JP2010142187A - Method for detecting genetic risk of chronic nephropathy - Google Patents

Method for detecting genetic risk of chronic nephropathy Download PDF

Info

Publication number
JP2010142187A
JP2010142187A JP2008324995A JP2008324995A JP2010142187A JP 2010142187 A JP2010142187 A JP 2010142187A JP 2008324995 A JP2008324995 A JP 2008324995A JP 2008324995 A JP2008324995 A JP 2008324995A JP 2010142187 A JP2010142187 A JP 2010142187A
Authority
JP
Japan
Prior art keywords
risk
polymorphism
kidney disease
chronic kidney
gene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008324995A
Other languages
Japanese (ja)
Other versions
JP5725451B2 (en
Inventor
Yoshiji Yamada
芳司 山田
Kazumi Murakami
和美 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
G & G Science Co Ltd
Mie University NUC
G&G Science Co Ltd
Original Assignee
G & G Science Co Ltd
Mie University NUC
G&G Science Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by G & G Science Co Ltd, Mie University NUC, G&G Science Co Ltd filed Critical G & G Science Co Ltd
Priority to JP2008324995A priority Critical patent/JP5725451B2/en
Publication of JP2010142187A publication Critical patent/JP2010142187A/en
Application granted granted Critical
Publication of JP5725451B2 publication Critical patent/JP5725451B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a genetic detection method or the like for obtaining a material for determining genetic risk of chronic nephropathy. <P>SOLUTION: A gene polymorphism significantly relating to chronic nephropathy is detected by detecting 222 gene polymorphisms on 176 candidate genes of 4,587 Japanese subjects by PCR, sequence specific oligonucleotide probe, and suspension array technology (SAT). The risk detection method is useful for crisis estimation and prevention of chronic nephropathy. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、慢性腎臓病の遺伝的リスク検出法等に関するものである。   The present invention relates to a genetic risk detection method for chronic kidney disease and the like.

慢性腎臓病(chronic kidney disease(CKD))は、糸球体腎炎に加え、高血圧、糖尿病、脂質代謝異常(高脂血症)、肥満、喫煙などが危険因子であり、生活習慣病の一つとなっている。日本の高齢者人口比率は、今後20年、増え続けるといわれており、加齢と共に衰える腎機能により、慢性腎臓病および末期腎不全(end-stage renal disease(ESRD))の発生率は増え続けることが予想される(非特許文献1)。慢性腎臓病は、末期腎不全のみならず、心血管障害の危険因子であり(非特許文献2-3)、心筋梗塞、心不全、脳梗塞および死亡の原因になっている。したがって、慢性腎臓病の危険因子を特定することは、慢性腎臓病や末期腎不全の発症を予防し、透析患者数を減少させるのみならず、心血管障害を減少させるために重要である(非特許文献4)。
連鎖解析(非特許文献5ー6)および候補遺伝子関連解析(非特許文献7−9)によって、慢性腎臓病との関連が示唆されるいくつかの染色体領域および遺伝子が特定されている。しかしながら、慢性腎臓病の遺伝要因については、未だ十分に解明されていない。更に、人種間におけるライフスタイルや環境要因ならびに遺伝要因の違いを考慮し、各人種において、慢性腎臓病に関連する遺伝子多型を検討することが重要である。
In addition to glomerulonephritis, chronic kidney disease (CKD) is one of lifestyle-related diseases because of high risk, diabetes, dyslipidemia (hyperlipidemia), obesity, and smoking. ing. The proportion of elderly people in Japan is said to continue to increase over the next 20 years, and the incidence of chronic kidney disease and end-stage renal disease (ESRD) will continue to increase due to kidney function that declines with age. (Non-Patent Document 1). Chronic kidney disease is not only end-stage renal failure but also a risk factor for cardiovascular disorders (Non-patent Documents 2-3), which causes myocardial infarction, heart failure, cerebral infarction and death. Therefore, identifying risk factors for chronic kidney disease is important not only to prevent the development of chronic kidney disease and end-stage renal failure, but to reduce the number of dialysis patients as well as cardiovascular disorders (non- Patent Document 4).
Linkage analysis (Non-Patent Documents 5-6) and candidate gene association analysis (Non-Patent Documents 7-9) have identified several chromosomal regions and genes that are suggested to be associated with chronic kidney disease. However, the genetic factors of chronic kidney disease have not been fully elucidated. Furthermore, it is important to consider genetic polymorphisms related to chronic kidney disease in each race, taking into account differences in lifestyle, environmental factors, and genetic factors among races.

本発明は、上記の事情に鑑みてなされたものであり、その目的は、慢性腎臓病について、遺伝的リスクを判断するための一材料を得るための遺伝子検出法等を提供することにある。   This invention is made | formed in view of said situation, The objective is to provide the gene detection method etc. for obtaining one material for judging a genetic risk about chronic kidney disease.

本発明は、慢性腎臓病に関し、4,587人の日本人について、176遺伝子中の222カ所の遺伝子多型に関する大規模研究である。
我々は、慢性腎臓病と遺伝子多型との関係を調査した。本研究の目的は、慢性腎臓病に関与する遺伝子多型を同定し、この知見に基づいて、ある者に対して慢性腎臓病を予防するための有用な情報を与えることである。
The present invention relates to chronic kidney disease and is a large-scale study on 222 polymorphisms in 176 genes for 4,587 Japanese.
We investigated the relationship between chronic kidney disease and genetic polymorphism. The purpose of this study is to identify genetic polymorphisms involved in chronic kidney disease, and to provide useful information to prevent chronic kidney disease for some people based on this finding.

上記課題を解決するための慢性腎臓病のリスク検出法は、UCP3の−35位C/T、PECAM1の36222位A/G、HMOX1の98位G/C、APOEの−203位T/G、AGTR1の43651位G/A、PIK3R1の75686位G/A、TNFRSF13Bの23375位A/C、ABCA1の−14位C/T、IRS1の3931位G/A、ROS1の124785位G/A、BCHEの63973位G/A、ANXA5の431位C/T、MMP1の−1602位2G/1G、PALLDの259175位A/G、KCNJ11の634位A/G、CXCL16の4660位C/T、FOXC2の−512位C/T、MMP3の722位A/G、COMTの21962位G/A、PDE4Dの919475位TAAA/−、GCKの−30位G/A、APOA5の−1123位C/Tのうちの少なくとも1個または2個以上の遺伝子多型と、年齢、性別とを評価因子とし、各評価因子より発症リスク値を推算し、この発症リスク値を平均と分散またはパーセント区分に応じて3つ以上の複数の群に分け、各群に応じて発症のリスクを検出することを特徴とする。
このとき、群を形成するときに使用する分散については、統計上の分散値、或いは標準偏差値(SD)、パーセントによる区分などを用いることができる。なお、遺伝子多型については、必ずしも上記22個には限られず、これら22個の多型のうちの任意の1個−21個、或いは本明細書中で示される上記22個の他の多型を含む23個以上で実施することもできる。
The risk detection method of chronic kidney disease for solving the above-mentioned problems is -35 position C / T of UCP3, 36222 position A / G of PECAM1, 98 position G / C of HMOX1, -203 position T / G of APOE, AGTR1 43651 G / A, PIK3R1 75686 G / A, TNFRSF13B 23375 A / C, ABCA1 −14 C / T, IRS1 3931 G / A, ROS1 124785 G / A, BCHE 63/973 G / A, ANXA5 431 C / T, MMP-1 −1602 2G / 1G, PALLD 259175 A / G, KCNJ11 634 A / G, CXCL16 4660 C / T, FOXC2 -512th C / T, MMP3 722th A / G, COMT 21962th G / A, PDE4D 919475th TAA /-, GCK at −30 position G / A, APOA5 at −1123 position C / T at least one or more gene polymorphisms, age, and sex as evaluation factors, onset from each evaluation factor The risk value is estimated, and the onset risk value is divided into a plurality of groups of three or more according to the average and variance or percentage classification, and the risk of onset is detected according to each group.
At this time, as a variance used when forming a group, a statistical variance value, a standard deviation value (SD), a percentage division, or the like can be used. The gene polymorphism is not necessarily limited to the above-mentioned 22 polymorphisms, and any 1 to 21 of these 22 polymorphisms, or the other 22 polymorphisms shown in the present specification. It is also possible to carry out with 23 or more including.

本明細書中において、多型の記載方法は、次の通りである。原則として、各遺伝子について、「多型が生じている位置(位)、データベースに登録されている塩基(A:アデニン、G:グアニン、C:シトシン、T:チミン)/多型塩基」と記載した。例えば、「UCP3の−35位C/T」は、UCP3の遺伝子について、5’上流35位のCがTとなっている多型を意味している。各遺伝子の多型が生じている位置の情報は、NCBI遺伝子データベースの参照配列(contig reference)に基づいた。なお、PDE4Dの919475位TAAA/−多型、およびMMP3の−1610位5A/6A多型については、データベースの遺伝子方向からは、TTTA/−多型、および5T/6T多型との表記となるが、多くの論文で逆方向より読んだTAAA/−多型、および5A/6A多型として記載されているため、本明細書においても上記の通り記載した。   In this specification, the description method of a polymorphism is as follows. In principle, for each gene, “Polymorphic position (position), base registered in the database (A: adenine, G: guanine, C: cytosine, T: thymine) / polymorphic base” did. For example, “-35 position C / T of UCP3” means a polymorphism in which C at position 35 at 5 ′ upstream is T in the UCP3 gene. The information on the position where the polymorphism of each gene occurs was based on the NCBI gene database contig reference. The PDE4D 919475 position TAAA / -polymorphism and the MMP3 position -1610 position 5A / 6A polymorphism are expressed as TTTA / -polymorphism and 5T / 6T polymorphism from the gene direction of the database. Are described as TAAA / -polymorphism and 5A / 6A polymorphism read in the reverse direction in many papers, and are also described in this specification as described above.

一般に多型は、集団(例えば、日本人集団、西洋人集団など)が異なると、その種類・頻度が異なることが知られている。このため、日本人以外の集団において、慢性腎臓病との関係が指摘されている多型であっても、必ずしも日本人集団においてそのような関連が認められるわけではない。このため、従来の報告については、国または疾患が異なる場合には、必ずしも日本人における多型および慢性腎臓病との関連が裏付けられるわけではない。   In general, it is known that polymorphisms have different types and frequencies for different groups (for example, Japanese group, Western group, etc.). For this reason, even if the polymorphism has been pointed out to be associated with chronic kidney disease in a non-Japanese population, such a relationship is not necessarily observed in the Japanese population. For this reason, conventional reports do not necessarily support the association between polymorphisms and chronic kidney disease in Japanese when countries or diseases differ.

本発明によれば、慢性腎臓病について、遺伝的リスクおよび発症リスクを予測するための検出法等が提供される。この発明を用いることにより、慢性腎臓病に対する予防が可能となり、透析患者数の減少、慢性腎臓病が危険因子となる心血管障害の減少、さらに、高齢者の健康寿命延長・QOL向上・寝たきり防止ならびに今後の医療費削減など、医学的・社会的に大きく貢献できる。   According to the present invention, a detection method and the like for predicting genetic risk and risk of onset for chronic kidney disease are provided. By using this invention, it becomes possible to prevent chronic kidney disease, decrease the number of dialysis patients, decrease cardiovascular disorders in which chronic kidney disease is a risk factor, and further increase the healthy life expectancy, QOL improvement, bedridden prevention of the elderly In addition, medical and social contributions can be made greatly, such as reduction of medical expenses in the future.

次に、本発明の実施形態について、図表を参照しつつ説明するが、本発明の技術的範囲は、これらの実施形態によって限定されるものではなく、発明の要旨を変更することなく様々な形態で実施することができる。また、本発明の技術的範囲は、均等の範囲にまで及ぶものである。   Next, embodiments of the present invention will be described with reference to the drawings. However, the technical scope of the present invention is not limited by these embodiments, and various forms can be made without changing the gist of the invention. Can be implemented. Further, the technical scope of the present invention extends to an equivalent range.

<試験方法>
研究対象
研究対象は、2つの集団からなる4,587名(男性2,532名、女性2,055名)であった。1つは、研究参加施設(岐阜県総合医療センター、岐阜県立多治見病院、弘前大学病院、黎明郷リハビリテーション病院、弘前脳卒中センター)に、2002年10月から2008年3月までに、様々な症状または毎年の健康診断のために来院した者であった。また、もう1つの集団は、群馬県と東京都における老化・老年病の疫学研究に参加した高齢者であった。
研究プロトコールはヘルシンキ宣言に従い、三重大学医学部、弘前大学医学部、岐阜県国際バイオ研究所、東京都老人総合研究、および参加病院の倫理委員会によって承認された。各参加者に対しては書面によるインフォームドコンセントを得た。
<Test method>
Study subjects The study subjects were 4,587 people (2,532 men, 2,055 women) consisting of two groups. The first is the participation in research facilities (Gifu Prefectural General Medical Center, Gifu Prefectural Tajimi Hospital, Hirosaki University Hospital, Reimei Rehabilitation Hospital, Hirosaki Stroke Center) from October 2002 to March 2008. Who visited the hospital for a health checkup. Another group was elderly people who participated in epidemiological studies on aging and geriatric diseases in Gunma Prefecture and Tokyo.
The research protocol was approved by the Mie University School of Medicine, Hirosaki University School of Medicine, Gifu Prefectural Institute of Biotechnology, Tokyo Metropolitan Institute for Gerontology, and the Ethics Committee of participating hospitals in accordance with the Declaration of Helsinki. Written informed consent was obtained for each participant.

慢性腎臓病は、IgA腎症、糖尿病性腎症、腎硬化症など原疾患に関わらず、微量アルブミン尿を含むたんぱく尿などの尿異常、片腎や多発性嚢胞腎などの画像異常、血液、病理で腎障害の存在を示す所見がある、または、推算糸球体濾過量(eGFR(estimated glomerular filtration rate))数値で、中等度以上の腎機能低下(eGFR<60mL/min/1.73m)が3ケ月以上持続する場合に診断される。また、NKF−KDOQITM(National Kidney Foundation-Kidney Disease Outcomes Quality Initiative)では、eGFR値が60mL/min/1.73m未満で慢性腎臓病と診断することを提唱している(非特許文献4)。 Chronic kidney disease includes urine abnormalities such as proteinuria including microalbuminuria, abnormal images such as single kidney and multiple cystic kidneys, regardless of the primary diseases such as IgA nephropathy, diabetic nephropathy, nephrosclerosis, blood, There is a finding indicating the presence of renal disorder in the pathology, or a moderate decrease in renal function (eGFR <60 mL / min / 1.73 m 2 ) with an estimated glomerular filtration rate (eGFR) value Is diagnosed if it persists for more than 3 months. In addition, NKF-KDOQI (National Kidney Foundation-Kidney Disease Outcomes Quality Initiative) proposes to diagnose chronic kidney disease when the eGFR value is less than 60 mL / min / 1.73 m 2 (Non-patent Document 4). .

慢性腎臓病の診断基準となるeGFRは、日本腎臓学会が提唱した、下記の改訂版MDRD(the Modification of Diet in Renal Disease)式により血清クレアチニン値より推算した。
eGFR(mL/min/1.73m
=194×[年齢]−0.287×[血清クレアチニン値 (mg/dL)]−1.094
×[0.739 女性の場合].
The eGFR, which is a diagnostic criterion for chronic kidney disease, was estimated from the serum creatinine value by the following revised MDRD (the Modification of Diet in Renal Disease) formula proposed by the Japanese Society of Nephrology.
eGFR (mL / min / 1.73m 2 )
= 194 x [age] -0.287 x [serum creatinine level (mg / dL)] -1.094
× [0.739 For women].

eGFR値と心血管障害や入院必要性との関連は、eGFR値が60mL/min/1.73m未満で増大し、45mL/min/1.73m以下ではその危険性が顕著となる(非特許文献10)。さらに、日本人では、70歳以下でeGFR値が50mL/min/1.73m未満になると、その後のeGFR値の低下率が増大するため、予後が悪いことが明らかになっている(非特許文献11)。
したがって、本研究では、50mL/min/1.73m未満を慢性腎臓病の診断基準とし、714名(男性430名、女性284名)を慢性腎臓病群として解析した。また、3,873名(男性2,102名、女性1,771名)のコントロール群は、eGFR値が60mL/min/1.73m以上の者とした。ただし、慢性腎臓病群、コントロール群共に、高血圧(最大血圧が140mmHg以上、または最低血圧が90mmHg以上の者、或いは降圧剤を服用している者)、高脂血症(血清総コレステロール値が5.72mmol/L以上、または脂質降下薬を服用している者)、糖尿病(空腹時血糖値が126mg/dL以上、またはヘモグロビンAlcが6.5%以上の者、或いは糖尿病治療薬を服用している者)に罹患している者を含む。
association between eGFR values and cardiovascular disorders and hospitalization need is increased eGFR value is less than 60mL / min / 1.73m 2, the risk becomes remarkable in 45mL / min / 1.73m 2 or less (Non Patent Document 10). Furthermore, in Japanese, when the eGFR value is less than 50 mL / min / 1.73 m 2 at the age of 70 years or younger, it has been clarified that the prognosis is poor because the rate of decrease of the eGFR value thereafter increases. Reference 11).
Therefore, in this study, less than 50 mL / min / 1.73 m 2 was used as a diagnostic criterion for chronic kidney disease, and 714 (430 men, 284 women) were analyzed as a chronic kidney disease group. The control group of 3,873 people (2,102 men, 1,771 women) had an eGFR value of 60 mL / min / 1.73 m 2 or more. However, in both the chronic kidney disease group and the control group, hypertension (a person with a maximum blood pressure of 140 mmHg or more, a person with a minimum blood pressure of 90 mmHg or more, or a person taking an antihypertensive agent), hyperlipidemia (a serum total cholesterol level of 5 .72 mmol / L or higher, or those taking lipid-lowering drugs), diabetes (fasting blood glucose level of 126 mg / dL or higher, hemoglobin Alc of 6.5% or higher, or taking antidiabetic drugs Who suffer from).

多型の選択
公開データベースの使用、および本発明者の鋭意検討により、176個の候補遺伝子を選択した。本発明者は、従来の知見およびデータベースに基づき、これら176個の遺伝子について、222個の多型を選択した。これらの多型の多くは、プロモーター領域、エクソン、イントロンのスプライシングの供与部位或いは受容部位に多く位置しており、多型の結果として、コードされたタンパク質の機能または発現に変化を与える可能性があるものであった。これら222個の多型は、下記表1−表6に示した。表は、左欄から順に、座位(Locus)、遺伝子名(Gene)、簡易記載(Symbol)、多型(Polymorphism)、多型データベース登録番号(dbSNP rs No.)を示している。なお、多型データベース登録番号が無い場合には、NCBI遺伝子バンクに登録されている番号およびその登録配列での多型の位置を示した。また、この表中での多型の表記に関しては、本研究での遺伝子多型検出および解析の便宜上、各対立遺伝子をアリル1,アリル2と設定し、「アリル1の塩基配列/アリル2の塩基配列」と記載した。このアリル1,アリル2への振り分けは、必ずしもデータベースの参照配列の塩基配列をアリル1としたものではなく、候補遺伝子を選択する際の情報源に基づいた。よって、多型データベース登録のSNP表記が、例えばA/Gのものでも、情報源での記載に基づき、A/G、G/A、T/C、C/Tのいずれかに設定している。
Selection of polymorphisms 176 candidate genes were selected through the use of public databases and through extensive studies by the inventors. The inventor selected 222 polymorphisms for these 176 genes based on conventional knowledge and databases. Many of these polymorphisms are located in many promoter regions, exons, intron splicing donor or acceptor sites, and polymorphisms may alter the function or expression of the encoded protein. There was something. These 222 polymorphisms are shown in Table 1 to Table 6 below. The table shows the locus (Locus), gene name (Gene), simplified description (Symbol), polymorphism (Polymorphism), and polymorphism database registration number (dbSNP rs No.) in order from the left column. When there is no polymorphism database registration number, the number registered in the NCBI gene bank and the position of the polymorphism in the registered sequence are shown. Regarding the notation of polymorphism in this table, for the convenience of detection and analysis of gene polymorphism in this study, alleles were set as allele 1 and allele 2, and “base sequence of allele 1 / allele 2 "Base sequence". This distribution to allele 1 and allele 2 was not necessarily based on the base sequence of the reference sequence of the database as allele 1, but was based on the information source when selecting the candidate gene. Therefore, even if the polymorphism database registration SNP notation is, for example, A / G, it is set to one of A / G, G / A, T / C, and C / T based on the description in the information source .

遺伝子多型の検出方法
7mLの静脈血を50mmol/L EDTA(ジナトリウム塩)を含むチューブに採取し、ゲノムDNAをキット(ゲノミックス社製)によって分離した。222個の多型の遺伝子型は、PCRと配列特異的オリゴヌクレオチドプローブをサスペンジョン・アレイ・テクノロジー(SAT:Luminex 100)と組み合わせて使用する方法によって決定した(G&Gサイエンス株式会社)。プライマー、プローブの配列は、下表7に示した。表7は左から順に、遺伝子(Gene Symbol)、多型(Polymorphism)、検出アリル(allele 1、allele 2)、センスプライマー(Sense primer)、アンチセンスプライマー(Anti-sense primer)、プローブ1(Probe 1)、プローブ2(Probe 2)を示した。遺伝子多型検出の詳細な方法については、既報のもの(非特許文献12)を基本として、適宜に増幅条件を変えて行った。なお、慢性腎臓病との関連が認められなかった多型を検出するための条件については記載を省略した。
Detection method of gene polymorphism 7 mL of venous blood was collected in a tube containing 50 mmol / L EDTA (disodium salt), and genomic DNA was separated using a kit (Genomics). The genotypes of 222 polymorphisms were determined by a method using PCR and sequence-specific oligonucleotide probes in combination with Suspension Array Technology (SAT: Luminex 100) (G & G Science Inc.). The primer and probe sequences are shown in Table 7 below. Table 7 shows gene (Gene Symbol), polymorphism (Polymorphism), detection allele (allele 1, allele 2), sense primer (Sense primer), antisense primer (Anti-sense primer), probe 1 (Probe) 1) Probe 2 is shown. The detailed method for detecting the gene polymorphism was performed by appropriately changing the amplification conditions based on the reported method (Non-patent Document 12). In addition, description about the conditions for detecting a polymorphism that was not associated with chronic kidney disease was omitted.

PCR−SSOP−Luminex法
方法の詳細については、非特許文献12に記載の通りである。以下には、この方法の概要について説明する。
図1には、Luminex100フローサイトメトリーで検出するマイクロビーズの微細構造と特徴を示した。マイクロビーズ(図中の符号(A))は、直径が約5.5μm程度であり、ポリスチレン製である。ビーズ表面には、特異的な塩基配列を認識するプローブが結合されている。各ビーズには、一種類のプローブが結合されている。このマイクロビーズには、赤色色素と赤外色素との割合を変化させることにより、図中の符号(B)に示すように、最大で100種類のものを混合した状態で、各ビーズの同定が行えるようになっている。複数種類のプローブを備えたマイクロビーズ(但し、各マイクロビーズには一種類のプローブのみ)を適当な割合で混合し、100ビーズ/μLとなるようにしたビーズミックスを調製した(図中の符号(C))。
The details of the PCR-SSOP-Luminex method are as described in Non-Patent Document 12. Below, the outline | summary of this method is demonstrated.
FIG. 1 shows the microstructure and characteristics of microbeads detected by Luminex 100 flow cytometry. Microbeads (symbol (A) in the figure) have a diameter of about 5.5 μm and are made of polystyrene. A probe that recognizes a specific base sequence is bound to the bead surface. One type of probe is bound to each bead. By changing the ratio of the red dye and the infrared dye to this microbead, the identification of each bead can be performed in a state where a maximum of 100 kinds are mixed, as indicated by the symbol (B) in the figure. It can be done. Microbeads with multiple types of probes (however, only one type of probe for each microbead) were mixed at an appropriate ratio to prepare a bead mix of 100 beads / μL (reference in the figure). (C)).

図2には、PCR−SSOP−Luminex法の手順の概要を示した。
<増幅反応(Amplification)>
目的とするDNAを増幅するPCR反応には、5’末端をビオチンでラベルしたプライマーを用いた。1.5mM塩化マグネシウムを含む1xPCR溶液(50mM KCl、10mM Tris−HCl、pH8.3)、2%DMSO、0.2mM dNTPs、及び0.1μM−10μMプライマーセットを混合し、Taq DNAポリメラーゼ(50U/mL)と50ng−100ngのゲノムDNAを加えて25μLとした。PCR反応は、95℃で10分間処理の後、94℃で20秒間の変性、60℃で30秒間のアニーリング、及び72℃で30秒間の伸長を1サイクルとし、これを50サイクル繰り返した。機器としてGeneAmp9700サーマルサイクラー(アプライドバイオシステムズ社製)を用いた。
In FIG. 2, the outline | summary of the procedure of PCR-SSOP-Luminex method was shown.
<Amplification>
In the PCR reaction for amplifying the target DNA, a primer labeled with biotin at the 5 'end was used. A 1 × PCR solution containing 1.5 mM magnesium chloride (50 mM KCl, 10 mM Tris-HCl, pH 8.3), 2% DMSO, 0.2 mM dNTPs, and 0.1 μM-10 μM primer set were mixed, and Taq DNA polymerase (50 U / mL) and 50 ng-100 ng of genomic DNA were added to make 25 μL. The PCR reaction was treated at 95 ° C. for 10 minutes, followed by denaturation at 94 ° C. for 20 seconds, annealing at 60 ° C. for 30 seconds, and extension at 72 ° C. for 30 seconds, and this was repeated 50 cycles. A GeneAmp9700 thermal cycler (Applied Biosystems) was used as the instrument.

<ハイブリダイゼーション(Hybridization)>
増幅したDNAを変性した後、ビーズミックスとハイブリダイズさせた。96ウエルプレートの各ウエルに、5μLの増幅反応後のPCR増幅液、5μLのビーズミックス、及び40μLのハイブリダイズ用緩衝液(3.75M TMAC、62.5mM TB(pH8.0)、0.5mM EDTA、0.125% N−ラウロイルザルコシン)を添加し、全量50μLとした。この混合液を添加した96ウエルプレートについて、95℃で2分間の変性、及び52℃で30分間のハイブリダイゼーションを行った(GeneAmp9700サーマルサイクラーを用いた。)。
図2中には、増幅したDNAを認識するプローブを有するビーズ(1)のみが、DNAと結合する様子が示されている。
<Hybridization>
The amplified DNA was denatured and then hybridized with the bead mix. In each well of a 96-well plate, 5 μL of amplified PCR solution, 5 μL of bead mix, and 40 μL of hybridization buffer (3.75 M TMAC, 62.5 mM TB (pH 8.0), 0.5 mM) EDTA, 0.125% N-lauroylsarcosine) was added to a total volume of 50 μL. The 96-well plate to which this mixed solution had been added was subjected to denaturation at 95 ° C. for 2 minutes and hybridization at 52 ° C. for 30 minutes (using a GeneAmp 9700 thermal cycler).
FIG. 2 shows a state in which only beads (1) having a probe that recognizes amplified DNA bind to DNA.

<ストレプトアビジン−フィコエリスリン反応(SA−PE Reaction)>
次に、上記ビーズミックス−DNAをSA−PEと反応させた。ハイブリダイゼーション反応の後、各ウエルに100μLのPBS−Tween(1xPBS(pH7.5)、0.01% Tween−20)を添加し、1000xgで5分間の遠心を行い、上清を取り去ることで、マイクロビーズを洗浄した。各ウエルに残ったマイクロビーズに、それぞれ70μLのSA−PE溶液(PBS−Tweenにより、市販品(G&Gサイエンス株式会社製)を100倍希釈したもの)を添加し混合した後、52℃で15分間の反応を行った(GeneAmp9700サーマルサイクラーを用いた。)。
図2中には、ビーズ(1)のプローブにのみビオチン化DNAが結合しているので、そのビオチンにSA−PEが結合する様子が示されている。
<Streptavidin-phycoerythrin reaction (SA-PE Reaction)>
Next, the bead mix-DNA was reacted with SA-PE. After the hybridization reaction, 100 μL of PBS-Tween (1 × PBS (pH 7.5), 0.01% Tween-20) was added to each well, centrifuged at 1000 × g for 5 minutes, and the supernatant was removed. The microbeads were washed. To each microbead remaining in each well, 70 μL of SA-PE solution (commercially available product (G & G Science Co., Ltd.) diluted 100-fold with PBS-Tween) was added and mixed, and then at 52 ° C. for 15 minutes. (A GeneAmp9700 thermal cycler was used.)
FIG. 2 shows that biotinylated DNA is bound only to the probe of the bead (1), and thus SA-PE is bound to the biotin.

<測定(Measurement)>
次に、反応後のサンプルはLuminex100を用いて、ビーズ種類の同定と、そのビーズにPEが結合しているか否かを判定した。測定は2種類のレーザを使用して行い、ビーズの種類は635nmレーザにより同定し、PE蛍光は532nmレーザを用いて定量した。オリゴビーズに結合したDNAは1測定あたり各々のビーズを最低50個ずつ測定し、定量されたPEの蛍光強度の中央値(MFI)を使用した。
図2中には、各ビーズ(1)−(3)が同定され、かつビーズ(1)にのみPEが測定されたことから、ビーズ(1)に結合させたプローブが認識するDNAが増幅された様子が示されている。
<Measurement>
Next, the sample after the reaction used Luminex 100 to identify the bead type and determine whether PE is bound to the bead. The measurement was performed using two types of lasers, the type of beads was identified by a 635 nm laser, and PE fluorescence was quantified using a 532 nm laser. For the DNA bound to the oligo beads, at least 50 beads were measured per measurement, and the quantified median fluorescence intensity (MFI) of PE was used.
In FIG. 2, since each bead (1)-(3) was identified and PE was measured only on the bead (1), the DNA recognized by the probe bound to the bead (1) was amplified. The situation is shown.

統計解析
臨床データは、慢性腎臓病の患者群とコントロール群との間で、対応のないスチューデントt検定により比較した。カテゴリーデータは、カイ二乗検定によって比較した。対立遺伝子頻度は遺伝子カウント法によって概算し、ハーディ・ワインベルク平衡にあてはまるかどうかを判断するためにカイ二乗検定を行った(X染色体上の遺伝子の場合は、女性の遺伝子型分布で検定した)。遺伝子型分布は、2つの群から構成される遺伝モデルを用い慢性腎臓病の患者群とコントロール群との間でカイ二乗検定(2x2)によって比較した。遺伝モデルは、優性モデル(dominant)が「アリル2のホモ接合体とヘテロ接合体の結合群」対「アリル1のホモ接合体」(22+12対11)、劣性モデル(recessive)が「アリル2のホモ接合体」対「アリル1のホモ接合体とヘテロ接合体の結合群」(22対11+12)である。各遺伝子型は、優性、劣性遺伝モデルに従って解析し、危険率(p値)を計算した。
Statistical analysis Clinical data were compared between patients and patients with chronic kidney disease by unpaired Student t test. Categorical data were compared by chi-square test. The allele frequency was estimated by the gene count method, and chi-square test was performed to determine whether it fits the Hardy-Weinberg equilibrium (in the case of genes on the X chromosome, it was tested by female genotype distribution) . The genotype distribution was compared by a chi-square test (2 × 2) between a patient group of chronic kidney disease and a control group using a genetic model composed of two groups. In the genetic model, the dominant model is “Allele 2 homozygous and heterozygous binding group” vs. “Allyl 1 homozygote” (22 + 12 vs 11), and the recessive model is “Allele 2 "Homozygote" vs. "Allyl 1 homozygous and heterozygous binding group" (22 vs. 11 + 12). Each genotype was analyzed according to a dominant and recessive genetic model, and the risk rate (p value) was calculated.

カイ二乗検定でp値が5%未満(p<0.05)で慢性腎臓病と関連した多型の遺伝モデルについては、慢性腎臓病の発症に関連する他の要因(交絡因子)の影響を含め検討するため、遺伝子モデル(優性モデルは、1=「アリル2のホモ接合体とヘテロ接合体の結合群」、0=「アリル1のホモ接合体」、劣性モデルは1=「アリル2のホモ接合体」、0=「アリル1のホモ接合体とヘテロ接合体の結合群」)と交絡因子(年齢(age:連続値)、性別(sex:1=男性、0=女性))を、ステップワイズ変数増加法によるロジスティック回帰分析により解析した。このとき、慢性腎臓病(1=疾患群、0=コントロール群)を従属変数とし、各遺伝子型および交絡因子を独立変数とした。同じ多型で優性モデル(22+12対11)と劣性モデル(22対11+12)の両者のp値が5%未満であった場合は、低いp値の遺伝子型モデルを採用した。対象の選択基準は組み入れ規準(entering significance level)を0.15とし、除外規準(removing significance level)を0.2とした。統計的有意性は、両側検定によって行った。   For the polymorphic genetic model associated with chronic kidney disease with a p-value of less than 5% (p <0.05) in the chi-square test, the influence of other factors related to the development of chronic kidney disease (confounding factors) The gene model (dominant model is 1 = “joined group of homozygotes and heterozygotes of allele 2”, 0 = “homozygote of allele 1”, recessive model is 1 = “allele 2 Homozygote ”, 0 =“ Allyl 1 homozygote and heterozygote binding group ”) and confounding factors (age (age: continuous value), sex (sex: 1 = male, 0 = female)), It was analyzed by logistic regression analysis with stepwise variable increasing method. At this time, chronic kidney disease (1 = disease group, 0 = control group) was a dependent variable, and each genotype and confounding factor were independent variables. When the p value of both the dominant model (22 + 12 vs. 11) and the recessive model (22 vs. 11 + 12) was less than 5% with the same polymorphism, a low p value genotype model was adopted. The inclusion criteria (entering significance level) was set to 0.15, and the exclusion criteria (removing significance level) was set to 0.2. Statistical significance was performed by a two-sided test.

<試験結果>
4,587名の研究対象に関する背景データを表8に示した。表には、左欄より順に、特徴(Characteristic)、疾患群(CKD)、および対照群(Controls)を示している。また、特徴欄は、上より順に、症例数(No. of subjects)、年齢(Age)、性別(男性/女性)(Sex(male/female))を示している。年齢(Age)データは、平均±SDで示した。
<Test results>
Table 8 shows background data on 4,587 subjects. The table shows, in order from the left column, characteristics (Characteristic), disease group (CKD), and control group (Controls). The feature column indicates the number of cases (No. of subjects), age (Age), and sex (male / female) (Sex (male / female)) in order from the top. Age (Age) data are expressed as mean ± SD.

検査した各遺伝子型について、コントロール群の遺伝子型を遺伝子カウント法によって概算し、カイ二乗検定をしたところ、ハーディ・ワインベルク平衡の法則にあてはまっていた。   For each genotype examined, the genotype of the control group was estimated by the gene count method and chi-square test was performed, and it was applied to the law of Hardy-Weinberg equilibrium.

前記対象集団において検査した遺伝子多型の、慢性腎臓病のリスク予測因子としての有意性を確認するために、遺伝子多型を優性、劣性モデルとしてカイ二乗検定により評価し、さらに年齢、性別を含むステップワイズ法によるロジスティック回帰分析を行った。   In order to confirm the significance of the genetic polymorphism examined in the target population as a risk predictor of chronic kidney disease, the genetic polymorphism is evaluated by chi-square test as a dominant and recessive model, and further includes age and sex Logistic regression analysis by the stepwise method was performed.

表9には、対象集団において検査した遺伝子多型を優性、劣性モデルとしてカイ二乗検定により評価し、危険率5%未満(p<0.05)であった遺伝子多型モデルを示した。表には、左欄より順に、遺伝子表記(Gene Symbol)、多型(Polymorphism)、SNPのデータベース番号(dbSNP rs No.)、遺伝子モデル(dominant/ recessive)、その遺伝子モデルの多型(Polymorphism)、その多型のCKD群とコントロール群における症例数、および群における比率(CKD(%)、control(%))、p値(p-value)を示した。   Table 9 shows gene polymorphism models in which the genetic polymorphisms examined in the target population were evaluated by chi-square test as dominant and recessive models and the risk rate was less than 5% (p <0.05). In the table, from the left column, gene notation (Gene Symbol), polymorphism (Polymorphism), SNP database number (dbSNP rs No.), gene model (dominant / recessive), polymorphism of the gene model (Polymorphism) The number of cases in the CKD group and the control group of the polymorphism, the ratio (CKD (%), control (%)), and p value (p-value) in the group are shown.

カイ二乗検定で出現頻度が危険率5%未満(p<0.05)であった遺伝子多型を、他の背景因子(年齢、性別)とともに、独立変数の交絡因子として、ステップワイズ変数増加法でロジスティック回帰解析を実施した結果を表10に示した。これら交絡因子は独立したものであり、オッズ比の積(かけ算)により、総合的な慢性腎臓病に関するリスクを予測できることが分かった。また、解析によって得られたロジスティック回帰モデルにより、リスク値の推定が可能となる。表には、左欄より順に、因子(Variable)、p値(p-value)、回帰モデルの偏回帰係数(β)、オッズ比(Odds-ratio)、オッズ比の95%信頼区間(OR-95%CI)を示した。また、この解析で得られた回帰モデル式の定数は、−6.19991であった。   Stepwise variable increase method using genetic polymorphisms with an appearance frequency of less than 5% (p <0.05) as a confounding factor of independent variables along with other background factors (age, gender) Table 10 shows the results of the logistic regression analysis performed on. These confounding factors were independent, and it was found that the product of odds ratios (multiplication) can predict the risk for overall chronic kidney disease. Moreover, the risk value can be estimated by the logistic regression model obtained by the analysis. In the table, from the left column, factor (Variable), p-value (p-value), partial regression coefficient (β) of regression model, odds ratio (Odds-ratio), 95% confidence interval (OR-) of odds ratio 95% CI). The constant of the regression model equation obtained by this analysis was −6.19991.

このステップワイズ変数増加法によるロジスティック回帰解析の結果、遺伝因子としては、UCP3、PECAM1、HMOX1、APOE、AGTR1、PIK3R1、TNFRSF13B、ABCA1、IRS1、ROS1、BCHE、ANXA5、MMP1、PALLD、KCNJ11、CXCL16、FOXC2、MMP3、COMT、PDE4D、GCK、APOA5の各遺伝子多型が、慢性腎臓病に有意に関連した。また、これら遺伝因子を組み合わせると、最小オッズ比が0.01で最大オッズ比が98.46となった。これは、従来の危険因子である、糖尿病、高血圧、高コレステロール血症、年齢、性別のみで予測するオッズ比と比べて、幅広く評価することが可能であった(参考文献13)。   As a result of logistic regression analysis by this stepwise variable increasing method, genetic factors include UCP3, PECAM1, HMOX1, APOE, AGTR1, PIK3R1, TNFRSF13B, ABCA1, IRS1, ROS1, BCHE, ANXA5, MMP1, PALLD, KCNJ11, CXCL16, FOXC2, MMP3, COMT, PDE4D, GCK, and APOA5 gene polymorphisms were significantly associated with chronic kidney disease. When these genetic factors were combined, the minimum odds ratio was 0.01 and the maximum odds ratio was 98.46. This could be widely evaluated compared to the odds ratio predicted only by conventional risk factors such as diabetes, hypertension, hypercholesterolemia, age, and sex (Reference 13).

<慢性腎臓病のリスク予測システム>
リスク予測システムを開発するに至った統計解析の手法と、実際の臨床的活用の例として、リスクを5段階(A−E)に判断した方法および結果を説明する。
<Risk prediction system for chronic kidney disease>
As an example of a statistical analysis method that has led to the development of a risk prediction system and an actual clinical application, a method and results of determining risk in five stages (AE) will be described.

統計解析で慢性腎臓病と有意に関連した遺伝因子および交絡因子のロジスティック回帰解析によって、各因子の偏回帰係数からなるロジスティック回帰モデルが得られ、そこで算出されるロジット値より、対象者における疾患発症確率のリスク値が推算される。受診者ごとに予測されたリスク値を低い順に並べた場合、値が大きいほど対象者における発症リスクは高くなる。したがって、疾患との関連が示された遺伝因子および交絡因子の検査結果から、本モデルにより慢性腎臓病の発症リスクを推定することが可能となる。   By logistic regression analysis of genetic factors and confounding factors significantly related to chronic kidney disease in statistical analysis, a logistic regression model consisting of partial regression coefficients of each factor is obtained, and from the logit value calculated there, disease onset in the subject Probability risk value is estimated. When the risk values predicted for each patient are arranged in ascending order, the risk of onset in the subject increases as the value increases. Therefore, this model makes it possible to estimate the risk of developing chronic kidney disease from the test results of genetic factors and confounding factors that have been shown to be associated with disease.

このリスク値を推定するロジスティック回帰モデルを得るため、カイ二乗検定でp値が5%未満(p<0.05)で慢性腎臓病と関連した多型の遺伝モデルを、交絡因子である年齢、性別と共に、ステップワイズ変数増加法によるロジスティック回帰分析を実施した。実際のリスク予測に使用する遺伝子多型は20個以内であるほうが運用しやすいため、ロジスティック回帰モデルに含まれる遺伝子多型の個数が最大で20個となるように制限を加えたステップワイズ変数増加法を用いることにより、交絡因子として利用する遺伝子多型を絞り込んだ。   In order to obtain a logistic regression model for estimating this risk value, a polymorphic genetic model associated with chronic kidney disease having a p-value of less than 5% (p <0.05) by chi-square test is calculated as age, which is a confounding factor, Logistic regression analysis with stepwise variable increment method was performed along with gender. Because it is easier to operate within 20 gene polymorphisms used for actual risk prediction, increase the stepwise variable with a restriction so that the maximum number of gene polymorphisms included in the logistic regression model is 20 By using this method, gene polymorphisms used as confounding factors were narrowed down.

上記ステップワイズ変数増加法によるロジスティック回帰分析により選抜した遺伝子多型をリスク予測のための最終的な因子として採用した。また、リスク予測システムに必要な数値を決定した。結果を表11に示す。表中には、左欄より順に、因子(Variable)、p値(p-value)、回帰モデルの偏回帰係数(β)、オッズ比(Odds-ratio)、オッズ比の95%信頼区間(OR-95%CI)を示した。また、この解析で得られた回帰モデル式の定数は、−6.02111であった。   The genetic polymorphism selected by logistic regression analysis using the above stepwise variable increase method was adopted as the final factor for risk prediction. In addition, the figures required for the risk prediction system were determined. The results are shown in Table 11. In the table, from the left column, factor (Variable), p-value (p-value), regression model partial regression coefficient (β), odds ratio (Odds-ratio), odds ratio 95% confidence interval (OR -95% CI). Moreover, the constant of the regression model formula obtained by this analysis was -6.002111.

慢性腎臓病の罹患に対し、統計的有意性が高い順に、UCP3の−35位C/T(劣性モデル)、PIK3R1の75686位G/A(劣性モデル)、PECAM1の36222位A/G(優性モデル)、HMOX1の98位G/C(優性モデル)、APOEの−203位T/G(優性モデル)、AGTR1の43651位G/A(優性モデル)、IRS1の3931位G/A(優性モデル)、TNFRSF13Bの23375位A/C(劣性モデル)、ABCA1の−14位C/T(劣性モデル)、ROS1の124785位G/A(優性モデル)、ANXA5の431位C/T(劣性モデル)、BCHEの63973位G/A(優性モデル)、KCNJ11の634位A/G(優性モデル)、MMP1の−1602位2G/1G(優性モデル)、PALLDの259175位A/G(優性モデル)、CXCL16の4660位C/T(優性モデル)、FOXC2の−512位C/T(劣性モデル)、MMP3の722位A/G(優性モデル)、COMTの21962位G/A(優性モデル)、PDE4Dの919475位TAAA/−(劣性モデル)が有意であり、各要因が独立して慢性腎臓病に関連することが分かった。     In order of increasing statistical significance, UCP3 -35 position C / T (recessive model), PIK3R1 75686 position G / A (recessive model), PECAM1 position 36222 A / G (dominant) Model), HMOX1 98th position G / C (dominant model), APOE -203 position T / G (dominant model), AGTR1 position 43651 G / A (dominant model), IRS1 position 3931 G / A (dominant model) ), TNFRSF13B at 23375 A / C (recessive model), ABCA1 at −14 C / T (recessive model), ROS1 at 124785 G / A (dominant model), ANXA5 at 431 C / T (recessive model) , BCHE 63973 G / A (dominant model), KCNJ11 634 A / G (dominant model), MMP1 −1602 2G / 1G (dominant model) ), PALLD 259175 A / G (dominant model), CXCL16 4660 C / T (dominant model), FOXC2 -512 C / T (recessive model), MMP3 722 A / G (dominant model) ), COMT 21962 position G / A (dominant model), PDE4D 919475 position TAAA /-(recessive model) were significant, and it was found that each factor was independently associated with chronic kidney disease.

本研究成果の臨床的な意義について述べる。病院、クリニックまたは健診センターにおいて、希望者に対して従来の危険因子と今回の遺伝因子に関する検査を行い、慢性腎臓病の発症リスクの予測を行う。これは、本研究で疾患の発症に関連が認められた遺伝因子および交絡因子(年齢、性別)により、受診者のリスク値を推定し、その分布からリスクの程度を3段階以上(例えば、5段階)に分けることによって、実施することができる。   The clinical significance of this research result is described. At hospitals, clinics, or health checkup centers, applicants are tested for conventional risk factors and current genetic factors to predict the risk of developing chronic kidney disease. This is based on genetic factors and confounding factors (age, gender) that are related to the onset of the disease in this study. It can be carried out by dividing it into stages.

慢性腎臓病のリスクを5段階に判断する例を説明する。上記ロジスティック回帰分析によって得られた、ロジスティック回帰式でリスク値を推定する。コントロール群のリスク値を、大きい順に全体を5%、20%、50%、20%、5%に区分し、順に、リスクが高い群、やや高い群、平均的な群、やや低い群、低い群と区分できる。しかし、本研究のコントロール群が、日本人全体の遺伝子型分布とかけ離れている可能性もある。したがって、それを検証するため、群を任意に1対9にわけ、コントロール群と疾患群の分布を確認し、各群がそのリスク値分布区分に過剰適合していないか確認することを10回繰り返し行った。このクロスバリデーションにより、リスク値の分布区分の境界値(閾値)の補正を行った。クロスバリデーションによるリスク値分布区分の閾値補正によって、実際に本研究における慢性腎臓病群の分布は、リスクが高い群は17.4%(コントロール群は4.4%)、リスクがやや高い群は34.0%(コントロール群は18.4%)、平均的リスクの群は40.6%(コントロール群は50.5%)、リスクがやや低い群は7.3%(コントロール群は21.2%)、リスクが低い群は0.7%(コントロール群は5.5%)であった。   An example in which the risk of chronic kidney disease is judged in five levels will be described. The risk value is estimated by the logistic regression equation obtained by the logistic regression analysis. The risk value of the control group is divided into 5%, 20%, 50%, 20%, and 5% in descending order, and the risk group is higher, slightly higher, average, slightly lower, and lower. Can be separated from groups. However, it is possible that the control group in this study is far from the genotype distribution of the entire Japanese population. Therefore, in order to verify it, the group is divided into 1 to 9 arbitrarily, the distribution of the control group and the disease group is confirmed, and it is confirmed that each group is not overfitted with the risk value distribution category 10 times. Repeatedly. By this cross-validation, the boundary value (threshold value) of the risk value distribution category was corrected. By the threshold correction of the risk value distribution classification by cross validation, the distribution of the chronic kidney disease group in this study is actually 17.4% in the high-risk group (4.4% in the control group), and the group with a slightly high risk 34.0% (18.4% in the control group), 40.6% in the average risk group (50.5% in the control group), 7.3% in the slightly lower risk group (21.3% in the control group). 2%), the low-risk group was 0.7% (the control group was 5.5%).

結果については、医師等の有資格者の判断を含めてカウンセリングを行い、とりわけ高リスク群またはやや高リスク群に属する場合には生活習慣の改善(禁煙・飲酒の減量・食事療法即ち塩分摂取の制限や低タンパク食など)または早期の薬物治療を行うことにより慢性腎臓病の一次・二次予防を積極的に推進する。特に慢性腎臓病の家族歴のある人への適用が有効である。本システムにより慢性腎臓病のオーダーメイド予防が可能になり、慢性腎臓病に起因する種々の疾患、即ち末期腎不全、心筋梗塞、脳梗塞などの予防につながる。ひいては、透析患者数の減少、高齢者の健康寿命延長・QOL向上・ねたきり防止や今後の医療費削減などにつながり、医学的・社会的に大きく貢献できる。   The results will be counseled, including the judgment of qualified personnel such as doctors, and especially if they belong to the high-risk group or a moderately high-risk group, improvement of lifestyle habits (smoking cessation, alcohol consumption reduction, diet therapy, ie, salt intake) Proactively promote primary and secondary prevention of chronic kidney disease by giving restrictions or low protein diet) or early drug treatment. It is especially effective for people with a family history of chronic kidney disease. This system enables custom-made prevention of chronic kidney disease and leads to prevention of various diseases caused by chronic kidney disease, that is, end stage renal failure, myocardial infarction, cerebral infarction and the like. As a result, the number of dialysis patients can be reduced, the healthy life expectancy of the elderly can be increased, QOL can be improved, bedridden prevention, and future medical expenses can be reduced.

<考察>
本発明者は、4,587名の日本人からなる集団において、176個の候補遺伝子中の222個の多型と、慢性腎臓病との関連を調べた。今回の大規模研究によって、UCP3の−35位C/T多型、PECAM1の36222位A/G多型、HMOX1の98位G/C多型、APOEの−203位T/G多型、AGTR1の43651位G/A多型、PIK3R1の75686位G/A多型、TNFRSF13Bの23375位A/C多型、ABCA1の−14位C/T多型、IRS1の3931位G/A多型、ROS1の124785位G/A多型、BCHEの63973位G/A多型、ANXA5の431位C/T多型、MMP1の−1602位2G/1G多型、PALLDの259175位A/G多型、KCNJ11の634位A/G多型、CXCL16の4660位C/T多型、FOXC2の−512位C/T多型、MMP3の722位A/G多型、COMTの21962位G/A多型、PDE4Dの919475位TAAA/−多型、GCKの−30位G/A多型、APOA5の−1123位C/T多型が慢性腎臓病と有意に関連することが明らかになった。
<Discussion>
The present inventor examined the association between 222 polymorphisms in 176 candidate genes and chronic kidney disease in a population of 4,587 Japanese. By this large-scale study, UCP3 -35 position C / T polymorphism, PECAM1 36222 position A / G polymorphism, HMOX1 98 position G / C polymorphism, APOE -203 position T / G polymorphism, AGTR1 43651 G / A polymorphism of PIK3R1, 75686 G / A polymorphism of PIK3R1, 23375 A / C polymorphism of TNFRSF13B, −14 C / T polymorphism of ABCA1, 3931 G / A polymorphism of IRS1 ROS1 124785 G / A polymorphism, BCHE 63973 G / A polymorphism, ANXA5 431 C / T polymorphism, MMP-1 −1602 2G / 1G polymorphism, PALLD 259175 A / G polymorphism , KCNJ11 position 634 A / G polymorphism, CXCL16 position 4660 C / T polymorphism, FOXC2 position −512 C / T polymorphism, MMP3 position 722 A / G polymorphism, COMT 219 2nd position G / A polymorphism, PDE4D 9191475 position TAAA / -polymorphism, GCK −30 position G / A polymorphism, and APOA5 −1123 position C / T polymorphism may be significantly associated with chronic kidney disease It was revealed.

最後に、慢性腎臓病では上記22個の多型のうち、統計解析により特に疾患との関連が強い20個の多型と年齢・性別の情報をロジスティック回帰式に投入し、これらの遺伝子型の組み合わせにより遺伝的リスクをA−Eの5段階で評価した。結果を表12に示す。表中においては、左より順に、因子(Variable)として各多型の遺伝子表記(Gene Symbol)と遺伝子型(polymorphism)、年齢(Age)、性別(Sex)、ロジット値(logit)、リスク値(Pseudo Probability)、オッズ比(Odds-ratio)、5段階評価(estimate A,B,C,D,E)を示す。5段階評価は、受診者の発症確率のリスク値を推定し、コントロール群のリスク値分布を、研究対象群のクロスバリデーションにより補正した閾値で区分したところ、リスク値の大きい順に4.4%がリスクの高い群、次の18.4%がリスクのやや高い群、次の50.5%が平均的リスクの群、次の21.2%がリスクのやや高い群、リスク値の最も小さい5.5%がリスクの低い群に評価された。本発明においては、遺伝的リスクを5段階評価で提示することにより、発症リスクが容易に推定可能となる。   Finally, in chronic kidney disease, among the above 22 polymorphisms, 20 polymorphisms that are particularly related to the disease by statistical analysis and information on age and gender are input into the logistic regression equation, and these genotypes are The genetic risk was evaluated in 5 grades of AE according to the combination. The results are shown in Table 12. In the table, in order from the left, each polymorphism is expressed as a variable (Gene Symbol), genotype (polymorphism), age (Age), gender (Sex), logit value (logit), risk value ( Pseudo Probability), odds ratio (Odds-ratio), and 5-level evaluation (estimate A, B, C, D, E) are shown. In the 5-level evaluation, the risk value of the onset probability of the examinee is estimated, and the risk value distribution of the control group is divided by the threshold value corrected by the cross-validation of the study group. High risk group, the next 18.4% is a slightly higher risk group, the next 50.5% is an average risk group, the next 21.2% is a slightly higher risk group, the lowest risk value5 .5% was rated in the low risk group. In the present invention, the onset risk can be easily estimated by presenting the genetic risk in a five-step evaluation.

MMP1(Matrix metallopeptidase 1)
マトリックス金属結合タンパク分解酵素1(MMP1)は、ほとんどのタンパク質分解酵素に抵抗性をもつタンパク質である原繊維コラーゲン(特にタイプIとIII)を分解する(非特許文献14)。アテローム動脈硬化性プラークのマクロファージで発現し、破裂しやすいと思われるプラークの片鱗部に、分解される原繊維コラーゲンと共に存在している(非特許文献15、16)。MMP1の発現の増加は、アテローム動脈硬化性プラークの破裂を促進する(非特許文献17)。MMP1の−1602位2G/1G多型は、プロモーター領域に位置し、MMP1の他の多型も含めて心筋梗塞のリスクに関与している(非特許文献18)。アテローム性動脈硬化に対するこの多型の影響が、慢性腎臓病にも関連する理由であると推測される。
MMP1 (Matrix metallopeptidase 1)
Matrix metal-bound proteolytic enzyme 1 (MMP1) degrades fibrillar collagen (particularly types I and III), which is a protein resistant to most proteolytic enzymes (Non-patent Document 14). It is expressed in macrophages of atherosclerotic plaques, and is present together with fibrillar collagen to be decomposed in a flank of plaques that are likely to be ruptured (Non-patent Documents 15 and 16). Increased expression of MMP1 promotes rupture of atherosclerotic plaque (Non-patent Document 17). The −1602 2G / 1G polymorphism of MMP1 is located in the promoter region and is involved in the risk of myocardial infarction including other polymorphisms of MMP1 (Non-patent Document 18). It is speculated that the effect of this polymorphism on atherosclerosis is also related to chronic kidney disease.

APOE(Apolipoprotein E)
アポリポタンパク質E(APOE)はカイロミクロンと超低密度リポタンパク質残差の構成要素であり、低密度リポプロテイン(LDL)レセプターとLDL受容体様タンパク質を介したこれらの粒子の結合と取り込みに関わっている(非特許文献19、20)。APOEの−203位T/G多型は、フランスと北アイルランドで、男性の心筋梗塞と関係したと報告された(非特許文献21)。この多型のTアリルは、日本人の低リスク男性において冠動脈疾患(coronary heart disease)の危険因子であると報告された(非特許文献22)。本研究において、APOEの−203位T/G多型は、Tアリルにおいて、慢性腎臓病に関連が示された。この多型は、APOEのプロモーター領域にあり、APOEの血漿内濃度(TアリルでAPOE濃度が減少)との関連が示されている(非特許文献21)。リポタンパク質の代謝異常は、アテローム性動脈硬化症の進展および糸球体硬化症の進展に重要な役割を果たすが(非特許文献23、24)、慢性腎臓病におけるAPOEの−203位T/G多型の役割は不明である。
APOE (Apolipoprotein E)
Apolipoprotein E (APOE) is a component of chylomicron and ultra-low density lipoprotein residues and is involved in the binding and uptake of these particles via low density lipoprotein (LDL) receptors and LDL receptor-like proteins. (Non-Patent Documents 19 and 20). The -203 T / G polymorphism of APOE was reported to be associated with male myocardial infarction in France and Northern Ireland (Non-patent Document 21). This polymorphic T allyl was reported to be a risk factor for coronary heart disease in Japanese low-risk men (Non-patent Document 22). In this study, the -203 T / G polymorphism of APOE has been shown to be associated with chronic kidney disease in T allele. This polymorphism is in the promoter region of APOE and has been shown to be associated with the plasma concentration of APOE (APOE concentration decreases with T allele) (Non-patent Document 21). Abnormalities in lipoprotein metabolism play an important role in the development of atherosclerosis and glomerulosclerosis (Non-patent Documents 23 and 24), but the AP / -203 T / G multiple in chronic kidney disease. The role of the type is unknown.

MMP3(Matrix metallopeptidase 3)
マトリックス金属結合タンパク分解酵素3は、アテローム(動脈内膜の脂肪沈着)で発現し、広い基質特異性をもち、コラーゲン分解酵素やゼラチン分解酵素といった他のMMP(マトリックス金属結合タンパク分解酵素)を活性化させる(非特許文献25)。アポリポタンパク質E欠損マウスでのMMP3の不活化は、損傷マトリックスタンパク質の量も、アテローム動脈硬化性プラークのサイズも増大させる(非特許文献26)。冠状動脈アテローム性動脈硬化症のプラークでは、破裂しやすいと思われる場所で最も顕著に、MMP3のmRNAの存在がin situハイブリダイゼーションで確認されている(非特許文献27)。MMP3の発現は主に転写のレベルで調節されており、この遺伝子のプロモーターは様々な刺激に反応する(非特許文献28)。われわれは、以前、日本人女性における心筋梗塞の罹患率と、MMP3の−1610位5A/6A多型に関連があることを示した(非特許文献29)。また、重篤な狭窄となるアテローム動脈硬化性プラークは、このMMP遺伝子多型と関連があることも報告された(非特許文献30、31)。これらの知見より、MMP3はアテローム性動脈硬化に関与する候補遺伝子であることが示唆される。今回、我々は、慢性腎臓病疾患発症とMMP3の722位A/G(Lys45Glu)多型の関連を示したが、そのメカニズムは不明である。
MMP3 (Matrix metallopeptidase 3)
Matrix metal-binding proteolytic enzyme 3 is expressed in atheroma (fatting of arterial intima), has a wide substrate specificity, and activates other MMPs (matrix metal-binding proteolytic enzymes) such as collagenolytic enzymes and gelatinolytic enzymes (Non-patent Document 25). Inactivation of MMP3 in apolipoprotein E-deficient mice increases both the amount of damaged matrix protein and the size of atherosclerotic plaques (Non-Patent Document 26). In plaques of coronary atherosclerosis, the presence of MMP3 mRNA has been confirmed by in situ hybridization most prominently in a place that seems to be easily ruptured (Non-patent Document 27). The expression of MMP3 is mainly regulated at the level of transcription, and the promoter of this gene responds to various stimuli (Non-patent Document 28). We have previously shown that there is an association between the prevalence of myocardial infarction in Japanese women and the -1610 5A / 6A polymorphism of MMP3 (Non-patent Document 29). It has also been reported that atherosclerotic plaques that cause severe stenosis are associated with this MMP gene polymorphism (Non-patent Documents 30 and 31). These findings suggest that MMP3 is a candidate gene involved in atherosclerosis. This time, we showed the relationship between the onset of chronic kidney disease and the 722 position A / G (Lys45Glu) polymorphism of MMP3, but the mechanism is unknown.

UCP3(Uncoupling protein 3)
ミトコンドリア脱共役タンパク質3(UCP3)はミトコンドリア膜輸送タンパク質で、主に骨格筋で発現しており、エネルギー代謝調節の役割をしている(非特許文献32)。UCP3の−35位C/Tは、この遺伝子のプロモーター領域に位置しており、肥満(非特許文献33)、心筋梗塞(非特許文献34)との関連が示されている。この多型のTアリルは2型糖尿病の進行のリスクを増大させた(非特許文献35)。本研究では、UCP3の−35位C/T多型のTアリルが慢性腎臓病の疾患リスクと関わっていることを示した。この多型の、肥満と2型糖尿病の進行に対する影響が、慢性腎臓病と関連する可能性がある。
UCP3 (Uncoupling protein 3)
Mitochondrial uncoupling protein 3 (UCP3) is a mitochondrial membrane transport protein, which is expressed mainly in skeletal muscle and plays a role in regulating energy metabolism (Non-patent Document 32). UCP3 -35 position C / T is located in the promoter region of this gene, and its association with obesity (Non-patent document 33) and myocardial infarction (Non-patent document 34) has been shown. This polymorphic T allyl increased the risk of progression of type 2 diabetes (Non-patent Document 35). In this study, we showed that T-allyl of the -35 C / T polymorphism of UCP3 is involved in the disease risk of chronic kidney disease. The impact of this polymorphism on obesity and type 2 diabetes progression may be associated with chronic kidney disease.

PECAM1(Platelet-endothelial cell adhesion molecule 1)
PECAM1は、130kDのイムノグロブリンスーパーファミリーであり、内皮細胞表面、血小板、白血球と血液前駆細胞で発現しているタンパク質である(非特許文献36)。PECAM1は、インテグリンの親和性を調節することによる白血球の接着(非特許文献37)、刺激分子に反応した内皮透過輸送(非特許文献38)の両方に重要な役割を果たす。PECAM1の36222位A/G(Gln668Arg)多型は、このタンパク質の、シグナル伝達の主要な役割を果たす細胞質ドメインをコードしているエクソン12に位置している(非特許文献36)。Aアリル(Gln)の多型は、日本人において、心筋梗塞のリスクを増大させる因子として関与が示されている(非特許文献39)。今回我々は、PECAM1の36222位A/G多型のAアリル(Gln)が、慢性腎臓病のリスクに抑制因子として関わっていることを示した。この多型のAアリル(Gln)が、心筋梗塞の危険因子、慢性腎臓病の抑制因子の両方に関与しているメカニズムは明らかではない。
PECAM1 (Platelet-endothelial cell adhesion molecule 1)
PECAM1 is a 130 kD immunoglobulin superfamily, and is a protein expressed on the surface of endothelial cells, platelets, leukocytes and blood precursor cells (Non-patent Document 36). PECAM1 plays an important role in both leukocyte adhesion by regulating integrin affinity (Non-patent Document 37) and endothelial permeation transport in response to stimulating molecules (Non-patent Document 38). The PECAM1 position 36222 A / G (Gln668Arg) polymorphism is located in exon 12, which encodes the cytoplasmic domain of this protein that plays a major role in signal transduction (36). A polymorphism of A allele (Gln) has been shown to be involved as a factor that increases the risk of myocardial infarction in Japanese (Non-patent Document 39). Here we show that PECAM1 36222 A / G polymorphism A allele (Gln) is involved as a suppressor in the risk of chronic kidney disease. The mechanism by which this polymorphic A allele (Gln) is involved in both risk factors for myocardial infarction and inhibitors of chronic kidney disease is not clear.

<結論>
我々の研究によれば、日本人においては、UCP3、PECAM1、HMOX1、APOE、AGTR1、PIK3R1、TNFRSF13B、ABCA1、IRS1、ROS1、BCHE、ANXA5、MMP1、PALLD、KCNJ11、CXCL16、FOXC2、MMP3、COMT、PDE4D、GCK、APOA5の多型が慢性腎臓病に関連した。この結果に基づき、遺伝子多型を調べることにより、慢性腎臓病発症の危険性を知ることができる。
このように本実施形態によれば、慢性腎臓病について、遺伝的リスクを予測するための検出法を提供することができる。この実施形態を用いることにより、慢性腎臓病の予防が可能となり、透析患者数の減少、心血管障害の減少、高齢者の健康寿命延長・QOL向上・ねたきり防止ならびに今後の医療費削減など、医学的・社会的に大きく貢献できる。
<Conclusion>
According to our study, UCP3, PECAM1, HMOX1, APOE, AGTR1, PIK3R1, TNFRSF13B, ABCA1, IRS1, ROS1, BCHE, ANXA5, MMP1, PALLD, KCNJ11, CXCL16, FOXCMT, MMP3 PDE4D, GCK, APOA5 polymorphisms were associated with chronic kidney disease. Based on this result, it is possible to know the risk of developing chronic kidney disease by examining genetic polymorphisms.
Thus, according to the present embodiment, a detection method for predicting a genetic risk can be provided for chronic kidney disease. By using this embodiment, it becomes possible to prevent chronic kidney disease, decrease the number of dialysis patients, decrease cardiovascular disorders, prolong the healthy life of the elderly, improve QOL, prevent stickiness, and reduce medical expenses in the future. , Can contribute greatly medically and socially.

L Wesson et al., Renal hemodynamics in physiologic state. In: Physiology of Human Kidney, edited by Wesson L, New York, Grune and Stratton, (1969) pp 96-108.L: Wesson et al., Renal hemodynamics in physiologic state.In: Physiology of Human Kidney, edited by Wesson L, New York, Grune and Stratton, (1969) pp 96-108. DE Weiner DE et al., Chronic kidney disease as a risk factor for cardiovascular disease and all-cause mortality: a pooled analysis of community-based studies. J Am Soc Nephrol 15 (2004) 1307-1315.DE Weiner DE et al., Chronic kidney disease as a risk factor for cardiovascular disease and all-cause mortality: a pooled analysis of community-based studies.J Am Soc Nephrol 15 (2004) 1307-1315. TH Jafar et al., AIPRD Study Group: Progression of chronic kidney disease: the role of blood pressure control, proteinuria, and angiotensin-convertingenzyme inhibition: a patient-level meta-analysis. Ann Intern Med. 139 (2003) 244-252.TH Jafar et al., AIPRD Study Group: Progression of chronic kidney disease: the role of blood pressure control, proteinuria, and angiotensin-convertingenzyme inhibition: a patient-level meta-analysis. Ann Intern Med. 139 (2003) 244-252 . National Kidney Foundation: K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Am J Kidney Dis 39 (2 Suppl 1), (2002) S1-S266.National Kidney Foundation: K / DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Am J Kidney Dis 39 (2 Suppl 1), (2002) S1-S266. AG Gharavi AG et al., IgA nephropathy, the most common cause of glomerulonephritis, is linked to 6q22-23. Nat Genet 26 (2000) 354-357.AG Gharavi AG et al., IgA nephropathy, the most common cause of glomerulonephritis, is linked to 6q22-23. Nat Genet 26 (2000) 354-357. RL Hanson RL et al., Identification of PVT1 as a candidate gene for end-stage renal disease in type 2 diabetes using a pooling-based genome-wide single nucleotide polymorphism association study. Diabetes 56 (2007) 975-983.RL Hanson RL et al., Identification of PVT1 as a candidate gene for end-stage renal disease in type 2 diabetes using a pooling-based genome-wide single nucleotide polymorphism association study.Diabetes 56 (2007) 975-983. M Fodinger et al., Effect of TCN2 776C>G on vitamin B12 cellular availability in end-stage renal disease patients. Kidney Int 64 (2003) 1095-1100.M Fodinger et al., Effect of TCN2 776C> G on vitamin B12 cellular availability in end-stage renal disease patients. Kidney Int 64 (2003) 1095-1100. JB Wetmore et al., Interleukin-1 gene cluster polymorphisms predict risk of ESRD. Kidney Int 68 (2005) 278-284.JB Wetmore et al., Interleukin-1 gene cluster polymorphisms predict risk of ESRD.Kidney Int 68 (2005) 278-284. K Doi et al., Functional polymorphisms in the vascular endothelial growth factor gene are associated with development of end-stage renal disease in males. J Am Soc Nephrol 17 (2006) 823-830.K Doi et al., Functional polymorphisms in the vascular endothelial growth factor gene are associated with development of end-stage renal disease in males.J Am Soc Nephrol 17 (2006) 823-830. AS Go et al., Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N Engl J Med 351 (2004) 1296-1305.AS Go et al., Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization.N Engl J Med 351 (2004) 1296-1305. E Imai et al., Slower decline of glomerular filtration rate in the Japanese general population: a longitudinal 10-year follow-up study. Hypertens Res 31 (2008) 433-441.E Imai et al., Slower decline of glomerular filtration rate in the Japanese general population: a longitudinal 10-year follow-up study.Hypertens Res 31 (2008) 433-441. Y Itoh et al., High-throughput DNA typing of HLA-A, -B, -C, and -DRB1 loci by a PCR-SSOP-Luminex method in the Japanese population, Immunogenetics 57 (2005) 717-729.Y Itoh et al., High-throughput DNA typing of HLA-A, -B, -C, and -DRB1 loci by a PCR-SSOP-Luminex method in the Japanese population, Immunogenetics 57 (2005) 717-729. Y Yamada et al., Association of genetic variants with chronic kidney disease in Japanesse individuals. Clin J Am Soc Nephrol. in press.Y Yamada et al., Association of genetic variants with chronic kidney disease in Japanesse individuals.Clin J Am Soc Nephrol. R Visse et al., Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ Res 92 (2003) 827-839.R Visse et al., Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ Res 92 (2003) 827-839. ST Nikkari et al., Interstitial collagenase (MMP-1) expression in human carotid atherosclerosis. Circulation 92 (1995) 1393-1398.ST Nikkari et al., Interstitial collagenase (MMP-1) expression in human carotid atherosclerosis. Circulation 92 (1995) 1393-1398. GK Sukhova et al., Evidence for increased collagenolysis by interstitial collagenases-1 and -3 in vulnerable human atheromatous plaques. Circulation 99 (1999) 2503-2509.GK Sukhova et al., Evidence for increased collagenolysis by interstitial collagenases-1 and -3 in vulnerable human atheromatous plaques. Circulation 99 (1999) 2503-2509. P Libby et al., Molecular bases of the acute coronary syndromes. Circulation 91 (1995) 2844-2850.P Libby et al., Molecular bases of the acute coronary syndromes. Circulation 91 (1995) 2844-2850. E Pearce et al., Haplotype effect of the matrix metalloproteinase-1 gene on risk of myocardial infarction. Circ Res 97 (2005) 1070-1076.E Pearce et al., Haplotype effect of the matrix metalloproteinase-1 gene on risk of myocardial infarction. Circ Res 97 (2005) 1070-1076. RW Mahley et al., Apolipoprotein E: cholesterol transport protein with expanding role in cell biology. Science 240 (1988) 622-630.RW Mahley et al., Apolipoprotein E: cholesterol transport protein with expanding role in cell biology.Science 240 (1988) 622-630. U Beisiegel et al., The LDL-receptor-related protein, LRP, is an apolipoprotein E-binding protein. Nature 341 (1989) 162-164.U Beisiegel et al., The LDL-receptor-related protein, LRP, is an apolipoprotein E-binding protein.Nature 341 (1989) 162-164. JC Lambert et al., Independent association of an APOE gene promoter polymorphism with increased risk of myocardial infarction and decreased APOE plasma concentrations-the ECTIM study. Hum Mol Genet 9 (2000) 57-61.JC Lambert et al., Independent association of an APOE gene promoter polymorphism with increased risk of myocardial infarction and decreased APOE plasma concentrations-the ECTIM study.Hum Mol Genet 9 (2000) 57-61. A Hirashiki et al., Association of gene polymorphisms with coronary artery disease in low- or high-risk subjects defined by conventional risk factors. J Am Coll Cardiol 42 (20003) 1429-1437.A Hirashiki et al., Association of gene polymorphisms with coronary artery disease in low- or high-risk subjects defined by conventional risk factors.J Am Coll Cardiol 42 (20003) 1429-1437. BL Kasiske et al., Relationship between vascular disease and age-associated changes in the human kidney. Kidney Int 31 (1987) 1153-1159.BL Kasiske et al., Relationship between vascular disease and age-associated changes in the human kidney.Kidney Int 31 (1987) 1153-1159. WF Keane et al., Lipids and progressive glomerulosclerosis. A model analogous to atherosclerosis. Am J Nephrol 8 (1988) 261-271.WF Keane et al., Lipids and progressive glomerulosclerosis. A model analogous to atherosclerosis. Am J Nephrol 8 (1988) 261-271. JF Woessner Jr et al., Matrix metalloproteinases and their inhibitors in connective tissue remodeling. FASEB J 5 (1991) 2145-2154.JF Woessner Jr et al., Matrix metalloproteinases and their inhibitors in connective tissue remodeling.FASEB J 5 (1991) 2145-2154. J Silence et al., Persistence of atherosclerotic plaque but reduced aneurysm formation in mice with stromelysin-1 (MMP-3) gene inactivation. Arterioscler Thromb Vasc Biol 21 (2001) 1440-1445.J Silence et al., Persistence of atherosclerotic plaque but reduced aneurysm formation in mice with stromelysin-1 (MMP-3) gene inactivation.Arterioscler Thromb Vasc Biol 21 (2001) 1440-1445. AM Henney et al., Localization of stromelysin gene expression in atherosclerotic plaques by in situ hybridization. Proc Natl Acad Sci USA 88 (1991) 8154-8158.AM Henney et al., Localization of stromelysin gene expression in atherosclerotic plaques by in situ hybridization.Proc Natl Acad Sci USA 88 (1991) 8154-8158. G Buttice et al., The AP-1 site is required for basal expression but is not necessary for TPA-response of the human stromelysin gene. Nucleic Acids Res 19 (1991) 3723-3731.G Buttice et al., The AP-1 site is required for basal expression but is not necessary for TPA-response of the human stromelysin gene.Nucleic Acids Res 19 (1991) 3723-3731. Y Yamada et al., Prediction of the risk of myocardial infarction from polymorphisms in candidate genes. N Engl J Med 347 (2002) 1916-1923.Y Yamada et al., Prediction of the risk of myocardial infarction from polymorphisms in candidate genes.N Engl J Med 347 (2002) 1916-1923. S Beyzade et al., Influences of matrix metalloproteinase-3 gene variation on extent of coronary atherosclerosis and risk of myocardial infarction. J Am Coll Cardiol 41 (2003) 2130-2137.S Beyzade et al., Influences of matrix metalloproteinase-3 gene variation on extent of coronary atherosclerosis and risk of myocardial infarction.J Am Coll Cardiol 41 (2003) 2130-2137. T Rundek et al., Carotid intima-media thickness is associated with allelic variants of stromelysin-1, interleukin-6, and hepatic lipase genes: the Northern Manhattan Prospective Cohort Study. Stroke 33 (2002) 1420-1423.T Rundek et al., Carotid intima-media thickness is associated with allelic variants of stromelysin-1, interleukin-6, and hepatic lipase genes: the Northern Manhattan Prospective Cohort Study.Stroke 33 (2002) 1420-1423. P Schrauwen et al., Etomoxir-induced increase in UCP3 supports a role of uncoupling protein 3 as a mitochondrial fatty acid anion exporter. FASEB J 16 (2002) 1688-1690.P Schrauwen et al., Etomoxir-induced increase in UCP3 supports a role of uncoupling protein 3 as a mitochondrial fatty acid anion exporter.FASEB J 16 (2002) 1688-1690. S Otabe et al., A genetic variation in the 5' flanking region of the UCP3 gene is associated with body mass index in humans in interaction with physical activity. Diabetologia 43 (2000) 245-249.S Otabe et al., A genetic variation in the 5 'flanking region of the UCP3 gene is associated with body mass index in humans in interaction with physical activity.Diabetologia 43 (2000) 245-249. T Yoshida et al., Association of gene polymorphisms with myocardial infarction in individuals with different lipid profiles. Int J Mol Med 20 (2007) 581-590.T Yoshida et al., Association of gene polymorphisms with myocardial infarction in individuals with different lipid profiles.Int J Mol Med 20 (2007) 581-590. DR Gable et al., Variation in the UCP2-UCP3 gene cluster predicts the development of type 2 diabetes in healthy middle-aged men. Diabetes 55 (2006) 1504-1511.DR Gable et al., Variation in the UCP2-UCP3 gene cluster predicts the development of type 2 diabetes in healthy middle-aged men.Diabetes 55 (2006) 1504-1511. PJ Newman, The biology of PECAM-1. J Clin Invest 99 (1997) 3-8.PJ Newman, The biology of PECAM-1. J Clin Invest 99 (1997) 3-8. ME Berman ME et al., Ligation of platelet/endothelial cell adhesion molecule 1 (PECAM-1/CD31) on monocytes and neutrophils increases binding capacity of leukocyte CR3 (CD11b/CD18). J Immunol 154 (1995) 299-307.ME Berman ME et al., Ligation of platelet / endothelial cell adhesion molecule 1 (PECAM-1 / CD31) on monocytes and neutrophils increases binding capacity of leukocyte CR3 (CD11b / CD18). J Immunol 154 (1995) 299-307. RD Thompson et al., Platelet-endothelial cell adhesion molecule-1 (PECAM-1)-deficient mice demonstrate a transient and cytokine-specific role for PECAM-1 in leukocyte migration through the perivascular basement membrane. Blood 97 (2001) 1854-1860.RD Thompson et al., Platelet-endothelial cell adhesion molecule-1 (PECAM-1) -deficient mice demonstrate a transient and cytokine-specific role for PECAM-1 in leukocyte migration through the perivascular basement membrane.Blood 97 (2001) 1854- 1860. T Sasaoka et al., Polymorphisms in the platelet-endothelial cell adhesion molecule-1 (PECAM-1) gene, Asn563Ser and Gly670Arg, associated with myocardial infarction in the Japanese. Ann NY Acad Sci 947 (2001) 259-269; discussion 269-270.T Sasaoka et al., Polymorphisms in the platelet-endothelial cell adhesion molecule-1 (PECAM-1) gene, Asn563Ser and Gly670Arg, associated with myocardial infarction in the Japanese. Ann NY Acad Sci 947 (2001) 259-269; discussion 269 -270.

Luminex100で検出するマイクロビーズの微細構造と特徴を示す図である。It is a figure which shows the fine structure and characteristic of a microbead detected with Luminex100. PCR−SSOP−Luminex法の手順の概要を示す図である。It is a figure which shows the outline | summary of the procedure of PCR-SSOP-Luminex method.

Claims (2)

UCP3の−35位C/T、PECAM1の36222位A/G、HMOX1の98位G/C、APOEの−203位T/G、AGTR1の43651位G/A、PIK3R1の75686位G/A、TNFRSF13Bの23375位A/C、ABCA1の−14位C/T、IRS1の3931位G/A、ROS1の124785位G/A、BCHEの63973位G/A、ANXA5の431位C/T、MMP1の−1602位2G/1G、PALLDの259175位A/G、KCNJ11の634位A/G、CXCL16の4660位C/T、FOXC2の−512位C/T、MMP3の722位A/G、COMTの21962位G/A、PDE4Dの919475位TAAA/−、GCKの−30位G/A、APOA5の−1123位C/Tのうちの少なくとも1個または2個以上の遺伝子多型と、性別、年齢とを評価因子とし、各評価因子のオッズ比を乗じた発症リスクを計算し、この発症リスクを平均と分散またはパーセント区分に応じて3つ以上の複数の群を作成し、各群に応じて発症のリスクを検出することを特徴とする慢性腎臓病のリスク検出法。 UCP3 -35 position C / T, PECAM1 36222 position A / G, HMOX1 98 position G / C, APOE -203 position T / G, AGTR1 43651 position G / A, PIK3R1 75686 position G / A, TNFRSF13B at 23375 A / C, ABCA1 at −14 C / T, IRS1 at 3931 G / A, ROS1 at 124785 G / A, BCHE at 63973 G / A, ANXA5 at 431 C / T, MMP1 -1602 2G / 1G, PALLD 259175 A / G, KCNJ11 634 A / G, CXCL16 4660 C / T, FOXC2 -512 C / T, MMP3 722 A / G, COMT 21962 position G / A, PDE4D 919475 position TAAA /-, GCK -30 position G / A, APOA5 -112 The risk of onset is calculated by multiplying at least one or more genetic polymorphisms of position C / T, gender, and age as evaluation factors, and the odds ratio of each evaluation factor, and this risk is calculated as the average A method for detecting a risk of chronic kidney disease, comprising preparing a plurality of groups of three or more according to variance or percentage classification, and detecting a risk of onset according to each group. UCP3の−35位C/T、PECAM1の36222位A/G、HMOX1の98位G/C、APOEの−203位T/G、AGTR1の43651位G/A、PIK3R1の75686位G/A、TNFRSF13Bの23375位A/C、ABCA1の−14位C/T、IRS1の3931位G/A、ROS1の124785位G/A、BCHEの63973位G/A、ANXA5の431位C/T、MMP1の−1602位2G/1G、PALLDの259175位A/G、KCNJ11の634位A/G、CXCL16の4660位C/T、FOXC2の−512位C/T、MMP3の722位A/G、COMTの21962位G/A、PDE4Dの919475位TAAA/−、GCKの−30位G/A、APOA5の−1123位C/Tのうちの少なくとも1個または2個以上の遺伝子多型を検出することを特徴とする慢性腎臓病のリスク検出法。 UCP3 -35 position C / T, PECAM1 36222 position A / G, HMOX1 98 position G / C, APOE -203 position T / G, AGTR1 43651 position G / A, PIK3R1 75686 position G / A, TNFRSF13B at 23375 A / C, ABCA1 at −14 C / T, IRS1 at 3931 G / A, ROS1 at 124785 G / A, BCHE at 63973 G / A, ANXA5 at 431 C / T, MMP1 -1602 2G / 1G, PALLD 259175 A / G, KCNJ11 634 A / G, CXCL16 4660 C / T, FOXC2 -512 C / T, MMP3 722 A / G, COMT 21962 position G / A, PDE4D 919475 position TAAA /-, GCK -30 position G / A, APOA5 -112 Position risk detection for chronic kidney disease, which comprises detecting at least one or more polymorphisms of the C / T.
JP2008324995A 2008-12-22 2008-12-22 Genetic risk detection method for chronic kidney disease Active JP5725451B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008324995A JP5725451B2 (en) 2008-12-22 2008-12-22 Genetic risk detection method for chronic kidney disease

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008324995A JP5725451B2 (en) 2008-12-22 2008-12-22 Genetic risk detection method for chronic kidney disease

Publications (2)

Publication Number Publication Date
JP2010142187A true JP2010142187A (en) 2010-07-01
JP5725451B2 JP5725451B2 (en) 2015-05-27

Family

ID=42563279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008324995A Active JP5725451B2 (en) 2008-12-22 2008-12-22 Genetic risk detection method for chronic kidney disease

Country Status (1)

Country Link
JP (1) JP5725451B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014176335A (en) * 2013-03-14 2014-09-25 Mie Univ Method for detecting genetic risks of chronic renal disease
US20200075172A1 (en) * 2018-08-28 2020-03-05 Ajou University Industry-Academic Cooperation Foundation Method for adjusting continuous variable and method and apparatus for analyzing correlation using the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006126618A1 (en) * 2005-05-26 2006-11-30 Signpost Corporation Method of determining gene polymorphism for judgment of disease risk level, method of judging disease risk level and array for relevant judgment
JP2007222134A (en) * 2006-02-27 2007-09-06 G&G Science Co Ltd Method for detecting genetic risk of hypertension

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006126618A1 (en) * 2005-05-26 2006-11-30 Signpost Corporation Method of determining gene polymorphism for judgment of disease risk level, method of judging disease risk level and array for relevant judgment
JP2007222134A (en) * 2006-02-27 2007-09-06 G&G Science Co Ltd Method for detecting genetic risk of hypertension

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JPN6013038198; Charles C. Hsu et al.: 'Apolipoprotein E and Progression of Chronic Kidney Disease' The Journal of the American Medical Association Vol. 293, No. 23, 20050615, 第2892-2899頁 *
JPN6014022442; 丸山弘樹,外2名: '"腎疾患の疾患感受性遺伝子 SNPsを中心に"' 日本内科学会雑誌 第94巻, 第8号, 20050810, p. 168-175 *
JPN6014022447; Obara, W., et al.: '"Association of single-nucleotide polymorphisms in the polymeric immunogloblin receptor gene with im' Journal of Human Genetics vol. 48, 2003, p. 293-299 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014176335A (en) * 2013-03-14 2014-09-25 Mie Univ Method for detecting genetic risks of chronic renal disease
US20200075172A1 (en) * 2018-08-28 2020-03-05 Ajou University Industry-Academic Cooperation Foundation Method for adjusting continuous variable and method and apparatus for analyzing correlation using the same
US11610689B2 (en) * 2018-08-28 2023-03-21 Ajou University Industry—Academic Cooperation Foundation Method for adjusting treatment by using adjusted continuous variables and method and apparatus for adjusting treatment by analyzing correlations using the same

Also Published As

Publication number Publication date
JP5725451B2 (en) 2015-05-27

Similar Documents

Publication Publication Date Title
Elmore et al. Identification of a genetic variant associated with abdominal aortic aneurysms on chromosome 3p12. 3 by genome wide association
Cardinal-Fernández et al. Genetic predisposition to acute kidney injury induced by severe sepsis
JP2009077727A (en) Prediction of coronary artery disease
Henderson et al. Multiple polymorphisms in the renin-angiotensin-aldosterone system (ACE, CYP11B2, AGTR1) and their contribution to hypertension in African Americans and Latinos in the multiethnic cohort
Djurić et al. Association of MMP-8 promoter gene polymorphisms with carotid atherosclerosis: preliminary study
Burkhardt et al. Cellular adhesion gene SELP is associated with rheumatoid arthritis and displays differential allelic expression
JP5478835B2 (en) Genetic risk detection method for lipid metabolism disorders
Kato et al. Assessment of genetic risk factors for thoracic aortic aneurysm in hypertensive patients
Bashour et al. The role of interleukin‐1 genotype in the association between coronary heart disease and periodontitis in a Syrian population
JP5128796B2 (en) Genetic risk detection method for cerebrovascular disorders
Yamada et al. Genetic risk for coronary artery disease in individuals with or without type 2 diabetes
JP5725451B2 (en) Genetic risk detection method for chronic kidney disease
Ahmed et al. Patterns of angiotensin converting enzyme insertion/deletion gene polymorphism among an E gyptian cohort of patients with rheumatoid arthritis
JP5578536B2 (en) Genetic risk detection method for hypertension
KR101895853B1 (en) Association of microRNA polymorphisms with the risk of ischemic stroke in a Korean population
Buraczynska et al. Tumor necrosis factor-α gene polymorphism correlates with cardiovascular disease in patients with end-stage renal disease
Li et al. Inter‐individual variability of plasma PAF‐acetylhydrolase activity in ARDS patients and PAFAH genotype
JP6788879B2 (en) Peripheral artery disease test method and test reagent
JP6516128B2 (en) Test method and kit for determining antithyroid drug-induced agranulocytosis risk
JP5489146B2 (en) Genetic risk detection method for obesity
Alg Genetic and Observational Subarachnoid Haemorrhage (GOSH) Study-A UK-wide clinical and genetic cohort study of aneurysmal subarachnoid haemorrhage
KR101895858B1 (en) Association of miR-130a C&gt;T and miR-155 T&gt;A SNP with the risk of ischemic stroke in a Korean population
KR101895859B1 (en) Association of miR-150 G&gt;A and miR-155 T&gt;A SNP with the risk of ischemic stroke in a Korean population
KR101895855B1 (en) Association of miR-34a C&gt;A and miR-150 G&gt;A SNP with the risk of ischemic stroke in a Korean population
KR101895856B1 (en) Association of miR-34a C&gt;A and miR-155 T&gt;A SNP with the risk of ischemic stroke in a Korean population

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111229

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130820

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140624

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150317

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150323

R150 Certificate of patent or registration of utility model

Ref document number: 5725451

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250