WO2009125828A1 - Β-pinene-based polymer and molded article comprising the same - Google Patents

Β-pinene-based polymer and molded article comprising the same Download PDF

Info

Publication number
WO2009125828A1
WO2009125828A1 PCT/JP2009/057315 JP2009057315W WO2009125828A1 WO 2009125828 A1 WO2009125828 A1 WO 2009125828A1 JP 2009057315 W JP2009057315 W JP 2009057315W WO 2009125828 A1 WO2009125828 A1 WO 2009125828A1
Authority
WO
WIPO (PCT)
Prior art keywords
pinene
mass
polymer
parts
mol
Prior art date
Application number
PCT/JP2009/057315
Other languages
French (fr)
Japanese (ja)
Inventor
淳裕 中原
仁 徳安
啓志 堀
弘之 大木
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Priority to JP2009519073A priority Critical patent/JPWO2009125828A1/en
Publication of WO2009125828A1 publication Critical patent/WO2009125828A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/04Reduction, e.g. hydrogenation

Definitions

  • the present invention relates to a ⁇ -pinene polymer having both a high refractive index and a low birefringence, a molded product comprising the same, and a method for producing the same.
  • polymethyl methacrylate, polycarbonate, and the like have been conventionally used as highly transparent optical resins.
  • Polymethylmethacrylate is excellent in optical properties such as high transparency and low birefringence, but has the disadvantages that its dimensions are easily changed due to its large water absorption, and its heat resistance is also low.
  • Polycarbonate on the other hand, has a high glass transition temperature (Tg) and excellent heat resistance, but has a disadvantage that it has a slightly high water absorption and is easily hydrolyzed by alkali.
  • a ring-opening polymer hydrogenated product of a norbornene monomer and an addition copolymer of a norbornene monomer and ethylene are known.
  • Patent Documents 1 to 4 the tetracyclododecene polycyclic monomer used as the norbornene-based monomer is not always easy to produce, and it is necessary to use rare metals such as molybdenum and tungsten chloride as the polymerization catalyst.
  • Non-Patent Documents 1 and 2 ⁇ -pinene-based polymers have been proposed as optical resins that have improved the above problems.
  • the ⁇ -pinene polymer is a material having high heat resistance and low water absorption. Moreover, it attracts attention also as a carbon neutral material which suppresses the discharge
  • the copolymer of ⁇ -pinene and indene described in Patent Document 5 (Examples 7 to 12) has high heat resistance, but has an olefinic double bond derived from ⁇ -pinene and an aromatic double bond derived from indene. Since it remains and is easily oxidized and deteriorated, it has a problem of being easily colored by light or heat. Further, when a monomer having an aromatic ring in the side chain such as indene is copolymerized, there is a problem that birefringence increases.
  • an object of the present invention is to provide a ⁇ -pinene-based polymer having a high refractive index while maintaining the inherent high heat resistance and light resistance, low water absorption, and high transparency, and a molded product thereof.
  • the present invention A polymer containing 60% by mass or more of ⁇ -pinene units, wherein a ⁇ -pinene-based polymer in which 1 mol% or more and 10 mol% or less of the 6-membered ring derived from ⁇ -pinene is an aromatic 6-membered ring And a molded body comprising the ⁇ -pinene-based polymer.
  • the present invention also provides A polymer containing 60% by mass or more of ⁇ -pinene units, wherein the p-phenylene group is 0.55% by mass or more and 5.5% by mass or less, and the ⁇ -pinene polymer It is a molded body made of coalescence.
  • the present invention provides Production of the above-mentioned ⁇ -pinene polymer wherein a polymer containing 60% by mass or more of ⁇ -pinene units is hydrogenated in the presence of a heterogeneous catalyst at a hydrogen pressure of 0.1 MPa to 25 MPa. Is the method.
  • the ⁇ -pinene polymer of the present invention is particularly suitable for optical applications because it has excellent heat resistance and light resistance, low water absorption, high refractive index, low birefringence and high transparency.
  • FIG. 3 is a diagram showing a 1 H-NMR spectrum of a ⁇ -pinene polymer (H3) obtained in Example 3. Deuterated tetrahydrofuran was used as deuterated solvent.
  • FIG. 3 is a diagram showing a 1 H-NMR spectrum of a ⁇ -pinene polymer (B3) obtained in Comparative Example 3. Deuterated tetrahydrofuran was used as deuterated solvent.
  • ⁇ -pinene Polymer of the present invention is a polymer obtained by hydrogenating a polymer containing ⁇ -pinene units.
  • ⁇ -Pinene As the ⁇ -pinene monomer used in the present invention, known ones can be used. That is, those collected from plants such as pine, ⁇ -pinene synthesized from other raw materials such as ⁇ -pinene, and the like can also be used.
  • the polymer of the present invention may contain another monomer unit copolymerizable with ⁇ -pinene as a structural unit.
  • the copolymerizable monomer is not particularly limited, and specific examples include styrene, ⁇ -methylstyrene, 3-methylstyrene, 4-methylstyrene, 4-ethylstyrene, 4-t-butylstyrene, 1-vinyl.
  • Aromatic vinyl such as naphthalene and indene; (meth) acrylic acid, methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, (meth) acrylic (Meth) acrylic acid monomers such as glycidyl acid; maleic anhydride, maleic acid, fumaric acid, maleimide; nitrile group-containing vinyl monomers such as acrylonitrile and methacrylonitrile; amide group-containing vinyl monomers such as acrylamide and methacrylamide; ethylene , Propylene, isobutylene, butadiene, isoprene, norbol Olefins such as styrene; compounds containing double bonds derived from turpentine other than ⁇ -pinene such as limonene, ⁇ -pinene, myrcene, camphene, and carene; vinyl esters such as vinyl
  • bifunctional monomers such as p-divinylbenzene, p-diisopropenylbenzene, ethylene glycol divinyl ether and the like. These may be used alone or in combination of two or more.
  • the amount of copolymerization is preferably 0.001 to 50 mol%, and 0.01 to 20 mol% per total monomer unit of the polymer. More preferred is 0.01 to 10 mol%. If the amount of copolymerization is too large, polymerization may become difficult, and heat resistance often decreases.
  • the monomer having an aromatic side chain is preferably less because the birefringence increases, and the amount of copolymerization is preferably 0.001 to 10 mol% per total monomer unit of the polymer, ⁇ 5 mol% is most preferred.
  • the structure of the copolymer is not particularly limited, and any of random, block and tapered copolymers may be used.
  • the copolymer is particularly preferably a random copolymer.
  • the number average molecular weight of the ⁇ -pinene polymer is not particularly limited, but is preferably from 600 to 1,000,000 g / mol from the viewpoint of mechanical properties and processability, more preferably from 10,000 to 500,000 g / mol. It is preferably 30,000 to 200,000, more preferably 40,000 to 200,000. If the number average molecular weight is too small, it cannot be called a polymer, and if it is too large, molding becomes difficult.
  • the number average molecular weight means a molecular weight in terms of polystyrene by gel permeation chromatography.
  • the polymer of the present invention can be obtained by hydrogenating (hydrogenating (hydrogenating)) an olefinic double bond of a cyclohexene ring, which is a 6-membered ring derived from a ⁇ -pinene unit.
  • the ⁇ -pinene-based polymer of the present invention is a polymer having a high content of an aromatic 6-membered ring derived from a cyclohexene ring while hydrogenating an olefinic double bond. Since the aromatic ring produced here is a 6-membered ring (p-phenylene group) derived from ⁇ -pinene, it is symmetric with respect to the main chain, and birefringence can be reduced.
  • the olefinic double bond derived from ⁇ -pinene has an aromatic ring-forming unit in the polymer. It is preferably hydrogenated to 20 mol% or less, more preferably 15 mol% or less, and even more preferably 10 mol% or less with respect to the removed ⁇ -pinene unit.
  • the ⁇ -pinene-based polymer of the present invention has a ratio of the integral value of 4.5 to 6 ppm proton to the integral value of all protons in its 1 H-NMR spectrum [the proton of tetramethylsilane (TMS) is 0 ppm].
  • the cyclohexene-1,4-diyl group (—C 6 H 8 —) is preferably 10.7% by mass or less (corresponding to a hydrogenation rate of 80% by mol or more), more preferably 8.4% by mass or less. (Corresponding to a hydrogenation rate of 85 mol% or more), more preferably 5.6% by mass or less (corresponding to a hydrogenation rate of 90 mol% or more).
  • the said ratio is large, the quantity of an olefinic double bond may increase and may deteriorate easily.
  • the aromatic 6-membered ring formed from the cyclohexene ring derived from ⁇ -pinene during hydrogenation is 1 mol% or more and 10 mol% or less with respect to the ⁇ -pinene unit in the polymer. More preferably, it is 5 mol% or more and 10 mol% or less.
  • the ⁇ -pinene-based polymer of the present invention has a ratio of the integral value of 6 to 8 ppm proton to the integral value of all protons in its 1 H-NMR spectrum (the proton of tetramethylsilane (TMS) is 0 ppm)
  • TMS tetramethylsilane
  • 6 Integral value of protons of ⁇ 8 ppm / integral value of all protons
  • the following corresponding to 10 mol% or less of the aromatic ring).
  • the p-phenylene group (—C 6 H 4 —) is 0.55% by mass or more and 5.5% by mass or less, preferably 2.7% by mass or more and 5.5% by mass or less.
  • the ratio is small, the amount of aromatic rings is small and the refractive index is small.
  • the ratio is large, the glass transition temperature is small and the light resistance is also lowered.
  • the 1 H-NMR spectrum of a polymer having a high hydrogenation rate integrates a very small spectrum, a high SN ratio and resolution are required.
  • a nuclear magnetic resonance apparatus having a magnet of 270 MHz or higher and to increase the number of integrations to 8000 times or more. If the S / N ratio is bad or the resolution is low, the integral value is estimated to be small, and a correct value cannot be obtained.
  • the heavy solvent for dissolving the ⁇ -pinene polymer is not particularly limited as long as it is a heavy solvent in which the ⁇ -pinene polymer is dissolved, but the spectrum of the non-deuterated solvent in the heavy solvent is ⁇ - It is preferable to select a heavy solvent having a spectrum of 0 to 4 ppm which does not overlap with the spectrum of the pinene polymer or has little influence even if it overlaps.
  • heavy solvents include heavy tetrahydrofuran and heavy hexane.
  • Tg Glass transition temperature
  • the Tg of the ⁇ -pinene-based polymer of the present invention cannot be generally defined by the type and ratio of monomers to be copolymerized and the amount of aromatic ring, but is preferably 70 ° C to 250 ° C, more preferably 100 ° C to 230 ° C. Further preferred. If Tg is low, the heat resistance is insufficient, and if it is too high, the ⁇ -pinene polymer becomes brittle. It can be measured by differential scanning calorimetry (DSC).
  • the ⁇ -pinene polymer of the present invention preferably has a high total light transmittance, particularly when used in an optical material.
  • the total light transmittance of the ⁇ -pinene polymer is preferably 80% or more, and more preferably 85% or more.
  • the total light transmittance is measured according to JIS-K-7361-1-1997 “Plastics—Testing method for total light transmittance of transparent materials—Part 1: Jingle beam method”.
  • the ⁇ -pinene polymer of the present invention preferably has a high refractive index, particularly when used in an optical material.
  • the refractive index of the ⁇ -pinene polymer is preferably 1.505 or more, and more preferably 1.507 or more.
  • the refractive index is measured by D-line according to JIS K7142 (Method A) “Method for measuring refractive index of plastic”.
  • the ⁇ -pinene-based polymer of the present invention preferably has high light resistance and weather resistance.
  • high light resistance and weather resistance For example, an accelerated exposure test for 100 hours with UVB light is performed according to ASTM-G53, and the yellowing degree ( ⁇ YI) before and after the test of YI (Yellow Index) measured according to JIS-K-7373 is 10 or less. Is preferable, 5 or less is more preferable, and 2 or less is most preferable.
  • the 5% mass reduction temperature of the ⁇ -pinene polymer of the present invention is preferably 300 ° C. or higher, more preferably 320 ° C. or higher.
  • the 5% mass reduction temperature means a temperature at which the mass is reduced by 5%, as measured by a thermobalance (TGA) according to JIS-K-7120-1987 “Thermogravimetry of plastics”.
  • the ⁇ -pinene polymer of the present invention can be obtained by a known method such as cationic polymerization, radical polymerization method or coordination polymerization method. From the viewpoint that it can be easily carried out industrially and a high molecular weight product can be obtained, a cationic polymerization method is particularly preferred.
  • Cationic polymerization can be controlled by the solvent, the type and amount of the polymerization catalyst, the polymerization initiator, the electron donating compound, the reaction temperature, the reaction pressure, the reaction time, and the like.
  • Cationic polymerization can be performed by the well-known method of a nonpatent literature 1, a nonpatent literature 2, etc. Specifically, for example, it is carried out by adding or contacting a polymerization catalyst in an inert organic solvent.
  • the inert organic solvent can be used without particular limitation as long as it is an organic solvent in which ⁇ -pinene and aromatic monomers are dissolved and is inert to the polymerization catalyst.
  • aromatic hydrocarbon solvents such as benzene, toluene, xylene; aliphatic hydrocarbon solvents such as pentane, hexane, heptane, octane, cyclopentane, cyclohexane, methylcyclohexane, decalin; methyl chloride, methylene chloride
  • Halogenated hydrocarbon solvents such as propane chloride, butane chloride, 1,2-dichloroethane, 1,1,2-trichloroethylene
  • oxygen-containing solvents such as esters and ethers can be used.
  • aromatic hydrocarbon solvents, aliphatic hydrocarbon solvents, halogenated hydrocarbon solvents and the like are preferable. These solvents may be used alone or in combination of two or more.
  • the amount of the inert organic solvent is not particularly limited, but is usually 100 to 10,000 parts by mass, preferably 150 to 10,000 parts per 100 parts by mass of the monomer containing ⁇ -pinene. 5000 parts by mass, more preferably 200 to 3000 parts by mass. If the amount of the inert solvent is small, the viscosity when the polymer is formed becomes high and stirring becomes difficult, so that the reaction becomes non-uniform and a uniform polymer cannot be obtained or the control of the reaction becomes difficult. When the amount of the inert solvent is large, productivity is lowered.
  • An acidic compound can be used as a polymerization catalyst for cationic polymerization.
  • the acidic compound is not particularly limited, and examples thereof include Lewis acid or Bronsted acid.
  • BF 3 in particular, BF 3 OEt 2, BBr 3 , BBr 3 OEt 2, AlCl 3, AlBr 3, AlI 3, TiCl 4, TiBr 4, TiI 4, FeCl 3, FeCl 2, SnCl 2, SnCl 4, Metal halide compounds from Group IIIA to Group VIII of the periodic table such as WCl 6 , MoCl 5 , SbCl 5 , TeCl 2 , EtMgBr, Et 3 Al, Et 2 AlCl, EtAlCl 2 , Et 3 Al 2 Cl 3 , Bu 3 SnCl Hydrogen acids such as HF, HCl, HBr; H 2 SO 4 , H 3 BO 3 , HClO 4 , CH 3 COOH, CH 2 ClCOOH, CHCl 2 COOH, CCl 3
  • acidic compounds may be used in combination, or other compounds may be added.
  • Other compounds etc. are compounds etc. which can improve the activity of an acidic compound, for example by adding it.
  • Examples of compounds that improve the activity of metal halide compounds as acidic compounds include MeLi, EtLi, BuLi, Et 2 Mg, (i-Bu) 3 Al, Et 2 Al (OEt), Me 4 Sn, Et 4 Sn.
  • metal alkyl compounds such as Bu 4 Sn.
  • the amount of the polymerization catalyst used in the cationic polymerization varies depending on the type of the polymerization catalyst, so it is difficult to define the amount to be used.
  • the amount used is ⁇ -pinene and The amount is preferably 0.001 to 10 parts by mass, more preferably 0.01 to 5 parts by mass, and most preferably 0.01 to 1 part by mass with respect to 100 parts by mass of the aromatic monomer.
  • the amount used is preferably 0.1 to 10,000 parts by mass with respect to 100 parts by mass of ⁇ -pinene and aromatic monomers. More preferred is ⁇ 1000 parts by mass. If the amount of catalyst is small, the progress of cationic polymerization is slow, and if it is large, it is uneconomical.
  • the polymerization initiator in the case of performing cationic polymerization is not particularly limited as long as it is a compound that generates a cation by a polymerization catalyst, but an organic compound having at least one functional group represented by the following formula is preferably used.
  • R 1 represents hydrogen, an alkyl group, and an aryl group
  • R 2 represents hydrogen, an alkyl group, and an aryl group
  • X represents a halogen, an alkoxy group, an acyloxy group, and a hydroxyl group.
  • the amount of the polymerization initiator used in the cationic polymerization varies depending on the molecular weight of the target polymer, it is difficult to generally define the amount to be used, but with respect to 100 parts by mass of ⁇ -pinene and aromatic monomers. 0.001 to 10 parts by mass is preferable, 0.001 to 5 parts by mass is more preferable, and 0.01 to 1 part by mass is most preferable.
  • the amount of the polymerization initiator is small, the polymerization reaction rate becomes slow, or the polymerization starts from the impurities and is difficult to produce stably.
  • there are many polymerization initiators the molecular weight of the polymer obtained will become small and a polymer will become weak.
  • the polymerization reaction can be further controlled by adding an electron donating compound.
  • electron donating compounds include ether compounds such as diethyl ether, diisopropyl ether, tetrahydrofuran, dioxane, and anisole, cyclic ether compounds having 2 to 10 carbon atoms, ester compounds such as ethyl acetate and butyl acetate, methanol, Alcohol compounds such as ethanol and butanol, nitrogen-containing compounds such as triethylamine, diethylamine, pyridine, 2-methylpyridine, 2,6-di-t-butylpyridine, 2,6-lutidine, N, N-dimethylacetamide, acetonitrile, Examples thereof include ammonium salts such as tetrabutylammonium chloride and tetrabutylammonium bromide.
  • the electron donating compound is preferably 0.01 to 500 parts by weight, more preferably 0.1 to 200 parts by weight with respect to 100 parts by weight of the polymerization catalyst in the reaction system. If the amount of the electron-donating compound is too small, side reactions tend to increase, and the strength of the polymer that can produce a large amount of low molecular weight products decreases. Conversely, when there are too many electron donors, the polymerization reaction rate is remarkably suppressed, and the cationic polymerization reaction takes a long time, and the productivity is lowered. Therefore, a more preferable amount of the electron donating compound is 0.1 to 100 parts by mass with respect to the polymerization catalyst.
  • the reaction temperature in the cationic polymerization is usually preferably ⁇ 120 ° C. to 60 ° C., more preferably ⁇ 80 ° C. to 0 ° C., and most preferably ⁇ 40 ° C. to 0 ° C. If the reaction temperature is too low, it is uneconomical, and if it is too high, it is difficult to control the reaction.
  • the reaction pressure for carrying out the cationic polymerization is not particularly limited, but is preferably 0.5 to 50 atm, more preferably 0.7 to 10 atm. Usually, cationic polymerization is performed at around 1 atm.
  • the reaction time for carrying out the cationic polymerization is not particularly limited, and the reaction time can be appropriately determined according to the type of aromatic monomer used, the amount thereof, the type and amount of the polymerization catalyst, the reaction temperature, the reaction pressure and the like. That's fine. Usually, it is 0.01 hours to 24 hours, preferably 0.1 hours to 10 hours.
  • the polymer after cationic polymerization may be used for isolating the polymer from a solution, for example, reprecipitation, solvent removal under heating, solvent removal under reduced pressure, solvent removal with steam (steam stripping), etc. It can be separated and obtained from the reaction mixture by ordinary operations.
  • the hydrogenation reaction can take any known method.
  • an aromatic ring is formed on a ⁇ -pinene polymer by dehydrogenating a part of the cyclohexene ring of the ⁇ -pinene unit.
  • a high temperature may be advantageous as the reaction temperature, and a heterogeneous catalyst having high thermal stability is often used. Therefore, the case where a heterogeneous catalyst (solid catalyst) is used will be described.
  • heterogeneous catalyst used in the present invention is not particularly limited, specific examples include sponge metal catalysts such as sponge nickel, sponge cobalt, sponge copper; nickel silica, nickel alumina, nickel zeolite, nickel diatomaceous earth, Palladium silica, palladium alumina, palladium zeolite, palladium diatomaceous earth, palladium carbon, palladium graphite, palladium calcium carbonate, platinum silica, platinum alumina, platinum zeolite, platinum diatomaceous earth, platinum carbon, platinum graphite, platinum calcium carbonate, ruthenium silica, ruthenium alumina, Ruthenium zeolite, ruthenium diatomaceous earth, ruthenium carbon, ruthenium graphite, ruthenium calcium carbonate, iridium silica, iridium alumina, Examples include supported metal catalysts such as iridium zeolite, iridium diatomaceous earth,
  • These catalysts may be modified with iron, molybdenum, magnesium or the like for the purpose of improving activity, improving selectivity, and stability. Moreover, these catalysts may be used alone or in combination.
  • nickel or palladium is preferably used as the metal having hydrogenation activity from the viewpoint of hydrogenation activity, availability, and ease of handling.
  • calcium carbonate or a carbon support it is preferable to use calcium carbonate or a carbon support.
  • the hydrogenation reaction is usually performed in an organic solvent.
  • the solvent that can be used is not particularly limited, but a solvent that can easily dissolve the ⁇ -pinene polymer is preferable. Since the solvent differs depending on the type of copolymerization, it is difficult to limit, but specific examples include aromatic hydrocarbon solvents such as benzene, toluene, xylene; pentane, hexane, heptane, octane, cyclohexane Aliphatic hydrocarbon solvents such as pentane, cyclohexane, methylcyclohexane, decalin, tricyclodecane; halogenated methyl chloride, methylene chloride, propane chloride, butane chloride, 1,2-dichloroethane, 1,1,2-trichloroethylene, etc.
  • Hydrocarbon solvents such as ethyl acetate and butyl acetate; ether solvents such as dioxane, tetrahydrofuran, diethyl ether, diisopropyl ether and dibutyl ether, methanol, ethanol, 1-propanol, 2-propanol, 1-butanol and the like Alcohol
  • the solvent or the like can be used.
  • the solvent used in the polymerization step can be used as it is, or a part of the solvent can be removed by a method such as distillation. Further, after completion of the polymerization step, the polymer may be once taken out by the above-mentioned method.
  • the solvent in the polymerization step can be used as it is or after being removed, and then diluted with a separate solvent.
  • the amount of the organic solvent used in the hydrogenation reaction is 50 parts by mass or more and 10,000 parts by mass or less, preferably 100 parts by mass or more and 3000 parts by mass or less, more preferably 150 parts by mass or more and 1000 parts by mass or less with respect to 100 parts by mass of the polymer. is there. When it is carried out at 10000 parts by mass or more, the productivity is remarkably lowered, and when it is less than 100 parts by mass, the solution viscosity is remarkably increased and the hydrogenation reaction efficiency is lowered.
  • M represents an alkali metal or an alkaline earth metal, and is not particularly limited, but specific examples include lithium, sodium, potassium, calcium, and magnesium.
  • n represents 1 when M is an alkali metal, and 2 when M is an alkaline earth metal.
  • R represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms such as a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group or a t-butyl group; an aryl group having 6 to 10 carbon atoms such as a phenyl group or a naphthyl group A 2-methylphenyl group and an aralkyl group having 7 to 11 carbon atoms.
  • R ′ represents a C 1-8 alkyl group such as a hydrogen atom, a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, a t-butyl group, a hexyl group, or an octyl group.
  • R ′′ shown in the above may be the same or different from each other, and may have a ring structure formed by bonding any two or more of them.
  • R ′′ is other than a hydrogen atom
  • it may be substituted with another substituent, and a part of the substituent may be replaced with an oxygen atom, a nitrogen atom or the like.
  • Any compound having a pyridine skeleton in the molecule can be used as the pyridines shown in FIG.
  • the temperature of the hydrogenation reaction in the present invention may vary depending on the catalyst used and cannot be specified, but is usually 60 ° C to 300 ° C, preferably 120 ° C to 250 ° C. More preferably, the temperature is 150 ° C to 220 ° C.
  • the dehydrogenation reaction proceeds significantly under a high temperature condition of 150 ° C. or higher, and a desired hydrogenated polymer is easily obtained.
  • the hydrogenation reaction temperature of 160 ° C. or higher, and in some cases 180 ° C. or higher can be set.
  • the hydrogenation reaction time varies depending on the type of catalyst used, the amount of catalyst, and the reaction temperature, and is not necessarily limited, but is usually 5 minutes to 20 hours, preferably 10 minutes to 15 hours. If the reaction time is too short, the desired hydrogenation rate cannot be obtained. Moreover, when reaction time is too long, the progress of the undesired side reaction will become remarkable and the hydrogenated polymer of the desired physical property may not be obtained.
  • the hydrogenation reaction in the present invention is aimed at hydrogenating the carbon-carbon unsaturated bond of the cyclohexene ring contained in the ⁇ -pinene polymer.
  • a part of the cyclohexene ring is dehydrated. An aromatic ring is formed by rubbing.
  • the pressure of the hydrogenation reaction may vary depending on the catalyst used, but the hydrogen pressure is 0.1 MPa to 5 MPa. In general, the higher the hydrogen gas partial pressure is, the more advantageous it is for hydrogenation. Above this range, aromatization by dehydrogenation proceeds only slightly.
  • the hydrogenation reaction is carried out under the condition where hydrogen gas is present.
  • the hydrogenation reaction may be carried out by mixing with any gas as long as it is inert to the hydrogenation reaction.
  • the inert gas include nitrogen, helium, argon, carbon dioxide and the like.
  • the solvent used in the reaction may have a significant amount of partial pressure as a gas component.
  • the partial pressure is preferably 0.01 MPa or more and less than 5 MPa. In the case of 5 MPa or more, the reaction apparatus becomes large and requires a lot of equipment costs.
  • Embodiment of the hydrogenation reaction in this invention can take arbitrary well-known methods. There may be an appropriate reaction form depending on the shape of the catalyst used. For example, a batch reaction, a semi-continuous reaction, or a continuous reaction system can be adopted. In the continuous reaction format, a plug flow format (PFR) and a continuous flow stirring format (CSTR) can be used. Moreover, a fixed bed reaction tank can be used. When the reaction is carried out by positive mixing, a method of mixing by stirring, a method of circulating and mixing the hydrogenation reaction solution in a loop form, or the like can be employed. The extracted liquid after the hydrogenation reaction is partly divided and can be used again for the hydrogenation reaction.
  • PFR plug flow format
  • CSTR continuous flow stirring format
  • a fixed bed reaction tank can be used.
  • reaction formats two or more reaction formats, which are the same or different, can be connected to carry out the hydrogenation reaction.
  • the amount of hydrogenation catalyst used is difficult to limit because the amount of catalyst used varies depending on the type of hydrogenation catalyst used, polymer concentration, reaction mode, etc.
  • the amount of the catalyst used per 100 parts by mass of the chemical reaction solution is usually 0.01 to 20 parts by mass, preferably 0.05 to 15 parts by mass, more preferably 0.1 to 10 parts by mass.
  • the amount used is small, the hydrogenation reaction requires a long time.
  • the amount used is large, a large amount of power for mixing the heterogeneous catalyst is required.
  • a known method can be used.
  • a vertical column reactor such as a multi-tubular type is charged with a catalyst, and a ⁇ -pinene polymer solution and hydrogen are supplied thereto for hydrogenation. At this time, both the polymer solution and hydrogen are used. Examples thereof include a method of supplying from the upper part, a method of supplying both from the lower part, and a method of supplying the polymerization solution from the upper part and hydrogen from the lower part.
  • the used hydrogenation catalyst can be separated from the polymer if necessary after completion of the hydrogenation reaction. The separation can be carried out by any known method, but when a heterogeneous catalyst is used, the separation can be carried out by continuous or batch filtration, centrifugal separation, or settling / decantation by standing.
  • the catalyst is separated using these separation methods, a trace amount of metal components may remain in the polymer. In this case, the performance (such as weather resistance) of the obtained hydride of ⁇ -pinene polymer may be lowered.
  • the remaining metal can be separated by using an aggregation precipitation method, an adsorption method, a washing method, an aqueous phase extraction method, or the like.
  • the catalyst recovered by the separation can be used again for the hydrogenation reaction after taking necessary means such as partly removing or partly adding new catalyst.
  • the ⁇ -pinene-based polymer after hydrogenation is obtained by removing the polymer from the solution by, for example, reprecipitation, solvent removal under heating, solvent removal under reduced pressure, or solvent removal with steam (steam stripping). It can be separated and obtained from the reaction mixture by a normal operation during separation.
  • the ⁇ -pinene polymer of the present invention can be used alone, or can be used alone, polyamide, polyurethane, polyester, polycarbonate, polyoxymethylene resin, acrylic resin, polyvinyl alcohol, ethylene-vinyl alcohol copolymer, polyolefin, polystyrene. It can also be used as a composition blended with other polymers such as styrene block copolymers.
  • stabilizers When used as a composition, stabilizers, lubricants, pigments, impact resistance improvers, processing aids, reinforcing agents, colorants, flame retardants, weather resistance improvers, UV absorbers, antioxidants, fungicides, Various additives such as antibacterial agents, light stabilizers, antistatic agents, silicone oils, antiblocking agents, mold release agents, foaming agents, fragrances; various fibers such as glass fibers and polyester fibers; talc, mica, montmorillonite, smectite, Fillers such as silica and wood powder; optional components such as various coupling agents can be blended as required.
  • a molded product of the ⁇ -pinene polymer of the present invention can be obtained according to a conventional method.
  • a known method such as an injection molding method, a hot press molding method, an extrusion molding method, a cutting method, or a method using an active energy ray-curable resin is appropriately employed.
  • an injection molding method, a hot press molding method, and an extrusion molding method are preferably used.
  • the ⁇ -pinene polymer of the present invention has a high symmetry and a large amount of aromatics in the main chain, so it can be used for various optical materials because it can achieve both high refractive index and low birefringence. Although the range is not particularly limited, it is excellent in heat resistance and suitable for optical materials that require low water absorption and high transparency.
  • optical materials include lenses, aspheric lenses, Fresnel lenses, lenses for silver salt cameras, lenses for digital electronic cameras, lenses for video cameras, lenses for projectors, lenses for copying machines, camera lenses for mobile phones, and lenses for glasses.
  • Camera mirrors or half mirrors (automobiles Transparent materials used in vehicle lamps (headlight lenses, automotive headlight reflectors, etc.), solar cell front protective plates, residential window glass, moving objects (automobiles, trains, ships, aircraft, spacecraft, space) Base glass, anti-reflection film for window glass, dust-proof film during semiconductor exposure, protective film for electrophotographic photosensitive material, semiconductor (EPROM, etc.) encapsulant that can be written or rewritten by ultraviolet light, light emission Diode sealing material, ultraviolet light emitting diode sealing material, white light emitting diode sealing material, SAW filter, optical bandpass filter, second harmonic generator, Kerr effect generator, optical switch, optical interconnection, light Isolators, optical waveguides, surface light emitters using organic electroluminescence, surface emission with dispersed semiconductor fine particles Examples thereof include a phosphor member and a phosphor in which a phosphor substance is dissolved or dispersed.
  • the light guide can be formed in various known shapes, for example, various forms such as a plate shape, a block shape, a rod shape, a bent shape, and a curved shape, and at least on one side.
  • various forms such as a plate shape, a block shape, a rod shape, a bent shape, and a curved shape, and at least on one side.
  • the ones with dots printed by screen printing, or linear patterns such as V-grooves, hemispherical lens-like irregularities, and textured patterns formed on the surface of the light guide are also targeted.
  • the light diffusible molded body is a mixture of the above-mentioned ⁇ -pinene polymer and further containing a conventional light diffusing agent, and the obtained light diffusible composition.
  • a molded body having a predetermined shape such as a plate shape or a block shape is formed using the object.
  • Functional thin film The functional thin film formed by coating on at least one surface of a substrate using a ⁇ -pinene polymer is not particularly limited, but is preferably an antistatic layer, an antireflection layer, or a hard coat. It is a thin film having functionality such as a layer, a transparent conductive layer, and an antiglare layer.
  • Optical film An optical film using a ⁇ -pinene polymer is particularly suitable for a polarizing plate protective film.
  • the method for forming such an optical film is not particularly limited, and various conventionally known methods such as a solution casting method and a melt extrusion method can be employed.
  • the melt extrusion method that does not use a solvent is preferably employed from the viewpoints of the global environment, work environment, and manufacturing cost.
  • a solution casting method is also advantageously used.
  • Lens sheet A lens sheet is a lens unit composed of a lens group formed of one or a plurality of lens shapes formed on at least one of the sheet main surfaces, and changes the direction of light rays irradiated to the sheet. It refers to those having functions such as condensing, refraction, reflection, and dispersion.
  • Such lens sheets generally include what are called prism sheets, Fresnel lens sheets, lenticular lens sheets, microlens array sheets, and the like.
  • the plastic lens means a plastic molded product having a lens function, and is not particularly limited, but includes a spectacle lens, a camera lens, a binocular lens, a microscope lens, a projector lens, an f ⁇ lens, a pickup lens, and the like. Various lenses are applicable.
  • Vehicle lamps for vehicle lamps are used as having at least a light source and a lamp cover, and “vehicles” are two-wheeled vehicles, three-wheeled vehicles, four-wheeled vehicles, and other vehicles. It is used to mean vehicles in a broad sense such as railway vehicles, forklifts and other industrial vehicles.
  • Vehicle lamp means a lamp for illumination, identification, or signage mounted on such various vehicles, and is not particularly limited, but includes a headlamp, a taillamp, a brake.
  • a lamp (stop lamp), a direction indicator lamp (so-called blinker), a vehicle width lamp, a reverse lamp, and the like are applicable.
  • Examples of medical equipment include liquid chemical containers for injection, ampoules, prefilled syringes, infusion bags, solid chemical containers, eye drops containers, instillation containers, etc., liquid or powder, solid chemical containers
  • Sample containers such as sampling tubes for blood tests, blood collection tubes and specimen containers; sterilization containers such as scalpels, chestnuts (forceps), gauze and contact lenses; medical instruments such as syringes; beakers, petri dishes, Medical laboratory instruments such as flasks; optical parts such as plastic lenses for medical examinations; medical infusion tubes, piping, fittings, piping materials such as valves; artificial organs such as denture bases, artificial hearts, artificial tooth roots, and parts thereof Is exemplified.
  • ⁇ -pinene polymer (A1) had a weight average molecular weight of 53,000 and a number average molecular weight of 32,000.
  • the obtained organic layer was reprecipitated in 5000 parts by mass of a mixed solvent of methanol / acetone (60/40 vol%) and then sufficiently dried to obtain 60 parts by mass of ⁇ -pinene polymer (A2).
  • the obtained ⁇ -pinene polymer (A2) had a weight average molecular weight of 116,000, a number average molecular weight of 51,000, and a glass transition temperature of 95 ° C.
  • Example 1 In a pressure vessel equipped with a stirrer substituted with nitrogen, 27 parts by mass of cyclohexane and 1 part by mass of isopropanol and 12 parts by mass of the ⁇ -pinene polymer (A1) obtained above were accommodated and stirred. -The pinene polymer (A1) was completely dissolved. Thereafter, 7 parts by mass of 36.6% nickel-supported alumina (product number: N163A, manufactured by JGC Chemical Co., Ltd.) was added as a hydrogenation catalyst, and the mixture was stirred and sufficiently dispersed. The reaction was continued for 30 minutes at 150 ° C. and a hydrogen pressure of 3 MPa with stirring, and then returned to normal pressure.
  • N163A nickel-supported alumina
  • Example 2 In the hydrogenation reaction of Example 1, a ⁇ -pinene polymer (H2) was obtained in the same manner as in Example 1 except that the reaction time was changed from 30 minutes to 3 hours and 30 minutes.
  • the evaluation results of ⁇ -pinene polymer (H2) are shown in Table 1.
  • Example 3 A ⁇ -pinene polymer (H3) is obtained in the same manner as in Example 1 except that the ⁇ -pinene polymer (A2) obtained in Reference Example 3 is used in place of the ⁇ -pinene polymer (A1). It was. When 1 H-NMR of the ⁇ -pinene polymer (H3) was measured, the remaining olefinic double bond was 6.5 mol% and the remaining aromatic ring was 6.3 mol%. The glass transition temperature was 125 ° C.
  • Example 4 In a pressure vessel equipped with a stirrer purged with nitrogen, 103 parts by mass of cyclohexane and 45 parts by mass of the ⁇ -pinene polymer (A2) obtained in Reference Example 3 were placed, and stirred, The union (A2) was completely dissolved. Thereafter, 0.5 parts by mass of 5% by mass palladium-supported carbon (product number: E106O / W made by Evonik Degussa Japan Co., Ltd.) was added as a hydrogenation catalyst, and the mixture was stirred and sufficiently dispersed. Was sufficiently replaced with hydrogen, and the mixture was reacted at 200 ° C. and hydrogen pressure: 3 MPa for 9 hours with stirring, and then returned to normal pressure.
  • 5% by mass palladium-supported carbon product number: E106O / W made by Evonik Degussa Japan Co., Ltd.
  • the ⁇ -pinene polymer (H4) thus obtained was measured by 1 H-NMR. As a result, the remaining olefinic double bond was 0.5 mol% and the remaining aromatic ring was 3.4 mol%. It was. The glass transition temperature was 129 ° C. In 1 H-NMR, the ratio of the integral value of 6-8 ppm proton to the integral value of all protons is 7.7 ⁇ 10 ⁇ 3 , and the integral value of 4.5-6 ppm proton to the integral value of all protons was 2.7 ⁇ 10 ⁇ 4 .
  • the obtained ⁇ -pinene polymer (H4) had a weight average molecular weight of 100,000 and a number average molecular weight of 43,700.
  • the evaluation results of ⁇ -pinene polymer (H4) are shown in Table 1.
  • Comparative Example 1 In a pressure vessel equipped with a stirrer purged with nitrogen, 127 parts by mass of cyclohexane and 25 parts by mass of the ⁇ -pinene polymer (A1) obtained above were accommodated and stirred to obtain a ⁇ -pinene polymer ( A1) was completely dissolved. Thereafter, 7.5 parts by mass of 5% palladium-supported alumina powder (manufactured by N.E. Chemcat Co., Ltd.) was added as a hydrogenation catalyst, and the mixture was stirred and sufficiently dispersed. The reaction was continued at 160 ° C. and hydrogen pressure: 6 MPa for 25 hours with stirring, and then returned to normal pressure.
  • 5% palladium-supported alumina powder manufactured by N.E. Chemcat Co., Ltd.
  • the ratio of the integral value of 6 to 8 ppm proton to the integral value of all protons is 9.1 ⁇ 10 ⁇ 4
  • the ratio of the integral value of 4.5 to 6 ppm proton to the integral value of all protons was 9.7 ⁇ 10 ⁇ 4 .
  • the obtained ⁇ -pinene polymer (B1) had a weight average molecular weight of 51,900 and a number average molecular weight of 31,600. Table 1 shows the evaluation results of the ⁇ -pinene polymer (B1).
  • Comparative Example 2 Indene / ⁇ -pinene (mass ratio 60/40) copolymer (B2) was obtained in the same manner as in Example 12 of JP-A No. 2002-121231.
  • the resulting indene / ⁇ -pinene copolymer (B2) had a weight average molecular weight of 64,000 and a number average molecular weight of 24,300.
  • Table 1 shows the evaluation results of the indene / ⁇ -pinene copolymer (B2).
  • Comparative Example 3 In a pressure vessel equipped with a stirrer purged with nitrogen, 127 parts by mass of cyclohexane and 25 parts by mass of the ⁇ -pinene polymer (A2) obtained in Reference Example 3 were placed, and stirred, The union (A2) was completely dissolved. Thereafter, 7.5 parts by mass of 5% palladium-supported carbon (product number: E1002NN / W manufactured by Evonik Degussa Japan Co., Ltd.) was added as a hydrogenation catalyst, and the mixture was stirred and sufficiently dispersed. After sufficiently substituting with hydrogen and stirring, the mixture was reacted at 130 ° C. and hydrogen pressure: 15 MPa for 25 hours, and then returned to normal pressure.
  • palladium-supported carbon product number: E1002NN / W manufactured by Evonik Degussa Japan Co., Ltd.
  • the solution after the reaction was filtered through a 0.5 ⁇ m Teflon (registered trademark) filter to separate and remove the catalyst, and then reprecipitated in 3000 parts by mass of a mixed solvent of methanol / acetone (60/40 vol%). After sufficiently drying, 24 parts by mass of ⁇ -pinene polymer (B3) was obtained.
  • the ⁇ -pinene polymer (B3) thus obtained was measured for 1 H-NMR. As a result, the remaining olefinic double bond was 0.023 mol%, and the remaining aromatic ring was 0.0027 mol%. It was.
  • the glass transition temperature was 132 ° C.
  • the ratio of the integral value of 6 to 8 ppm proton to the integral value of all protons is 5.9 ⁇ 10 ⁇ 6
  • the ratio of the integral value of 4.5 to 6 ppm proton to the integral value of all protons was 1.3 ⁇ 10 ⁇ 5 .
  • the obtained ⁇ -pinene polymer (B3) had a weight average molecular weight of 103,400 and a number average molecular weight of 45,400.
  • Table 1 shows the evaluation results of the ⁇ -pinene polymer (B3).
  • Table 1 shows the evaluation results of the ⁇ -pinene polymer (B3).
  • Comparative Example 4 In a pressure vessel equipped with a stirrer purged with nitrogen, 470 parts by mass of cyclohexane and 30 parts by mass of the ⁇ -pinene polymer (A2) obtained in Reference Example 3 were accommodated and stirred, The union (A2) was completely dissolved. The inside of the pressure vessel was sufficiently replaced with hydrogen, and 7 parts by mass of the hydrogenation catalyst prepared in Reference Example 4 was added while stirring at 1000 rpm at room temperature. Immediately, the pressure was increased to 1 MPa with hydrogen and the temperature was raised to 50 ° C. After raising the temperature to 50 ° C., 7 parts by mass of a hydrogenation catalyst was further added, and the temperature was raised to 120 ° C. After reacting at 120 ° C.
  • the ⁇ -pinene polymer (B4) thus obtained was measured by 1 H-NMR. As a result, the remaining olefinic double bond was 50.0 mol% and the remaining aromatic ring was 0.4 mol%. It was. The glass transition temperature was 115 ° C. In 1 H-NMR, the ratio of the integral value of 6 to 8 ppm proton to the integral value of all protons is 9.4 ⁇ 10 ⁇ 4 , and the integral value of 4.5 to 6 ppm proton to the integral value of all protons was 2.9 ⁇ 10 ⁇ 2 .
  • the obtained ⁇ -pinene polymer (B4) had a weight average molecular weight of 113,000 and a number average molecular weight of 50,800. Table 1 shows the evaluation results of the ⁇ -pinene polymer (B4).
  • ⁇ -pinene polymer was prepared as a test piece by press molding or injection molding.
  • press molding a molded body of 50 mm ⁇ 50 mm ⁇ 3 mmt size was obtained at 180 ° C.
  • Injection molding was performed using a cylinder temperature of 240 ° C., a mold temperature of 60 ° C., and a mold of 50 mm ⁇ 50 mm ⁇ 3 mmt.
  • GPC gel permeation chromatography
  • ⁇ Residual double bond rate Measured 1000 times at room temperature using a 400 MHz magnet nuclear magnetic resonance apparatus manufactured by JEOL. 1 H-NMR spectrum obtained (the proton of tetramethylsilane (TMS) is 0 ppm). The integral value of 4.5-6 ppm is ⁇ -pinene-derived olefinic double bond (1H), the integral value of 6-8 ppm is aromatic ring (4H), the residual double bond rate and the aromatic ring formation rate was calculated.
  • the aromatic ring production rate was calculated as mol% based on the total number of monomer units.
  • the double bond hydrogenation rate was calculated as mol% based on the total number of monomer units excluding the aromatic ring-forming units.
  • Tg Glass transition temperature
  • DSC30 product number manufactured by METTLER TOLEDO Co., Ltd. was used as the measuring device.
  • n D Refractive index Measurement was performed at 25 ° C. in accordance with JIS-K-7142 using DR-M2 (product number) manufactured by Atago Co., Ltd.
  • ⁇ Light Resistance Test According to ASTM-G53, an accelerated exposure test for 100 hours was performed, and the yellowing degree ( ⁇ YI) before and after the test of YI (yellow index) was measured.
  • ⁇ YI yellowing degree
  • an ultraviolet exposure tester ATLAS-UVCON manufactured by Toyo Seiki Seisakusho Co., Ltd.
  • YI was measured according to JIS-K-7373. And it evaluated according to the following criteria.
  • ⁇ YI (YI after 100 hours of UV exposure) ⁇ (YI before UV exposure) ⁇ : ⁇ YI ⁇ 10 Good long-term light resistance ⁇ : 10 ⁇ YI Long-term light resistance is poor

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

Provided are a β-pinene-based polymer, which has an excellent heat resistance, an excellent light resistance, a low water absorptivity and a high transparency; and a molded article thereof. A β-pinene-based polymer which is a polymer containing 60% by mass or more of a β-pinene unit, wherein 1% by mol or more but not more than 10% by mol of 6-membered rings derived from β-pinene are aromatic 6-membered rings or the p-phenylene group content is 0.55% by mass or more but not more than 5.5% by mass, and preferably 90% by mol or more of olefinic double bonds have been hydrogenated or the cyclohexene-1,4-diyl group content is 5.6% by mass or less; and a molded article which comprises this β-pinene-based polymer.

Description

β-ピネン系重合体及びそれからなる成形体β-pinene polymer and molded article comprising the same
 本発明は、高い屈折率と低い複屈折を両立させたβ-ピネン系重合体及びそれからなる成形体及びそれの製造法に関する。 The present invention relates to a β-pinene polymer having both a high refractive index and a low birefringence, a molded product comprising the same, and a method for producing the same.
 近年、光学用樹脂への要求はますます高度になり、耐熱性及び耐光性に優れ、吸水性が低く、かつ高い透明性を有する樹脂が求められている。しかし、従来の光学用樹脂においてはこれらの要求性能が高い次元でバランスよく備わっておらず、光学用樹脂として種々の欠点を有する。 In recent years, the demand for optical resins has become higher, and there is a demand for resins having excellent heat resistance and light resistance, low water absorption, and high transparency. However, conventional optical resins do not have these required performances in a well-balanced manner and have various drawbacks as optical resins.
 例えば、透明性の高い光学用樹脂としては、従来ポリメタクリル酸メチル、ポリカーボネート等が使用されてきた。ポリメタクリル酸メチルは透明性が高く、複屈折率が小さい等、光学的な性質は優れているが、吸水性が大きいため寸法が変化し易く、また耐熱性も低いという欠点を有する。一方、ポリカーボネートはガラス転移温度(Tg)が高く耐熱性は優れているが、吸水性がやや大きく、アルカリによる加水分解を起こしやすいという欠点を有する。 For example, polymethyl methacrylate, polycarbonate, and the like have been conventionally used as highly transparent optical resins. Polymethylmethacrylate is excellent in optical properties such as high transparency and low birefringence, but has the disadvantages that its dimensions are easily changed due to its large water absorption, and its heat resistance is also low. Polycarbonate, on the other hand, has a high glass transition temperature (Tg) and excellent heat resistance, but has a disadvantage that it has a slightly high water absorption and is easily hydrolyzed by alkali.
 耐熱性が高く、吸水性が小さく、かつ透明性に優れた光学用樹脂としてはノルボルネン系モノマーの開環重合体水素添加物やノルボルネン系モノマーとエチレンとの付加型共重合体が知られている(特許文献1~4)。しかしながら、ノルボルネン系モノマーとして使用しているテトラシクロドデセン類の多環モノマーは、その製造が必ずしも容易ではなく、重合触媒にモリブデン、タングステンの塩化物等のレアメタルを使用する必要がある。 As an optical resin having high heat resistance, low water absorption, and excellent transparency, a ring-opening polymer hydrogenated product of a norbornene monomer and an addition copolymer of a norbornene monomer and ethylene are known. (Patent Documents 1 to 4). However, the tetracyclododecene polycyclic monomer used as the norbornene-based monomer is not always easy to produce, and it is necessary to use rare metals such as molybdenum and tungsten chloride as the polymerization catalyst.
 上記の課題を改善した光学用樹脂としてβ-ピネン系重合体が提案されている(特許文献5、非特許文献1~2)。β-ピネン系重合体は耐熱性が高く、吸水性が低い材料である。また、近年問題となっている二酸化炭素の排出を抑える、カーボンニュートラル材料としても注目されている(非特許文献1)。しかしながら、比重が小さいため屈折率が小さいという欠点を有していた。屈折率を向上させるため、芳香族系ビニル単量体と共重合する方法が検討されている(特許文献5)。特許文献5に記載のβ-ピネンとインデンの共重合体(実施例7~12)は、耐熱性は高いもののβ-ピネン由来のオレフィン性二重結合やインデン由来の芳香族性二重結合が残っており、酸化劣化し易いため、光や熱で着色し易いという問題点を有していた。また、インデンのような側鎖に芳香環を有する単量体を共重合すると複屈折が大きくなる問題があった。 Β-pinene-based polymers have been proposed as optical resins that have improved the above problems (Patent Document 5, Non-Patent Documents 1 and 2). The β-pinene polymer is a material having high heat resistance and low water absorption. Moreover, it attracts attention also as a carbon neutral material which suppresses the discharge | emission of the carbon dioxide which has become a problem in recent years (nonpatent literature 1). However, since the specific gravity is small, the refractive index is small. In order to improve the refractive index, a method of copolymerizing with an aromatic vinyl monomer has been studied (Patent Document 5). The copolymer of β-pinene and indene described in Patent Document 5 (Examples 7 to 12) has high heat resistance, but has an olefinic double bond derived from β-pinene and an aromatic double bond derived from indene. Since it remains and is easily oxidized and deteriorated, it has a problem of being easily colored by light or heat. Further, when a monomer having an aromatic ring in the side chain such as indene is copolymerized, there is a problem that birefringence increases.
特開昭64-24826号公報JP-A 64-24826 特開昭60-168708号公報JP 60-168708 A 特開昭61-115912号公報JP 61-115912 A 特開昭61-120816号公報Japanese Patent Laid-Open No. Sho 61-120816 特開2002-121231号公報JP 2002-121231 A
 従って本発明の目的は、本来有する高耐熱性及び高耐光性、低吸水性、高い透明性を保持しつつ高い屈折率を有するβ-ピネン系重合体及びその成形体を提供することにある。 Accordingly, an object of the present invention is to provide a β-pinene-based polymer having a high refractive index while maintaining the inherent high heat resistance and light resistance, low water absorption, and high transparency, and a molded product thereof.
 すなわち本発明は、
β-ピネン単位を60質量%以上含有した重合体であって、β-ピネン由来の6員環のうち1モル%以上10モル%以下が芳香族性6員環であるβ-ピネン系重合体、および該β-ピネン系重合体からなる成形体である。
That is, the present invention
A polymer containing 60% by mass or more of β-pinene units, wherein a β-pinene-based polymer in which 1 mol% or more and 10 mol% or less of the 6-membered ring derived from β-pinene is an aromatic 6-membered ring And a molded body comprising the β-pinene-based polymer.
 また本発明は、
β-ピネン単位を60質量%以上含有した重合体であって、p-フェニレン基が0.55質量%以上5.5質量%以下であるβ-ピネン系重合体、および該β-ピネン系重合体からなる成形体である。
The present invention also provides
A polymer containing 60% by mass or more of β-pinene units, wherein the p-phenylene group is 0.55% by mass or more and 5.5% by mass or less, and the β-pinene polymer It is a molded body made of coalescence.
 さらに本発明は、
β-ピネン単位を60質量%以上含有する重合体を、不均一触媒存在下、水素圧0.1MPa~25MPaにてオレフィン性二重結合を水素化する、上記のβ-ピネン系重合体の製造方法である。
Furthermore, the present invention provides
Production of the above-mentioned β-pinene polymer wherein a polymer containing 60% by mass or more of β-pinene units is hydrogenated in the presence of a heterogeneous catalyst at a hydrogen pressure of 0.1 MPa to 25 MPa. Is the method.
 本発明のβ-ピネン系重合体は、耐熱性及び耐光性に優れ、吸水性が低く、屈折率が高く、複屈折が小さく、高い透明性を有するため、特に光学用途に好適である。 The β-pinene polymer of the present invention is particularly suitable for optical applications because it has excellent heat resistance and light resistance, low water absorption, high refractive index, low birefringence and high transparency.
実施例3で得られたβ-ピネン系重合体(H3)のH-NMRスペクトルを示す図である。重溶媒として重水素化テトラヒドロフランを使用した。FIG. 3 is a diagram showing a 1 H-NMR spectrum of a β-pinene polymer (H3) obtained in Example 3. Deuterated tetrahydrofuran was used as deuterated solvent. 比較例3で得られたβ-ピネン系重合体(B3)のH-NMRスペクトルを示す図である。重溶媒として重水素化テトラヒドロフランを使用した。FIG. 3 is a diagram showing a 1 H-NMR spectrum of a β-pinene polymer (B3) obtained in Comparative Example 3. Deuterated tetrahydrofuran was used as deuterated solvent.
[I]β-ピネン系重合体
 本発明のβ-ピネン系重合体は、β-ピネン単位を含有する重合体を、水素化してなる重合体である。
[I] β-Pinene Polymer The β-pinene polymer of the present invention is a polymer obtained by hydrogenating a polymer containing β-pinene units.
・β-ピネン
 本発明に用いるβ-ピネン単量体としては公知のものが利用可能である。すなわち、松等の植物から採取されたものや、α-ピネン等、他の原料から合成したβ-ピネン等も利用可能である。
Β-Pinene As the β-pinene monomer used in the present invention, known ones can be used. That is, those collected from plants such as pine, β-pinene synthesized from other raw materials such as α-pinene, and the like can also be used.
・他の共重合単量体
 本発明の重合体は、β-ピネンと共重合可能な他の単量体単位を構成単位として含有していてもよい。共重合可能な単量体は特に制限はなく、具体例としては、スチレン、α-メチルスチレン、3-メチルスチレン、4-メチルスチレン、4-エチルスチレン、4-t-ブチルスチレン、1-ビニルナフタレン、インデン等の芳香族ビニル;(メタ)アクリル酸、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸グリシジル等の(メタ)アクリル酸系モノマー;無水マレイン酸、マレイン酸、フマル酸、マレイミド;アクリロニトリル、メタクリロニトリル等のニトリル基含有ビニルモノマー;アクリルアミド、メタクリルアミド等のアミド基含有ビニルモノマー;エチレン、プロピレン、イソブチレン、ブタジエン、イソプレン、ノルボルネン等のオレフィン類;リモネン、α-ピネン、ミルセン、カンフェン、カレン等のβ-ピネン以外のテレピン油由来の二重結合含有化合物;酢酸ビニル、ピバリン酸ビニル、安息香酸ビニル等のビニルエステル類;極性基を有するスチレン誘導体、塩化ビニル、塩化ビニリデン、アリルクロライド、アリルアルコール等が挙げられる。また、2官能性の単量体、例えばp-ジビニルベンゼン、p-ジイソプロペニルベンゼン、エチレングリコールジビニルエーテル等を含有することも可能である。これらは単独で用いても、2種類以上を組み合わせて用いてもよい。
Other Copolymeric Monomer The polymer of the present invention may contain another monomer unit copolymerizable with β-pinene as a structural unit. The copolymerizable monomer is not particularly limited, and specific examples include styrene, α-methylstyrene, 3-methylstyrene, 4-methylstyrene, 4-ethylstyrene, 4-t-butylstyrene, 1-vinyl. Aromatic vinyl such as naphthalene and indene; (meth) acrylic acid, methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, (meth) acrylic (Meth) acrylic acid monomers such as glycidyl acid; maleic anhydride, maleic acid, fumaric acid, maleimide; nitrile group-containing vinyl monomers such as acrylonitrile and methacrylonitrile; amide group-containing vinyl monomers such as acrylamide and methacrylamide; ethylene , Propylene, isobutylene, butadiene, isoprene, norbol Olefins such as styrene; compounds containing double bonds derived from turpentine other than β-pinene such as limonene, α-pinene, myrcene, camphene, and carene; vinyl esters such as vinyl acetate, vinyl pivalate, and vinyl benzoate; Examples thereof include styrene derivatives having a polar group, vinyl chloride, vinylidene chloride, allyl chloride, and allyl alcohol. It is also possible to contain bifunctional monomers such as p-divinylbenzene, p-diisopropenylbenzene, ethylene glycol divinyl ether and the like. These may be used alone or in combination of two or more.
 上記共重合可能な単量体をβ-ピネンと共重合する場合、その共重合量は重合体の全単量体単位あたり0.001~50モル%が好ましく、0.01~20モル%がより好ましく、0.01~10モル%が最も好ましい。共重合量が多すぎると、重合が困難になる可能性があり、また耐熱性も低下する場合が多い。また芳香族を側鎖に有する単量体は複屈折が増大するため少ない方が好ましく、その共重合量は重合体の全単量体単位あたり0.001~10モル%が好ましく、0.01~5モル%が最も好ましい。 When the copolymerizable monomer is copolymerized with β-pinene, the amount of copolymerization is preferably 0.001 to 50 mol%, and 0.01 to 20 mol% per total monomer unit of the polymer. More preferred is 0.01 to 10 mol%. If the amount of copolymerization is too large, polymerization may become difficult, and heat resistance often decreases. The monomer having an aromatic side chain is preferably less because the birefringence increases, and the amount of copolymerization is preferably 0.001 to 10 mol% per total monomer unit of the polymer, ˜5 mol% is most preferred.
 共重合体の構造は特に制限されず、例えばランダム、ブロックおよびテーパードのいずれの共重合体でもよい。共重合体はランダム共重合体が特に好ましい。 The structure of the copolymer is not particularly limited, and any of random, block and tapered copolymers may be used. The copolymer is particularly preferably a random copolymer.
・数平均分子量
 β-ピネン系重合体の数平均分子量は特に限定されないが、力学的物性や加工性の観点から、600~100万g/モルが好ましく、1万~50万g/モルがより好ましく、3万~20万がさらに好ましく、4万~20万が最も好ましい。数平均分子量が小さすぎると重合体とは呼べず、大きすぎると成形が困難になる。ここで、数平均分子量はゲルパーミエーションクロマトグラフィーによるポリスチレン換算の分子量を意味する。
Number average molecular weight The number average molecular weight of the β-pinene polymer is not particularly limited, but is preferably from 600 to 1,000,000 g / mol from the viewpoint of mechanical properties and processability, more preferably from 10,000 to 500,000 g / mol. It is preferably 30,000 to 200,000, more preferably 40,000 to 200,000. If the number average molecular weight is too small, it cannot be called a polymer, and if it is too large, molding becomes difficult. Here, the number average molecular weight means a molecular weight in terms of polystyrene by gel permeation chromatography.
・水素化物
 本発明の重合体はβ-ピネン単位に由来する6員環であるシクロヘキセン環のオレフィン性二重結合を水素化[水素添加(水添)]することで得られるが、通常の水素化反応では、水素化反応と同時にシクロヘキセン環の脱水素反応も極少量であるが進行する。本発明のβ-ピネン系重合体は、オレフィン性二重結合を水素化しつつも、シクロヘキセン環に由来する芳香族性6員環の含有量が多い重合体である。ここで生成する芳香族環はβ-ピネン由来の6員環(p-フェニレン基)であるため、主鎖に対して対称であり、複屈折を小さくすることが可能である。
-Hydride The polymer of the present invention can be obtained by hydrogenating (hydrogenating (hydrogenating)) an olefinic double bond of a cyclohexene ring, which is a 6-membered ring derived from a β-pinene unit. In the hydrogenation reaction, the dehydrogenation reaction of the cyclohexene ring proceeds at the same time as the hydrogenation reaction, although the amount is very small. The β-pinene-based polymer of the present invention is a polymer having a high content of an aromatic 6-membered ring derived from a cyclohexene ring while hydrogenating an olefinic double bond. Since the aromatic ring produced here is a 6-membered ring (p-phenylene group) derived from β-pinene, it is symmetric with respect to the main chain, and birefringence can be reduced.
 本発明のβ-ピネン系重合体は、空気中の酸素による劣化防止、成形体の着色を抑制するため、β-ピネン由来のオレフィン性二重結合が、重合体中の芳香族環生成単位を除いたβ-ピネン単位に対し、好ましくは20モル%以下、より好ましくは15モル%以下、さらに好ましくは10モル%以下にまで水素化されている。本発明のβ-ピネン系重合体は、そのH-NMRスペクトル[テトラメチルシラン(TMS)のプロトンを0ppmとする]における4.5~6ppmのプロトンの積分値の全プロトンの積分値に対する比率(4.5~6ppmのプロトンの積分値/全プロトンの積分値)が、好ましくは1.1×10-2以下(β-ピネン単独重合体の場合、水添率80モル%以上に相当)であり、より好ましくは8.5×10-3以下(同、水添率85モル%以上に相当)であり、さらに好ましくは5.6×10-3以下(同、水添率90モル%以上に相当)である。またシクロヘキセン-1,4-ジイル基(-C-)が、好ましくは10.7質量%以下(同、水添率80モル%以上に相当)、より好ましくは8.4質量%以下(同、水添率85モル%以上に相当)、さらに好ましくは5.6質量%以下(同、水添率90モル%以上に相当)である。上記比率が大きいと、オレフィン性二重結合の量が多くなり劣化しやすい可能性がある。 In the β-pinene-based polymer of the present invention, in order to prevent deterioration due to oxygen in the air and to suppress coloring of the molded product, the olefinic double bond derived from β-pinene has an aromatic ring-forming unit in the polymer. It is preferably hydrogenated to 20 mol% or less, more preferably 15 mol% or less, and even more preferably 10 mol% or less with respect to the removed β-pinene unit. The β-pinene-based polymer of the present invention has a ratio of the integral value of 4.5 to 6 ppm proton to the integral value of all protons in its 1 H-NMR spectrum [the proton of tetramethylsilane (TMS) is 0 ppm]. (Integral value of proton of 4.5 to 6 ppm / Integral value of all protons) is preferably 1.1 × 10 −2 or less (in the case of β-pinene homopolymer, the hydrogenation rate is 80 mol% or more) More preferably, 8.5 × 10 −3 or less (corresponding to a hydrogenation rate of 85 mol% or more), and even more preferably 5.6 × 10 −3 or less (same as 90% by hydrogenation rate). Equivalent to the above). The cyclohexene-1,4-diyl group (—C 6 H 8 —) is preferably 10.7% by mass or less (corresponding to a hydrogenation rate of 80% by mol or more), more preferably 8.4% by mass or less. (Corresponding to a hydrogenation rate of 85 mol% or more), more preferably 5.6% by mass or less (corresponding to a hydrogenation rate of 90 mol% or more). When the said ratio is large, the quantity of an olefinic double bond may increase and may deteriorate easily.
 本発明のβ-ピネン系重合体は、水添時にβ-ピネン由来のシクロヘキセン環から生成する芳香族性6員環が、重合体中のβ-ピネン単位に対し1モル%以上10モル%以下、さらに好ましくは5モル%以上10モル%以下である。本発明のβ-ピネン系重合体は、そのH-NMRスペクトル[テトラメチルシラン(TMS)のプロトンを0ppmとする]における6~8ppmのプロトンの積分値の全プロトンの積分値に対する比率(6~8ppmのプロトンの積分値/全プロトンの積分値)が、好ましくは2.2×10-3以上(β-ピネン単独重合体の場合、芳香族環1モル%以上に相当)2.3×10-2以下(同、芳香族環10モル%以下に相当)であり、好ましくは1.1×10-2以上(同、芳香族環5モル%以上に相当)2.3×10-2以下(同、芳香族環10モル%以下に相当)である。また、p-フェニレン基(-C-)が0.55質量%以上5.5質量%以下であり、好ましくは2.7質量%以上5.5質量%以下である。上記比率が小さいと、芳香族環の量が少なくなり屈折率が小さくなり、逆に大きいとガラス転移温度が小さくなり、さらに耐光性も低下してしまう。 In the β-pinene-based polymer of the present invention, the aromatic 6-membered ring formed from the cyclohexene ring derived from β-pinene during hydrogenation is 1 mol% or more and 10 mol% or less with respect to the β-pinene unit in the polymer. More preferably, it is 5 mol% or more and 10 mol% or less. The β-pinene-based polymer of the present invention has a ratio of the integral value of 6 to 8 ppm proton to the integral value of all protons in its 1 H-NMR spectrum (the proton of tetramethylsilane (TMS) is 0 ppm) (6 (Integral value of protons of ˜8 ppm / integral value of all protons) is preferably 2.2 × 10 −3 or more (corresponding to 1 mol% or more of aromatic ring in the case of β-pinene homopolymer) 2.3 × 10 −2 or less (corresponding to 10 mol% or less of the aromatic ring), preferably 1.1 × 10 −2 or more (corresponding to 5 mol% or more of the aromatic ring) 2.3 × 10 −2 The following (corresponding to 10 mol% or less of the aromatic ring). Further, the p-phenylene group (—C 6 H 4 —) is 0.55% by mass or more and 5.5% by mass or less, preferably 2.7% by mass or more and 5.5% by mass or less. When the ratio is small, the amount of aromatic rings is small and the refractive index is small. On the other hand, when the ratio is large, the glass transition temperature is small and the light resistance is also lowered.
 なお、水素化率の高い重合体のH-NMRスペクトルは非常に小さいスペクトルを積分するため、高いSN比と解像度が要求される。通常270MHz以上のマグネットを有する核磁気共鳴装置を用い、積算回数を8000回以上することが好ましい。SN比が悪かったり、解像度が低いと積分値を小さく見積もってしまい、正しい値が得られない。
 また、β-ピネン系重合体を溶解させる重溶媒としてはβ-ピネン系重合体が溶解する重溶媒であれば特に限定しないが、重溶媒中の重水素化されていない溶媒のスペクトルがβ-ピネン系重合体のスペクトルと重ならないもしくは重なっても影響の少ない0~4ppmにスペクトルを持つ重溶媒を選択することが好ましい。そのような重溶媒として重テトラヒドロフランや重ヘキサンを挙げることができる。
Incidentally, since the 1 H-NMR spectrum of a polymer having a high hydrogenation rate integrates a very small spectrum, a high SN ratio and resolution are required. Usually, it is preferable to use a nuclear magnetic resonance apparatus having a magnet of 270 MHz or higher and to increase the number of integrations to 8000 times or more. If the S / N ratio is bad or the resolution is low, the integral value is estimated to be small, and a correct value cannot be obtained.
The heavy solvent for dissolving the β-pinene polymer is not particularly limited as long as it is a heavy solvent in which the β-pinene polymer is dissolved, but the spectrum of the non-deuterated solvent in the heavy solvent is β- It is preferable to select a heavy solvent having a spectrum of 0 to 4 ppm which does not overlap with the spectrum of the pinene polymer or has little influence even if it overlaps. Examples of such heavy solvents include heavy tetrahydrofuran and heavy hexane.
・ガラス転移温度(Tg)
 本発明のβ-ピネン系重合体のTgは、共重合する単量体の種類や割合、芳香族環量により一概に規定できないが、70℃~250℃がより好ましく、100℃~230℃がさらに好ましい。Tgが低いと耐熱性が不足し、高過ぎるとβ-ピネン系重合体が脆くなる。なお示差走査熱量測定法(DSC)により測定することができる。
・ Glass transition temperature (Tg)
The Tg of the β-pinene-based polymer of the present invention cannot be generally defined by the type and ratio of monomers to be copolymerized and the amount of aromatic ring, but is preferably 70 ° C to 250 ° C, more preferably 100 ° C to 230 ° C. Further preferred. If Tg is low, the heat resistance is insufficient, and if it is too high, the β-pinene polymer becomes brittle. It can be measured by differential scanning calorimetry (DSC).
・全光線透過率
 本発明のβ-ピネン系重合体は、特に光学材料に使用する場合は全光線透過率が高い方が好ましい。β-ピネン系重合体の全光線透過率は80%以上が好ましく、85%以上がより好ましい。全光線透過率はJIS-K-7361-1-1997「プラスチック-透明材料の全光線透過率の試験方法-第1部:ジングルビーム法」に準じて測定される。
-Total light transmittance The β-pinene polymer of the present invention preferably has a high total light transmittance, particularly when used in an optical material. The total light transmittance of the β-pinene polymer is preferably 80% or more, and more preferably 85% or more. The total light transmittance is measured according to JIS-K-7361-1-1997 “Plastics—Testing method for total light transmittance of transparent materials—Part 1: Jingle beam method”.
・屈折率
 本発明のβ-ピネン系重合体は、特に光学材料に使用する場合は屈折率が高い方が好ましい。β-ピネン系重合体の屈折率は1.505以上が好ましく、1.507以上がより好ましい。屈折率の測定はJIS K7142(A法)「プラスチックの屈折率測定方法」に準じて、D線にて測定される。
-Refractive index The β-pinene polymer of the present invention preferably has a high refractive index, particularly when used in an optical material. The refractive index of the β-pinene polymer is preferably 1.505 or more, and more preferably 1.507 or more. The refractive index is measured by D-line according to JIS K7142 (Method A) “Method for measuring refractive index of plastic”.
・耐光性
 本発明のβ-ピネン系重合体は、耐光性および耐候性が高い方が好ましい。例えばASTM-G53に準じて、UVB光100時間の促進暴露試験を行い、JIS-K-7373に準じ測定したYI(イエロー・インデックス)の試験前と試験後における黄変度(ΔYI)が10以下が好ましく、5以下がより好ましく、2以下が最も好ましい。
-Light resistance The β-pinene-based polymer of the present invention preferably has high light resistance and weather resistance. For example, an accelerated exposure test for 100 hours with UVB light is performed according to ASTM-G53, and the yellowing degree (ΔYI) before and after the test of YI (Yellow Index) measured according to JIS-K-7373 is 10 or less. Is preferable, 5 or less is more preferable, and 2 or less is most preferable.
・耐熱性
 本発明によれば5%質量減少温度が高い重合体を得ることが可能である。本発明のβ-ピネン系重合体の5%質量減少温度は300℃以上が好ましく、320℃以上がより好ましい。5%質量減少温度はJIS-K-7120-1987「プラスチックの熱重量測定法」に準じて熱天秤(TGA)で測定される、質量が5%減少した温度を意味する。
-Heat resistance According to the present invention, it is possible to obtain a polymer having a high 5% mass reduction temperature. The 5% mass reduction temperature of the β-pinene polymer of the present invention is preferably 300 ° C. or higher, more preferably 320 ° C. or higher. The 5% mass reduction temperature means a temperature at which the mass is reduced by 5%, as measured by a thermobalance (TGA) according to JIS-K-7120-1987 “Thermogravimetry of plastics”.
[II]β-ピネン系重合体の製造方法
・重合反応
 本発明のβ-ピネン系重合体は、カチオン重合、ラジカル重合法、配位重合法等の公知の方法により得ることができる。工業的に容易に実施でき、高分子量体が得られるという観点から、特にカチオン重合法が好ましい。
[II] Production Method / Polymerization Reaction of β-Pinene Polymer The β-pinene polymer of the present invention can be obtained by a known method such as cationic polymerization, radical polymerization method or coordination polymerization method. From the viewpoint that it can be easily carried out industrially and a high molecular weight product can be obtained, a cationic polymerization method is particularly preferred.
・カチオン重合
 カチオン重合は、溶媒、重合触媒の種類・量、重合開始剤、電子供与性化合物、反応温度、反応圧力、反応時間等により制御ることが可能である。
Cationic polymerization The cationic polymerization can be controlled by the solvent, the type and amount of the polymerization catalyst, the polymerization initiator, the electron donating compound, the reaction temperature, the reaction pressure, the reaction time, and the like.
・カチオン重合溶媒
 カチオン重合は、非特許文献1、非特許文献2等に記載の公知の方法により行うことができる。具体的には、例えば不活性有機溶媒中において、重合触媒を添加または接触させることにより行う。不活性有機溶媒は、β-ピネンおよび芳香族系単量体が溶解し、かつ重合触媒に不活性な有機溶媒であれば特に制限なく使用することができる。具体的には、ベンゼン、トルエン、キシレン等の芳香族炭化水素系溶媒;ペンタン、ヘキサン、ヘプタン、オクタン、シクロペンタン、シクロヘキサン、メチルシクロヘキサン、デカリン等の脂肪族炭化水素系溶媒;塩化メチル、塩化メチレン、塩化プロパン、塩化ブタン、1,2-ジクロロエタン、1,1,2-トリクロロエチレン等のハロゲン化炭化水素系溶媒;エステル、エーテル等の含酸素系溶媒等を用いることができる。反応性を考慮すると、芳香族炭化水素系溶媒、脂肪族炭化水素系溶媒、ハロゲン化炭化水素系溶媒等が好ましい。これらの溶媒は単独で使用しても、2種類以上を組み合わせて使用しても良い。
-Cationic polymerization solvent Cationic polymerization can be performed by the well-known method of a nonpatent literature 1, a nonpatent literature 2, etc. Specifically, for example, it is carried out by adding or contacting a polymerization catalyst in an inert organic solvent. The inert organic solvent can be used without particular limitation as long as it is an organic solvent in which β-pinene and aromatic monomers are dissolved and is inert to the polymerization catalyst. Specifically, aromatic hydrocarbon solvents such as benzene, toluene, xylene; aliphatic hydrocarbon solvents such as pentane, hexane, heptane, octane, cyclopentane, cyclohexane, methylcyclohexane, decalin; methyl chloride, methylene chloride Halogenated hydrocarbon solvents such as propane chloride, butane chloride, 1,2-dichloroethane, 1,1,2-trichloroethylene; oxygen-containing solvents such as esters and ethers can be used. In view of reactivity, aromatic hydrocarbon solvents, aliphatic hydrocarbon solvents, halogenated hydrocarbon solvents and the like are preferable. These solvents may be used alone or in combination of two or more.
 カチオン重合において不活性有機溶媒を使用する場合、不活性有機溶媒の使用量は特に限定されないが、β-ピネンを含む単量体100質量部に対して通常100~10000質量部、好ましくは150~5000質量部、より好ましくは200~3000質量部である。不活性溶媒量が少ないと重合体が生成した場合の粘度が高くなり撹拌が困難となるため反応が不均一となり、均一な重合体が得られなかったり、反応の制御が困難になる。不活性溶媒量が多いと生産性が低下してしまう。 When an inert organic solvent is used in the cationic polymerization, the amount of the inert organic solvent is not particularly limited, but is usually 100 to 10,000 parts by mass, preferably 150 to 10,000 parts per 100 parts by mass of the monomer containing β-pinene. 5000 parts by mass, more preferably 200 to 3000 parts by mass. If the amount of the inert solvent is small, the viscosity when the polymer is formed becomes high and stirring becomes difficult, so that the reaction becomes non-uniform and a uniform polymer cannot be obtained or the control of the reaction becomes difficult. When the amount of the inert solvent is large, productivity is lowered.
・重合触媒
 カチオン重合の重合触媒として酸性化合物を用いることができる。酸性化合物は特に限定されず、例えばルイス酸またはブレンステッド酸が挙げられる。具体的にはBF、BFOEt、BBr、BBrOEt、AlCl、AlBr、AlI、TiCl、TiBr、TiI、FeCl、FeCl、SnCl、SnCl、WCl、MoCl、SbCl、TeCl、EtMgBr、EtAl、EtAlCl、EtAlCl、EtAlCl、BuSnCl等の周期律表IIIA族からVIII族までの金属ハロゲン化合物;HF、HCl、HBr等の水素酸;HSO、HBO、HClO、CHCOOH、CHClCOOH、CHClCOOH、CClCOOH、CFCOOH、パラトルエンスルホン酸、CFSOH、HPO、P等のオキソ酸、およびこれらの基を有するイオン交換樹脂等の高分子化合物;燐モリブデン酸、燐タングステン酸等のヘテロポリ酸;SiO、Al、SiO-Al、MgO-SiO、B-Al、WO-Al、Zr-SiO、硫酸化ジルコニア、タングステン酸ジルコニア、Hまたは希土類元素と交換したゼオライト、活性白土、酸性白土、γ-Al、Pをケイソウ土と担持させた固体燐酸等の固体酸等が挙げられる。これらの酸性化合物は組み合わせて用いても良く、また他の化合物等を添加しても良い。他の化合物等は、例えばそれを添加することにより酸性化合物の活性を向上させることができる化合物等である。金属ハロゲン化合物の酸性化合物としての活性を向上させる化合物の例としては、MeLi、EtLi、BuLi、EtMg、(i-Bu)Al、EtAl(OEt)、MeSn、EtSn、BuSn等の金属アルキル化合物が例示される。
-Polymerization catalyst An acidic compound can be used as a polymerization catalyst for cationic polymerization. The acidic compound is not particularly limited, and examples thereof include Lewis acid or Bronsted acid. BF 3 in particular, BF 3 OEt 2, BBr 3 , BBr 3 OEt 2, AlCl 3, AlBr 3, AlI 3, TiCl 4, TiBr 4, TiI 4, FeCl 3, FeCl 2, SnCl 2, SnCl 4, Metal halide compounds from Group IIIA to Group VIII of the periodic table such as WCl 6 , MoCl 5 , SbCl 5 , TeCl 2 , EtMgBr, Et 3 Al, Et 2 AlCl, EtAlCl 2 , Et 3 Al 2 Cl 3 , Bu 3 SnCl Hydrogen acids such as HF, HCl, HBr; H 2 SO 4 , H 3 BO 3 , HClO 4 , CH 3 COOH, CH 2 ClCOOH, CHCl 2 COOH, CCl 3 COOH, CF 3 COOH, p-toluenesulfonic acid, CF Oxo acids such as 3 SO 3 H, H 3 PO 4 , P 2 O 5 , And polymer compounds such as ion exchange resins having these groups; heteropolyacids such as phosphomolybdic acid and phosphotungstic acid; SiO 2 , Al 2 O 3 , SiO 2 —Al 2 O 3 , MgO—SiO 2 , B 2 O 3 -Al 2 O 3 , WO 3 -Al 2 O 3 , Zr 2 O 3 -SiO 2 , sulfated zirconia, tungstate zirconia, zeolite exchanged with H + or rare earth elements, activated clay, acidic clay, γ- Examples thereof include solid acids such as solid phosphoric acid in which Al 2 O 3 and P 2 O 5 are supported on diatomaceous earth. These acidic compounds may be used in combination, or other compounds may be added. Other compounds etc. are compounds etc. which can improve the activity of an acidic compound, for example by adding it. Examples of compounds that improve the activity of metal halide compounds as acidic compounds include MeLi, EtLi, BuLi, Et 2 Mg, (i-Bu) 3 Al, Et 2 Al (OEt), Me 4 Sn, Et 4 Sn. And metal alkyl compounds such as Bu 4 Sn.
 カチオン重合で使用する重合触媒の使用量は、重合触媒の種類により触媒能が異なるため、一概に使用量を規定することは難しいが、均一系触媒の場合、その使用量は、β-ピネンおよび芳香族系単量体100質量部に対し、0.001~10質量部が好ましく、0.01~5質量部がより好ましく、0.01~1質量部が最も好ましい。重合触媒に固体酸やイオン交換樹脂等の不均一触媒を使用する場合、その使用量はβ-ピネンおよび芳香族系単量体100質量部に対し、0.1~10000質量部が好ましく、1~1000質量部がより好ましい。触媒量が少ないとカチオン重合の進行が遅く、多いと不経済である。 The amount of the polymerization catalyst used in the cationic polymerization varies depending on the type of the polymerization catalyst, so it is difficult to define the amount to be used. However, in the case of a homogeneous catalyst, the amount used is β-pinene and The amount is preferably 0.001 to 10 parts by mass, more preferably 0.01 to 5 parts by mass, and most preferably 0.01 to 1 part by mass with respect to 100 parts by mass of the aromatic monomer. When a heterogeneous catalyst such as a solid acid or an ion exchange resin is used as the polymerization catalyst, the amount used is preferably 0.1 to 10,000 parts by mass with respect to 100 parts by mass of β-pinene and aromatic monomers. More preferred is ~ 1000 parts by mass. If the amount of catalyst is small, the progress of cationic polymerization is slow, and if it is large, it is uneconomical.
 カチオン重合を行う場合の重合開始剤としては、重合触媒によりカチオンを発生させる化合物であれば特に限定されないが、下式に示す官能基を少なくとも1つ有する有機化合物が好適に使用される。例えば、t-ブチルクロライド、t-ブチルメチルエーテル、t-ブチルメチルエステル、t-ブタノール、2,5-ジクロロ-2,5-ジメチルヘキサン、2,5-ジメトキシ-2,5-ジメチルヘキサン、2,5-ジメチル-2,5-ヘキサンジオール、2,5-ジメチル-2,5-ヘキサンジオールジアセテート、クミルクロライド、クミルメトキシド、クミルアルコールアセテート、クミルアルコール、p-ジクミルクロライド、m-ジクミルクロライド、p-ジクミルメトキシド、p-ジクミルアルコールジアセテート、p-ジクミルアルコール、1,3,5-トリクミルクロライド、1,3,5-トリクミルメトキシド等を挙げることができる。 The polymerization initiator in the case of performing cationic polymerization is not particularly limited as long as it is a compound that generates a cation by a polymerization catalyst, but an organic compound having at least one functional group represented by the following formula is preferably used. For example, t-butyl chloride, t-butyl methyl ether, t-butyl methyl ester, t-butanol, 2,5-dichloro-2,5-dimethylhexane, 2,5-dimethoxy-2,5-dimethylhexane, 2 , 5-dimethyl-2,5-hexanediol, 2,5-dimethyl-2,5-hexanediol diacetate, cumyl chloride, cumyl methoxide, cumyl alcohol acetate, cumyl alcohol, p-dicumyl chloride, m- Examples include dicumyl chloride, p-dicumyl methoxide, p-dicumyl alcohol diacetate, p-dicumyl alcohol, 1,3,5-tricumyl chloride, 1,3,5-tricumyl methoxide. it can.
-C(-R)(-R)-X
(式中のRは水素、アルキル基、アリール基を、Rは水素、アルキル基、アリール基を、Xはハロゲン、アルコキシ基、アシロキシ基、水酸基を示す。)
-C (-R 1 ) (-R 2 ) -X
(In the formula, R 1 represents hydrogen, an alkyl group, and an aryl group, R 2 represents hydrogen, an alkyl group, and an aryl group, and X represents a halogen, an alkoxy group, an acyloxy group, and a hydroxyl group.)
 カチオン重合で使用する重合開始剤の使用量は、目的とする重合体の分子量により異なるため、一概に使用量を規定することは難しいがβ-ピネンおよび芳香族系単量体100質量部に対し、0.001~10質量部が好ましく、0.001~5質量部がより好ましく、0.01~1質量部が最も好ましい。重合開始剤が少ないと、重合反応速度が遅くなったり、不純物から重合が開始して安定して生産が困難となる。重合開始剤が多いと得られる重合体の分子量が小さくなり、重合体が脆くなってしまう。 Since the amount of the polymerization initiator used in the cationic polymerization varies depending on the molecular weight of the target polymer, it is difficult to generally define the amount to be used, but with respect to 100 parts by mass of β-pinene and aromatic monomers. 0.001 to 10 parts by mass is preferable, 0.001 to 5 parts by mass is more preferable, and 0.01 to 1 part by mass is most preferable. When the amount of the polymerization initiator is small, the polymerization reaction rate becomes slow, or the polymerization starts from the impurities and is difficult to produce stably. When there are many polymerization initiators, the molecular weight of the polymer obtained will become small and a polymer will become weak.
 カチオン重合を行う場合、電子供与性化合物を添加することで重合反応をより制御することが可能である。このような電子供与性化合物としては、例えば、ジエチルエーテル、ジイソプロピルエーテル、テトラヒドロフラン、ジオキサン、アニソール等のエーテル化合物、炭素数2~10の環状エーテル化合物、酢酸エチル、酢酸ブチル等のエステル化合物、メタノール、エタノール、ブタノール等のアルコール化合物、トリエチルアミン、ジエチルアミン、ピリジン、2-メチルピリジン、2,6-ジ-t-ブチルピリジン、2,6-ルチジン、N,N-ジメチルアセトアミド、アセトニトリル等の窒素含有化合物、テトラブチルアンモニウムクロリド、テトラブチルアンモニウムブロミド等のアンモニウム塩等が挙げられる。 When cationic polymerization is performed, the polymerization reaction can be further controlled by adding an electron donating compound. Examples of such electron donating compounds include ether compounds such as diethyl ether, diisopropyl ether, tetrahydrofuran, dioxane, and anisole, cyclic ether compounds having 2 to 10 carbon atoms, ester compounds such as ethyl acetate and butyl acetate, methanol, Alcohol compounds such as ethanol and butanol, nitrogen-containing compounds such as triethylamine, diethylamine, pyridine, 2-methylpyridine, 2,6-di-t-butylpyridine, 2,6-lutidine, N, N-dimethylacetamide, acetonitrile, Examples thereof include ammonium salts such as tetrabutylammonium chloride and tetrabutylammonium bromide.
 電子供与性化合物は、反応系中に、重合触媒100質量部に対し0.01~500質量部が好ましく、0.1~200質量部がより好ましい。電子供与性化合物の量が少なすぎると副反応が多くなる傾向があり、低分子量体が多く生成し得られる重合体の強度が低下してしまう。逆に電子供与剤が多すぎると重合反応速度が著しく抑制され、カチオン重合反応に長時間を要することとなり、生産性が低下する。したがって、更に好ましい電子供与性化合物の量は、重合触媒に対し0.1~100質量部である。 The electron donating compound is preferably 0.01 to 500 parts by weight, more preferably 0.1 to 200 parts by weight with respect to 100 parts by weight of the polymerization catalyst in the reaction system. If the amount of the electron-donating compound is too small, side reactions tend to increase, and the strength of the polymer that can produce a large amount of low molecular weight products decreases. Conversely, when there are too many electron donors, the polymerization reaction rate is remarkably suppressed, and the cationic polymerization reaction takes a long time, and the productivity is lowered. Therefore, a more preferable amount of the electron donating compound is 0.1 to 100 parts by mass with respect to the polymerization catalyst.
 カチオン重合を行う場合の反応温度は通常-120℃~60℃が好ましく、-80℃~0℃がより好ましく、-40℃~0℃が最も好ましい。反応温度が低すぎると不経済であり、高すぎると反応の制御が困難である。 The reaction temperature in the cationic polymerization is usually preferably −120 ° C. to 60 ° C., more preferably −80 ° C. to 0 ° C., and most preferably −40 ° C. to 0 ° C. If the reaction temperature is too low, it is uneconomical, and if it is too high, it is difficult to control the reaction.
 カチオン重合を行うための反応圧力は特に限定されないが、0.5~50気圧が好ましく、0.7~10気圧がより好ましい。通常1気圧前後でカチオン重合を行う。 The reaction pressure for carrying out the cationic polymerization is not particularly limited, but is preferably 0.5 to 50 atm, more preferably 0.7 to 10 atm. Usually, cationic polymerization is performed at around 1 atm.
 カチオン重合を行う反応時間は、特に限定されず、用いる芳香族系単量体の種類、その量、重合触媒の種類や量、反応温度、反応圧力等の条件に応じて、反応時間を適宜決めればよい。通常は0.01時間~24時間、好ましくは0.1時間~10時間である。 The reaction time for carrying out the cationic polymerization is not particularly limited, and the reaction time can be appropriately determined according to the type of aromatic monomer used, the amount thereof, the type and amount of the polymerization catalyst, the reaction temperature, the reaction pressure and the like. That's fine. Usually, it is 0.01 hours to 24 hours, preferably 0.1 hours to 10 hours.
 カチオン重合後の重合体は、例えば、再沈澱、加熱下での溶媒除去、減圧下での溶媒除去、水蒸気による溶媒の除去(スチームストリッピング)等の、重合体を溶液から単離する際の通常の操作によって、反応混合物から分離、取得することができる。 The polymer after cationic polymerization may be used for isolating the polymer from a solution, for example, reprecipitation, solvent removal under heating, solvent removal under reduced pressure, solvent removal with steam (steam stripping), etc. It can be separated and obtained from the reaction mixture by ordinary operations.
[III]水素化
 水素化反応は公知の任意の方法をとることができる。本発明はβ-ピネン重合体に対し、そのβ-ピネン単位のシクロヘキセン環の一部を脱水素することにより芳香環を形成させる。この場合、反応温度として高温が有利である場合があり、熱安定性の高い不均一系触媒を用いることが多い。よって、不均一系触媒(固体触媒)を用いた場合について説明する。
[III] Hydrogenation The hydrogenation reaction can take any known method. In the present invention, an aromatic ring is formed on a β-pinene polymer by dehydrogenating a part of the cyclohexene ring of the β-pinene unit. In this case, a high temperature may be advantageous as the reaction temperature, and a heterogeneous catalyst having high thermal stability is often used. Therefore, the case where a heterogeneous catalyst (solid catalyst) is used will be described.
・水素化触媒
 本発明において用いる不均一系触媒は特に限定されないが、具体例を挙げると、スポンジニッケル、スポンジコバルト、スポンジ銅などのスポンジメタル触媒;ニッケルシリカ、ニッケルアルミナ、ニッケルゼオライト、ニッケル珪藻土、パラジウムシリカ、パラジウムアルミナ、パラジウムゼオライト、パラジウム珪藻土、パラジウムカーボン、パラジウムグラファイト、パラジウム炭酸カルシウム、白金シリカ、白金アルミナ、白金ゼオライト、白金珪藻土、白金カーボン、白金グラファイト、白金炭酸カルシウム、ルテニウムシリカ、ルテニウムアルミナ、ルテニウムゼオライト、ルテニウム珪藻土、ルテニウムカーボン、ルテニウムグラファイト、ルテニウム炭酸カルシウム、イリジウムシリカ、イリジウムアルミナ、イリジウムゼオライト、イリジウム珪藻土、イリジウムカーボン、イリジウムグラファイト、イリジウム炭酸カルシウム、コバルトシリカ、コバルトアルミナ、コバルトゼオライト、コバルト珪藻土、コバルトカーボン、コバルトグラファイト、コバルト炭酸カルシウムなどの担持金属触媒が挙げられる。
 これらの触媒は、活性向上、選択性向上、安定性を目的に、鉄、モリブデン、マグネシウムなどで変性されていても良い。また、これらの触媒は単独で使用しても良いし、複数を混合して用いても構わない。
 水素化反応は、水素化活性、入手性、取り扱いの容易さの面から、水素化活性をもつ金属としてニッケルもしくはパラジウムを用いることが好ましい。また、水素化の最中に進行する望ましくない副反応をさらに抑制するために、炭酸カルシウム、カーボン担体を用いることが好ましい。
-Hydrogenation catalyst Although the heterogeneous catalyst used in the present invention is not particularly limited, specific examples include sponge metal catalysts such as sponge nickel, sponge cobalt, sponge copper; nickel silica, nickel alumina, nickel zeolite, nickel diatomaceous earth, Palladium silica, palladium alumina, palladium zeolite, palladium diatomaceous earth, palladium carbon, palladium graphite, palladium calcium carbonate, platinum silica, platinum alumina, platinum zeolite, platinum diatomaceous earth, platinum carbon, platinum graphite, platinum calcium carbonate, ruthenium silica, ruthenium alumina, Ruthenium zeolite, ruthenium diatomaceous earth, ruthenium carbon, ruthenium graphite, ruthenium calcium carbonate, iridium silica, iridium alumina, Examples include supported metal catalysts such as iridium zeolite, iridium diatomaceous earth, iridium carbon, iridium graphite, iridium calcium carbonate, cobalt silica, cobalt alumina, cobalt zeolite, cobalt diatomaceous earth, cobalt carbon, cobalt graphite, and cobalt calcium carbonate.
These catalysts may be modified with iron, molybdenum, magnesium or the like for the purpose of improving activity, improving selectivity, and stability. Moreover, these catalysts may be used alone or in combination.
In the hydrogenation reaction, nickel or palladium is preferably used as the metal having hydrogenation activity from the viewpoint of hydrogenation activity, availability, and ease of handling. In order to further suppress undesirable side reactions that proceed during hydrogenation, it is preferable to use calcium carbonate or a carbon support.
・溶媒
 水素化反応は、通常、有機溶媒中で行われる。用いることのできる溶媒は、特に限定されるものではないが、β-ピネン系重合体を容易に溶解させるものが好ましい。共重合の種類によりその溶媒が異なるため、限定することは困難であるが、具体例を挙げるならば、ベンゼン、トルエン、キシレン等の芳香族炭化水素系溶媒;ペンタン、ヘキサン、ヘプタン、オクタン、シクロペンタン、シクロヘキサン、メチルシクロヘキサン、デカリン、トリシクロデカン等の脂肪族炭化水素系溶媒;塩化メチル、塩化メチレン、塩化プロパン、塩化ブタン、1,2-ジクロロエタン、1,1,2-トリクロロエチレン等のハロゲン化炭化水素系溶媒;酢酸エチル、酢酸ブチル等のエステル系溶媒;ジオキサン、テトラヒドロフラン、ジエチルエーテル、ジイソプロピルエーテル、ジブチルエーテル等のエーテル系溶媒、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール等のアルコール系溶媒などを用いることができる。
 水素化反応は、重合工程で用いた溶媒をそのまま用いることもできるし、一部の溶媒を蒸留などの方法により除去して用いることもできる。また、重合工程終了後、一旦重合物を前述の方法で取り出した後に用いても構わない。未水添重合物をこれらの方法で水素化工程に導入する場合、重合工程の溶媒をそのままもしくは除去したのち、別途溶媒で希釈して用いることもできる。
 水素化反応の有機溶媒の使用量は、重合体100質量部に対して50質量部以上10000質量部以下、好ましくは100質量部以上3000質量部以下、より好ましくは150質量部以上1000質量部以下ある。10000質量部以上で行うと、生産性が著しく低下するし、100質量部未満の場合溶液粘度が著しく高まり、水素化反応効率が低下してしまう。
-Solvent The hydrogenation reaction is usually performed in an organic solvent. The solvent that can be used is not particularly limited, but a solvent that can easily dissolve the β-pinene polymer is preferable. Since the solvent differs depending on the type of copolymerization, it is difficult to limit, but specific examples include aromatic hydrocarbon solvents such as benzene, toluene, xylene; pentane, hexane, heptane, octane, cyclohexane Aliphatic hydrocarbon solvents such as pentane, cyclohexane, methylcyclohexane, decalin, tricyclodecane; halogenated methyl chloride, methylene chloride, propane chloride, butane chloride, 1,2-dichloroethane, 1,1,2-trichloroethylene, etc. Hydrocarbon solvents; ester solvents such as ethyl acetate and butyl acetate; ether solvents such as dioxane, tetrahydrofuran, diethyl ether, diisopropyl ether and dibutyl ether, methanol, ethanol, 1-propanol, 2-propanol, 1-butanol and the like Alcohol The solvent or the like can be used.
In the hydrogenation reaction, the solvent used in the polymerization step can be used as it is, or a part of the solvent can be removed by a method such as distillation. Further, after completion of the polymerization step, the polymer may be once taken out by the above-mentioned method. When the non-hydrogenated polymer is introduced into the hydrogenation step by these methods, the solvent in the polymerization step can be used as it is or after being removed, and then diluted with a separate solvent.
The amount of the organic solvent used in the hydrogenation reaction is 50 parts by mass or more and 10,000 parts by mass or less, preferably 100 parts by mass or more and 3000 parts by mass or less, more preferably 150 parts by mass or more and 1000 parts by mass or less with respect to 100 parts by mass of the polymer. is there. When it is carried out at 10000 parts by mass or more, the productivity is remarkably lowered, and when it is less than 100 parts by mass, the solution viscosity is remarkably increased and the hydrogenation reaction efficiency is lowered.
 高温でβ-ピネン単位を含む重合体を水素化する場合、主鎖断裂が進行し、望む重合度の水素化体が得られなくなる場合がある。その場合には、以下、I~IVに該当する物質の共存下に水素化を実施しても構わない。これらの物質の共存下に水素化を実施することで、担体に起因する高温反応時の主鎖切断を大幅に抑制することが可能となる。
  I.  M(OR)
  II. M(OC(=O)R’)
  III.(R”)
  IV. ピリジン類
When a polymer containing β-pinene units is hydrogenated at a high temperature, the main chain may break, and a hydrogenated product having a desired degree of polymerization may not be obtained. In that case, hydrogenation may be carried out in the presence of substances corresponding to I to IV below. By carrying out hydrogenation in the presence of these substances, it becomes possible to greatly suppress the main chain cleavage during the high-temperature reaction caused by the support.
I. M (OR) n
II. M (OC (= O) R ') n
III. (R ") 3 N
IV. Pyridines
 I.に示されるMは、アルカリ金属、アルカリ土類金属を表し、特に限定されないが、具体的には、リチウム、ナトリウム、カリウム、カルシウム、マグネシウムが挙げられる。nは、Mがアルカリ金属の場合1を、アルカリ土類金属の場合2を示す。Rは水素原子、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、t-ブチル基などの炭素数1~4のアルキル基;フェニル基、ナフチル基などの炭素数6~10のアリール基;2-メチルフェニル基、炭素数7~11のアラルキル基が挙げられる。
 II.に示されるM,nは上記のI.と同等である。R’は水素原子、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、t-ブチル基、ヘキシル基、オクチル基などの炭素数1~8のアルキル基を表す。
 III.に示されるR”は、3つが互いに同一であっても異なっていても良く、任意の2つ以上が結合することにより環構造を有していても良く、それぞれ、水素原子、炭素数1~8のアルキル基、炭素数3~12のシクロアルキル基、炭素数6~10のアリール基、炭素数7~11のアラルキル基、炭素数2~10のアルキレン基、炭素数6~12のアルキレン置換アルキレン基をあらわし、かつ、R”について水素原子以外の場合、ほかの置換基により置換されていても良く、かつ、置換基の一部が酸素原子、窒素原子などにより置き換えられていても良い。
 IV.に示されるピリジン類は、ピリジン骨格を分子内に有する任意の化合物を使用することができる。
I. M represents an alkali metal or an alkaline earth metal, and is not particularly limited, but specific examples include lithium, sodium, potassium, calcium, and magnesium. n represents 1 when M is an alkali metal, and 2 when M is an alkaline earth metal. R represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms such as a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group or a t-butyl group; an aryl group having 6 to 10 carbon atoms such as a phenyl group or a naphthyl group A 2-methylphenyl group and an aralkyl group having 7 to 11 carbon atoms.
II. M and n shown in FIG. Is equivalent to R ′ represents a C 1-8 alkyl group such as a hydrogen atom, a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, a t-butyl group, a hexyl group, or an octyl group.
III. R ″ shown in the above may be the same or different from each other, and may have a ring structure formed by bonding any two or more of them. An alkyl group having 8 carbon atoms, a cycloalkyl group having 3 to 12 carbon atoms, an aryl group having 6 to 10 carbon atoms, an aralkyl group having 7 to 11 carbon atoms, an alkylene group having 2 to 10 carbon atoms, and an alkylene substitution having 6 to 12 carbon atoms When an alkylene group is represented and R ″ is other than a hydrogen atom, it may be substituted with another substituent, and a part of the substituent may be replaced with an oxygen atom, a nitrogen atom or the like.
IV. Any compound having a pyridine skeleton in the molecule can be used as the pyridines shown in FIG.
 これらI.~IV.に挙げる化合物は、1種類のみ単独で用いてもよいし、複数種類を同時に用いても良い。これらの化合物は、トータルの使用量として、水素化反応液100質量部あたり、0.005質量部以上10質量部以下、このましくは0.01質量部以上5質量部以下である。使用量が少ないと望ましくない反応を抑制する効果が得られず、多すぎても望ましくない反応を抑制する能力が向上するわけではない。 These I. To IV. Only one type of the compounds listed above may be used alone, or a plurality of types may be used simultaneously. These compounds are used in a total amount of 0.005 to 10 parts by mass, preferably 0.01 to 5 parts by mass, per 100 parts by mass of the hydrogenation reaction solution. If the amount used is small, the effect of suppressing undesirable reactions cannot be obtained, and if too much, the ability to suppress undesirable reactions does not improve.
・水素添加反応の反応温度
 本発明における水素化反応の温度は使用する触媒により適切な値がことなることがあり、必ずしも規定できないが、通常、60℃~300℃、好ましくは120℃~250℃、より好ましくは150℃~220℃である。例えば、150℃以上の高温条件下で、脱水素反応が有意に進行し、所望の水素化重合体を得やすい。本発明では、160℃以上、場合により180℃以上の水素化反応温度を設定することができる。
-Reaction temperature of hydrogenation reaction The temperature of the hydrogenation reaction in the present invention may vary depending on the catalyst used and cannot be specified, but is usually 60 ° C to 300 ° C, preferably 120 ° C to 250 ° C. More preferably, the temperature is 150 ° C to 220 ° C. For example, the dehydrogenation reaction proceeds significantly under a high temperature condition of 150 ° C. or higher, and a desired hydrogenated polymer is easily obtained. In the present invention, the hydrogenation reaction temperature of 160 ° C. or higher, and in some cases 180 ° C. or higher can be set.
・反応時間
水素化反応時間は、使用する触媒種、触媒量、反応温度により異なるため、必ずしも限定できないが、通常、5分~20時間、好ましくは10分~15時間である。反応時間が短すぎる場合、所望する水素化率を得ることができない。また、反応時間が長すぎる場合、望まない副反応の進行が顕著になり、所望する物性の水素化重合物が得られない場合がある。
Reaction time The hydrogenation reaction time varies depending on the type of catalyst used, the amount of catalyst, and the reaction temperature, and is not necessarily limited, but is usually 5 minutes to 20 hours, preferably 10 minutes to 15 hours. If the reaction time is too short, the desired hydrogenation rate cannot be obtained. Moreover, when reaction time is too long, the progress of the undesired side reaction will become remarkable and the hydrogenated polymer of the desired physical property may not be obtained.
・水素圧
 本発明における水素化反応は、β-ピネン重合体に含まれるシクロヘキセン環の炭素炭素不飽和結合を水素化させることを目的の1つとするが、その一方、シクロヘキセン環の一部を脱水素することにより芳香族環を形成させる。そのため、水素化反応における水素圧力には制限がある。水素化反応の圧力は、使用する触媒により適切な値を異にすることがあるが、水素圧として0.1MPa~5MPaである。一般に水素ガス分圧が高いほど、水素化に有利となり、この範囲以上の場合、脱水素による芳香族化がごくわずか進行するのみである。
 水素化反応は、水素ガスが存在する条件下で実施するが、水素ガスのほかに、水素化反応に不活性であるならば、任意のガスと混合して実施しても構わない。不活性ガスの具体例として、窒素、ヘリウム、アルゴン、二酸化炭素などが挙げられる。また、反応条件によっては、反応に使用する溶媒がガス成分として有意な量の分圧を有することになるが差し支えない。これらの水素化反応に不活性なガスが存在する場合、分圧として0.01MPa以上、5MPa未満がこのましい。5MPa以上の場合、反応装置が大型化してしまい、設備費を多く必要となってしまう。
-Hydrogen pressure The hydrogenation reaction in the present invention is aimed at hydrogenating the carbon-carbon unsaturated bond of the cyclohexene ring contained in the β-pinene polymer. On the other hand, a part of the cyclohexene ring is dehydrated. An aromatic ring is formed by rubbing. For this reason, the hydrogen pressure in the hydrogenation reaction is limited. The pressure of the hydrogenation reaction may vary depending on the catalyst used, but the hydrogen pressure is 0.1 MPa to 5 MPa. In general, the higher the hydrogen gas partial pressure is, the more advantageous it is for hydrogenation. Above this range, aromatization by dehydrogenation proceeds only slightly.
The hydrogenation reaction is carried out under the condition where hydrogen gas is present. However, in addition to hydrogen gas, the hydrogenation reaction may be carried out by mixing with any gas as long as it is inert to the hydrogenation reaction. Specific examples of the inert gas include nitrogen, helium, argon, carbon dioxide and the like. Depending on the reaction conditions, the solvent used in the reaction may have a significant amount of partial pressure as a gas component. When an inert gas exists in these hydrogenation reactions, the partial pressure is preferably 0.01 MPa or more and less than 5 MPa. In the case of 5 MPa or more, the reaction apparatus becomes large and requires a lot of equipment costs.
・水素化反応の実施形態
 本発明における水素化反応の実施形態は公知の任意の方法をとることができる。使用する触媒の形状により適切な反応形態がある場合があるが、例えば、バッチ反応、セミ連続反応、連続反応方式をとることができる。連続反応形式において、プラグフロー形式(PFR)、連続流通撹拌形式(CSTR)を取ることができる。また、固定床反応槽を用いることができる。積極的に混合して反応を行う場合、撹拌により混合する方法、ループ形式にて水素化反応液を循環させて混合する方法などをとることができる。
 水素化反応を行ったあとの抜き取り液は一部分割し、水素化反応に再び用いることができる。再び用いることで、水素化にともなう発熱の局所化の回避や、水素化反応率が向上する場合がある。
 これらの任意の反応形式において、同一、もしくは異なる2つ以上の反応形式を連結して水素化反応を行うことができる。より高い水素化反応率を目指す場合、固定床を用い、プラグフロー形式で反応させる工程を含むことが望ましい場合がある。
-Embodiment of hydrogenation reaction Embodiment of the hydrogenation reaction in this invention can take arbitrary well-known methods. There may be an appropriate reaction form depending on the shape of the catalyst used. For example, a batch reaction, a semi-continuous reaction, or a continuous reaction system can be adopted. In the continuous reaction format, a plug flow format (PFR) and a continuous flow stirring format (CSTR) can be used. Moreover, a fixed bed reaction tank can be used. When the reaction is carried out by positive mixing, a method of mixing by stirring, a method of circulating and mixing the hydrogenation reaction solution in a loop form, or the like can be employed.
The extracted liquid after the hydrogenation reaction is partly divided and can be used again for the hydrogenation reaction. By using it again, there are cases in which the generation of heat generated by hydrogenation is avoided and the hydrogenation reaction rate is improved.
In any of these reaction formats, two or more reaction formats, which are the same or different, can be connected to carry out the hydrogenation reaction. When aiming for a higher hydrogenation reaction rate, it may be desirable to include a step of reacting in a plug flow format using a fixed bed.
 水素化触媒の使用量は、使用する水素化触媒の種類、重合体濃度、反応形式などにより、触媒の使用量は異なるため限定することが困難であるが、懸濁床で実施する場合、水素化反応液100質量部あたりの触媒使用量は、通常、0.01~20質量部、好ましくは、0.05~15質量部、より好ましくは0.1~10質量部である。使用量が少ない場合、水素化反応に長時間必要となり、また、使用量が多い場合、不均一触媒を混合する動力が多く必要になる。また、固定床を用いる場合、反応溶液あたりの触媒使用量を規定することが困難であり、任意の量を使用することができる。
 固定床で水素化反応を行う場合、公知の手法をとることができる。多管式などの縦型の塔型反応器に触媒を充填し、そこにβ-ピネン系重合体溶液と水素を供給して水素化するものであり、このとき、重合体溶液と水素はともに上部から供給する方法、ともに下部から供給する方法、重合対溶液を上部から水素を下部から供給する方法などが挙げられる。
 使用した水素化触媒は、水素化反応終了後に必要に応じ重合体と分離することができる。分離は公知である任意の方法をとることができるが、不均一系触媒を使用した場合、連続もしくはバッチ式濾過、遠心分離、静置による沈降・デカンテーションにより分離できる。これらの分離手法を用い触媒を分離したとしても、微量の金属成分が重合体に残留していることがある。この場合、得られるβ-ピネン系重合体の水素化物の性能(耐候性など)が低下することがある。溶存している金属成分を除去するため、凝集沈澱法、吸着法、洗浄法および水相抽出法などを用いることにより残留する金属を分離することができる。分離により回収された触媒は、一部除去、一部新規触媒を追加するなどの手段を必要によりとった後に、再び水素化反応に使用することができる。
The amount of hydrogenation catalyst used is difficult to limit because the amount of catalyst used varies depending on the type of hydrogenation catalyst used, polymer concentration, reaction mode, etc. The amount of the catalyst used per 100 parts by mass of the chemical reaction solution is usually 0.01 to 20 parts by mass, preferably 0.05 to 15 parts by mass, more preferably 0.1 to 10 parts by mass. When the amount used is small, the hydrogenation reaction requires a long time. When the amount used is large, a large amount of power for mixing the heterogeneous catalyst is required. Moreover, when using a fixed bed, it is difficult to prescribe | regulate the usage-amount of the catalyst per reaction solution, and arbitrary amounts can be used.
When the hydrogenation reaction is performed in a fixed bed, a known method can be used. A vertical column reactor such as a multi-tubular type is charged with a catalyst, and a β-pinene polymer solution and hydrogen are supplied thereto for hydrogenation. At this time, both the polymer solution and hydrogen are used. Examples thereof include a method of supplying from the upper part, a method of supplying both from the lower part, and a method of supplying the polymerization solution from the upper part and hydrogen from the lower part.
The used hydrogenation catalyst can be separated from the polymer if necessary after completion of the hydrogenation reaction. The separation can be carried out by any known method, but when a heterogeneous catalyst is used, the separation can be carried out by continuous or batch filtration, centrifugal separation, or settling / decantation by standing. Even when the catalyst is separated using these separation methods, a trace amount of metal components may remain in the polymer. In this case, the performance (such as weather resistance) of the obtained hydride of β-pinene polymer may be lowered. In order to remove the dissolved metal component, the remaining metal can be separated by using an aggregation precipitation method, an adsorption method, a washing method, an aqueous phase extraction method, or the like. The catalyst recovered by the separation can be used again for the hydrogenation reaction after taking necessary means such as partly removing or partly adding new catalyst.
 水素化後のβ-ピネン系重合体は、例えば、再沈澱、加熱下での溶媒除去、減圧下での溶媒除去、水蒸気による溶媒の除去(スチームストリッピング)等の、重合体を溶液から単離する際の通常の操作によって、反応混合物から分離、取得することができる。 The β-pinene-based polymer after hydrogenation is obtained by removing the polymer from the solution by, for example, reprecipitation, solvent removal under heating, solvent removal under reduced pressure, or solvent removal with steam (steam stripping). It can be separated and obtained from the reaction mixture by a normal operation during separation.
 本発明のβ-ピネン系重合体は、単独で使用することもできるし、ポリアミド、ポリウレタン、ポリエステル、ポリカーボネート、ポリオキシメチレン樹脂、アクリル樹脂、ポリビニルアルコール、エチレン-ビニルアルコール共重合体、ポリオレフィン、ポリスチレン、スチレン系ブロック共重合体等の他の重合体と配合した組成物として使用することもできる。組成物として使用する場合、安定剤、滑剤、顔料、耐衝撃性改良剤、加工助剤、補強剤、着色剤、難燃剤、耐候性改良剤、紫外線吸収剤、酸化防止剤、防かび剤、抗菌剤、光安定剤、耐電防止剤、シリコンオイル、ブロッキング防止剤、離型剤、発泡剤、香料等の各種添加剤;ガラス繊維、ポリエステル繊維等の各種繊維;タルク、マイカ、モンモリロナイト、スメクタイト、シリカ、木粉等の充填剤;各種カップリング剤等の任意成分を必要に応じて配合することができる。 The β-pinene polymer of the present invention can be used alone, or can be used alone, polyamide, polyurethane, polyester, polycarbonate, polyoxymethylene resin, acrylic resin, polyvinyl alcohol, ethylene-vinyl alcohol copolymer, polyolefin, polystyrene. It can also be used as a composition blended with other polymers such as styrene block copolymers. When used as a composition, stabilizers, lubricants, pigments, impact resistance improvers, processing aids, reinforcing agents, colorants, flame retardants, weather resistance improvers, UV absorbers, antioxidants, fungicides, Various additives such as antibacterial agents, light stabilizers, antistatic agents, silicone oils, antiblocking agents, mold release agents, foaming agents, fragrances; various fibers such as glass fibers and polyester fibers; talc, mica, montmorillonite, smectite, Fillers such as silica and wood powder; optional components such as various coupling agents can be blended as required.
[IV]成形体
 本発明のβ-ピネン系重合体の成形体は、常法に従って得ることが可能である。成形方法としては、射出成形法、熱プレス成形法、押出成形法、切削加工法、活性エネルギー線硬化型樹脂を用いる方法等の公知の手法が、適宜に採用される。その中でも、生産性の観点から、射出成形法、熱プレス成形法、押出成形法が、好ましく用いられる。
[IV] Molded Product A molded product of the β-pinene polymer of the present invention can be obtained according to a conventional method. As the molding method, a known method such as an injection molding method, a hot press molding method, an extrusion molding method, a cutting method, or a method using an active energy ray-curable resin is appropriately employed. Among these, from the viewpoint of productivity, an injection molding method, a hot press molding method, and an extrusion molding method are preferably used.
・光学材料
 本発明のβ-ピネン系重合体は、対称性良く主鎖中に芳香族が多く存在するため、高い屈折率と低い複屈折とを両立させられることから種々の光学材料に使用可能であり、その範囲は特に限定されないが、耐熱性に優れ、低吸水性および高透明性が要求される光学材料に好適である。光学材料としては、例えばレンズ、非球面レンズ、フレネルレンズ、銀塩カメラ用レンズ、デジタル電子カメラ用レンズ、ビデオカメラ用レンズ、プロジェクター用レンズ、複写機用レンズ、携帯電話用カメラレンズ、メガネ用レンズ、青色発光ダイオードを使用するデジタル光ディスク装置用非球面ピックアップレンズ、ロッドレンズ、ロッドレンズアレー、マイクロレンズ、マイクロレンズアレー、各種レンズアレー、ステップインデックス型、グラジエントインデックス型、シングルモード型、マルチコア型、偏波面保存型、側面発光型等の光ファイバー、光ファイバーコネクタ、光ファイバー用接着剤、デジタル光ディスク(コンパクトディスク、光磁気ディスク、デジタルディスク、ビデオディスク、コンピュータディスク、導光体、光拡散性成形体、液晶用ガラス基板代替フィルム、位相差フィルム、帯電防止層、反射防止層、ハードコート層、透明導電層、アンチグレア層等の機能性を有する機能性薄膜、フラットパネルディスプレー用反射防止フィルム、タッチパネル用基板、透明導電性フィルム、反射防止フィルム、防げんフィルム、電子ペーパー用基板、有機エレクトロルミネッセンス用基板、プラズマディスプレー用前面保護板、プラズマディスプレー用電磁波防止板、フィールドエミッションディスプレー用前面保護板、圧電素子を使用し特定部位の光を前面拡散させる導光板、偏光子、検光子等を構成するプリズム、回折格子、内視鏡、高エネルギーレーザーを導波する内視鏡、ダハミラーに代表されるカメラ用ミラーもしくはハーフミラー、(自動車用ヘッドライトレンズ、自動車用ヘッドライト用リフレクター等の)車両用灯具に使用される透明材、太陽電池用前面保護板、住宅用窓ガラス、移動体(自動車、電車、船舶、航空機、宇宙船、宇宙基地、人工衛星等)用窓ガラス、窓ガラス用反射防止フィルム、半導体露光時の防塵フィルム、電子写真感光材用保護フィルム、紫外光により書き込みもしくは書き換え可能な半導体(EPROM等)封止材、発光ダイオード封止材、紫外光発光ダイオード封止材、白色発光ダイオード封止材、SAWフィルター、光学的バンドパスフィルター、第二次高調波発生体、カー効果発生体、光スイッチ、光インターコネクション、光アイソレーター、光導波路、有機エレクトロルミネッセンスを使用した面発光体部材、半導体微粒子を分散させた面発光体部材、蛍光物質を溶解または分散させた蛍光体等が挙げられる。
-Optical material The β-pinene polymer of the present invention has a high symmetry and a large amount of aromatics in the main chain, so it can be used for various optical materials because it can achieve both high refractive index and low birefringence. Although the range is not particularly limited, it is excellent in heat resistance and suitable for optical materials that require low water absorption and high transparency. Examples of optical materials include lenses, aspheric lenses, Fresnel lenses, lenses for silver salt cameras, lenses for digital electronic cameras, lenses for video cameras, lenses for projectors, lenses for copying machines, camera lenses for mobile phones, and lenses for glasses. Aspheric pickup lens for digital optical disc device using blue light emitting diode, rod lens, rod lens array, micro lens, micro lens array, various lens arrays, step index type, gradient index type, single mode type, multi-core type, polarized Wavefront storage type, side emission type optical fiber, optical fiber connector, optical fiber adhesive, digital optical disc (compact disc, magneto-optical disc, digital disc, video disc, computer disc, light guide , Light diffusive molding, liquid crystal glass substrate substitute film, retardation film, antistatic layer, antireflection layer, hard coat layer, transparent conductive layer, antiglare layer and other functional thin films, for flat panel displays Anti-reflection film, touch panel substrate, transparent conductive film, anti-reflection film, anti-glare film, electronic paper substrate, organic electroluminescence substrate, plasma display front protection plate, plasma display electromagnetic wave prevention plate, field emission display front Protective plates, light guide plates that use a piezoelectric element to diffuse the light of a specific part in front, polarizers, prisms constituting analyzers, diffraction gratings, endoscopes, endoscopes that guide high-energy lasers, roof mirrors, etc. Representative camera mirrors or half mirrors (automobiles Transparent materials used in vehicle lamps (headlight lenses, automotive headlight reflectors, etc.), solar cell front protective plates, residential window glass, moving objects (automobiles, trains, ships, aircraft, spacecraft, space) Base glass, anti-reflection film for window glass, dust-proof film during semiconductor exposure, protective film for electrophotographic photosensitive material, semiconductor (EPROM, etc.) encapsulant that can be written or rewritten by ultraviolet light, light emission Diode sealing material, ultraviolet light emitting diode sealing material, white light emitting diode sealing material, SAW filter, optical bandpass filter, second harmonic generator, Kerr effect generator, optical switch, optical interconnection, light Isolators, optical waveguides, surface light emitters using organic electroluminescence, surface emission with dispersed semiconductor fine particles Examples thereof include a phosphor member and a phosphor in which a phosphor substance is dissolved or dispersed.
・導光体
 導光体は、公知の各種の形状において形成され得るものであって、例えば板状、ブロック状、ロッド状、屈曲形状、湾曲形状等の各種の形態とされ、また少なくとも片面にスクリーン印刷でドットを付けたものや、例えばV溝のような線状パターン、半球レンズ状の凹凸、シボパターンを導光体の表面に賦型したものも、その対象とされる。
-Light guide The light guide can be formed in various known shapes, for example, various forms such as a plate shape, a block shape, a rod shape, a bent shape, and a curved shape, and at least on one side. The ones with dots printed by screen printing, or linear patterns such as V-grooves, hemispherical lens-like irregularities, and textured patterns formed on the surface of the light guide are also targeted.
・光拡散性成形体
 光拡散性成形体は、上記したβ-ピネン系重合体に対して、従来と同様な光拡散剤が更に配合されて含有せしめられ、そしてその得られた光拡散性組成物を用いて、板状、ブロック状等の所定の形状の成形体が成形されることとなる。
・機能性薄膜
 β-ピネン系重合体を用いた基板の少なくとも片面に、コーティングによって形成される機能性薄膜は、特に限定されるものではないが、好ましくは帯電防止層、反射防止層、ハードコート層、透明導電層、アンチグレア層等の機能性を有する薄膜である。
-Light diffusible molded body The light diffusible molded body is a mixture of the above-mentioned β-pinene polymer and further containing a conventional light diffusing agent, and the obtained light diffusible composition. A molded body having a predetermined shape such as a plate shape or a block shape is formed using the object.
Functional thin film The functional thin film formed by coating on at least one surface of a substrate using a β-pinene polymer is not particularly limited, but is preferably an antistatic layer, an antireflection layer, or a hard coat. It is a thin film having functionality such as a layer, a transparent conductive layer, and an antiglare layer.
・光学フィルム
 β-ピネン系重合体を用いた光学用フィルムは、特に偏光板保護フィルムに好適となる。そのような光学用フィルムを成形する方法は、特に制限されるものではなく、例えば、溶液流延法や溶融押出法等の、従来から公知の各種の方法を採用することが出来る。その中でも、溶剤を使用しない溶融押出法の方が、地球環境上や作業環境上、或いは製造コストの観点から、好ましく採用される。また、位相差等の光学性能を特に向上させるためには、溶液流延法も、有利に用いられる。
Optical film An optical film using a β-pinene polymer is particularly suitable for a polarizing plate protective film. The method for forming such an optical film is not particularly limited, and various conventionally known methods such as a solution casting method and a melt extrusion method can be employed. Among these, the melt extrusion method that does not use a solvent is preferably employed from the viewpoints of the global environment, work environment, and manufacturing cost. Further, in order to particularly improve optical performance such as phase difference, a solution casting method is also advantageously used.
・レンズシート
 レンズシートとは、シート主面の少なくとも一方に形成された1つ又は複数のレンズ形状によって構成されるレンズ群からなるレンズ部にて、シートに照射された光線の方向を変化させ、集光、屈折、反射、分散等の機能を有するものを指している。そして、そのようなレンズシートとしては、一般に、プリズムシート、フレネルレンズシート、レンチキュラーレンズシート、マイクロレンズアレイシート等と称すものが、含まれることとなる。
Lens sheet A lens sheet is a lens unit composed of a lens group formed of one or a plurality of lens shapes formed on at least one of the sheet main surfaces, and changes the direction of light rays irradiated to the sheet. It refers to those having functions such as condensing, refraction, reflection, and dispersion. Such lens sheets generally include what are called prism sheets, Fresnel lens sheets, lenticular lens sheets, microlens array sheets, and the like.
・プラスチックレンズ
 プラスチックレンズとは、レンズ機能を有するプラスチック成形体を意味し、特に限定されるものではないが、眼鏡レンズ、カメラレンズ、双眼鏡レンズ、顕微鏡レンズ、プロジェクターレンズ、fθレンズ又はピックアップレンズ等の各種レンズが、該当する。
-Plastic lens The plastic lens means a plastic molded product having a lens function, and is not particularly limited, but includes a spectacle lens, a camera lens, a binocular lens, a microscope lens, a projector lens, an fθ lens, a pickup lens, and the like. Various lenses are applicable.
・車両用灯具
 車両用灯具の「灯具」とは、光源とランプカバーとを少なくとも有するものとして、用いられており、また「車両」とは、二輪自動車、三輪自動車、四輪自動車、その他の自動車、鉄道車両、フォークリフトその他の産業用車両等々、広義の車両を意味するものとして、用いられている。そして、「車両灯具」とは、こうした各種車両に装着された照明用若しくは識別用、標識用の灯具を意味し、特に限定はされないが、前照灯(ヘッドランプ)、尾灯(テールランプ)、制動灯(ストップランプ)、方向指示灯(所謂ウインカー)、車幅灯、後退灯等が該当する。
・ Vehicle lamps “Lamps” for vehicle lamps are used as having at least a light source and a lamp cover, and “vehicles” are two-wheeled vehicles, three-wheeled vehicles, four-wheeled vehicles, and other vehicles. It is used to mean vehicles in a broad sense such as railway vehicles, forklifts and other industrial vehicles. “Vehicle lamp” means a lamp for illumination, identification, or signage mounted on such various vehicles, and is not particularly limited, but includes a headlamp, a taillamp, a brake. A lamp (stop lamp), a direction indicator lamp (so-called blinker), a vehicle width lamp, a reverse lamp, and the like are applicable.
・医療機材
 医療用器材としては、例えば、注射用の液体薬品容器、アンプル、プレフィルドシリンジ、輸液用バッグ、固形薬品容器、点眼薬容器、点滴薬容器等の、液体又は粉体、固体の薬品容器;血液検査用のサンプリング用試験管、採血管、検体容器等のサンプル容器;メスやカンシ(鉗子)、ガーゼ、コンタクトレンズ等の医療材料等の滅菌容器;注射器等の医療器具;ビーカー、シャーレ、フラスコ等の医療用実験器具;医療検査用プラスチックレンズ等の光学部品;医療用輸液チューブ、配管、継ぎ手、バルブ等の配管材料;義歯床、人工心臓、人造歯根等の人工臓器やその部品等が、例示される。
-Medical equipment Examples of medical equipment include liquid chemical containers for injection, ampoules, prefilled syringes, infusion bags, solid chemical containers, eye drops containers, instillation containers, etc., liquid or powder, solid chemical containers Sample containers such as sampling tubes for blood tests, blood collection tubes and specimen containers; sterilization containers such as scalpels, chestnuts (forceps), gauze and contact lenses; medical instruments such as syringes; beakers, petri dishes, Medical laboratory instruments such as flasks; optical parts such as plastic lenses for medical examinations; medical infusion tubes, piping, fittings, piping materials such as valves; artificial organs such as denture bases, artificial hearts, artificial tooth roots, and parts thereof Is exemplified.
 以上、本発明の実施形態について説明したが、本発明は上記の具体例に限定されるものではない。また、例示した物質等は、特に説明がない限り、単独で用いても組み合わせて用いてもよい。 As mentioned above, although embodiment of this invention was described, this invention is not limited to said specific example. Further, the exemplified substances and the like may be used alone or in combination unless otherwise specified.
 以下に実施例を挙げて本発明をさらに詳しく説明するが、本発明はこれらの実施例に限
定されるものではない。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
参考例1
 充分乾燥させたガラス製コック付フラスコを充分に窒素置換した後、これに、脱水したN-ヘキサンの1100質量部と、脱水した塩化メチレンの1100質量部と、蒸留精製したβ-ピネンの40質量部と、脱水したトリエチルアミンの4.5質量部とを加え、-78℃の温度に冷却した。更に、-78℃で撹拌しながら、二塩化エチルアルミニウムの1.0mol/Lヘキサン溶液の70質量部を加え、重合を開始した。10分間重合した後、メタノールの10質量部を添加して、重合を終了させた。その後、室温にて減圧して塩化メチレンを除いた後、蒸留水の800質量部にクエン酸の20質量部を添加した水溶液を添加し、30分撹拌した。水層を抜き取り、蒸留水を加えて水層が中性になるまで洗浄し、触媒を除去した。かくして得られたメチルシクロヘキサン層をメタノール/アセトン(60/30vol%)の混合溶媒の10000質量部に再沈殿後、充分に乾燥して、β-ピネン重合体(A1)の39質量部を得た。この得られたβ-ピネン重合体(A1)の重量平均分子量は53,000、数平均分子量は32,000であった。
Reference example 1
After thoroughly substituting a well-dried glass flask with a cock with nitrogen, 1100 parts by mass of dehydrated N-hexane, 1100 parts by mass of dehydrated methylene chloride, and 40 parts by mass of distilled and purified β-pinene. And 4.5 parts by mass of dehydrated triethylamine were added and cooled to a temperature of -78 ° C. Further, while stirring at −78 ° C., 70 parts by mass of 1.0 mol / L hexane solution of ethylaluminum dichloride was added to initiate polymerization. After polymerization for 10 minutes, 10 parts by mass of methanol was added to terminate the polymerization. Then, after reducing the pressure at room temperature to remove methylene chloride, an aqueous solution obtained by adding 20 parts by mass of citric acid to 800 parts by mass of distilled water was added and stirred for 30 minutes. The aqueous layer was extracted, washed with distilled water until the aqueous layer became neutral, and the catalyst was removed. The methylcyclohexane layer thus obtained was reprecipitated in 10000 parts by mass of a mixed solvent of methanol / acetone (60/30 vol%) and then sufficiently dried to obtain 39 parts by mass of β-pinene polymer (A1). . The obtained β-pinene polymer (A1) had a weight average molecular weight of 53,000 and a number average molecular weight of 32,000.
参考例2
 十分乾燥させたガラス製コック付フラスコを、十分窒素置換した後、脱水したN-ヘキサン184質量部、脱水した塩化メチレン210質量部、脱水したジエチルエーテル0.5質量部を加え、-78℃に冷却した。さらに-78℃で撹拌しながら、二塩化エチルアルミニウムの1.0mol/Lヘキサン溶液7.2質量部を加えた。さらに-78℃に保持した状態でp-ジクミルクロライドの0.1mol/Lヘキサン溶液3.0質量部を加えたところ赤燈色に変化した。ただちに蒸留精製したβ-ピネン60質量部を1時間かけて添加したところ次第に濃燈色になり、溶液の粘度が上昇した。β-ピネンの添加終了後、メタノール30質量部を添加して、反応を終了した。蒸留水100質量部にクエン酸5質量部を添加した水溶液を添加し、5分撹拌した。水層を抜き取り、蒸留水を加えて水層が中性になるまで洗浄し、アルミ化合物を除去した。得られた有機層をメタノール/アセトン(60/40vol%)の混合溶媒5000質量部に再沈後、十分に乾燥してβ-ピネン重合体(A2)60質量部を得た。得られたβ-ピネン重合体(A2)の重量平均分子量は116,000、数平均分子量は51,000、ガラス転移温度は95℃であった。
Reference example 2
After thoroughly substituting the well-dried glass flask with a cock, 184 parts by mass of dehydrated N-hexane, 210 parts by mass of dehydrated methylene chloride, and 0.5 parts by mass of dehydrated diethyl ether were added to -78 ° C. Cooled down. Further, 7.2 parts by mass of a 1.0 mol / L hexane solution of ethylaluminum dichloride was added with stirring at −78 ° C. Furthermore, when 3.0 parts by mass of a 0.1 mol / L hexane solution of p-dicumulyl chloride was added while maintaining at -78 ° C., the color changed to red. Immediately after the addition of 60 parts by weight of distilled and purified β-pinene over 1 hour, it gradually became dark blue and the viscosity of the solution increased. After the addition of β-pinene, 30 parts by mass of methanol was added to complete the reaction. An aqueous solution in which 5 parts by mass of citric acid was added to 100 parts by mass of distilled water was added and stirred for 5 minutes. The aqueous layer was extracted, washed with distilled water until the aqueous layer became neutral, and the aluminum compound was removed. The obtained organic layer was reprecipitated in 5000 parts by mass of a mixed solvent of methanol / acetone (60/40 vol%) and then sufficiently dried to obtain 60 parts by mass of β-pinene polymer (A2). The obtained β-pinene polymer (A2) had a weight average molecular weight of 116,000, a number average molecular weight of 51,000, and a glass transition temperature of 95 ° C.
実施例1
 窒素置換した撹拌装置付き耐圧容器内に、シクロヘキサンの27質量部およびイソプロパノール1質量部と、上記で得られたβ-ピネン重合体(A1)の12質量部を収容し、撹拌することにより、β-ピネン重合体(A1)を完全に溶解した。その後、水素添加触媒として、36.6%ニッケル担持アルミナ(品番:N163A 日揮化学株式会社製)の7質量部を加え、撹拌して、充分に分散させた後、かかる耐圧容器内を充分に水素で置換し、撹拌しながら、150℃、水素圧力3MPa で、30分反応させた後、常圧に戻した。反応後の溶液を0.5μmのテフロン(登録商標)フィルターによりろ過して、触媒を分離除去した後、メタノール/アセトン(60/40vol%)の混合溶媒の3000質量部に再沈殿せしめ、その後、充分に乾燥して、β-ピネン系重合体(H1)の11質量部を得た。かくして得られたβ-ピネン系重合体(H1)のH-NMRを測定したところ、残存するオレフィン性二重結合は6.5モル%、残存する芳香族環は6.3モル%であった。ガラス転移温度は124℃であった。またH-NMRにおいて6~8ppmのプロトンの積分値の全プロトンの積分値に対する割合は1.4×10-2、また4.5~6ppmのプロトンの積分値の全プロトンの積分値に対する割合は3.7×10-3であった。この得られたβ-ピネン系重合体(H1)の重量平均分子量は52,000、数平均分子量は31,200であった。β-ピネン系重合体(H1)評価結果を表1に示す。
Example 1
In a pressure vessel equipped with a stirrer substituted with nitrogen, 27 parts by mass of cyclohexane and 1 part by mass of isopropanol and 12 parts by mass of the β-pinene polymer (A1) obtained above were accommodated and stirred. -The pinene polymer (A1) was completely dissolved. Thereafter, 7 parts by mass of 36.6% nickel-supported alumina (product number: N163A, manufactured by JGC Chemical Co., Ltd.) was added as a hydrogenation catalyst, and the mixture was stirred and sufficiently dispersed. The reaction was continued for 30 minutes at 150 ° C. and a hydrogen pressure of 3 MPa with stirring, and then returned to normal pressure. The solution after the reaction was filtered through a 0.5 μm Teflon (registered trademark) filter to separate and remove the catalyst, and then reprecipitated in 3000 parts by mass of a mixed solvent of methanol / acetone (60/40 vol%). By sufficiently drying, 11 parts by mass of β-pinene polymer (H1) was obtained. The β-pinene polymer (H1) thus obtained was measured by 1 H-NMR. As a result, the remaining olefinic double bond was 6.5 mol% and the remaining aromatic ring was 6.3 mol%. It was. The glass transition temperature was 124 ° C. In 1 H-NMR, the ratio of the integral value of 6 to 8 ppm proton to the integral value of all protons is 1.4 × 10 −2 , and the integral value of 4.5 to 6 ppm proton to the integral value of all protons Was 3.7 × 10 −3 . The obtained β-pinene polymer (H1) had a weight average molecular weight of 52,000 and a number average molecular weight of 31,200. The evaluation results of β-pinene polymer (H1) are shown in Table 1.
実施例2
 実施例1の水素化反応において、反応時間を30分から3時間30分に変更した以外は実施例1と同様にしてβ-ピネン系重合体(H2)を得た。β-ピネン系重合体(H2)評価結果を表1に示す。
Example 2
In the hydrogenation reaction of Example 1, a β-pinene polymer (H2) was obtained in the same manner as in Example 1 except that the reaction time was changed from 30 minutes to 3 hours and 30 minutes. The evaluation results of β-pinene polymer (H2) are shown in Table 1.
実施例3
 β-ピネン重合体(A1)に変えて、参考例3で得られたβ-ピネン重合体(A2)を用いる以外は実施例1と同様にして、β-ピネン系重合体(H3)を得た。β-ピネン系重合体(H3)のH-NMRを測定したところ、残存するオレフィン性二重結合は6.5モル%、残存する芳香族環は6.3モル%であった。ガラス転移温度は125℃であった。またH-NMRにおいて6~8ppmのプロトンの積分値の全プロトンの積分値に対する割合は1.4×10-2、また4.5~6ppmのプロトンの積分値の全プロトンの積分値に対する割合は3.7×10-3であった。この得られたβ-ピネン系重合体(H3)の重量平均分子量は114,000、数平均分子量は49,300であった。β-ピネン系重合体(H3)評価結果を表1に示す。
Example 3
A β-pinene polymer (H3) is obtained in the same manner as in Example 1 except that the β-pinene polymer (A2) obtained in Reference Example 3 is used in place of the β-pinene polymer (A1). It was. When 1 H-NMR of the β-pinene polymer (H3) was measured, the remaining olefinic double bond was 6.5 mol% and the remaining aromatic ring was 6.3 mol%. The glass transition temperature was 125 ° C. In 1 H-NMR, the ratio of the integral value of 6 to 8 ppm proton to the integral value of all protons is 1.4 × 10 −2 , and the integral value of 4.5 to 6 ppm proton to the integral value of all protons Was 3.7 × 10 −3 . The obtained β-pinene polymer (H3) had a weight average molecular weight of 114,000 and a number average molecular weight of 49,300. The evaluation results of β-pinene polymer (H3) are shown in Table 1.
実施例4
 窒素置換した撹拌装置付き耐圧容器内に、シクロヘキサンの103質量部と、参考例3で得られたβ-ピネン重合体(A2)の45質量部を収容し、撹拌することにより、β-ピネン重合体(A2)を完全に溶解した。その後、水素添加触媒として、5質量%パラジウム担持カーボン(品番:E106O/W エボニック デグサ ジャパン株式会社製)の0.5質量部を加え、撹拌して、充分に分散させた後、かかる耐圧容器内を充分に水素で置換し、撹拌しながら、200℃、水素圧力:3MPaで、9時間反応させた後、常圧に戻した。反応後の溶液を0.5μmのテフロン(登録商標)フィルターによりろ過して、触媒を分離除去した後、メタノール/アセトン(60/40vol%)の混合溶媒の3000質量部に再沈殿せしめ、その後、充分に乾燥して、β-ピネン系重合体(A3)の42質量部を得た。
 窒素置換した撹拌装置付き耐圧容器内に、シクロヘキサンの27質量部およびイソプロパノール1質量部と、得られたβ-ピネン重合体(A3)の3.0質量部を収容し、撹拌することにより、β-ピネン重合体(A3)を完全に溶解した。その後、水素添加触媒として、36.6質量%ニッケル担持アルミナ(品番:N163A 日揮化学株式会社製)の1.8質量部を加え、撹拌して、充分に分散させた後、かかる耐圧容器内を充分に水素で置換し、撹拌しながら、200℃、水素圧力:3MPa で、6時間反応させた後、常圧に戻した。反応後の溶液を0.5μmのテフロン(登録商標)フィルターによりろ過して、触媒を分離除去した後、メタノール/アセトン(60/40vol%)の混合溶媒の300質量部に再沈殿せしめ、その後、充分に乾燥して、β-ピネン系重合体(H4)の2.7質量部を得た。かくして得られたβ-ピネン系重合体(H4)のH-NMRを測定したところ、残存するオレフィン性二重結合は0.5モル%、残存する芳香族環は3.4モル%であった。ガラス転移温度は129℃であった。またH-NMRにおいて6~8ppmのプロトンの積分値の全プロトンの積分値に対する割合は7.7×10-3、また4.5~6ppmのプロトンの積分値の全プロトンの積分値に対する割合は2.7×10-4であった。この得られたβ-ピネン系重合体(H4)の重量平均分子量は100,000、数平均分子量は43,700であった。β-ピネン系重合体(H4)評価結果を表1に示す。
Example 4
In a pressure vessel equipped with a stirrer purged with nitrogen, 103 parts by mass of cyclohexane and 45 parts by mass of the β-pinene polymer (A2) obtained in Reference Example 3 were placed, and stirred, The union (A2) was completely dissolved. Thereafter, 0.5 parts by mass of 5% by mass palladium-supported carbon (product number: E106O / W made by Evonik Degussa Japan Co., Ltd.) was added as a hydrogenation catalyst, and the mixture was stirred and sufficiently dispersed. Was sufficiently replaced with hydrogen, and the mixture was reacted at 200 ° C. and hydrogen pressure: 3 MPa for 9 hours with stirring, and then returned to normal pressure. The solution after the reaction was filtered through a 0.5 μm Teflon (registered trademark) filter to separate and remove the catalyst, and then reprecipitated in 3000 parts by mass of a mixed solvent of methanol / acetone (60/40 vol%). After sufficiently drying, 42 parts by mass of β-pinene polymer (A3) was obtained.
In a pressure vessel equipped with a stirrer purged with nitrogen, 27 parts by mass of cyclohexane and 1 part by mass of isopropanol and 3.0 parts by mass of the obtained β-pinene polymer (A3) were accommodated and stirred. -The pinene polymer (A3) was completely dissolved. Thereafter, 1.8 parts by mass of 36.6% by mass nickel-supported alumina (product number: N163A, manufactured by JGC Chemical Co., Ltd.) was added as a hydrogenation catalyst, stirred, and sufficiently dispersed. After sufficiently substituting with hydrogen and stirring, it was reacted at 200 ° C. and hydrogen pressure: 3 MPa for 6 hours, and then returned to normal pressure. The solution after the reaction was filtered through a 0.5 μm Teflon (registered trademark) filter to separate and remove the catalyst, and then reprecipitated in 300 parts by mass of a mixed solvent of methanol / acetone (60/40 vol%). It was sufficiently dried to obtain 2.7 parts by mass of β-pinene polymer (H4). The β-pinene polymer (H4) thus obtained was measured by 1 H-NMR. As a result, the remaining olefinic double bond was 0.5 mol% and the remaining aromatic ring was 3.4 mol%. It was. The glass transition temperature was 129 ° C. In 1 H-NMR, the ratio of the integral value of 6-8 ppm proton to the integral value of all protons is 7.7 × 10 −3 , and the integral value of 4.5-6 ppm proton to the integral value of all protons Was 2.7 × 10 −4 . The obtained β-pinene polymer (H4) had a weight average molecular weight of 100,000 and a number average molecular weight of 43,700. The evaluation results of β-pinene polymer (H4) are shown in Table 1.
比較例1
 窒素置換した撹拌装置付き耐圧容器内に、シクロヘキサンの127質量部と、上記で得られたβ-ピネン重合体(A1)の25質量部を収容し、撹拌することにより、β-ピネン重合体(A1)を完全に溶解した。その後、水素添加触媒として、5%パラジウム担持アルミナ粉末(エヌ・イーケムキャット株式会社製)の7.5質量部を加え、撹拌して、充分に分散させた後、かかる耐圧容器内を充分に水素で置換し、撹拌しながら、160℃、水素圧力:6MPa で、25時間反応させた後、常圧に戻した。反応後の溶液を0.5μmのテフロン(登録商標)フィルターによりろ過して、触媒を分離除去した後、メタノール/アセトン(60/40vol%)の混合溶媒の3000質量部に再沈殿せしめ、その後、充分に乾燥して、β-ピネン系重合体(B1)の24質量部を得た。かくして得られたβ-ピネン系重合体(B1)のH-NMRを測定したところ、残存するオレフィン性二重結合は1.7モル%、残存する芳香族環は0.4モル%であった。ガラス転移温度は129℃であった。またH-NMRにおいて6~8ppmのプロトンの積分値の全プロトンの積分値に対する割合は9.1×10-4、また4.5~6ppmのプロトンの積分値の全プロトンの積分値に対する割合は9.7×10-4であった。この得られたβ-ピネン系重合体(B1)の重量平均分子量は51,900、数平均分子量は31,600であった。β-ピネン系重合体(B1)評価結果を表1に示す。
Comparative Example 1
In a pressure vessel equipped with a stirrer purged with nitrogen, 127 parts by mass of cyclohexane and 25 parts by mass of the β-pinene polymer (A1) obtained above were accommodated and stirred to obtain a β-pinene polymer ( A1) was completely dissolved. Thereafter, 7.5 parts by mass of 5% palladium-supported alumina powder (manufactured by N.E. Chemcat Co., Ltd.) was added as a hydrogenation catalyst, and the mixture was stirred and sufficiently dispersed. The reaction was continued at 160 ° C. and hydrogen pressure: 6 MPa for 25 hours with stirring, and then returned to normal pressure. The solution after the reaction was filtered through a 0.5 μm Teflon (registered trademark) filter to separate and remove the catalyst, and then reprecipitated in 3000 parts by mass of a mixed solvent of methanol / acetone (60/40 vol%). By sufficiently drying, 24 parts by mass of β-pinene polymer (B1) was obtained. The β-pinene polymer (B1) thus obtained was measured for 1 H-NMR. As a result, the remaining olefinic double bond was 1.7 mol% and the remaining aromatic ring was 0.4 mol%. It was. The glass transition temperature was 129 ° C. In 1 H-NMR, the ratio of the integral value of 6 to 8 ppm proton to the integral value of all protons is 9.1 × 10 −4 , and the ratio of the integral value of 4.5 to 6 ppm proton to the integral value of all protons Was 9.7 × 10 −4 . The obtained β-pinene polymer (B1) had a weight average molecular weight of 51,900 and a number average molecular weight of 31,600. Table 1 shows the evaluation results of the β-pinene polymer (B1).
比較例2
 特開2002-121231の実施例12と同様にしてインデン/β-ピネン(質量比60/40)共重合体(B2)を得た。得られたインデン/β-ピネン共重合体(B2)の重量平均分子量は64,000、数平均分子量は24,300であった。インデン/β-ピネン共重合体(B2)の評価結果を表1に示す。
Comparative Example 2
Indene / β-pinene (mass ratio 60/40) copolymer (B2) was obtained in the same manner as in Example 12 of JP-A No. 2002-121231. The resulting indene / β-pinene copolymer (B2) had a weight average molecular weight of 64,000 and a number average molecular weight of 24,300. Table 1 shows the evaluation results of the indene / β-pinene copolymer (B2).
比較例3
 窒素置換した撹拌装置付き耐圧容器内に、シクロヘキサンの127質量部と、参考例3で得られたβ-ピネン重合体(A2)の25質量部を収容し、撹拌することにより、β-ピネン重合体(A2)を完全に溶解した。その後、水素添加触媒として、5%パラジウム担持カーボン(品番:E1002NN/W エボニック デグサ ジャパン株式会社製)の7.5質量部を加え、撹拌して、充分に分散させた後、かかる耐圧容器内を充分に水素で置換し、撹拌しながら、130℃、水素圧力:15MPa で、25時間反応させた後、常圧に戻した。反応後の溶液を0.5μmのテフロン(登録商標)フィルターによりろ過して、触媒を分離除去した後、メタノール/アセトン(60/40vol%)の混合溶媒の3000質量部に再沈殿せしめ、その後、充分に乾燥して、β-ピネン系重合体(B3)の24質量部を得た。かくして得られたβ-ピネン系重合体(B3)のH-NMRを測定したところ、残存するオレフィン性二重結合は0.023モル%、残存する芳香族環は0.0027モル%であった。ガラス転移温度は132℃であった。またH-NMRにおいて6~8ppmのプロトンの積分値の全プロトンの積分値に対する割合は5.9×10-6、また4.5~6ppmのプロトンの積分値の全プロトンの積分値に対する割合は1.3×10-5であった。この得られたβ-ピネン系重合体(B3)の重量平均分子量は103,400、数平均分子量は45,400であった。β-ピネン系重合体(B3)評価結果を表1に示す。β-ピネン系重合体(B3)評価結果を表1に示す。
Comparative Example 3
In a pressure vessel equipped with a stirrer purged with nitrogen, 127 parts by mass of cyclohexane and 25 parts by mass of the β-pinene polymer (A2) obtained in Reference Example 3 were placed, and stirred, The union (A2) was completely dissolved. Thereafter, 7.5 parts by mass of 5% palladium-supported carbon (product number: E1002NN / W manufactured by Evonik Degussa Japan Co., Ltd.) was added as a hydrogenation catalyst, and the mixture was stirred and sufficiently dispersed. After sufficiently substituting with hydrogen and stirring, the mixture was reacted at 130 ° C. and hydrogen pressure: 15 MPa for 25 hours, and then returned to normal pressure. The solution after the reaction was filtered through a 0.5 μm Teflon (registered trademark) filter to separate and remove the catalyst, and then reprecipitated in 3000 parts by mass of a mixed solvent of methanol / acetone (60/40 vol%). After sufficiently drying, 24 parts by mass of β-pinene polymer (B3) was obtained. The β-pinene polymer (B3) thus obtained was measured for 1 H-NMR. As a result, the remaining olefinic double bond was 0.023 mol%, and the remaining aromatic ring was 0.0027 mol%. It was. The glass transition temperature was 132 ° C. In 1 H-NMR, the ratio of the integral value of 6 to 8 ppm proton to the integral value of all protons is 5.9 × 10 −6 , and the ratio of the integral value of 4.5 to 6 ppm proton to the integral value of all protons Was 1.3 × 10 −5 . The obtained β-pinene polymer (B3) had a weight average molecular weight of 103,400 and a number average molecular weight of 45,400. Table 1 shows the evaluation results of the β-pinene polymer (B3). Table 1 shows the evaluation results of the β-pinene polymer (B3).
参考例3[水素添加触媒の調製]
 トリイソブチルアルミニウム(東ソー・ファインケム株式会社製)をあらかじめシクロ
ヘキサンに20%の濃度で溶解しておいた溶液を、窒素置換したガラス製ナスフラスコに
窒素気流下で29.2ml添加し、0℃に冷却した。そこに、2-エチルヘキサン酸ニッ
ケル(キシダ化学株式会社製)のトルエン溶液(ニッケル6%)を窒素気流下で7.4m
l添加し、均一系水素添加触媒を調製した。
Reference Example 3 [Preparation of hydrogenation catalyst]
Add 29.2 ml of triisobutylaluminum (manufactured by Tosoh Finechem Co., Ltd.), dissolved beforehand in cyclohexane at a concentration of 20%, to a nitrogen-substituted glass eggplant flask under a nitrogen stream and cool to 0 ° C. did. A toluene solution (nickel 6%) of nickel 2-ethylhexanoate (manufactured by Kishida Chemical Co., Ltd.) was placed in a nitrogen stream at 7.4 m.
1 was added to prepare a homogeneous hydrogenation catalyst.
比較例4
 窒素置換した撹拌装置付き耐圧容器内に、シクロヘキサンの470質量部と、参考例3で得られたβ-ピネン重合体(A2)の30質量部を収容し、撹拌することにより、β-ピネン重合体(A2)を完全に溶解した。耐圧容器内を十分に水素で置換し、室温下、1000rpmで撹拌しながら、参考例4で調製した水素添加触媒を7質量部添加した。ただちに、水素で1MPaまで加圧し、50℃まで昇温した。50℃に昇温後、さらに水素添加触媒を7質量部添加し、120℃まで昇温した。120℃で9時間反応させた後、常圧・室温に戻した。蒸留水100質量部にクエン酸8.1質量部と30%過酸化水素水溶液4.8質量部を添加した水溶液を耐圧容器に添加し、30分撹拌した。水層を抜き取り、蒸留水を加えて水層が中性になるまで洗浄し、触媒を除去した。得られたシクロヘキサン層をメタノール/アセトン(60/40vol%)の混合溶媒の6000質量部に再沈殿せしめ、その後、充分に乾燥して、β-ピネン系重合体(B4)の29質量部を得た。かくして得られたβ-ピネン系重合体(B4)のH-NMRを測定したところ、残存するオレフィン性二重結合は50.0モル%、残存する芳香族環は0.4モル%であった。ガラス転移温度は115℃であった。またH-NMRにおいて6~8ppmのプロトンの積分値の全プロトンの積分値に対する割合は9.4×10-4、また4.5~6ppmのプロトンの積分値の全プロトンの積分値に対する割合は2.9×10-2であった。この得られたβ-ピネン系重合体(B4)の重量平均分子量は113,000、数平均分子量は50,800であった。β-ピネン系重合体(B4)評価結果を表1に示す。
Comparative Example 4
In a pressure vessel equipped with a stirrer purged with nitrogen, 470 parts by mass of cyclohexane and 30 parts by mass of the β-pinene polymer (A2) obtained in Reference Example 3 were accommodated and stirred, The union (A2) was completely dissolved. The inside of the pressure vessel was sufficiently replaced with hydrogen, and 7 parts by mass of the hydrogenation catalyst prepared in Reference Example 4 was added while stirring at 1000 rpm at room temperature. Immediately, the pressure was increased to 1 MPa with hydrogen and the temperature was raised to 50 ° C. After raising the temperature to 50 ° C., 7 parts by mass of a hydrogenation catalyst was further added, and the temperature was raised to 120 ° C. After reacting at 120 ° C. for 9 hours, the pressure was returned to normal pressure and room temperature. An aqueous solution obtained by adding 8.1 parts by mass of citric acid and 4.8 parts by mass of a 30% aqueous hydrogen peroxide solution to 100 parts by mass of distilled water was added to a pressure vessel and stirred for 30 minutes. The aqueous layer was extracted, washed with distilled water until the aqueous layer became neutral, and the catalyst was removed. The obtained cyclohexane layer was reprecipitated in 6000 parts by mass of a mixed solvent of methanol / acetone (60/40 vol%) and then sufficiently dried to obtain 29 parts by mass of β-pinene polymer (B4). It was. The β-pinene polymer (B4) thus obtained was measured by 1 H-NMR. As a result, the remaining olefinic double bond was 50.0 mol% and the remaining aromatic ring was 0.4 mol%. It was. The glass transition temperature was 115 ° C. In 1 H-NMR, the ratio of the integral value of 6 to 8 ppm proton to the integral value of all protons is 9.4 × 10 −4 , and the integral value of 4.5 to 6 ppm proton to the integral value of all protons Was 2.9 × 10 −2 . The obtained β-pinene polymer (B4) had a weight average molecular weight of 113,000 and a number average molecular weight of 50,800. Table 1 shows the evaluation results of the β-pinene polymer (B4).
 なお、上記した各工程で得られる材料について、また下記の工程で製造される材料について、その物性測定は、以下の如くして行った。 In addition, about the material obtained at each process mentioned above and the material manufactured at the following process, the physical-property measurement was performed as follows.
○成形
 得られたβ-ピネン系重合体は、プレス成形もしくは射出成形にて試験片を作製した。プレス成形は180℃にて50mm×50mm×3mmtサイズの成形体を得た。射出成形は、シリンダ温度240℃、金型温度60℃、金型は50mm×50mm×3mmtを用いて実施した。
○分子量
 数平均分子量及び重量平均分子量は、何れも、ゲル・パーミエーション・クロマトグラフィー(GPC)による測定に基づき、ポリスチレン換算値で求められたものである。ここでは、GPC装置として、東ソー株式会社製のHLC-8020(品番)を用い、カラムとして、東ソー株式会社製のTSKgel・GMH-Mの2本とG2000Hの1本とを直列に繋いだものを用いた。
○残存二重結合率
 JEOL製 400MHzマグネットの核磁気共鳴装置を用いて室温にて1000回積算にて測定した。得られたH-NMRスペクトル(テトラメチルシラン(TMS)のプロトンを0ppmとする)。4.5~6ppmの積分値をβ-ピネン由来のオレフィン性二重結合(1H)とし、6~8ppmの積分値を芳香族環(4H)とし、残存二重結合率および芳香族環生成率を算出した。芳香族環生成率を全単量体単位数に対するモル%で算出した。二重結合水素添加率は芳香族環生成単位を除いた全単量体単位数に対するモル%で算出した。
○ガラス転移温度(Tg)
 充分に乾燥して、溶媒を除去したサンプルを用いて、示差走査熱量測定法(DSC)により測定した。ここでは、測定装置としては、メトラー・トレド株式会社製のDSC30(品番)を用いた。
○全光線透過率
 株式会社村上色彩研究所製のHR-100(品番)を用いて、JIS-K-7361-1に準拠して、測定した。
○屈折率(n
 株式会社アタゴ製のDR-M2(品番)を用いて、JIS-K-7142に準拠して、25℃で測定した。
○ Molding The obtained β-pinene polymer was prepared as a test piece by press molding or injection molding. In press molding, a molded body of 50 mm × 50 mm × 3 mmt size was obtained at 180 ° C. Injection molding was performed using a cylinder temperature of 240 ° C., a mold temperature of 60 ° C., and a mold of 50 mm × 50 mm × 3 mmt.
○ Molecular weight Both the number average molecular weight and the weight average molecular weight are determined in terms of polystyrene based on measurement by gel permeation chromatography (GPC). Here, HLC-8020 (product number) manufactured by Tosoh Co., Ltd. is used as the GPC device, and two TSKgel / GMH-M manufactured by Tosoh Co., Ltd. and one G2000H are connected in series as the column. Using.
○ Residual double bond rate: Measured 1000 times at room temperature using a 400 MHz magnet nuclear magnetic resonance apparatus manufactured by JEOL. 1 H-NMR spectrum obtained (the proton of tetramethylsilane (TMS) is 0 ppm). The integral value of 4.5-6 ppm is β-pinene-derived olefinic double bond (1H), the integral value of 6-8 ppm is aromatic ring (4H), the residual double bond rate and the aromatic ring formation rate Was calculated. The aromatic ring production rate was calculated as mol% based on the total number of monomer units. The double bond hydrogenation rate was calculated as mol% based on the total number of monomer units excluding the aromatic ring-forming units.
○ Glass transition temperature (Tg)
It measured by the differential scanning calorimetry (DSC) using the sample which fully dried and removed the solvent. Here, DSC30 (product number) manufactured by METTLER TOLEDO Co., Ltd. was used as the measuring device.
○ Total light transmittance Measured according to JIS-K-7361-1 using HR-100 (product number) manufactured by Murakami Color Research Co., Ltd.
○ Refractive index (n D )
Measurement was performed at 25 ° C. in accordance with JIS-K-7142 using DR-M2 (product number) manufactured by Atago Co., Ltd.
○光弾性係数
 プレス成形により作成した200μmのフィルムを、Tgよりも20℃低い温度で、一晩アニールした後、Tgよりも20℃高い温度で、長軸方向に引っ張り応力をかけ、その際のレターデーションを、エリプソメーターM220(日本分光株式会社製)で測定し、応力に対するレターデーションの変化量から、光弾性係数Kを算出した。
   ○:K ≦ 2.0×10-10 cm/dyn  良好
   ×:2.0×10-10 cm/dyn < K  不良
○ Photoelastic coefficient After annealing a 200 μm film prepared by press molding overnight at a temperature 20 ° C. lower than Tg, a tensile stress was applied in the major axis direction at a temperature 20 ° C. higher than Tg. Retardation was measured with an ellipsometer M220 (manufactured by JASCO Corporation), and the photoelastic coefficient K was calculated from the amount of change in retardation with respect to stress.
○: K ≦ 2.0 × 10 −10 cm 2 / dyn Good ×: 2.0 × 10 −10 cm 2 / dyn <K Poor
○耐光性試験
 ASTM-G53に準じて、100時間の促進暴露試験を行い、YI(イエロー・インデックス)の試験前と試験後における黄変度(ΔYI)を測定した。ここでは、紫外線曝露試験機(株式会社東洋精機製作所製ATLAS-UVCON)を用いた。YIの測定は、JIS-K-7373に準じて行った。そして、以下の判定基準に従って、評価した。
 ΔYI=(紫外線暴露100時間後のYI)-(紫外線暴露前のYI)
 ○:ΔYI ≦ 10  長期の耐光性が良好
 ×:10 < ΔYI  長期の耐光性が不良
○ Light Resistance Test According to ASTM-G53, an accelerated exposure test for 100 hours was performed, and the yellowing degree (ΔYI) before and after the test of YI (yellow index) was measured. Here, an ultraviolet exposure tester (ATLAS-UVCON manufactured by Toyo Seiki Seisakusho Co., Ltd.) was used. YI was measured according to JIS-K-7373. And it evaluated according to the following criteria.
ΔYI = (YI after 100 hours of UV exposure) − (YI before UV exposure)
○: ΔYI ≦ 10 Good long-term light resistance ×: 10 <ΔYI Long-term light resistance is poor
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 実施例の結果からいずれもβ-ピネン単位を60質量%以上含有した重合体であって、β-ピネン由来の6員環のうち1モル%以上が芳香族性6員環であるβ-ピネン系重合体であるため、屈折率が高く、全光線透過率および光弾性係数および耐光性のバランスが良いことがわかる。
 実施例および比較例1、比較例3から、芳香族環が少ないと屈折率が低くなることがわかる。屈折率が低いとレンズに用いた場合レンズが厚くなり、β-ピネン系重合体の使用量が多くなるだけでなく、レンズを組み込んだ製品自体が大きくなってしまう。
 比較例2から共重合性単量体との共重合によりβ-ピネン由来以外の芳香族環が多いと耐熱性や屈折率は良好であるものの、全光線透過率および光弾性係数が悪く、光学性能が劣ることがわかる。また、オレフィン性二重結合の水素添加率が低いと耐光性が低いことがわかる。
 実施例および比較例5からオレフィン性二重結合が90モル%以上水素化し、かつβ-ピネン由来の6員環のうち1モル%以上を芳香族性6員環にするためには水素化触媒として担持金属触媒(不均一触媒)が好ましいことがわかる。
From the results of the examples, all are polymers containing 60% by mass or more of β-pinene units, and 1-mol% of the 6-membered ring derived from β-pinene is an aromatic 6-membered ring. Since it is a polymer, it can be seen that the refractive index is high and the total light transmittance, photoelastic coefficient, and light resistance are well balanced.
From Examples and Comparative Examples 1 and 3, it can be seen that the refractive index decreases when the aromatic ring is small. If the refractive index is low, the lens becomes thick when used in a lens, and not only the amount of β-pinene polymer used is increased, but also the product incorporating the lens itself becomes large.
From Comparative Example 2, when there are many aromatic rings other than those derived from β-pinene due to copolymerization with a copolymerizable monomer, the heat resistance and refractive index are good, but the total light transmittance and photoelastic coefficient are poor. It turns out that performance is inferior. Moreover, it turns out that light resistance is low when the hydrogenation rate of an olefinic double bond is low.
Hydrogenation catalyst for hydrogenating 90 mol% or more of olefinic double bonds from Examples and Comparative Example 5 and converting 1 mol% or more of β-pinene-derived 6-membered rings to aromatic 6-membered rings It is understood that a supported metal catalyst (heterogeneous catalyst) is preferable.

Claims (7)

  1.  β-ピネン単位を60質量%以上含有した重合体であって、β-ピネン由来の6員環のうち1モル%以上10モル%以下が芳香族性6員環であるβ-ピネン系重合体。 A polymer containing 60% by mass or more of β-pinene units, wherein a β-pinene-based polymer in which 1 mol% or more and 10 mol% or less of the 6-membered ring derived from β-pinene is an aromatic 6-membered ring .
  2.  オレフィン性二重結合が90モル%以上水素化されている請求項1に記載のβ-ピネン系重合体。 The β-pinene polymer according to claim 1, wherein the olefinic double bond is hydrogenated in an amount of 90 mol% or more.
  3.  β-ピネン単位を60質量%以上含有した重合体であって、p-フェニレン基が0.55質量%以上5.5質量%以下であるβ-ピネン系重合体。 A β-pinene-based polymer containing 60% by mass or more of β-pinene units and having a p-phenylene group of 0.55% by mass or more and 5.5% by mass or less.
  4.  シクロヘキセン-1,4-ジイル基が5.6質量%以下である請求項3に記載のβ-ピネン系重合体。 The β-pinene polymer according to claim 3, wherein the cyclohexene-1,4-diyl group is 5.6% by mass or less.
  5.  β-ピネン単位の含有量が90質量%以上である請求項1または3に記載のβ-ピネン系重合体。 The β-pinene polymer according to claim 1 or 3, wherein the content of β-pinene units is 90% by mass or more.
  6.  請求項1または3に記載のβ-ピネン系重合体からなる成形体。 A molded body comprising the β-pinene polymer according to claim 1 or 3.
  7.  β-ピネン単位を60質量%以上含有する重合体を、不均一触媒存在下、水素圧0.1MPa~5MPaにてオレフィン性二重結合を水素化する、請求項1または3に記載のβ-ピネン系重合体の製造方法。 The β-pinene unit according to claim 1 or 3, wherein a polymer containing 60 mass% or more of β-pinene units is hydrogenated at a hydrogen pressure of 0.1 MPa to 5 MPa in the presence of a heterogeneous catalyst. A method for producing a pinene polymer.
PCT/JP2009/057315 2008-04-10 2009-04-10 Β-pinene-based polymer and molded article comprising the same WO2009125828A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009519073A JPWO2009125828A1 (en) 2008-04-10 2009-04-10 β-pinene-based polymer and molded article comprising the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-102963 2008-04-10
JP2008102963 2008-04-10

Publications (1)

Publication Number Publication Date
WO2009125828A1 true WO2009125828A1 (en) 2009-10-15

Family

ID=41161959

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/057315 WO2009125828A1 (en) 2008-04-10 2009-04-10 Β-pinene-based polymer and molded article comprising the same

Country Status (3)

Country Link
JP (1) JPWO2009125828A1 (en)
TW (1) TW200951151A (en)
WO (1) WO2009125828A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5461180B2 (en) * 2008-04-10 2014-04-02 株式会社クラレ β-pinene copolymer and process for producing the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3761457A (en) * 1971-07-02 1973-09-25 Arizona Chem Process for beta pinene dipentene copolymers
CN101522731B (en) * 2006-10-11 2011-05-11 安原化学股份有限公司 Ss-pinene polymer and process for production thereof
JP4951548B2 (en) * 2007-02-15 2012-06-13 株式会社クラレ Durable transparent plate member
JP5149030B2 (en) * 2007-02-16 2013-02-20 株式会社クラレ Transparent material for vehicle lamp and vehicle lamp using the same
WO2009125784A1 (en) * 2008-04-10 2009-10-15 株式会社クラレ β-PINENE COPOLYMER AND MANUFACTURING METHOD THEREFOR

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
HIROKO SUGIYAMA ET AL.: "beta-pinene no Seimitsu Cation Jugo ni yoru Shinki Tanka Suisokei Polymer no Kaihatsu", ANNUAL MEETING OF UNION OF CHEMISTRY RELATED-SOCIETIES IN CHUBU AREA, JAPAN, vol. 38, 10 November 2007 (2007-11-10), pages 158 *
HIROKO SUGIYAMA ET AL.: "Shokubutsu Yurai beta-pinene no Seimitsu Seigyo Cation Jugo", POLYMER PREPRINTS, JAPAN, vol. 56, no. 2, 4 September 2007 (2007-09-04), pages 1PE017 *
HIROKO SUGIYAMA ET AL.: "Shokubutsu Yurai no Shikanshiki Tanka Suisokei Polymer no Gosei", POLYMER PREPRINTS, JAPAN, vol. 55, no. 2, 5 September 2006 (2006-09-05), pages 2Z10 *
HIROKO SUGIYAMA ET AL.: "Shokubutsu Yurai no Shikanshiki Terpene no Seimitsu Cation Jugo", POLYMER PREPRINTS, JAPAN, vol. 55, no. 1, 10 May 2006 (2006-05-10), pages 1PE011 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5461180B2 (en) * 2008-04-10 2014-04-02 株式会社クラレ β-pinene copolymer and process for producing the same

Also Published As

Publication number Publication date
TW200951151A (en) 2009-12-16
JPWO2009125828A1 (en) 2011-08-04

Similar Documents

Publication Publication Date Title
JP5478249B2 (en) Hydrogenated β-pinene-based polymer and molded article comprising the same
JPWO2008044640A1 (en) β-pinene polymer and process for producing the same
JP5461180B2 (en) β-pinene copolymer and process for producing the same
JP5356084B2 (en) Method for continuous hydrogenation of polymer and hydrogenated polymer obtained by hydrogenation reaction
WO2009125828A1 (en) Β-pinene-based polymer and molded article comprising the same
KR20080027203A (en) Process for producing retardation film, retardation film and use thereof
JP5097541B2 (en) Transparent heat resistant resin, method for producing the same, and optical material containing transparent heat resistant resin
JP4447224B2 (en) Optical materials and optical products
JP2004175864A (en) Extruded product
JP5307597B2 (en) Hydrogenation method of polymer and hydrogenated polymer obtained by hydrogenation reaction
JP2007269961A (en) Transparent heat resisting resin, hydrogenated product thereof, method for producing the resin and the product, and optical material comprising transparent heat resisting resin
JPH11189614A (en) Optical material for light transmission
JP2010083979A (en) Cyclized polymer and hydrogenated product of the same
JP5203305B2 (en) β-pinene-based graft copolymer and method for producing the same
JP2007154040A (en) Transparent composite material, surface-treatment method for glass fiber fabric and method for producing transparent composite material
JP2008062481A (en) Laminated film
JPH02501147A (en) colorless transparent polymer material
JP2011213851A (en) METHOD FOR MANUFACTURING β-PINENE-BASED POLYMER
JP2009270096A (en) Method of hydrogenating polymer, and hydrogenated polymer obtained by hydrogenation reaction
JP2008127414A (en) Alicyclic polyether polymer and method for producing the same
JP2006124569A (en) Maleimide copolymer, method for producing the same and optical film obtained from the same
JP6787034B2 (en) Thermoplastic copolymer resin
JP2004244594A (en) Cyclic conjugated diene copolymer
JP2012036280A (en) METHOD FOR PRODUCING β-PINENE-BASED POLYMER
JPH0339304A (en) Adamantyl monocrotonate-based polymer

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2009519073

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09729783

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09729783

Country of ref document: EP

Kind code of ref document: A1