.
[33] 図 2—A及び 2— B、並びに図 18に記載する遺伝子多型セットからなる群力も選択 される少なくとも一の遺伝子多型セットを構成する遺伝子を特異的に増幅し得るブラ イマ一対、ある 、は当該遺伝子またはその増幅産物に特異的にハイブリダィズし得る 核酸プローブを含む、心筋梗塞関連性遺伝子多型分析用キット。 [33] A pair of primers capable of specifically amplifying a gene constituting at least one gene polymorphism set in which the group power consisting of the gene polymorphism set described in FIGS. 2-A and 2-B and FIG. 18 is also selected. A kit for analyzing a gene polymorphism associated with myocardial infarction, comprising a nucleic acid probe capable of specifically hybridizing to the gene or its amplification product.
[34] 図 3—A及び 3— B、並びに図 19に記載する遺伝子多型セットからなる群力も選択 される少なくとも一の遺伝子多型セットを構成する遺伝子を特異的に増幅し得るブラ イマ一対、ある 、は当該遺伝子またはその増幅産物に特異的にハイブリダィズし得る 核酸プローブを含む、腎症関連性遺伝子多型分析用キット。  [34] A pair of primers capable of specifically amplifying genes constituting at least one gene polymorphism set in which the group power consisting of the gene polymorphism sets described in FIGS. 3A and 3B and FIG. 19 is also selected. A kit for nephropathy-related gene polymorphism analysis comprising a nucleic acid probe capable of specifically hybridizing to the gene or its amplification product.
[35] 図 4— A、 4— B及び 4— C、並びに図 20に記載する遺伝子多型セットからなる群か ら選択される少なくとも一の遺伝子多型セットを構成する遺伝子を特異的に増幅し得 るプライマー対、あるいは当該遺伝子またはその増幅産物に特異的にノ、イブリダィズ し得る核酸プローブを含む、網膜症関連性遺伝子多型分析用キット。  [35] Fig. 4-A, 4-B and 4-C, and the gene constituting at least one gene polymorphism set selected from the group consisting of the gene polymorphism set shown in Fig. 20 are specifically amplified. A retinopathy-related gene polymorphism analysis kit comprising a primer pair that can be obtained, or a nucleic acid probe that can specifically and hybridize with the gene or its amplification product.
[36] 疾患と関連性を有し、遺伝子型を有する 1以上の遺伝子多型から構成される遺伝 子多型セット及び環境因子を変数とする疾患の危険度判定式と、第 1の患者のデー タの集合における、前記第 1の患者の年齢別の疾患度の平均値とを記録した記録部 を備えるコンピュータにぉ ヽて、  [36] A risk polymorphism set consisting of one or more genetic polymorphisms that are related to the disease and have a genotype, and a disease risk assessment formula with environmental factors as variables, and the first patient In a set of data, a computer provided with a recording unit that records the average value of disease degrees according to age of the first patient,
前記集合を構成しない第 2の患者の遺伝子多型の情報および環境因子を用いて、 前記危険度判定式から第 1の疾患危険度を求める第 1ステップと、  Using the information of the genetic polymorphism of the second patient that does not constitute the set and environmental factors, a first step of determining a first disease risk from the risk determination formula;
複数の疾患の疾患危険度の各々に対応する軸を放射状に描画し、疾患毎の疾患 危険度の前記平均値に対応する前記軸上の点を相互に結ぶ線分を描画し、且つ、 疾患毎の前記第 1の疾患危険度に対応する前記軸上の点を相互に結ぶ線分を描画 して、第 1のレーダーチャートを作成する第 2ステップとを含む発症予測提示方法。  An axis corresponding to each disease risk of a plurality of diseases is drawn radially, a line segment connecting the points on the axis corresponding to the average value of the disease risk for each disease is drawn, and the disease And a second step of creating a first radar chart by drawing a line segment connecting the points on the axis corresponding to each first disease risk level.
[37] 疾患と関連性を有し、遺伝子型を有する 1以上の遺伝子多型から構成される遺伝 子多型セット及び環境因子を変数とする疾患の危険度判定式と、第 1の患者のデー タの集合に関する年齢別の疾患度の平均値とを記録した記録部を備えるコンビユー タにおいて、  [37] The risk polymorphism set consisting of one or more genetic polymorphisms that are related to the disease and have a genotype, and a disease risk assessment formula with environmental factors as variables, In a computer equipped with a recording unit that records the average value of disease levels by age for a set of data,
前記第 2の患者の前記環境因子のうち時間に関係する環境因子に所定時間を加 算して得られた値、時間に関係しない前記第 2の患者の前記環境因子、及び前記第 2の患者の前記遺伝子多型の情報を用いて、前記危険度判定式から将来の予測値 として第 2の疾患危険度を求める第 1ステップと、 A value obtained by adding a predetermined time to an environmental factor related to time among the environmental factors of the second patient, the environmental factor of the second patient not related to time, and the first A first step of obtaining a second disease risk as a predicted value in the future from the risk judgment formula using information on the genetic polymorphism of the second patient;
複数の疾患の疾患危険度の各々に対応する軸を放射状に描画し、疾患毎の前記 第 1の疾患危険度に対応する前記軸上の点を相互に結ぶ線分を描画し、且つ、疾 患毎の前記第 2の疾患危険度に対応する前記軸上の点を相互に結ぶ線分を描画し て、レーダーチャートを作成する第 2ステップとを含む発症予測提示方法。  An axis corresponding to each of the disease risks of a plurality of diseases is drawn radially, a line segment connecting the points on the axis corresponding to the first disease risk for each disease is drawn, and And a second step of drawing a line segment connecting the points on the axis corresponding to the second disease risk level for each patient to create a radar chart.
[38] 前記第 2の患者の前記環境因子のうち時間に関係する環境因子に所定時間を加 算して得られた値、時間に関係しない前記第 2の患者の前記環境因子、及び前記第 2の患者の前記遺伝子多型の情報を用いて、前記危険度判定式から将来の予測値 として第 2の疾患危険度を求める第 3ステップと、 [38] A value obtained by adding a predetermined time to an environmental factor related to time among the environmental factors of the second patient, the environmental factor of the second patient not related to time, and the first A third step of obtaining a second disease risk as a future predicted value from the risk judgment formula using information on the genetic polymorphism of the second patient;
複数の疾患の疾患危険度の各々に対応する軸を放射状に描画し、疾患毎の前記 第 1の疾患危険度に対応する前記軸上の点を相互に結ぶ線分を描画し、且つ、疾 患毎の前記第 2の疾患危険度に対応する前記軸上の点を相互に結ぶ線分を描画し て、第 2のレーダーチャートを作成する第 4ステップとをさらに含む請求項 36に記載 の発症予測提示方法。  An axis corresponding to each of the disease risks of a plurality of diseases is drawn radially, a line segment connecting the points on the axis corresponding to the first disease risk for each disease is drawn, and 40. The fourth step of creating a second radar chart by drawing a line segment connecting the points on the axis corresponding to the second disease risk level for each patient. Presentation method of onset prediction.
[39] 前記危険度判定式が、 [39] The risk judgment formula is:
遺伝子多型セットと環境因子との交互作用項を含み、  Including an interaction term between the gene polymorphism set and environmental factors,
疾患度を目的変数とし、前記遺伝子多型セット及び前記環境因子を説明変数とし て、前記第 1の患者のデータの集合を重回帰分析して得られた式である請求項 36〜 38の何れかの項に記載の発症予測提示方法。  40. Any one of claims 36 to 38, which is an expression obtained by performing multiple regression analysis on the set of data of the first patient using the disease degree as an objective variable and the genetic polymorphism set and the environmental factors as explanatory variables. The onset prediction presentation method according to any one of the items.
[40] 複数の前記疾患が、糖尿病に起因する動脈硬化性疾患、心筋梗塞、腎症、及び網 膜症である請求項 36〜39の何れかの項に記載の発症予測提示方法。 [40] The onset prediction presentation method according to any one of claims 36 to 39, wherein the plurality of diseases are arteriosclerotic diseases caused by diabetes, myocardial infarction, nephropathy, and retinopathy.
[41] 前記集合に関して年齢別の心筋梗塞発症率テーブルが前記記録部に記録され、 放射状に描画された前記軸の付近の所定位置に、疾患度を表す文字列を描画す る第 5ステップをさらに含み、 [41] A fifth step of drawing a character string representing the degree of disease at a predetermined position near the axis in which a myocardial infarction incidence table by age for the set is recorded in the recording unit and drawn radially. In addition,
動脈硬化性疾患に対応する前記軸が最大の内膜中膜肥厚度を表し、前記文字列 が 0. 8、 1. 4、及び 2. 8に対応する文字列であり、前記所定の位置が、最大の内膜 中膜肥厚度の値が 0. 8、 1. 4、及び 2. 8の各々に対応する位置である請求項 40に 記載の発症予測提示方法。 The axis corresponding to the atherosclerotic disease represents the maximum intima-media thickness, the character string is a character string corresponding to 0.8, 1.4, and 2.8, and the predetermined position is The maximum intima-media thickness value is a position corresponding to each of 0.8, 1.4, and 2.8. The onset prediction presentation method of description.
[42] 放射状に描画された前記軸の付近の所定位置に、疾患度を表す文字列を描画す る第 5ステップをさらに含み、  [42] The method further includes a fifth step of drawing a character string representing the degree of disease at a predetermined position in the vicinity of the axis drawn radially.
腎症に対応する前記軸が尿中アルブミン排泄率を表し、前記文字列が、腎症無し 、早期の腎症、及び顕性の腎症を表す文字列であり、前記所定位置が、腎症無、早 期の腎症、及び顕性の腎症の各々を代表する尿中アルブミン排泄率に対応する位 置である請求項 40に記載の発症予測提示方法。  The axis corresponding to nephropathy represents the urinary albumin excretion rate, the character string is a character string representing no nephropathy, early nephropathy, and overt nephropathy, and the predetermined position is nephropathy 41. The onset prediction presenting method according to claim 40, which is a position corresponding to the urinary albumin excretion rate representing each of no, early nephropathy, and overt nephropathy.
[43] 放射状に描画された前記軸の付近の所定位置に、疾患度を表す文字列を描画す る第 5ステップをさらに含み、 [43] The method further includes a fifth step of drawing a character string representing the degree of disease at a predetermined position near the axis drawn radially.
網膜症に対応する前記軸が疾患度を表し、前記文字列が、網膜症無し、単純網膜 症、増殖前網膜症、及び増殖網膜症を表す文字列であり、前記所定位置が、網膜症 無し、単純網膜症、増殖前網膜症、及び増殖網膜症の各々を代表する疾患度に対 応する位置である請求項 40に記載の発症予測提示方法。  The axis corresponding to retinopathy represents a disease degree, and the character string is a character string representing no retinopathy, simple retinopathy, preproliferative retinopathy, and proliferative retinopathy, and the predetermined position is no retinopathy 41. The onset prediction presentation method according to claim 40, which is a position corresponding to the degree of disease representing each of simple retinopathy, preproliferative retinopathy, and proliferative retinopathy.
[44] 前記集合に関して年齢別の心筋梗塞発症率テーブルが前記記録部に記録され、 放射状に描画された前記軸の付近の所定位置に、疾患度を表す文字列を描画す る第 5ステップをさらに含み、 [44] A fifth step of drawing a character string representing the degree of disease at a predetermined position near the axis in which the age-specific myocardial infarction incidence table for the set is recorded in the recording unit and drawn radially. In addition,
心筋梗塞に対応する前記軸が心筋梗塞発症率を表し、前記文字列が、健常者と 同じ、同世代の糖尿病患者と同じ、心筋梗塞既往歴あり、及び再発リスクを表す文字 列であり、前記所定位置が、前記年齢別の心筋梗塞発症率テーブルから前記第 2患 者の年齢に対応する心筋梗塞発症率を決定し、決定した心筋梗塞発症率の 1Z8倍 、 1倍、 3倍、及び 5倍の値の各々に対応する位置である請求項 40に記載の発症予 測提示方法。  The axis corresponding to myocardial infarction represents the incidence of myocardial infarction, and the character string is the same character as a healthy person, the same generation as a diabetic patient, a history of myocardial infarction, and a character string representing the risk of recurrence, The predetermined position determines the myocardial infarction rate corresponding to the age of the second patient from the age-specific myocardial infarction rate table, and the determined myocardial infarction rate is 1Z8 times, 1 time, 3 times, and 5 41. The onset prediction presentation method according to claim 40, which is a position corresponding to each of the double values.
[45] 前記集合に関して疾患毎に求められた、前記第 1の患者の年齢別の疾患度と発生 頻度とが対応付けられて前記記録部に記録され、  [45] The first patient's age-specific disease degree and occurrence frequency obtained for each disease with respect to the set are recorded in the recording unit in association with each other,
疾患度および発生頻度を直交する 2軸とし、前記第 2の患者の年齢に対応する疾 患度及び発生頻度を前記記録部から読み出してグラフに描画する第 6ステップと、 疾患危険度の前記平均値、前記第 2の患者の前記第 1の疾患危険度の各々の値 を示す図形を、各々の値に対応する前記軸上の位置に描画する第 7ステップとをさら に含む請求項 36〜44の何れかの項に記載の発症予測提示方法。 A sixth step of reading out the degree of disease and the frequency of occurrence corresponding to the age of the second patient from the recording unit and drawing it on a graph with the disease level and the frequency of occurrence as two orthogonal axes, and the average of the disease risk And a seventh step of drawing a graphic representing each value of the first disease risk of the second patient at a position on the axis corresponding to each value. The onset prediction presentation method according to any one of claims 36 to 44, which is included in the above.
[46] 前記集合に関して疾患毎に求められた、前記第 1の患者の年齢別の疾患度と発生 頻度とが対応付けられて前記記録部に記録され、 [46] The first patient's age-specific disease degree and frequency of occurrence determined in association with the set are recorded in the recording unit in association with each other,
疾患度および発生頻度を直交する 2軸とし、前記第 2の患者の年齢に対応する疾 患度及び発生頻度を前記記録部から読み出してグラフに描画する第 6ステップと、 前記第 2の患者の前記第 1及び前記第 2の疾患危険度の各々の値を示す図形を、 各々の値に対応する前記軸上の位置に描画する第 7ステップとをさらに含む請求項 A sixth step of reading out the degree of disease and the frequency of occurrence corresponding to the age of the second patient from the recording unit and drawing them on a graph with the disease level and the frequency of occurrence as two orthogonal axes, and drawing the graph on the second patient And a seventh step of drawing a graphic indicating each value of the first and second disease risk levels at a position on the axis corresponding to each value.
36〜44の何れかの項に記載の発症予測提示方法。 The onset prediction presentation method according to any one of 36 to 44.
[47] 疾患と関連性を有し、遺伝子型を有する 1以上の遺伝子多型から構成される遺伝 子多型セット及び環境因子を変数とする疾患の危険度判定式を記録した記録部を備 えるコンピュータにおいて、 [47] A genetic polymorphism set consisting of one or more genetic polymorphisms that are related to the disease and have a genotype, and a recording section that records the disease risk assessment formula with environmental factors as variables Computer
前記危険度判定式が、遺伝子多型セットと環境因子との交互作用項を含み、 前記交互作用項のうち第 1の交互作用項に含まれる環境因子に関する、患者の検 查値を所定数だけ変化させて求めた値を前記環境因子の値として用いて前記第 1の 交互作用項の値を計算し、計算された該第 1の交互作用項の値が所定値を超えて Vヽる場合に、対処の必要性を提示する第 1ステップを含む発症予測提示方法。  The risk determination formula includes an interaction term between a gene polymorphism set and an environmental factor, and a predetermined number of patient detection values related to the environmental factor included in the first interaction term among the interaction terms. When the value of the first interaction term is calculated using the value obtained by changing it as the value of the environmental factor, and the calculated value of the first interaction term exceeds a predetermined value V And a method for presenting the onset prediction including a first step of presenting the necessity of coping.
[48] 前記所定数が、前記検査値が容易に変化し得ると推定される値であり、 [48] The predetermined number is a value estimated that the test value can be easily changed,
前記所定値が、発症の危険性が高いと判断される値である請求項 47に記載の発 症予測提示方法。  48. The method of claim 47, wherein the predetermined value is a value that is determined to have a high risk of onset.
[49] 前記危険度判定式が、疾患度を目的変数とし、前記遺伝子多型セット及び前記環 境因子を説明変数として、第 1の患者のデータの集合を重回帰分析して得られた式 である請求項 47又は 48に記載の発症予測提示方法。  [49] The risk judgment formula is an expression obtained by multiple regression analysis of the first patient data set using the disease degree as an objective variable and the genetic polymorphism set and the environmental factors as explanatory variables. 49. The onset prediction presentation method according to claim 47 or 48.
[50] 前記第 1の患者のデータの集合に関して疾患毎に求められた、環境因子の検査値 の標準偏差とを記録した記録部を備えるコンピュータにおいて、  [50] In a computer comprising a recording unit that records the standard deviation of the test value of the environmental factor obtained for each disease with respect to the first patient data set,
前記疾患危険度判定式に使用される前記環境因子のうち、治療によって変化する 複数の環境因子の各々を表わす第 1文字列を第 1方向に配列させて描画し、前記第 1方向に直交する第 2方向に、複数の疾患の各々を表す第 2文字列を配列させて描 画する第 2ステップと、 前記第 1文字列を通り前記第 2方向に平行な複数の第 1線分、及び、前記第 2文字 列を通り前記第 1方向に平行な複数の第 2線分を格子状に描画する第 2ステップと、 前記格子の交点に対応する疾患の疾患度判定式が、前記交点に対応する環境因 子及び所定の遺伝子多型セットの交互作用項を含み、且つ第 2の患者が前記所定 の遺伝子多型セットを持つ場合、前記交点に対応する環境因子の所定の変化が前 記交点に対応する疾患の疾患度判定式に与える影響の大きさに対応する大きさの 図形を、前記交点に描画する第 3ステップとを含む請求項 47〜49の何れかの項に 記載の発症予測提示方法。 Among the environmental factors used in the disease risk judgment formula, a first character string representing each of a plurality of environmental factors that change depending on treatment is arranged and drawn in a first direction, and is orthogonal to the first direction. A second step of arranging and drawing a second character string representing each of a plurality of diseases in a second direction; A plurality of first line segments passing through the first character string and parallel to the second direction, and a plurality of second line segments passing through the second character string and parallel to the first direction are drawn in a grid pattern. The step of determining the degree of disease corresponding to the intersection of the lattice includes an interaction term of an environmental factor corresponding to the intersection and a predetermined gene polymorphism set; and a second patient In the case of having a gene polymorphism set, a graphic having a size corresponding to the magnitude of the influence of the predetermined change of the environmental factor corresponding to the intersection on the disease degree determination formula of the disease corresponding to the intersection is set at the intersection. The onset prediction presentation method according to any one of claims 47 to 49, comprising a third step of drawing.
[51] 前記図形が円形であり、  [51] the figure is circular;
前記環境因子の所定の変化による前記疾患の疾患度判定式への影響の大きさが 、前記環境因子を含む項の係数の総和と、前記環境因子に対応する前記標準偏差 との積である請求項 47に記載の発症予測提示方法。  The magnitude of the influence of the predetermined change of the environmental factor on the disease degree determination formula is a product of the sum of the coefficients of the terms including the environmental factor and the standard deviation corresponding to the environmental factor. Item 47. The method for presenting onset prediction according to Item 47.
[52] 複数の前記疾患が、糖尿病に起因する動脈硬化性疾患、心筋梗塞、腎症、及び網 膜症である請求項 47又は 49に記載の発症予測提示方法。  52. The onset prediction presentation method according to claim 47 or 49, wherein the plurality of diseases are arteriosclerotic diseases caused by diabetes, myocardial infarction, nephropathy, and retinopathy.
[53] 前記第 1文字列で表される環境因子の検査値を改善するための複数の対処法を 所定の順序で描画する第 4ステップをさらに含む請求項 47〜49の何れかの項に記 載の発症予測提示方法。  [53] The method according to any one of claims 47 to 49, further comprising a fourth step of drawing a plurality of countermeasures for improving the inspection value of the environmental factor represented by the first character string in a predetermined order. The onset prediction presentation method of description.
[54] 疾患と関連性を有し、遺伝子型を有する 1以上の遺伝子多型から構成される遺伝 子多型セットの有無を表す情報、及び個人において変化し得る環境因子を変数とす る疾患危険度の判定式と、被験者を特定する ID及び該 IDに対応させた前記被験者 が有する前記遺伝子多型セットの情報と、前記疾患に対する治療の要否を決定する ための基準値とを記録した記録部を備えるコンピュータにおいて、  [54] Diseases that are related to disease and have information about the presence or absence of a gene polymorphism set consisting of one or more gene polymorphisms having genotypes, and environmental factors that can change in individuals as variables A risk judgment formula, an ID for identifying the subject, information on the genetic polymorphism set of the subject corresponding to the ID, and a reference value for determining the necessity of treatment for the disease were recorded. In a computer comprising a recording unit,
前記被験者の前記 IDの指定を受け付ける第 1ステップと、  A first step of accepting designation of the subject's ID;
指定された前記 IDに対応する前記遺伝子多型セットの情報及び前記判定式を、前 記記録部から読み出す第 2ステップと、  A second step of reading out information on the genetic polymorphism set corresponding to the specified ID and the determination formula from the recording unit;
読み出した前記遺伝子多型セットの情報に応じて、読み出した前記判定式から前 記被験者用の判定式を決定する第 3ステップと、  A third step of determining a determination formula for the subject from the read determination formula according to the read information of the genetic polymorphism set;
変数である前記環境因子の変化による前記被験者用の判定式の変化の程度及び 前記基準値を用いて、前記被験者に対して、前記疾患への対処の要否を決定する 第 4ステップとを含む疾患への対処の必要性の判定方法。 A degree of change in the judgment formula for the subject due to a change in the environmental factor being a variable; and A method for determining the necessity of coping with a disease, comprising: a fourth step of determining whether the subject needs to coping with the disease using the reference value.
[55] 前記判定式が、前記環境因子の関数と前記遺伝子多型セットの有無を表す情報と の積を含む請求項 54に記載の疾患への対処の必要性の判定方法。 55. The method for determining the necessity for coping with a disease according to claim 54, wherein the determination formula includes a product of a function of the environmental factor and information indicating the presence or absence of the genetic polymorphism set.
[56] 前記第 4ステップが、前記被験者の所定時における前記環境因子の第 1の値を所 定値だけ変化させて第 2の値を求め、前記被験者用の判定式の変数である前記環 境因子に前記第 2の値を代入して、前記被験者の疾患危険度を計算し、計算された 該疾患危険度と前記基準値とを比較することによって、前記疾患への対処の要否を 決定するステップである請求項 55に記載の疾患への対処の必要性の判定方法。 [56] In the fourth step, the first value of the environmental factor at a predetermined time of the subject is changed by a predetermined value to obtain a second value, and the environment that is a variable of the judgment formula for the subject Substituting the second value as a factor to calculate the disease risk of the subject, and comparing the calculated disease risk with the reference value determines the necessity of dealing with the disease The method for determining the necessity of coping with a disease according to claim 55, wherein
[57] 前記疾患が動脈硬化性疾患である場合、前記遺伝子多型セットが図 1 A及び 1 [57] When the disease is an arteriosclerotic disease, the gene polymorphism set is shown in FIGS. 1A and 1.
Bに記載するセットの何れかに該当し、  Corresponds to one of the sets described in B,
前記疾患が心筋梗塞である場合、前記遺伝子多型セットが図 2— A及び 2— Bに記 載するセットの何れかに該当し、  When the disease is myocardial infarction, the gene polymorphism set corresponds to one of the sets described in FIGS. 2-A and 2-B,
前記疾患が腎症である場合、前記遺伝子多型セットが図 3— A及び 3— Bに記載す るセットの何れかに該当し、  When the disease is nephropathy, the gene polymorphism set corresponds to any of the sets described in FIGS. 3A and 3B.
前記疾患が網膜症である場合、前記遺伝子多型セットが図 4 A、 4— B及び 4— C に記載するセットの何れかに該当する請求項 54〜56の何れかの項に記載の疾患へ の対処の必要性の判定方法。  57. The disease according to any one of claims 54 to 56, wherein when the disease is retinopathy, the gene polymorphism set corresponds to any of the sets described in FIGS. 4A, 4B and 4C. How to determine the need to deal with
[58] 前記疾患が動脈硬化性疾患である場合、前記遺伝子多型セットが図 17に記載す るセットの何れかに該当し、 [58] When the disease is an arteriosclerotic disease, the gene polymorphism set corresponds to any of the sets shown in FIG.
前記疾患が心筋梗塞である場合、前記遺伝子多型セットが図 18に記載するセット の何れかに該当し、  When the disease is myocardial infarction, the gene polymorphism set corresponds to any of the sets described in FIG.
前記疾患が腎症である場合、前記遺伝子多型セットが図 19に記載するセットの何 れカに該当し、  When the disease is nephropathy, the genetic polymorphism set corresponds to any of the sets described in FIG.
前記疾患が網膜症である場合、前記遺伝子多型セットが図 20に記載するセットの 何れかに該当する請求項 54〜56の何れかの項に記載の疾患への対処の必要性の 判定方法。  57. A method for determining the necessity of coping with a disease according to any one of claims 54 to 56, wherein when the disease is retinopathy, the gene polymorphism set corresponds to any of the sets shown in FIG. .
PCT/JP2006/310405 2005-05-26 2006-05-24 Method of determining gene polymorphism for judgment of disease risk level, method of judging disease risk level and array for relevant judgment WO2006126618A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007517881A JP5121449B2 (en) 2005-05-26 2006-05-24 Presentation method of disease onset prediction

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005-153841 2005-05-26
JP2005153841 2005-05-26
JP2005301074 2005-10-14
JP2005-301074 2005-10-14

Publications (1)

Publication Number Publication Date
WO2006126618A1 true WO2006126618A1 (en) 2006-11-30

Family

ID=37452042

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/310405 WO2006126618A1 (en) 2005-05-26 2006-05-24 Method of determining gene polymorphism for judgment of disease risk level, method of judging disease risk level and array for relevant judgment

Country Status (2)

Country Link
JP (1) JP5121449B2 (en)
WO (1) WO2006126618A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008191716A (en) * 2007-01-31 2008-08-21 Signpost Corp Method for presenting risk of disease and its program
WO2009125851A1 (en) * 2008-04-11 2009-10-15 株式会社サインポスト Method for detection of effectiveness of phenylalanine derivative-type compound in diabetes patient
JP2010142187A (en) * 2008-12-22 2010-07-01 Mie Univ Method for detecting genetic risk of chronic nephropathy
JP2015043770A (en) * 2014-08-29 2015-03-12 株式会社DeNAライフサイエンス Device for generating display screen, method for generating display screen, program, and recording medium
JP2016067323A (en) * 2014-10-01 2016-05-09 株式会社サインポスト Method for determining efficacy of diabetic medicine, determination apparatus, program and recording medium
JP2020178560A (en) * 2019-04-23 2020-11-05 ジェネシスヘルスケア株式会社 Method for determining the risk of arteriosclerosis

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016033796A (en) * 2014-07-31 2016-03-10 株式会社DeNAライフサイエンス Display management server, image generation method and program

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002080924A1 (en) * 2001-04-03 2002-10-17 Yamanouchi Pharmaceutical Co., Ltd. Novel use of arylethene sulfonamide derivative
WO2003087360A1 (en) * 2002-04-12 2003-10-23 Osaka Industrial Promotion Organization Method of judging risk of arterial sclerosis, method of measuring risk of arterial sclerosis, microarray for judging risk of arterial sclerosis, device for judging risk of arterial sclerosis and program for judging risk of arterial sclerosis
JP2005097137A (en) * 2003-09-22 2005-04-14 Tokyoto Igaku Kenkyu Kiko Prophylactic or therapeutic agent for diabetic retinopathy
WO2005036443A1 (en) * 2003-10-15 2005-04-21 Signpost Corporation Method of determining genetic polymorphism for judgment of degree of disease risk, method of judging degree of disease risk, and judgment array
JP2005110607A (en) * 2003-10-09 2005-04-28 National Cardiovascular Center Method for examining predisposing factor of hypertensive cardiomegaly

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6099832A (en) * 1997-05-28 2000-08-08 Genzyme Corporation Transplants for myocardial scars
AUPR748501A0 (en) * 2001-09-04 2001-09-27 Life Therapeutics Limited Renal dialysis
AU2002241230B2 (en) * 2001-03-23 2007-11-29 Yeda Research And Development Co. Ltd. Methods and kits for determing a risk to develop cancer, for evaluating an effectiveness and dosage of cancer therapy and for correlating between an activity of a DNA repair enzyme and a cancer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002080924A1 (en) * 2001-04-03 2002-10-17 Yamanouchi Pharmaceutical Co., Ltd. Novel use of arylethene sulfonamide derivative
WO2003087360A1 (en) * 2002-04-12 2003-10-23 Osaka Industrial Promotion Organization Method of judging risk of arterial sclerosis, method of measuring risk of arterial sclerosis, microarray for judging risk of arterial sclerosis, device for judging risk of arterial sclerosis and program for judging risk of arterial sclerosis
JP2005097137A (en) * 2003-09-22 2005-04-14 Tokyoto Igaku Kenkyu Kiko Prophylactic or therapeutic agent for diabetic retinopathy
JP2005110607A (en) * 2003-10-09 2005-04-28 National Cardiovascular Center Method for examining predisposing factor of hypertensive cardiomegaly
WO2005036443A1 (en) * 2003-10-15 2005-04-21 Signpost Corporation Method of determining genetic polymorphism for judgment of degree of disease risk, method of judging degree of disease risk, and judgment array

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008191716A (en) * 2007-01-31 2008-08-21 Signpost Corp Method for presenting risk of disease and its program
WO2009125851A1 (en) * 2008-04-11 2009-10-15 株式会社サインポスト Method for detection of effectiveness of phenylalanine derivative-type compound in diabetes patient
JP2010142187A (en) * 2008-12-22 2010-07-01 Mie Univ Method for detecting genetic risk of chronic nephropathy
JP2015043770A (en) * 2014-08-29 2015-03-12 株式会社DeNAライフサイエンス Device for generating display screen, method for generating display screen, program, and recording medium
JP2016067323A (en) * 2014-10-01 2016-05-09 株式会社サインポスト Method for determining efficacy of diabetic medicine, determination apparatus, program and recording medium
JP2020178560A (en) * 2019-04-23 2020-11-05 ジェネシスヘルスケア株式会社 Method for determining the risk of arteriosclerosis
JP7165098B2 (en) 2019-04-23 2022-11-02 ジェネシスヘルスケア株式会社 Methods for determining arteriosclerosis risk

Also Published As

Publication number Publication date
JP5121449B2 (en) 2013-01-16
JPWO2006126618A1 (en) 2008-12-25

Similar Documents

Publication Publication Date Title
Tielbeek et al. Genome-wide association studies of a broad spectrum of antisocial behavior
Wendland et al. A haplotype containing quantitative trait loci for SLC1A1 gene expression and its association with obsessive-compulsive disorder
Attia et al. How to use an article about genetic association: B: Are the results of the study valid?
Williams et al. Identification in 2 Independent Samples of a Novel Schizophrenia RiskHaplotype of the Dystrobrevin Binding Protein Gene (DTNBP1)
Pulst Genetic linkage analysis
McPherson Genetic diagnosis and testing in clinical practice
Jokela et al. Serotonin receptor 2A gene and the influence of childhood maternal nurturance on adulthood depressive symptoms
Meijer et al. Spectrum of SPG4 mutations in a large collection of North American families with hereditary spastic paraplegia
JP5191133B2 (en) Disease risk presentation method and program thereof
JP5121449B2 (en) Presentation method of disease onset prediction
WO2018160548A1 (en) Markers for coronary artery disease and uses thereof
JP2007102709A (en) Gene diagnostic marker selection program, device and system executing this program, and gene diagnostic system
Jung et al. Assessment of the association of D2 dopamine receptor gene and reported allele frequencies with alcohol use disorders: a systematic review and meta-analysis
JP5235274B2 (en) Method and apparatus for determining disease risk
US20170137968A1 (en) Method and System for Diagnosing Disease and Generating Treatment Recommendations
Qin et al. Overall and sex-specific associations between methylation of the ABCG1 and APOE genes and ischemic stroke or other atherosclerosis-related traits in a sibling study of Chinese population
Sombekke et al. HLA-DRB1* 1501 and spinal cord magnetic resonance imaging lesions in multiple sclerosis
Bray et al. Transethnic and race-stratified genome-wide association study of fibroid characteristics in African American and European American women
Parrott et al. The role of the geneticist and genetic counselor in an ACHD clinic
JP2017503493A (en) Genetic markers associated with suicide risk and methods of use thereof
Lee et al. Expanded genomewide scan implicates a novel locus at 3q28 among Caribbean hispanics with familial Alzheimer disease
Grewal et al. Mutation analysis of oculopharyngeal muscular dystrophy in Hispanic American families
Wang et al. Molecular characterization of a pedigree carrying the hypertension‑associated mitochondrial tRNAGln T4363C mutation
Dohm-Hansen et al. The'middle-aging'brain
Farzaneh-Far et al. Lack of association of chromosome 9p21. 3 genotype with cardiovascular structure and function in persons with stable coronary artery disease: The Heart and Soul Study

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007517881

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06756565

Country of ref document: EP

Kind code of ref document: A1