WO2009125673A1 - Dynamic image processing device, dynamic image processing method, and dynamic image processing program - Google Patents

Dynamic image processing device, dynamic image processing method, and dynamic image processing program Download PDF

Info

Publication number
WO2009125673A1
WO2009125673A1 PCT/JP2009/055959 JP2009055959W WO2009125673A1 WO 2009125673 A1 WO2009125673 A1 WO 2009125673A1 JP 2009055959 W JP2009055959 W JP 2009055959W WO 2009125673 A1 WO2009125673 A1 WO 2009125673A1
Authority
WO
WIPO (PCT)
Prior art keywords
frame
color
moving image
unit
image
Prior art date
Application number
PCT/JP2009/055959
Other languages
French (fr)
Japanese (ja)
Inventor
保宏 沢田
哲也 森住
Original Assignee
アキュートロジック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アキュートロジック株式会社 filed Critical アキュートロジック株式会社
Priority to KR1020107024938A priority Critical patent/KR101046012B1/en
Publication of WO2009125673A1 publication Critical patent/WO2009125673A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/85Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using pre-processing or post-processing specially adapted for video compression
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/186Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being a colour or a chrominance component
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/60Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding
    • H04N19/61Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding in combination with predictive coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N2209/00Details of colour television systems
    • H04N2209/04Picture signal generators
    • H04N2209/041Picture signal generators using solid-state devices
    • H04N2209/048Picture signal generators using solid-state devices having several pick-up sensors
    • H04N2209/049Picture signal generators using solid-state devices having several pick-up sensors having three pick-up sensors

Definitions

  • the present invention relates to a moving image processing apparatus, a moving image processing method, and a moving image processing program for generating a compressed stream by encoding a frame sequence of a moving image output by being divided into a plurality of frames in a time series from a color image sensor.
  • a subject image is formed on an image sensor via a lens, and the subject image is photoelectrically converted by the image sensor to generate a plurality of frame data in time series.
  • MPEG moving image processing technique
  • video processing technology estimates (predicts) a motion vector that represents how much the pixel of the current frame has moved compared to the pixel of the previous frame, and instead of transmitting the entire image, the difference between these motion vectors
  • the transmission information is compressed by transmitting.
  • the type of frame is determined from an I frame that encodes an image signal in the frame as it is without using inter-frame prediction, and an image signal of a reference frame that precedes in time.
  • a B frame for encoding a difference between a temporally preceding reference frame and a subsequent reference frame, and an arrangement of these frames and a repetition cycle are set.
  • M 3 MPEG has GOP (Group of Pictures) based on I, I, B, B, P, B, B, P, B, B, P, B, B, I... Are composed of frames that are continuous in time series.
  • a plurality of photoelectric conversion elements are configured in a matrix form as a single-plate image pickup element, and R (red), G (green), and B (blue) color filters are associated with the photoelectric conversion elements on the front surface thereof.
  • R red
  • G green
  • B blue
  • each pixel is a color mosaic image having only color information of a single color, and in order to generate a color image, each pixel has red (R), green ( It is necessary to provide a plurality of color information such as G) and blue (B).
  • demosaic processing (also referred to as color interpolation processing) is performed based on a color mosaic image in which each pixel has color information of only one of R, G, and B components.
  • a color image is generated from the color mosaic image.
  • the demosaic process is performed by interpolating other color information deficient in each pixel of the color mosaic image using the color information of other pixels around the pixel, so that each pixel is R, G, This is a process for generating a color image having all color information of the B component (so-called color interpolation process).
  • JP-A-10-056552 JP-A-10-056552
  • the image data stored in the frame buffer is a color image having color information of a plurality of colors for each pixel, and demosaic processing is performed.
  • no moving image processing technique effective for saving memory capacity has been disclosed.
  • the present invention stores memory for frame rearrangement when performing demosaic processing (so-called color image generation processing in the present invention) and compressed stream generation from image data output from a color image sensor. It is an object of the present invention to provide a moving image processing apparatus, a moving image processing method, and a moving image processing program capable of reducing power consumption and cost by reducing capacity and bandwidth.
  • the invention according to claim 1 is directed to a frame sequence of a moving image which is divided into a plurality of frames in a time series from a color image sensor and output in a first data format.
  • a frame rearrangement unit that rearranges the frame sequence composed of the first data format in association with the processing order of the compressed stream;
  • a color image generation unit for converting the first data format in the frame sequence rearranged by the frame rearrangement unit into a color image, and a plurality of the frame sequences converted into the color image before and after in time
  • a video compression unit that encodes and compresses based on a difference between frames And features.
  • the frame rearrangement unit that rearranges the frame sequence having the first data format in association with the processing order of the compressed stream, and the frame rearranged by the frame rearrangement unit
  • a color image generation unit that converts a first data format in a sequence into a color image, and the frame sequence converted into a color image is encoded and compressed based on differences between a plurality of frames before and after the time.
  • a video compression unit the memory capacity and bandwidth (frame buffer memory capacity and bandwidth) required for frame rearrangement can be reduced, resulting in lower power consumption, lower cost, and lower power consumption.
  • a reduction in the amount of heat generated in the moving image processing circuit can be realized.
  • the frame data used for the frame rearrangement is the first data format output from the image sensor before the color image is generated, the frame rearrangement is performed rather than using the color image data for the frame rearrangement. Memory capacity and bandwidth required for the array can be reduced.
  • the color image sensor includes a plurality of photoelectric conversion elements arranged in a matrix and each of the photoelectric conversion elements.
  • a single-plate color image sensor that outputs pixel information of single-color light of the plurality of color lights for each photoelectric conversion element, wherein the first data format is a pixel
  • the color image generation unit is configured to perform a demosaic process for generating pixel information of a plurality of color lights for each pixel, whereby a color image
  • demosaic processing and generation of a compressed stream from image data output from a sensor it is possible to reduce the storage capacity and bandwidth necessary for frame rearrangement.
  • the color image sensor is configured by a plurality of color image sensors having different spectral sensitivity distributions, and each light receiving surface has a light receiving surface.
  • the first data format is image data output from each of the plurality of color image sensors, and the color image generation unit includes the plurality of color images. Necessary for frame rearrangement when generating color image and generating compressed stream from image data output from color image sensor because it is configured to increase resolution by synthesizing sensor image data Saving storage capacity and bandwidth.
  • the plurality of frames are encoded without referring to a temporally subsequent frame.
  • the frame rearrangement unit gives a delay according to the type of the input NonF frame and F frame. Applicable when configured to output.
  • the NonF frame further encodes an image signal in the frame as it is without using the inter-frame prediction.
  • a frame and a P frame that encodes a difference from an image signal of a temporally preceding reference frame, and the F frame encodes a difference between a temporally preceding reference frame and a subsequent reference frame This is applicable when the frame rearrangement unit is configured to output with a delay according to the type of the input I frame, P frame, or B frame.
  • the frame rearrangement unit includes a part of the plurality of frame types. It may be configured to output with a delay.
  • the image generation unit includes an image deformation processing unit that performs image deformation of the color image. It is preferable that it is provided.
  • the frame buffer of the frame rearrangement unit can be used as a frame buffer required when performing color image deformation processing, and the storage capacity and bandwidth required for image deformation can be reduced separately.
  • the frame rearrangement unit outputs the image data in the frame in a non-raster sequential manner when the image is deformed. It is preferable that it is comprised. As a result, it is possible to perform image deformation such as digital zoom, camera shake, and aberration correction by using the frame buffer of the frame rearrangement unit without separately preparing a frame buffer for image deformation.
  • the moving image processing apparatus includes a second image generation unit that generates a color image to be output to a viewfinder, as in the invention according to claim 10,
  • the second image generation unit when the color image is generated in the finder by generating a color image without performing the frame rearrangement in the frame rearrangement unit, the images are displayed on the finder in the order of display. There is no delay due to frame rearrangement, and the follow-up performance to the output from the color image sensor can be maintained well.
  • the moving image processing apparatus does not pass the frame sequence output from the color image sensor through the frame rearrangement unit as in the invention according to claim 11.
  • a rearrangement unit bypassing means for outputting to the color image generation unit, and a frame sequence input to the color image generation unit and a frame order output from the color image sensor and output from the frame rearrangement unit By being configured to be able to switch the frame order, the presence / absence of frame rearrangement can be selected as necessary, and convenience can be improved.
  • a camcorder may be configured using This enables the camcorder to reduce the memory capacity and bandwidth (frame buffer memory capacity and bandwidth) required for frame rearrangement when generating a compressed stream of a frame sequence of a moving image, reducing power consumption and cost. Thus, it is possible to reduce the amount of heat generated in the moving image processing circuit.
  • the moving image processing apparatus and color image sensor according to any one of claims 1 to 11 and the moving image information compressed by the moving image compression unit are transmitted to an external device.
  • a remote monitor camera may be configured using the transmitter.
  • the remote monitor camera can reduce the memory capacity and bandwidth (frame buffer memory capacity and bandwidth) necessary for frame rearrangement when generating a compressed stream of a frame sequence of a moving image, reducing power consumption, Cost reduction and reduction in the amount of heat generated in the moving image processing circuit can be realized.
  • the invention according to claim 14 is encoded by an inter-frame prediction method from a frame sequence of a moving image which is divided into a plurality of frames in time series from a color image sensor and output in a first data format.
  • a frame rearrangement step for rearranging the frame sequence composed of the first data format in association with the processing order of the compressed stream, and the frame rearrangement step.
  • a color image generation step of converting the first data format in the rearranged frame sequence into a color image, and the frame sequence converted into the color image into temporal differences between a plurality of frames.
  • a video compression step for encoding and compressing based on To.
  • a frame rearrangement step for rearranging the frame sequence having the first data format in association with the processing order of the compressed stream, and the frames rearranged in the frame rearrangement step
  • a color image generation step for converting the first data format in the sequence into a color image, and a moving image in which the frame sequence converted into the color image is encoded and compressed based on differences between a plurality of frames before and after the time
  • the memory capacity and bandwidth required for frame rearrangement (memory capacity and bandwidth of the frame buffer) can be reduced, and the power consumption can be reduced and the cost can be reduced.
  • the amount of heat generated in the moving image processing circuit can be reduced along with the reduction in power consumption.
  • the invention according to claim 15 is encoded by an inter-frame prediction method from a frame sequence of a moving image which is divided into a plurality of frames in time series from a color image sensor and output in a first data format.
  • a moving image processing program for generating a compressed stream of color moving images wherein a frame rearrangement step of rearranging a frame sequence composed of the first data format in association with a processing order of the compressed stream; and the frame rearrangement
  • a video compression step for encoding and compressing based on the difference To be executed in.
  • a frame rearrangement step for rearranging the frame sequence having the first data format in association with the processing order of the compressed stream, and the frame rearranged by the frame rearrangement step
  • a color image generation step for converting the first data format in the sequence into a color image, and a moving image in which the frame sequence converted into the color image is encoded and compressed based on differences between a plurality of frames before and after the time
  • the moving image processing apparatus, the moving image processing method, and the moving image processing program of the present invention rearrange the frame sequence composed of the first data format in association with the processing order of the compressed stream, and then the first in the rearranged frame sequence
  • the data format is converted to a color image
  • the frame sequence converted to a color image is encoded and compressed based on the difference between multiple frames before and after the frame.
  • the memory capacity and bandwidth (frame buffer memory capacity and bandwidth) required for the video processing circuit can be reduced, and the heat generation amount in the moving image processing circuit can be reduced with lower power consumption, lower cost, and lower power consumption.
  • the camcorder uses the moving image processing device and color image sensor according to the present invention and the recording device that stores the moving image information compressed by the moving image compression unit of the moving image processing device, in the camcorder,
  • the memory capacity and bandwidth (frame buffer memory capacity and bandwidth) required for frame rearrangement can be reduced, reducing power consumption and cost, and reducing the amount of heat generated in the video processing circuit. Reduction can be realized.
  • a remote monitor camera using the moving image processing device and color image sensor according to the present invention, and a transmission device that transmits the moving image information compressed by the moving image compression unit of the moving image processing device to an external device
  • the memory capacity and bandwidth required for frame rearrangement can be reduced, reducing power consumption and cost.
  • (a) is a block diagram showing a configuration of an imaging apparatus 1A to which the moving image processing apparatus of the present invention is applied, and (b) is an explanatory diagram of an imaging unit in the imaging apparatus 1A. is there. It is explanatory drawing of operation
  • (a) is a block diagram showing the structure of the imaging device 1B to which the moving image processing apparatus of this invention was applied, (b) is explanatory drawing of the imaging part in the imaging device 1B, (C) is explanatory drawing of the image data synthesis process in the imaging device 1B.
  • FIG. 1A is a block diagram showing the configuration of the imaging apparatus 1A of the first embodiment to which the moving image processing apparatus of the present invention is applied
  • FIG. 1B is an explanatory diagram of an imaging unit in the imaging apparatus 1A. is there.
  • FIG. 2 is an explanatory diagram of the operation of the frame rearrangement unit in the imaging apparatus 1A according to the first embodiment.
  • the imaging device 1A is, for example, a video camcorder, and sequentially converts captured image signals into analog electrical signals and outputs the analog image signals output from the imaging unit 110.
  • the AFE 120 that converts electrical signals into digital data and outputs them, the digital data output from the AFE 120 is divided into frames, and the frame order is changed and output (so-called frame rearrangement) 130
  • the image generation unit 140 that converts the image data of each frame output from the frame rearrangement unit 130 into a color image, the color image frame sequence output from the image generation unit 140 is compressed as a moving image, and a compressed stream is output
  • Recording unit 160 for recording the Shumemori and optical / magnetic recording medium is constituted by a like.
  • the imaging apparatus 1A includes a CPU (Central Processing Unit) and a ROM (Read Only Memory) (not shown), and the CPU controls each process of the imaging apparatus 1A according to a control program stored in the ROM. To do.
  • a CPU Central Processing Unit
  • ROM Read Only Memory
  • the imaging unit 110 is a single-plate color image sensor (single-plate color image sensor according to the present invention), in which a plurality of photoelectric conversion elements are arranged in a matrix, and a front surface thereof is associated with the photoelectric conversion element.
  • a color filter having a Bayer array of three primary colors of R (red), G (green), and B (blue) is provided, and passes through the filter portion of each color. It is configured to convert a single color light amount into an electrical signal.
  • the Bayer arrangement is such that the G color filters are arranged in a checkered pattern, the G color filters and the R color filters are alternately arranged, the G color filters, and the B colors. The columns in which the filters are alternately arranged are alternately arranged.
  • the AFE 120 is input via a correlated double sampling circuit (CDS: Correlated Double Sampling) and a correlated double sampling circuit that performs correlated double sampling on the analog image signal output from the imaging unit 110 and removes noise.
  • the imaging unit 110 includes a variable gain amplifier (AGC) that amplifies the analog image signal, an A / D converter that converts the analog image signal input through the variable gain amplifier into a digital image signal, and the like.
  • AGC variable gain amplifier
  • the output analog image signal of the frame is converted into a digital image signal associated with the Bayer array and output to the frame rearrangement unit 130.
  • the frame rearrangement unit 130 converts the frame order of the digitized Bayer data input in the display order into a transmission order associated with the processing order of the moving picture compression unit 150.
  • mod is an operator that divides a predetermined numerical value (k) by a mod number to obtain the remainder.
  • the frame rearrangement unit 130 gives a delay of 3 frames more than the I frame or P frame to the B frame and outputs it to the image generation unit 140.
  • frame buffers 130a to 130d for four frames are provided, and frame rearrangement is realized by assigning frame buffers 130a to 130d as appropriate to inputs and outputs.
  • Each of the frame buffers 130a to 130d has a capacity of 16 Mbits and has a total memory of 64 Mbits.
  • the image generation unit 140 sequentially converts the frames output from the frame rearrangement unit 130 from Bayer images to color images.
  • YCrCb 4: 2: 2.
  • Y the luminance
  • Cr the R color difference with respect to Y
  • Cb the B color difference with respect to Y.
  • the frame buffers 130a to 130d can be referred to the frame rearrangement unit 130 for any frame. Therefore, the image generation unit 140 can perform non-raster sequential access to the Bayer image.
  • the imaging apparatus 1A also performs image deformation such as digital zoom, camera shake, chromatic aberration, and distortion correction using the frame buffers 130a to 130d without separately preparing a buffer for image deformation. be able to.
  • the moving image compression unit 150 compresses the color image frame sequence output from the image generation unit 140.
  • the MPEG moving image compression unit 150 includes two prediction memories 150a and 150b for performing inter-frame prediction.
  • the compressed data of each frame is output to the recording unit 160 as a series of compressed streams.
  • the imaging unit 110 exposure is performed every predetermined time (for example, 1/60 seconds), and for each exposure, the exposure amount in each photoelectric conversion element is converted into an analog electric signal and sequentially output to the AFE 120. At this time, a set of analog electric signals output from each photoelectric conversion element becomes a Bayer image signal associated with the color filter of the Bayer array.
  • the exposure of the next frame is started simultaneously with the end of one exposure, and analog image signals are sequentially output. Each image is used as a frame, and a moving image is formed by the frame sequence.
  • the analog electrical signal output from the imaging unit 110 is converted into a digital signal by the AFE 120.
  • This digital signal is a Bayer image signal corresponding to the Bayer array of the imaging unit, and has the first data format.
  • the Bayer image signals output from the AFE 120 are sequentially output in the order of exposure of the imaging unit 110 (this output order is referred to as display order in this document).
  • a frame of k ⁇ 2 (mod 3) is an I frame or
  • Each frame is input to the frame rearrangement unit 130 as a P frame and a frame with k ⁇ 0 (mod 3) or k ⁇ 1 (mod 3) as a B frame.
  • the Bayer image signals output in the display order are input to the frame rearrangement unit 130 in raster order.
  • the input frame (k) input from the AFE 120 is stored and stored in one of the frame buffers (input buffers in FIG. 2A) 130a to 130d.
  • the frame buffers input buffers in FIG. 2A
  • a delay of 1 frame is performed for the I frame or the P frame, and a delay of 4 frames is performed for the B frame.
  • M frames B is the period in which I frames or P frames appear in the MPEG moving image processing technology
  • I frames or P frames regardless of the absolute amount of delay. It is important to give as much delay as possible.
  • the frame order input to the image generation unit 140 becomes the transmission order.
  • the image generation unit 140 converts each frame input via the frame rearrangement unit 130 from a Bayer image signal to a color image signal (this is a color image generation step in the present invention).
  • image processing such as color conversion, image edge enhancement, noise suppression, and tone curve processing is performed to obtain an image quality suitable for viewing.
  • the image generation unit 140 can read the Bayer image signals stored in the frame buffers 130a to 130d of the frame rearrangement unit 130 in a non-raster order and perform image deformation such as enlargement, reduction, and rotation.
  • the color image signal converted by the image generation unit 140 is output to the moving image compression unit 150.
  • the moving image compression unit 150 performs compression processing of the frame sequence of the color image input from the image generation unit 140 (this is a moving image compression step in the present invention).
  • the NonF frame in the present invention corresponds to an I frame and a P frame
  • the F frame in the present invention corresponds to a B frame.
  • intra-frame coding without using the prediction memory is performed and output to the recording unit 160, and the update history of the prediction memory 150a or 150b is older (that is, updated earlier). Update).
  • encoding is performed using inter-frame prediction from a frame in which the update history of the prediction memory 150a or 150b is stored in a newer one, and the result is output to the recording unit 160 and the prediction memory 150a.
  • the update history of 150b is input and updated.
  • the B frame is encoded using inter-frame prediction from two frames stored in the prediction memories 150a and 150b, and is output to the recording unit 160.
  • the newer one of the prediction memories 150a and 150b stores the I frame or the P frame input immediately before to the image generation unit 140, and the other (That is, which one of the prediction memories 150a and 150b is the older one) and the I frame or P frame input immediately before the three frames are stored.
  • the order of frames input to the image generation unit 140 is the transmission order rearranged by the frame rearrangement unit 130, and in terms of display order, the prediction memory 150a or 150b, whichever is older,
  • the I frame or P frame exposed immediately before (the B frame to be processed) in the unit 110 is stored, and the I frame exposed immediately after (the B frame to be processed) in the imaging unit 110 is stored.
  • P frames are stored (so-called reference frames that precede in time and reference frames that follow in time in the present invention are stored), and bi-directional prediction is realized in B frames. Is done.
  • the recording unit 160 records a compressed stream of the image sequence encoded by the moving image compression unit 150.
  • the imaging apparatus 1A may include a transmission unit instead of the recording unit 160.
  • the transmission unit is connected to another video device via a wired or wireless communication means. Further, the transmission unit transmits the image sequence encoded by the moving image compression unit 150 to another video device as a compressed stream.
  • a remote monitor camera can be configured.
  • the imaging apparatus 1A described in the first embodiment is necessary for frame rearrangement by performing frame rearrangement processing generally required for MPEG compression on a Bayer image instead of a color image. Memory capacity and bandwidth can be reduced. Further, in the image generation unit 140, image deformation can be performed without requiring a separate image deformation memory by performing image deformation using the frame buffers 130a to 130d used for frame rearrangement. it can.
  • the frame rearrangement unit when the frame rearrangement unit and the moving image compression unit are configured after the image generation unit as in the past, the frame rearrangement unit has a larger memory than the first embodiment in order to rearrange the color images.
  • a capacity frame buffer is required, and the required bandwidth also increases.
  • a frame buffer for image deformation is separately required in the image generation unit.
  • the imaging unit 110 of the present embodiment may have a PIA (Pixel Interleaved Array) array of 1 million pixels (1M pixels), and the image generation unit 140 may perform high pixel processing in addition to demosaic processing. In this case, the memory capacity and bandwidth required for frame rearrangement can be further halved by applying the present invention.
  • the PIA array is a pixel array obtained by rotating a square lattice by 45 degrees.
  • the PIA array can expand the light collection area, and the resolution close to 2M pixels of the Bayer array can be obtained with 1M pixels. be able to.
  • FIGS. 3 (a) is a block diagram showing the configuration of the imaging apparatus 1B of the second embodiment to which the moving image processing apparatus of the present invention is applied, and (b) is an explanatory diagram of an imaging unit in the imaging apparatus 1B. (C) is explanatory drawing of the image data synthesis process in the imaging device 1B.
  • FIG. 4 is an explanatory diagram of the operation of the frame rearrangement unit in the imaging apparatus 1B of the embodiment.
  • imaging apparatus 1B in the second embodiment is basically the same in configuration as the imaging apparatus 1A shown in the first embodiment, and therefore, the same components are assigned the same reference numerals for detailed description. Omitted and characteristic parts will be described below.
  • the imaging device 1B is, for example, a video camcorder, and sequentially converts captured image signals into analog electrical signals and outputs them, and the analog output from the imaging unit 111.
  • the AFE 120 that converts electrical signals into digital data and outputs them, the digital data output from the AFE 120 is divided into frames, and the frame order is changed and output (so-called frame rearrangement) 131.
  • the image generation unit 141 that converts each frame data output from the frame rearrangement unit 131 into color data associated with the color image, the color image frame sequence output from the image generation unit 141 is compressed as a moving image, Video compression unit 150 that outputs a compressed stream, and a compression stream output from video compression unit 150
  • the beam for example, the recording unit 160 for recording in the flash memory or optical or magnetic recording medium are constituted by the like.
  • the imaging unit 111 includes three imaging elements 111a, 111b, and 111c having different spectral sensitivity distributions, and the respective light receiving surfaces are arranged so as to be shifted in the pixel arrangement direction.
  • color separation prisms for separating R, G, and B color lights are arranged on the optical path of the imaging optical system, and the imaging elements 111a, 111b, and 111c are provided on the imaging surfaces of the respective color lights.
  • the imaging unit 111 is configured by a color image sensor including a plurality of imaging elements 111a, 111b, and 111c having different spectral sensitivity distributions, and the respective light receiving surfaces are arranged so as to be shifted in the pixel arrangement direction.
  • each imaging element 111a, 111b, 111c is configured with 0.5M pixels (pixels).
  • B are arranged so as to be shifted by half pixels ((Py / 2) and (Px / 2)) vertically and horizontally.
  • the AFE 120 converts the analog image signal output from the imaging unit 111 into a digital image signal including three planes R, G, and B, and outputs the digital image signal to the frame rearrangement unit 131. .
  • the frame rearrangement unit 131 converts the frame order of the digitized pixel shift data input in the display order into the transmission order associated with the processing order of the moving picture compression unit 150, as in the first embodiment.
  • the frame rearrangement unit 131 includes frame buffers 131a and 131b for two frames, and the frame buffers 131a and 131b are assigned or input as appropriate according to the input from the imaging unit 111.
  • the frame rearrangement is realized by outputting as is.
  • the frame buffers 131a and 131b each have a capacity of 12 Mbit and have a total of 24 Mbit of memory.
  • the image generation unit 141 sequentially performs high resolution processing on the frame output from the frame rearrangement unit 131 from the pixel-shifted image, and the number of pixels per frame is equal to the number of pixels in each of the image sensors 111a, 111b, and 111c.
  • the image is converted to a color image of 2M pixels that is quadrupled.
  • the moving image compression unit 150 compresses the frame sequence of the color image output from the image generation unit 141, and the compressed data of each frame is recorded as a series of compressed streams in the recording unit 160. Is output.
  • the imaging unit 111 performs exposure every predetermined time (for example, 1/60 second), and for each exposure, the exposure amount in each photoelectric conversion element is converted into an analog electric signal and sequentially output to the AFE 120.
  • the imaging unit 111 since the imaging unit 111 includes the three imaging elements 111a, 111b, and 111c, a set of analog electric signals output from the photoelectric conversion elements becomes a three-plane analog image signal.
  • Each plane is a low-resolution moving image shooting of 0.5 M pixels.
  • an analog image signal of 3 planes is output sequentially with pixel shifting.
  • image signals of 3 planes corresponding to one exposure are gathered to form one frame, and a moving image is formed by the frame sequence.
  • the pixel-shifted three-plane analog electrical signal output from the imaging unit 111 (which is the first data format in the present invention) is converted into a digital signal by the AFE 120.
  • digital image signals output from the AFE 120 are output one after another in the exposure order of the imaging unit 111 (this output order is referred to as display order in this document).
  • frame numbers k 0, 1, 2,... Are given in the order of display, and a frame of k ⁇ 2 (mod 3) is an I frame or
  • the frame is input to the frame rearrangement unit 131 as a P frame and a frame with k ⁇ 0 (mod 3) or k ⁇ 1 (mod 3) as a B frame.
  • the pixel-shifted three-plane image signal output in the display order is input to the frame rearrangement unit 131.
  • the frame rearrangement unit 131 if the input frame (k) input is an I frame or a P frame, it is output to the image generation unit 141 as it is. To do. Further, in the frame rearrangement unit 131, if the input frame (k) input is a B frame, the data is once recorded alternately in the frame buffers 131a and 131b, and at the same time, originally in the frame buffers 131a and 131b. Is output to the image generation unit 141.
  • the image generation unit 141 converts each frame input via the frame rearrangement unit 131 from a 3-plane image signal to a high-resolution color image signal.
  • image processing such as color conversion, image edge enhancement, noise suppression, tone curve processing, etc.
  • the color image signal converted by the image generation unit 141 is output to the moving image compression unit 150.
  • the moving image compression unit 150 compresses the frame sequence of the color image input from the image generation unit 140, and the recording unit 160 records the compressed data.
  • FIG. 3 is a block diagram showing a configuration of an imaging apparatus 1C according to the third embodiment to which the moving image processing apparatus of the present invention is applied.
  • the imaging apparatus 1C in the third embodiment is basically the same in configuration as the imaging apparatuses 1A and 1B shown in the first and second embodiments, and therefore, the same reference numerals are given to common components. The detailed description will be omitted, and the characteristic parts will be described below.
  • the imaging apparatus 1 ⁇ / b> C is, for example, a video camcorder, and is configured to be able to meet the demand for an image display function to the finder 190 and an image output function to the monitor output unit 220.
  • the imaging apparatus 1C includes a signal dividing unit 170 between the AFE 120 and the frame rearrangement unit 131, and outputs the signal from the AFE 120 to the signal dividing unit 170.
  • the imaging apparatus 1C is configured to output to both the frame rearrangement unit 131 and the second image generation unit 180.
  • the second image generation unit 180 generates a color image and outputs it to the finder 190 without performing frame rearrangement in the frame rearrangement unit 131. At this time, since the second image generation unit 180 is not required to generate a high-resolution image unlike the image generation unit 141, the second image generation unit 180 has a simpler configuration than the image generation unit 141.
  • the imaging device 1C can perform shooting with good followability for the user of the imaging device. .
  • the finder 190 is composed of a video display device such as a small cathode ray tube or a liquid crystal screen, and displays the image signal generated by the second image generation unit 180.
  • the imaging apparatus 1C receives the image signal in the display order output from the signal dividing unit 170 from the frame rearrangement bypass unit 200 and the image generation unit 141 that bypass the frame rearrangement unit 131 and input the image signals to the image generation unit 141.
  • An output switching unit 210 that switches the input destination of the frame data of the output color image to either the moving image compression unit 150 or the monitor output unit 220, and an image signal of the color image input via the output switching unit 210
  • a monitor output unit 220 for outputting to the resolution display 225 is provided.
  • the function of the rearrangement unit bypassing means in the present invention is expressed by the frame rearrangement unit bypassing means 200.
  • the frame rearrangement bypass unit 200 is arranged in parallel with the frame rearrangement unit 131 and outputs an image signal in the display order to the image generation unit 141 in conjunction with the output switching unit 210. At this time, the frame rearrangement bypass unit 200 may be configured to control the frame rearrangement unit 131 so that the output from the frame rearrangement unit 131 is in display order.
  • the output switching unit 210 is installed between the image generation unit 141 and the moving image compression unit 150.
  • the output of the image generation unit 141 is input to the moving image compression unit 150 at the time of video recording, and the output of the image generation unit 141 is output to the monitor. Is input to the monitor output unit 220.
  • the monitor output unit 220 is installed as a video output terminal for outputting an image signal from the imaging apparatus 1C to the outside.
  • the monitor output unit 220 is connected to the video signal. It is configured to output.
  • the output switching unit 210 is set to input the output of the image generation unit 141 to the monitor output unit 220, and frame rearrangement is performed.
  • the output of the unit 131 is stopped, the frame rearrangement detouring unit 190 operates, the display order image is input to the image generation unit 141, and the high resolution display order video signal is output to the external high resolution display 225 for display. Is done.
  • the output switching unit 210 is set to input the output of the image generation unit 141 to the moving image compression unit 150, and the frame rearrangement bypass unit 200 operates.
  • an image in the transmission order via the frame rearrangement unit 131 is input to the image generation unit 141 and the moving image compression unit 150.
  • the image pickup apparatus 1C has both functions of color video monitor output and compression recording via the image generation unit 141.
  • FIG. 6A is a block diagram showing a configuration of an imaging apparatus 1D of the fourth embodiment to which the moving image processing apparatus of the present invention is applied
  • FIG. 6B is a configuration diagram of an imaging unit in the same embodiment. It is.
  • the imaging apparatus 1D in the fourth embodiment is basically the same in configuration as the imaging apparatus 1A shown in the first embodiment. Therefore, the same components are assigned the same reference numerals and detailed description is given. Omitted and characteristic parts will be described below.
  • the imaging device 1D includes an imaging unit 112, a frame rearrangement unit 132 corresponding to the analog signal output from the imaging unit 112, an AFE 120, an image generation unit 140, a moving image compression unit 150, The recording unit 160 is configured.
  • a frame rearrangement unit 132 is installed between the imaging unit 112 and the AFE 120 so that the frame sequence is rearranged with respect to the analog signal output from the imaging unit 112.
  • the image pickup unit 112 is configured by a single-plate color image pickup device as in the first embodiment.
  • the frame rearrangement unit 132 is configured using an analog memory CCD (Charge Coupled Devices) as a frame buffer.
  • CCD Charge Coupled Devices
  • the imaging unit 112 is configured using a CCD image sensor in the same manner as the frame rearrangement unit 132, so that the imaging unit 112 and the frame rearrangement unit 132 are integrated as shown in FIG. A CCD 135 can be used.
  • the CCD 135 includes a light receiving area 135s as an imaging unit, two buffer areas 135a and 135b, and an I / P frame horizontal transfer unit (I frame and P frame horizontal transfer unit). ), A B frame horizontal transfer unit.
  • the I / P frame horizontal transfer unit is provided between the light receiving area 135s and the buffer areas 135a and 135b, and the B frame horizontal transfer unit is located on the opposite side of the light receiving area 135s via the buffer area 135a. It is provided at the end of the area 135b.
  • the function of the frame rearrangement unit 132 is expressed by the two buffer areas 135a and 135b, the horizontal transfer unit for I / P frame, and the horizontal transfer unit for B frame.
  • each element of the CCD 135 (so-called element corresponding to each pixel) is provided with a photoelectric conversion element and a mosaic color filter (a filter that passes RGB single color light). It has been.
  • the exposure amount in each photoelectric conversion element is accumulated as a charge (the first data format in the present invention is this charge amount).
  • the exposed image frame is an I frame or a P frame
  • vertical transfer is performed to the light receiving area 135s
  • the horizontal transfer unit for the I / P frame is operated, and the charge of each pixel in the light receiving area 135s is converted into an analog signal.
  • the exposed image frame is a B frame
  • vertical transfer is applied to the entire CCD 135 and the horizontal transfer unit for the B frame is operated to output the charge accumulated in the buffer area 135b to the AFE 120 as an analog signal.
  • the charges accumulated in the light receiving area 135s are accumulated in the buffer area 135a, and the charges accumulated in the buffer area 135a are transferred to the buffer area 135b.
  • the B frame is output to the AFE 120 after the third frame of exposure as in the second embodiment (FIG. 3B). become. Further, since the I frame or the P frame is output to the AFE 120 immediately after the exposure, the frame order input to the AFE 120 and the image generation unit 140 is the transmission order, as in the frame rearrangement unit 131 in the second embodiment.
  • the frame rearrangement unit 132 can be installed in the CCD 135 integrated with the image sensor, and frame rearrangement as a separate digital process can be made unnecessary.
  • the frame sequence of the moving image output in the first data format from the color image sensor is rearranged in association with the processing order of the compressed stream, and can be used for conversion to a color image.

Abstract

Provided are a dynamic image processing device and a dynamic image processing method which can realize a lower power consumption at a low cost by reducing a storage capacity and band for frame rearrangement when performing a demosaic process and a compressed stream generation from image data outputted from a color image sensor. The dynamic image processing device includes: a frame rearrangement unit (130) which rearranges a frame sequence formed in a first data format and outputted from an imaging unit (110) in accordance with a compressed stream processing order; a color image generation unit (140) which converts the first data format used in the frame sequence rearranged by the frame rearrangement unit (130) into a color image; and a dynamic image compression unit (150) which encodes and compresses the frame sequence converted into the color image, in accordance with a difference between temporally preceding and following frames.

Description

動画処理装置及び動画処理方法、動画処理プログラムMovie processing apparatus, movie processing method, and movie processing program
 本発明は、カラーイメージセンサより時系列的に複数のフレームに分割されて出力された動画のフレームシーケンスを、符号化して圧縮ストリームを生成する動画処理装置及び動画処理方法、動画処理プログラムに関する。 The present invention relates to a moving image processing apparatus, a moving image processing method, and a moving image processing program for generating a compressed stream by encoding a frame sequence of a moving image output by being divided into a plurality of frames in a time series from a color image sensor.
 従来、動画を撮影するビデオカメラでは、レンズを介して撮像素子に被写体像を結像し、この撮像素子によって被写体像を光電変換して、時系列的に複数のフレームデータを生成し、この複数のフレーム間の動きを予測して(所謂、フレーム間予測化方式である)、圧縮ストリームを生成する動画処理技術(MPEG)が知られている。 2. Description of the Related Art Conventionally, in a video camera for shooting a moving image, a subject image is formed on an image sensor via a lens, and the subject image is photoelectrically converted by the image sensor to generate a plurality of frame data in time series. There is known a moving image processing technique (MPEG) that predicts a motion between frames (a so-called inter-frame prediction method) and generates a compressed stream.
 動画処理技術では、一般に、現在フレームの画素が以前フレームの画素に比べてどれくらい動いたかをベクトルで表した動きベクトルを推定(予測)し、全体の画像を伝送する代わりに、これら動きベクトルの差を伝送することによって伝送情報を圧縮する。 In general, video processing technology estimates (predicts) a motion vector that represents how much the pixel of the current frame has moved compared to the pixel of the previous frame, and instead of transmitting the entire image, the difference between these motion vectors The transmission information is compressed by transmitting.
 詳しくは、MPEGで代表される動画処理技術では、フレームの種類が、フレーム間予測を用いずにフレーム内の画像信号をそのまま符号化するIフレームと、時間的に先行する参照フレームの画像信号からの差分を符号化するPフレームと、時間的に先行する参照フレームと後行する参照フレームとの差分を符号化するBフレームとによって構成され、これらのフレームの配列と繰り返し周期が設定されている。 Specifically, in the moving image processing technology represented by MPEG, the type of frame is determined from an I frame that encodes an image signal in the frame as it is without using inter-frame prediction, and an image signal of a reference frame that precedes in time. And a B frame for encoding a difference between a temporally preceding reference frame and a subsequent reference frame, and an arrangement of these frames and a repetition cycle are set. .
 例えば、M=3のMPEGは、図2(b)に表したように、GOP(Group of Pictures)が、Iを基準にI、B、B、P、B、B、P、B、B、P、B、B、I…、などのように時系列的に連続するフレームで構成される。 For example, as shown in FIG. 2 (b), M = 3 MPEG has GOP (Group of Pictures) based on I, I, B, B, P, B, B, P, B, B, P, B, B, I... Are composed of frames that are continuous in time series.
 一方、このように入力されるフレーム順序と符号化されて伝送される順序とが異なるので、符号化時にフレームの順序を再配列する必要がある。そして、再配列のために、Bフレームを一時記憶するためのフレームバッファメモリが必要とされる。例えば、IとPとの間に2枚のBフレームが挿入されるM=3の場合には、これを記憶するために2フレーム分のメモリが必要とされる(例えば、特許文献1参照)。 On the other hand, since the order of frames input in this way is different from the order of transmission after being encoded, it is necessary to rearrange the order of frames at the time of encoding. For rearrangement, a frame buffer memory for temporarily storing B frames is required. For example, in the case of M = 3 in which two B frames are inserted between I and P, two frames of memory are required to store this (for example, see Patent Document 1). .
 また、単板式の撮像素子として、マトリックス状に複数の光電変換素子が構成されると共に、その前面に光電変換素子に対応付けてR(赤)G(緑)B(青)の各カラーフィルタが備えられ、このカラーフィルタを介して出力した単一色の画像信号に信号処理を加えてカラー画像を生成する技術がある。 In addition, a plurality of photoelectric conversion elements are configured in a matrix form as a single-plate image pickup element, and R (red), G (green), and B (blue) color filters are associated with the photoelectric conversion elements on the front surface thereof. There is a technique for generating a color image by applying signal processing to a single color image signal output through the color filter.
 単板式の撮像素子を介して出力された画像では、各画素が単一色の色情報しか持たない色モザイク画像であって、カラー画像を生成するために、各画素に赤色(R)、緑色(G)、青色(B)等の複数の色情報を備える必要がある。 In an image output via a single-plate image sensor, each pixel is a color mosaic image having only color information of a single color, and in order to generate a color image, each pixel has red (R), green ( It is necessary to provide a plurality of color information such as G) and blue (B).
 そこで、単板式撮像素子を用いた画像処理では、各画素がR、G、B成分のうちの何れかのみの色情報を有する色モザイク画像にもとづいて、デモザイク処理(色補間処理ともいう)を行って、色モザイク画像からカラー画像を生成する。ここで、デモザイク処理とは、色モザイク画像の各画素において不足する他の色情報を、その画素周辺の他の画素の色情報を用いて補間演算することにより、各画素が夫々R、G、B成分の全ての色情報を有するカラー画像を生成する処理である(所謂、色補間処理である)。
特開平10-056652号公報
Therefore, in image processing using a single-plate image sensor, demosaic processing (also referred to as color interpolation processing) is performed based on a color mosaic image in which each pixel has color information of only one of R, G, and B components. A color image is generated from the color mosaic image. Here, the demosaic process is performed by interpolating other color information deficient in each pixel of the color mosaic image using the color information of other pixels around the pixel, so that each pixel is R, G, This is a process for generating a color image having all color information of the B component (so-called color interpolation process).
JP-A-10-056552
 しかしながら、従来の動画処理技術によれば、一般に、フレームの並べ替えする際に、フレームバッファに記憶される画像データが画素毎に複数色の色情報を備えたカラー画像であって、デモザイク処理を必要とする画像データに関連つけて、メモリ容量の節減に効果的な動画処理技術が開示されていなかった。 However, according to the conventional moving image processing technique, generally, when rearranging the frames, the image data stored in the frame buffer is a color image having color information of a plurality of colors for each pixel, and demosaic processing is performed. In connection with the required image data, no moving image processing technique effective for saving memory capacity has been disclosed.
 そこで、本発明は、カラーイメージセンサから出力された画像データから、デモザイク処理(所謂、本発明におけるカラー画像生成の処理である)及び圧縮ストリームの生成を行う際に、フレーム再配列のための記憶容量や帯域を節減して、低消費電力化と低コスト化を実現できる動画処理装置及び動画処理方法、動画処理プログラムを提供することを目的とする。 Therefore, the present invention stores memory for frame rearrangement when performing demosaic processing (so-called color image generation processing in the present invention) and compressed stream generation from image data output from a color image sensor. It is an object of the present invention to provide a moving image processing apparatus, a moving image processing method, and a moving image processing program capable of reducing power consumption and cost by reducing capacity and bandwidth.
 かかる目的を達成するためになされた請求項1に記載の発明は、カラーイメージセンサより時系列的に複数のフレームに分割されて第一のデータ形式で出力された動画のフレームシーケンスから、フレーム間予測化方式によって符号化されたカラー画像の圧縮ストリームを生成する動画処理装置において、前記第一のデータ形式からなるフレームシーケンスを、前記圧縮ストリームの処理順に対応つけて並べ替えるフレーム再配列部と、前記フレーム再配列部で並べ替えられたフレームシーケンスにおける前記第一のデータ形式を、カラー画像に変換するカラー画像生成部と、前記カラー画像に変換された前記フレームシーケンスを、時間的に前後の複数のフレーム間の差分に基づいて符号化して圧縮する動画圧縮部と、を備えていることを特徴とする。 In order to achieve the above object, the invention according to claim 1 is directed to a frame sequence of a moving image which is divided into a plurality of frames in a time series from a color image sensor and output in a first data format. In a moving image processing apparatus that generates a compressed stream of a color image encoded by a prediction method, a frame rearrangement unit that rearranges the frame sequence composed of the first data format in association with the processing order of the compressed stream; A color image generation unit for converting the first data format in the frame sequence rearranged by the frame rearrangement unit into a color image, and a plurality of the frame sequences converted into the color image before and after in time A video compression unit that encodes and compresses based on a difference between frames And features.
 請求項1に記載の動画処理装置によれば、第一のデータ形式からなるフレームシーケンスを、圧縮ストリームの処理順に対応つけて並べ替えるフレーム再配列部と、フレーム再配列部で並べ替えられたフレームシーケンスにおける第一のデータ形式を、カラー画像に変換するカラー画像生成部と、カラー画像に変換された前記フレームシーケンスを、時間的に前後の複数のフレーム間の差分に基づいて符号化して圧縮する動画圧縮部と、を備えていることにより、フレーム再配列に必要なメモリ容量及び帯域(フレームバッファのメモリ容量及び帯域)を節減でき、低消費電力化、低コスト化、低消費電力化に伴う当該動画処理回路における発熱量の低減化を実現できる。 According to the moving image processing apparatus of claim 1, the frame rearrangement unit that rearranges the frame sequence having the first data format in association with the processing order of the compressed stream, and the frame rearranged by the frame rearrangement unit A color image generation unit that converts a first data format in a sequence into a color image, and the frame sequence converted into a color image is encoded and compressed based on differences between a plurality of frames before and after the time. And a video compression unit, the memory capacity and bandwidth (frame buffer memory capacity and bandwidth) required for frame rearrangement can be reduced, resulting in lower power consumption, lower cost, and lower power consumption. A reduction in the amount of heat generated in the moving image processing circuit can be realized.
 つまり、フレーム再配列に用いられるフレームデータがカラー画像を生成する前の、イメージセンサから出力された第一のデータ形式であるため、フレーム再配列の際にカラー画像データを用いるよりも、フレーム再配列に必要なメモリ容量や帯域を節減できる。 In other words, since the frame data used for the frame rearrangement is the first data format output from the image sensor before the color image is generated, the frame rearrangement is performed rather than using the color image data for the frame rearrangement. Memory capacity and bandwidth required for the array can be reduced.
 また、請求項1に記載の動画処理装置は、請求項2に記載の発明のように、前記カラーイメージセンサが、マトリックス状に配置された複数の光電変換素子と、該光電変換素子の夫々に対応つけられた複数色光のカラーフィルタとを備え、光電変換素子毎に複数色光の内の単一色光の画素情報を出力する単板カラーイメージセンサであって、前記第一のデータ形式が、画素毎に単一色光の色情報を有する色モザイク画像であり、前記カラー画像生成部が、前記画素毎に複数色光の画素情報を生成するデモザイク処理を行うように構成されていることにより、カラーイメージセンサから出力された画像データから、デモザイク処理及び圧縮ストリームの生成を行う際に、フレーム再配列に必要な記憶容量や帯域を節減できる。 According to a first aspect of the present invention, in the moving image processing apparatus according to the second aspect, the color image sensor includes a plurality of photoelectric conversion elements arranged in a matrix and each of the photoelectric conversion elements. A single-plate color image sensor that outputs pixel information of single-color light of the plurality of color lights for each photoelectric conversion element, wherein the first data format is a pixel A color mosaic image having color information of a single color light every time, and the color image generation unit is configured to perform a demosaic process for generating pixel information of a plurality of color lights for each pixel, whereby a color image When performing demosaic processing and generation of a compressed stream from image data output from a sensor, it is possible to reduce the storage capacity and bandwidth necessary for frame rearrangement.
 また、請求項1に記載の動画処理装置は、請求項3に記載の発明のように、前記カラーイメージセンサが、分光感度分布が異なる複数のカラーイメージセンサによって構成されて、夫々の受光面が画素配置方向にずらして配設され、前記第一のデータ形式が、前記複数のカラーイメージセンサの内の夫々から出力される画像データであって、前記カラー画像生成部が、前記複数のカラーイメージセンサの画像データを合成して解像度を高めるように構成されていることにより、カラーイメージセンサから出力された画像データから、カラー画像の生成及び圧縮ストリームの生成を行う際に、フレーム再配置に必要な記憶容量や帯域を節減できる。 Further, in the moving image processing apparatus according to claim 1, as in the invention according to claim 3, the color image sensor is configured by a plurality of color image sensors having different spectral sensitivity distributions, and each light receiving surface has a light receiving surface. The first data format is image data output from each of the plurality of color image sensors, and the color image generation unit includes the plurality of color images. Necessary for frame rearrangement when generating color image and generating compressed stream from image data output from color image sensor because it is configured to increase resolution by synthesizing sensor image data Saving storage capacity and bandwidth.
 また、請求項1乃至請求項3の何れか記載の動画処理装置は、請求項4に記載の発明のように、前記複数のフレームが、時間的に後行するフレームを参照せずに符号化するNonFフレームと、時間的に後行するフレームを参照して符号化するFフレームとによって構成され、前記フレーム再配列部が、前記入力されるNonFフレーム、Fフレームの種別に応じて遅延を与えて出力するように構成されている際に、適用できる。 Further, in the moving image processing device according to any one of claims 1 to 3, as in the invention according to claim 4, the plurality of frames are encoded without referring to a temporally subsequent frame. The frame rearrangement unit gives a delay according to the type of the input NonF frame and F frame. Applicable when configured to output.
 また、請求項4に記載の動画処理装置は、請求項5に記載の発明のように、前記NonFフレームが、さらに、前記フレーム間予測を用いずにフレーム内の画像信号をそのまま符号化するIフレームと、時間的に先行する参照フレームの画像信号からの差分を符号化させるPフレームとからなり、前記Fフレームが、時間的に先行する参照フレームと後行する参照フレームとの差分を符号化するBフレームであり、前記フレーム再配列部が、前記入力されるIフレーム、Pフレーム、Bフレームの種別に応じて遅延を与えて出力するように構成されている際に、適用できる。 According to a fourth aspect of the present invention, in the moving image processing apparatus according to the fifth aspect, the NonF frame further encodes an image signal in the frame as it is without using the inter-frame prediction. A frame and a P frame that encodes a difference from an image signal of a temporally preceding reference frame, and the F frame encodes a difference between a temporally preceding reference frame and a subsequent reference frame This is applicable when the frame rearrangement unit is configured to output with a delay according to the type of the input I frame, P frame, or B frame.
 また、請求項1乃至請求項3の何れか記載の動画処理装置は、請求項6に記載の発明のように、前記フレーム再配列部が、前記複数のフレーム種別のうちの一部のフレーム種別に対して遅延を与えて出力するように構成されていると良い。 Further, in the moving image processing device according to any one of claims 1 to 3, as in the invention according to claim 6, the frame rearrangement unit includes a part of the plurality of frame types. It may be configured to output with a delay.
 また、請求項1乃至請求項6の何れか記載の動画処理装置は、請求項7に記載の発明のように、前記フレーム再配列部には、前記第一のデータ形式の画像データにおける、少なくとも2フレーム分の夫々毎に画像データを格納するフレームバッファが備えられていることが好ましい。これにより、一般的な動画処理技術であるM=3のMPEGにおいて、Iフレーム及びPフレームの間に配列される2枚のBフレームを記憶できる。 The moving image processing apparatus according to any one of claims 1 to 6, as in the invention according to claim 7, includes at least the image data of the first data format in the frame rearrangement unit. It is preferable that a frame buffer for storing image data is provided for every two frames. Thereby, in the MPEG of M = 3 which is a general moving image processing technique, two B frames arranged between the I frame and the P frame can be stored.
 また、請求項1乃至請求項7の何れか記載の動画処理装置は、請求項8に記載の発明のように、前記画像生成部には、前記カラー画像の画像変形を行う画像変形処理部が備えられていることが好ましい。これにより、カラー画像の変形処理をする際に必要となるフレームバッファとして、フレーム再配列部のフレームバッファを利用することができ、別途画像変形に必要な記憶容量や帯域を節減できる。 Further, in the moving image processing device according to any one of claims 1 to 7, as in the invention according to claim 8, the image generation unit includes an image deformation processing unit that performs image deformation of the color image. It is preferable that it is provided. As a result, the frame buffer of the frame rearrangement unit can be used as a frame buffer required when performing color image deformation processing, and the storage capacity and bandwidth required for image deformation can be reduced separately.
 また、請求項8に記載の動画処理装置は、請求項9に記載の発明のように、前記フレーム再配列部が、前記画像変形の際にフレーム内の画像データを非ラスター順次で出力するように構成されていることが好ましい。これにより、別途画像変形用のフレームバッファを用意せずに、フレーム再配列部のフレームバッファを利用してデジタルズームや手ぶれ、収差補正等の画像変形を行うことができる。 According to an eighth aspect of the present invention, in the moving image processing device according to the ninth aspect, the frame rearrangement unit outputs the image data in the frame in a non-raster sequential manner when the image is deformed. It is preferable that it is comprised. As a result, it is possible to perform image deformation such as digital zoom, camera shake, and aberration correction by using the frame buffer of the frame rearrangement unit without separately preparing a frame buffer for image deformation.
 また、請求項1乃至請求項9の何れか記載の動画処理装置は、請求項10に記載の発明のように、ファインダーへ出力するカラー画像を生成する第2の画像生成部を備え、該第2の画像生成部では、前記フレーム再配列部におけるフレーム再配置を行うことなしに、カラー画像を生成することにより、ファインダーにカラー画像を生成する際に、ファインダーにはディスプレイ順に画像が表示されて、フレーム再配置による遅延が無く、カラーイメージセンサからの出力に対する追従性を良好に維持できる。 The moving image processing apparatus according to any one of claims 1 to 9 includes a second image generation unit that generates a color image to be output to a viewfinder, as in the invention according to claim 10, In the second image generation unit, when the color image is generated in the finder by generating a color image without performing the frame rearrangement in the frame rearrangement unit, the images are displayed on the finder in the order of display. There is no delay due to frame rearrangement, and the follow-up performance to the output from the color image sensor can be maintained well.
 また、請求項1乃至請求項10の何れか記載の動画処理装置は、請求項11に記載の発明のように、前記カラーイメージセンサから出力されるフレームシーケンスを、前記フレーム再配列部を通さずに前記カラー画像生成部に出力する再配列部迂回手段を備え、前記カラー画像生成部へ入力されるフレームシーケンスの、前記カラーイメージセンサから出力されるフレーム順と前記フレーム再配列部から出力されるフレーム順とを切り替え可能に構成されていることにより、必要に応じてフレーム再配列の有無を選択できて利便性を向上できる。 The moving image processing apparatus according to any one of claims 1 to 10 does not pass the frame sequence output from the color image sensor through the frame rearrangement unit as in the invention according to claim 11. A rearrangement unit bypassing means for outputting to the color image generation unit, and a frame sequence input to the color image generation unit and a frame order output from the color image sensor and output from the frame rearrangement unit By being configured to be able to switch the frame order, the presence / absence of frame rearrangement can be selected as necessary, and convenience can be improved.
 また、請求項12に記載の発明のように、請求項1~請求項11の何れか記載の動画処理装置及びカラーイメージセンサと、前記動画圧縮部で圧縮された動画情報を記憶する記録装置とを用いて、カムコーダを構成すればよい。これにより、カムコーダにおいて、動画のフレームシーケンスの圧縮ストリームを生成する際に、フレーム再配列に必要なメモリ容量及び帯域(フレームバッファのメモリ容量及び帯域)を節減でき、低消費電力化、低コスト化、動画処理回路における発熱量の低減化を実現できる。 Further, as in the invention described in claim 12, the moving image processing device and the color image sensor according to any one of claims 1 to 11, and a recording device that stores the moving image information compressed by the moving image compression unit, A camcorder may be configured using This enables the camcorder to reduce the memory capacity and bandwidth (frame buffer memory capacity and bandwidth) required for frame rearrangement when generating a compressed stream of a frame sequence of a moving image, reducing power consumption and cost. Thus, it is possible to reduce the amount of heat generated in the moving image processing circuit.
 また、請求項13に記載の発明のように、請求項1~請求項11の何れか記載の動画処理装置及びカラーイメージセンサと、前記動画圧縮部で圧縮された動画情報を外部機器へ送信する送信装置とを用いて遠隔モニター用カメラを構成すればよい。これにより、遠隔モニター用カメラにおいて、動画のフレームシーケンスの圧縮ストリームを生成する際に、フレーム再配列に必要なメモリ容量及び帯域(フレームバッファのメモリ容量及び帯域)を節減でき、低消費電力化、低コスト化、動画処理回路における発熱量の低減化を実現できる。 Further, as in the invention described in claim 13, the moving image processing apparatus and color image sensor according to any one of claims 1 to 11 and the moving image information compressed by the moving image compression unit are transmitted to an external device. A remote monitor camera may be configured using the transmitter. As a result, the remote monitor camera can reduce the memory capacity and bandwidth (frame buffer memory capacity and bandwidth) necessary for frame rearrangement when generating a compressed stream of a frame sequence of a moving image, reducing power consumption, Cost reduction and reduction in the amount of heat generated in the moving image processing circuit can be realized.
 次に、請求項14に記載の発明は、カラーイメージセンサより時系列的に複数のフレームに分割されて第一のデータ形式で出力された動画のフレームシーケンスから、フレーム間予測化方式によって符号化されたカラー動画の圧縮ストリームを生成する動画処理方法において、前記第一のデータ形式からなるフレームシーケンスを、前記圧縮ストリームの処理順に対応つけて並べ替えるフレーム再配列ステップと、前記フレーム再配列ステップで並べ替えられたフレームシーケンスにおける前記第一のデータ形式を、カラー画像に変換するカラー画像生成ステップと、前記カラー画像に変換された前記フレームシーケンスを、時間的に前後の複数のフレーム間の差分に基づいて符号化して圧縮する動画圧縮ステップと、を用いることを特徴とする。 Next, the invention according to claim 14 is encoded by an inter-frame prediction method from a frame sequence of a moving image which is divided into a plurality of frames in time series from a color image sensor and output in a first data format. In the moving image processing method for generating a compressed stream of color moving images, a frame rearrangement step for rearranging the frame sequence composed of the first data format in association with the processing order of the compressed stream, and the frame rearrangement step. A color image generation step of converting the first data format in the rearranged frame sequence into a color image, and the frame sequence converted into the color image into temporal differences between a plurality of frames. And a video compression step for encoding and compressing based on To.
 請求項14に記載の動画処理方法によれば、第一のデータ形式からなるフレームシーケンスを、圧縮ストリームの処理順に対応つけて並べ替えるフレーム再配列ステップと、フレーム再配列ステップで並べ替えられたフレームシーケンスにおける第一のデータ形式を、カラー画像に変換するカラー画像生成ステップと、カラー画像に変換されたフレームシーケンスを、時間的に前後の複数のフレーム間の差分に基づいて符号化して圧縮する動画圧縮ステップと、を用いることにより、請求項1に記載の発明と同様に、フレーム再配列に必要なメモリ容量及び帯域(フレームバッファのメモリ容量及び帯域)を節減でき、低消費電力化、低コスト化、低消費電力化に伴う当該動画処理回路における発熱量の低減化を実現できる。 According to the moving image processing method of claim 14, a frame rearrangement step for rearranging the frame sequence having the first data format in association with the processing order of the compressed stream, and the frames rearranged in the frame rearrangement step A color image generation step for converting the first data format in the sequence into a color image, and a moving image in which the frame sequence converted into the color image is encoded and compressed based on differences between a plurality of frames before and after the time By using the compression step, the memory capacity and bandwidth required for frame rearrangement (memory capacity and bandwidth of the frame buffer) can be reduced, and the power consumption can be reduced and the cost can be reduced. The amount of heat generated in the moving image processing circuit can be reduced along with the reduction in power consumption.
 次に、請求項15に記載の発明は、カラーイメージセンサより時系列的に複数のフレームに分割されて第一のデータ形式で出力された動画のフレームシーケンスから、フレーム間予測化方式によって符号化されたカラー動画の圧縮ストリームを生成する動画処理プログラムであって、前記第一のデータ形式からなるフレームシーケンスを、前記圧縮ストリームの処理順に対応つけて並べ替えるフレーム再配列ステップと、前記フレーム再配列ステップで並べ替えられたフレームシーケンスにおける前記第一のデータ形式を、カラー画像に変換するカラー画像生成ステップと、前記カラー画像に変換された前記フレームシーケンスを、時間的に前後の複数のフレーム間の差分に基づいて符号化して圧縮する動画圧縮ステップと、をコンピュータに実行させる。 Next, the invention according to claim 15 is encoded by an inter-frame prediction method from a frame sequence of a moving image which is divided into a plurality of frames in time series from a color image sensor and output in a first data format. A moving image processing program for generating a compressed stream of color moving images, wherein a frame rearrangement step of rearranging a frame sequence composed of the first data format in association with a processing order of the compressed stream; and the frame rearrangement A color image generation step of converting the first data format in the frame sequence rearranged in the step into a color image, and the frame sequence converted into the color image between a plurality of frames before and after in time A video compression step for encoding and compressing based on the difference; To be executed in.
 請求項15に記載の動画処理プログラムによれば、第一のデータ形式からなるフレームシーケンスを、圧縮ストリームの処理順に対応つけて並べ替えるフレーム再配列ステップと、フレーム再配列ステップで並べ替えられたフレームシーケンスにおける第一のデータ形式を、カラー画像に変換するカラー画像生成ステップと、カラー画像に変換されたフレームシーケンスを、時間的に前後の複数のフレーム間の差分に基づいて符号化して圧縮する動画圧縮ステップと、をコンピュータに実行させることにより、請求項1に記載の発明と同様に、フレーム再配列に必要なメモリ容量及び帯域(フレームバッファのメモリ容量及び帯域)を節減でき、低消費電力化、低コスト化、低消費電力化に伴う当該動画処理回路における発熱量の低減化を実現できる。 According to the moving image processing program of claim 15, a frame rearrangement step for rearranging the frame sequence having the first data format in association with the processing order of the compressed stream, and the frame rearranged by the frame rearrangement step A color image generation step for converting the first data format in the sequence into a color image, and a moving image in which the frame sequence converted into the color image is encoded and compressed based on differences between a plurality of frames before and after the time By causing the computer to execute the compression step, the memory capacity and bandwidth (frame buffer memory capacity and bandwidth) required for frame rearrangement can be reduced and the power consumption can be reduced, as in the first aspect of the invention. , Reduce the amount of heat generated in the video processing circuit due to low cost and low power consumption It can be current.
 本発明の動画処理装置、動画処理方法、動画処理プログラムは、第一のデータ形式からなるフレームシーケンスを、圧縮ストリームの処理順に対応つけて並べ替え、次いで、並べ替えられたフレームシーケンスにおける第一のデータ形式を、カラー画像に変換し、カラー画像に変換されたフレームシーケンスを、時間的に前後の複数のフレーム間の差分に基づいて符号化して圧縮するように構成されているので、フレーム再配列に必要なメモリ容量及び帯域(フレームバッファのメモリ容量及び帯域)を節減でき、低消費電力化、低コスト化、低消費電力化に伴う当該動画処理回路における発熱量の低減化を実現できる。 The moving image processing apparatus, the moving image processing method, and the moving image processing program of the present invention rearrange the frame sequence composed of the first data format in association with the processing order of the compressed stream, and then the first in the rearranged frame sequence The data format is converted to a color image, and the frame sequence converted to a color image is encoded and compressed based on the difference between multiple frames before and after the frame. The memory capacity and bandwidth (frame buffer memory capacity and bandwidth) required for the video processing circuit can be reduced, and the heat generation amount in the moving image processing circuit can be reduced with lower power consumption, lower cost, and lower power consumption.
 また、本発明における動画処理装置及びカラーイメージセンサと、前記動画処理装置の動画圧縮部で圧縮された動画情報を記憶する記録装置とを用いて、カムコーダを構成することにより、カムコーダにおいて、動画のフレームシーケンスの圧縮ストリームを生成する際に、フレーム再配列に必要なメモリ容量及び帯域(フレームバッファのメモリ容量及び帯域)を節減でき、低消費電力化、低コスト化、動画処理回路における発熱量の低減化を実現できる。 Further, by configuring the camcorder using the moving image processing device and color image sensor according to the present invention and the recording device that stores the moving image information compressed by the moving image compression unit of the moving image processing device, in the camcorder, When generating a compressed stream of a frame sequence, the memory capacity and bandwidth (frame buffer memory capacity and bandwidth) required for frame rearrangement can be reduced, reducing power consumption and cost, and reducing the amount of heat generated in the video processing circuit. Reduction can be realized.
 また、本発明における動画処理装置及びカラーイメージセンサと、前記動画処理装置の動画圧縮部で圧縮された動画情報を外部機器へ送信する送信装置とを用いて遠隔モニター用カメラを構成することにより、遠隔モニター用カメラにおいて、動画のフレームシーケンスの圧縮ストリームを生成する際に、フレーム再配列に必要なメモリ容量及び帯域(フレームバッファのメモリ容量及び帯域)を節減でき、低消費電力化、低コスト化、動画処理回路における発熱量の低減化を実現できる。 Further, by configuring a remote monitor camera using the moving image processing device and color image sensor according to the present invention, and a transmission device that transmits the moving image information compressed by the moving image compression unit of the moving image processing device to an external device, When generating a compressed stream of a video frame sequence in a remote monitor camera, the memory capacity and bandwidth required for frame rearrangement (memory capacity and bandwidth of the frame buffer) can be reduced, reducing power consumption and cost. Thus, it is possible to reduce the amount of heat generated in the moving image processing circuit.
本発明の第1の実施形態における、(a)が本発明の動画処理装置が適用された撮像装置1Aの構成を表したブロック図、(b)が同撮像装置1Aにおける撮像部の説明図である。In the first embodiment of the present invention, (a) is a block diagram showing a configuration of an imaging apparatus 1A to which the moving image processing apparatus of the present invention is applied, and (b) is an explanatory diagram of an imaging unit in the imaging apparatus 1A. is there. 同第1の実施形態の撮像装置1Aにおける、フレーム再配列部の動作の説明図である。It is explanatory drawing of operation | movement of the frame rearrangement part in 1 A of imaging devices of the 1st embodiment. 本発明の第2の実施形態における、(a)が本発明の動画処理装置が適用された撮像装置1Bの構成を表したブロック図、(b)が同撮像装置1Bにおける撮像部の説明図、(c)が同撮像装置1Bにおける画像データ合成処理の説明図である。In the 2nd Embodiment of this invention, (a) is a block diagram showing the structure of the imaging device 1B to which the moving image processing apparatus of this invention was applied, (b) is explanatory drawing of the imaging part in the imaging device 1B, (C) is explanatory drawing of the image data synthesis process in the imaging device 1B. 同第2の実施形態の撮像装置1Bにおける、フレーム再配列部の動作の説明図である。It is explanatory drawing of operation | movement of the frame rearrangement part in the imaging device 1B of the 2nd embodiment. 本発明の第3の実施形態における、本発明の動画処理装置が適用された撮像装置1Cの構成を表したブロック図である。It is a block diagram showing the structure of 1 C of imaging devices to which the moving image processing apparatus of this invention was applied in the 3rd Embodiment of this invention. 本発明の第4の実施形態における、本発明の動画処理装置が適用された撮像装置1Dの構成を表したブロック図である。It is a block diagram showing the structure of imaging device 1D to which the moving image processing device of this invention was applied in the 4th Embodiment of this invention.
符号の説明Explanation of symbols
 1A,1B,1C,1D…撮像装置、110,111,112…撮像部、111a,111b,111c…撮像素子、120…AFE(Analog Front End)、130,131,132…フレーム再配列部、130a~130d,131a,131b…フレームバッファ、135…CCD(Charge Coupled Devices)、135s…受光エリア、135a,135b…バッファエリア、140,141…画像生成部、150…動画圧縮部、150a,150b…予測メモリ、160…記録部、170…信号分割手段、180…第2の画像生成部、190…ファインダー、200…フレーム再配列迂回手段、210…出力切替手段、220…モニター出力部、225…外部高解像度ディスプレイ。 1A, 1B, 1C, 1D ... imaging device, 110, 111, 112 ... imaging unit, 111a, 111b, 111c ... imaging device, 120 ... AFE (Analog Front End), 130, 131, 132 ... frame rearrangement unit, 130a 130d, 131a, 131b ... Frame buffer, 135 ... CCD (Charge Coupled Devices), 135s ... Light receiving area, 135a, 135b ... Buffer area, 140, 141 ... Image generation unit, 150 ... Video compression unit, 150a, 150b ... Prediction Memory 160, recording unit 170, signal dividing unit 180, second image generating unit 190, viewfinder, 200, frame rearrangement bypass unit, 210, output switching unit, 220, monitor output unit, 225, external high Resolution display.
(第1の実施形態)
 次に、図1、図2を用いて、本発明の第1の実施形態を説明する。
(First embodiment)
Next, a first embodiment of the present invention will be described with reference to FIGS.
 図1において、(a)が本発明の動画処理装置が適用された第1の実施形態の撮像装置1Aの構成を表したブロック図、(b)が同撮像装置1Aにおける撮像部の説明図である。また、図2は、同第1の実施形態の撮像装置1Aにおける、フレーム再配列部の動作の説明図である。 1A is a block diagram showing the configuration of the imaging apparatus 1A of the first embodiment to which the moving image processing apparatus of the present invention is applied, and FIG. 1B is an explanatory diagram of an imaging unit in the imaging apparatus 1A. is there. FIG. 2 is an explanatory diagram of the operation of the frame rearrangement unit in the imaging apparatus 1A according to the first embodiment.
 図1(a)に表したように、撮像装置1Aは、例えばビデオカムコーダであって、撮影した画像信号を順次アナログ電気信号に変換して出力する撮像部110、撮像部110から出力されたアナログ電気信号をデジタルデータに変換して出力するAFE120、AFE120から出力されたデジタルデータをフレーム毎に分割し、そのフレーム順序を変更して出力する(所謂、フレームを再配列する)フレーム再配列部130、フレーム再配列部130から出力された各フレームの画像データをカラー画像に変換する画像生成部140、画像生成部140から出力されたカラー画像のフレームシーケンスを、動画として圧縮し、圧縮ストリームを出力する動画圧縮部150、動画圧縮部150から出力された圧縮ストリームを、例えばフラッシュメモリや光/磁気記録媒体に記録する記録部160、等によって構成されている。 As illustrated in FIG. 1A, the imaging device 1A is, for example, a video camcorder, and sequentially converts captured image signals into analog electrical signals and outputs the analog image signals output from the imaging unit 110. The AFE 120 that converts electrical signals into digital data and outputs them, the digital data output from the AFE 120 is divided into frames, and the frame order is changed and output (so-called frame rearrangement) 130 The image generation unit 140 that converts the image data of each frame output from the frame rearrangement unit 130 into a color image, the color image frame sequence output from the image generation unit 140 is compressed as a moving image, and a compressed stream is output The compressed video output from the moving image compression unit 150 and the moving image compression unit 150 Recording unit 160 for recording the Shumemori and optical / magnetic recording medium is constituted by a like.
 また、撮像装置1Aには、図示されないCPU(Central Processing Unit)やROM(Read Only Memory)が備えられており、CPUがROMに格納された制御用プログラムに従って、当該撮像装置1Aの各処理を制御する。 Further, the imaging apparatus 1A includes a CPU (Central Processing Unit) and a ROM (Read Only Memory) (not shown), and the CPU controls each process of the imaging apparatus 1A according to a control program stored in the ROM. To do.
 撮像部110は、単板式のカラー撮像素子(本発明における単板カラーイメージセンサである)であって、複数の光電変換素子がマトリックス状に配置され、その前面には、光電変換素子に対応付けて、図1(b)に表したように、R(赤)、G(緑)、B(青)の3原色のベイヤー(Bayer)配列からなるカラーフィルタを備え、各色のフィルタ部を通過した単一色の光量を電気信号に変換するように構成されている。なお、ベイヤー配列は、図1(b)に表したように、G色のフィルタが市松模様で配置され、G色フィルタとR色フィルタが交互に配置された列と、G色フィルタとB色フィルタが交互に配置された列とが、交互に配置されている。 The imaging unit 110 is a single-plate color image sensor (single-plate color image sensor according to the present invention), in which a plurality of photoelectric conversion elements are arranged in a matrix, and a front surface thereof is associated with the photoelectric conversion element. As shown in FIG. 1B, a color filter having a Bayer array of three primary colors of R (red), G (green), and B (blue) is provided, and passes through the filter portion of each color. It is configured to convert a single color light amount into an electrical signal. Note that, as shown in FIG. 1B, the Bayer arrangement is such that the G color filters are arranged in a checkered pattern, the G color filters and the R color filters are alternately arranged, the G color filters, and the B colors. The columns in which the filters are alternately arranged are alternately arranged.
 AFE120は、撮像部110から出力されたアナログ画像信号に対して相関二重サンプリングし、ノイズを除去する相関二重サンプリング回路(CDS:Corelated Double Sampling)、相関二重サンプリング回路を介して入力されたアナログ画像信号を増幅する可変利得増幅器(AGC:Automatic Gain Control)、可変利得増幅器を介して入力されたアナログ画像信号をデジタル画像信号に変換するA/D変換器等によって構成され、撮像部110から出力されたフレームのアナログ画像信号を、ベイヤー配列に対応付けたデジタル画像信号に変換してフレーム再配列部130に出力する。 The AFE 120 is input via a correlated double sampling circuit (CDS: Correlated Double Sampling) and a correlated double sampling circuit that performs correlated double sampling on the analog image signal output from the imaging unit 110 and removes noise. The imaging unit 110 includes a variable gain amplifier (AGC) that amplifies the analog image signal, an A / D converter that converts the analog image signal input through the variable gain amplifier into a digital image signal, and the like. The output analog image signal of the frame is converted into a digital image signal associated with the Bayer array and output to the frame rearrangement unit 130.
 ここで、撮像部110が2Mピクセル(画素)で構成され、AFE120におけるA/D変換の精度を8bitとすれば、AFE120から出力される1フレームあたりの画像信号は、16Mbit(2M*8bit=16Mbit)となる。 Here, if the imaging unit 110 is configured with 2M pixels (pixels) and the A / D conversion accuracy in the AFE 120 is 8 bits, an image signal per frame output from the AFE 120 is 16 Mbits (2M * 8 bits = 16 Mbits). )
 フレーム再配列部130は、ディスプレイ順序で入力されるデジタル化されたベイヤーデータのフレーム順序を、動画圧縮部150の処理順に対応付けられた伝送順序に変換する。 The frame rearrangement unit 130 converts the frame order of the digitized Bayer data input in the display order into a transmission order associated with the processing order of the moving picture compression unit 150.
 例えば、動画圧縮部150において、M=3のMPEGストリームを生成する際には、図2(a)に表したように、k番目に入力される入力フレーム(k)に対し、k≡2(mod 3)であれば、Iフレーム又はPフレームとなり、k≡0又は1(mod 3)であれば、Bフレームとなる。modは、所定の数値(k)をmodナンバーで除算してその剰余を求める演算子である。 For example, when the M = 3 MPEG stream is generated in the moving image compression unit 150, as shown in FIG. 2A, k≡2 ( If mod 3), it is an I frame or P frame, and if k≡0 or 1 (mod 3), it is a B frame. mod is an operator that divides a predetermined numerical value (k) by a mod number to obtain the remainder.
 そこで、フレーム再配列部130では、Bフレームに対して、Iフレーム又はPフレームよりも3フレーム多い遅延を与えて画像生成部140に出力する。本実施形態では、4フレーム分のフレームバッファ130a~130dを備え、入力と出力に適宜フレームバッファ130a~130dを割り当てることによりフレームの再配列を実現する。フレームバッファ130a~130dは、夫々16Mbitの容量をもち、合計64Mbitのメモリを有する。 Therefore, the frame rearrangement unit 130 gives a delay of 3 frames more than the I frame or P frame to the B frame and outputs it to the image generation unit 140. In this embodiment, frame buffers 130a to 130d for four frames are provided, and frame rearrangement is realized by assigning frame buffers 130a to 130d as appropriate to inputs and outputs. Each of the frame buffers 130a to 130d has a capacity of 16 Mbits and has a total memory of 64 Mbits.
 画像生成部140は、フレーム再配列部130から出力されたフレームを、順次、ベイヤー画像からカラー画像に変換する。カラー画像信号を、YCrCb=4:2:2として生成する。この際、ベイヤー画像では1画素あたり1つの値=8bit/pixで表されているのに対し、カラー画像では1画素あたり2つの値=16bit/pixに倍増し、1フレームあたりのカラー画像信号が、32Mbit(16bit/pix*2Mpix=32Mbit)になる。なお、前述のカラー画像信号において、Yが輝度、CrがYに対するRの色差、CbがYに対するBの色差である。 The image generation unit 140 sequentially converts the frames output from the frame rearrangement unit 130 from Bayer images to color images. A color image signal is generated with YCrCb = 4: 2: 2. At this time, in a Bayer image, one value per pixel = 8 bits / pix, whereas in a color image, two values per pixel = 16 bits / pix, and the color image signal per frame is increased. , 32 Mbit (16 bits / pix * 2 Mpix = 32 Mbit). In the color image signal described above, Y is the luminance, Cr is the R color difference with respect to Y, and Cb is the B color difference with respect to Y.
 本実施例では、どのフレームに対しても、フレーム再配列部130に対しフレームバッファ130a~130dを参照することができるように構成されている。そのため、画像生成部140は、ベイヤー画像に対して非ラスター順次のアクセスを行うことができる。 In this embodiment, the frame buffers 130a to 130d can be referred to the frame rearrangement unit 130 for any frame. Therefore, the image generation unit 140 can perform non-raster sequential access to the Bayer image.
 これにより、本実施形態における撮像装置1Aは、別途画像変形用のバッファを用意することなしに、フレームバッファ130a~130dを利用して、デジタルズームや手ぶれ、色収差及び歪曲収差補正等の画像変形も行うことができる。 Accordingly, the imaging apparatus 1A according to the present embodiment also performs image deformation such as digital zoom, camera shake, chromatic aberration, and distortion correction using the frame buffers 130a to 130d without separately preparing a buffer for image deformation. be able to.
 動画圧縮部150は、画像生成部140から出力されるカラー画像のフレームシーケンスを圧縮する。本実施例では、Iフレーム又はPフレームが現れる周期Mが3フレーム間隔(M=3)のMPEG圧縮を行う。そして、MPEGの動画圧縮部150では、フレーム間予測を行うための2つの予測メモリ150a、150bが備えられている。また、各フレームの圧縮データは、一連の圧縮ストリームとして記録部160に出力される。 The moving image compression unit 150 compresses the color image frame sequence output from the image generation unit 140. In the present embodiment, MPEG compression is performed with a period M in which an I frame or a P frame appears at an interval of 3 frames (M = 3). The MPEG moving image compression unit 150 includes two prediction memories 150a and 150b for performing inter-frame prediction. The compressed data of each frame is output to the recording unit 160 as a series of compressed streams.
 次に、圧縮ストリームを生成する動作の詳細を説明する。まず、撮像部110において、所定時間(例えば、1/60秒)毎に露光が行われ、露光毎に、各光電変換素子における露光量をアナログ電気信号とし、順次AFE120に出力する。この際、各光電変換素子から出力されたアナログ電気信号の集合は、ベイヤー配列のカラーフィルタに対応付けられたベイヤー画像信号となる。また、動画撮影であるため、一回の露光が終わると同時に次のフレームの露光が開始され、順次連続してアナログ画像信号が出力される。そして、各画像をフレームとし、そのフレームシーケンスによって動画が形成される。 Next, details of the operation for generating a compressed stream will be described. First, in the imaging unit 110, exposure is performed every predetermined time (for example, 1/60 seconds), and for each exposure, the exposure amount in each photoelectric conversion element is converted into an analog electric signal and sequentially output to the AFE 120. At this time, a set of analog electric signals output from each photoelectric conversion element becomes a Bayer image signal associated with the color filter of the Bayer array. In addition, since it is moving image shooting, the exposure of the next frame is started simultaneously with the end of one exposure, and analog image signals are sequentially output. Each image is used as a frame, and a moving image is formed by the frame sequence.
 次に、撮像部110から出力されたアナログ電気信号は、AFE120においてデジタル信号に変換される。このデジタル信号が、撮像部のベイヤー配列に対応けられたベイヤー画像信号であって、第一のデータ形式である。また、AFE120から出力されるベイヤー画像信号は、撮像部110の露光順に次々と出力される(本書では、この出力順をディスプレイ順と言う)。 Next, the analog electrical signal output from the imaging unit 110 is converted into a digital signal by the AFE 120. This digital signal is a Bayer image signal corresponding to the Bayer array of the imaging unit, and has the first data format. In addition, the Bayer image signals output from the AFE 120 are sequentially output in the order of exposure of the imaging unit 110 (this output order is referred to as display order in this document).
 次に、図2(a)に表したように、各フレームに対して、ディスプレイ順にk=0、1、2…、とフレーム番号を与え、k≡2(mod 3)のフレームをIフレーム又はPフレームとし、k≡0(mod 3)又はk≡1(mod 3)のフレームをBフレームとして、各フレームがフレーム再配列部130に入力される。また、この際、ディスプレイ順で出力されるベイヤー画像信号は、ラスター順次でフレーム再配列部130に入力される。 Next, as shown in FIG. 2 (a), for each frame, frame numbers are given as k = 0, 1, 2,... In the order of display, and a frame of k≡2 (mod 3) is an I frame or Each frame is input to the frame rearrangement unit 130 as a P frame and a frame with k≡0 (mod 3) or k≡1 (mod 3) as a B frame. At this time, the Bayer image signals output in the display order are input to the frame rearrangement unit 130 in raster order.
 次に、フレーム再配列部130において、AFE120から入力された入力フレーム(k)は、フレームバッファ(図2(a)における入力バッファである)130a~130dのうちの何れかに格納され、格納された順序と異なる順序で画像生成部140に出力される(本発明におけるフレーム再配列ステップである)。 Next, in the frame rearrangement unit 130, the input frame (k) input from the AFE 120 is stored and stored in one of the frame buffers (input buffers in FIG. 2A) 130a to 130d. Are output to the image generation unit 140 in an order different from the order (this is a frame rearrangement step in the present invention).
 詳しくは、図2(a)、(b)に表したように、Iフレーム又はPフレームには1フレームの遅延が行われ、Bフレームには4フレームの遅延が行われる。この際、本発明では、遅延の絶対量に拘らず、Bフレームに対し、Iフレーム又はPフレームよりもM(Mは、MPEG動画処理技術において、Iフレーム又はPフレームが現れる周期である)フレーム分だけ多い遅延を与えることが重要である。これにより、画像生成部140に入力されるフレーム順序が、伝送順序となる。 Specifically, as shown in FIGS. 2A and 2B, a delay of 1 frame is performed for the I frame or the P frame, and a delay of 4 frames is performed for the B frame. In this case, according to the present invention, M frames (B is the period in which I frames or P frames appear in the MPEG moving image processing technology) for B frames rather than I frames or P frames, regardless of the absolute amount of delay. It is important to give as much delay as possible. As a result, the frame order input to the image generation unit 140 becomes the transmission order.
 次に、画像生成部140において、フレーム再配列部130を介して入力された各フレームを、ベイヤー画像信号からカラー画像信号に変換する(本発明におけるカラー画像生成ステップである)。ここでは、一般に知られている色補間処理或いはデモザイク処理の他に、色変換や、画像のエッジ強調、ノイズ抑制、トーンカーブ処理等の画像処理を行い、鑑賞に適した画質とする。 Next, the image generation unit 140 converts each frame input via the frame rearrangement unit 130 from a Bayer image signal to a color image signal (this is a color image generation step in the present invention). Here, in addition to generally known color interpolation processing or demosaicing processing, image processing such as color conversion, image edge enhancement, noise suppression, and tone curve processing is performed to obtain an image quality suitable for viewing.
 さらに、画像生成部140では、フレーム再配列部130のフレームバッファ130a~130dに格納されているベイヤー画像信号を非ラスター順次に読み出して、拡大、縮小、回転などの画像変形を行うことができる。画像生成部140で変換されたカラー画像信号は、動画圧縮部150に出力される。 Further, the image generation unit 140 can read the Bayer image signals stored in the frame buffers 130a to 130d of the frame rearrangement unit 130 in a non-raster order and perform image deformation such as enlargement, reduction, and rotation. The color image signal converted by the image generation unit 140 is output to the moving image compression unit 150.
 次に、動画圧縮部150において、画像生成部140から入力されたカラー画像のフレームシーケンスの圧縮処理を行う(本発明における動画圧縮ステップである)。 Next, the moving image compression unit 150 performs compression processing of the frame sequence of the color image input from the image generation unit 140 (this is a moving image compression step in the present invention).
 本実施例では、M=3のMPEG圧縮処理を行い、Iフレーム、Pフレーム、Bフレームの3種類に対して異なる圧縮法を用いる。なお、本発明におけるNonFフレームがIフレーム及びPフレームに相当し、本発明におけるFフレームがBフレームに相当する。 In this embodiment, MPEG compression processing of M = 3 is performed, and different compression methods are used for the three types of I frame, P frame, and B frame. Note that the NonF frame in the present invention corresponds to an I frame and a P frame, and the F frame in the present invention corresponds to a B frame.
 詳しくは、Iフレームに対しては、予測メモリを用いないフレーム内符号化を行い、記録部160に出力すると共に、予測メモリ150a又は150bのうちの更新履歴が古い方(つまり、先に更新された方)に入力して更新する。 Specifically, for the I frame, intra-frame coding without using the prediction memory is performed and output to the recording unit 160, and the update history of the prediction memory 150a or 150b is older (that is, updated earlier). Update).
 Pフレームに対しては、予測メモリ150a又は150bのうちの更新履歴が新しい方に格納されているフレームからのフレーム間予測を用いて符号化を行い、記録部160に出力すると共に、予測メモリ150a又は150bのうちの更新履歴が古い方に入力して更新する。Pフレームが画像生成部140に入力される際、予測メモリ150a又は150bの何れか新しい方には、3フレーム直前に入力されたIフレーム又はPフレームが格納されている。 For the P frame, encoding is performed using inter-frame prediction from a frame in which the update history of the prediction memory 150a or 150b is stored in a newer one, and the result is output to the recording unit 160 and the prediction memory 150a. Alternatively, the update history of 150b is input and updated. When the P frame is input to the image generation unit 140, the I frame or the P frame input immediately before the third frame is stored in the newer one of the prediction memories 150a and 150b.
 Bフレームに対しては、予測メモリ150a及び150bに格納されている2つのフレームからのフレーム間予測を用いて符号化を行い、記録部160に出力する。Bフレームが動画圧縮部150に入力される際、予測メモリ150a又は150bの何れか新しい方には、画像生成部140に直前に入力されたIフレーム又はPフレームが格納されており、他方には(つまり、予測メモリ150a又は150bの何れか古い方)、さらにその3フレーム直前に入力されたIフレーム又はPフレームが格納されている。 The B frame is encoded using inter-frame prediction from two frames stored in the prediction memories 150a and 150b, and is output to the recording unit 160. When the B frame is input to the moving picture compression unit 150, the newer one of the prediction memories 150a and 150b stores the I frame or the P frame input immediately before to the image generation unit 140, and the other (That is, which one of the prediction memories 150a and 150b is the older one) and the I frame or P frame input immediately before the three frames are stored.
 ただし、画像生成部140に入力されるフレームの順序がフレーム再配列部130で再配列された伝送順序であって、ディスプレイ順序でいえば、予測メモリ150a又は150bの何れか古い方には、撮像部110において(処理対象としているBフレームの)直前に露光されたIフレーム又はPフレームが格納され、他方には、撮像部110において(処理対象としているBフレームの)直後に露光されたIフレーム又はPフレームが格納されていることになり(所謂、本発明における時間的に先行する参照フレームと時間的に後行する参照フレームが格納されている)、これによりBフレームでは双方向予測が実現される。 However, the order of frames input to the image generation unit 140 is the transmission order rearranged by the frame rearrangement unit 130, and in terms of display order, the prediction memory 150a or 150b, whichever is older, The I frame or P frame exposed immediately before (the B frame to be processed) in the unit 110 is stored, and the I frame exposed immediately after (the B frame to be processed) in the imaging unit 110 is stored. Alternatively, P frames are stored (so-called reference frames that precede in time and reference frames that follow in time in the present invention are stored), and bi-directional prediction is realized in B frames. Is done.
 次に、記録部160において、動画圧縮部150で符号化された画像シーケンスの圧縮ストリームが記録される。 Next, the recording unit 160 records a compressed stream of the image sequence encoded by the moving image compression unit 150.
 なお、撮像装置1Aにおいて、記録部160に代えて送信部を備えてもよい。この際、送信部は、有線或いは無線の通信手段を経て、他の映像機器に接続される。また、送信部は、動画圧縮部150によって符号化された画像シーケンスを、圧縮ストリームとして他の映像機器に送信する。これにより、遠隔モニター用カメラを構成できる。 Note that the imaging apparatus 1A may include a transmission unit instead of the recording unit 160. At this time, the transmission unit is connected to another video device via a wired or wireless communication means. Further, the transmission unit transmits the image sequence encoded by the moving image compression unit 150 to another video device as a compressed stream. Thus, a remote monitor camera can be configured.
 以上のように、第1の実施形態に記載の撮像装置1Aは、一般にMPEG圧縮で必要とされるフレーム再配列処理を、カラー画像ではなくベイヤー画像に対して行うことにより、フレーム再配列に必要なメモリ容量及び帯域を削減できる。また、画像生成部140において、フレームの再配列に用いたフレームバッファ130a~130dを利用して画像変形を行うことにより、別途画像変形のためのメモリを必要とすることなく画像変形を行うことができる。 As described above, the imaging apparatus 1A described in the first embodiment is necessary for frame rearrangement by performing frame rearrangement processing generally required for MPEG compression on a Bayer image instead of a color image. Memory capacity and bandwidth can be reduced. Further, in the image generation unit 140, image deformation can be performed without requiring a separate image deformation memory by performing image deformation using the frame buffers 130a to 130d used for frame rearrangement. it can.
 つまり、従来のように画像生成部の後にフレーム再配列部と動画圧縮部を構成すると、フレーム再配列部においては、カラー画像を並べ替えるために、本第1の実施形態に較べて、大きなメモリ容量のフレーバッファが必要となり、所要帯域も大きくなる。また、従来例によれば、一般に、画像生成部において画像変形用のフレームバッファが別途必要になる。なお、本実施形態の撮像部110では100万画素(1Mピクセル)のPIA(Pixel Interleaved Array)配列とし、画像生成部140ではデモザイク処理に加えて高画素化処理を行ってもよい。この場合、本発明の適用により、フレーム再配列に要するメモリ容量及び帯域をさらに半減できる。ここで、PIA配列は、正方格子を45度回転させた画素配列であって、ベイヤー配列に比較すると、集光面積を広げることができて、1Mピクセルでベイヤー配列の2Mピクセルに近い解像度を得ることができる。 In other words, when the frame rearrangement unit and the moving image compression unit are configured after the image generation unit as in the past, the frame rearrangement unit has a larger memory than the first embodiment in order to rearrange the color images. A capacity frame buffer is required, and the required bandwidth also increases. In addition, according to the conventional example, generally, a frame buffer for image deformation is separately required in the image generation unit. Note that the imaging unit 110 of the present embodiment may have a PIA (Pixel Interleaved Array) array of 1 million pixels (1M pixels), and the image generation unit 140 may perform high pixel processing in addition to demosaic processing. In this case, the memory capacity and bandwidth required for frame rearrangement can be further halved by applying the present invention. Here, the PIA array is a pixel array obtained by rotating a square lattice by 45 degrees. Compared with the Bayer array, the PIA array can expand the light collection area, and the resolution close to 2M pixels of the Bayer array can be obtained with 1M pixels. be able to.
(第2の実施形態)
 次に、図3及び図4を用いて、本発明の第2の実施形態を説明する。図3において、(a)が本発明の動画処理装置が適用された第2の実施形態の撮像装置1Bの構成を表したブロック図、(b)が同撮像装置1Bにおける撮像部の説明図、(c)が同撮像装置1Bにおける画像データ合成処理の説明図である。また、図4は、同実施形態の撮像装置1Bにおけるフレーム再配列部の動作の説明図である。
(Second Embodiment)
Next, a second embodiment of the present invention will be described with reference to FIGS. 3, (a) is a block diagram showing the configuration of the imaging apparatus 1B of the second embodiment to which the moving image processing apparatus of the present invention is applied, and (b) is an explanatory diagram of an imaging unit in the imaging apparatus 1B. (C) is explanatory drawing of the image data synthesis process in the imaging device 1B. FIG. 4 is an explanatory diagram of the operation of the frame rearrangement unit in the imaging apparatus 1B of the embodiment.
 尚、第2の実施形態における撮像装置1Bは、基本的に第1の実施形態で表した撮像装置1Aと同じ構成なので、共通と成る構成部分については同一の符号を付与して詳細な説明を省き、特徴と成る部分について以下に説明する。 Note that the imaging apparatus 1B in the second embodiment is basically the same in configuration as the imaging apparatus 1A shown in the first embodiment, and therefore, the same components are assigned the same reference numerals for detailed description. Omitted and characteristic parts will be described below.
 図3(a)に表したように、撮像装置1Bは、例えばビデオカムコーダであって、撮影した画像信号を順次アナログ電気信号に変換して出力する撮像部111、撮像部111から出力されたアナログ電気信号をデジタルデータに変換して出力するAFE120、AFE120から出力されたデジタルデータをフレーム毎に分割し、そのフレーム順序を変更して出力する(所謂、フレームを再配列する)フレーム再配列部131、フレーム再配列部131から出力された各フレームデータをカラー画像に対応つけたカラーデータに変換する画像生成部141、画像生成部141から出力されたカラー画像のフレームシーケンスを、動画として圧縮し、圧縮ストリームを出力する動画圧縮部150、動画圧縮部150から出力された圧縮ストリームを、例えばフラッシュメモリや光又は磁気記録媒体に記録する記録部160、等によって構成されている。 As illustrated in FIG. 3A, the imaging device 1B is, for example, a video camcorder, and sequentially converts captured image signals into analog electrical signals and outputs them, and the analog output from the imaging unit 111. The AFE 120 that converts electrical signals into digital data and outputs them, the digital data output from the AFE 120 is divided into frames, and the frame order is changed and output (so-called frame rearrangement) 131. The image generation unit 141 that converts each frame data output from the frame rearrangement unit 131 into color data associated with the color image, the color image frame sequence output from the image generation unit 141 is compressed as a moving image, Video compression unit 150 that outputs a compressed stream, and a compression stream output from video compression unit 150 The beam, for example, the recording unit 160 for recording in the flash memory or optical or magnetic recording medium are constituted by the like.
 撮像部111は、分光感度分布が異なる3枚の撮像素子111a、111b、111cによって構成されて、夫々の受光面が画素配置方向にずらして配設されている。 The imaging unit 111 includes three imaging elements 111a, 111b, and 111c having different spectral sensitivity distributions, and the respective light receiving surfaces are arranged so as to be shifted in the pixel arrangement direction.
 詳しくは、撮像部111は、R、G、Bの色光を分離するための色分解プリズムが結像光学系の光路上に配置され、各色光の結像面に撮像素子111a、111b、111cが配置されている3板カラーカメラである。 Specifically, in the imaging unit 111, color separation prisms for separating R, G, and B color lights are arranged on the optical path of the imaging optical system, and the imaging elements 111a, 111b, and 111c are provided on the imaging surfaces of the respective color lights. This is a three-plate color camera arranged.
 そして、図3(b)に表したように、撮像素子111a、111b、111cの位置をサブピクセルの精度でずらしておくことによって、撮像素子111a、111b、111c毎の画素数よりも高い解像度を得るように構成されている。 Then, as shown in FIG. 3B, by shifting the positions of the image sensors 111a, 111b, and 111c with subpixel accuracy, a resolution higher than the number of pixels for each of the image sensors 111a, 111b, and 111c is obtained. Configured to get.
 つまり、撮像部111は、分光感度分布が異なる複数の撮像素子111a、111b、111cからなるカラーイメージセンサによって構成されて、夫々の受光面が画素配置方向にずらして配設されている。 That is, the imaging unit 111 is configured by a color image sensor including a plurality of imaging elements 111a, 111b, and 111c having different spectral sensitivity distributions, and the respective light receiving surfaces are arranged so as to be shifted in the pixel arrangement direction.
 本第2の実施形態では、フルHD(full high definition)の2M画素の解像度を得るものとし、撮像素子111a、111b、111c毎に0.5Mピクセル(画素)で構成され、Gに対してR及びBが縦横に半画素((Py/2)及び(Px/2))ずつ、ずらして配置されているものとする。 In the second embodiment, a resolution of 2M pixels of full HD (full high definition) is obtained, and each imaging element 111a, 111b, 111c is configured with 0.5M pixels (pixels). And B are arranged so as to be shifted by half pixels ((Py / 2) and (Px / 2)) vertically and horizontally.
 AFE120は、第1の実施形態と同様に、撮像部111から出力されたアナログ画像信号を、R、G、Bの3つのプレーンからなるデジタル画像信号に変換してフレーム再配列部131に出力する。 As in the first embodiment, the AFE 120 converts the analog image signal output from the imaging unit 111 into a digital image signal including three planes R, G, and B, and outputs the digital image signal to the frame rearrangement unit 131. .
 ここで、AFE120におけるA/D変換の精度を8bitとすれば、AFE120から出力される1フレームあたりの画像信号は、12Mbit(0.5M*8bit*3プレーン=12Mbit)となる。 Here, if the accuracy of A / D conversion in the AFE 120 is 8 bits, the image signal per frame output from the AFE 120 is 12 Mbits (0.5 M * 8 bits * 3 planes = 12 Mbits).
 フレーム再配列部131は、第1の実施形態と同様に、ディスプレイ順序で入力されるデジタル化された画素ずらしデータのフレーム順序を、動画圧縮部150の処理順に対応付けた伝送順序に変換する。本第2の実施形態では、フレーム再配列部131に2フレーム分のフレームバッファ131a、131bが備えられ、撮像部111からの入力に応じて、適宜、フレームバッファ131a、131bを割り当てたり、或いは入力をそのまま出力したりすることにより、フレームの再配列を実現する。フレームバッファ131a、131bは、夫々12Mbitの容量をもち、合計24Mbitのメモリを有する。 The frame rearrangement unit 131 converts the frame order of the digitized pixel shift data input in the display order into the transmission order associated with the processing order of the moving picture compression unit 150, as in the first embodiment. In the second embodiment, the frame rearrangement unit 131 includes frame buffers 131a and 131b for two frames, and the frame buffers 131a and 131b are assigned or input as appropriate according to the input from the imaging unit 111. The frame rearrangement is realized by outputting as is. The frame buffers 131a and 131b each have a capacity of 12 Mbit and have a total of 24 Mbit of memory.
 画像生成部141は、フレーム再配列部131から出力されたフレームを、順次、画素ずらし画像から高解像度化処理を行い、1フレームあたりの画素数が各撮像素子111a、111b、111cにおける画素数の4倍になる2M画素のカラー画像に変換する。つまり、図3(c)に表したようにGに対してR及びBが縦横に半画素((Px/2)及び(Py/2))ずつ、ずらして配置された画像信号を用いて、1フレームあたり4倍の画素数を補間生成(高密度補間処理)し、画素毎に、カラー画像信号を、YCrCb=4:2:2として生成する。 The image generation unit 141 sequentially performs high resolution processing on the frame output from the frame rearrangement unit 131 from the pixel-shifted image, and the number of pixels per frame is equal to the number of pixels in each of the image sensors 111a, 111b, and 111c. The image is converted to a color image of 2M pixels that is quadrupled. In other words, as shown in FIG. 3C, by using image signals in which R and B are shifted by half pixels ((Px / 2) and (Py / 2)) vertically and horizontally with respect to G, Four times the number of pixels per frame is generated by interpolation (high-density interpolation processing), and a color image signal is generated as YCrCb = 4: 2: 2 for each pixel.
 この際、画素ずらし画像では、1フレームあたりの画像信号が12Mbitで表されているのに対し、カラー画像では,1フレームあたりのカラー画像信号が、32Mbit(16bit/pix*2Mpix=32Mbit)になる。 At this time, in the pixel shifted image, the image signal per frame is represented by 12 Mbit, whereas in the color image, the color image signal per frame is 32 Mbit (16 bits / pix * 2 Mpix = 32 Mbit). .
 次に、第1の実施形態と同様に、動画圧縮部150において、画像生成部141から出力されるカラー画像のフレームシーケンスを圧縮し、各フレームの圧縮データが、一連の圧縮ストリームとして記録部160に出力される。 Next, as in the first embodiment, the moving image compression unit 150 compresses the frame sequence of the color image output from the image generation unit 141, and the compressed data of each frame is recorded as a series of compressed streams in the recording unit 160. Is output.
 次に、圧縮ストリームを生成する動作の詳細を説明する。まず、撮像部111において、所定時間(例えば、1/60秒)毎に露光が行われ、露光毎に、各光電変換素子における露光量をアナログ電気信号とし、順次AFE120に出力する。 Next, details of the operation for generating a compressed stream will be described. First, the imaging unit 111 performs exposure every predetermined time (for example, 1/60 second), and for each exposure, the exposure amount in each photoelectric conversion element is converted into an analog electric signal and sequentially output to the AFE 120.
 この際、撮像部111が3つの撮像素子111a、111b、111cからなるため、各光電変換素子から出力されたアナログ電気信号の集合は、3プレーンのアナログ画像信号となる。また、各プレーンでは0.5Mピクセルの低解像度の動画撮影である。一回の露光が終わると同時に次のフレームの露光が開始され、順次連続して画素ずらし3プレーンのアナログ画像信号が出力される。 At this time, since the imaging unit 111 includes the three imaging elements 111a, 111b, and 111c, a set of analog electric signals output from the photoelectric conversion elements becomes a three-plane analog image signal. Each plane is a low-resolution moving image shooting of 0.5 M pixels. As soon as one exposure is completed, the exposure of the next frame is started, and an analog image signal of 3 planes is output sequentially with pixel shifting.
 また、この際、1回の露光に対応する3プレーンの画像信号を集合して1つのフレームとし、そのフレームシーケンスによって動画が形成される。 Also, at this time, image signals of 3 planes corresponding to one exposure are gathered to form one frame, and a moving image is formed by the frame sequence.
 次に、撮像部111から出力された画素ずらし3プレーンのアナログ電気信号(本発明における第一のデータ形式である)は、AFE120においてデジタル信号に変換される。また、AFE120から出力されるデジタルの画像信号は、撮像部111の露光順に次々と出力される(本書では、この出力順をディスプレイ順という)。 Next, the pixel-shifted three-plane analog electrical signal output from the imaging unit 111 (which is the first data format in the present invention) is converted into a digital signal by the AFE 120. In addition, digital image signals output from the AFE 120 are output one after another in the exposure order of the imaging unit 111 (this output order is referred to as display order in this document).
 次に、図4(a)に表したように、各フレームに対して、ディスプレイ順にk=0、1、2…、とフレーム番号を与え、k≡2(mod 3)のフレームをIフレーム又はPフレームとし、k≡0(mod 3)又はk≡1(mod 3)のフレームをBフレームとして、フレーム再配列部131に入力される。また、この際、ディスプレイ順で出力された画素ずらし3プレーンの画像信号は、フレーム再配列部131に入力される。 Next, as shown in FIG. 4A, for each frame, frame numbers k = 0, 1, 2,... Are given in the order of display, and a frame of k≡2 (mod 3) is an I frame or The frame is input to the frame rearrangement unit 131 as a P frame and a frame with k≡0 (mod 3) or k≡1 (mod 3) as a B frame. At this time, the pixel-shifted three-plane image signal output in the display order is input to the frame rearrangement unit 131.
 次に、図4(a)、(b)に表したように、フレーム再配列部131において、入力された入力フレーム(k)がIフレーム又はPフレームであれば、そのまま画像生成部141に出力する。また、フレーム再配列部131において、入力された入力フレーム(k)がBフレームであれば、一旦そのデータをフレームバッファ131a、131bに交互に入力信号を記録すると同時に、元々フレームバッファ131a、131b内に記録されていたデータを画像生成部141に出力する。 Next, as shown in FIGS. 4A and 4B, in the frame rearrangement unit 131, if the input frame (k) input is an I frame or a P frame, it is output to the image generation unit 141 as it is. To do. Further, in the frame rearrangement unit 131, if the input frame (k) input is a B frame, the data is once recorded alternately in the frame buffers 131a and 131b, and at the same time, originally in the frame buffers 131a and 131b. Is output to the image generation unit 141.
 これにより、Bフレームには3フレーム分の遅延処理が行われ、画像生成部141に入力されるフレーム順序が、伝送順序となる。 Thereby, a delay process for three frames is performed on the B frame, and the frame order input to the image generation unit 141 becomes the transmission order.
 次に、画像生成部141において、フレーム再配列部131を介して入力された各フレームを、3プレーン画像信号から高解像度のカラー画像信号に変換する。ここでは、一般に知られている高解像化処理(高密度補間処理)と言われる処理の他に、色変換や、画像のエッジ強調、ノイズ抑制、トーンカーブ処理等の画像処理を行い、鑑賞に適した画質とする。 Next, the image generation unit 141 converts each frame input via the frame rearrangement unit 131 from a 3-plane image signal to a high-resolution color image signal. Here, in addition to the processing known as high resolution processing (high-density interpolation processing), image processing such as color conversion, image edge enhancement, noise suppression, tone curve processing, etc. Image quality suitable for
 次に、画像生成部141で変換されたカラー画像信号は、動画圧縮部150に出力される。動画圧縮部150において、画像生成部140から入力されたカラー画像のフレームシーケンスの圧縮処理が行われ、記録部160において、その圧縮データが記録される。 Next, the color image signal converted by the image generation unit 141 is output to the moving image compression unit 150. The moving image compression unit 150 compresses the frame sequence of the color image input from the image generation unit 140, and the recording unit 160 records the compressed data.
(第3の実施形態)
 次に、図5を用いて、本発明の第3の実施形態を説明する。図3は、本発明の動画処理装置が適用された第3の実施形態の撮像装置1Cの構成を表したブロック図である。
(Third embodiment)
Next, a third embodiment of the present invention will be described with reference to FIG. FIG. 3 is a block diagram showing a configuration of an imaging apparatus 1C according to the third embodiment to which the moving image processing apparatus of the present invention is applied.
 尚、第3の実施形態における撮像装置1Cは、基本的に第1、第2の実施形態で表した撮像装置1A、1Bと同じ構成なので、共通と成る構成部分については同一の符号を付与して詳細な説明を省き、特徴と成る部分について以下に説明する。 Note that the imaging apparatus 1C in the third embodiment is basically the same in configuration as the imaging apparatuses 1A and 1B shown in the first and second embodiments, and therefore, the same reference numerals are given to common components. The detailed description will be omitted, and the characteristic parts will be described below.
 図5に表したように、撮像装置1Cは、例えばビデオカムコーダであって、ファインダー190への画像表示機能や、モニター出力部220への画像出力機能の要求に対応できるように構成されている。 As shown in FIG. 5, the imaging apparatus 1 </ b> C is, for example, a video camcorder, and is configured to be able to meet the demand for an image display function to the finder 190 and an image output function to the monitor output unit 220.
 詳しくは、撮像装置1Cは、ファインダー190へ出力するカラー画像を生成するために、AFE120とフレーム再配列部131との間に信号分割手段170が構成され、AFE120からの出力を、信号分割手段170によって、フレーム再配列部131と第2の画像生成部180の双方に出力できるように構成されている。 Specifically, in order to generate a color image to be output to the finder 190, the imaging apparatus 1C includes a signal dividing unit 170 between the AFE 120 and the frame rearrangement unit 131, and outputs the signal from the AFE 120 to the signal dividing unit 170. Thus, it is configured to output to both the frame rearrangement unit 131 and the second image generation unit 180.
 第2の画像生成部180では、フレーム再配列部131におけるフレーム再配置を行うことなしに、カラー画像を生成してファインダー190に出力する。この際、第2の画像生成部180は、画像生成部141のような高解像度の画像生成が要求されていないので、画像生成部141よりも簡便な構成にされている。 The second image generation unit 180 generates a color image and outputs it to the finder 190 without performing frame rearrangement in the frame rearrangement unit 131. At this time, since the second image generation unit 180 is not required to generate a high-resolution image unlike the image generation unit 141, the second image generation unit 180 has a simpler configuration than the image generation unit 141.
 撮像装置1Cは、ファインダー190には、ディスプレイ順序で画像が表示され、フレーム再配列部131によるフレームの遅延処理が行われないので、当該撮像装置のユーザーにとって追従性の良い撮影を行うことができる。 Since the image is displayed in the display order on the finder 190 and the frame rearrangement unit 131 does not perform frame delay processing, the imaging device 1C can perform shooting with good followability for the user of the imaging device. .
 ファインダー190は、例えば小型のブラウン管や液晶画面といった映像表示デバイスで構成され、第2の画像生成部180で生成された画像信号を表示する。 The finder 190 is composed of a video display device such as a small cathode ray tube or a liquid crystal screen, and displays the image signal generated by the second image generation unit 180.
 さらに、撮像装置1Cは、信号分割手段170から出力されたディスプレイ順序の画像信号を、フレーム再配列部131を迂回して画像生成部141に入力するフレーム再配列迂回手段200、画像生成部141から出力されたカラー画像のフレームデータの入力先を動画圧縮部150とモニター出力部220の何れかに切り替える出力切替手段210、出力切替手段210を介して入力されたカラー画像の画像信号を、外部高解像度ディスプレイ225に出力するモニター出力部220等を備えている。なお、本発明における再配列部迂回手段はフレーム再配列部迂回手段200によってその機能が発現される。 Furthermore, the imaging apparatus 1C receives the image signal in the display order output from the signal dividing unit 170 from the frame rearrangement bypass unit 200 and the image generation unit 141 that bypass the frame rearrangement unit 131 and input the image signals to the image generation unit 141. An output switching unit 210 that switches the input destination of the frame data of the output color image to either the moving image compression unit 150 or the monitor output unit 220, and an image signal of the color image input via the output switching unit 210 A monitor output unit 220 for outputting to the resolution display 225 is provided. The function of the rearrangement unit bypassing means in the present invention is expressed by the frame rearrangement unit bypassing means 200.
 フレーム再配列迂回手段200は、フレーム再配列部131と平行して配置され、出力切替手段210に連動してディスプレイ順序の画像信号を画像生成部141に出力する。この際、フレーム再配列迂回手段200を、フレーム再配列部131を制御してフレーム再配列部131からの出力をディスプレイ順序にするように構成してもよい。 The frame rearrangement bypass unit 200 is arranged in parallel with the frame rearrangement unit 131 and outputs an image signal in the display order to the image generation unit 141 in conjunction with the output switching unit 210. At this time, the frame rearrangement bypass unit 200 may be configured to control the frame rearrangement unit 131 so that the output from the frame rearrangement unit 131 is in display order.
 出力切替手段210は、画像生成部141と動画圧縮部150の間に設置され、映像記録時には画像生成部141の出力を動画圧縮部150に入力し、モニターへの出力時には画像生成部141の出力をモニター出力部220に入力する。 The output switching unit 210 is installed between the image generation unit 141 and the moving image compression unit 150. The output of the image generation unit 141 is input to the moving image compression unit 150 at the time of video recording, and the output of the image generation unit 141 is output to the monitor. Is input to the monitor output unit 220.
 モニター出力部220は、当該撮像装置1Cから外部へ画像信号を出力する映像出力端子として設置され、この映像出力端子を介して高解像度ディスプレイ225等が接続された際に、映像信号を接続先に出力するように構成されている。 The monitor output unit 220 is installed as a video output terminal for outputting an image signal from the imaging apparatus 1C to the outside. When the high-resolution display 225 or the like is connected via the video output terminal, the monitor output unit 220 is connected to the video signal. It is configured to output.
 そして、撮像装置1Cは、映像を外部高解像度ディスプレイ225に出力する際には、出力切替手段210が画像生成部141の出力をモニター出力部220に入力するように設定されると共に、フレーム再配列部131の出力を止め、フレーム再配列迂回手段190が動作してディスプレイ順序の画像が画像生成部141に入力され、高解像度のディスプレイ順序の映像信号が、外部高解像度ディスプレイ225に出力されて表示される。 When the image capturing apparatus 1C outputs video to the external high-resolution display 225, the output switching unit 210 is set to input the output of the image generation unit 141 to the monitor output unit 220, and frame rearrangement is performed. The output of the unit 131 is stopped, the frame rearrangement detouring unit 190 operates, the display order image is input to the image generation unit 141, and the high resolution display order video signal is output to the external high resolution display 225 for display. Is done.
 一方、撮像装置1Cは、映像を記録する際には、出力切替手段210が画像生成部141の出力を動画圧縮部150に入力するように設定されると共に、フレーム再配列迂回手段200が動作せず、フレーム再配列部131を経由した伝送順序の画像が画像生成部141及び動画圧縮部150に入力される。 On the other hand, in the imaging apparatus 1C, when recording a video, the output switching unit 210 is set to input the output of the image generation unit 141 to the moving image compression unit 150, and the frame rearrangement bypass unit 200 operates. First, an image in the transmission order via the frame rearrangement unit 131 is input to the image generation unit 141 and the moving image compression unit 150.
 これにより、撮像装置1Cは、画像生成部141を介して、カラー動画のモニター出力と圧縮記録の両者の機能を備えている。 Thereby, the image pickup apparatus 1C has both functions of color video monitor output and compression recording via the image generation unit 141.
 次に、図6を用いて、本発明の第4の実施形態を説明する。図6(a)は、本発明の動画処理装置が適用された第4の実施形態の撮像装置1Dの構成を表したブロック図、図6(b)は、同実施形態における撮像部の構成図である。 Next, a fourth embodiment of the present invention will be described with reference to FIG. FIG. 6A is a block diagram showing a configuration of an imaging apparatus 1D of the fourth embodiment to which the moving image processing apparatus of the present invention is applied, and FIG. 6B is a configuration diagram of an imaging unit in the same embodiment. It is.
 尚、第4の実施形態における撮像装置1Dは、基本的に第1の実施形態で表した撮像装置1Aと同じ構成なので、共通と成る構成部分については同一の符号を付与して詳細な説明を省き、特徴と成る部分について以下に説明する。 Note that the imaging apparatus 1D in the fourth embodiment is basically the same in configuration as the imaging apparatus 1A shown in the first embodiment. Therefore, the same components are assigned the same reference numerals and detailed description is given. Omitted and characteristic parts will be described below.
 図6(a)に表したように、撮像装置1Dは、撮像部112、撮像部112から出力されたアナログ信号に対応したフレーム再配列部132、AFE120、画像生成部140、動画圧縮部150、記録部160、等によって構成されている。 As illustrated in FIG. 6A, the imaging device 1D includes an imaging unit 112, a frame rearrangement unit 132 corresponding to the analog signal output from the imaging unit 112, an AFE 120, an image generation unit 140, a moving image compression unit 150, The recording unit 160 is configured.
 そして、撮像装置1Dは、撮像部112から出力されたアナログ信号に対してフレームシーケンスの並べ替えを行うように、撮像部112とAFE120との間にフレーム再配列部132が設置されている。 In the imaging apparatus 1D, a frame rearrangement unit 132 is installed between the imaging unit 112 and the AFE 120 so that the frame sequence is rearranged with respect to the analog signal output from the imaging unit 112.
 撮像部112は、第1の実施形態と同様に、単板式カラー撮像素子によって構成されている。また、フレーム再配列部132は、フレームバッファとしてアナログメモリのCCD(Charge Coupled Devices)を用いて構成されている。 The image pickup unit 112 is configured by a single-plate color image pickup device as in the first embodiment. The frame rearrangement unit 132 is configured using an analog memory CCD (Charge Coupled Devices) as a frame buffer.
 そして、撮像部112がフレーム再配列部132と同様にCCDのイメージセンサを用いて構成されることにより、図6(b)に表したように、撮像部112とフレーム再配列部132を一体のCCD135によって構成できる。 The imaging unit 112 is configured using a CCD image sensor in the same manner as the frame rearrangement unit 132, so that the imaging unit 112 and the frame rearrangement unit 132 are integrated as shown in FIG. A CCD 135 can be used.
 図6(b)に表したように、CCD135は、撮像部としての受光エリア135sと、2つのバッファエリア135a、135bと、I/Pフレーム用水平転送部(Iフレーム及びPフレーム用水平転送部)、Bフレーム用水平転送部からなる。 As shown in FIG. 6B, the CCD 135 includes a light receiving area 135s as an imaging unit, two buffer areas 135a and 135b, and an I / P frame horizontal transfer unit (I frame and P frame horizontal transfer unit). ), A B frame horizontal transfer unit.
 I/Pフレーム用水平転送部は、受光エリア135sとバッファエリア135a、135bとの間に備えられ、Bフレーム用水平転送部は、バッファエリア135aを介して受光エリア135sの反対側に位置するバッファエリア135bの端部に備えられている。 The I / P frame horizontal transfer unit is provided between the light receiving area 135s and the buffer areas 135a and 135b, and the B frame horizontal transfer unit is located on the opposite side of the light receiving area 135s via the buffer area 135a. It is provided at the end of the area 135b.
 そして、この2つのバッファエリア135a及び135bと、I/Pフレーム用水平転送部及びBフレーム用水平転送部とによってフレーム再配列部132の機能が発現される。 The function of the frame rearrangement unit 132 is expressed by the two buffer areas 135a and 135b, the horizontal transfer unit for I / P frame, and the horizontal transfer unit for B frame.
 また、受光エリア135sには、CCD135の各素子(所謂、各画素に対応する素子である)に、光電変換素子とモザイクカラーフィルタ(RGBの内の単一色光を通過するフィルタである)が備えられている。 In the light receiving area 135s, each element of the CCD 135 (so-called element corresponding to each pixel) is provided with a photoelectric conversion element and a mosaic color filter (a filter that passes RGB single color light). It has been.
 次に、CCD135における撮像及びフレーム再配列の動作を説明する。まず、受光エリア135sにおいて所定時間の露光を行い、各光電変換素子における露光量を電荷として蓄積する(本発明における第一のデータ形式がこの電荷量となる)。 Next, operations of imaging and frame rearrangement in the CCD 135 will be described. First, exposure for a predetermined time is performed in the light receiving area 135s, and the exposure amount in each photoelectric conversion element is accumulated as a charge (the first data format in the present invention is this charge amount).
 そして、露光した画像フレームがIフレーム又はPフレームであれば、受光エリア135sに垂直転送をかけると共に、I/Pフレーム用水平転送部を動作させ、受光エリア135sにおける各画素の電荷をアナログ信号として順次AFE120に出力する。 If the exposed image frame is an I frame or a P frame, vertical transfer is performed to the light receiving area 135s, and the horizontal transfer unit for the I / P frame is operated, and the charge of each pixel in the light receiving area 135s is converted into an analog signal. Sequentially output to the AFE 120.
 一方、露光した画像フレームがBフレームであれば、CCD135全体に垂直転送をかけると共に、Bフレーム用水平転送部を動作させ、バッファエリア135bに蓄積された電荷をアナログ信号としてAFE120に出力する。この際、受光エリア135sに蓄積された電荷がバッファエリア135aに蓄積され、バッファエリア135aに蓄積されていた電荷がバッファエリア135bに転送される。 On the other hand, if the exposed image frame is a B frame, vertical transfer is applied to the entire CCD 135 and the horizontal transfer unit for the B frame is operated to output the charge accumulated in the buffer area 135b to the AFE 120 as an analog signal. At this time, the charges accumulated in the light receiving area 135s are accumulated in the buffer area 135a, and the charges accumulated in the buffer area 135a are transferred to the buffer area 135b.
 これにより、Iフレーム又はPフレームが3フレーム毎に配列されていれば、第2の実施形態(図3(b))と同様に、Bフレームは、露光の3フレーム後にAFE120に出力されることになる。また、Iフレーム又はPフレームが露光直後にAFE120に出力されるため、第2の実施形態におけるフレーム再配列部131と同様に、AFE120及び画像生成部140に入力するフレーム順序が伝送順序となる。 As a result, if the I frame or the P frame is arranged every three frames, the B frame is output to the AFE 120 after the third frame of exposure as in the second embodiment (FIG. 3B). become. Further, since the I frame or the P frame is output to the AFE 120 immediately after the exposure, the frame order input to the AFE 120 and the image generation unit 140 is the transmission order, as in the frame rearrangement unit 131 in the second embodiment.
 以上のように、第4の実施形態の撮像装置1Dによれば、イメージセンサと一体化したCCD135にフレーム再配列部132を設置でき、別途デジタル処理としてのフレーム再配列を不要にできる。 As described above, according to the imaging device 1D of the fourth embodiment, the frame rearrangement unit 132 can be installed in the CCD 135 integrated with the image sensor, and frame rearrangement as a separate digital process can be made unnecessary.
 以上、本発明の一実施例について説明したが、本発明は、前記実施例に限定されるものでなく、種々の態様を取ることができる。 As mentioned above, although one Example of this invention was described, this invention is not limited to the said Example, It can take a various aspect.
 カラーイメージセンサから第一のデータ形式で出力された動画のフレームシーケンスを、圧縮ストリームの処理順に対応付けて並べ替えた後、カラー画像に変換する用途に利用できる。 The frame sequence of the moving image output in the first data format from the color image sensor is rearranged in association with the processing order of the compressed stream, and can be used for conversion to a color image.

Claims (15)

  1.  カラーイメージセンサより時系列的に複数のフレームに分割されて第一のデータ形式で出力された動画のフレームシーケンスから、フレーム間予測化方式によって符号化されたカラー動画の圧縮ストリームを生成する動画処理装置において、
     前記第一のデータ形式からなるフレームシーケンスを、前記圧縮ストリームの処理順に対応つけて並べ替えるフレーム再配列部と、
     前記フレーム再配列部で並べ替えられたフレームシーケンスにおける前記第一のデータ形式を、カラー画像に変換するカラー画像生成部と、
     前記カラー画像に変換された前記フレームシーケンスを、時間的に前後の複数のフレーム間の差分に基づいて符号化して圧縮する動画圧縮部と、
     を備えていることを特徴とする動画処理装置。
    Video processing that generates a compressed video of color video encoded by the inter-frame prediction method from a video frame sequence that is divided into multiple frames in time series from the color image sensor and output in the first data format In the device
    A frame rearrangement unit that rearranges the frame sequence composed of the first data format in association with the processing order of the compressed stream;
    A color image generation unit that converts the first data format in the frame sequence rearranged by the frame rearrangement unit into a color image;
    A video compression unit that encodes and compresses the frame sequence converted into the color image based on a difference between a plurality of temporally preceding and following frames;
    A moving image processing apparatus comprising:
  2.  前記カラーイメージセンサが、マトリックス状に配置された複数の光電変換素子と、該光電変換素子の夫々に対応つけられた複数色光のカラーフィルタとを備え、前記光電変換素子毎に複数色光の内の単一色光の画素情報を出力する単板カラーイメージセンサであって、
     前記第一のデータ形式が、画素毎に単一色光の色情報を有する色モザイク画像であり、
     前記カラー画像生成部が、前記画素毎に複数色光の画素情報を生成するデモザイク処理を行うように構成されている、
     ことを特徴とする請求項1に記載の動画処理装置。
    The color image sensor includes a plurality of photoelectric conversion elements arranged in a matrix, and a color filter of a plurality of color lights corresponding to each of the photoelectric conversion elements, and the color image sensor includes a plurality of color lights for each photoelectric conversion element. A single-plate color image sensor that outputs pixel information of single color light,
    The first data format is a color mosaic image having color information of single color light for each pixel,
    The color image generation unit is configured to perform demosaic processing for generating pixel information of a plurality of color lights for each pixel.
    The moving image processing apparatus according to claim 1.
  3.  前記カラーイメージセンサが、
     分光感度分布が異なる複数のカラーイメージセンサによって構成されて、夫々の受光面が画素配置方向にずらして配設され、
     前記第一のデータ形式が、前記複数のカラーイメージセンサの内の夫々から出力される画像データであって、
     前記カラー画像生成部が、前記複数のカラーイメージセンサの画像データを合成して解像度を高めるように構成されている、
     ことを特徴とする請求項1に記載の動画処理装置。
    The color image sensor is
    Consists of a plurality of color image sensors having different spectral sensitivity distributions, and each light receiving surface is arranged shifted in the pixel arrangement direction,
    The first data format is image data output from each of the plurality of color image sensors,
    The color image generation unit is configured to combine the image data of the plurality of color image sensors to increase resolution.
    The moving image processing apparatus according to claim 1.
  4.  前記複数のフレームが、時間的に後行するフレームを参照せずに符号化するNonFフレームと、時間的に後行するフレームを参照して符号化するFフレームとによって構成され、
     前記フレーム再配列部が、前記入力されるNonFフレーム、Fフレームの種別に応じて、遅延を与えて出力するように構成されている、
     ことを特徴とする請求項1乃至請求項3の何れか記載の動画処理装置。
    The plurality of frames are configured by a NonF frame that is encoded without referring to a temporally subsequent frame, and an F frame that is encoded with reference to a temporally subsequent frame,
    The frame rearrangement unit is configured to output with a delay according to the type of the input NonF frame and F frame,
    The moving image processing apparatus according to claim 1, wherein the moving image processing apparatus is a moving image processing apparatus.
  5.  前記NonFフレームが、さらに、前記フレーム間予測を用いずにフレーム内の画像信号をそのまま符号化するIフレームと、時間的に先行する参照フレームの画像信号からの差分を符号化するPフレームとからなり、
     前記Fフレームが、時間的に先行する参照フレームと後行する参照フレームとの差分を符号化するBフレームであり、
     前記フレーム再配列部が、前記入力されるIフレーム、Pフレーム、Bフレームの種別に応じて、前記遅延を与えて出力するように構成されている、
     ことを特徴とする請求項4に記載の動画処理装置。
    The NonF frame further includes an I frame that encodes the image signal in the frame as it is without using the inter-frame prediction, and a P frame that encodes a difference from the image signal of the temporally preceding reference frame. Become
    The F frame is a B frame that encodes a difference between a temporally preceding reference frame and a subsequent reference frame;
    The frame rearrangement unit is configured to output with the delay according to the type of the input I frame, P frame, or B frame.
    The moving image processing apparatus according to claim 4.
  6.  前記フレーム再配列部が、前記複数のフレーム種別のうちの一部のフレーム種別に対して遅延を与えて出力するように構成されている、
     ことを特徴とする請求項1乃至請求項3の何れか記載の動画処理装置。
    The frame rearrangement unit is configured to output with a delay with respect to some of the plurality of frame types.
    The moving image processing apparatus according to claim 1, wherein the moving image processing apparatus is a moving image processing apparatus.
  7.  前記フレーム再配列部には、前記第一のデータ形式の画像データにおける、少なくとも2フレーム分の夫々毎に画像データを格納するフレームバッファが備えられている、
     ことを特徴とする請求項1乃至請求項6の何れか記載の動画処理装置。
    The frame rearrangement unit includes a frame buffer that stores image data for each of at least two frames in the image data of the first data format.
    The moving image processing apparatus according to claim 1, wherein the moving image processing apparatus is a moving image processing apparatus.
  8.  前記画像生成部には、前記カラー画像の画像変形を行う画像変形処理部が備えられている、
     ことを特徴とする請求項1乃至請求項7の何れか記載の動画処理装置。
    The image generation unit includes an image deformation processing unit that performs image deformation of the color image.
    The moving image processing apparatus according to claim 1, wherein the moving image processing apparatus is a moving image processing apparatus.
  9.  前記フレーム再配列部が、前記画像変形の際にフレーム内の画像データを非ラスター順次で出力するように構成されている、
     ことを特徴とする請求項8に記載の動画処理装置。
    The frame rearrangement unit is configured to output non-raster sequential image data in a frame when the image is deformed.
    The moving image processing apparatus according to claim 8.
  10.  ファインダーへ出力するカラー画像を生成する第2の画像生成部を備え、該第2の画像生成部では、前記フレーム再配列部におけるフレーム再配置を行うことなしに、カラー画像を生成する、
     ことを特徴とする請求項1乃至請求項9の何れか記載の動画処理装置。
    A second image generation unit that generates a color image to be output to the viewfinder, and the second image generation unit generates a color image without performing frame rearrangement in the frame rearrangement unit;
    10. The moving image processing apparatus according to claim 1, wherein the moving image processing apparatus is a moving image processing apparatus.
  11.  前記カラーイメージセンサから出力されるフレームシーケンスを、前記フレーム再配列部を通さずに前記カラー画像生成部に出力する再配列部迂回手段を備え、
     前記カラー画像生成部へ入力されるフレームシーケンスの、前記カラーイメージセンサから出力されるフレーム順と前記フレーム再配列部から出力されるフレーム順とを切り替え可能に構成されている、
     ことを特徴とする請求項1乃至請求項10の何れか記載の動画処理装置。
    A rearrangement unit bypassing means for outputting the frame sequence output from the color image sensor to the color image generation unit without passing through the frame rearrangement unit;
    The frame sequence input to the color image generation unit is configured to be switchable between a frame order output from the color image sensor and a frame order output from the frame rearrangement unit.
    The moving image processing apparatus according to claim 1, wherein the moving image processing apparatus is a moving image processing apparatus.
  12.  請求項1~請求項11の何れか記載の動画処理装置及びカラーイメージセンサと、前記動画圧縮部で圧縮された動画情報を記憶する記録装置とからなるカムコーダ。 12. A camcorder comprising the moving image processing device and color image sensor according to claim 1 and a recording device for storing moving image information compressed by the moving image compression unit.
  13.  請求項1~請求項11の何れか記載の動画処理装置及びカラーイメージセンサと、前記動画圧縮部で圧縮された動画情報を外部機器へ送信する送信装置とからなる遠隔モニター用カメラ。 12. A remote monitor camera comprising: the moving image processing device and the color image sensor according to claim 1; and a transmission device that transmits the moving image information compressed by the moving image compression unit to an external device.
  14.  カラーイメージセンサより時系列的に複数のフレームに分割されて第一のデータ形式で出力された動画のフレームシーケンスから、フレーム間予測化方式によって符号化されたカラー動画の圧縮ストリームを生成する動画処理方法において、
     前記第一のデータ形式からなるフレームシーケンスを、前記圧縮ストリームの処理順に対応つけて並べ替えるフレーム再配列ステップと、
     前記フレーム再配列ステップで並べ替えられたフレームシーケンスにおける前記第一のデータ形式を、カラー画像に変換するカラー画像生成ステップと、
     前記カラー画像に変換された前記フレームシーケンスを、時間的に前後の複数のフレーム間の差分に基づいて符号化して圧縮する動画圧縮ステップと、
     を用いることを特徴とする動画処理方法。
    Video processing that generates a compressed video of color video encoded by the inter-frame prediction method from a video frame sequence that is divided into multiple frames in time series from the color image sensor and output in the first data format In the method
    A frame rearrangement step of rearranging the frame sequence composed of the first data format in association with the processing order of the compressed stream;
    A color image generation step of converting the first data format in the frame sequence rearranged in the frame rearrangement step into a color image;
    A moving image compression step of encoding and compressing the frame sequence converted into the color image based on a difference between a plurality of temporally preceding and following frames;
    A moving image processing method characterized by using the above.
  15.  カラーイメージセンサより時系列的に複数のフレームに分割されて第一のデータ形式で出力された動画のフレームシーケンスから、フレーム間予測化方式によって符号化されたカラー動画の圧縮ストリームを生成する動画処理プログラムであって、
     前記第一のデータ形式からなるフレームシーケンスを、前記圧縮ストリームの処理順に対応つけて並べ替えるフレーム再配列ステップと、
     前記フレーム再配列ステップで並べ替えられたフレームシーケンスにおける前記第一のデータ形式を、カラー画像に変換するカラー画像生成ステップと、
     前記カラー画像に変換された前記フレームシーケンスを、時間的に前後の複数のフレーム間の差分に基づいて符号化して圧縮する動画圧縮ステップと、
     をコンピュータに実行させる動画処理プログラム。
    Video processing that generates a compressed video of color video encoded by the inter-frame prediction method from a video frame sequence that is divided into multiple frames in time series from the color image sensor and output in the first data format A program,
    A frame rearrangement step of rearranging the frame sequence composed of the first data format in association with the processing order of the compressed stream;
    A color image generation step of converting the first data format in the frame sequence rearranged in the frame rearrangement step into a color image;
    A moving image compression step of encoding and compressing the frame sequence converted into the color image based on a difference between a plurality of temporally preceding and following frames;
    A video processing program that causes a computer to execute.
PCT/JP2009/055959 2008-04-07 2009-03-25 Dynamic image processing device, dynamic image processing method, and dynamic image processing program WO2009125673A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020107024938A KR101046012B1 (en) 2008-04-07 2009-03-25 Dynamic image processing device, dynamic image processing method, and computer-readable recording medium having recorded dynamic image processing program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008099110A JP4494490B2 (en) 2008-04-07 2008-04-07 Movie processing apparatus, movie processing method, and movie processing program
JP2008-099110 2008-04-07

Publications (1)

Publication Number Publication Date
WO2009125673A1 true WO2009125673A1 (en) 2009-10-15

Family

ID=41161807

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/055959 WO2009125673A1 (en) 2008-04-07 2009-03-25 Dynamic image processing device, dynamic image processing method, and dynamic image processing program

Country Status (5)

Country Link
JP (1) JP4494490B2 (en)
KR (1) KR101046012B1 (en)
CN (1) CN101557520B (en)
TW (1) TW200943973A (en)
WO (1) WO2009125673A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6006389B1 (en) * 2015-08-26 2016-10-12 オリンパス株式会社 Imaging apparatus, imaging method, and imaging program
CN110120982A (en) * 2019-05-29 2019-08-13 精英数智科技股份有限公司 A kind of sensing data compression method based on coal mine safety monitoring networked system

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102439978A (en) * 2010-03-12 2012-05-02 联发科技(新加坡)私人有限公司 Motion prediction methods
US20130004071A1 (en) * 2011-07-01 2013-01-03 Chang Yuh-Lin E Image signal processor architecture optimized for low-power, processing flexibility, and user experience
US20140078343A1 (en) * 2012-09-20 2014-03-20 Htc Corporation Methods for generating video and multiple still images simultaneously and apparatuses using the same
KR20170117453A (en) * 2015-03-02 2017-10-23 삼성전자주식회사 Method and apparatus for compressing an image based on photographing information
CN110168611A (en) * 2017-03-22 2019-08-23 惠普发展公司,有限责任合伙企业 The compressed version of image data based on data relationship
CN109429067B (en) * 2017-08-31 2022-10-25 腾讯科技(深圳)有限公司 Dynamic picture compression method and device, computer equipment and storage medium
CN116709042A (en) * 2022-02-24 2023-09-05 荣耀终端有限公司 Image processing method and electronic equipment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002247376A (en) * 2001-02-20 2002-08-30 Rohm Co Ltd Image processor
JP2003069893A (en) * 2001-08-28 2003-03-07 Olympus Optical Co Ltd Imaging apparatus
JP2007158524A (en) * 2005-12-01 2007-06-21 Masaru Kamiya Image coding apparatus and method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3901287B2 (en) * 1997-02-27 2007-04-04 松下電器産業株式会社 Video signal conversion apparatus, video signal conversion method, and video providing system
JPH10271529A (en) * 1997-03-21 1998-10-09 Mitsubishi Electric Corp Image processor, still image pickup device and image processing method
CN101014135A (en) * 2006-09-04 2007-08-08 钮旋 Preprocessing method for image flow data and compression and decompression method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002247376A (en) * 2001-02-20 2002-08-30 Rohm Co Ltd Image processor
JP2003069893A (en) * 2001-08-28 2003-03-07 Olympus Optical Co Ltd Imaging apparatus
JP2007158524A (en) * 2005-12-01 2007-06-21 Masaru Kamiya Image coding apparatus and method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6006389B1 (en) * 2015-08-26 2016-10-12 オリンパス株式会社 Imaging apparatus, imaging method, and imaging program
WO2017033471A1 (en) * 2015-08-26 2017-03-02 オリンパス株式会社 Imaging device, imaging method, and imaging program
US10306164B2 (en) 2015-08-26 2019-05-28 Olympus Corporation Image pickup apparatus, image pickup method, and recording medium having recorded image pickup program
CN110120982A (en) * 2019-05-29 2019-08-13 精英数智科技股份有限公司 A kind of sensing data compression method based on coal mine safety monitoring networked system

Also Published As

Publication number Publication date
CN101557520A (en) 2009-10-14
KR20100124855A (en) 2010-11-29
TW200943973A (en) 2009-10-16
JP4494490B2 (en) 2010-06-30
KR101046012B1 (en) 2011-07-01
JP2009253667A (en) 2009-10-29
TWI354497B (en) 2011-12-11
CN101557520B (en) 2011-08-24

Similar Documents

Publication Publication Date Title
JP4494490B2 (en) Movie processing apparatus, movie processing method, and movie processing program
US9560256B2 (en) Image capture apparatus and image capture method in which an image is processed by a plurality of image processing devices
JP5853166B2 (en) Image processing apparatus, image processing method, and digital camera
WO2012164896A1 (en) Image processing device, image processing method, and digital camera
US20100020210A1 (en) Image Sensing Device And Image Processing Device
WO2007029738A1 (en) Imaging device
EP0469836B1 (en) Image signal processing apparatus
KR20090074067A (en) Imaging device and imaging method
JPH08172636A (en) Image pickup device
JP4905279B2 (en) Imaging circuit and imaging apparatus
EP1763224B1 (en) Video signal processing in a camera control unit
JP2008124671A (en) Imaging apparatus and imaging method
JP4294810B2 (en) Solid-state imaging device and signal readout method
US7236194B2 (en) Image signal processing apparatus
JP4810807B2 (en) Moving picture conversion apparatus, moving picture restoration apparatus and method, and computer program
JP2797393B2 (en) Recording and playback device
JP2002238057A (en) Imaging device, luminance correction method, and program for executing the method by computer
US6020922A (en) Vertical line multiplication method for high-resolution camera and circuit therefor
JP6152642B2 (en) Moving picture compression apparatus, moving picture decoding apparatus, and program
JP7022544B2 (en) Image processing equipment and methods, and imaging equipment
JPH1169377A (en) Image information encoding device and device applying the same
WO2011061891A1 (en) Imaging device
JP2017200199A (en) Video compression device, video decoding device, and program
JP7289642B2 (en) IMAGE PROCESSING DEVICE, CONTROL METHOD FOR IMAGE PROCESSING DEVICE, AND PROGRAM
JPH09107520A (en) Image pickup device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09730077

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20107024938

Country of ref document: KR

Kind code of ref document: A

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 25/01/11

122 Ep: pct application non-entry in european phase

Ref document number: 09730077

Country of ref document: EP

Kind code of ref document: A1