WO2009125798A1 - Hedgehogパスウェイが活性化しているがん治療のための医薬品候補物質のスクリーニング方法 - Google Patents

Hedgehogパスウェイが活性化しているがん治療のための医薬品候補物質のスクリーニング方法 Download PDF

Info

Publication number
WO2009125798A1
WO2009125798A1 PCT/JP2009/057219 JP2009057219W WO2009125798A1 WO 2009125798 A1 WO2009125798 A1 WO 2009125798A1 JP 2009057219 W JP2009057219 W JP 2009057219W WO 2009125798 A1 WO2009125798 A1 WO 2009125798A1
Authority
WO
WIPO (PCT)
Prior art keywords
p70s6k2
cancer
protein
hedgehog pathway
gsk3β
Prior art date
Application number
PCT/JP2009/057219
Other languages
English (en)
French (fr)
Inventor
慎司 水洗
亜紀 川岸
秀仁 小谷
Original Assignee
萬有製薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 萬有製薬株式会社 filed Critical 萬有製薬株式会社
Publication of WO2009125798A1 publication Critical patent/WO2009125798A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • C12Q1/6886Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/136Screening for pharmacological compounds
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/158Expression markers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2500/00Screening for compounds of potential therapeutic value

Definitions

  • the present invention relates to a method for screening a drug candidate substance for cancer treatment based on the expression level of p70S6K2.
  • the present invention also relates to a method for identifying a cancer in which the Hedgehog pathway is activated.
  • hedgehog Hhedgehog; Hh
  • Hh hedgehog
  • the hedgehog signal pathway is involved in many processes during embryogenesis and its activity is involved in the maintenance of stem cell populations in vivo. Furthermore, it is known that abnormal hedgehog signals lead to canceration.
  • hedgehog signaling is initiated by binding of the hedgehog protein to a 12-transmembrane receptor called Patched (Ptc).
  • Ptc acts as an inhibitor of Smoothend (Smo), a 7-transmembrane protein related to the Frizzled family of Wnt receptors and also to other 7-transmembrane G protein-coupled receptors (GPCRs) .
  • GPCRs 7-transmembrane G protein-coupled receptors
  • Downstream of Smo is a protein complex known as the hedgehog signaling complex (HSC).
  • This complex contains the transcription factors Cubitus interruptus (Ci), serine / threonine kinase Fused (Fu), kinesin-like molecule Costal2 (Cos2) and Suppressor of Fused (Sufu).
  • Cos2 also binds to other kinases, protein kinase A (PKA), protein kinase CK1, and glycogen synthase kinase 3 (GSK3), which are thought to be involved in the hedgehog signaling pathway.
  • PKA protein kinase A
  • GSK3 glycogen synthase kinase 3
  • the vertebrate hedgehog signaling pathway has a lot in common with the Drosophila hedgehog signaling pathway, although there are some differences.
  • three hedgehog genes are known: Sonic hedgehog, Indian hedgehog, and Desert hedgehog.
  • Two Ptc genes Ptc1 and Ptc2 and three Ci homologs Gli1, Gli2 and Gli3 are also known.
  • Gli1 and Gli2 are transcriptional activators, and Gli3 functions as a transcriptional repressor.
  • Vertebrate hedgehog regulators are members of the low density lipoprotein receptor-related family, including megalin binding to hedgehog and SIL functioning downstream of Ptc. Missing in metastasis (MIM or BEG4) is an actin-binding protein that regulates Gli-dependent transcriptional activation and regulates hedgehog signaling in vertebrates.
  • Sonic hedgehog pathway is known to be activated more than normal cells in certain types of cancer. Therefore, by suppressing the activation of this sonic hedgehog pathway (hereinafter simply referred to as “Hedgehog pathway” in the present specification), it is possible to suppress cancer cell proliferation and decrease the survival rate of cancer cells. It is thought that it can be planned, and the search of the drug discovery target for suppressing the Hedgehog pathway is being performed.
  • upstream drug targets have been identified in the Hedgehog pathway.
  • controlling upstream factors has been reported to be ineffective in suppressing pathway activation.
  • A594 which is a cell line of non-small cell lung cancer, is known to have a low effect even when cyclopamine, which is usually used as an inhibitor of Hedgehog pathway, is administered. Therefore, a search for downstream targets in the Hedgehog pathway is required.
  • the present invention identifies a molecule involved in the Hedgehog pathway as a drug discovery target for the treatment of cancer activated by the Hedgehog pathway, and using the molecule, the cancer activated by the Hedgehog pathway
  • the purpose is to develop a method of screening for therapeutic agents. Moreover, it aims at developing the method of determining the activation of Hedgehog pathway of a cancer cell, especially the cancer cell from a test subject using the said molecule
  • the present inventor conducted screening with kinome-wide siRNA and identified for the first time that p70S6K2, which is a serine / threonine kinase, is involved in the Hedgehog pathway. Therefore, the present invention can reduce the activity of the Hedgehog pathway by inhibiting p70S6K2, the expression level and activity of p70S6K2, and the substance that changes the phosphorylation state of GSK3 ⁇ which is a substrate of p70S6K2, It becomes clear that it becomes a drug candidate substance for the treatment of activated cancer, the expression level and activity of p70S6K2 in cells, and the phosphorylation state of GSK3 ⁇ can determine the activation state of the Hedgehog pathway And completed.
  • the present invention relates to a method for screening a drug candidate substance for the treatment of cancer in which the Hedgehog pathway is activated.
  • the method comprises (1) contacting a test substance with a cell; ) A step of measuring the expression level of p70S6K2 in the cells; and (3) treatment of a cancer in which the Hedgehog pathway is activated in a test substance in which the expression level of p70S6K2 is reduced compared to the control expression level of p70S6K2. Selecting as a drug candidate for
  • the present invention relates to a method for screening a drug candidate substance for the treatment of cancer in which the Hedgehog pathway is activated.
  • the method comprises (1) contacting a test substance with a cell; A) measuring the kinase activity of the p70S6K2 protein in the cell; and (3) the Hedgehog pathway activating a test substance that has reduced the kinase activity of the p70S6K2 protein compared to the control p70S6K2 protein. Selecting as a drug candidate for treatment of cancer.
  • the present invention relates to a method for screening a drug candidate substance for the treatment of cancer in which the Hedgehog pathway is activated.
  • the method comprises (1) contacting a test substance with a cell; ) A step of measuring the phosphorylation amount of Ser9 site of GSK3 ⁇ in the cell; and (3) a test substance in which the phosphorylation amount of Ser9 site of GSK3 ⁇ is decreased as compared with the phosphorylation amount of Ser9 site of GSK3 ⁇ as a control Selecting as a drug candidate for the treatment of cancer in which the Hedgehog pathway is activated.
  • the present invention relates to a method for screening a drug candidate substance for the treatment of cancer in which the Hedgehog pathway is activated, and the method comprises (1) contacting a test substance with a sample containing p70S6K2. (2) measuring the kinase activity of the p70S6K2 protein in the sample, and (3) the Hedgehog pathway activates a test substance that has reduced the kinase activity of the p70S6K2 protein compared to the control p70S6K2 protein. Selecting as a drug candidate for the treatment of cancer.
  • the present invention relates to a method for screening a drug candidate substance for the treatment of cancer in which the Hedgehog pathway is activated, and (1) contacting a test substance with a sample containing GSK3 ⁇ ; A step of measuring the phosphorylation amount of Ser9 site of GSK3 ⁇ in the sample, and (3) a test substance having a decreased phosphorylation amount of Ser9 site of GSK3 ⁇ as compared with the phosphorylation amount of Ser9 site of GSK3 ⁇ as a control Selecting as a drug candidate for the treatment of cancer in which the Hedgehog pathway is activated.
  • the cells used in the screening method of the present invention are preferably cells in which the Hedgehog pathway is activated compared to normal cells.
  • the present invention also relates to a method for determining cancer in which the Hedgehog pathway is activated, the method comprising (1) measuring the expression level of p70S6K2 or the copy number of the p70S6K2 gene in cancer cells; (2) determining that the Hedgehog pathway is activated when the p70S6K2 expression level or gene copy number is higher than the control expression level or copy number.
  • the present invention relates to a method for determining cancer in which the Hedgehog pathway is activated, the method comprising (1) measuring the kinase activity of p70S6K2 protein in cancer cells, and (2) the p70S6K2 Determining that the Hedgehog pathway is activated if the kinase activity of the protein is higher than the control kinase activity.
  • the present invention relates to a method for determining cancer in which the Hedgehog pathway is activated, the method comprising (1) measuring the phosphorylation amount of Ser9 site of GSK3 ⁇ in cancer cells; ) Determining that the Hedgehog pathway is activated when the phosphorylation amount of the Ser9 site of GSK3 ⁇ is higher than the control phosphorylation amount.
  • the present invention also relates to a method for determining the activation state of the Hedgehog pathway of cancer in a subject, the method comprising (1) preparing a nucleic acid sample from cancer cells of the subject; Measuring the amount of nucleic acid of p70S6K2 in the nucleic acid sample, and (3) comparing the amount of nucleic acid with the amount of nucleic acid of p70S6K2 as a control.
  • the present invention relates to a method for determining the activation state of the Hedgehog pathway of cancer in a subject, the method comprising: (1) preparing a protein sample from cancer cells of the subject; Measuring the amount of p70S6K2 protein in the protein sample, and (3) comparing the amount of protein with the amount of p70S6K2 protein in the control.
  • the present invention relates to a method for determining the activation state of the Hedgehog pathway of cancer in a subject, the method comprising: (1) preparing a protein sample from cancer cells of the subject; Measuring p70S6K2 kinase activity in a protein sample, and (3) comparing the kinase activity to a control p70S6K2 kinase activity.
  • the present invention relates to a method for determining the activation state of the Hedgehog pathway of cancer in a subject, the method comprising: (1) preparing a protein sample from cancer cells of the subject; Measuring the phosphorylation amount of Ser9 site of GSK3 ⁇ in a protein sample, and (3) comparing the phosphorylation amount with the Ser9 site of control GSK3 ⁇ .
  • the expression level of p70S6K2 can be measured by RT-PCR, microarray, Northern hybridization, or immunoassay. Moreover, the copy number of the gene of p70S6K2 can be measured by an immunological measurement method or a CGH (comparative genomic hybridization) array method.
  • the nucleic acid amount of p70S6K2 can be measured by RT-PCR, microarray, Northern hybridization, or Southern hybridization.
  • the protein amount of p70S6K2 can be measured by an immunoassay.
  • the kinase activity of p70S6K2 protein is determined by autoradiography, ELISA using anti-protein kinase antibody, mass spectrometry (MS), Isotope-coded Affinity Tag (ICAT) method, Mass-tag method, TF-FRET (Time Resolved Fluorescence Resonance Energy Transfer), Immobilized Metal Affinity Polarization Assay or Mobility Sift Assay.
  • the amount of phosphorylation at the Ser9 site of GSK3 ⁇ can be measured by an immunological assay.
  • p70S6K2 or GSK3 ⁇ can be used to screen for drug candidates for cancer cells activated by the Hedgehog pathway.
  • it can be determined whether or not the cells are cancerous due to abnormal activation of the Hedgehog pathway.
  • the activation state of the Hedgehog pathway of cancer cells can be measured.
  • an inhibitor of the Hedgehog pathway helps to determine a treatment policy, such as treatment with a medicine containing an expression inhibitor of p70S6K2.
  • FIG. 5 is a graph showing that reporter activity is reduced by siRNA against Gli1 in the A549-GliBla cell line.
  • FIG. 6 is a graph showing screening of a Kinome-wide siRNA to identify hedgehog pathway-specific kinases by ⁇ -lactamase reporter activity using the A549-GliBla cell line. It is the graph which measured the beta-lactamase activity in A549-GliBla cell line at the time of performing 3 types of siRNA treatment with respect to p70S6K2.
  • the cancer referred to in this specification is not particularly limited, and may infiltrate (infiltrate) or metastasize to a boundary with another tissue such as a malignant tumor or a malignant neoplasm, and may increase in various parts of the body.
  • Tumors that threaten the life of the host include carcinomas derived from epithelial tissues (cancer), sarcomas derived from connective and mesenchymal tissues, leukemias, and malignant lymphomas.
  • the expression level of p70S6K2 refers to the absolute or relative amount of the transcription product of the p70S6K2 gene, or the absolute or relative amount of the p70S6K2 protein.
  • the absolute value or relative value of the kinase activity of p70S6K2 or the copy number of the p70S6K2 gene may be measured. In this case, when the kinase activity is high or the copy number is large, it is determined that the same expression as when the expression level of p70S6K2 is high, that is, the Hedgehog pathway is activated.
  • the expression level of p70S6K2 can be measured by any method known to those skilled in the art.
  • the method for measuring the expression level include, but are not limited to, gene amplification methods such as RT-PCR, microarray, Northern hybridization, and immunoassay.
  • immunological measurement methods include IHC, ELISA, and Western blotting.
  • the expression level can also be measured by hybridization with a probe complementary to the p70S6K2 gene sequence using cells or tissues.
  • the kinase activity and copy number of p70S6K2 can also be measured by any method known to those skilled in the art.
  • kinase activity autoradiography, ELISA using an anti-protein kinase antibody, mass spectrometry (MS), Isotope-coded Affinity Tag (ICAT) method (Nat. Biotechnol., 17, 994 (1999)), Mass -Tag method (Bioorg. Med. Chem. Lett., 14, 847 (2004)), TF-FRET (Time Resolved Fluorescence Resonance Energy Transfer), Immobilized Metal Affinity Polarization Assay, Mobility Sift Assay, etc. Can do.
  • the copy number can be measured by a known method such as Southern blotting or CGH (comparative genomic hybridization) array method.
  • the phosphorylation amount of the Ser9 site of GSK3 ⁇ refers to the absolute or relative amount of phosphorylation of the Ser9 site of GSK3 ⁇ .
  • the amount of phosphorylation at the Ser9 site of GSK3 ⁇ can be used as a biomarker for p70S6K2 inhibition.
  • the amount of phosphorylation at the Ser9 site of GSK3 ⁇ is considered to be almost proportional to the expression level, activity or copy number of p70S6K2.
  • the Ser9 site of GSK3 ⁇ is phosphorylated not only by p70S6K2 but also by p70S6K1.
  • phosphorylation by p70S6K1 can be prevented from occurring using cells in which the expression of p70S6K1 is suppressed by RNA interference (for example, siRNA or shRNA) against p70S6K1.
  • RNA interference for example, siRNA or shRNA
  • the amount of phosphorylation at the Ser9 site of GSK3 ⁇ can be measured by a known method.
  • immunization using an anti-GSK3 ⁇ antibody and an anti-phosphorylated GSK3 ⁇ antibody capable of recognizing the phosphorylated form at the Ser9 position of GSK3 ⁇ It can be measured by a scientific measurement method. Examples of immunological measurement methods include IHC, ELISA, and Western blotting.
  • (1) Screening method of drug candidate substance for cancer treatment Measure the expression level of p70S6K2 gene or p70S6K2 protein that changes by contacting a test substance with cells, and examine the effect on the kinase activity of p70S6K2 Thus, the test substance can be evaluated.
  • a substance that decreases the expression level of p70S6K2 gene, the expression level of p70S6K2 protein, and / or suppresses the kinase activity of p70S6K2 can be achieved by returning the enhanced Hedgehog pathway to normal or bringing the Hedgehog pathway to a normal state or less. It is considered that there are those that can suppress cell growth, reduce the survival rate of cancer cells, and reduce the malignancy.
  • test substance can be evaluated by measuring the phosphorylation amount at the Ser9 site of GSK3 ⁇ , which varies when the test substance is brought into contact with the cells.
  • a substance that decreases the phosphorylation amount of Ser9 site of GSK3 ⁇ can suppress the proliferation of cancer cells and reduce the survival rate of cancer cells by returning the enhanced Hedgehog pathway to normal or making the state of Hedgehog pathway normal or lower. It is thought that there is a thing which can aim at the fall of malignancy, and the reduction of malignancy.
  • a substance that suppresses the kinase activity of p70S6K2 or decreases the phosphorylation amount of the Ser9 site of GSK3 ⁇ restores the enhanced Hedgehog pathway to normal, or makes the Hedgehog pathway state subnormal, thereby proliferating cancer cells It is thought that there is a thing that can aim for suppression of cancer, decrease in survival rate of cancer cells, and reduction of malignancy.
  • the sample containing p70S6K2 or GSK3 ⁇ may be prepared from cells or may be prepared using commercially available p70S6K2 or GSK3 ⁇ .
  • Examples of cells include, but are not limited to, prokaryotic or eukaryotic cells, cell lines, biopsy derived tissues or cells into which a p70S6K2 or GSK3 ⁇ gene has been introduced.
  • Samples prepared from cells refer to cell culture media, cell homogenates, extracts, p70S6K2 crude or purified products, or GSK3 ⁇ crude or purified products. In this case, it is preferable to use cells in which the Hedgehog pathway is activated as compared with normal cells, or cells in which p70S6K2 or GSK3 ⁇ is expressed at a high level.
  • Commercially available p70S6K2 can use, for example, HumanZyme code number HZ-2054
  • commercially available GSK3 ⁇ can use, for example, BioVision code number 7004-100, but is not limited thereto.
  • cells before administration of the test substance As a control for measuring the expression level or kinase activity of p70S6K2 or the phosphorylation level of Ser9 site of GSK3 ⁇ , cells before administration of the test substance, the same type of cells treated with buffer alone, or untreated Allogeneic cells can be used.
  • decreasing the expression level of p70S6K2 refers to a case where the expression level is decreased by about 50% or more, preferably about 70% or more, more preferably about 80% or more compared to the control.
  • Suppressing the kinase activity of p70S6K2 refers to a case where the kinase activity is decreased by about 50% or more, preferably about 70% or more, more preferably about 80% or more compared to the control.
  • decreasing the phosphorylation amount of the Ser9 site of GSK3 ⁇ is about 20% or more, preferably about 30% or more, more preferably about 40% or more, compared to the control. When it decreases.
  • the drug candidate substance screened by the method of the present invention may be, for example, a natural product or a synthetic product, and may have any structure.
  • the screening method referred to in the present invention includes not only selection at the initial stage of drug discovery from a wide range of candidate substances, but also complementation of confirmation of effectiveness and demonstrability of substances close to the final drug candidates.
  • the contact of the test substance with the cells is changed as appropriate depending on the properties of the test substance.
  • a nucleic acid such as siRNA
  • it can be carried out by introducing it into a cell.
  • the cell used in the screening method of the present invention is not particularly limited, but a cell in which the Hedgehog pathway is activated as compared with a normal cell is preferable. This is because a decrease in the activation of the Hedgehog pathway, that is, a decrease in the expression level of p70S6K2, a decrease in kinase activity, or a decrease in the phosphorylation amount at the Ser9 site of GSK3 ⁇ is easily evaluated.
  • a cancer cell line in which the Hedgehog pathway is confirmed to be activated as compared with normal cells can be used. Examples of such cancer cell lines include H522, PC13, and A549, and A549 is preferred from the viewpoint of versatility in experiments.
  • a cell line introduced with a fusion gene of the expression regulatory region of p70S6K2 and a reporter gene can also be used.
  • ⁇ -lactamase, GFP, ⁇ -galactosidase, luciferase genes, and the like can be used as reporter genes.
  • the present invention also relates to a drug candidate substance screened by the above screening method.
  • the cancer type is caused by the enhanced Hedgehog pathway.
  • the phosphorylation amount at the Ser9 site of GSK3 ⁇ is higher than that of the control, it is determined that the cancer type is attributed to the enhancement of the Hedgehog pathway. For example, when considering treatment, if it is determined that the cancer is due to the enhancement of the Hedgehog pathway, the selection of an anticancer agent that inhibits the Hedgehog pathway can be actively considered.
  • the cancer cell to be determined is not particularly limited, and may be, for example, a cultured cell or a cell derived from a biopsy.
  • the cancer to be determined is not particularly limited, and examples thereof include non-small cell lung cancer, medulloblastoma, and breast cancer.
  • cells in which the Hedgehog pathway has not been activated such as normal cells, can be used.
  • high expression level of p70S6K2 means that the expression level is about 1.5 times or more, preferably about 1.8 times or more, more preferably about 2.0 times or more, compared to the control. Refers to cases. “The kinase activity of p70S6K2 is high” means that the kinase activity is about 1.5 times or more, preferably about 1.8 times or more, more preferably about 2.0 times or more compared to the control. A high copy number of the p70S6K2 gene means a case where it is about twice or more higher than the control.
  • the phosphorylation amount of the Ser9 site of GSK3 ⁇ is higher than that of the control by about 1.5 times or more, preferably about 1.8 times or more, more preferably about 2.0 times or more. The case where the amount of phosphorylation is high.
  • Determining which pathway the cancer of the subject's cancer is enhanced is considered to be effective in selecting an appropriate anticancer agent. For example, before administering an anticancer drug, determine whether the Hedgehog pathway is activated in cancer cells or tissues, and consider Hedgehog pathway inhibitor administration only when the Hedgehog pathway is activated can do. In addition, during the anticancer drug administration or after a certain period of time after administration, determine whether the Hedgehog pathway activity is reduced compared to before administration, selection of the anticancer drug being administered, dosage and administration You can consider whether the method is appropriate.
  • the kinase activity of p70S6K2 and the copy number of the p70S6K2 gene are higher than the control, it is determined that the Hedgehog pathway is activated.
  • part of GSK3 (beta) is higher than a control
  • cells in which Hedgehog pathway has not been activated for example, normal cells can be used.
  • cells derived from the same tissue before cancer treatment, such as before administration of an anticancer agent can be used as a control.
  • nucleic acid sample it can be prepared from cells by any known method.
  • the preparation method methods described in Molecular cloning, A Laboratory Manual, Third Edition (2001) (Cold Spring Laboratory Press) can be mentioned.
  • the nucleic acid refers to mRNA or DNA.
  • a protein sample it can be prepared from cells by any known method.
  • the protein sample may be a purified sample or a crude extract. For example, after the cells are homogenized, a crude extract can be prepared by centrifugation and ammonium sulfate salting out.
  • a large amount of p70S6K2 nucleic acid or protein means that about 1.5 times or more, preferably about 1.8 times or more, more preferably about 2.0 times or more, DNA compared to the control, DNA The amount, mRNA amount, copy number, or protein amount is large.
  • the kinase activity of p70S6K2 is high means that the kinase activity is about 1.5 times or more, preferably about 1.8 times or more, more preferably about 2.0 times or more compared to the control.
  • the phosphorylation amount of the Ser9 site of GSK3 ⁇ is higher than that of the control by about 1.5 times or more, preferably about 1.8 times or more, more preferably about 2.0 times or more. The case where the amount of phosphorylation is high.
  • the subject refers to a human patient, but can also be performed on dogs, cats, horses, and the like.
  • the subject's cancer is not particularly limited in its site and origin, and examples thereof include non-small cell lung cancer, medulloblastoma, and breast cancer.
  • real-time PCR was performed as quantitative RT-PCR, and a 7900 HT fast real-time PCR system was used (Applied Biosystems).
  • the conditions for real-time PCR were initial heat denaturation: 95 ° C., 10 minutes; denaturation: 95 ° C., 15 seconds; annealing and extension reaction: 60 ° C., 60 seconds; cycle number: 40 times.
  • ⁇ Cell proliferation assay reporter gene ⁇ -lactamase assay> Cells were seeded at 900 cells / well (96-well plate), siRNA was introduced 24 hours later, and cell proliferation measurement and reporter gene measurement were performed 72 hours later.
  • cell proliferation measurement CellTiter-Glo (Promega, G7572), which measures the relative cell number by measuring intracellular ATP, was used.
  • the activity measurement of the ⁇ -lactamase reporter gene indicating the activity state of Gli1 in A549-GliBla cells was performed using GeneBLAer in vitro Detection Kit (Invitrogen, 12578-126).
  • Example 1 Identification of non-small cell lung cancer cell line with enhanced Hedgehog pathway activity>
  • H522, PC13, A549, H1473, H1975, and H520 the expression level of Gli1 mRNA, which is an index of Hedgehog pathway activation, was measured.
  • H522, A549, H1473, H1975, and H520 were obtained from ATCC (American Type Culture Collection), and PC13 was obtained from Immunobiological Research Institute.
  • a reporter gene whose expression was induced by a promoter having a Gli1 binding sequence was introduced into A549 cells, and a stable expression cell line was established.
  • PLenti-bsd / Gli-blavector Invitrogen, K11305 in which ⁇ -lactamase gene is expressed as a reporter gene when Gli1 factor is activated was introduced into A549 cells by the lipofection method. The cells were cultured in a 6 cm culture dish to a density of 60%, and then gene transfer was performed. After selection of a drug of Blasticidin (concentration: 3.8 ⁇ g / ml) for about 14 days, a cell line thought to stably express the introduced gene was established.
  • Gli1 siRNA (Gli1-siRNA (Dharmacon, M-003896-00-0020, sequence: GCACUGGUCUGUCCACUCUUU; SEQ ID NO: 1)) is used. Introduced and examined. Cells in which the reporter gene activity was reduced by about 70% due to suppression of Gli1 expression were designated as stable expression cell line A549-GliBla. The introduction of siRNA and the measurement of reporter gene activity followed the method described in the above method section. It was confirmed whether the activity state of the Hedgehog pathway could be measured by quantifying the activity of ⁇ -lactamase, a reporter gene, using this cell line.
  • siRNA against PLK1 having a strong cytotoxic activity (PLK1-siRNA (mixture of Dharmacon, M-003290-01-0010) SEQ ID NOs: 9 to 12) was used, expression of the reporter gene was not suppressed. It was. From this, it was confirmed that the activation state of the Hedgehog pathway can be measured by quantifying the activity of ⁇ -lactamase in A549 cells into which a reporter gene induced by Gli1 was introduced.
  • Example 2 Identification of Kinase Gene Controlling Hedgehog Pathway Activity> Using the cell line A549-GliBla obtained in Example 1, an attempt was made to identify a kinase that regulates the Hedgehog pathway from about 500 total kinase genes. Specifically, by preparing siRNAs for all kinase genes (Ambion's human kinase siRNA set (Ambion, AM80010V3)) and introducing them into A549-GliBla cells to identify kinase siRNAs that reduce the activity of reporter genes went. The introduction of siRNA, the method for measuring cell proliferation, and the ⁇ -lactamase assay were performed as described above. As a result, it was found that by suppressing the expression of kinase p70S6K2, the reporter gene activity was reduced to about 38% (FIG. 3).
  • siRNA having three different sequences for p70S6K2 (siRNAS6K2-siRNA # 1 (Ambion, siRNAID # 471) sequence: GGUGUUCCAGGUGCGAAAGtt; SEQ ID NO: 3), S6K2-siRNA # 2 (B-bridge, SHU9A-1447- 1) sequence: GCCUAGAGCCUGUGGGACAtt; SEQ ID NO: 4), S6K2-siRNA # 3 (B-bridge, SHU9A-1477-3, sequence: GCAGAGAACCGGAAGAAAAtt; SEQ ID NO: 5), whether the same Hedgehog pathway inhibitory effect can be obtained. tried.
  • Each siRNA was treated for 72 hours or 96 hours at a concentration of 5 nM or 10 nM.
  • a statistically significant Hedgehog pathway suppression effect was obtained at any of the three types of sequences, time, and concentration (FIG. 4).
  • Hedgehog pathway In addition to the Hedgehog pathway, it is known that various pathways such as the Wnt pathway, the apoptosis pathway via the Survivin gene, the Ras pathway, the p53 pathway, and the RB pathway are involved in canceration.
  • the gene to cell groups that can measure the effect on each cancer-related pathway, as in the experiment in which the kinase gene siRNA set was introduced into A549-GliBla Introduced.
  • a cancer cell line in which an apoptotic pathway, Ras pathway, p53 pathway or RB pathway via the Wnt pathway or Survivin gene was activated was genetically manipulated so that each pathway could be confirmed to be activated.
  • SW480-Wnt is a cell that can monitor the activation state of the Wnt pathway, and was established by introducing pLenti-bsd / LEF / TCF-bla (K1126) into the colon cancer SW480 cell line.
  • DLD-1-Birc5 is a cell that can monitor the activation state of the apoptosis pathway via the Survivin gene, and was established by introducing SURVIVIN Gene Promoter Reporter Vector (LR1016) into the colon cancer DLD-1 cell line.
  • SW480-Wnt and DLD-1-Birc5 calculated the activity value when each kinase siRNA was introduced when the activation state of the reporter gene in the control cells was 100%.
  • DKO-Ras is an index that measures the influence on the Ras pathway.
  • the indicator was DKO-Ras.
  • U2OS-p53 is an index that measures the influence on the p53 pathway.
  • the ratio of the number of cells when the kinase siRNA was introduced into the cell U2OS-p53 (+) having the wild type p53 and the cell U2OS-p53 ( ⁇ ) having the mutant p53 “U2OS-p53 ( ⁇ ) / U2OS-p53 ( +) ⁇ 100 ” was taken as the index U2OS-p53.
  • U2OS-RB is an index that measures the influence on the RB pathway.
  • A549-GliBla was used as a cell line in which the Hedgehog pathway was activated.
  • Example 3 Relationship between expression suppression of p70S6K2 kinase and suppression of cancer cell proliferation by inhibiting Hedgehog pathway>
  • suppression of proliferation is expected to occur by suppressing the Hedgehog pathway. Therefore, the effect on cell proliferation was examined by suppressing p70S6K2 expression using siRNAs having three different sequences.
  • siRNAs against p70S6K2 were treated with 5 nM or 10 nM for 72 hours or 96 hours.
  • the siRNA used was the same as that used in Example 2.
  • significant cell growth inhibition was observed as compared with the control siRNA (FIG. 5).
  • a decrease in the activity of the Hedgehog pathway is thought to cause changes in the expression of downstream genes whose expression is controlled by Gli1. Therefore, the expression of p70S6K2 or Gli1 is suppressed by siRNA (SEQ ID NO: 3; Ambion, siRNAID # 471) or Gli1-siRNA (SEQ ID NO: 1; Dharmacon, M-003896-00-0020)), respectively.
  • siRNA SEQ ID NO: 3; Ambion, siRNAID # 471
  • Gli1-siRNA SEQ ID NO: 1; Dharmacon, M-003896-00-0020
  • cyclin D1 and ⁇ -catenin were examined by quantitative RT-PCR.
  • the primer and probe the following were synthesized and used as cyclin D1 primer and probe set (required by Hokkaido System Science), and Applied Biosystems and Hs00158408-M1 were used as ⁇ -catenin primer and probe set, respectively.
  • Reverse primer; CGG TGT AGA TGC ACA GCT TCT C (SEQ ID NO: 7)
  • Probe AAG GAG ACC ATC CCC CTG ACG GC (SEQ ID NO: 8)
  • Example 4 Elucidation of the mechanism of action by which suppression of p70S6K2 expression leads to reduced Hedgehog pathway activity>
  • the study shown in Example 3 showed that suppression of p70S6K2 expression decreased the activity of the Hedgehog pathway, but its molecular mechanism of action was unknown. Therefore, we tried to clarify the mechanism.
  • the molecular group shown in FIG. 7 is known as a factor that controls the Hedgehog pathway.
  • Ptc which is a receptor of Hedgehog
  • phosphorylating proteins such as GSK3 ⁇
  • phosphorylated GSK3 ⁇ is known as a factor that negatively regulates Gli1 activity by promoting degradation of Gli1.
  • the p70S6K1 gene product having high sequence and functional homology with p70S6K2 phosphorylates and controls GSK3 ⁇ . Therefore, it was examined whether or not the degree of phosphorylation of GSK3 ⁇ was changed by suppressing the expression of p70S6K2 with siRNA.
  • siRNA (Ambion, siRNAID # 471; GGUGUUCCAGGUGCGAAAGtt; SEQ ID NO: 3)) was introduced 24 hours later. After an additional 72 hours, the expression of each protein and phosphorylated protein was measured by Western blotting.
  • a cell extract containing 20 ⁇ g protein extracted from cells was fractionated by electrophoresis (SDS-PAGE method), and GSK3 ⁇ and its phosphorylated protein were measured by Western blotting in which the protein was immunologically measured.
  • the antibodies used in this case were anti-GSK3 ⁇ antibody (Cell Signaling ⁇ Technology, # 9315), anti-phosphorylated GSK3 ⁇ (Ser9) antibody (Cell Signaling ⁇ Technology, # 9336) as the primary antibody, and Anti- Rabbit IgG HRP-linked antibody (Cell Signaling Technology, # 7674) was used.
  • An ELC reagent (GE Healthcare Biosciences, RPN2132) was used for the color development process showing protein bands. The results are shown in FIG.
  • FIG. 8 reveals that Ser9 phosphorylation of GSK3 ⁇ after siRNA introduction is significantly decreased in a time-dependent manner.
  • This Ser9 site is also a site known as a phosphorylation site by another kinase p70S6K1 involved in the Hedgehog pathway. From this result, it is considered that by suppressing the expression of p70S6K2, the phosphorylation level of GSK3 ⁇ decreases, and as a result, the activity of Gli1, which is an indicator of Hedgehog pathway activation, is suppressed.
  • GSK3 ⁇ (Ser9) as a biomarker when p70S6K2 is used as a drug discovery target>
  • p70S6K2 is considered as a molecular target factor for drug discovery, it is desired to identify a biomarker that determines whether inhibition has occurred.
  • GSK3 ⁇ since the phosphorylation of Ser9 site of GSK3 ⁇ was reduced by suppressing the expression of p70S6K2, GSK3 ⁇ can be used as a biomarker that is an indicator of the degree of inhibition of p70S6K2 target protein. It is considered possible.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Oncology (AREA)
  • Microbiology (AREA)
  • Zoology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • Biomedical Technology (AREA)
  • Hospice & Palliative Care (AREA)
  • Genetics & Genomics (AREA)
  • Cell Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Food Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

【課題】 Hedgehogパスウェイに関与する分子を用いて、Hedgehogパスウェイが活性化したがんの治療剤をスクリーニングする方法を開発する。また、当該分子を用いて、がん細胞、特に被験者からのがん細胞のHedgehogパスウェイの活性化を判定する方法を開発する。 【解決手段】 p70S6K2の発現量及び活性、並びにp70S6K2の基質であるGSK3βのリン酸化状態を変動させる物質を、Hedgehogパスウェイが活性化したがんの治療のための医薬品候補物質として選択する。細胞内のp70S6K2の発現量及び活性、並びにGSK3βのリン酸化状態を明らかにすることによってHedgehogパスウェイの活性化状態を判定する。

Description

Hedgehogパスウェイが活性化しているがん治療のための医薬品候補物質のスクリーニング方法
 本発明は、p70S6K2の発現量に基づくがん治療のための医薬品候補物質のスクリーニング方法に関する。また、本発明は、Hedgehogパスウェイが活性化しているがんを同定する方法に関する。
 ヘッジホッグ(Hedgehog;Hh)遺伝子は、ショウジョウバエの体節決定に関わる遺伝子として、遺伝的スクリーニングにおいて同定された (Nusslein-Volhard et al., 1980)。ヘッジホッグシグナルタンパク質の分泌を欠損させたショウジョウバエの胚は、ハリネズミのトゲを連想させる形態を示す。ヘッジホッグシグナルパスウェイは、胚発生の間の多くのプロセスに関与し、生体においても幹細胞集団の維持にその活性が関わっている。さらに、異常なヘッジホッグシグナルが、がん化を導くことが知られている。
 ショウジョウバエでは、ヘッジホッグシグナリングは、ヘッジホッグタンパク質がPatched(Ptc)と呼ばれる12回膜貫通型レセプターに結合することによって開始される。Ptcは、WntレセプターのFrizzledファミリーに関係し、他の7回膜貫通型Gタンパク質結合型受容体(GPCR)にも関係がある7回膜貫通型タンパク質であるSmoothend(Smo)の阻害物質として働く。Smoの下流はヘッジホッグシグナリング複合体(HSC)として知られるタンパク質複合体である。この複合体は、転写因子Cubitus interruptus(Ci)、セリン/トレオニンキナーゼFused(Fu)、キネシン様分子Costal2(Cos2)及びSupressor of Fused(Sufu)を含む。Cos2は、ヘッジホッグシグナリリングパスウェイに関係すると考えられている他のキナーゼであるタンパク質キナーゼA(PKA)、タンパク質キナーゼCK1及びグリコゲンシンターゼキナーゼ3(GSK3)にも結合する。
 脊椎動物のヘッジホッグシグナリングパスウェイは、ショウジョウバエのヘッジホッグシグナリングパスウェイとは、相違点もあるが、多くの共通性を有する。哺乳動物では、ソニックヘッジホッグ、インディアンヘッジホッグ、デザートヘッジホッグの3つのヘッジホッグ遺伝子が知られている。Ptc1及びPtc2という2つのPtc遺伝子と、Gli1、Gli2及びGli3という3つのCiホモログも知られている。Gli1とGli2は転写活性化因子であり、Gli3は転写抑制因子として機能する。脊椎動物のヘッジホッグの制御因子は、低密度リポタンパク質受容体関連ファミリーのメンバーであり、ヘッジホッグに結合するmegalinや、Ptcの下流で機能するSILを含む。Missing in metastasis(MIM又はBEG4)は、脊椎動物においてGli依存性転写活性化を制御し、ヘッジホッグシグナリングを調節するアクチン結合タンパク質である。
 ソニックヘッジホッグパスウェイは、ある種のがんにおいて、正常細胞よりも活性化されていることが知られている。そのため、このソニックヘッジホッグのパスウェイ(以下、本明細書中では、単に「Hedgehogパスウェイ」という)の活性化を抑制することにより、がん細胞の増殖抑制やがん細胞の生存率の低下などが図れると考えられ、Hedgehogパスウェイを抑制するための創薬ターゲットの探索が行われている。
 Hedgehogパスウェイにおいて、上流の創薬ターゲットがいくつか同定されている。しかし、多くのがんでは、上流の因子を制御してもパスウェイの活性化の抑制に効果がないと報告されている。例えば、非小細胞性肺癌の細胞系であるA594は、Hedgehogパスウェイの阻害剤として通常使用されるシクロパミン(cyclopamine)を投与しても効果が低いことが知られている。そのため、Hedgehogパスウェイにおける下流のターゲットの探索が求められている。
Oncogene, 2007, Feb., 15; 26(7): 1046-1055 Clin. Cancer Res., 2007, Mar., 1; 13(5): 1389-1398 Cancer Res., 2004, Jan., 1; 64(1): 229-235
 したがって、本発明は、Hedgehogパスウェイが活性化したがんの治療のための創薬ターゲットとして、Hedgehogパスウェイに関与する分子を同定し、また、当該分子を用いて、Hedgehogパスウェイが活性化したがんの治療剤をスクリーニングする方法を開発することを目的とする。また、当該分子を用いて、がん細胞、特に被験者からのがん細胞のHedgehogパスウェイの活性化を判定する方法を開発することを目的とする。
 本発明者は、鋭意検討の結果、キノムワイド(kinome-wide)siRNAによるスクリーニングを行い、セリン/スレオニンキナーゼであるp70S6K2が、Hedgehogパスウェイに関与していることを初めて同定した。そこで、本発明は、p70S6K2を阻害することによってHedgehogパスウェイの活性低下を図ることができること、p70S6K2の発現量及び活性、並びにp70S6K2の基質であるGSK3βのリン酸化状態を変動させる物質は、Hedgehogパスウェイが活性化したがんの治療のための医薬品候補物質となること、細胞内のp70S6K2の発現量及び活性、並びにGSK3βのリン酸化状態を明らかにすることによってHedgehogパスウェイの活性化状態を判定できることを明らかにし、完成されたものである。
 即ち、本発明は、Hedgehogパスウェイが活性化しているがんの治療のための医薬品候補物質のスクリーニング方法に関するものであり、当該方法は、(1)細胞に被験物質を接触させるステップと、(2)前記細胞におけるp70S6K2の発現量を測定するステップと、(3)対照のp70S6K2の発現量と比較して、p70S6K2の発現量を減少させた被験物質をHedgehogパスウェイが活性化しているがんの治療のための医薬品候補物質として選択するステップとを含む。
 さらに、本発明は、Hedgehogパスウェイが活性化しているがんの治療のための医薬品候補物質のスクリーニング方法に関するものであり、当該方法は、(1)細胞に被験物質を接触させるステップと、(2)前記細胞におけるp70S6K2タンパク質のキナーゼ活性を測定するステップと、(3)対照のp70S6K2タンパク質のキナーゼ活性と比較して、p70S6K2タンパク質のキナーゼ活性を低下させた被験物質をHedgehogパスウェイが活性化しているがんの治療のための医薬品候補物質として選択するステップとを含む。
 さらに、本発明は、Hedgehogパスウェイが活性化しているがんの治療のための医薬品候補物質のスクリーニング方法に関するものであり、当該方法は、(1)細胞に被験物質を接触させるステップと、(2)前記細胞におけるGSK3βのSer9部位のリン酸化量を測定するステップと、(3)対照のGSK3βのSer9部位のリン酸化量と比較して、GSK3βのSer9部位のリン酸化量を減少させた被験物質をHedgehogパスウェイが活性化しているがんの治療のための医薬品候補物質として選択するステップとを含む。
 さらに、本発明は、Hedgehogパスウェイが活性化しているがんの治療のための医薬品候補物質のスクリーニング方法に関するものであり、当該方法は、(1)p70S6K2を含む試料に被験物質を接触させるステップと、(2)前記試料におけるp70S6K2タンパク質のキナーゼ活性を測定するステップと、(3)対照のp70S6K2タンパク質のキナーゼ活性と比較して、p70S6K2タンパク質のキナーゼ活性を低下させた被験物質をHedgehogパスウェイが活性化しているがんの治療のための医薬品候補物質として選択するステップとを含む。
 さらに、本発明は、Hedgehogパスウェイが活性化しているがんの治療のための医薬品候補物質のスクリーニング方法に関するものであり、(1)GSK3βを含む試料に被験物質を接触させるステップと、(2)前記試料におけるGSK3βのSer9部位のリン酸化量を測定するステップと、(3)対照のGSK3βのSer9部位のリン酸化量と比較して、GSK3βのSer9部位のリン酸化量を減少させた被験物質をHedgehogパスウェイが活性化しているがんの治療のための医薬品候補物質として選択するステップとを含む。
 本発明のスクリーニング方法に使用する細胞は、正常細胞と比較してHedgehogパスウェイが活性化している細胞を使用するのが好ましい。
 また、本発明は、Hedgehogパスウェイが活性化しているがんの判定方法に関するものであり、当該方法は、(1)がん細胞におけるp70S6K2の発現量又はp70S6K2遺伝子のコピー数を測定するステップと、(2)前記p70S6K2の発現量又は遺伝子のコピー数が、対照の発現量又はコピー数よりも高いものをHedgehogパスウェイが活性化していると判断するステップとを含む。
 さらに、本発明は、Hedgehogパスウェイが活性化しているがんの判定方法に関するものであり、当該方法は、(1)がん細胞におけるp70S6K2タンパク質のキナーゼ活性を測定するステップと、(2)前記p70S6K2タンパク質のキナーゼ活性が、対照のキナーゼ活性よりも高いものをHedgehogパスウェイが活性化していると判断するステップとを含む。
 さらに、本発明は、Hedgehogパスウェイが活性化しているがんの判定方法に関するものであり、当該方法は、(1)がん細胞におけるGSK3βのSer9部位のリン酸化量を測定するステップと、(2)前記GSK3βのSer9部位のリン酸化量が、対照のリン酸化量よりも高いものをHedgehogパスウェイが活性化していると判断するステップとを含む。
 また、本発明は、被験者のがんのHedgehogパスウェイの活性化状態の判定方法に関するものであり、当該方法は、(1)被験者のがん細胞から核酸試料を調製するステップと、(2)前記核酸試料におけるp70S6K2の核酸量を測定するステップと、(3)前記核酸量を、対照のp70S6K2の核酸量と比較するステップとを含む。
 さらに、本発明は、被験者のがんのHedgehogパスウェイの活性化状態の判定方法に関するものであり、当該方法は、(1)被験者のがん細胞からタンパク質試料を調製するステップと、(2)前記タンパク質試料におけるp70S6K2タンパク質量を測定するステップと、(3)前記タンパク質量を、対照のp70S6K2タンパク質量と比較するステップとを含む。
 さらに、本発明は、被験者のがんのHedgehogパスウェイの活性化状態の判定方法に関するものであり、当該方法は、(1)被験者のがん細胞からタンパク質試料を調製するステップと、(2)前記タンパク質試料におけるp70S6K2キナーゼ活性を測定するステップと、(3)前記キナーゼ活性を、対照のp70S6K2キナーゼ活性と比較するステップとを含む。
 さらに、本発明は、被験者のがんのHedgehogパスウェイの活性化状態の判定方法に関するものであり、当該方法は、(1)被験者のがん細胞からタンパク質試料を調製するステップと、(2)前記タンパク質試料におけるGSK3βのSer9部位のリン酸化量を測定するステップと、(3)前記リン酸化量を、対照のGSK3βのSer9部位のリン酸化量と比較するステップとを含む。
 p70S6K2の発現量は、RT-PCR、マイクロアレイ、ノーザンハイブリダイゼーション又は免疫学測定法により測定することができる。また、p70S6K2の遺伝子のコピー数は、免疫学測定法又はCGH (comparative genomic hybridization) アレイ法により測定することができる。
 p70S6K2の核酸量は、RT-PCR、マイクロアレイ、ノーザンハイブリダイゼーション又はサザンハイブリダイゼーションにより測定することができる。p70S6K2のタンパク質量は、免疫学測定法により測定することができる。
 p70S6K2タンパク質のキナーゼ活性は、オートラジオグラフィー、抗プロテインキナーゼ抗体を利用したELISA、質量分析(MS)、Isotope-coded Affinity Tag(ICAT)法、Mass-tag 法、TF-FRET(Time Resolved Fluorescence Resonance Energy Transfer)、Immobilized Metal Affinity Polarization Assay又はMobility Sift Assayにより測定することができる。
 GSK3βのSer9部位のリン酸化量は、免疫学測定法により測定することができる。
 本発明により、Hedgehogパスウェイの下流のターゲットの探索として、p70S6K2又はGSK3βを使用し、Hedgehogパスウェイが活性化したがん細胞のための医薬品候補物質のスクリーニングを行うことができる。また、本発明により、細胞がHedgehogパスウェイの活性化の異常によりがん化したものであるかどうかを判断できる。また、本発明により、がん細胞のHedgehogパスウェイの活性化状態を測定できる。例えば、被験者のがん細胞のp70S6K2の発現量又はGSK3βのSer9部位のリン酸化量を測定し、がんがHedgehogパスウェイの活性化によるかどうかを判断した上で、Hedgehogパスウェイの抑制物質、例えば、p70S6K2の発現阻害物質を含む医薬により治療を行うなど、本発明は、治療方針を決定するための一助となる。
6種類の非小細胞肺癌(NSCLC)細胞におけるGli1遺伝子の発現を示すグラフである。 A549-GliBla細胞系において、Gli1に対するsiRNAによりレポーターの活性が低下することを示すグラフである。 A549-GliBla細胞系を用いたβラクタマーゼレポーター活性による、ヘッジホッグパスウェイ特異的なキナーゼを同定するためのKinome-wideなsiRNAのスクリーニングを示すグラフである。 p70S6K2に対する3種のsiRNA処理を行った場合の、A549-GliBla細胞系におけるβラクタマーゼ活性を測定したグラフである。 p70S6K2に対する3種のsiRNA処理を行った場合の、A549-GliBla細胞系の生存率を測定したグラフである。 S6K2及びGli1の発現抑制による、サイクリンD1及びγ-カテニンの発現量の変化を測定したグラフである。 ヘッジホッグパスウェイに関与する分子群を模式的に示した図である。 コントロール及びsiRNA処理を行なった試料の、GSK3β及びそのリン酸化型タンパク質をウエスタンブロッティング法により解析した図である。
 本明細書でいうがんは、特に限定されず、悪性腫瘍、悪性新生物のように、他の組織との境界に侵入したり(浸潤)、あるいは転移し、身体の各所で増大することで宿主の生命を脅かす腫瘍をいい、上皮組織由来の癌腫(癌)、結合組織や間葉系組織由来の肉腫、白血病、悪性リンパ腫をも含むものとする。
 本明細書におけるp70S6K2の発現量とは、p70S6K2遺伝子の転写産物の絶対量若しくは相対量、又はp70S6K2タンパク質の絶対量若しくは相対量をいう。p70S6K2の発現量の代わりに、p70S6K2のキナーゼ活性の絶対値若しくは相対値又はp70S6K2遺伝子のコピー数を測定してもよい。この場合には、当該キナーゼ活性が高いとき、又は当該コピー数が多いときに、p70S6K2の発現量が高い場合と同じ判断、即ち、Hedgehogパスウェイが活性化していると判断する。
 p70S6K2の発現量は、当業者に公知の任意の方法により測定することができる。発現量の測定方法として、例えば、RT-PCRのような遺伝子増幅方法、マイクロアレイ、ノーザンハイブリダイゼーション及び免疫学測定法(immuno assay)が挙げられるが、これらに限定されない。免疫学測定法としては、IHC、ELISA、ウエスタンブロッティングなどが例示できる。細胞又は組織を用いて、p70S6K2遺伝子配列と相補的なプローブとのハイブリダイゼーションによっても、その発現量を測定することができる。
 また、p70S6K2のキナーゼ活性及びコピー数についても、当業者に公知の任意の方法により測定することができる。キナーゼ活性の測定には、オートラジオグラフィー、抗プロテインキナーゼ抗体を利用したELISA、質量分析(MS)、Isotope-coded Affinity Tag(ICAT)法(Nat. Biotechnol., 17, 994 (1999))、Mass-tag 法(Bioorg. Med. Chem. Lett., 14, 847 (2004))、TF-FRET(Time Resolved Fluorescence Resonance Energy Transfer)、Immobilized Metal Affinity Polarization Assay及びMobility Sift Assay等の公知の方法により行うことができる。コピー数は、サザンブロッティングやCGH (comparative genomic hybridization) アレイ法等、公知の方法により測定することがで
きる。
 本明細書におけるGSK3βのSer9部位のリン酸化量とは、GSK3βのSer9部位のリン酸化の絶対量又は相対量をいう。このGSK3βのSer9部位のリン酸化量は、p70S6K2阻害のバイオマーカーとして使用することができる。GSK3βのSer9部位のリン酸化量は、p70S6K2の発現量、活性又はコピー数にほぼ比例すると考えられる。なお、GSK3βのSer9部位は、p70S6K2のみではなく、p70S6K1によってもリン酸化される。したがって、p70S6K2によるGSK3βのSer9部位のリン酸化量のみをより厳密に測定するために、1)p70S6K2を強制発現させた細胞、又は、2)p70S6K1を遺伝子抑制した細胞を用いることにより、p60S6K2のみによるリン酸化量を測定することができる。上記1)の例として、p70S6K2をCMVプロモーター等の強制発現系プロモーターにp70S6K2を連結させたベクターをトランスフェクトさせて、強制発現させた細胞を用いることにより、p70S6K1によるリン酸化の影響を無視できる程度に相対的に減少させることができる。上記2)の例として、p70S6K1に対するRNA干渉(例えば、siRNA又はshRNA)によりp70S6K1の発現を抑制させた細胞を用いて、p70S6K1によるリン酸化が生じないようにすることができる。
 GSK3βのSer9部位のリン酸化量は、公知の方法により測定でき、例えば、抗GSK3β抗体と、GSK3βのSer9の位置のリン酸化型を認識することができる抗リン酸化型GSK3β抗体とを用いた免疫学測定法により測定することができる。免疫学測定法としては、IHC、ELISA、ウエスタンブロッティングなどが例示できる。
(1)がんの治療のための医薬品候補物質のスクリーニング方法
 被験物質を細胞に接触させることにより変動するp70S6K2遺伝子又はp70S6K2タンパク質の発現量を測定したり、p70S6K2のキナーゼ活性に及ぼす影響を検討することにより、当該被験物質の評価を行うことができる。p70S6K2遺伝子発現量、p70S6K2タンパク質発現量を減少させ、及び/又はp70S6K2のキナーゼ活性を抑制する物質は、亢進したHedgehogパスウェイを正常に戻し、又はHedgehogパスウェイの状態を正常以下にすることにより、がん細胞の増殖の抑制、がん細胞の生存率の低下、及び悪性度の減少を図ることができるものがあると考えられる。
 また、被験物質を細胞に接触させることにより変動するGSK3βのSer9部位のリン酸化量を測定することにより、当該被験物質の評価を行うことができる。GSK3βのSer9部位のリン酸化量を減少させる物質は、亢進したHedgehogパスウェイを正常に戻し、又はHedgehogパスウェイの状態を正常以下にすることにより、がん細胞の増殖の抑制、がん細胞の生存率の低下、及び悪性度の減少を図ることができるものがあると考えられる。
 さらに、p70S6K2又はGSK3βを含む試料に被験物質を接触させることにより、変動するp70S6K2のキナーゼ活性に及ぼす影響を検討したり、GSK3βのSer9部位のリン酸化量を測定することによっても、当該被験物質の評価を行うことができる。p70S6K2のキナーゼ活性を抑制させ、又はGSK3βのSer9部位のリン酸化量を減少させる物質は、亢進したHedgehogパスウェイを正常に戻し、又はHedgehogパスウェイの状態を正常以下にすることにより、がん細胞の増殖の抑制、がん細胞の生存率の低下、及び悪性度の減少を図ることができるものがあると考えられる。
 p70S6K2又はGSK3βを含む試料は、細胞から調製してもよいし、市販のp70S6K2又はGSK3βを用いて調製することもできる。
 細胞の例として、p70S6K2又はGSK3β遺伝子を導入された原核細胞又は真核細胞、細胞株、生体検査由来の組織又は細胞を挙げることができるが、これらに限定されない。細胞から調製された試料とは、細胞培養培地、細胞のホモジネート、抽出物、p70S6K2の粗精製物若しくは精製物、又はGSK3βの粗精製物若しくは精製物をいう。この場合、正常細胞と比較してHedgehogパスウェイが活性化している細胞、又はp70S6K2若しくはGSK3βが高レベルで発現している細胞を用いるのが好ましい。
 市販のp70S6K2は、例えばHumanZyme社のコード番号HZ-2054を用いることができ、市販のGSK3βは、例えばBioVision社のコード番号7004-100を使用することができるが、これらに限定されない。
 p70S6K2の発現量又はキナーゼ活性又はGSK3βのSer9部位のリン酸化量の測定のための対照としては、被験物質を投与する前の細胞、緩衝液のみによる処理を行なった同種の細胞、又は無処理の同種の細胞を用いることができる。
 本明細書でいう、p70S6K2発現量を減少させるとは、対照と比較して、約50%以上、好ましくは約70%以上、より好ましくは約80%以上、発現量を減少させる場合をいう。p70S6K2のキナーゼ活性を抑制させるとは、対照と比較して、約50%以上、好ましくは約70%以上、より好ましくは約80%以上、キナーゼ活性を減少させる場合をいう。
 本明細書でいう、GSK3βのSer9部位のリン酸化量を減少させるとは、対照と比較して、約20%以上、好ましくは約30%以上、より好ましくは約40%以上、リン酸化量が減少する場合をいう。
 本発明の方法によりスクリーニングされる医薬品候補物質は、例えば、天然物でも合成物でもよく、その構造は問わないが、例えば、siRNAのような核酸、化合物、タンパク質である。本発明でいうスクリーニング方法は、広範な候補物質からの創薬初期の選抜のみならず、医薬の最終候補に近い物質の有効性及び実証性の確認の補完をも含むものである。
 細胞への被験物質の接触は、被験物質の性状等により適宜変更して接触させる。例えば、siRNAのような核酸の場合には、細胞に導入させることにより行い、タンパク質や化合物の場合には、培地に投与することにより行うことができる。
 本発明のスクリーニング方法に用いる細胞は、特に限定されないが、正常細胞と比較してHedgehogパスウェイが活性化している細胞が好ましい。Hedgehogパスウェイの活性化の低下、即ち、p70S6K2の発現量の減少、キナーゼ活性の低下、又はGSK3βのSer9部位のリン酸化量の減少が評価しやすいためである。例えば、正常細胞と比較してHedgehogパスウェイが活性化していることが確認されているがん細胞株を用いることができる。このようながん細胞株の例として、H522、PC13、A549が例示でき、実験における汎用性の観点から、A549が好ましい。さらに、p70S6K2の発現をより簡便に測定するために、p70S6K2の発現調節領域とレポーター遺伝子との融合遺伝子を導入した細胞株を用いることもできる。βラクタマーゼ、GFP、βガラクトシダーゼ、ルシフェラーゼの遺伝子などをレポーター遺伝子として用いることができる。
 また、本発明は、上記スクリーニング方法によりスクリーニングされた医薬品候補物質にも関する。
(2)Hedgehogパスウェイが活性化しているがんの判定方法
 がん細胞又はがん組織におけるp70S6K2遺伝子又はp70S6K2タンパク質の発現量、p70S6K2のキナーゼ活性、p70S6K2遺伝子のコピー数を測定することにより、当該がん細胞又はがん組織のタイプ及び悪性度を判定することができる。また、がん細胞又はがん組織におけるGSK3βのSer9部位のリン酸化量を測定することにより、p70S6K2の発現量等を測定する場合と同様に、当該がん細胞又はがん組織のタイプ及び悪性度を判定することができる。細胞のがん化の過程において、Hedgehogパスウェイ、Wntパスウェイ、Survivin遺伝子を介したアポトーシスパスウェイ、Rasパスウェイ、p53パスウェイ及びRBパスウェイなど、種々のパスウェイが関与することが知られている。そのため、どのパスウェイが亢進したタイプのがんであるかを判定することは、適切な抗がん剤の選択や、がん化のメカニズムの解明に有効であると考えられる。
 70S6K2遺伝子又はp70S6K2タンパク質の発現量、p70S6K2のキナーゼ活性、p70S6K2遺伝子のコピー数が対照よりも高い場合には、そのがんのタイプが、Hedgehogパスウェイの亢進を一因とするものであると判定される。また、GSK3βのSer9部位のリン酸化量が対照よりも高い場合には、そのがんのタイプが、Hedgehogパスウェイの亢進を一因とするものであると判定される。例えば、治療を考えるときに、Hedgehogパスウェイの亢進を一因とするがんと判定された場合には、Hedgehogパスウェイを阻害する抗がん剤の選択を積極的に検討することができる。
 判定されるがん細胞は、特に限定されず、例えば、培養細胞であっても、バイオプシーに由来する細胞であってもよい。判定されるがんは、特に限定されず、例えば、非小細胞肺癌、髄芽腫(medulloblastoma)、乳がんが例示できる。
 p70S6K2の発現量又はGSK3βのSer9部位のリン酸化量の測定のための対照としては、Hedgehogパスウェイが活性化されていないことが確認されている細胞、例えば正常細胞を用いることができる。
 本明細書でいう、p70S6K2発現量が高いとは、対照と比較して、約1.5倍以上、好ましくは約1.8倍以上、より好ましくは約2.0倍以上、発現量が高い場合をいう。p70S6K2のキナーゼ活性が高いとは、対照と比較して、約1.5倍以上、好ましくは約1.8倍以上、より好ましくは約2.0倍以上、キナーゼ活性が高い場合をいう。p70S6K2遺伝子のコピー数が高いとは、対照と比較して、約2倍以上高い場合をいう。
 本明細書でいう、GSK3βのSer9部位のリン酸化量が高いとは、対照と比較して、約1.5倍以上、好ましくは約1.8倍以上、より好ましくは約2.0倍以上、リン酸化量が高い場合をいう。
(3)被験者のがんが、Hedgehogパスウェイの活性化したがんであるかどうかの判定方法
 被験者のがん細胞又はがん組織におけるp70S6K2遺伝子又はp70S6K2タンパク質の発現量、p70S6K2のキナーゼ活性、p70S6K2遺伝子のコピー数を測定することにより、当該がん細胞又はがん組織のタイプ及び悪性度を判定することができる。また、被験者のがん細胞又はがん組織におけるGSK3βのSer9部位のリン酸化量を測定することにより、p70S6K2の発現量等を測定する場合と同様に、当該がん細胞又はがん組織のタイプ及び悪性度を判定することができる。被験者のがんが、どのパスウェイが亢進したタイプのがんであるかを判定することは、適切な抗がん剤の選択に有効であると考えられる。例えば、抗がん剤の投与前に、がん細胞又はがん組織においてHedgehogパスウェイが活性化しているかどうかを判定し、Hedgehogパスウェイが活性化している場合にのみ、Hedgehogパスウェイの阻害剤投与を検討することができる。
 また、抗がん剤投与中、又は投与後一定期間後に、投与前と比較してHedgehogパスウェイ活性が低下しているかどうかを判定し、投与している抗がん剤の選択、投与量及び投与方法などが適切かどうかを検討することができる。
 70S6K2遺伝子又はp70S6K2タンパク質の発現量、p70S6K2のキナーゼ活性、p70S6K2遺伝子のコピー数が対照よりも高い場合には、そのがんは、Hedgehogパスウェイが活性化していると判定される。また、GSK3βのSer9部位のリン酸化量が対照よりも高い場合には、そのがんは、Hedgehogパスウェイが活性化していると判定される。
 p70S6K2の発現量、キナーゼ活性又はGSK3βのSer9部位のリン酸化量の測定のための対照としては、Hedgehogパスウェイが活性化されていないことが確認されている細胞、例えば正常細胞を用いることができる。または、抗がん剤投与前などがん治療前の同一組織由来の細胞を対照とすることができる。
 核酸試料の調製にあたり、細胞から公知の任意の方法で調製を行うことができる。調製方法の一例として、Molecular cloning, A Laboratory Manual, Third Edition (2001) (Cold Spring Harbor Laboratory Press)に記載された方法が挙げられる。ここで、核酸とは、mRNA又はDNAをいう。また、タンパク質試料の調製にあたり、細胞から公知の任意の方法で調製を行うことができる。タンパク質試料は、精製試料でも粗抽出物であってもよい。例えば、細胞をホモジナイズした後、遠心分離、硫安塩析により粗抽出物を調製することができる。
 本明細書でいう、p70S6K2核酸量又はタンパク質量が多いとは、対照と比較して、約1.5倍以上、好ましくは約1.8倍以上、より好ましくは約2.0倍以上、DNA量、mRNA量、コピー数、又はタンパク質量が多い場合をいう。p70S6K2のキナーゼ活性が高いとは、対照と比較して、約1.5倍以上、好ましくは約1.8倍以上、より好ましくは約2.0倍以上、キナーゼ活性が高い場合をいう。本明細書でいう、GSK3βのSer9部位のリン酸化量が高いとは、対照と比較して、約1.5倍以上、好ましくは約1.8倍以上、より好ましくは約2.0倍以上、リン酸化量が高い場合をいう。
 被験者は、ヒト患者をいうが、イヌ、ネコ、ウマなどを対象として行うことも可能である。被験者のがんは、その部位及び由来について特に限定されず、例えば、非小細胞肺癌、髄芽腫(medulloblastoma)、乳がんが例示できる。
 以下に実施例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。
 実施例で共通して行われる方法について、以下に説明する。
<方法>
<siRNAの導入>
 細胞を900細胞/ウェルの密度で96ウェルタイプの細胞培養プレートに播種した24時間後に、各siRNAとsiRNA導入を促す脂質であるsiLentFect (BioRad社、170-3362)の複合体を使用説明書に沿って作成し、細胞に導入した。遺伝子導入から48時間経過後、mRNAをRNAeasy(Qiagen社、74106)試薬を用いて抽出及び精製を行った。siRNA遺伝子導入が行われていることを確認するため、各遺伝子の発現程度を精製したmRNAから定量的RT-PCR法により確認した。また、定量的RT-PCRとして、リアルタイムPCRを行い、7900 HT ファストリアルタイムPCRシステムを使用した(Applied Biosystems社)。リアルタイムPCRの条件は、初期熱変性:95℃、10分;変性:95℃、15秒;アニーリング及び伸長反応:60℃、60秒;サイクル数:40回で行った。
<細胞増殖測定法、レポーター遺伝子βラクタマーゼアッセイ法>
 900細胞/ウェル(96ウェルプレート)にて細胞を播種し、24時間後にsiRNAを導入し、さらに72時間後に細胞増殖測定、及びレポーター遺伝子測定を行った。細胞増殖測定には、細胞内ATPを測定することにより、相対的細胞数を測定するCellTiter-Glo(Promega社、G7572)を使用した。また、A549-GliBla細胞におけるGli1の活性状態を示すβラクタマーゼレポーター遺伝子の活性測定は、GeneBLAer in vitro Detection Kit(Invitrogen社、12578-126)を用いて行った。
<実施例1 Hedgehogパスウェイの活性が亢進している非小細胞肺癌細胞株の同定>
 特定のがん細胞において活性化しているHedgehogパスウェイを制御する因子を見つける実験を行うために、まず同パスウェイが亢進している細胞の同定を試みた。
 非小細胞肺癌細胞株6種類(H522、PC13、A549、H1473、H1975及びH520)について、Hedgehogパスウェイ活性化の指標となるGli1のmRNA発現量を測定した。H522、A549、H1473、H1975及びH520は、ATCC(American Type Culture Collection)から入手し、PC13は株式会社免疫生物研究所から入手した。
 Gli1プライマー及びプローブセット(Applied Biosystems社、Hs00171790-M1)を用いて、Gli1のmRNAの発現量を、6種の細胞株から精製したmRNAから定量的RT-PCR法により確認した。
 その結果、H522、PC13、A549の3種類の細胞が、Gli1のmRNA発現が高まっており(図1)、これらの細胞株はHedgehogパスウェイが活性化していることによりがん化していることが示唆された。その中で、実験における汎用性の観点から、A549を選び、今後の一連の実験に使用することとした。
 次に、A549細胞にGli1結合配列を有するプロモーターによって発現が誘導されるレポーター遺伝子を導入し、安定発現細胞株を樹立した。
 Gli1因子が活性することによってβラクタマーゼ遺伝子がレポーター遺伝子として発現されるpLenti-bsd/Gli-blavector(Invitrogen社、K1135)を、リポフェクション法によりA549細胞に遺伝子導入した。細胞を6cm培養ディッシュに60%密集度の状態まで培養した後、遺伝子導入を行なった。Blasticidin(濃度:3.8μg/ml)の薬剤選択を約14日間行った後、導入した遺伝子を安定に発現していると考えられる細胞株を樹立した。
 樹立した複数の細胞において遺伝子発現が予想される挙動を示すかどうかを調べるため、Gli1のsiRNA(Gli1-siRNA(Dharmacon社、M-003896-00-0020、配列:GCACUGGUCUGUCCACUCUUU;配列番号1))を導入して調べた。Gli1の発現抑制により、レポーター遺伝子活性が70%程度低下した細胞を安定発現細胞株A549-GliBlaとした。siRNAの導入及びレポーター遺伝子活性の測定は、上記の方法の項に記載された方法に従った。この細胞株を用いてレポーター遺伝子であるβラクタマーゼの活性を定量することによって、Hedgehogパスウェイの活性状態を測定できるかどうかを確認した。
 樹立したA549-GliBlaにおいてコントロールのsiRNA (Dharmacon社、D-001100-01-20、配列:CGUACGCGGAAUACUUCGAtt;配列番号2)を用いた場合には、レポーターであるβラクタマーゼの活性が高いのに対して、Gli1遺伝子に対するsiRNA(Gli1-siRNA(Dharmacon社、M-003896-00-0020))によって発現抑制すると、βラクタマーゼの活性が大きく低下することが見られた(図2)。また、細胞障害活性が強いPLK1に対するsiRNA(PLK1-siRNA(Dharmacon社、M-003290-01-0010)配列番号9~12の混合物)を用いた場合には、レポーター遺伝子の発現抑制が見られなかった。このことから、Gli1によって誘導されるレポーター遺伝子を導入したA549細胞においてβラクタマーゼの活性を定量することにより、Hedgehogパスウェイの活性化状態を測定できることが確認できた。
<実施例2 Hedgehogパスウェイの活性を制御するキナーゼ遺伝子の同定>
 実施例1で得られた細胞株A549-GliBlaを用いて、全キナーゼ遺伝子約500の中からHedgehogパスウェイを制御するキナーゼを同定することを試みた。具体的には、全キナーゼ遺伝子に対するsiRNA(AmbionのヒトキナーゼsiRNAセット(Ambion, AM80010V3))を準備し、A549-GliBla細胞へ導入して、レポーター遺伝子の活性を低下させるキナーゼsiRNAを同定することにより行った。siRNAの導入、細胞増殖測定法、βラクタマーゼアッセイ法については、上記に説明した通りに行った。その結果、キナーゼp70S6K2を発現抑制することによって、レポーター遺伝子活性を約38%にまで低下させることが判明した(図3)。
 また、p70S6K2に対する異なる3種の配列を有するsiRNA(siRNAS6K2-siRNA#1 (Ambion社、siRNAID#471)配列:GGUGUUCCAGGUGCGAAAGtt;配列番号3)、S6K2-siRNA#2 (B-bridge社、SHU9A-1447-1) 配列:GCCUAGAGCCUGUGGGACAtt;配列番号4)、S6K2-siRNA#3 (B-bridge社、SHU9A-1477-3、配列:GCAGAGAACCGGAAGAAAAtt;配列番号5)によって、同様のHedgehogパスウェイ阻害効果が得られるかどうかを試した。それぞれのsiRNAについて、5nM又は10nMの濃度で、72時間又96時間の処理を行った。その結果、3種類いずれの配列、時間、濃度においても統計的に十分有意なHedgehogパスウェイ抑制効果が得られた(図4)。
 また、がん化には、Hedgehogパスウェイ以外にも、Wntパスウェイ、Survivin遺伝子を介したアポトーシスパスウェイ、Rasパスウェイ、p53パスウェイ及びRBパスウェイなど、種々のパスウェイが関与することが知られている。Hedgehogパスウェイの抑制に特異的に働くキナーゼsiRNAを探索するため、キナーゼ遺伝子siRNAセットをA549-GliBlaに導入した実験と同様に、各がん関連パスウェイへの影響を測定することができる細胞群へ遺伝子導入を行なった。
 Wntパスウェイ、Survivin遺伝子を介したアポトーシスパスウェイ、Rasパスウェイ、p53パスウェイ又はRBパスウェイが活性化しているがん細胞株を、各パスウェイが活性化していることを確認できるように遺伝子操作した。
 SW480-Wntは、Wntパスウェイの活性化状態がモニターできる細胞であり、大腸がんSW480細胞株にpLenti-bsd/LEF/TCF-bla (K1126)を導入し樹立した。DLD-1-Birc5は、Survivin遺伝子を介したアポトーシスパスウェイの活性化状態がモニターできる細胞であり、大腸がんDLD-1細胞株にSURVIVIN Gene Promoter Reporter Vector (LR1016)を導入し樹立した。SW480-Wnt、DLD-1-Birc5はA549-GliBlaと同様に、コントロール細胞でのレポーター遺伝子の活性化状態を100%としたときに、各キナーゼsiRNAを導入時の活性値を計算した。
 DKO-Rasは、Rasパスウェイへの影響を測定した指標である。変異型K-rasを有する細胞株DKO-1と野生型K-rasを有する細胞株DKO-3へそれぞれキナーゼsiRNAを導入したときの細胞数の比「DKO-1/DKO-3×100」を指標DKO-Rasとした。U2OS-p53はp53パスウェイへの影響を測定した指標である。野生型p53を有する細胞U2OS-p53(+)と変異型p53を有する細胞U2OS-p53(-)へそれぞれキナーゼsiRNAを導入したときの細胞数の比「U2OS-p53(-)/U2OS-p53(+)×100」を指標U2OS-p53とした。U2OS-RBはRBパスウェイへの影響を測定した指標である。U2-OSの野生型RBを有する細胞U2OS-RB(+)とRB欠失細胞U2OS-RB(-)へそれぞれキナーゼsiRNAを導入したときの細胞数の比「U2OS-RB(-)/U2OS-RB(+)×100」を指標U2-OS-RBとした。
 また、Hedgehogパスウェイが活性化している細胞株として、上述のA549-GliBlaを用いた。
 これらの細胞株に対して、siRNAによりp70S6K2の発現抑制を行い、パスウェイの活性化を調べた。その結果、p70S6K2の発現抑制はHedgehogパスウェイのみを阻害し、他のパスウェイへは影響を与えないことが判明した。この結果から、p70S6K2はHedgehogパスウェイが活性化したがんの有効な創薬標的分子であることがわかった。また、本実験系はp70S6K2遺伝子をターゲットとしHedgehogパスウェイを抑制する医薬品のスクリーニング系に使用することができることが明らかになった。
<実施例3 p70S6K2キナーゼの発現抑制と、Hedgehogパスウェイを阻害によるがん細胞増殖抑制との関係>
 Hedgehogパスウェイが活性化しているA549細胞において、Hedgehogパスウェイを抑制することにより、増殖抑制が起こることが予想される。そこで、3種の異なる配列を有するsiRNAを用いてp70S6K2発現を抑制することによって、細胞増殖への影響を調べた。
 p70S6K2に対する3種のsiRNAについて5nM又は10nMについて、72時間又は96時間処理を行なった。用いたsiRNAは、実施例2で用いたものと同様である。その結果、コントロールsiRNAと比較して有意な細胞増殖抑制が観察された(図5)。
 Hedgehogパスウェイの活性低下は、Gli1によって発現が制御されている下流遺伝子の発現変化を引き起こすと考えられる。そこで、p70S6K2又はGli1の発現をそれぞれに対するsiRNA(配列番号3;Ambion社、siRNAID#471)又はGli1-siRNA(配列番号1;Dharmacon社、M-003896-00-0020))により、それぞれ抑制することによって、Gli1の下流遺伝子として知られるγ-カテニン(γ-catenin)、サイクリンD1(Cyclin D1)の発現の変化を調べた。γ-カテニンは、Gli1によって発現が抑制されることが知られており、サイクリンD1は、Gli1によって発現が誘導されることが知られている。サイクリンD1及びγ-カテニンの発現量を定量的RT-PCRよって調べた。プライマー及びプローブは、それぞれ、サイクリンD1プライマー及びプローブセットとして、下記を合成して用い(北海道システムサイエンス社に依頼)、γカテニンプライマー及びプローブセットとして、Applied Biosystems社、Hs00158408-M1を用いた。
フォワードプライマー;GCA TGT TCG TGG CCT CTA AGA(配列番号6)
リバースプライマー;CGG TGT AGA TGC ACA GCT TCT C(配列番号7)
プローブ;AAG GAG ACC ATC CCC CTG ACG GC(配列番号8)
 Gli1及びp70S6K2の発現抑制によりサイクリンD1の発現は低下し、γ-カテニンはp70S6K2の発現抑制により上昇をした(図6)。以上の結果から、p70S6K2の発現抑制は、Hedgehogパスウェイの活性低下をもたらし、その結果Gli1に制御される下流遺伝子の発現変化が起こり、細胞増殖抑制効果が得られることが判明した。
<実施例4 p70S6K2の発現抑制がHedgehogパスウェイ活性低下をもたらす作用機作の解明>
 実施例3に示した研究により、p70S6K2の発現抑制がHedgehogパスウェイの活性を低下させることが判ったが、その分子的作用機作は不明であった。そこで、そのメカニズムを明らかにすることを試みた。現在、Hedgehogパスウェイを制御する因子として、本発明者により明らかにされたp70S6K2以外に、図7に示す分子群が知られている。Hedgehogパスウェイが活性化されると、HedgehogのレセプターであるPtcを介してシグナルが伝達され、GSK3β等のタンパク質をリン酸化し、最終的に転写因子であるGli1による転写が促進される。その中で、リン酸化型GSK3βはGli1の分解を促すことによりGli1活性を負に制御する因子として知られている。また、p70S6K2と配列及び機能的相同性が高いp70S6K1遺伝子産物は、GSK3βをリン酸化し制御することが知られている。そこで、siRNAによってp70S6K2の発現抑制をすることにより、GSK3βのリン酸化の程度が変化するかどうかを調べた。
 24,000細胞/ウェル(6ウェルプレート)にて細胞を播種し、24時間後にsiRNA((Ambion社、siRNAID#471;GGUGUUCCAGGUGCGAAAGtt;配列番号3))を導入した。さらに72時間後、各タンパク質及びリン酸化タンパク質の発現をウエスタンブロット法によって測定した。
 細胞から抽出した20μgタンパク質を含む細胞抽出液を電気泳動法(SDS-PAGE法)によって分画し、タンパク質を免疫学的に測定するウエスタンブロッティング法により、GSK3β及びそのリン酸化型タンパク質を測定した。この際に用いた抗体は、一次抗体として抗GSK3β抗体(Cell Signaling Technology社、#9315)、抗リン酸化型GSK3β(Ser9) 抗体(Cell Signaling Technology社、#9336)、二次抗体として、Anti-Rabbit IgG HRP-linked抗体(Cell Signaling Technology社、#7674)を使用した。タンパク質のバンドを示す発色行程にはELC試薬(GEヘルスケアバイオサイエンス社、RPN2132)を用いた。結果を図8に示す。
 図8からsiRNA導入後のGSK3βのSer9のリン酸化が、時間依存的に有意に低下していることが明らかにされた。このSer9の部位は、Hedgehogパスウェイに関与する他のキナーゼp70S6K1によるリン酸化部位として知られる部位でもある。この結果から、p70S6K2の発現を抑制することによって、GSK3βのリン酸化レベルが低下し、その結果Hedgehogパスウェイ活性化の指標であるGli1の活性が抑制されると考えられる。
<実施例5 p70S6K2を創薬ターゲットとしたときのバイオマーカーとしてのGSK3β(Ser9)>
 p70S6K2を創薬の分子標的因子として考えたときに、その阻害が起きているかどうかを判断するバイオマーカーの同定が望まれる。実施例4に示すように、p70S6K2の発現を抑制することによって、GSK3βのSer9部位のリン酸化が低下したことから、GSK3βをp70S6K2標的タンパク質の阻害の程度の指標となるバイオマーカーと使用することができると考えられる。

Claims (23)

  1. (1)細胞に被験物質を接触させるステップと、
    (2)前記細胞におけるp70S6K2の発現量を測定するステップと、
    (3)対照のp70S6K2の発現量と比較して、p70S6K2の発現量を減少させた被験物質をHedgehogパスウェイが活性化しているがんの治療のための医薬品候補物質として選択するステップと
    を含む、Hedgehogパスウェイが活性化しているがんの治療のための医薬品候補物質のスクリーニング方法。
  2. (1)細胞に被験物質を接触させるステップと、
    (2)前記細胞におけるp70S6K2タンパク質のキナーゼ活性を測定するステップと、
    (3)対照のp70S6K2タンパク質のキナーゼ活性と比較して、p70S6K2タンパク質のキナーゼ活性を低下させた被験物質をHedgehogパスウェイが活性化しているがんの治療のための医薬品候補物質として選択するステップと
    を含む、Hedgehogパスウェイが活性化しているがんの治療のための医薬品候補物質のスクリーニング方法。
  3. (1)細胞に被験物質を接触させるステップと、
    (2)前記細胞におけるGSK3βのSer9部位のリン酸化量を測定するステップと、
    (3)対照のGSK3βのSer9部位のリン酸化量と比較して、GSK3βのSer9部位のリン酸化量を減少させた被験物質をHedgehogパスウェイが活性化しているがんの治療のための医薬品候補物質として選択するステップと
    を含む、Hedgehogパスウェイが活性化しているがんの治療のための医薬品候補物質のスクリーニング方法。
  4.  (1)p70S6K2を含む試料に被験物質を接触させるステップと、
     (2)前記試料におけるp70S6K2タンパク質のキナーゼ活性を測定するステップと、
     (3)対照のp70S6K2タンパク質のキナーゼ活性と比較して、p70S6K2タンパク質のキナーゼ活性を低下させた被験物質をHedgehogパスウェイが活性化しているがんの治療のための医薬品候補物質として選択するステップと
    を含む、Hedgehogパスウェイが活性化しているがんの治療のための医薬品候補物質のスクリーニング方法。
  5.  (1)GSK3βを含む試料に被験物質を接触させるステップと、
     (2)前記試料におけるGSK3βのSer9部位のリン酸化量を測定するステップと、
     (3)対照のGSK3βのSer9部位のリン酸化量と比較して、GSK3βのSer9部位のリン酸化量を減少させた被験物質をHedgehogパスウェイが活性化しているがんの治療のための医薬品候補物質として選択するステップと
    を含む、Hedgehogパスウェイが活性化しているがんの治療のための医薬品候補物質のスクリーニング方法。
  6.  前記細胞は、正常細胞と比較してHedgehogパスウェイが活性化している細胞である請求項1~3のいずれか1項に記載のスクリーニング方法。
  7.  p70S6K2の発現量が、RT-PCR、マイクロアレイ、ノーザンハイブリダイゼーション及び免疫学測定法からなる群から選択される方法により測定される請求項1に記載のスクリーニング方法。
  8.  p70S6K2タンパク質のキナーゼ活性が、オートラジオグラフィー、抗プロテインキナーゼ抗体を利用したELISA、質量分析(MS)、Isotope-coded Affinity Tag(ICAT)法、Mass-tag 法、TF-FRET(Time Resolved Fluorescence Resonance Energy Transfer)、Immobilized Metal Affinity Polarization Assay及びMobility Sift Assayからなる群から選択される方法により測定される請求項2又は4に記載の判定方法。
  9.  GSK3βのSer9部位のリン酸化量が、免疫学測定法より測定される請求項3又は5に記載のスクリーニング方法。
  10. (1)がん細胞におけるp70S6K2の発現量又はp70S6K2遺伝子のコピー数を測定するステップと、
    (2)前記p70S6K2の発現量又は遺伝子のコピー数が、対照の発現量又はコピー数よりも高いものをHedgehogパスウェイが活性化していると判断するステップと
    を含む、Hedgehogパスウェイが活性化しているがんの判定方法。
  11. (1)がん細胞におけるp70S6K2タンパク質のキナーゼ活性を測定するステップと、
    (2)前記p70S6K2タンパク質のキナーゼ活性が、対照のキナーゼ活性よりも高いものをHedgehogパスウェイが活性化していると判断するステップと
    を含む、Hedgehogパスウェイが活性化しているがんの判定方法。
  12. (1)がん細胞におけるGSK3βのSer9部位のリン酸化量を測定するステップと、
    (2)前記GSK3βのSer9部位のリン酸化量が、対照のリン酸化量よりも高いものをHedgehogパスウェイが活性化していると判断するステップと
    を含む、Hedgehogパスウェイが活性化しているがんの判定方法。
  13.  p70S6K2の発現量又は遺伝子のコピー数が、RT-PCR、マイクロアレイ、ノーザンハイブリダイゼーション、サザンハイブリダイゼーション、免疫学測定及びCGH (comparative genomic hybridization) アレイ法からなる群から選択される方法により測定される請求項10に記載の判定方法。
  14.  p70S6K2タンパク質のキナーゼ活性が、オートラジオグラフィー、抗プロテインキナーゼ抗体を利用したELISA、質量分析(MS)、Isotope-coded Affinity Tag(ICAT)法、Mass-tag 法、TF-FRET(Time Resolved Fluorescence Resonance Energy Transfer)、Immobilized Metal Affinity Polarization Assay及びMobility Sift Assayからなる群から選択される方法により測定される請求項11に記載の判定方法。
  15.  GSK3βのSer9部位のリン酸化量が、免疫学測定法により測定される請求項12に記載の判定方法。
  16. (1)被験者のがん細胞から核酸試料を調製するステップと、
    (2)前記核酸試料におけるp70S6K2の核酸量を測定するステップと、
    (3)前記核酸量を、対照のp70S6K2の核酸量と比較するステップと
    を含む、被験者のがんのHedgehogパスウェイの活性化状態の判定方法。
  17. (1)被験者のがん細胞からタンパク質試料を調製するステップと、
    (2)前記タンパク質試料におけるp70S6K2タンパク質量を測定するステップと、
    (3)前記タンパク質量を、対照のp70S6K2タンパク質量と比較するステップと
    を含む、被験者のがんのHedgehogパスウェイの活性化状態の判定方法。
  18. (1)被験者のがん細胞からタンパク質試料を調製するステップと、
    (2)前記タンパク質試料におけるp70S6K2タンパク質のキナーゼ活性を測定するステップと、
    (3)前記キナーゼ活性を、対照のp70S6K2タンパク質のキナーゼ活性と比較するステップと
    を含む、被験者のがんのHedgehogパスウェイの活性化状態の判定方法。
  19. (1)被験者のがん細胞からタンパク質試料を調製するステップと、
    (2)前記タンパク質試料におけるGSK3βのSer9部位のリン酸化量を測定するステップと、
    (3)前記リン酸化量を、対照のGSK3βのSer9部位のリン酸化量と比較するステップと
    を含む、被験者のがんのHedgehogパスウェイの活性化状態の判定方法。
  20.  p70S6K2の核酸量が、RT-PCR、マイクロアレイ、ノーザンハイブリダイゼーション及びサザンハイブリダイゼーションからなる群から選択される方法により測定される請求項16に記載の判定方法。
  21.  p70S6K2のタンパク質量が、免疫学測定法により測定される請求項17に記載の判定方法。
  22.  p70S6K2タンパク質のキナーゼ活性が、オートラジオグラフィー、抗プロテインキナーゼ抗体を利用したELISA、質量分析(MS)、Isotope-coded Affinity Tag(ICAT)法、Mass-tag 法、TF-FRET(Time Resolved Fluorescence Resonance Energy Transfer)、Immobilized Metal Affinity Polarization Assay及びMobility Sift Assayからなる群から選択される方法により測定される請求項18に記載の判定方法。
  23.  GSK3βのSer9部位のリン酸化量が、免疫学測定法により測定される請求項19に記載の判定方法。
PCT/JP2009/057219 2008-04-09 2009-04-08 Hedgehogパスウェイが活性化しているがん治療のための医薬品候補物質のスクリーニング方法 WO2009125798A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-101437 2008-04-09
JP2008101437 2008-04-09

Publications (1)

Publication Number Publication Date
WO2009125798A1 true WO2009125798A1 (ja) 2009-10-15

Family

ID=41161929

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/057219 WO2009125798A1 (ja) 2008-04-09 2009-04-08 Hedgehogパスウェイが活性化しているがん治療のための医薬品候補物質のスクリーニング方法

Country Status (1)

Country Link
WO (1) WO2009125798A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000502097A (ja) * 1995-12-20 2000-02-22 メディカル、リサーチ、カウンシル タンパク質合成の制御、および作用薬のスクリーニング法
WO2004070062A2 (en) * 2003-02-04 2004-08-19 Wyeth Compositions and methods for diagnosing and treating cancers
WO2006034879A2 (en) * 2004-09-30 2006-04-06 Epigenomics Ag Epigenetic methods and nucleic acids for the detection of lung cell proliferative disorders
WO2006073202A1 (ja) * 2005-01-04 2006-07-13 National University Corporation Kanazawa University GSK3β阻害効果に基づくがんの抑制および抗がん剤の評価方法
WO2007047754A2 (en) * 2005-10-18 2007-04-26 George Mason Intellectual Properties, Inc. Mtor pathway theranostic
JP2007521331A (ja) * 2003-11-19 2007-08-02 シグナル ファーマシューティカルズ,エルエルシー 複数キナーゼの標的化による疾患及び障害の治療方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000502097A (ja) * 1995-12-20 2000-02-22 メディカル、リサーチ、カウンシル タンパク質合成の制御、および作用薬のスクリーニング法
WO2004070062A2 (en) * 2003-02-04 2004-08-19 Wyeth Compositions and methods for diagnosing and treating cancers
JP2007521331A (ja) * 2003-11-19 2007-08-02 シグナル ファーマシューティカルズ,エルエルシー 複数キナーゼの標的化による疾患及び障害の治療方法
WO2006034879A2 (en) * 2004-09-30 2006-04-06 Epigenomics Ag Epigenetic methods and nucleic acids for the detection of lung cell proliferative disorders
WO2006073202A1 (ja) * 2005-01-04 2006-07-13 National University Corporation Kanazawa University GSK3β阻害効果に基づくがんの抑制および抗がん剤の評価方法
WO2007047754A2 (en) * 2005-10-18 2007-04-26 George Mason Intellectual Properties, Inc. Mtor pathway theranostic

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MARIA KASPER ET AL.: "Selective Modulation of Hedgehog/GLIT Target Gene Expression by Epidermal Growth Factor Signaling in Human Keratinocytes", MOLECULAR AND CELLULAR BIOLOGY, vol. 26, no. 16, August 2006 (2006-08-01), pages 6283 - 6298 *

Similar Documents

Publication Publication Date Title
Li et al. A ROR1–HER3–lncRNA signalling axis modulates the Hippo–YAP pathway to regulate bone metastasis
Vasileiou et al. Chromatin-remodeling-factor ARID1B represses Wnt/β-catenin signaling
Xing et al. lncRNA directs cooperative epigenetic regulation downstream of chemokine signals
Di Minin et al. Mutant p53 reprograms TNF signaling in cancer cells through interaction with the tumor suppressor DAB2IP
Yeh et al. MicroRNA‐138 suppresses ovarian cancer cell invasion and metastasis by targeting SOX4 and HIF‐1α
Jiang et al. Regulation of cell cycle of hepatocellular carcinoma by NF90 through modulation of cyclin E1 mRNA stability
Dong et al. Ribosomal protein L15 is involved in colon carcinogenesis
JP2002504687A (ja) 癌の治療法
Che et al. miR‐20a inhibits hypoxia‐induced autophagy by targeting ATG5/FIP200 in colorectal cancer
Xu et al. Tristetraprolin induces cell cycle arrest in breast tumor cells through targeting AP-1/c-Jun and NF-κB pathway
Li et al. MiR-26b inhibits melanoma cell proliferation and enhances apoptosis by suppressing TRAF5-mediated MAPK activation
JP2013520958A (ja) 上皮間葉転換のバイオマーカーとしてaxlを使用する方法
Kikuchi et al. A decrease in cyclin B1 levels leads to polyploidization in DNA damage‐induced senescence
Chen et al. Increased expression of Id1 and Id3 promotes tumorigenicity by enhancing angiogenesis and suppressing apoptosis in small cell lung cancer
JP2012187105A (ja) GSK3β阻害効果に基づく抗がん剤の評価方法
Tanaka et al. Roles of YB-1 under arsenite-induced stress: translational activation of HSP70 mRNA and control of the number of stress granules
Teng et al. Overexpression of miRNA-410-3p protects hypoxia-induced cardiomyocyte injury via targeting TRAF5.
Zhang et al. USP39 facilitates breast cancer cell proliferation through stabilization of FOXM1
Guo et al. By targeting TRAF6, miR-140-3p inhibits TGF-β1-induced human osteosarcoma epithelial-to-mesenchymal transition, migration, and invasion
US9655909B2 (en) Personalized medicine for the prediction of therapy targeting the hedgehog pathway
Jiang et al. Post-GWAS functional analysis identifies CUX1 as a regulator of p16INK4a and cellular senescence
Wang et al. CRB2 enhances malignancy of glioblastoma via activation of the NF-κB pathway
US8609626B2 (en) NLK as a marker for diagnosis of liver cancer and as a therapeutic agent thereof
Qian et al. HuR, TTP, and miR-133b expression in NSCLC and their association with prognosis.
WO2011129427A1 (ja) 癌の診断剤および治療剤

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09731291

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09731291

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP