WO2009123272A1 - Steel-making method for titanium-containing ultralow carbon steel and method for manufacturing titanium-containing ultralow carbon steel slab - Google Patents

Steel-making method for titanium-containing ultralow carbon steel and method for manufacturing titanium-containing ultralow carbon steel slab Download PDF

Info

Publication number
WO2009123272A1
WO2009123272A1 PCT/JP2009/056835 JP2009056835W WO2009123272A1 WO 2009123272 A1 WO2009123272 A1 WO 2009123272A1 JP 2009056835 W JP2009056835 W JP 2009056835W WO 2009123272 A1 WO2009123272 A1 WO 2009123272A1
Authority
WO
WIPO (PCT)
Prior art keywords
molten steel
mass
steel
concentration
low carbon
Prior art date
Application number
PCT/JP2009/056835
Other languages
French (fr)
Japanese (ja)
Inventor
鍋島誠司
松井章敏
高橋大輔
三木祐司
岸本康夫
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Publication of WO2009123272A1 publication Critical patent/WO2009123272A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/11Treating the molten metal
    • B22D11/114Treating the molten metal by using agitating or vibrating means
    • B22D11/115Treating the molten metal by using agitating or vibrating means by using magnetic fields
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/0006Adding metallic additives
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/06Deoxidising, e.g. killing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/10Handling in a vacuum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium

Definitions

  • the present invention relates to a method for steel making of Ti-containing ultralow carbon steel deoxidated with Ti, and a Ti-containing ultra-low carbon steel slab. This relates to the manufacturing method.
  • the present invention provides a Ti-containing ultra-low carbon steel and its slab that are clearly suitable for producing a cold-rolled steel sheet having excellent surface properties and inner properties. It is about how to get it.
  • the residual Al 2 0 3 is formed of a cluster shape (cluster-like shape), a small apparent specific gravity with respect to the molten steel, difficult to flotation Therefore. Therefore In the steel, cluster-like inclusions with a size of several hundred ⁇ ⁇ or more are likely to remain, and such cluster-like inclusions are entrapped at the surface of the slab during continuous casting. When you get a hege, sliver ), And the surface properties of the cold-rolled steel sheet are impaired.
  • A1 A1 2 0 3 of the solid phase produced in deoxidation in a continuous ⁇ the inner surface of the molten steel immersion nozzle for injecting the (molten steel) from Tandi' shoe (tundish) to ⁇ (mold) (immersion nozzle)
  • the upper nozzle (upper nozzle) of the tundish is injected with Ar gas or the like from the immersion nozzle, and a method of suppressing the clogging of the nozzle is adopted.
  • the injected gas is trapped in the solidification shell together with A1 2 0 3 and causes surface defects such as scales, heges, and slivers, which impairs the surface properties of the cold-rolled steel sheet.
  • A1 is not added and deoxidized with Ti.
  • the reason is as follows.
  • the ultimate oxygen concentration is higher than that of A1 deoxidized steel, and therefore the amount of inclusions is large.
  • Patent Document 1 Japanese Patent Laid-Open No. 8-281391 limits the amount of oxygen in molten steel that passes through an immersion nozzle in the fabrication of A1-less Ti deoxidized steel. the adhesion of Ti 2 ⁇ 3 of immersion Bruno nozzle inner surface. the method of inhibiting the growth have been proposed.
  • Patent Document 1 does not provide a fundamental solution to the problem of Ti deoxidized steel.
  • JP-A-10-291 053 Patent Document 2
  • JP-A-11-343516 Patent Document 3
  • JP-A-2006-152444 Patent Document 4
  • Ca (Including Ca-containing alloys)
  • the inclusions have a low melting point composition of Ti oxides A1 2 0 3 — CaO and Z or REM (rare-earth metal) oxides.
  • a method of forging without blowing Ar gas into the interior has been proposed.
  • JP 2001-26842 A (Patent Document 5) describes that Between the oxygen content and the time from the addition of A1 to the addition of force Ti, a 0 / t ⁇ 100 (where a 0 : oxygen content before mass addition (mass ppm), t: Al
  • the content of inclusions in the cold-rolled steel sheet can be changed to Al 2 O 3 : 10 to 30 mass%, Ca and Ca by adding Ti so that the relationship between the force and the time until the addition of Ti (min)) is satisfied.
  • Metal or REM oxide: 5 to 30 mass%, Ti oxide: 50 to 90 mass% are proposed.
  • Patent Documents 2 to 4 do not dissolve when Ca is added. Steel is re-oxidized by slag, air, etc., and the oxygen concentration and amount of oxide inclusions in the molten steel increase, and large oxide inclusions remain in the steel after forging. The large oxide inclusions cause a problem that cracks originating from the oxide inclusions occur during press forming of the cold rolled steel sheet.
  • the object of the present invention is to solve the above-mentioned problems and to produce a Ti-containing ultra-low carbon steel that has been deoxidized with Ti. It is an object of the present invention to provide a method for melting Ti-containing ultra-low carbon steel that can prevent (nozzle clogging) and obtain a cold-rolled steel sheet having excellent surface properties and quality.
  • a cold-rolled steel sheet having excellent surface properties and internal quality there are particularly few surface defects due to oxide inclusions and bubbles, and resistance to press cracks caused by oxide inclusions.
  • a cold-rolled steel sheet having the following is obtained.
  • another object of the present invention is a method for producing a splinter from a Ti-containing ultra-low carbon steel that has been produced by such a melting method, which further improves the surface properties and quality of the cold-rolled steel sheet.
  • An object of the present invention is to provide a method for manufacturing a piece that can be enhanced.
  • the above invention [1] is C: 0.020 mass o /.
  • the molten steel produced from a converter or electric furnace is used.
  • decarburization treatment is performed, and then the Ti-containing alloy is added to the molten steel after the decarburization treatment, followed by deoxidation treatment, whereby A1 content (mass%) and Ti content (mass% ) Is a deoxidized molten steel having a composition satisfying [% A1] ⁇ [% Ti] ZlO, and then an inclusion composition adjusting alloy containing Ca is added to the deoxidized molten steel.
  • [6] A method for producing a mirror piece by continuously forging molten steel produced by any one of the melting methods described in the above [1] to [5], wherein the tundish force is obtained through an immersion nozzle installed at the bottom of the tundish.
  • the mold A method for producing a Ti-containing ultra-low carbon steel piece, characterized in that when molten steel is injected, molten steel is produced without blowing gas into the molten steel flowing down the immersion nozzle.
  • the magnetic field for stirring is more preferably a moving magnetic field and a moving magnetic field in which Z or an oscillating magnetic field is preferred.
  • Figure 1 shows the total Fe concentration and MnO concentration in ladle slag after Ti deoxidation of molten steel: (% T. Fe) + (% MnO) (horizontal axis: mass%) and cold rolled steel sheet 5 is a graph showing the relationship with the plate thickness strain rate (vertical axis:%) of a cracked portion in the bulge test.
  • A1 2 0 3 concentration of ladle slag after the molten steel Ti processing deoxidation (horizontal axis: mass%) and the thickness distortion of the crack portions in the bulge test cold-rolled steel plate (ordinate:% It is a graph which shows the relationship with).
  • Figure 5 shows the dissolved oxygen concentration (white circle and black circle) and Ti deoxidation treatment time (horizontal axis: minutes) in the molten steel before Ti deoxidation treatment, and the plate thickness distortion rate in the bulge test of cold-rolled steel sheets ( It is a graph which shows the relationship with a vertical axis
  • Figure 6 shows the continuous forging throughput (horizontal axis: ton / black) for the test example (black circle / black square) with a magnetic field applied to molten steel in the mold and the test example without a magnetic field (white circle). 3) is a graph showing the relationship between the thickness strain rate (vertical axis:%) of the cracked portion in the bulge test of cold-rolled steel sheets.
  • C 0.020 massQ /.
  • Ti 0. OlOmass. /.
  • the above is a method for melting ultra-low carbon Ti deoxidized steel containing Ca: 0.0005 mass% or more.
  • the molten steel is sequentially decarburized and deoxidized with Ti. Is added to adjust the inclusions in the molten steel (dioxide inclusions; the same shall apply hereinafter) to a predetermined composition.
  • Molten steel to be treated after decarburization is generally discharged from a converter or electric furnace.
  • Decarburization is preferably performed in a vacuum degassing facility.
  • Ti deoxidation is preferably performed in the same vacuum degassing facility.
  • Ca addition may be performed in the same vacuum degassing equipment, or may be made common with ⁇ deoxidation treatment in a ladle.
  • the vacuum degassing equipment for performing such a series of treatments the RH vacuum degassing equipment is particularly desirable, but the use of other vacuum degassing equipment such as VOD (Vacuum Oxygen Decarburization) equipment is not prohibited.
  • VOD Vauum Oxygen Decarburization
  • the C content is set to 0.020 mass% or less.
  • the lower limit of the C amount is not particularly limited.
  • the Ti content is less than 0.001 mass%, the deoxygenation ability by Ti is weak and the total oxygen concentration becomes high, so the Ti content should be 0.001 mass% or more.
  • the amount of Ti is too large, a large amount of TiN may be generated and the immersion nozzle may be blocked, so the Ti amount is preferably 0.15 mass% or less.
  • the Ca content is less than 0.0005 mass%, the CaO concentration in the inclusion does not become 5 to 50 mass%, the inclusion melting point becomes high, and nozzle clogging is likely to occur. 0005 mass% or more.
  • the Ca content exceeds 0.0050 mass%, the CaO concentration of inclusions exceeds 50 mass%, and the inclusions easily contain sulfur in the liquid phase.
  • CaS is generated around the inclusions, which becomes the starting point of the initiation of the steel plate, and the amount of the steel plate is significantly increased. For this reason Ca The amount is preferably 0.0050 mass% or less.
  • the other steel compositions are not particularly limited because they do not affect the main problem to be solved of the present invention in the manufacture of molten steel pieces.
  • a preferable composition for the steel sheet will be described later.
  • the molten steel is first decarburized, and then Ti is added to the molten steel after the decarburizing treatment to remove the deoxidation (Ti deoxidation treatment).
  • Ti deoxidation treatment A1 content (mass%) [% 1] and 1 content (thigh 35%) [% Ti] deoxidized molten steel with a composition satisfying [% A1] ⁇ [% Ti] ZlO And Ti is conveniently added in the form of Ti-containing alloys such as Fe-Ti alloys.
  • composition of inclusions of Ti oxides in molten steel 90 mass% or less, CaO: 5 ⁇ 50mass%, A1 2 0 3: a composition of 70 mass% or less of the low melting point .
  • Ca-containing flux an inclusion composition adjusting alloy containing Ca
  • the molten steel is deoxidized with Ti (for example, a Ti-containing alloy such as an Fe-Ti alloy) to generate inclusions mainly composed of Ti oxides.
  • Ti for example, a Ti-containing alloy such as an Fe-Ti alloy
  • the inclusions obtained in this way do not form a cluster as when deoxidized with A1, but are present in a state of being dispersed in the steel in the form of granules having a size of about 5 to 20 ⁇ m.
  • A1 concentration in the steel is the same as the result of A1 deoxidation due to a certain level, a huge A1 2 0 3 cluster is formed. In this case, even if Ti-containing alloy is added later to increase the Ti concentration, the already produced A1 20 3 cluster remains as a cluster-like inclusion without disappearing.
  • Ca for example, Ca-containing flux
  • Ca-containing flux is further added to the deoxidized molten steel.
  • the composition of oxide inclusions in the molten steel Ti oxide: 90 mass% or less, CaO: 10 ⁇ 50mass%, A1 2 0 3: containing 70 mass% or less of the low melting point Ti oxide It can be changed to a low melting point inclusion. In other words, by changing to such low melting point inclusions
  • Ca addition to Ti deoxidized molten steel may be performed in a ladle after Ti deoxidation treatment, or may be added to the vacuum tank during vacuum degassing treatment (after deoxidation treatment). Addition is performed by the former method.
  • the Ca-containing flux for example, it is preferable to use one or more of CaSi, CaNi, CaAl, CaFe and the like. By appropriately adjusting the amount of the applied force, inclusions having the above-described composition can be obtained. It is done.
  • the Ti oxide concentration of inclusions exceeds 90 mass%, the melting point of the inclusions will not sufficiently decrease, and the inclusions will adhere to and accumulate on the inner surface of the immersion nozzle. Cause. Therefore, the Ti oxide concentration is 90 mass% or less, preferably 80 mass% or less.
  • Ti oxides concentration Teire and since A1 2 0 3 concentration will increase, it is preferred that Ti oxide concentration of the inclusions is not less than 20 mass%, further preferably at least 30 mass% .
  • Ti oxides concentration in the inclusions the Ti content contained in the inclusions were measured by EPMA or EDX, it shall be calculated in terms of Ti 2 0 3.
  • the CaO concentration of inclusions exceeds 50 mas S %, the inclusions tend to contain sulfur in the liquid phase. As a result, when the liquid phase inclusions are solidified, CaS is generated around the inclusions, which becomes the starting point of the initiation of the steel plate, and the amount of generation of the steel plate increases significantly. On the other hand, if the CaO concentration is less than 5 mass%, the melting point of the inclusions does not decrease sufficiently, and the inclusions adhere to the inner surface of the immersion nozzle * and cause nozzle clogging. Therefore, the CaO concentration is 5 to 50 mass%, preferably 7 to 50 mass%, and more preferably 15 to 50 mass%. The CaO concentration in inclusions is calculated by measuring the amount of Ca contained in inclusions with EPMA or EDX and converting to CaO.
  • the A1 2 0 3 concentration of inclusions exceeds 70 mass%, the inclusions have a high melting point composition. As nozzle clogging easily occurs and inclusions become clustered, non-metallic inclusion physical defects in the steel sheet increase. Even if the concentration of A1 2 0 3 is low, there is no problem, but from the viewpoint of cost, it is advantageous to use A1 as part of the deoxidation.
  • the A1 20 3 concentration in inclusions is calculated by measuring the amount of A1 contained in inclusions with EPMA or EDX and converting to A1 2 0 3 .
  • Ti oxides as described above, in addition to CaO, A1 2 0 3, may contain an oxide which inevitably mixed, for example, 5 mass% degree or less MgO, Si0 2 and 20 thigh ss% The following may be included.
  • MgO concentration and Si_ ⁇ 2 concentration in the inclusions, the Mg content and Si content contained in the inclusions were measured by EPMA and E DX, respectively shall be calculated in terms of MgO and Si0 2.
  • Ca-containing flux is usually added to the molten steel in the ladle using an iron-clad wire or injection lance.
  • An iron-coated wire is a wire in which alloy powder is coated with a thin steel plate, and this wire is supplied into the molten steel.
  • alloy powder is blown into the molten steel through the injection lance.
  • the molten steel is stirred vigorously, and narrowing wind-slag present on the molten steel, FeO in the slag, MnO, molten steel is reoxidized by reaction with the oxide such as Si_ ⁇ 2,
  • the oxide such as Si_ ⁇ 2
  • the total Fe (T. Fe) concentration and MnO concentration in the ladle slag after Ti deoxidation treatment of the molten steel is set to 10 mass% or less.
  • FIG. 1 shows the total (% T. Fe) of total Fe concentration (mass%) and MnO concentration (mass%) in ladle slag after Ti deoxidation treatment of the molten steel to the composition specified by the present invention.
  • the A1 concentration of the molten steel at this time was 0.001 to 0.005 mass%.
  • Fe-70mass% Ti alloy was added to the molten steel at 0 ⁇ 8 to 2.0kg / toned molten steel, and Ti deoxidation treatment was performed. In this Ti deoxidation treatment, the RH vacuum degassing treatment was completed 2 to 15 minutes after the addition of the Fe-Ti alloy, and the composition of the molten steel after completion was as follows: Ti concentration 0.020-0.080 mass%, A1 concentration 0.
  • This continuous forging was performed without blowing gas such as Ar or N 2 into the molten steel flowing down the immersion nozzle.
  • the produced slab was hot-rolled to a thickness of 2 to 4 mm, and further cold-rolled to a thickness of 0.6 to 1.0 mm to obtain a cold-rolled steel plate.
  • the plate thickness distortion rate in the bulge test is set to 50% or more. It becomes possible to do. More preferably, (% T.Fe) + (% MnO) is 5 mass ° / 0 or less.
  • the lower limit of (% T.Fe) + (% MnO) is not particularly limited.
  • the plate thickness distortion rate of the cracked portion in the bulge test of the cold-rolled steel plate is obtained as follows.
  • the 200mm square samples were extracted ten cold-rolled steel sheet having a thickness of 0. 6 1.0 mm, inflated hydraulically to break these samples. Measure the thickness of the fractured portion Then, by dividing by the initial plate thickness, the strain rate in the plate thickness direction is calculated, and with the minimum strain rate out of 10 points
  • plate thickness distortion rate This is referred to as “plate thickness distortion rate”. It is desirable that the higher the plate thickness distortion rate, the less the internal defects (in this case, large oxides ⁇ : existence), the better the quality, and the plate thickness distortion rate be 50% or more. .
  • A1 May be added to reduce (% T.Fe) + (% MnO) in ladle slag to 10 mass% or less (or a more suitable value), for example, depending on the amount of slag flowing out of the converter power.
  • the mass ratio of CaO concentration and Si0 2 concentration of ladle slag after the molten steel was Ti deoxidation (% CaO) / (% Si0 2) one or more.
  • the weight ratio of the ladle slag after treatment Ti deoxidation so the composition defined by the present invention a molten steel (% CaO) / (% Si0 2) (horizontal axis), obtained from the molten steel This shows the relationship with the thickness strain rate (vertical axis:%) of the cracked part in the pulge test of the obtained cold-rolled steel sheet.
  • a Ti-containing ultra-low carbon steel was melted as follows, and a cold-rolled steel sheet was obtained through hot rolling and cold rolling from a piece obtained by continuous forging. .
  • the mass ratio (% CaO) / (% Si0 2 ) was adjusted by adding lime to the molten steel (300 tons) that was removed from the converter and placed in the ladle.
  • A1 A was added as needed to reduce FeO and MnO in the slag.
  • the molten steel was decarburized so that the component composition of the molten steel was C : 0.0007 ⁇ 0.0150 mass% and the oxygen concentration was 120-700 sppm.
  • add A1 to the molten steel ⁇ 1.2kg / mol copper ton was added to reduce the dissolved oxygen concentration in molten steel to 30 ⁇ 400 massppm.
  • the A1 concentration of the molten steel at this time was 0.001 to 0.005 mass%.
  • Fe-70mass% Ti alloy was added to the molten steel 0.8 to 2. OkgZ molten steel ton, and Ti deoxidation treatment was performed.
  • the RH vacuum degassing treatment was completed 2 to 15 minutes after the addition of the Fe-Ti alloy, and the composition of the molten steel after completion was as follows: Ti concentration 0.020-0.080 mass%, A1 concentration 0.001 to 0.006 mass%, total oxygen concentration 20 to: lOOmassppm, and [% A1] ⁇ [% Ti] / l0 was satisfied.
  • RH vacuum degassing treatment (Datsusansho sense) slag composition during ladle later, CaO concentration: 20 ⁇ 60mass%, Si0 2 concentration: 5 ⁇ 20mass%, A1 2 0 3 concentration: 10 ⁇ 5 Omass%, Ti0 2 concentration: 1 to: L Omass%, MgO concentration: 2 to 15 mass%, total Fe concentration: l to 8 mass%, MnO concentration: 0.5 to 4 mass%, all (% T. Fe) + 7 with (% MnO) ⁇ 10 mass%.
  • This continuous forging was performed without blowing gas such as Ar or N 2 into the molten steel flowing down the submerged nozzle, and the molten steel throughput during mirror fabrication was set to 2 to 6 tonZmin.
  • the forged slab was hot-rolled to a thickness of 2 to 4 mm, and further cold-rolled to a thickness of 0.6 to 1.0 mm to obtain a cold-rolled steel plate.
  • the thickness distortion of the crack portion in the bulge tested can be 50% or more
  • more preferable (% CaO) / (% Si0 2 ) is 2 or more, more preferably 2.5 or more, and the upper limit of (% CaO) Z (% Si0 2 ) is not particularly limited.
  • the maximum is around 6.0 To make (% CaO) / (% Si0 2 ) in ladle slag 1 or more (a more suitable value), for example, Just add lime to the steel flow!
  • the Ti0 2 concentration of ladle slag after the molten steel was Ti deoxidation or more lmass%. This reduces the rate of Ti reoxidation and suppresses the increase in the amount of oxide inclusions, making it possible to increase the thickness strain rate in cold-rolled steel bulge tests to 50% or more.
  • the molten steel was decarburized so that the component composition of the molten steel was C: 0.0007-0.150 mass% and the oxygen concentration was 120-700 massppm.
  • the A1 concentration of the molten steel at this time was 0.001-0.005 mass%.
  • Fe-70mass% Ti alloy was added to the molten steel 0.8 to 2. OkgZ molten steel ton, and Ti deoxidation treatment was performed.
  • the RH vacuum degassing treatment was completed 2 to 15 minutes after the addition of the Fe-Ti alloy, and the composition of the molten steel after completion was as follows: Ti concentration 0.020-0.080 mass%, A1 concentration 0. 001-0. 006 mass%, total oxygen concentration was 20-100 massppm, and [% A1] ⁇ [% Ti] ZlO was satisfied.
  • RH vacuum degassing treatment (Datsusansho sense) slag composition during ladle later, CaO concentration: 20 ⁇ 60mass%, Si0 2 concentration: 5 ⁇ 20mass%, A1 2 0 3 concentration: 10 ⁇ 50mass%, Ti0 2 concentration ::!
  • This continuous forging was performed without blowing gas such as Ar or N 2 into the molten steel flowing down the immersion nozzle, and the molten steel throughput during forging was set at 2 to 6 ton / min.
  • the forged slab was hot-rolled to a thickness of 2 to 4 nun, and further cold-rolled to a thickness of 0.6 to 1.0 mm to obtain a cold-rolled steel plate.
  • Ti_ ⁇ 2 concentration in the ladle slag Lmass% or more As shown in FIG. 3, by setting the Ti_ ⁇ 2 concentration in the ladle slag Lmass% or more, the thickness distortion of the crack portion in Paruji test it is possible to more than 50%.
  • a more preferable Ti02 concentration is 2 mass% or more, more preferably 3% or more.
  • the upper limit of Ti_ ⁇ 2 concentration is not essential limitation in particular, it is usually at most about 10%.
  • the Ti0 2 concentration in the ladle slag to Lmass% or more, for example, may Re to adding Ti in response to the oxygen concentration.
  • the A1 2 0 3 concentration of ladle slag after the molten steel is treated Ti deoxidation to 10 ⁇ 50mass%.
  • A1 2 0 3 concentration of ladle slag after treatment Ti deoxidation so the composition defined by the present invention a molten steel (abscissa: mas S%) and was obtained from the molten steel cold This shows the relationship with the thickness distortion rate (vertical axis:%) of the cracked part in the bulge test of the rolled steel sheet.
  • a Ti-containing ultra-low carbon steel was melted as follows, and a cold rolled steel sheet was obtained from a piece obtained by continuous forging through hot rolling and cold rolling. Respect converter tapped to a ladle put was dissolved steel from (300 ton), to adjust the A1 2 0 3 concentration by the addition of A1 slag.
  • A1 A was added as needed to reduce FeO and MnO in the slag.
  • the addition of CaO, A1 2 0 3, Ti0 2 as necessary.
  • the following series of treatments were performed in the RH vacuum degassing facility.
  • the molten copper was decarburized so that the component composition of the molten steel was C: 0.0007—0.0150 mass% and the oxygen concentration was 120-700 massppm.
  • 0.1 to 1.2 kgZ molten steel ton was added to the molten steel, and the dissolved oxygen concentration in the molten steel was lowered to 30 to 400 massppm.
  • the A1 concentration of the molten steel at this time was 0.001-0.005 mass%.
  • Fe-70mass% Ti alloy was added to the molten steel 0.8 to 2. OkgZ molten steel ton, and Ti deoxidation treatment was performed.
  • the RH vacuum degassing treatment was completed 2 to 15 minutes after the addition of the Fe-Ti alloy, and the composition of the molten steel after completion was as follows: Ti concentration 0.020—0.0080 mass%, A1 The concentration was 0.001 to 0.006 mass%, the total oxygen concentration was 20 to 100 thigh ssppm, and [% Al] ⁇ [% Ti] Zl0 was satisfied.
  • This continuous forging was performed without blowing gas such as Ar or N 2 into the molten steel flowing down the immersion nozzle, and the molten steel throughput during forging was 2 to 6 ton / min.
  • the forged slab was hot-rolled to a thickness of 2 to 4 mm, and further cold-rolled to a thickness of 0.6 to 1.0 mm to obtain a cold-rolled steel plate.
  • the slag is low melting point, absorption capacity of the slag oxide inclusions are increased, The amount of oxide inclusions can be reduced. Further, by the A1 2 0 3 concentration below 50mass%, Al 2 0 3 concentration of oxide inclusions in it is possible to suppress to become 70 mass% greater, coarsening of the oxide inclusions Can be prevented. As a result, the thickness distortion rate of the cracked part in the bulge test should be 50% or more. It becomes possible. In order to set the A1 20 3 concentration in the ladle slag to 10 to 50 mass%, for example, the amount of A1 ⁇ added may be adjusted.
  • the dissolved oxygen concentration be 200 mass ppm or less in advance.
  • This preliminary deoxidation is preferably performed by vacuum degassing.
  • Figure 5 shows the dissolved oxygen concentration (white circles and black circles) and Ti deoxidation treatment time (horizontal axis: minutes) of the molten steel before Ti deoxidation treatment, and the cracks in the bulge test of the cold-rolled steel sheet obtained from the molten steel. This shows the relationship with the plate thickness strain rate.
  • the dissolved oxygen concentration of molten steel before Ti deoxidation treatment 50 to 200 massppm (white circles in the figure) is a test example in which preliminary deoxidation was performed as needed.
  • the dissolved oxygen concentration of molten steel before Ti deoxidation treatment More than 200 to 500 Massppm (black circle in the figure) is a powerful test example without preliminary deoxidation.
  • a Ti-containing ultra-low carbon steel was melted as follows, and a cold rolled steel sheet was obtained from a piece obtained by continuous forging through hot rolling and cold rolling. Respect converter tapped to a ladle put was dissolved steel from (300 ton), to adjust the A1 2 0 3 concentration by the addition of A1 slag. A1 A was added as needed to reduce FeO and MnO in the slag. Further, in order to control the slag composition after RH vacuum degassing treatment was ⁇ Ka ⁇ the CaO, A1 2 0 3, Ti0 2 as necessary.
  • the following series of treatments were performed in the RH vacuum degassing facility.
  • the molten steel was decarburized so that the component composition of the molten steel was C: 0.0007 to 0.0150 mass% and the oxygen concentration was 120 to 700 mass P p: m.
  • 0.1 to 1.2 kgZ of molten steel ton was added to the molten steel, and the dissolved oxygen concentration in the molten steel was reduced to 50 to 200 massppm.
  • the A1 concentration of the molten steel at this time was 0 ⁇ 001–0.005 mass%.
  • Fe-70 mass% Ti alloy was added to the molten steel in an amount of 0.8 to 2.0 kg / toned molten steel, and Ti deoxidation treatment was performed.
  • the RH vacuum degassing treatment was completed 2 to 15 minutes after the addition of the Fe-Ti alloy, and the composition of the molten steel after completion was Ti concentration 0 ⁇ 02 0 to 0.080 mass%, A1 concentration 0.001—0.006 mass%, total oxygen concentration was 20-100 massppm, and [% A1] ⁇ [% Ti] / 10 was satisfied.
  • This continuous forging was performed without blowing gas such as Ar or N 2 into the molten steel flowing down the immersion nozzle, and the molten steel throughput during forging was 2 to 6 ton / min.
  • the forged slab was hot-rolled to a thickness of 2 to 4 mm, and further cold-rolled to a thickness of 0.6 to 1.0 mm to obtain a cold-rolled steel plate.
  • the pre-deoxidation before Ti deoxidation treatment reduces the dissolved oxygen concentration of the molten steel to 200 massppm or less in advance, thereby suppressing the formation of oxide inclusions and the cracking in the bulge test. It is possible to further improve the plate thickness distortion rate. On the other hand, excessive preliminary deoxidation may increase the risk of nozzle clogging, so the presence or absence and degree of preliminary deoxidation may be appropriately selected according to the need for inclusion suppression.
  • the Ti deoxidation treatment time (RH treatment time after addition of the Ti-containing alloy) is preferably 5 minutes or longer, whereby the effects of the present invention can be appropriately obtained, and cold rolling is performed. It is possible to increase the plate thickness distortion rate of the cracked portion in the bulge test of the steel plate to a desired level.
  • the upper limit of Ti deoxidation time is not particularly limited, but it is usually about 5 minutes or less from the viewpoint of operation efficiency.
  • oxide inclusions contained in the molten steel penetrate deep into the unsolidified layer of the flakes and are trapped in the solidified shell.
  • an inert gas such as Ar gas is blown into the immersion nozzle, and the bubbles of this inert gas rise in the molten steel. In the process, it is trapped by the solidified shell due to the turbulence of the molten steel flow near the molten steel surface in the vertical mold.
  • oxide inclusions and gas trapped in the sepal Bubbles cause surface flaw defects in thin steel sheets.
  • oxide inclusions are attached to the inert gas bubbles, and the oxide inclusions are trapped in the solidified shell together with the inert gas bubbles.
  • FIG. 6 shows the throughput of continuous forging (horizontal axis: tonZmin) and the plate thickness strain rate in the bulge test of cold-rolled steel sheets using the steel slab obtained by continuous forging (vertical axis:% ).
  • a Ti-containing ultra-low carbon steel was melted as follows, and a cold rolled steel sheet was obtained through hot rolling and cold rolling from a piece obtained by continuous forging.
  • the molten steel was decarburized so that the component composition of the molten steel was C: 0.0007 to 0.0150 mass% and the oxygen concentration was 120 to 700 massppm.
  • AI was added to the molten steel to 1 to 1.2 kgZ molten steel ton, and the dissolved oxygen concentration in the molten steel was reduced to 30 to 400 massppm.
  • the A1 concentration of the molten steel at this time was 0.001 to 0.005 mass%.
  • Fe-70mass% Ti alloy was added to the molten steel 0.8 to 2. OkgZ molten steel ton, and Ti deoxidation treatment was performed.
  • the RH vacuum degassing treatment was completed 2 to 15 minutes after the addition of the Fe-Ti alloy, and the composition of the molten steel after completion was as follows: Ti concentration 0.020-0.080 mass%, A1 concentration It was 0.001 to 0.006 mass% and the total oxygen concentration was 20 to 100 massppm, and [% A1] ⁇ [% Ti] / l0 was satisfied.
  • This continuous forging was performed without blowing gas such as Ar or N 2 into the molten steel flowing down the immersion nozzle, and the molten steel throughput during forging was set at 2 to 6 ton / min.
  • the forged slab was hot-rolled to a thickness of 2 to 4 mm, and further cold-rolled to a thickness of 0.6 to 1. Onrni to obtain a cold-rolled steel plate.
  • the second method for producing Ti-containing ultra-low carbon steel pieces is as follows: (i) stirring the molten steel in the mirror mold by electromagnetic force generated by a moving magnetic field and / or an oscillating magnetic field; (ii) It is preferable to apply one or both of applying a static magnetic field to the molten steel and damping the molten steel flow.
  • the amount of oxide inclusions trapped in the solidified shell without floating and separating in the vertical mold is reduced, and as a result, the thickness distortion of the crack portion in the bulge test of the cold rolled steel sheet is reduced.
  • the rate is further improved.
  • a particularly excellent effect can be obtained by performing both G) and (ii).
  • an alternating moving magnetic field applying device is installed, and the molten steel in the mold is horizontally swirled and stirred by the electromagnetic force of this magnetic field applying device. Forging. As a result, trapping of oxide inclusions in the solidified shell is suppressed, and a clean piece with less oxide inclusions can be obtained. It is also effective to apply a non-moving oscillating magnetic field as an alternating magnetic field and stir the molten steel in the mold. It is also effective to apply an oscillating magnetic field that accompanies horizontal movement (moving oscillating magnetic field).
  • a static magnetic field application device is installed at a position surrounding the discharge flow of molten steel from the discharge hole of the immersion nozzle, and the static magnetic field application device applies a static magnetic field for discharge. Decrease the flow velocity. As a result, the floating of the oxide inclusions is promoted, the trapping in the solidified shell is suppressed, and a clean flake with few oxide inclusions is obtained.
  • “application of moving magnetic field” black circle
  • “application of static magnetic field” black square
  • the amount of Si is preferably 0.5 mass% or less.
  • the Si content exceeds 0.5 mass%, the material properties of the thin steel sheet, which is a product, deteriorate, and when used as a matte steel sheet, the surface properties are likely to deteriorate due to deterioration of the tackiness.
  • the lower limit of the Si amount is not particularly limited.
  • the Mn content is preferably 2.0 mass% or less. When the amount of Mn exceeds 2.0 wt%, the material is easily cured. Preferably it is 1.5 mass% or less, more preferably 1.0 mass% or less, and even more preferably 0.5 mmass% or less.
  • the lower limit of the amount of Mn is not particularly limited.
  • the amount of S is preferably not more than 0.050 mass%. When the S content exceeds 0.050 mass%, CaS and REM sulfides increase in the molten steel, and defects are likely to occur in the thin steel sheet that is the product. Preferably it is 0.030 mass% or less. The lower limit of the amount of S is not particularly limited.
  • the amount of P is preferably 0.005-0.12 mass%. If P is contained in a large amount, the amount of segregation at the grain boundary increases and grain boundary embrittlement occurs, and it is desirable to reduce it as much as possible, especially in the thin steel sheet as a product, which causes deterioration of secondary work brittleness resistance. Preferably it is 0.050 mass% or less. However, even if the amount of P is made lower than 0.005 mass%, further improvement of the material cannot be expected, and the melting cost increases. On the other hand, it is acceptable if it is 0.12 mass% or less.
  • the amount of N is preferably 0.0005-0.0040 mass% mass%.
  • N is a force that should be reduced as much as possible to improve deep drawability in the thin steel plate product, as in C. Even if the content is lower than 0.0005 mass%, further improvement of the material cannot be expected. Conversely, the cost of melting increases. On the other hand, when it exceeds 0.0040 mass%, the material deterioration in the thin steel sheet begins to increase.
  • N may be added up to an upper limit of about 0.0200 mass%, but there is no particular problem even if such steel is used. Depending on the purpose, one or more of the following elements may be appropriately selected and added.
  • one or more selected from Ni, Cu, and Cr may be added within a range of 01 mass% or less. Addition of these elements can improve the corrosion resistance of the steel sheet.
  • Alloy elements other than the above may be added as appropriate as long as the total is up to about 1%.
  • the following series of treatments were performed in the RH vacuum degassing facility.
  • the molten steel is decarburized, and the composition of the molten steel is changed to C: 0.0010% s%, Si: 0.01 mass%, Mn: 0.15 mass%, P: 0.015 mass%, S: 0.005 mass. %, Oxygen concentration: 500 massppm (the balance is Fe and inevitable impurities.
  • the molten steel composition after decarburization was adjusted to 1600 ° C.
  • 0.5 kg of molten steel ton was added to the molten steel, and the dissolved oxygen concentration in the molten steel was reduced to 120 massppm.
  • the AI concentration of the molten steel at this time was 0.002 mass%. Furthermore, Fe-70 mass ° / 0 Ti alloy was added to the molten steel by 1. OkgZ molten steel ton, and Ti deoxidation treatment was performed for 7 minutes. In this Ti deoxidation treatment, the vacuum degassing treatment was completed 7 minutes after the addition of the Fe-Ti alloy, and the Ti concentration of the molten steel in the ladle at the end was 0.040 mass%, and the A1 concentration was 0.002 mass%. The oxygen concentration was 30 massppm.
  • the slag composition in the ladle after the vacuum degassing treatment is, CaO concentration: 35 mass%, Si0 2 concentration: 15mass%, A1 2 0 3 concentration: 35 mass%, Ti_ ⁇ 2 concentration: 3 mass% MgO concentration: 7 mass%, total Fe concentration: 2 mass%, MnO concentration: 2 mass% (other unavoidable acids: lmass%).
  • the fabricated slab is hot-rolled to a thickness of 3.5 mm, then cold-rolled to a thickness of 0.8 mm, and then subjected to continuous annealing under annealing conditions of 780 ° CX for 45 seconds. It was. In the annealed plate thus obtained, only 0.2 / 1000 m non-metallic inclusion physical properties and bubble defects were observed. Furthermore, the thickness distortion rate of the cracked part in the bulge test of the cold-rolled steel sheet was 50%, which was good. [Invention Example 2]
  • the following series of treatments were performed in the RH vacuum degassing facility.
  • the molten steel is decarburized, and the composition of the molten steel is changed to C: 0.0015 mass%, Si: 0.01 mass%, Mn: 0.1 mass%, P: 0.012 mass%, S: 0.006 mass%,
  • the oxygen concentration was 450 massppm, and the molten steel temperature was adjusted to 1600 ° C.
  • the A1 to the molten steel by adding 0. 4KgZ molten steel ton were made as low a dissolved oxygen concentration in the molten steel to 150masspp m.
  • the A1 concentration of the molten steel at this time was 0.002 mass%.
  • Fe-70 mass% Ti alloy was added to the molten steel by 1.2 kg / molten steel ton, and Ti deoxidation treatment was performed for 6 minutes.
  • the vacuum degassing treatment was completed 6 minutes after the addition of the Fe-Ti alloy, and the Ti concentration of the molten steel at the end was 0.045% ss%, the A1 concentration was 0.002 mass%, total oxygen The concentration was 30 massppm.
  • the slag composition in the ladle after the vacuum degassing treatment (deacidification) is, CaO concentration: 30 mass%, Si0 2 concentration: 17mass%, A1 2 0 3 concentration: 40 mass%, Ti0 2 concentration: 2mass% MgO concentration: 8 mass%, total Fe concentration: lmass%, MnO concentration: 2 mass%.
  • Continuous forging was performed without blowing gas such as Ar or N 2 into the molten steel flowing down the immersion nozzle, and the molten steel throughput during forging was 4. Oton Zmin.
  • the molten steel was stirred by an electromagnetic stirring device having a moving magnetic field. There was almost no deposit on the inner surface of the immersion nozzle after fabrication.
  • the fabricated slab was hot-rolled to a thickness of 3.5 mm, further cold-rolled to a thickness of 0.8 mm, and then subjected to continuous annealing at 780 ° C x 45 seconds.
  • the annealed sheet obtained in this way had a force with only 0.2 and 1000 m non-metallic inclusions and bubble defects. Furthermore, the thickness distortion rate of the cracked portion in the bulge test of the cold-rolled steel sheet was 55%, which was good.
  • FeO and MnO in slag are reduced to molten steel (300 tons) put out from the converter and placed in the ladle For this purpose, 300 kg of A1 was added, and CaO was added to control the slag composition after vacuum degassing.
  • the following series of treatments were performed in the RH vacuum degassing facility.
  • the molten steel was decarburized, and the composition of the molten steel was changed to C: 0.0015 mass%, Si: 0.01 mass%, Mn: 0.12 mass%, P: 0.015 mass%, S: 0.006 mass%,
  • the oxygen concentration was 400 massppm, and the molten steel temperature was adjusted to 1600 ° C.
  • A1 was added to the molten steel at 0.4 kg / mol steel ton, and the dissolved oxygen concentration in the molten steel was lowered to lOOmassppm.
  • the A1 concentration of the molten steel at this time was 0.002 mass%.
  • Fe-70mass% Ti alloy was added to the molten steel by 1. lkgZ molten steel ton, and Ti deoxidation treatment was performed for 5 minutes.
  • the vacuum degassing treatment was completed 5 minutes after the addition of the Fe-Ti alloy, and the Ti concentration of the molten steel at the end was 0.042 mass%, the A1 concentration was 0.002 mass%, and the total oxygen concentration was It was 30 massppm.
  • the slag composition in the ladle after the vacuum degassing treatment is, CaO concentration: 42mass%, Si_ ⁇ 2 concentration: 13mass%, A1 2 0 3 concentration: 30 mass%, Ti0 2 concentration: 4 mass% MgO concentration: 6 mass%, total Fe concentration: lmass%, MnO concentration: 2 mass% (other inevitable oxides: 2 mass%).
  • 0.2 mass / ton of 30mass% Ca-70mass% Si alloy was added to the molten steel in the ladle with iron-coated wire, and the composition of inclusions in the molten steel was controlled.
  • the Ca concentration of the molten steel was 0.0006 thigh ss%.
  • the molten steel melted as described above was continuously forged with a two-strand slab continuous forging device to produce a piece.
  • a spherical inclusion of 7 2 mass% Ti 2 0 3 —12 mass% CaO—16 mass% Al 2 O 3 was a spherical inclusion of 7 2 mass% Ti 2 0 3 —12 mass% CaO—16 mass% Al 2 O 3 .
  • Continuous forging was performed without blowing gas such as Ar or N 2 into the molten steel flowing through the immersion nozzle, and the molten steel throughput during forging was 4.
  • Oton Zmin In addition, a static magnetic field by a direct current magnetic field was applied to the molten steel in the vertical mold to brake the molten steel flow. There was almost no deposit on the inner surface of the immersion nozzle after fabrication.
  • the fabricated slab was hot-rolled to a thickness of 3.5 mm, further cold-rolled to a thickness of 0.8 mm, and then subjected to continuous annealing at 780 ° C x 45 seconds.
  • the annealed sheet thus obtained, only 0.2 / 1000 m non-metallic inclusion physical properties and bubble defects were observed.
  • the thickness distortion rate of the cracked portion in the bulge test of the cold-rolled steel sheet was 55%, which was good.
  • the molten steel melted under the same conditions as in Invention Example 1 was continuously forged using a two-strand slab continuous forging device to produce a flaw (the form and composition of inclusions in the tundish during forging were the same as in Inventive Example 1) .
  • a static magnetic field application device was installed at a position 500 nm below the lower end of the discharge hole of the immersion nozzle.
  • the shape of the discharge hole of the immersion nozzle was a square of 80mm length and width.
  • the Ar gas blowing flow rate in the immersion nozzle is set to 0 to LONLZmin, and the magnetic field strength (DC static magnetic field) applied by the static magnetic field application device is in the range of 0.1 to 0.3 Tesla.
  • a slab having a width of 12,000 to 1,500 mm and a thickness of 250 mm was produced at a pouring speed of 4.5 to 6.0 tons ⁇ .
  • the forged slab was hot-rolled and cold-rolled to form a thin steel plate, and this thin steel plate was hot dip galvanized.
  • the hot dip galvanized steel sheet obtained in this way is capable of producing a clean slab both on the surface and inside by applying a static magnetic field during the fabrication with very few inclusions and bubble surface defects. Was confirmed.
  • the molten steel melted under the same conditions as in Invention Example 1 was continuously forged using a two-strand slab continuous forging machine to produce a flake (the form and composition of inclusions in the tundish at the time of forging were as in Inventive Example 1. The same).
  • an AC moving magnetic field applying device was installed at a position 2m from the molten steel surface of the vertical mold.
  • the shape of the discharge hole of the immersion nozzle was a square of 80 mm in length and width.
  • the Ar gas blowing flow rate in the immersion nozzle is set to 0 to 10 NL / min, and the magnetic field strength (AC moving magnetic field) applied by the AC moving magnetic field application device is in the range of 0.05 to 0.2 stellar.
  • Slabs with a width of 1200 to 150011 ⁇ 1 and a thickness of 250 mm were fabricated at a pouring rate of 4.5 to 6.0 tons Zmin.
  • the forged slab was hot-rolled and cold-rolled to form a thin steel plate, and this thin steel plate was hot dip galvanized.
  • the hot-dip galvanized steel sheet obtained in this way is capable of forging a clean slab both on the surface and inside by applying an AC moving magnetic field during fabrication with very few inclusions and bubble surface defects. Was confirmed.
  • the following series of treatments were performed in the RH vacuum degassing facility.
  • the molten steel was decarburized, and the composition of the molten steel was changed to C: 0.0010 mass%, Si: 0.01 mass%, Mn: 0.15 mass% P: 0.15 mass%, S: 0.005 mass%, oxygen. Concentration: 500 mass P pm, and the molten steel temperature was adjusted to 1600 ° C. Then 0. 3KgZ molten steel ton ⁇ Ka ⁇ the A1 to molten steel was made as low a dissolved oxygen concentration in the molten steel to 220mass P pm. The molten steel concentration at this time was 0.002 mass%.
  • Fe-70mass% Ti alloy was added to the molten steel by 1.2kg / molten steel ton, and Ti deoxidation treatment was performed for 7 minutes.
  • the vacuum degassing treatment was completed 7 minutes after the addition of the Fe-Ti alloy.
  • the Ti concentration of the molten copper was 0.035 mass%
  • the Al concentration was 0.001 mass%
  • the total oxygen concentration was 40 massppni.
  • the slag composition in the ladle after the vacuum degassing treatment (deacidification) is, CaO concentration: 23mass%, Si0 2 concentration: 27mass%, A1 2 0 3 concentration: 20 mass%, Ti0 2 concentration: 0. 8 mass%, MgO concentration: 9 mass%, total Fe concentration: 8 mass%, MnO concentration: 6 mass% (other inevitable oxides: 6.2 mass%).
  • the fabricated slab was hot-rolled to a thickness of 3.5 nun, further cold-rolled to a thickness of 0.8 mm, and then subjected to continuous annealing under annealing conditions of 780 ° C x 45 seconds.
  • annealed sheet thus obtained, 0.5 non-metallic inclusions and 0.5 bubble defects were observed.
  • the plate thickness distortion rate of the cracked part in the bulge test of the cold-rolled steel sheet was 25%, which was poor.
  • the thickness distortion rate of the cracked portion in the bulge test of the annealed plate thus obtained was 30%, which was an improved force compared to Comparative Example 1, but did not reach the target level of the present application.
  • Non-metallic inclusions and cellular Defects were found to be 0.4 / 1000m. Industrial use possible 'I' raw
  • the composition of oxide inclusions in the molten steel is optimized and the amount of inclusions is reduced. For this reason, it is possible to prevent clogging of the smashing nozzle (nozzle clogging) due to oxide inclusions during continuous forging, as well as cold-rolled steel sheets with excellent surface properties and quality, especially oxide inclusions and bubbles.
  • Ti-containing ultra-low carbon steel that can produce cold-rolled steel sheets with few surface defects due to the above and high resistance to press cracking caused by oxide inclusions can be produced.
  • the method for producing a Ti-containing ultra-low carbon steel piece of the present invention by optimizing the continuous forging conditions, from the Ti-containing ultra-low carbon steel produced by the above-described melting method, A piece that can further enhance the surface properties and quality of the steel sheet can be produced.

Abstract

After decarburizing molten steel in a vacuum degassing facility or the like, a titanium-containing alloy is added to the ladle and deoxidation is performed, thereby creating a deoxidized molten steel with a composition that satisfies the formula [% Al]≤[% Ti]/10. Next, an alloy for adjusting the inclusion composition, which includes calcium, is added to the molten steel in the ladle, thereby adjusting the inclusion composition in the molten steel to 90% or below for titanium oxide, 5 to 50% for CaO, and 70% or below for Al2O3. Also, by ensuring that, after performing deoxidation, the ladle slag has a T.Fe concentration + MnO concentration of 10% or below by mass, (%CaO)/(%SiO2) of 1 or above, a TiO2 concentration of 1% or above by mass, and an Al2O3 concentration of 10 to 50% by mass, the inclusion composition within the molten steel is optimized and the inclusion amount is reduced, thereby enabling the manufacturing of a titanium-containing ultralow carbon steel that makes it possible to obtain a cold-rolled steel sheet that has excellent surface properties and inner properties, and also prevents clogging of the nozzle due to inclusions.

Description

含 Ti極低炭素鋼の溶製方法および含 Ti極低炭素鋼铸片の製造方法 技術分野  Technical field of melting Ti-containing ultra-low carbon steel and manufacturing method of Ti-containing ultra-low carbon steel
本発明は、 Tiで脱酸処理(deoxidation)された含 Ti極低炭秦鋼(Ti-containing ultralow carbon steel)の溶製 (steel making)方法、および含 Ti極低炭素鋼鎳片(slab)の製造方法に関するもので ある。 本発明は特に、表面性状(surface properties)および内質(inner properties)に優れた冷 延鋼板 (cold - rolled steel sheet)を製造する明に好適な、含 Ti極低炭素鋼およびその鐃片を得るた めの方法に関するものである。  The present invention relates to a method for steel making of Ti-containing ultralow carbon steel deoxidated with Ti, and a Ti-containing ultra-low carbon steel slab. This relates to the manufacturing method. In particular, the present invention provides a Ti-containing ultra-low carbon steel and its slab that are clearly suitable for producing a cold-rolled steel sheet having excellent surface properties and inner properties. It is about how to get it.
 book
背景技術 Background art
近年、自動車用鋼板などの冷延鋼板用の極低炭素鋼を溶製する場合、溶鋼中に 0. 005 mass%以上の A1が残留するように、溶鋼を A1で強脱酸することにより、低コストで鋼を清浄化 (cleanup)することが主流となっている。 このような A1による脱酸では、ガス撹拌装置(gas bubbling)や RH真空脱ガス装置(Ruhrstah卜 Hausen vacuum degasser)などを用いて溶鋼を処理 し、生成する酸化物(脱酸生成物( deoxidization products;)を凝集( aggregation ) ·合体 (coalescing)させて浮上分離(floatation and removal)を図る方法が取られてレ、る。 しかしこの方 法においては、铸片に不可避的に A1の酸化物(A1203)が残留してしまう。 特に、この残留 Al2 03はクラスター状の形状(cluster-like shape)になるため、溶鋼に対する見掛け比重が小さく、し たがって浮上分離しにくい。 このため、鋼中には数百 μ πι以上のサイズのクラスター状介在物 (inclusion)が残留しやすくなる。 このようなクラスター状介在物が連続铸造(continuous casting) 時に铸片表層部に捕捉(entrapped)されると、へゲ、スリーバ(sliver)のような表面欠陥(surface defect)を引き起こし、冷延鋼板の表面性状を損なうことになる。 In recent years, when ultra-low carbon steel for cold-rolled steel sheets such as automotive steel sheets is melted, by strong deoxidation of the molten steel with A1 so that 0.001 mass% or more of A1 remains in the molten steel, The mainstream is to clean up the steel at a low cost. In such deoxidation using A1, the molten steel is processed using a gas bubbling device or an RH vacuum degassing device (Ruhrstah 卜 Hausen vacuum degasser), and the resulting oxide (deoxidization products) ;) Agglomeration · coalescing is used to achieve floatation and removal, but in this method, the oxide of A1 (A1 2 0 3) may remain. in particular, since the residual Al 2 0 3 is formed of a cluster shape (cluster-like shape), a small apparent specific gravity with respect to the molten steel, difficult to flotation Therefore. Therefore In the steel, cluster-like inclusions with a size of several hundred μ πι or more are likely to remain, and such cluster-like inclusions are entrapped at the surface of the slab during continuous casting. When you get a hege, sliver ), And the surface properties of the cold-rolled steel sheet are impaired.
また、 A1脱酸で生成した固相の A1203は、連続铸造において、溶鋼 (molten steel)をタンディッ シュ(tundish)から錶型(mold)に注入する浸漬ノズル(immersion nozzle)の内面に付着'堆積 (deposition)し、ノズルの閉塞(clogging:ノズル詰まり)を起こすという問題もある。 そのため、タン ディッシュの上ノズル(upper nozzle)ゃ浸漬ノズルから Arガスなどを吹き込む(inject)ことにより、 ノズルの閉塞を抑える方法が採られている。 し力 この方法では、吹き込んだガスが凝固シェル (solidification shell)に A1203とともに捕捉され、スケール、へゲ、スリーバのような表面欠陥を引き 起こし、冷延鋼板の表面性状を損なうことになる。 このように Al脱酸鋼には多くの課題があるため、最近では、 A1を添加せず、 Tiで脱酸するケー スも多くなつてきている。 この理由は以下の通りである。 Ti脱酸鋼の場合には、 A1脱酸鋼に比 ベると到達酸素濃度が高く、したがって介在物量は多い。 しかし、 A1脱酸鋼に比べるとクラスタ 一状の酸化物は生成しにくぐ 5〜20 /x m程度のサイズの酸化物が鋼中に分散した状態で存在 するようになる。 したがって、この Ti脱酸鋼では、クラスター状の酸化物系介在物に起因する表 面欠陥は減少する。 Further, A1 A1 2 0 3 of the solid phase produced in deoxidation in a continuous铸造, the inner surface of the molten steel immersion nozzle for injecting the (molten steel) from Tandi' shoe (tundish) to錶型(mold) (immersion nozzle) There is also the problem of 'deposition' and nozzle clogging. Therefore, the upper nozzle (upper nozzle) of the tundish is injected with Ar gas or the like from the immersion nozzle, and a method of suppressing the clogging of the nozzle is adopted. In this method, the injected gas is trapped in the solidification shell together with A1 2 0 3 and causes surface defects such as scales, heges, and slivers, which impairs the surface properties of the cold-rolled steel sheet. Become. As described above, there are many problems with Al deoxidized steel, and recently, there are many cases in which A1 is not added and deoxidized with Ti. The reason is as follows. In the case of Ti deoxidized steel, the ultimate oxygen concentration is higher than that of A1 deoxidized steel, and therefore the amount of inclusions is large. However, compared to A1 deoxidized steel, it is difficult to form cluster-like oxides. Oxides with a size of about 5-20 / xm are present in a dispersed state in the steel. Therefore, in this Ti deoxidized steel, surface defects due to cluster-like oxide inclusions are reduced.
し力もながら、 Ti含有量が 0. 010mass%以上で且つ Ti含有量/ A1含有量≥5の極低炭素鋼 では、 Ti酸化物は溶鋼中では固相状態になる。 このため、連続鍀造時において Ti酸化物が地 金 (metal)を取り込んだ形で浸漬ノズルの内面に付着 ·成長(堆積)し、ノズル閉塞の原因となる。 このような問題点を解決する方法として、特開平 8— 281391号公報 (特許文献 1)では、 A1レ ス Ti脱酸鋼の鎳造において、浸漬ノズルを通過する溶鋼の酸素量を制限することにより、浸漬ノ ズル内面での Ti23の付着.成長を抑制する方法が提案されている。しかし、 Ti脱酸鋼の場合、 到達酸素濃度は 30mass ppm程度である。 このため、 1ノズル当たり 800ton程度までしか铸造 できない。 また、ノズノレ閉塞の進行とともに鏡型内の湯面のレベル制御が不安定になる。 これ らの理由により、特許文献 1の技術は Ti脱酸鋼の問題点の根本的な解決法にはならな 、。 However, in the ultra-low carbon steel with Ti content greater than or equal to 0.0010 mass% and Ti content / A1 content ≥5, the Ti oxide is in a solid state in the molten steel. For this reason, during continuous fabrication, the Ti oxide adheres to the inner surface of the immersion nozzle in the form of metal (metal) and causes nozzle clogging. As a method for solving such problems, Japanese Patent Laid-Open No. 8-281391 (Patent Document 1) limits the amount of oxygen in molten steel that passes through an immersion nozzle in the fabrication of A1-less Ti deoxidized steel. the adhesion of Ti 23 of immersion Bruno nozzle inner surface. the method of inhibiting the growth have been proposed. However, in the case of Ti deoxidized steel, the reached oxygen concentration is about 30 mass ppm. For this reason, only about 800 tons per nozzle can be produced. Moreover, the level control of the hot water surface in the mirror mold becomes unstable as the nozzle blockage proceeds. For these reasons, the technology of Patent Document 1 does not provide a fundamental solution to the problem of Ti deoxidized steel.
また、極低炭素 Ti脱酸鋼を連続錶造時に浸漬ノズルの閉塞を招くことなく铸造し、且つ発鯖の 著しい増加がなく表面性状に優れた含 Ti極低炭素冷延鋼板を得る方法として、特開平 10— 291 053号公報(特許文献 2)、特開平 11— 343516号公報(特許文献 3)、特開 2006— 152444号 (特許文献 4)では、 Ti脱酸後の溶鋼に Ca (Ca含有合金も含む)を添加することで、介在物を Ti 酸化物一 A1203— CaOおよび Zまたは REM(rare - earth metal)酸化物という低融点組成とし、連 続铸造にて浸漬ノズル内に Arガスを吹き込むことなく铸造を行う方法が提案されてレ、る。 In addition, as a method of producing ultra-low carbon Ti deoxidized steel without causing clogging of the immersion nozzle during continuous forging, and obtaining a Ti-containing ultra-low carbon cold-rolled steel sheet with excellent surface properties without causing significant increase in the formation of heat. JP-A-10-291 053 (Patent Document 2), JP-A-11-343516 (Patent Document 3), and JP-A-2006-152444 (Patent Document 4) describe that Ca ( (Including Ca-containing alloys), the inclusions have a low melting point composition of Ti oxides A1 2 0 3 — CaO and Z or REM (rare-earth metal) oxides. A method of forging without blowing Ar gas into the interior has been proposed.
また、 Ca添加の含 Ti極低炭素鋼において、酸化物系介在物の凝集による粗大化を抑制する ために、特開 2001— 26842号公報(特許文献 5)では、 ΑΓ添加前の溶鋼中の酸素含有量と、 A1 を添加して力 Tiを添加するまでの時間との間に、 a0/t≤100 (但し、 a0 :Al添加前の酸素含有 量 (mass ppm)、 t : Alを添加して力も Tiを添加するまでの時間(min) )の関係が成り立つように Ti を添加することにより、冷延鋼板中の介在物組成を Al2O3 : 10〜30mass%、 Caおよび/または 金属 REMの酸化物: 5〜30mass%、 Ti酸化物: 50〜90mass%にする方法が提案されている。 In addition, in order to suppress the coarsening due to the aggregation of oxide inclusions in Ti-containing ultra-low carbon steel containing Ca, JP 2001-26842 A (Patent Document 5) describes that Between the oxygen content and the time from the addition of A1 to the addition of force Ti, a 0 / t ≤ 100 (where a 0 : oxygen content before mass addition (mass ppm), t: Al The content of inclusions in the cold-rolled steel sheet can be changed to Al 2 O 3 : 10 to 30 mass%, Ca and Ca by adding Ti so that the relationship between the force and the time until the addition of Ti (min)) is satisfied. Metal or REM oxide: 5 to 30 mass%, Ti oxide: 50 to 90 mass% are proposed.
'発明の開示 'Disclosure of invention
〔発明が解決しょうとする課題〕  [Problems to be solved by the invention]
し力 ながら、本発明者らが発見したところでは、特許文献 2〜4の方法では、 Ca添加時に溶 鋼がスラグや大気などにより再酸化され、溶鋼中の酸素濃度および酸化物系介在物量が増加し、 錶造後に鋼中に大型の酸化物系介在物が残存する。 そしてこの大型の酸化物系介在物により、 冷延鋼板のプレス成型時に酸化物系介在物を起点とした割れが発生するという問題がある。 However, the present inventors have discovered that the methods disclosed in Patent Documents 2 to 4 do not dissolve when Ca is added. Steel is re-oxidized by slag, air, etc., and the oxygen concentration and amount of oxide inclusions in the molten steel increase, and large oxide inclusions remain in the steel after forging. The large oxide inclusions cause a problem that cracks originating from the oxide inclusions occur during press forming of the cold rolled steel sheet.
この問題に対しては、特許文献 5の方法により Ti添加前の処理時間を延ばして、酸化物系介 在物を凝集しにくい組成としても根本的な解決とはならない。 すなわち、同様に Ca添加時に溶 鋼がスラグや大気などにより再酸化され、溶鋼中の酸素濃度および酸化物系介在物量が増加し、 鍚造後に鋼中に大型の酸化物系介在物が残存する。 そしてこの大型の酸化物系介在物にによ り、冷延鋼板のプレス成型時に酸化物系介在物を起点とした割れが発生する。  To solve this problem, even if the composition of the oxide inclusions is difficult to aggregate by extending the treatment time before adding Ti by the method of Patent Document 5, it is not a fundamental solution. That is, when Ca is added, the molten steel is re-oxidized by slag, the atmosphere, etc., and the oxygen concentration and oxide inclusions in the molten steel increase, and large oxide inclusions remain in the steel after forging. . Due to the large oxide inclusions, cracks originating from the oxide inclusions occur during the press forming of the cold-rolled steel sheet.
本発明の目的は、上記の問題を解決し、 Tiで脱酸処理された含 Ti極低炭素鋼の溶製方法で あって、連続鐯造する際に酸化物系介在物による浸漬ノズノレの閉塞(ノズル詰まり)を防止できる とともに、表面性状および内質に優れた冷延鋼板を得ることができる、含 Ti極低炭素鋼の溶製方 法を提供することにある。 本発明においては、表面性状および内質に優れた冷延鋼板として、 特に酸化物系介在物や気泡などによる表面欠陥が少なぐ且つ酸化物系介在物起因のプレス割 れに対する髙!、抵抗性を有する冷延鋼板を得る。  The object of the present invention is to solve the above-mentioned problems and to produce a Ti-containing ultra-low carbon steel that has been deoxidized with Ti. It is an object of the present invention to provide a method for melting Ti-containing ultra-low carbon steel that can prevent (nozzle clogging) and obtain a cold-rolled steel sheet having excellent surface properties and quality. In the present invention, as a cold-rolled steel sheet having excellent surface properties and internal quality, there are particularly few surface defects due to oxide inclusions and bubbles, and resistance to press cracks caused by oxide inclusions. A cold-rolled steel sheet having the following is obtained.
また、本発明の他の目的は、そのような溶製方法で溶製された含 Ti極低炭素鋼から鎳片を製 造する方法であって、冷延鋼板の表面性状および内質をより高めることができる鑲片の製造方法 を提供することにある。  In addition, another object of the present invention is a method for producing a splinter from a Ti-containing ultra-low carbon steel that has been produced by such a melting method, which further improves the surface properties and quality of the cold-rolled steel sheet. An object of the present invention is to provide a method for manufacturing a piece that can be enhanced.
〔課題を解決するための手段〕 [Means for solving the problems]
本発明者らは、上記従来技術の課題を解決するために実験および研究を重ねた結果、以下 のような要旨の含 Ti極低炭素鋼の溶製方法および含 Ti極低炭素鋼铸片の製造方法を開発する に至った。  As a result of repeated experiments and researches to solve the above-mentioned problems of the prior art, the present inventors have found that a method for melting Ti-containing ultra-low carbon steel and a Ti-containing ultra-low carbon steel piece having the following gist are described. The manufacturing method has been developed.
[1] C : 0. 020mass%以下、 Ti: 0. 010mass%以上、 Ca : 0. 0005mass%以上を含有する極 低炭素 Ti脱酸鋼を溶製するに当たり、溶鋼を脱炭処理し、次いで取鍋 (ladle)中にて、 Tiを添加 して脱酸処理することにより、 A1含有量 (maSS%)と Ti含有量 (masS%)力 [%A1]≤ [%Ti]/lOを 満足する組成の脱酸溶鋼とし、その後、該取鍋中にて該脱酸溶鋼に Caを添加することにより、溶 鋼中の介在物組成を Ti酸化物: 90mass%以下、 CaO: 5~50mass%、 A1203: 70mass%以下に 調整し、かつ、 , [1] In melting extremely low carbon Ti deoxidized steel containing C: 0.020 mass% or less, Ti: 0.0010 mass% or more, Ca: 0.005 mass% or more, the molten steel is decarburized, A1 content (ma SS %) and Ti content (mas S %) force [% A1] ≤ [% Ti] / lO by adding Ti and deoxidizing in ladle In the ladle, Ca is added to the deoxidized molten steel, so that the inclusion composition in the molten steel is Ti oxide: 90 mass% or less, CaO: 5 ~ 50mass%, A1 2 0 3 : Adjusted to 70mass% or less, and,
前記 Tiを添加して溶鋼を脱酸処理した後の取鍋スラグ中の、  In the ladle slag after adding the Ti and deoxidizing the molten steel,
'トータル Fe濃度と MnO濃度の合計を 10mass%以下、  'Total Fe concentration and MnO concentration are less than 10 mass%,
•CaO濃度と Si〇2濃度の質量比(%CaO) / (%Si〇2)を 1以上、 • CaO concentration Si_〇 2 concentration mass ratio of (% CaO) / (% Si_〇 2) one or more,
•Ti02濃度を lmass%以上、および、 •A1203濃度を 10 50mass% • Ti0 2 concentration lmass% or more, and, • A1 20 3 concentration 10 50mass%
とする含 Ti極低炭素鋼の溶製方法。 A method for melting Ti-containing ultra-low carbon steel.
なお、上記発明 [1]は、 C:0.020masso /。以下、 Ti:0.010maSs%以上、 Ca:0.0005mass% 以上を含有する極低炭素 Ti脱酸鋼を溶製するに当たり、転炉 (converter)または電気炉 (electric f mace)から出鋼した溶鋼を、真空脱ガス設備において、脱炭処理し、次いで、該脱炭処理後の 溶鋼に Ti含有合金を添加して脱酸処理することにより、 A1含有量 (mass%)と Ti含有量 (mass%) が [%A1]≤[%Ti]ZlOを満足する組成の脱酸溶鋼とし、その後、該脱酸溶鋼に Caを含有する 介在物組成調整用合金を添加することにより、 溶鋼中の介在物組成を Ti酸化物: 90111 3%以 下、 CaO:5 50mass% A1203: 70mass%以下に調整し、前記 Ti含有合金を添加して溶鋼を 脱酸処理した後の取鍋スラグ中の、トータル Fe濃度と MnO濃度の合計を 10mass%以下、 CaO 濃度と Si〇2濃度の質量比(%CaO) Z(%Si〇2)を 1以上、 Ti02濃度を lmass%以上、 A1203濃 度を 10 50mass%とすることを特徴とする含 Ti極低炭素鋼の溶製方法であることが、好ましい。 The above invention [1] is C: 0.020 mass o /. In the following, in melting ultra-low carbon Ti deoxidized steel containing Ti: 0.010 maSs% or more and Ca: 0.0005 mass% or more, the molten steel produced from a converter or electric furnace is used. In a vacuum degassing facility, decarburization treatment is performed, and then the Ti-containing alloy is added to the molten steel after the decarburization treatment, followed by deoxidation treatment, whereby A1 content (mass%) and Ti content (mass% ) Is a deoxidized molten steel having a composition satisfying [% A1] ≤ [% Ti] ZlO, and then an inclusion composition adjusting alloy containing Ca is added to the deoxidized molten steel. The composition in the ladle slag after adjusting the composition to Ti oxide: 90111 3 % or less and CaO: 5 50 mass% A1 2 0 3 : 70 mass% or less and adding the Ti-containing alloy to deoxidize the molten steel , 10 mass% of the total of total Fe concentration and MnO concentrations less, the weight ratio of CaO concentration and Si_〇 2 concentration (% CaO) Z (% Si_〇 2) one or more, Ti0 2 concentration Lmass% or more, A1 2 0 3 Concentration 10 50 A method for melting Ti-containing ultra-low carbon steel characterized by mass% is preferred.
[2]上記 [1]の溶製方法において、 C:0.020mass%以下、 Ti:0.010mass%以上、 Ca:0.0 005mass。/。以上、 Si:0.2mass。/。以下、 Mn:2. Omass%以下、 S:0.050mass%以下、 P:0.00 5 0. 12mass% N:0.0005 0.0040mass%、残部 Feおよび不可避的不純物からなる極低 炭素 Ti脱酸鋼を溶製することを特徴とする含 Ti極低炭素鋼の溶製方法。 [2] In the melting method of [1] above, C: 0.020 mass% or less, Ti: 0.010 mass% or more, Ca: 0.0005 mass. /. Above, Si: 0.2mass. /. Below, Mn: 2. Omass% or less, S: 0.050 mass% or less, P: 0.00 5 0.12 mass% N: 0.0005 0.0040 mass%, ultra low carbon Ti deoxidized steel consisting of the balance Fe and inevitable impurities is melted A method for melting Ti-containing ultra-low carbon steel, characterized by:
[3]上記 [1]または [2]の溶製方法において、さらに、 Nb:0. 100mass%以下、 Β:0· 050 mass%以下、 Mo:l.0niass%以下の 1種以上を含有する極低炭素 Ti脱酸鋼を溶製することを特 徴とする含 Ti極低炭素鋼の溶製方法。 [3] In the melting method according to [1] or [2] above, it further contains one or more of Nb: 0. 100 mass% or less, Β: 0 · 050 mass% or less, Mo: l.0 niass% or less. A method for melting Ti-containing ultra-low carbon steel, characterized by melting ultra-low carbon Ti deoxidized steel.
[4]上記 [1] [: 3]のいずれかの溶製方法において、溶鋼を脱炭処理した後、 Tiを添加して脱 酸処理するのに先立ち、 Al Siおよび Mnの中から選ばれる 1種または 2種以上を添加して予備 脱酸することにより、溶鋼の溶存酸素濃度を予め 200massppm以下とすることを特徴とする含 Ti 極低炭素鋼の溶製方法。 [4] In the melting method of any one of [1] [: 3] above, after decarburizing the molten steel, it is selected from Al Si and Mn prior to deoxidizing treatment by adding Ti A method for melting Ti-containing ultra-low carbon steel, characterized in that the dissolved oxygen concentration of molten steel is set to 200 massppm or less in advance by adding one or two or more types to perform preliminary deoxidation.
[5]上記 [1:] [4]のいずれかの溶製方法において、 Tiを添カ卩して行う溶鋼の脱酸処理時間を 5分以上とすることを特徴とする含 Ti極低炭素鋼の溶製方法。 [5] Ti-containing ultra-low carbon characterized in that in the melting method according to any one of the above [1:] and [4], the deoxidation time of the molten steel performed by adding Ti is 5 minutes or more. Steel melting method.
[6]上記 ]〜 [5]のいずれかの溶製方法で溶製された溶鋼を連続铸造して鏡片を製造する 方法であって、タンディッシュ底部に設置された浸漬ノズノレを通じてタンディッシュ力 鎳型内に 溶鋼を注入する際に、前記浸漬ノズルを流下する溶鋼にガスを吹き込むことなぐ溶鋼を鎵造す ることを特徴とする含 Ti極低炭素鋼铸片の製造方法。 [6] A method for producing a mirror piece by continuously forging molten steel produced by any one of the melting methods described in the above [1] to [5], wherein the tundish force is obtained through an immersion nozzle installed at the bottom of the tundish. In the mold A method for producing a Ti-containing ultra-low carbon steel piece, characterized in that when molten steel is injected, molten steel is produced without blowing gas into the molten steel flowing down the immersion nozzle.
[7]上記 [1:]〜 [5]のいずれかの溶製方法で溶製された溶鋼を連続鍀造して铸片を製造する 方法であって、铸型内の溶鋼を磁場による電磁力により撹拌することを特徴とする含 Ti極低炭素 鋼錶片の製造方法。 [7] A method of continuously forging a molten steel produced by the melting method according to any one of [1:] to [5] above to produce a flake, wherein the molten steel in the mold is electromagnetically generated by a magnetic field. A method for producing a Ti-containing ultra-low carbon steel piece characterized by stirring by force.
[8]上記 [1:]〜 [5]のいずれかの溶製方法で溶製された溶鋼を連続鐯造して铸片を製造する 方法であって、鍀型内の溶鋼に静磁場を印加し、溶鋼流動を制動することを特徴とする含 Ti極低 炭素鋼铸片の製造方法。 [8] A method of continuously producing molten steel by melting the molten steel produced by any one of the above methods [1:] to [5], and applying a static magnetic field to the molten steel in the mold. A method for producing a Ti-containing ultra-low carbon steel slab characterized by applying and braking molten steel flow.
[9]上記 [1:]〜 [5]のいずれかの溶製方法で溶製された溶鋼を連続铸造して鏡片を製造する 方法であって、铸型内の溶鋼を磁場による電磁力により撹拌するとともに、溶鋼に静磁場を印加 し、溶鋼流動を制動することを特徴とする含 Ti極低炭素鋼錄片の製造方法。 [9] A method for producing a mirror piece by continuously forging molten steel produced by the melting method of any one of [1:] to [5] above, wherein the molten steel in the mold is moved by electromagnetic force generated by a magnetic field. A method for producing a Ti-containing ultra-low carbon steel piece characterized by stirring and applying a static magnetic field to the molten steel to brake the molten steel flow.
上記 [7]および [9]において、攪拌のための磁場としては移動磁場および Zまたは振動磁場 が好ましぐ移動磁場がより好ましい。  In the above [7] and [9], the magnetic field for stirring is more preferably a moving magnetic field and a moving magnetic field in which Z or an oscillating magnetic field is preferred.
[10]上記 [7]〜 [9]のいずれかの製造方法において、タンディッシュ底部に設置された浸漬ノ ズルを通じてタンディッシュから錶型内に溶鋼を注入する際に、前記浸漬ノズノレを流下する溶鋼 にガスを吹き込むことなく、溶鋼を鍀造することを特徴とする含 Ti極低炭素鋼铸片の製造方法。 [10] In the manufacturing method according to any one of [7] to [9] above, when the molten steel is poured from the tundish into the bowl through the immersion nozzle installed at the bottom of the tundish, the immersion nozzle is allowed to flow down. A method for producing a Ti-containing ultra-low carbon steel slab characterized by producing molten steel without blowing gas into the molten steel.
[ 11]上記 [6]〜 [10]のレ、ずれかの製造方法にぉレ、て、溶鋼をスループット 4tonZniin以下で 連続鎳造することを特徴とする含 Ti極低炭素鋼鎵片の製造方法。 図面の簡単な説明 [11] Manufacture of Ti-containing ultra-low carbon steel slab characterized in that molten steel is continuously forged at a throughput of 4 tonZniin or less. Method. Brief Description of Drawings
図 1は、溶鋼を Ti脱酸処理した後の取鍋スラグ中のトータル Fe濃度と MnO濃度の合計:(%T. Fe) + (%MnO) (横軸: mass%)と、冷延鋼板のパルジ試験における割れ部の板厚歪み率(縦 軸:%)との関係を示すグラフである。  Figure 1 shows the total Fe concentration and MnO concentration in ladle slag after Ti deoxidation of molten steel: (% T. Fe) + (% MnO) (horizontal axis: mass%) and cold rolled steel sheet 5 is a graph showing the relationship with the plate thickness strain rate (vertical axis:%) of a cracked portion in the bulge test.
図 2は、溶鋼を Ti脱酸処理した後の取鍋スラグ中の CaO濃度と Si〇2濃度の質量比(%〇&〇) / (%Si02) (横軸)と、冷延鋼板のバルジ試験における割れ部の板厚歪み率 (縦軸:%)との関 係を示すグラフである。 2, the weight ratio of CaO concentration and Si_〇 2 concentration of ladle slag after the molten steel Ti processing deoxidation and (% 〇 & 〇) / (% Si0 2) (horizontal axis), the cold-rolled steel sheet It is a graph which shows the relationship with the plate thickness distortion rate (vertical axis:%) of the crack part in a bulge test.
図 3は、溶鋼を Ti脱酸処理した後の取鍋スラグ中の Ti〇2濃度 (横軸: maSs%)と、冷延鋼板の バルジ試験における割れ部の板厚歪み率 (縦軸:%)との関係を示すグラフである。 3, Ti_〇 2 concentration of ladle slag after the molten steel Ti processing deoxidation (abscissa: ma S s%) and, of cold-rolled steel sheet It is a graph which shows the relationship with the plate thickness distortion rate (vertical axis:%) of the crack part in a bulge test.
図 4は、溶鋼を Ti脱酸処理した後の取鍋スラグ中の A1203濃度(横軸: mass%)と冷延鋼板の バルジ試験における割れ部の板厚歪み率 (縦軸:%)との関係を示すグラフである。 4, A1 2 0 3 concentration of ladle slag after the molten steel Ti processing deoxidation (horizontal axis: mass%) and the thickness distortion of the crack portions in the bulge test cold-rolled steel plate (ordinate:% It is a graph which shows the relationship with).
図 5は、 Ti脱酸処理前の溶鋼中の溶存酸素濃度(白丸'黒丸)および Ti脱酸処理時間(横軸: 分)と、冷延鋼板のバルジ試験における割れ部の板厚歪み率 (縦軸:%)との関係を示すグラフで ある。  Figure 5 shows the dissolved oxygen concentration (white circle and black circle) and Ti deoxidation treatment time (horizontal axis: minutes) in the molten steel before Ti deoxidation treatment, and the plate thickness distortion rate in the bulge test of cold-rolled steel sheets ( It is a graph which shows the relationship with a vertical axis | shaft:%).
図 6は、铸型内の溶鋼に磁場印加を行った試験例(黒丸 ·黒四角)と、磁場印加を行わなかつ た試験例(白丸)とについて、連続鎵造のスループット (横軸: ton/分)と冷延鋼板のバルジ試験 における割れ部の板厚歪み率 (縦軸: %)との関係を示すグラフである。 発明を実施するための最良の形態  Figure 6 shows the continuous forging throughput (horizontal axis: ton / black) for the test example (black circle / black square) with a magnetic field applied to molten steel in the mold and the test example without a magnetic field (white circle). 3) is a graph showing the relationship between the thickness strain rate (vertical axis:%) of the cracked portion in the bulge test of cold-rolled steel sheets. BEST MODE FOR CARRYING OUT THE INVENTION
(溶製する鋼の主要組成) (Main composition of steel to be melted)
本発明は、 C : 0. 020massQ/。以下、 Ti : 0. OlOmass。/。以上、 Ca : 0. 0005mass%以上を含有 する極低炭素 Ti脱酸鋼の溶製方法であり、溶鋼を脱炭処理と Tiによる脱酸処理を順次行い、さ らに、脱酸溶鋼に Caを添加することで、溶鋼中の介在物(二酸化物系介在物。以下同様)を所定 の組成に調整するものである。 脱炭以降の処理対象となる溶鋼は、一般に転炉または電気炉か ら出鋼される。 脱炭処理は真空脱ガス設備で行うことが好ましぐ Ti脱酸処理も同じ真空脱ガス 設備において行うことが好ましい。 Ca添加は同じ真空脱ガス設備で行っても良く、取鍋で Ή脱 酸処理と共通させてもよい。このような一連の処理を行う真空脱ガス設備としては、特に、 RH真空 脱ガス設備が望ましいが、 VOD (Vacuum Oxygen Decarburization)装置など、他の真空脱ガス設 備の使用を禁じるものでは無い。 本発明で溶製する極低炭素鋼は、 C量が 0. 020mass%を超えると、製品の深絞り性が確保で きなくなるため、 C量は 0. 020mass%以下とする。 C量の下限はとくに限定を要しない。  In the present invention, C: 0.020 massQ /. Ti: 0. OlOmass. /. The above is a method for melting ultra-low carbon Ti deoxidized steel containing Ca: 0.0005 mass% or more. The molten steel is sequentially decarburized and deoxidized with Ti. Is added to adjust the inclusions in the molten steel (dioxide inclusions; the same shall apply hereinafter) to a predetermined composition. Molten steel to be treated after decarburization is generally discharged from a converter or electric furnace. Decarburization is preferably performed in a vacuum degassing facility. Ti deoxidation is preferably performed in the same vacuum degassing facility. Ca addition may be performed in the same vacuum degassing equipment, or may be made common with Ήdeoxidation treatment in a ladle. As the vacuum degassing equipment for performing such a series of treatments, the RH vacuum degassing equipment is particularly desirable, but the use of other vacuum degassing equipment such as VOD (Vacuum Oxygen Decarburization) equipment is not prohibited. In the ultra-low carbon steel produced by the present invention, if the C content exceeds 0.020 mass%, the deep drawability of the product cannot be ensured, so the C content is set to 0.020 mass% or less. The lower limit of the C amount is not particularly limited.
また、 Ti量が 0. 010mass%未満では Tiによる脱酸素能力が弱く、全酸素濃度が高くなるので、 Ti量は 0. 010mass%以上とする。 一方、 Ti量が多すぎると、 TiNが大量に生成して浸漬ノズル を閉塞させるおそれがあるので、 Ti量は 0. 15mass%以下が好ましい。  Also, if the Ti content is less than 0.001 mass%, the deoxygenation ability by Ti is weak and the total oxygen concentration becomes high, so the Ti content should be 0.001 mass% or more. On the other hand, if the amount of Ti is too large, a large amount of TiN may be generated and the immersion nozzle may be blocked, so the Ti amount is preferably 0.15 mass% or less.
また、 Ca量が 0. 0005mass%未満では、介在物中の CaO濃度が 5〜50mass%にならず、介 在物の融点が高くなり、ノズル詰まりが発生しやすくなるので、 Ca量は 0. 0005mass%以上とする。 一方、 Ca量が 0. 0050mass%を超えると介在物の CaO濃度が 50mass%を超え、介在物が液相 状態で硫黄を含有し易くなる。 そしてその結果、液相介在物が固まる際に介在物の周囲に CaS を生成し、これが鋼板において発鲭の起点となり、鋼板の発鳍量が著しく増加する。 このため Ca 量は 0. 0050mass%以下が好ましい。 In addition, when the Ca content is less than 0.0005 mass%, the CaO concentration in the inclusion does not become 5 to 50 mass%, the inclusion melting point becomes high, and nozzle clogging is likely to occur. 0005 mass% or more. On the other hand, when the Ca content exceeds 0.0050 mass%, the CaO concentration of inclusions exceeds 50 mass%, and the inclusions easily contain sulfur in the liquid phase. As a result, when the liquid phase inclusions are solidified, CaS is generated around the inclusions, which becomes the starting point of the initiation of the steel plate, and the amount of the steel plate is significantly increased. For this reason Ca The amount is preferably 0.0050 mass% or less.
この他の鋼組成については、鋼の溶製ゃ铸片製造における本発明の主たる解決課題にさほ ど影響しないので、とくに限定しない。 鋼板として好ましい組成については後述する。 本発明では、 RH真空脱ガス設備などの真空脱ガス設備において、まず溶鋼の脱炭処理が行 われ、次いで、この脱炭処理後の溶鋼に Tiを添加して脱酸処理 (Ti脱酸処理)が行われ、 A1含 有量 (mass%) [% 1]と1含有量(腿35%) [%Ti]とが [%A1]≤ [%Ti]ZlOを満足する組成の 脱酸溶鋼とする。 Tiは、 Fe— Ti合金などのような Ti含有合金の形で添加することが便利であ る。  The other steel compositions are not particularly limited because they do not affect the main problem to be solved of the present invention in the manufacture of molten steel pieces. A preferable composition for the steel sheet will be described later. In the present invention, in a vacuum degassing facility such as an RH vacuum degassing facility, the molten steel is first decarburized, and then Ti is added to the molten steel after the decarburizing treatment to remove the deoxidation (Ti deoxidation treatment). A1 content (mass%) [% 1] and 1 content (thigh 35%) [% Ti] deoxidized molten steel with a composition satisfying [% A1] ≤ [% Ti] ZlO And Ti is conveniently added in the form of Ti-containing alloys such as Fe-Ti alloys.
脱酸溶鋼がこの組成範囲を外れると、 Ti脱酸ではなく A1脱酸となり、 A1203クラスターが大量 に生成される。 仮に、その後に Ti含有合金を添加して Ti濃度を增カロさせても A1203は十分還元 されず、鋼中にクラスター状介在物として残存してしまう。 その後、 Caを添加して介在物の組成 制御を行うが、生成する介在物は CaOAl203となって発鲭の起点になりやすくなるとともに、 Al2 03クラスタ一が反応した介在物は巨大な CaO 'Al23介在物となる。 したがって脱酸溶鋼は [% Al]≤[%Ti]/lOを満足させるものとする。 * When deoxidation molten steel outside this composition range, it becomes A1 deacidification not the Ti deoxidation, A1 2 0 3 clusters in large quantities produced. If, A1 2 0 3 also be增Caro the Ti concentration was added to Ti-containing alloy thereafter remained to a sufficient reduction Sarezu, clustered inclusions in the steel. Thereafter, performs the composition control of inclusions by adding Ca, inclusions produced together with easily become a starting point of Hatsu鲭becomes CaOAl 2 0 3, Al 2 0 3 inclusions cluster one is reacted in It becomes a huge CaO 'Al 2 O 3 inclusion. Therefore, deoxidized molten steel satisfies [% Al] ≤ [% Ti] / lO. *
(Ti脱酸処理後のスラグ組成) (Slag composition after Ti deoxidation treatment)
次いで、上記 Ti脱酸溶鋼に Caを添加し、溶鋼中の介在物組成を Ti酸化物: 90mass%以下、 CaO : 5〜50mass%、 A1203 : 70mass%以下の低融点の組成とする。 これにより、連続铸造時 における浸漬ノズル内面への酸化物系介在物の付着を効果的に抑え、浸漬ノズルの閉塞(ノズ ル詰まり)を防止することができる。 なお、 Caは、 Caを有する介在物組成調整用合金(以下、 「Ca含有フラックス (flux)」という)の形で添加することが便利である。 Then added Ca to the Ti deoxidation of molten steel, composition of inclusions of Ti oxides in molten steel: 90 mass% or less, CaO: 5~50mass%, A1 2 0 3: a composition of 70 mass% or less of the low melting point . As a result, it is possible to effectively prevent the oxide inclusions from adhering to the inner surface of the immersion nozzle during continuous fabrication, and to prevent the immersion nozzle from being clogged (nozzle clogging). It is convenient to add Ca in the form of an inclusion composition adjusting alloy containing Ca (hereinafter referred to as “Ca-containing flux”).
ここで、以上のような Ti脱酸処理とそれに続く Ca添加の目的と作用効果について説明する。 まず、溶鋼を Ti (例えば Fe— Ti合金などのような Ti含有合金)により脱酸することにより、 Ti酸化 物を主体とした介在物を生成させる。 こうして得られた介在物は、 A1で脱酸したときのようなクラ スター状にはならず、 5〜20 μ m程度の大きさの粒状となって鋼中に分散した状態で存在する。 もし、鋼中の A1濃度がある程度のレベルにあることで A1脱酸する結果と同じになると、巨大な A1203クラスターが生成する。 この場合、その後になって Ti含有合金を添加して Ti濃度を増加さ せたとしても、既に生成した A1203クラスタ一は消えることなぐそのままクラスター状介在物として 残存することになる。 Here, the purpose and effect of the above Ti deoxidation treatment and subsequent Ca addition will be explained. First, the molten steel is deoxidized with Ti (for example, a Ti-containing alloy such as an Fe-Ti alloy) to generate inclusions mainly composed of Ti oxides. The inclusions obtained in this way do not form a cluster as when deoxidized with A1, but are present in a state of being dispersed in the steel in the form of granules having a size of about 5 to 20 μm. If the A1 concentration in the steel is the same as the result of A1 deoxidation due to a certain level, a huge A1 2 0 3 cluster is formed. In this case, even if Ti-containing alloy is added later to increase the Ti concentration, the already produced A1 20 3 cluster remains as a cluster-like inclusion without disappearing.
このような理由で、本発明においては、溶鋼をまず Tiで脱酸し、 Ti酸化物を生成させることが 必要となる。 上記のような Ti脱酸により Ti2O3≥80mass%の Ti酸化物系介在物が生成する力 この介在物 は 5〜20 μ m程度の大きさで鋼中に分散し、粒状を呈することから、この鋼から冷延鋼板を製造 した場合の表面欠陥を減少させる。 しかしながら、極低炭素鋼の場合、鋼の凝固温度が高いた めに Ti酸化物は溶鋼中では固相状態であり、この酸化物が地金を取り込んだ形で連続鍚造され る。 このため酸化物及ぴ地金が浸漬ノズル内面に付着 '成長し、これ力 Sノズル詰まりの原因にな る。 For this reason, in the present invention, it is necessary to first deoxidize molten steel with Ti to produce Ti oxide. Force generated by Ti oxide inclusions with Ti 2 O 3 ≥80mass% due to Ti deoxidation as described above. These inclusions should be dispersed in steel with a size of about 5 to 20 μm and be granular. Therefore, surface defects when cold-rolled steel sheets are produced from this steel are reduced. However, in the case of ultra-low carbon steel, because of the high solidification temperature of the steel, the Ti oxide is in a solid state in the molten steel, and this oxide is continuously forged in the form of taking in the metal. For this reason, oxide and metal are attached to the inner surface of the submerged nozzle and grow, which causes clogging of the nozzle.
そこで、本発明では、 Ti含有合金により脱酸した後、その脱酸溶鋼に対してさらに、 Ca (例え ば Ca含有フラックス)を添加する。 Caを添加することにより、溶鋼中の酸化物系介在物の組成を、 Ti酸化物: 90mass%以下、 CaO : 10〜50mass%、 A1203 : 70mass%以下の低融点 Ti酸化物を 含む低融点介在物に変えることができる。すなわち、このような低融点の介在物に変えることによTherefore, in the present invention, after deoxidizing with the Ti-containing alloy, Ca (for example, Ca-containing flux) is further added to the deoxidized molten steel. By adding Ca, the composition of oxide inclusions in the molten steel, Ti oxide: 90 mass% or less, CaO: 10~50mass%, A1 2 0 3: containing 70 mass% or less of the low melting point Ti oxide It can be changed to a low melting point inclusion. In other words, by changing to such low melting point inclusions
8 .  8.
り、浸漬ノズル内面での地金を取り込んだ Ti酸化物の付着'成長を、効果的に防止することがで きる。 In this way, it is possible to effectively prevent the Ti oxide adhering to the inner surface of the immersion nozzle from growing.
Ti脱酸溶鋼への Ca添加は、 Ti脱酸処理後の取鍋で行ってもよいし、真空脱ガス処理中(脱酸 処理後)の真空槽に上部添加してもよいが、一般には前者の方法で添加がなされる。  Ca addition to Ti deoxidized molten steel may be performed in a ladle after Ti deoxidation treatment, or may be added to the vacuum tank during vacuum degassing treatment (after deoxidation treatment). Addition is performed by the former method.
Ca含有フラックスとしては、例えば、 CaSi、 CaNi、 CaAl、 CaFeなどの 1種以上を用いることが 好ましぐこれらの添力卩量を適宜調整することにより、上述したような組成の介在物が得られる。  As the Ca-containing flux, for example, it is preferable to use one or more of CaSi, CaNi, CaAl, CaFe and the like. By appropriately adjusting the amount of the applied force, inclusions having the above-described composition can be obtained. It is done.
Caを添加して調整される介在物組成の限定理由は、以下のとおりである。 The reasons for limiting the inclusion composition adjusted by adding Ca are as follows.
介在物の Ti酸化物濃度が 90mass%超では、介在物の融点が十分に低下せず、クラスター状 にこそならなレ、ものの、介在物が浸漬ノズルの内面に付着 ·堆積してノズノレ詰まりの原因になる。 このため Ti酸化物濃度は 90mass%以下、好ましくは 80mass%以下とする。一方、 Ti酸化物濃度 が低レ、と A1203濃度が増加することになるので、介在物の Ti酸化物濃度は 20mass%以上である ことが好ましく、 30mass%以上であることがさらに好ましい。 介在物中の Ti酸化物濃度は、介在 物に含有される Ti量を EPMAや EDXにより測定し、 Ti203に換算して算出するものとする。 If the Ti oxide concentration of inclusions exceeds 90 mass%, the melting point of the inclusions will not sufficiently decrease, and the inclusions will adhere to and accumulate on the inner surface of the immersion nozzle. Cause. Therefore, the Ti oxide concentration is 90 mass% or less, preferably 80 mass% or less. On the other hand, Ti oxides concentration Teire, and since A1 2 0 3 concentration will increase, it is preferred that Ti oxide concentration of the inclusions is not less than 20 mass%, further preferably at least 30 mass% . Ti oxides concentration in the inclusions, the Ti content contained in the inclusions were measured by EPMA or EDX, it shall be calculated in terms of Ti 2 0 3.
介在物の CaO濃度が 50masS%を超えると、介在物が液相状態で硫黄を含有しやすくなる。 その結果、液相介在物が固まる際に介在物の周囲に CaSを生成し、これが鋼板において発鲭の 起点となり、鋼板の発鲭量が著しく増加する。 一方、 CaO濃度が 5mass%未満では、介在物の 融点が十分に低下せず、介在物が浸漬ノズルの内面に付着 *堆積してノズル詰まりの原因になる。 このため CaO濃度は 5〜50mass%、好ましくは 7〜50mass%、さらに好ましくは 15〜50mass%と する。 介在物中の CaO濃度は、介在物に含有される Ca量を EPMAや EDXにより測定し、 CaO に換算して算出するものとする。 When the CaO concentration of inclusions exceeds 50 mas S %, the inclusions tend to contain sulfur in the liquid phase. As a result, when the liquid phase inclusions are solidified, CaS is generated around the inclusions, which becomes the starting point of the initiation of the steel plate, and the amount of generation of the steel plate increases significantly. On the other hand, if the CaO concentration is less than 5 mass%, the melting point of the inclusions does not decrease sufficiently, and the inclusions adhere to the inner surface of the immersion nozzle * and cause nozzle clogging. Therefore, the CaO concentration is 5 to 50 mass%, preferably 7 to 50 mass%, and more preferably 15 to 50 mass%. The CaO concentration in inclusions is calculated by measuring the amount of Ca contained in inclusions with EPMA or EDX and converting to CaO.
介在物の A1203濃度が 70mass%を超えると、介在物が高融点組成となるため、浸潰ノズルの ノズル詰まりが起きやくなるとともに、介在物がクラスター状になるため、鋼板での非金属介在物 性の欠陥が増加する。 A1203濃度は低くても問題ないが、コスト上は脱酸の一部に A1を利用す ることが有利である。 介在物中の A1203濃度は、介在物に含有される A1量を EPMAや EDXに より測定し、 A1203に換算して算出するものとする。 When the A1 2 0 3 concentration of inclusions exceeds 70 mass%, the inclusions have a high melting point composition. As nozzle clogging easily occurs and inclusions become clustered, non-metallic inclusion physical defects in the steel sheet increase. Even if the concentration of A1 2 0 3 is low, there is no problem, but from the viewpoint of cost, it is advantageous to use A1 as part of the deoxidation. The A1 20 3 concentration in inclusions is calculated by measuring the amount of A1 contained in inclusions with EPMA or EDX and converting to A1 2 0 3 .
介在物は、上述した Ti酸化物、 CaO、 A1203以外に、不可避的に混入する酸化物を含んでい てもよく、例えば、 MgOを 5mass%以下程度、 Si02を 20腿 ss%以下程度、それぞれ含んでいて もよい。 介在物中の MgO濃度や Si〇2濃度は、介在物に含有される Mg量や Si量を EPMAや E DXにより測定し、それぞれ MgOや Si02に換算して算出するものとする。 Inclusions, Ti oxides as described above, in addition to CaO, A1 2 0 3, may contain an oxide which inevitably mixed, for example, 5 mass% degree or less MgO, Si0 2 and 20 thigh ss% The following may be included. MgO concentration and Si_〇 2 concentration in the inclusions, the Mg content and Si content contained in the inclusions were measured by EPMA and E DX, respectively shall be calculated in terms of MgO and Si0 2.
(Ti脱酸処理後のスラグ組成) . (Slag composition after Ti deoxidation)
(a. トータル Fe濃度および MnO濃度)  (a. Total Fe concentration and MnO concentration)
Ca含有フラックスは、通常、鉄被覆ワイヤーやインジェクションランス(injection lance)を用いて 取鍋内の溶鋼に添加する。 鉄被覆ワイヤーは合金粉を薄鋼板で被覆したワイヤーであり、この ワイヤーを溶鋼中に供給する。また、インジェクションランスを用いる方法では、合金粉をインジェ クシヨンランスを通じて溶鋼内に吹き込む。 '  Ca-containing flux is usually added to the molten steel in the ladle using an iron-clad wire or injection lance. An iron-coated wire is a wire in which alloy powder is coated with a thin steel plate, and this wire is supplied into the molten steel. In the method using an injection lance, alloy powder is blown into the molten steel through the injection lance. '
Caを溶鋼に添加する際に、溶鋼は激しく撹拌され、溶鋼上にあるスラグの卷き込みや、スラグ 中の FeO、 MnO、 Si〇2などの酸化物との反応により溶鋼は再酸化され、溶鋼中の酸化物系介 在物量が著しく増加する。 このため本発明では、溶鋼を Ti脱酸処理した後(すなわち Ca添加の 前)の取鍋スラグ中のトータル Fe (T. Fe)濃度と MnO濃度の合計を 10mass%以下とする。これ により、 Caの添カロから連続鏡造にかけての溶鋼の再酸化が抑えられ、鍚片の酸化物系介在物量 が減少するため、最終的に冷延鋼板の内質を十分に高めることが可能となる。 冷延鋼板の内質 は、例えばバルジ試験における割れ部の板厚歪み率で評価することができる。 図 1は、溶鋼を本発明が規定する組成になるように Ti脱酸処理した後の取鍋スラグ中のトータ ル Fe濃度(mass%)と MnO濃度(mass%)の合計(%T. Fe) + (%MnO) (横軸: mass%)と、当 該溶鋼力 得られた冷延鋼板のパルジ試験における割れ部の板厚歪み率 (縦軸:%)との関係を 示すものである。 - この試験では、以下のようにして含 Ti極低炭素鋼を溶製し、これを連続铸造して得られた鎗片 から熱間圧延 (hot rolling)および冷間圧延(cold rolling)を経て冷延鋼板を得た。 転炉から出鋼 して取鍋に入られた溶鋼(300ton)に対して、スラグ中の FeO、 MnOを還元するため、必要に応 じて A1滓を添加した。 また、 RH真空脱ガス処理後のスラグ組成を制御するために、必要に応じ て CaO、 Al23、 TiOを添カ卩した。 なお、 A1滓(aluminium dross)は、アルミニウムを溶解する際 に表面に発生する副産物で、精鍊工程における添加剤としてよく用いられる。 次いで、 RH真空脱ガス設備において、次のような一連の処理を行った。まず、溶鋼を脱炭処 理して溶鋼の成分組成を C : 0. 0007—0. 0150mass%、酸素濃度: 120〜700腿 sppmとした。 次いで、溶鋼に A1を 0. :!〜 1. 2kgZ溶鋼 ton (溶鋼 1トン当たりの添加量。以下同様)添カ卩し、溶 鋼中の溶存酸素濃度を 30〜400massPpmまで低下させた。 この時の溶鋼の A1濃度は 0. 001 〜0. 005mass%であった。 さらに、溶鋼に Fe— 70mass%Ti合金を 0· 8〜2. 0kg/溶鋼 ton 添加し、 Ti脱酸処理を行った。 この Ti脱酸処理では、 Fe— Ti合金添加後 2〜15分で RH真空 脱ガス処理を終了し、終了後の溶鋼の組成は、 Ti濃度 0. 020-0. 080mass%、 A1濃度 0. 001 〜0. 006mass%、全酸素濃度 20〜: LOOmassppmであり、 [%AI]≤ [%Ti]Zl0を満足していた。 RH真空脱ガス処理 (脱酸処理)後の取鍋中のスラグ組成は、 CaO濃度: 20〜60mass%、 Si02 濃度: 5〜20mass%、 A1203濃度: 10〜50mass%、 Ti02濃度: 1〜: L0mass%、 MgO濃度: 2〜 15mass%、トータル Fe濃度: l~10mass%、 MnO濃度: 0. 5〜5mass%であった力 いずれも質 量比(%CaO) / (%Si02)≥ 1であった。 なお、スラグの組成は蛍光 X線分析により測定した。 When the addition of Ca to the molten steel, the molten steel is stirred vigorously, and narrowing wind-slag present on the molten steel, FeO in the slag, MnO, molten steel is reoxidized by reaction with the oxide such as Si_〇 2, The amount of oxide inclusions in the molten steel increases significantly. Therefore, in the present invention, the total Fe (T. Fe) concentration and MnO concentration in the ladle slag after Ti deoxidation treatment of the molten steel (that is, before Ca addition) is set to 10 mass% or less. This suppresses reoxidation of the molten steel from Ca-added calories to continuous mirroring and reduces the amount of oxide inclusions in the flakes, so that the quality of the cold-rolled steel sheet can be sufficiently increased in the end. It becomes. The internal quality of a cold-rolled steel sheet can be evaluated by, for example, the thickness distortion rate of a cracked part in a bulge test. Figure 1 shows the total (% T. Fe) of total Fe concentration (mass%) and MnO concentration (mass%) in ladle slag after Ti deoxidation treatment of the molten steel to the composition specified by the present invention. ) + (% MnO) (horizontal axis: mass%) and the thickness strain rate (vertical axis:%) of the cracked part in the bulge test of the cold-rolled steel sheet with the molten steel force . -In this test, a Ti-containing ultra-low carbon steel was melted as described below, and the hot slab (cold rolling) and hot rolling (cold rolling) were performed on the slab obtained by continuous forging. A cold-rolled steel sheet was obtained. In order to reduce FeO and MnO in the slag, A1% was added as needed to the molten steel (300 tons) that was removed from the converter and placed in the ladle. Further, in order to control the slag composition after RH vacuum degassing treatment was添Ka卩CaO, Al 23, a TiO if necessary. A1 滓 (aluminium dross) is used to dissolve aluminum. It is a by-product generated on the surface and is often used as an additive in the finishing process. Next, the following series of treatments were performed in the RH vacuum degassing facility. First, the molten steel was decarburized so that the component composition of the molten steel was C: 0.0007—0.0150 mass% and the oxygen concentration was 120 to 700 thigh sppm. Then, the molten steel to 0. The A1:! ~ 1. 2kgZ molten steel ton and (. Amount per molten steel 1 ton or less the same)添Ka卩reduced the dissolved oxygen concentration in the soluble steel to 30~400mass P pm . The A1 concentration of the molten steel at this time was 0.001 to 0.005 mass%. Furthermore, Fe-70mass% Ti alloy was added to the molten steel at 0 · 8 to 2.0kg / toned molten steel, and Ti deoxidation treatment was performed. In this Ti deoxidation treatment, the RH vacuum degassing treatment was completed 2 to 15 minutes after the addition of the Fe-Ti alloy, and the composition of the molten steel after completion was as follows: Ti concentration 0.020-0.080 mass%, A1 concentration 0. 001 to 0.006 mass%, total oxygen concentration 20 to: LOOmassppm, and [% AI] ≤ [% Ti] Zl0 was satisfied. RH vacuum degassing treatment (deacidification) slag composition during ladle later, CaO concentration: 20~60mass%, Si0 2 concentration: 5~20mass%, A1 2 0 3 concentration: 10~50mass%, Ti0 2 Concentration: 1 ~: L0mass%, MgO concentration: 2 ~ 15mass%, Total Fe concentration: l ~ 10mass%, MnO concentration: 0.5 ~ 5mass% The force ratio (% CaO) / (% Si0 2 ) ≥1. The slag composition was measured by fluorescent X-ray analysis.
RH真空脱ガス処理後、当該取鍋内の溶鋼に 20〜35mass%Ca— 60~75mass%Si合金を 鉄被覆ワイヤーにより供給して(Ca- Si合金量で) 0. 1〜0. 4kgZ溶鋼 ton添加し、溶鋼中の介在 物の組成を Ti酸化物: 30〜70mass%、 CaO : 6〜50mass%、 A1203 : 10〜70mass%に調整した。 溶製された溶鋼の Ca濃度は 0. 0005mass%以上であった。 以上のようにして溶製した溶鋼を 2ストランド(strand)スラブ連続铸造装置にて連続鎳造し、铸 片を製造した。 この連続錶造は、浸漬ノズルを流下する溶鋼に Arや N2などのガスを吹き込むこ となく行 、、铸造時の溶鋼スループット(単位時間当り溶鋼鎳造量)は 2〜6tonZminとした。 錡 造されたスラブを板厚 2〜4mmまで熱間圧延し、さらに板厚 0. 6〜1. 0mmまで冷間圧延し、冷 延鋼板を得た。 After RH vacuum degassing treatment, supply 20 ~ 35mass% Ca-60 ~ 75mass% Si alloy to molten steel in the ladle by iron-coated wire (Ca-Si alloy amount) 0.1 ~ 0.4kgZ molten steel ton added, the composition of the inclusions in the molten steel Ti oxides: 30~70mass%, CaO: 6~50mass% , A1 2 0 3: was adjusted to 10~70mass%. The Ca concentration in the molten steel was over 0.0005 mass%. The molten steel melted as described above was continuously forged using a two-strand slab continuous forging device to produce a piece. This continuous forging was performed without blowing gas such as Ar or N 2 into the molten steel flowing down the immersion nozzle. The produced slab was hot-rolled to a thickness of 2 to 4 mm, and further cold-rolled to a thickness of 0.6 to 1.0 mm to obtain a cold-rolled steel plate.
図 1に示されるように、取鍋スラグ中の(%T. Fe) + (%MnO)を 10mass%以下とすることによ り、パルジ試験における割れ部の板厚歪み率を 50%以上とすることが可能になる。また、より好ま しレ、(%T. Fe) + (%MnO)は 5mass°/0以下である。 なお、(%T. Fe) + (%MnO)の下限はと くに限定を要しない。 As shown in Fig. 1, by setting the (% T.Fe) + (% MnO) in the ladle slag to 10 mass% or less, the plate thickness distortion rate in the bulge test is set to 50% or more. It becomes possible to do. More preferably, (% T.Fe) + (% MnO) is 5 mass ° / 0 or less. The lower limit of (% T.Fe) + (% MnO) is not particularly limited.
なお、本発明において、冷延鋼板のパルジ試験における割れ部の板厚歪み率とは、次のよう にして求められるものである。 板厚 0.6〜1.0mmの冷延鋼板から 200mm四方のサンプルを 10 枚抽出し、これらのサンプルを破断するまで油圧で膨らませる。 破断 (割れ)部分の板厚を測定 して、当初板厚で除することで板厚方向の歪み率を算出し、 10点のうちの最小の歪み率をもってIn the present invention, the plate thickness distortion rate of the cracked portion in the bulge test of the cold-rolled steel plate is obtained as follows. The 200mm square samples were extracted ten cold-rolled steel sheet having a thickness of 0. 6 1.0 mm, inflated hydraulically to break these samples. Measure the thickness of the fractured portion Then, by dividing by the initial plate thickness, the strain rate in the plate thickness direction is calculated, and with the minimum strain rate out of 10 points
「板厚歪み率」とする。 板厚歪み率が高 、程、内部欠陥(この場合、大型の酸化物系^:在物)が 少ない、内質が良好な鋼板であり、板厚歪み率が 50%以上となることが望ましい。 取鍋スラグ中の(%T. Fe) + (%MnO)を 10mass%以下(あるいはより好適な値)にするのに は、例えば、転炉力 流出するスラグ量に応じて処理前に A1滓を添加すればよい。 This is referred to as “plate thickness distortion rate”. It is desirable that the higher the plate thickness distortion rate, the less the internal defects (in this case, large oxides ^: existence), the better the quality, and the plate thickness distortion rate be 50% or more. . To reduce (% T.Fe) + (% MnO) in ladle slag to 10 mass% or less (or a more suitable value), for example, depending on the amount of slag flowing out of the converter power, A1 May be added.
(b. CaO濃度と Si02濃度との比) (b. the ratio of the CaO concentration and Si0 2 concentration)
また、上記と同様の観点から、溶鋼を Ti脱酸した後の取鍋スラグ中の CaO濃度と Si02濃度の 質量比(%CaO) / (%Si02)を 1以上とする。 Also from the same viewpoint as above, the mass ratio of CaO concentration and Si0 2 concentration of ladle slag after the molten steel was Ti deoxidation (% CaO) / (% Si0 2) one or more.
図 2は、溶鋼を本発明が規定する組成になるように Ti脱酸処理した後の取鍋スラグ中の質量 比(%CaO) / (%Si02) (横軸)と、当該溶鋼から得られた冷延鋼板のパルジ試験における割れ 部の板厚歪み率 (縦軸:%)との関係を示すものである。 この試験では、以下のようにして含 Ti極低炭素鋼を溶製し、これを連続錶造して得られた鎳片 から熱間圧延およぴ冷間圧延を経て冷延鋼板を得た。 転炉から出鋼して取鍋に入れられた溶 鋼(300ton)に対して、石灰を添加して質量比(%CaO) / (%Si02)を調整した。 また、スラグ 中の FeO、 MnOを還元するため、必要に応じて A1滓を添加した。 また、 RH真空脱ガス処理後 のスラグ組成を制御するために、必要に応じて CaO、 A1203、 Ti02を添加した。 2, the weight ratio of the ladle slag after treatment Ti deoxidation so the composition defined by the present invention a molten steel (% CaO) / (% Si0 2) (horizontal axis), obtained from the molten steel This shows the relationship with the thickness strain rate (vertical axis:%) of the cracked part in the pulge test of the obtained cold-rolled steel sheet. In this test, a Ti-containing ultra-low carbon steel was melted as follows, and a cold-rolled steel sheet was obtained through hot rolling and cold rolling from a piece obtained by continuous forging. . The mass ratio (% CaO) / (% Si0 2 ) was adjusted by adding lime to the molten steel (300 tons) that was removed from the converter and placed in the ladle. A1 A was added as needed to reduce FeO and MnO in the slag. Further, in order to control the slag composition after RH vacuum degassing treatment, the addition of CaO, A1 2 0 3, Ti0 2 as necessary.
次いで、 RH真空脱ガス設備において、次のような一連の処理を行った。 まず、溶鋼を脱炭 処理して溶鋼の成分組成を C : 0. 0007^0. 0150mass%、酸素濃度:120〜700應 sppmとし た。 次いで、溶鋼に A1を 0. :!〜 1. 2kg/溶銅 ton添加し、溶鋼中の溶存酸素濃度を 30〜400 massppmまで低下させた。 この時の溶鋼の A1濃度は 0. 001〜0. 005mass%であった。 さら に、溶鋼に Fe— 70mass%Ti合金を 0. 8〜2. OkgZ溶鋼 ton添加し、 Ti脱酸処理を行った。 こ の Ti脱酸処理では、 Fe— Ti合金添加後 2〜15分で RH真空脱ガス処理を終了し、終了後の溶 鋼の組成は、 Ti濃度 0. 020-0. 080mass%、 A1濃度 0. 001〜0. 006mass%、全酸素濃度 20 〜: lOOmassppmであり、 [%A1]≤ [%Ti] /l0を満足していた。 RH真空脱ガス処理(脱酸処 理)後の取鍋中のスラグ組成は、 CaO濃度: 20〜60mass%、 Si02濃度: 5〜20mass%、 A1203 濃度: 10〜 5 Omass %、 Ti02濃度: 1〜: L Omass %、 MgO濃度: 2〜 15mass %、トータル Fe濃度: l〜8mass%、 MnO濃度: 0. 5〜4mass%であったが、いずれも (%T. Fe) + (%MnO)≤10 mass%であつ 7こ。 Next, the following series of treatments were performed in the RH vacuum degassing facility. First, the molten steel was decarburized so that the component composition of the molten steel was C : 0.0007 ^ 0.0150 mass% and the oxygen concentration was 120-700 sppm. Next, add A1 to the molten steel. 〜1.2kg / mol copper ton was added to reduce the dissolved oxygen concentration in molten steel to 30 ~ 400 massppm. The A1 concentration of the molten steel at this time was 0.001 to 0.005 mass%. In addition, Fe-70mass% Ti alloy was added to the molten steel 0.8 to 2. OkgZ molten steel ton, and Ti deoxidation treatment was performed. In this Ti deoxidation treatment, the RH vacuum degassing treatment was completed 2 to 15 minutes after the addition of the Fe-Ti alloy, and the composition of the molten steel after completion was as follows: Ti concentration 0.020-0.080 mass%, A1 concentration 0.001 to 0.006 mass%, total oxygen concentration 20 to: lOOmassppm, and [% A1] ≤ [% Ti] / l0 was satisfied. RH vacuum degassing treatment (Datsusansho sense) slag composition during ladle later, CaO concentration: 20~60mass%, Si0 2 concentration: 5~20mass%, A1 2 0 3 concentration: 10~ 5 Omass%, Ti0 2 concentration: 1 to: L Omass%, MgO concentration: 2 to 15 mass%, total Fe concentration: l to 8 mass%, MnO concentration: 0.5 to 4 mass%, all (% T. Fe) + 7 with (% MnO) ≤10 mass%.
RH真空脱ガス処理後、当該取鍋内の溶鋼に 20〜35mass%Ca— 60〜75mass%Si合金を 鉄被覆ワイヤーにより供給して 0. 1〜0. 4kgZ溶鋼 ton添カ卩し、溶鋼中の介在物の組成を Ti酸 ィ匕物: 30〜70mass%、 CaO: 6〜50mass%、 A1203 : 10〜70mass%に調整した。 溶製された 溶鋼の Ca濃度は 0. 0005mass%以上であった。 以上のようにして溶製した溶鋼を 2ストランドスラブ連続鐯造装置にて連続鍚造し、鍚片を製造 した。 この連続铸造は、浸漬ノズルを流下する溶鋼に Arや N2などのガスを吹き込むことなく行 レ、、鏡造時の溶鋼スループットは 2〜6tonZminとした。 铸造されたスラブを板厚 2〜4mmまで 熱間圧延し、さらに板厚 0. 6〜1. 0mmまで冷間圧延し、冷延鋼板を得た。 After RH vacuum degassing treatment, 20 ~ 35mass% Ca-60 ~ 75mass% Si alloy is added to the molten steel in the ladle. Supplyed by iron-coated wire, 0.1 to 0.4 kgZ molten steel ton added, and the composition of inclusions in the molten steel is Ti oxide: 30 to 70 mass%, CaO: 6 to 50 mass%, A1 2 0 3 : Adjusted to 10-70 mass%. The Ca concentration in the molten steel was over 0.0005 mass%. The molten steel melted as described above was continuously forged with a two-strand slab continuous forging device to produce a piece. This continuous forging was performed without blowing gas such as Ar or N 2 into the molten steel flowing down the submerged nozzle, and the molten steel throughput during mirror fabrication was set to 2 to 6 tonZmin. The forged slab was hot-rolled to a thickness of 2 to 4 mm, and further cold-rolled to a thickness of 0.6 to 1.0 mm to obtain a cold-rolled steel plate.
図 2に示されるように、取鍋スラグ中の(%Caq / (%SiO2)を 1以上とすることにより、バルジ 試験における割れ部の板厚歪み率を 50%以上とすることが可能になる。 また、より好ましい(% CaO) / (%Si02)は 2以上、さらに好ましくは 2. 5以上である。 なお、(%CaO) Z(%Si02)の 上限はとくに限定を要しないが、通常は最大 6. 0程度である。 取鍋スラグ中の(%CaO) / (%Si02)を 1以上(あるレ、はより好適な値)とするには、例えば、転 炉出鋼流中に石灰を添加すればよ!/、。 As shown in FIG. 2, by the in ladle slag (% Caq / (% SiO 2 ) one or more, the thickness distortion of the crack portion in the bulge tested can be 50% or more Further, more preferable (% CaO) / (% Si0 2 ) is 2 or more, more preferably 2.5 or more, and the upper limit of (% CaO) Z (% Si0 2 ) is not particularly limited. Usually, the maximum is around 6.0 To make (% CaO) / (% Si0 2 ) in ladle slag 1 or more (a more suitable value), for example, Just add lime to the steel flow!
(c. Ti〇2濃度) (c. Ti_〇 2 concentration)
さらに、本発明では、溶鋼を Ti脱酸した後の取鍋スラグ中の Ti02濃度を lmass%以上にする。 これにより、 Tiの再酸化速度が低減して、酸化物系介在物量の増加を抑えることができ、冷延鋼 板のバルジ試験における板厚歪み率を 50%以上にすることが可能となる。 Furthermore, in the present invention, the Ti0 2 concentration of ladle slag after the molten steel was Ti deoxidation or more lmass%. This reduces the rate of Ti reoxidation and suppresses the increase in the amount of oxide inclusions, making it possible to increase the thickness strain rate in cold-rolled steel bulge tests to 50% or more.
図 3は、溶鋼を本発明が規定する組成になるように Ti脱酸処理した後の取鍋スラグ中の Ti02 濃度 (横軸: mass%)と、当該溶鋼力 得られた冷延鋼板のバルジ試験における割れ部の板厚歪 み率 (縦軸:%)との関係を示すものである。 この試験では、以下のようにして含 Ti極低炭素鋼を溶製し、これを連続铸造して得られた錄片 から熱間圧延および冷間圧延を経て冷延鋼板を得た。 転炉から出鋼して取鍋に入れられた溶 鋼(300ton)に対して、酸素濃度に応じて Ti— Fe合金を添カ卩して Ti02濃度を調整した。 また、 スラグ中の FeO、 MnOを還元するため、必要に応じて A1滓を添加した。また、 RH真空脱ガス処 理後のスラグ組成を制御するために、必要に応じて CaO、 A1203、 Ti02を添加した。 3, Ti0 2 concentration of ladle slag after treatment Ti deoxidation so the composition defined by the present invention a molten steel (horizontal axis: mass%) and, of the molten steel force resulting cold rolled steel sheet This shows the relationship with the thickness distortion rate (vertical axis:%) of the cracked part in the bulge test. In this test, a Ti-containing ultra-low carbon steel was melted as follows, and a cold rolled steel sheet was obtained from a piece obtained by continuous forging through hot rolling and cold rolling. Against soluble steel encased in a ladle and tapped from the converter (300 ton), and the Ti- Fe alloy in accordance with the oxygen concentration was adjusted to添Ka卩to Ti0 2 concentration. A1 A was added as needed to reduce FeO and MnO in the slag. Further, in order to control the slag composition after RH vacuum degassing treatment, the addition of CaO, A1 2 0 3, Ti0 2 as necessary.
次いで、 RH真空脱ガス設備において、次のような一連の処理を行った。 まず、溶鋼を脱炭 処理して溶鋼の成分組成を C : 0. 0007-0. 0150mass%、酸素濃度: 120〜700massppmとし た。 次いで、溶鋼に A1を 0. 1〜; 1. 2kg/溶鋼 ton添カ卩し、溶鋼中の溶存酸素濃度を 30〜400 massppmまで低下させた。 この時の溶鋼の A1濃度は 0. 001-0. 005mass%であった。 さら に、溶鋼に Fe— 70mass%Ti合金を 0. 8〜2. OkgZ溶鋼 ton添加し、 Ti脱酸処理を行った。 こ の Ti脱酸処理では、 Fe— Ti合金添加後 2〜15分で RH真空脱ガス処理を終了し、終了後の溶 鋼の組成は、 Ti濃度 0. 020-0. 080mass%、 A1濃度 0. 001-0. 006mass%、全酸素濃度 20 〜100massppmであり、 [%A1]≤ [%Ti]ZlOを満足していた。 RH真空脱ガス処理(脱酸処 理)後の取鍋中のスラグ組成は、 CaO濃度: 20〜60mass%、 Si02濃度: 5〜20mass%、 A1203 濃度: 10〜50mass%、 Ti02濃度::!〜 10mass%、 MgO濃度: 2〜15mass%、トータル Fe濃度: l〜8mass%、 MnO濃度: 0. 5〜4mass%であった力 いずれも質量比(o/oCaC Z /oSiC ≥ 1、 (%T. Fe) + (%MnO)≤10mass。/。であった。 Next, the following series of treatments were performed in the RH vacuum degassing facility. First, the molten steel was decarburized so that the component composition of the molten steel was C: 0.0007-0.150 mass% and the oxygen concentration was 120-700 massppm. Next, add A1 to the molten steel from 0.1 to 1; 1.2 kg / mol steel ton, and adjust the dissolved oxygen concentration in the molten steel to 30 to 400. Reduced to massppm. The A1 concentration of the molten steel at this time was 0.001-0.005 mass%. In addition, Fe-70mass% Ti alloy was added to the molten steel 0.8 to 2. OkgZ molten steel ton, and Ti deoxidation treatment was performed. In this Ti deoxidation treatment, the RH vacuum degassing treatment was completed 2 to 15 minutes after the addition of the Fe-Ti alloy, and the composition of the molten steel after completion was as follows: Ti concentration 0.020-0.080 mass%, A1 concentration 0. 001-0. 006 mass%, total oxygen concentration was 20-100 massppm, and [% A1] ≤ [% Ti] ZlO was satisfied. RH vacuum degassing treatment (Datsusansho sense) slag composition during ladle later, CaO concentration: 20~60mass%, Si0 2 concentration: 5~20mass%, A1 2 0 3 concentration: 10~50mass%, Ti0 2 concentration ::! ~ 10mass%, MgO concentration: 2-15mass%, total Fe concentration: l-8mass%, MnO concentration: 0.5-4mass% Forces are all mass ratio (o / oCaC Z / oSiC ≥ 1, (% T.Fe) + (% MnO) ≤10mass /.
RH真空脱ガス処理後、当該取鍋内の溶鋼に 20〜35mass%Ca— 60〜75mass%Si合金を 鉄被覆ワイヤーにより供給して 0. 1〜0. 4kgZ溶鋼 ton添加し、溶鋼中の介在物の組成を Ti酸 化物: 30〜70mass%、 CaO : 6〜50mass%、 A1203 : 10〜70mass%に調整した。 溶製された 溶鋼の Ca濃度は 0. 0005mass。/。以上であった。 以上のようにして溶製した溶鋼を 2ストランドスラブ連続錶造装置にて連続鎊造し、鍚片を製造 した。 この連続鎳造は、浸漬ノズルを流下する溶鋼に Arや N2などのガスを吹き込むことなく行 い、铸造時の溶鋼スループットは 2〜6ton/minとした。 鍚造されたスラブを板厚 2〜4nunまで 熱間圧延し、さらに板厚 0. 6〜1. 0mmまで冷間圧延し、冷延鋼板を得た。 After RH vacuum degassing treatment, supply 20 ~ 35mass% Ca-60 ~ 75mass% Si alloy to the molten steel in the ladle by iron coated wire, add 0.1 ~ 0.4kgZ molten steel ton, and intervene in the molten steel Ti oxides the composition of the object: 30~70mass%, CaO: 6~50mass% , A1 2 0 3: was adjusted to 10~70mass%. The Ca concentration in the molten steel is 0.0005 mass. /. That was all. The molten steel melted as described above was continuously forged with a two-strand slab continuous forging device to produce a piece. This continuous forging was performed without blowing gas such as Ar or N 2 into the molten steel flowing down the immersion nozzle, and the molten steel throughput during forging was set at 2 to 6 ton / min. The forged slab was hot-rolled to a thickness of 2 to 4 nun, and further cold-rolled to a thickness of 0.6 to 1.0 mm to obtain a cold-rolled steel plate.
図 3に示されるように、取鍋スラグ中の Ti〇2濃度を lmass%以上とすることにより、パルジ試験 における割れ部の板厚歪み率を 50%以上にすることが可能となる。 また、より好ましい Ti〇2濃 度は 2mass%以上、さらに好ましくは 3%以上である。 なお、 Ti〇2濃度の上限はとくに限定を要 しないが、通常は最大 10%程度である。 取鍋スラグ中の Ti02濃度を lmass%以上とするには、例えば、酸素濃度に応じて Tiを添加す ればよい。 As shown in FIG. 3, by setting the Ti_〇 2 concentration in the ladle slag Lmass% or more, the thickness distortion of the crack portion in Paruji test it is possible to more than 50%. A more preferable Ti02 concentration is 2 mass% or more, more preferably 3% or more. The upper limit of Ti_〇 2 concentration is not essential limitation in particular, it is usually at most about 10%. The Ti0 2 concentration in the ladle slag to Lmass% or more, for example, may Re to adding Ti in response to the oxygen concentration.
(d. A1203濃度) (d. A1 2 0 3 concentration)
さらに、本発明では、溶鋼を Ti脱酸処理した後の取鍋スラグ中の A1203濃度を 10〜50mass% にする。 Furthermore, in the present invention, the A1 2 0 3 concentration of ladle slag after the molten steel is treated Ti deoxidation to 10~50mass%.
図 4は、溶鋼を本発明が規定する組成になるように Ti脱酸処理した後の取鍋スラグ中の A1203 濃度 (横軸: masS%)と、当該溶鋼から得られた冷延鋼板のバルジ試験における割れ部の板厚歪 み率 (縦軸:%)との関係を示すものである。 この試験では、以下のようにして含 Ti極低炭素鋼を溶製し、これを連続铸造して得られた鎳片 から熱間圧延および冷間圧延を経て冷延鋼板を得た。 転炉から出鋼して取鍋に入れられた溶 鋼(300ton)に対して、 A1滓を添加して A1203濃度を調整した。 また、スラグ中の FeO、 MnOを 還元するため、必要に応じて A1滓を添加した。 また、 RH真空脱ガス処理後のスラグ組成を制御 するために、必要に応じて CaO、 A1203、 Ti02を添加した。 4, A1 2 0 3 concentration of ladle slag after treatment Ti deoxidation so the composition defined by the present invention a molten steel (abscissa: mas S%) and was obtained from the molten steel cold This shows the relationship with the thickness distortion rate (vertical axis:%) of the cracked part in the bulge test of the rolled steel sheet. In this test, a Ti-containing ultra-low carbon steel was melted as follows, and a cold rolled steel sheet was obtained from a piece obtained by continuous forging through hot rolling and cold rolling. Respect converter tapped to a ladle put was dissolved steel from (300 ton), to adjust the A1 2 0 3 concentration by the addition of A1 slag. A1 A was added as needed to reduce FeO and MnO in the slag. Further, in order to control the slag composition after RH vacuum degassing treatment, the addition of CaO, A1 2 0 3, Ti0 2 as necessary.
次いで、 RH真空脱ガス設備において、次のような一連の処理を行った。 まず、溶銅を脱炭 処理して溶鋼の成分組成を C : 0. 0007—0. 0150mass%、酸素濃度: 120〜700massppmとし た。 次いで、溶鋼に A1を 0. 1〜1. 2kgZ溶鋼 ton添加し、溶鋼中の溶存酸素濃度を 30〜400 massppmまで低下させた。 この時の溶鋼の A1濃度は 0. 001-0. 005mass%であった。 さら に、溶鋼に Fe— 70mass%Ti合金を 0. 8〜2. OkgZ溶鋼 ton添加し、 Ti脱酸処理を行った。 こ の Ti脱酸処理では、 Fe— Ti合金添加後 2〜: 15分で RH真空脱ガス処理を終了し、終了後の溶 鋼の組成は、 Ti濃度 0. 020—0. 080mass%、 A1濃度 0. 001〜0. 006mass%、全酸素濃度 20 〜100腿 ssppmであり、 [%Al]≤[%Ti]Zl0を満足していた。 RH真空脱ガス処理 (脱酸処 理)後の取鍋中のスラグ組成は、 CaO濃度: 20〜60mass%、 Si〇2濃度:5〜 20mass%、 Ti〇2濃 度: l~10mass%、 MgO濃度: 2〜15mass%、トータル Fe濃度: l〜8mass%、 MnO濃度: 0. 5 〜4mass%であったが、 いずれも質量比(%。&0) / (%3102) 1、 (%T. Fe) + (%MnO)≤ 10masso/oであった。 Next, the following series of treatments were performed in the RH vacuum degassing facility. First, the molten copper was decarburized so that the component composition of the molten steel was C: 0.0007—0.0150 mass% and the oxygen concentration was 120-700 massppm. Next, 0.1 to 1.2 kgZ molten steel ton was added to the molten steel, and the dissolved oxygen concentration in the molten steel was lowered to 30 to 400 massppm. The A1 concentration of the molten steel at this time was 0.001-0.005 mass%. In addition, Fe-70mass% Ti alloy was added to the molten steel 0.8 to 2. OkgZ molten steel ton, and Ti deoxidation treatment was performed. In this Ti deoxidation treatment, the RH vacuum degassing treatment was completed 2 to 15 minutes after the addition of the Fe-Ti alloy, and the composition of the molten steel after completion was as follows: Ti concentration 0.020—0.0080 mass%, A1 The concentration was 0.001 to 0.006 mass%, the total oxygen concentration was 20 to 100 thigh ssppm, and [% Al] ≤ [% Ti] Zl0 was satisfied. RH vacuum degassing treatment (Datsusansho sense) slag composition during ladle later, CaO concentration: 20~60mass%, Si_〇 2 concentration: 5 ~ 20mass%, Ti_〇 2 concentration: l ~ 10mass%, MgO concentration: 2 to 15 mass%, total Fe concentration: l to 8 mass%, MnO concentration: 0.5 to 4 mass%, both of which are mass ratio (%. & 0) / (% 310 2 ) 1, (% T. Fe) + (% MnO) ≤10 mass o / o .
RH真空脱ガス処理後、当該取鍋内の溶鋼に 20〜35mass%Ca— 60〜75mass%Si合金を 鉄被覆ワイヤーにより供給して 0. 1〜0. 4kgZ溶鋼 ton添加し、溶鋼中の介在物の組成を Ti酸 化物: 30〜70mass%、 CaO: 6〜50mass%、 A1203 : 10〜70mass%に調整した。溶製された溶 鋼の Ca濃度は 0. 0005mass%以上であった。 以上のようにして溶製した溶鋼を 2ストランドスラブ連続鍀造装置にて連続鎵造し、铸片を製造 した。 この連続鎳造は、浸漬ノズルを流下する溶鋼に Arや N2などのガスを吹き込むことなく行 レ、、铸造時の溶鋼スループットは 2〜6ton/minとした。 錶造されたスラブを板厚 2〜4mmまで 熱間圧延し、さらに板厚 0. 6〜1. 0mmまで冷間圧延し、冷延鋼板を得た。 After RH vacuum degassing treatment, supply 20 ~ 35mass% Ca-60 ~ 75mass% Si alloy to the molten steel in the ladle by iron coated wire, add 0.1 ~ 0.4kgZ molten steel ton, and intervene in the molten steel Ti oxides the composition of the object: 30~70mass%, CaO: 6~50mass% , A1 2 0 3: was adjusted to 10~70mass%. The Ca concentration of the molten steel was 0.0005 mass% or more. The molten steel melted as described above was continuously forged with a two-strand slab continuous forging device to produce a piece. This continuous forging was performed without blowing gas such as Ar or N 2 into the molten steel flowing down the immersion nozzle, and the molten steel throughput during forging was 2 to 6 ton / min. The forged slab was hot-rolled to a thickness of 2 to 4 mm, and further cold-rolled to a thickness of 0.6 to 1.0 mm to obtain a cold-rolled steel plate.
図 4に示されるように、取鍋スラグ中の A1203濃度を 10mass%以上とすることにより、スラグが低 融点化するため、酸化物系介在物のスラグへの吸収能が増大し、酸化物系介在物量を減少させ ることができる。 また、 A1203濃度を 50mass%以下にすることにより、酸化物系介在物中の Al2 03濃度が 70mass%超になることを抑制することができ、酸化物系介在物の粗大化を防止するこ とができる。 これらの結果、バルジ試験における割れ部の板厚歪み率を 50%以上にすることが 可能となる。 取鍋スラグ中の A1203濃度を 10〜50mass%とするには、例えば、 A1滓の添加量を調整すれ ばよい。 As shown in FIG. 4, by the A1 2 0 3 concentration in the ladle slag and 10 mass% or more, the slag is low melting point, absorption capacity of the slag oxide inclusions are increased, The amount of oxide inclusions can be reduced. Further, by the A1 2 0 3 concentration below 50mass%, Al 2 0 3 concentration of oxide inclusions in it is possible to suppress to become 70 mass% greater, coarsening of the oxide inclusions Can be prevented. As a result, the thickness distortion rate of the cracked part in the bulge test should be 50% or more. It becomes possible. In order to set the A1 20 3 concentration in the ladle slag to 10 to 50 mass%, for example, the amount of A1 滓 added may be adjusted.
(予備脱酸の実施および Ti脱酸処理時間) (Preliminary deoxidation and Ti deoxidation time)
さらに、本発明では、脱炭処理後の溶鋼を Ti脱酸処理するのに先立ち、 Al、 Si、 Mnの中から 選ばれる 1種または 2種以上を添加して予備脱酸を行い、溶鋼の溶存酸素濃度を予め 200mass ppm以下にすることが好ましい。 この処理により酸化物系介在物の生成量を減らすことができ、 このため冷延鋼板のバルジ試験における割れ部の板厚歪み率がさらに向上する。この予備脱酸 も真空脱ガス処理で行うことが好ましレ、。  Furthermore, in the present invention, prior to Ti deoxidation of the molten steel after decarburization treatment, one or more selected from Al, Si, and Mn are added to perform preliminary deoxidation, thereby It is preferable that the dissolved oxygen concentration be 200 mass ppm or less in advance. By this treatment, the amount of oxide inclusions can be reduced, so that the thickness distortion rate of the cracked portion in the bulge test of the cold rolled steel sheet is further improved. This preliminary deoxidation is preferably performed by vacuum degassing.
図 5は、 Ti脱酸処理前の溶鋼の溶存酸素濃度(白丸'黒丸)および Ti脱酸処理時間(横軸: 分)と、当該溶鋼から得られた冷延鋼板のバルジ試験における割れ部の板厚歪み率との関係を 示すものである。 Ti脱酸処理前の溶鋼の溶存酸素濃度: 50〜200massppm (図中の白丸)は 必要に応じ予備脱酸を行った試験例、 Ti脱酸処理前の溶鋼の溶存酸素濃度: 200超〜 500 massppm (図中の黒丸)は予備脱酸を行わな力つた試験例である。 この試験では、以下のようにして含 Ti極低炭素鋼を溶製し、これを連続铸造して得られた鎵片 から熱間圧延および冷間圧延を経て冷延鋼板を得た。 転炉から出鋼して取鍋に入れられた溶 鋼(300ton)に対して、 A1滓を添加して A1203濃度を調整した。 また、スラグ中の FeO、 MnOを 還元するため、必要に応じて A1滓を添加した。 また、 RH真空脱ガス処理後のスラグ組成を制御 するために、必要に応じて CaO、 A1203、 Ti02を添カ卩した。 Figure 5 shows the dissolved oxygen concentration (white circles and black circles) and Ti deoxidation treatment time (horizontal axis: minutes) of the molten steel before Ti deoxidation treatment, and the cracks in the bulge test of the cold-rolled steel sheet obtained from the molten steel. This shows the relationship with the plate thickness strain rate. The dissolved oxygen concentration of molten steel before Ti deoxidation treatment: 50 to 200 massppm (white circles in the figure) is a test example in which preliminary deoxidation was performed as needed. The dissolved oxygen concentration of molten steel before Ti deoxidation treatment: More than 200 to 500 Massppm (black circle in the figure) is a powerful test example without preliminary deoxidation. In this test, a Ti-containing ultra-low carbon steel was melted as follows, and a cold rolled steel sheet was obtained from a piece obtained by continuous forging through hot rolling and cold rolling. Respect converter tapped to a ladle put was dissolved steel from (300 ton), to adjust the A1 2 0 3 concentration by the addition of A1 slag. A1 A was added as needed to reduce FeO and MnO in the slag. Further, in order to control the slag composition after RH vacuum degassing treatment was添Ka卩the CaO, A1 2 0 3, Ti0 2 as necessary.
次いで、 RH真空脱ガス設備において、次のような一連の処理を行った。 まず、溶鋼を脱炭 処理して溶鋼の成分組成を C : 0. 0007~0. 0150mass%、酸素濃度: 120〜700massPp:mとし た。 次いで、予備脱酸を行う場合には、溶鋼に A1を 0. 1〜1. 2kgZ溶鋼 ton添加し、溶鋼中の 溶存酸素濃度を 50〜200massppmまで低下させた。 この時の溶鋼の A1濃度は 0· 001—0. 005mass%であった。 そして、溶鋼に Fe— 70mass% Ti合金を 0. 8〜2. 0kg/溶鋼 ton添カ卩し、 Ti脱酸処理を行った。 この Ti脱酸処理では、 Fe— Ti合金添加後 2〜: 15分で RH真空脱ガス処理を終了し、終了後の溶鋼の組成は、 Ti濃度 0· 02 0〜0. 080mass%、 A1濃度 0. 001—0. 006mass%、全酸素濃度 20〜100massppmであり、 [%A1]≤ [%Ti]/10を満足していた。 RH真空脱ガス処理 (脱酸処理)後の取鍋中のスラグ組 T JP2009/056835 成は、 CaO濃度: 20〜60mass%、 Si02濃度: 5〜20mass%、 A1203濃度: 10〜50mass%、 Ti 02濃度: 1〜: L0mass%、 Mg〇濃度: 2〜15mass%、トータル Fe濃度: l〜8mass%、 MnO濃度: 0. 5〜4mass%であった力 S、いずれも質量比(%CaO) / (%Si02)≥l、 (%T. Fe) + (%Mn O)≤10mass%であった。 Next, the following series of treatments were performed in the RH vacuum degassing facility. First, the molten steel was decarburized so that the component composition of the molten steel was C: 0.0007 to 0.0150 mass% and the oxygen concentration was 120 to 700 mass P p: m. Next, when preliminary deoxidation was performed, 0.1 to 1.2 kgZ of molten steel ton was added to the molten steel, and the dissolved oxygen concentration in the molten steel was reduced to 50 to 200 massppm. The A1 concentration of the molten steel at this time was 0 · 001–0.005 mass%. Then, Fe-70 mass% Ti alloy was added to the molten steel in an amount of 0.8 to 2.0 kg / toned molten steel, and Ti deoxidation treatment was performed. In this Ti deoxidation treatment, the RH vacuum degassing treatment was completed 2 to 15 minutes after the addition of the Fe-Ti alloy, and the composition of the molten steel after completion was Ti concentration 0 · 02 0 to 0.080 mass%, A1 concentration 0.001—0.006 mass%, total oxygen concentration was 20-100 massppm, and [% A1] ≦ [% Ti] / 10 was satisfied. Slag assembly in ladle after RH vacuum degassing (deoxidation) T JP2009 / 056,835 formed is, CaO concentration: 20~60mass%, Si0 2 concentration: 5~20mass%, A1 2 0 3 concentration: 10~50mass%, Ti 0 2 concentration: 1~: L0mass%, Mg_〇 Concentration: 2~15mass%, total Fe concentration: l~8mass%, MnO concentration force which was a 0. 5~4mass% S, both the mass ratio (% CaO) / (% Si0 2) ≥l, (% T. Fe) + (% MnO) ≤10 mass%.
RH真空脱ガス処理後、取鍋内の溶鋼に 20〜35mass%Ca— 60〜75mass%Si合金を鉄被 覆ワイヤーにより供給して 0. 1〜0. 4kgZ溶鋼 ton添加し、溶鋼中の介在物の組成を Ti酸化物: 30〜70mass%、 CaO: 6〜50mass%、 A1203 : 10〜70mass%に調整した。 溶製された溶鋼の Ca濃度は 0. 0005mass%以上であった。 以上のようにして溶製した溶鋼を 2ストランドスラブ連続鐯造装置にて連続铸造し、铸片を製造 した。 この連続鎳造は、浸漬ノズルを流下する溶鋼に Arや N2などのガスを吹き込むことなく行 レ、、鎳造時の溶鋼スループットは 2〜6ton/minとした。 铸造されたスラブを板厚 2〜4mmまで 熱間圧延し、さらに板厚 0. 6〜1. 0mmまで冷間圧延し、冷延鋼板を得た。 After RH vacuum degassing treatment, supply 20-35 mass% Ca-60-75 mass% Si alloy to the molten steel in the ladle with iron-covered wire, add 0.1-0.4 kgZ molten steel ton, and intervene in the molten steel the composition of the objects of the Ti oxide: 30~70mass%, CaO: 6~50mass% , A1 2 0 3: was adjusted to 10~70mass%. The Ca concentration in the molten steel was over 0.0005 mass%. The molten steel melted as described above was continuously forged with a two-strand slab continuous forging device to produce a piece. This continuous forging was performed without blowing gas such as Ar or N 2 into the molten steel flowing down the immersion nozzle, and the molten steel throughput during forging was 2 to 6 ton / min. The forged slab was hot-rolled to a thickness of 2 to 4 mm, and further cold-rolled to a thickness of 0.6 to 1.0 mm to obtain a cold-rolled steel plate.
図 5に示されるように、 Ti脱酸処理前の予備脱酸によって溶鋼の溶存酸素濃度を予め 200 massppm以下にすることにより、酸化物系介在物の生成を抑制し、バルジ試験における割れ部の 板厚歪み率をさらに向上させることが可能となる。 反面、過剰な予備脱酸はノズル詰まりのリスク を増大させることがあるので、予備脱酸の有無や程度は、介在物抑制のニーズなどに応じて適宜 選択すればよい。 また、図 5に示すように、 Ti脱酸処理時間(Ti含有合金添加後の RH処理時間)は 5分以上と することが好ましく、これにより本発明の作用効果が適切に得られ、冷延鋼板のバルジ試験にお ける割れ部の板厚歪み率を所望のレベルまで高めることができる。なお、 Ti脱酸処理時間の上限 はとくに限定を要しないが、操業効率の観点からは通常 5分以下程度である。  As shown in Fig. 5, the pre-deoxidation before Ti deoxidation treatment reduces the dissolved oxygen concentration of the molten steel to 200 massppm or less in advance, thereby suppressing the formation of oxide inclusions and the cracking in the bulge test. It is possible to further improve the plate thickness distortion rate. On the other hand, excessive preliminary deoxidation may increase the risk of nozzle clogging, so the presence or absence and degree of preliminary deoxidation may be appropriately selected according to the need for inclusion suppression. Further, as shown in FIG. 5, the Ti deoxidation treatment time (RH treatment time after addition of the Ti-containing alloy) is preferably 5 minutes or longer, whereby the effects of the present invention can be appropriately obtained, and cold rolling is performed. It is possible to increase the plate thickness distortion rate of the cracked portion in the bulge test of the steel plate to a desired level. The upper limit of Ti deoxidation time is not particularly limited, but it is usually about 5 minutes or less from the viewpoint of operation efficiency.
(含 Ti極低炭素鋼鍚片の製造方法) (Manufacturing method of Ti-containing ultra low carbon steel pieces)
次に、上述した本発明法で溶製された溶鋼を連続鍚造し、含 Ti極低炭素鋼铸片を製造する 方法について説明する。  Next, a method for producing a Ti-containing ultra-low carbon steel piece by continuously forging the molten steel produced by the above-described method of the present invention will be described.
連続铸造において溶鋼が铸型に注入されると、溶鋼中に含まれる酸化物系介在物は、下降 流により铸片未凝固層深くまで侵入して凝固シェルに捕捉される。 また、酸化物系介在物など が浸漬ノズルに付着することを防止するために Arガスなどの不活性ガスが浸漬ノズル内に吹き込 まれるが、この不活性ガスの気泡が溶鋼中を浮上する過程で、铸型内溶鋼湯面近傍の溶鋼流の 乱れなどに起因して、凝固シェルに捕捉される。 鍚片に捕捉されたこれら酸化物系介在物や気 泡は、薄鋼板において表面疵欠陥を発生させる。 なお、不活性ガスの気泡には、酸化物系介 在物が付着している場合が多ぐこの酸化物系介在物が不活性ガスの気泡とともに凝固シェルに 捕捉される。 When the molten steel is poured into the vertical mold in continuous forging, the oxide inclusions contained in the molten steel penetrate deep into the unsolidified layer of the flakes and are trapped in the solidified shell. In addition, in order to prevent oxide inclusions from adhering to the immersion nozzle, an inert gas such as Ar gas is blown into the immersion nozzle, and the bubbles of this inert gas rise in the molten steel. In the process, it is trapped by the solidified shell due to the turbulence of the molten steel flow near the molten steel surface in the vertical mold. These oxide inclusions and gas trapped in the sepal Bubbles cause surface flaw defects in thin steel sheets. In many cases, oxide inclusions are attached to the inert gas bubbles, and the oxide inclusions are trapped in the solidified shell together with the inert gas bubbles.
このような課題に対しては、以下に示すような幾つかの形態の铸片製造方法が有効である。 すなわち、第一の含 Ti極低炭素鋼铸片の製造方法では、連続铸造装置において、タンディッ シュ底部に設置された浸漬ノズルを通じてタンディッシュから鍚型内に溶鋼を注入する際に、前 記浸漬ノズルを流下する溶鋼にガス (Arなどの不活性ガスや N2などの非酸化性ガス)を吹き込む ことなく、溶鋼を錶造することが好ましい。 上述した本発明法によって溶鋼を溶製することにより、 浸漬ノズルを流下する溶鋼にガスを吹き込むことなくノズル詰りを防止することが可能である。 ま た、ガスを吹き込まないことにより、ガス卷き込みによる铸片の気泡性欠陥の発生を抑え、最終製 品である冷延鋼板や鍍金鋼板におけるへゲ、スリーバ、スケールなどの表面欠陥を大きく低減す ることがでさる。 For such a problem, several types of strip manufacturing methods as described below are effective. That is, in the first method for producing a Ti-containing ultra-low carbon steel piece, when the molten steel is poured into the mold from the tundish through the immersion nozzle installed at the bottom of the tundish in the continuous forging apparatus, It is preferable to forge the molten steel without blowing gas (inert gas such as Ar or non-oxidizing gas such as N 2 ) into the molten steel flowing down the nozzle. By melting molten steel by the method of the present invention described above, it is possible to prevent nozzle clogging without blowing gas into the molten steel flowing down the immersion nozzle. In addition, by not injecting gas, the occurrence of bubble defects in the flakes due to gas injection is suppressed, and surface defects such as heges, slivers, and scales are greatly increased in the final product, cold-rolled steel sheet and plated steel sheet. It can be reduced.
さらに、この含 Ti極低炭素鋼铸片の製造方法では、スループットを 4tonZmin以下として铸造 することが好ましい。 図 6は、連続鎊造のスループット(横軸: tonZmin)と、当該連続铸造により得られた鋼片を素 材とする冷延鋼板のバルジ試験における割れ部の板厚歪み率(縦軸: %)との関係を示すもので ある。 この試験では、以下のようにして含 Ti極低炭素鋼を溶製し、これを連続铸造して得られた 鎳片から熱間圧延および冷間圧延を経て冷延鋼板を得た。 転炉から出鋼して取鍋に入れられ た溶鋼(300ton)に対して、 A1滓を添カ卩して A1203濃度を調整した。 また、スラグ中の FeO、 Mn Oを還元するため、必要に応じて A1滓を添加した。 また、 RH真空脱ガス処理後のスラグ組成を 制御するために、必要に応じて CaO、 A1203、 Ti02を添カ卩した。 Further, in this method for producing a Ti-containing ultra-low carbon steel piece, it is preferable to produce with a throughput of 4 tonZmin or less. Figure 6 shows the throughput of continuous forging (horizontal axis: tonZmin) and the plate thickness strain rate in the bulge test of cold-rolled steel sheets using the steel slab obtained by continuous forging (vertical axis:% ). In this test, a Ti-containing ultra-low carbon steel was melted as follows, and a cold rolled steel sheet was obtained through hot rolling and cold rolling from a piece obtained by continuous forging. Relative to tapped from the converter molten steel encased in a ladle (300 ton), to adjust the A1 2 0 3 concentration by添Ka卩the A1 slag. A1 A was added as needed to reduce FeO and MnO in the slag. Further, in order to control the slag composition after RH vacuum degassing treatment was添Ka卩the CaO, A1 2 0 3, Ti0 2 as necessary.
次いで、 RH真空脱ガス設備において、次のような一連の処理を行った。 まず、溶鋼を脱炭 処理して溶鋼の成分組成を C : 0. 0007〜0. 0150mass%、酸素濃度: 120〜700massppmとし た。 次いで、溶鋼に AIを◦. 1〜1. 2kgZ溶鋼 ton添加し、溶鋼中の溶存酸素濃度を 30〜400 massppmまで低下させた。 この時の溶鋼の A1濃度は 0. 001〜0. 005mass%であった。 さら に、溶鋼に Fe— 70mass%Ti合金を 0. 8〜2. OkgZ溶鋼 ton添加し、 Ti脱酸処理を行った。 こ の Ti脱酸処理では、 Fe— Ti合金添加後 2〜15分で RH真空脱ガス処理を終了し、終了後の溶 鋼の組成は、 Ti濃度 0. 020-0. 080mass%、 A1濃度 0. 001〜0. 006mass%,全酸素濃度 20 ~100massppmであり、 [%A1]≤ [%Ti]/l0を満足していた。 RH真空脱ガス処理(脱酸処 理)後の取鍋中のスラグ組成は、 CaO濃度: 20〜60mass%、 Si〇2濃度: 5〜20mass%、 A1203 濃度: 10〜50mass%、 Ti02濃度: 1〜: 10mass%、 MgO濃度: 2〜15mass%、トータル Fe濃度: l〜8mass%、 MnO濃度: 0. 5〜4mass%であった力 いずれも質量比(%CaO) Z(%Si〇2)≥ 1、 (%T. Fe) + (%MnO)≤10mass%であった。 Next, the following series of treatments were performed in the RH vacuum degassing facility. First, the molten steel was decarburized so that the component composition of the molten steel was C: 0.0007 to 0.0150 mass% and the oxygen concentration was 120 to 700 massppm. Next, AI was added to the molten steel to 1 to 1.2 kgZ molten steel ton, and the dissolved oxygen concentration in the molten steel was reduced to 30 to 400 massppm. The A1 concentration of the molten steel at this time was 0.001 to 0.005 mass%. In addition, Fe-70mass% Ti alloy was added to the molten steel 0.8 to 2. OkgZ molten steel ton, and Ti deoxidation treatment was performed. In this Ti deoxidation treatment, the RH vacuum degassing treatment was completed 2 to 15 minutes after the addition of the Fe-Ti alloy, and the composition of the molten steel after completion was as follows: Ti concentration 0.020-0.080 mass%, A1 concentration It was 0.001 to 0.006 mass% and the total oxygen concentration was 20 to 100 massppm, and [% A1] ≤ [% Ti] / l0 was satisfied. RH vacuum degassing treatment (Datsusansho sense) slag composition during ladle later, CaO concentration: 20~60mass%, Si_〇 2 concentration: 5~20mass%, A1 2 0 3 Concentration: 10-50 mass%, Ti0 2 concentration: 1-: 10 mass%, MgO concentration: 2-15 mass%, Total Fe concentration: l-8 mass%, MnO concentration: 0.5-4 mass% the ratio (% CaO) Z (% Si_〇 2) ≥ 1, was (% T. Fe) + ( % MnO) ≤10mass%.
RH真空脱ガス処理後、取鍋内の溶鋼に 20〜35mass%Ca— 60〜75mass%Si合金を鉄被 覆ワイヤーにより供給して 0.:!〜 0. 4kg 溶鋼 ton添カ卩し、溶鋼中の介在物の組成を Ti酸化物: 30〜70mass%、 CaO : 6〜50mass%、 A1203: 10〜70mass%に調整した。 溶製された溶鋼の Ca濃度は 0. 0005mass%以上であった。 以上のようにして溶製した溶鋼を 2ストランドスラブ連続铸造装置にて連続鍚造し、鍚片を製造 した。 この連続鎳造は、浸漬ノズルを流下する溶鋼に Arや N2などのガスを吹き込むことなく行 い、鎳造時の溶鋼スループットは、 2〜6ton/minとした。 铸造されたスラブを板厚 2〜4mmま で熱間圧延し、さらに板厚 0. 6~1. Onrniまで冷間圧延し、冷延鋼板を得た。 After RH vacuum degassing treatment, supply 20 ~ 35mass% Ca-60 ~ 75mass% Si alloy to the molten steel in the ladle with iron-covered wire. 0:! ~ 0.4kg Molten steel the composition of the inclusions Ti oxides in: 30~70mass%, CaO: 6~50mass% , A1 2 0 3: was adjusted to 10~70mass%. The Ca concentration in the molten steel was over 0.0005 mass%. The molten steel melted as described above was continuously forged with a two-strand slab continuous forging device to produce a piece. This continuous forging was performed without blowing gas such as Ar or N 2 into the molten steel flowing down the immersion nozzle, and the molten steel throughput during forging was set at 2 to 6 ton / min. The forged slab was hot-rolled to a thickness of 2 to 4 mm, and further cold-rolled to a thickness of 0.6 to 1. Onrni to obtain a cold-rolled steel plate.
図 6に示されるように、スループットを 4tonZmin以下で铸造することにより酸化物系介在物の 巻き込み量が低減し、その結果、冷延鋼板のバルジ試験における割れ部の板厚歪み率が向上 する。 また、第二の含 Ti極低炭素鋼鍀片の製造方法としては、(i)鏡型内の溶鋼を移動磁場および /または振動磁場による電磁力により攪拌すること、(ii)鑲型内の溶鋼に静磁場を印加し、溶鋼 流動を制動すること、のいずれか若しくは両方を行うことが好ましい。 このような製造方法によれ ば、鎳型内で浮上分離することなく凝固シェルに捕捉される酸化物系介在物量が低減し、その結 果、冷延鋼板のバルジ試験における割れ部の板厚歪み率がさらに向上する。 また、上記 G)、 (ii)の両方を行うことにより、特に優れた効果が得られる。  As shown in Fig. 6, forging with a throughput of 4 tonZmin or less, the amount of oxide inclusions is reduced, and as a result, the thickness distortion rate of cracks in the bulge test of cold-rolled steel sheets is improved. The second method for producing Ti-containing ultra-low carbon steel pieces is as follows: (i) stirring the molten steel in the mirror mold by electromagnetic force generated by a moving magnetic field and / or an oscillating magnetic field; (ii) It is preferable to apply one or both of applying a static magnetic field to the molten steel and damping the molten steel flow. According to such a manufacturing method, the amount of oxide inclusions trapped in the solidified shell without floating and separating in the vertical mold is reduced, and as a result, the thickness distortion of the crack portion in the bulge test of the cold rolled steel sheet is reduced. The rate is further improved. In addition, a particularly excellent effect can be obtained by performing both G) and (ii).
上記 (i)の移動磁場 (交流磁場)を印加する方法では、交流移動磁場印加装置を設置し、この 磁場印加装置の電磁力によって铸型内の溶鋼を水平方向に旋回-攪拌させながら铸片を錶造す る。これにより酸化物系介在物の凝固シェルへの捕捉が抑えられ、酸化物系介在物の少ない清 浄な鍚片が得られる。 交流磁場として非移動振動磁場を印可して錡型内の溶鋼を攪拌する方 法も有効である。 さらに水平方向の移動を伴う振動磁場 (移動振動磁場)を付与することも有効 である。  In the method of applying the moving magnetic field (alternating magnetic field) of (i) above, an alternating moving magnetic field applying device is installed, and the molten steel in the mold is horizontally swirled and stirred by the electromagnetic force of this magnetic field applying device. Forging. As a result, trapping of oxide inclusions in the solidified shell is suppressed, and a clean piece with less oxide inclusions can be obtained. It is also effective to apply a non-moving oscillating magnetic field as an alternating magnetic field and stir the molten steel in the mold. It is also effective to apply an oscillating magnetic field that accompanies horizontal movement (moving oscillating magnetic field).
上記 (ii)の静磁場を印加する方法では、浸漬ノズルの吐出孔からの溶鋼の吐出流を包囲する 位置に静磁場印加装置を設置し、この静磁場印加装置により静磁場を印加して吐出流の流速を 減速させる。 これにより酸化物系介在物の浮上が促進されて凝固シェルへの捕捉が抑えられ、 酸化物系介在物の少ない清浄な鍚片が得られる。 図 6において、「移動磁場印加」(黒丸)が上記 (i)の試験例、「静磁場印加」(黒四角)が上記 (ii)の試験例である。 図 6に示すように、踌型内の溶鋼に対して上記 (i)または(ii)の磁場印加に よる撹拌または溶鋼流の制動を行った場合には、磁場印加を行わない場合に較べて、バルジ試 験における割れ部の板厚歪み率がさらに向上している。 In the method (ii) of applying a static magnetic field, a static magnetic field application device is installed at a position surrounding the discharge flow of molten steel from the discharge hole of the immersion nozzle, and the static magnetic field application device applies a static magnetic field for discharge. Decrease the flow velocity. As a result, the floating of the oxide inclusions is promoted, the trapping in the solidified shell is suppressed, and a clean flake with few oxide inclusions is obtained. In FIG. 6, “application of moving magnetic field” (black circle) is the test example of (i) above, and “application of static magnetic field” (black square) is the test example of (ii) above. As shown in Fig. 6, when the stirring or melting of the molten steel flow by applying the magnetic field (i) or (ii) above is performed on the molten steel in the bowl, compared to the case where no magnetic field is applied. In addition, the thickness distortion rate of the cracked part in the bulge test is further improved.
上記 (i)、 (ii)の両方を行う場合、移動磁場および Zまたは振動磁場は、静磁場より上部に印 加することが好ましぐまた溶湯湯面近傍に印加することが好ましい。  When performing both (i) and (ii) above, it is preferable to apply the moving magnetic field and the Z or oscillating magnetic field above the static magnetic field, and it is also preferable to apply it near the molten metal surface.
スループットを 4tonmin以下で錄造することは、この第二の含 Ti極低炭素鋼铸片の製造方 法においても有効である。 To錄造throughput below 4ton Bruno min is effective in producing how the second containing Ti ultra-low carbon steel铸片.
(溶製される鋼の、その他の組成) (Other composition of steel to be melted)
次に、本発明により溶製される含 Ti極低炭素鋼の成分組成のなかで、さきに述べた C、 Ti、 Ca 以外の主要成分の含有量について、好ましい条件を説明する。 ただし、これらは上記の表面品 質.内質改善効果をより促進するというより、当該改善効果によるメリットをより享受できるという観 点から、好適な鋼組成を例示するものである。  Next, preferable conditions for the contents of the main components other than C, Ti and Ca described above in the composition of the Ti-containing ultra-low carbon steel produced by the present invention will be described. However, these exemplify preferred steel compositions from the viewpoint that the benefits of the improvement effect can be enjoyed more than the above-described surface quality / interior quality improvement effect.
Si量は 0. 5mass%以下が好ましい。 Si量が 0. 5mass%を超えると製品である薄鋼板の材質 特性が劣化し、まためつき鋼板として用いる場合はめつき性の劣化により表面性状が悪化しやす い。これらの特性を重視する場合は、 Si量を 0. 2mass%以下とすること力 より好ましい。 The amount of Si is preferably 0.5 mass% or less. When the Si content exceeds 0.5 mass%, the material properties of the thin steel sheet, which is a product, deteriorate, and when used as a matte steel sheet, the surface properties are likely to deteriorate due to deterioration of the tackiness. When emphasizing these characteristics, it is more preferable to reduce the Si content to 0.2 mass% or less.
なお、 31と7の質量比(%31) (%丁1) 50になると、介在物中に Si〇2が生成し、シリコンキ ルド鋼としての性格も強くなるので、 (%Si)Z(%Ti)く 50とすることが好ましい。 Incidentally, at the 31 and the mass ratio of 7 (% 31) (% Ding 1) 50, inclusions Si_〇 2 is produced in, since stronger character as Shirikonki field steel, (% Si) Z (% Ti) is preferably 50.
Si量の下限はとくに限定を要しない。  The lower limit of the Si amount is not particularly limited.
Mn量は 2. 0mass%以下が好ましい。 Mn量が 2. 0wt%を超えると材質が硬化しやすい。好 ましくは 1. 5mass%以下、より好ましくは 1. 0mass%以下、さらに好ましくは 0. 5mmass%以下で め The Mn content is preferably 2.0 mass% or less. When the amount of Mn exceeds 2.0 wt%, the material is easily cured. Preferably it is 1.5 mass% or less, more preferably 1.0 mass% or less, and even more preferably 0.5 mmass% or less.
なお、 Mnと Tiの質量比(%Mn) / (%Ti)≥100になると、介在物中に ΜηΟが生成し、マン ガンキルド鋼としての性格も強くなるので、(%Mn) / (%Ti)く 100が好ましい。  When the mass ratio of Mn to Ti (% Mn) / (% Ti) ≥100, ΜηΟ is generated in the inclusions and the properties of Mangan killed steel become stronger, so (% Mn) / (% Ti 100 is preferred.
Mn量の下限はとくに限定を要しなレ、。  The lower limit of the amount of Mn is not particularly limited.
S量は 0. 050mass%以下が好ましい。 S量が 0. 050mass%を超えると、溶鋼中で CaSや RE M硫化物が多くなり、製品である薄鋼板において鲭が発生しやすくなる。 好ましくは 0. 030 mass%以下である。 S量の下限はとくに限定を要しない。 P量は 0. 005-0. 12mass%が好ましい。 Pは、多量に含まれると粒界偏析量が增 加して粒界脆化を起こし、製品である薄鋼板において特に耐二次加工脆性の劣化をも たらすため極力低減することが望ましい。 好ましくは 0.050mass%以下である。 しか し P量を 0. 005mass%より低くしても、それ以上の材質向上は望めず、逆に溶製コスト が上昇する。 一方、 0. 12mass%以下であれば許容できる。 The amount of S is preferably not more than 0.050 mass%. When the S content exceeds 0.050 mass%, CaS and REM sulfides increase in the molten steel, and defects are likely to occur in the thin steel sheet that is the product. Preferably it is 0.030 mass% or less. The lower limit of the amount of S is not particularly limited. The amount of P is preferably 0.005-0.12 mass%. If P is contained in a large amount, the amount of segregation at the grain boundary increases and grain boundary embrittlement occurs, and it is desirable to reduce it as much as possible, especially in the thin steel sheet as a product, which causes deterioration of secondary work brittleness resistance. Preferably it is 0.050 mass% or less. However, even if the amount of P is made lower than 0.005 mass%, further improvement of the material cannot be expected, and the melting cost increases. On the other hand, it is acceptable if it is 0.12 mass% or less.
N量は 0.0005— 0.0040mass%mass%が好ましい。 Nは、 Cと同様に製品である薄 鋼板における深絞り性の改善のため極力低減することが望ましい力 その含有量を 0.0 005mass%より低くしても、それ以上の材質の向上は望めず、逆に溶製コストが上昇す る。 一方、 0. 0040mass%を超えると薄鋼板における材質劣化が大きくなりはじめる。 ただし、強度を重視する鋼板において Nを上限 0.0200mass%程度まで添加することが あるが、このような鋼を用いてもとくに問題はない。 また、 目的に応じて、下記に挙げる元素から 1種以上を適宜選択して添加してもよ レ、。 The amount of N is preferably 0.0005-0.0040 mass% mass%. N is a force that should be reduced as much as possible to improve deep drawability in the thin steel plate product, as in C. Even if the content is lower than 0.0005 mass%, further improvement of the material cannot be expected. Conversely, the cost of melting increases. On the other hand, when it exceeds 0.0040 mass%, the material deterioration in the thin steel sheet begins to increase. However, in steel plates where strength is important, N may be added up to an upper limit of about 0.0200 mass%, but there is no particular problem even if such steel is used. Depending on the purpose, one or more of the following elements may be appropriately selected and added.
•Nb:0. 1 OOmass %以下 ·'·薄鋼板の深絞り性を向上させる  • Nb: 0.1 OOmass% or less ··· Improves deep drawability of thin steel sheet
•B:0.050mass%以下 · · ·薄鋼板の 2次加工脆性を改善する  • B: 0.050 mass% or less · · · Improves secondary work brittleness of thin steel sheet
•Mo:l.0mass%以下 ···薄鋼板の引張強度を増加させる  • Mo: l.0mass% or less ····· Increase the tensile strength of thin steel sheet
•Sb:0.0200mass%以下 · · ·スラブ加熱時の窒化を防止する  • Sb: 0.0200 mass% or less · · · Prevents nitriding during slab heating
•Ce:0.0050mass%以下 ·■ '介在物の低融点化により、より安定的にノズル詰まりを抑 制する  • Ce: 0.0050mass% or less · ■ 'Slower nozzle clogging due to lower melting point of inclusions
•La:0.0050mass%以下 · · '介在物の低融点化により、より安定的にノズル詰まりを抑 制する  • La: 0.0050 mass% or less · · 'Nozzle clogging is more stably suppressed by lowering the melting point of inclusions.
さらに、必要に応じて、 Ni, Cu, Crの中から選ばれる 1種以上を、それぞれ 01 mass%以下の範囲で添加してもよい。 これらの元素を添加すると、鋼板の耐食性を向 上させることができる。  Furthermore, if necessary, one or more selected from Ni, Cu, and Cr may be added within a range of 01 mass% or less. Addition of these elements can improve the corrosion resistance of the steel sheet.
上記以外の合金元素も、合計約 1%程度までなら適宜添加しても良い。  Alloy elements other than the above may be added as appropriate as long as the total is up to about 1%.
残部は、 Feおよび不可避的不純物とする。 〔実施例〕 The balance is Fe and inevitable impurities. 〔Example〕
[発明例 1〕  [Invention Example 1]
転炉から出鋼して取鍋に入れられた溶鋼(300ton)に対して、スラグ中の FeO、 MnOを還元 するために、 A1滓を 400kg添加するとともに、真空脱ガス処理後のスラグ組成を制御するために CaOを添カ卩した。  In order to reduce FeO and MnO in the slag, 400 kg of A1ton was added to the molten steel (300 tons) that was removed from the converter and placed in the ladle, and the slag composition after vacuum degassing was changed. CaO was added for control.
次いで、 RH真空脱ガス設備において、次のような一連の処理を行った。 まず、溶鋼を脱炭 処理し、溶鋼の成分組成を C : 0. 0010匪 s%、 Si: 0. 01mass%、 Mn: 0. 15mass%、 P : 0. 01 5mass%、 S : 0. 005mass%、酸素濃度: 500massppmとし(残部は Feおよび不可避的不純物。 以下脱炭後溶鋼組成にて同様)、溶鋼温度を 1600°Cに調整した。 次いで、溶鋼に A1を 0. 5kg ノ溶鋼 ton添加し、溶鋼中の溶存酸素濃度を 120massppmまで低下させた。 この時の溶鋼の AI濃度は 0. 002mass%であった。さらに、溶鋼に Fe— 70mass°/0Ti合金を 1. OkgZ溶鋼 ton添 加し、 Ti脱酸処理を 7分間行った。 この Ti脱酸処理では、 Fe—Ti合金添加後 7分で真空脱ガス 処理を終了し、終了時の取鍋内の溶鋼の Ti濃度は 0. 040mass%、 A1濃度は 0. 002mass%、全 酸素濃度は 30massppmであった。 また、真空脱ガス処理 (脱酸処理)後の取鍋中のスラグ組成 は、 CaO濃度: 35mass%、 Si02濃度: 15mass%、 A1203濃度: 35mass%、 Ti〇2濃度: 3mass%、 MgO濃度: 7mass%、トータル Fe濃度: 2mass%、 MnO蹕度: 2mass%であった(その他不可避 的酸ィヒ物: lmass%)。 Next, the following series of treatments were performed in the RH vacuum degassing facility. First, the molten steel is decarburized, and the composition of the molten steel is changed to C: 0.0010% s%, Si: 0.01 mass%, Mn: 0.15 mass%, P: 0.015 mass%, S: 0.005 mass. %, Oxygen concentration: 500 massppm (the balance is Fe and inevitable impurities. The same applies to the molten steel composition after decarburization), and the molten steel temperature was adjusted to 1600 ° C. Next, 0.5 kg of molten steel ton was added to the molten steel, and the dissolved oxygen concentration in the molten steel was reduced to 120 massppm. The AI concentration of the molten steel at this time was 0.002 mass%. Furthermore, Fe-70 mass ° / 0 Ti alloy was added to the molten steel by 1. OkgZ molten steel ton, and Ti deoxidation treatment was performed for 7 minutes. In this Ti deoxidation treatment, the vacuum degassing treatment was completed 7 minutes after the addition of the Fe-Ti alloy, and the Ti concentration of the molten steel in the ladle at the end was 0.040 mass%, and the A1 concentration was 0.002 mass%. The oxygen concentration was 30 massppm. Further, the slag composition in the ladle after the vacuum degassing treatment (deacidification) is, CaO concentration: 35 mass%, Si0 2 concentration: 15mass%, A1 2 0 3 concentration: 35 mass%, Ti_〇 2 concentration: 3 mass% MgO concentration: 7 mass%, total Fe concentration: 2 mass%, MnO concentration: 2 mass% (other unavoidable acids: lmass%).
真空脱ガス処理終了後、当該取鍋内の溶鋼に 30mass%Ca— 70mass%Si合金を鉄被覆ワイ ヤーにより 0. 3kgZ溶鋼 ton添加し、溶鋼中の介在物の組成制御を行った。 溶製された溶鋼の Ca濃度は 0. OOlOmass。/。であった。 以上のようにして溶製した溶鋼を 2ストランドスラブ連続铸造装置にて連続鎊造し、铸片を製造 した。 この铸造時のタンディッシュ内の介在物の形態および組成を調査した結果、 70mass%Ti2 03— 15mass%CaO— 15mass%Al203の球状介在物であった。 連続鐃造は、浸漬ノズルを流 下する溶鋼に Arや N2などのガスを吹き込むことなく行い、铸造時の溶鋼スループットは 3. 8ton Zminとした。なお、錄造後の浸漬ノズル内面には付着物はほとんどな力 た。 After the vacuum degassing treatment, 30 mass% Ca-70mass% Si alloy was added to the molten steel in the ladle by adding 0.3 kgZ of molten steel ton with an iron-coated wire to control the composition of inclusions in the molten steel. The Ca concentration of the molten steel is 0.OOlOmass. /. Met. The molten steel melted as described above was continuously forged with a two-strand slab continuous forging device to produce a piece. As a result of investigating the form and composition of inclusions in the tundish at the time of fabrication, it was a spherical inclusion of 70 mass% Ti 2 0 3 —15 mass% CaO—15 mass% Al 2 0 3 . Continuous forging was performed without blowing gas such as Ar or N 2 into the molten steel flowing down the immersion nozzle, and the molten steel throughput during forging was set at 3.8 ton Zmin. There was almost no deposit on the inner surface of the immersion nozzle after fabrication.
鎵造されたスラブを板厚 3. 5mmまで熱間圧延し、さらに板厚 0. 8mmまで冷間圧延し、次い で、 780°C X 45秒の焼鈍条件で連続焼鈍(continuous annealing)を行った。このようにして得ら れた焼鈍板には、非金属介在物性および気泡性の欠陥が 0. 2個/ 1000mしか認められなかつ た。さらに、冷延鋼板のバルジ試験における割れ部の板厚歪み率は 50%であり、良好であった。 [発明例 2] The fabricated slab is hot-rolled to a thickness of 3.5 mm, then cold-rolled to a thickness of 0.8 mm, and then subjected to continuous annealing under annealing conditions of 780 ° CX for 45 seconds. It was. In the annealed plate thus obtained, only 0.2 / 1000 m non-metallic inclusion physical properties and bubble defects were observed. Furthermore, the thickness distortion rate of the cracked part in the bulge test of the cold-rolled steel sheet was 50%, which was good. [Invention Example 2]
転炉から出鋼して取鍋に入れられた溶鋼(300ton)に対して、スラグ中の FeO、 MnOを還元 するために、 A1滓を 500kg添加するとともに、真空脱ガス処理後のスラグ組成を制御するために CaO、 Ti〇2を添カ卩した。 In order to reduce FeO and MnO in the slag, 500 kg of A1ton was added to the molten steel (300 tons) that was removed from the converter and placed in the ladle, and the slag composition after vacuum degassing was changed. and添Ka卩CaO, the Ti_〇 2 to control.
次いで、 RH真空脱ガス設備において、次のような一連の処理を行った。 まず、溶鋼を脱炭 処理し、溶鋼の成分組成を C : 0. 0015mass%、 Si: 0. 01mass%、 Mn: 0. 10mass%、 P : 0. 01 2mass%、 S : 0. 006mass%、酸素濃度: 450massppmとし、溶鋼温度を 1600°Cに調整した。 次いで、溶鋼に A1を 0. 4kgZ溶鋼 ton添加し、溶鋼中の溶存酸素濃度を 150massppmまで低 下させた。 この時の溶鋼の A1濃度は 0. 002mass%であった。 さらに、溶鋼に Fe— 70mass% Ti合金を 1. 2kg/溶鋼 ton添加し、 Ti脱酸処理を 6分間行った。 この Ti脱酸処理では、 Fe— Ti合金添加後 6分で真空脱ガス処理を終了し、終了時の溶鋼の Ti濃度は 0. 045舰 ss%、 A1濃 度は 0. 002mass%、全酸素濃度は 30massppmであった。 また、真空脱ガス処理(脱酸処理) 後の取鍋中のスラグ組成は、 CaO濃度: 30mass%、 Si02濃度: 17mass%、 A1203濃度: 40 mass%、 Ti02濃度: 2mass%、 MgO濃度: 8mass%、トータル Fe濃度: lmass%、 MnO濃度: 2 mass%であった。 Next, the following series of treatments were performed in the RH vacuum degassing facility. First, the molten steel is decarburized, and the composition of the molten steel is changed to C: 0.0015 mass%, Si: 0.01 mass%, Mn: 0.1 mass%, P: 0.012 mass%, S: 0.006 mass%, The oxygen concentration was 450 massppm, and the molten steel temperature was adjusted to 1600 ° C. Then, the A1 to the molten steel by adding 0. 4KgZ molten steel ton, were made as low a dissolved oxygen concentration in the molten steel to 150masspp m. The A1 concentration of the molten steel at this time was 0.002 mass%. Furthermore, Fe-70 mass% Ti alloy was added to the molten steel by 1.2 kg / molten steel ton, and Ti deoxidation treatment was performed for 6 minutes. In this Ti deoxidation treatment, the vacuum degassing treatment was completed 6 minutes after the addition of the Fe-Ti alloy, and the Ti concentration of the molten steel at the end was 0.045% ss%, the A1 concentration was 0.002 mass%, total oxygen The concentration was 30 massppm. Moreover, the slag composition in the ladle after the vacuum degassing treatment (deacidification) is, CaO concentration: 30 mass%, Si0 2 concentration: 17mass%, A1 2 0 3 concentration: 40 mass%, Ti0 2 concentration: 2mass% MgO concentration: 8 mass%, total Fe concentration: lmass%, MnO concentration: 2 mass%.
真空脱ガス処理終了後、取鍋内の溶鋼に 30mass%Ca— 70mass%Si合金を鉄被覆ワイヤ一 により 0. 25kg/溶鋼 ton添加し、溶鋼中の介在物の組成制御を行った。溶製された溶鋼の Ca 濃度は 0. 0005mass%であった。 以上のようにして溶製した溶鋼を 2ストランドスラブ連続錶造装置にて連続錄造し、铸片を製造 した。 この铸造時のタンディッシュ内の介在物の形態おょぴ組成を調査した結果、 70mass%Ti2 03— 12mass%CaO— 18mass%Al203の球状介在物であった。 連続铸造は、浸漬ノズルを流 下する溶鋼に Arや N2などのガスを吹き込むことなく行い、铸造時の溶鋼スループットは 4. Oton Zminとした。また、铸型では移動磁界を有する電磁撹拌装置により溶鋼を撹拌した。なお、鎵造 後の浸漬ノズル内面には付着物はほとんどなかった。 After the vacuum degassing treatment, 0.25kg / mol ton of 30mass% Ca-70mass% Si alloy was added to the molten steel in the ladle with an iron-coated wire to control the composition of inclusions in the molten steel. The Ca concentration in the molten steel was 0.0005 mass%. The molten steel melted as described above was continuously forged with a two-strand slab continuous forging device to produce a piece. As a result of investigating the morphology and composition of inclusions in the tundish during the fabrication, it was found to be spherical inclusions of 70 mass% Ti 2 0 3 —12 mass% CaO—18 mass% Al 2 0 3 . Continuous forging was performed without blowing gas such as Ar or N 2 into the molten steel flowing down the immersion nozzle, and the molten steel throughput during forging was 4. Oton Zmin. In the vertical type, the molten steel was stirred by an electromagnetic stirring device having a moving magnetic field. There was almost no deposit on the inner surface of the immersion nozzle after fabrication.
鐃造されたスラブを板厚 3. 5mmまで熱間圧延し、さらに板厚 0. 8mmまで冷間圧延し、次い で、 780°C X 45秒の焼鈍条件で連続焼鈍を行った。 このようにして得られた焼鈍板には、非金 属介在物性および気泡性の欠陥が 0. 2個ノ 1000mしか認められな力 た。 さらに、冷延鋼板 のバルジ試験における割れ部の板厚歪み率は 55%であり、良好であった。  The fabricated slab was hot-rolled to a thickness of 3.5 mm, further cold-rolled to a thickness of 0.8 mm, and then subjected to continuous annealing at 780 ° C x 45 seconds. The annealed sheet obtained in this way had a force with only 0.2 and 1000 m non-metallic inclusions and bubble defects. Furthermore, the thickness distortion rate of the cracked portion in the bulge test of the cold-rolled steel sheet was 55%, which was good.
[発明例 3] [Invention Example 3]
転炉から出鋼して取鍋に入れられた溶鋼(300ton)に対して、スラグ中の FeO、 MnOを還元 するために、 A1滓を 300kg添加するとともに、真空脱ガス処理後のスラグ組成を制御するために CaOを添カ卩した。 FeO and MnO in slag are reduced to molten steel (300 tons) put out from the converter and placed in the ladle For this purpose, 300 kg of A1 was added, and CaO was added to control the slag composition after vacuum degassing.
次いで、 RH真空脱ガス設備において、次のような一連の処理を行った。 まず、溶鋼を脱炭 処理し、溶鋼の成分組成を C : 0. 0015mass%、 Si: 0. 01mass%、 Mn: 0. 12mass%、 P : 0. 01 5mass%、 S : 0. 006mass%、酸素濃度: 400massppmとし、溶鋼温度を 1600°Cに調整した。 次いで、溶鋼に A1を 0. 4kg/溶鋼 ton添加し、溶鋼中の溶存酸素濃度を lOOmassppmまで低 下させた。この時の溶鋼の A1濃度は 0. 002mass%であった。 さらに、溶鋼に Fe— 70mass%Ti 合金を 1. lkgZ溶鋼 ton添加し、 Ti脱酸処理を 5分間行った。この Ti脱酸処理では、 Fe— Ti合 金添加後 5分で真空脱ガス処理を終了し、終了時の溶鋼の Ti濃度は 0. 042mass%、 A1濃度は 0. 002mass%、全酸素濃度は 30massppmであった。 また、真空脱ガス処理 (脱酸処理)後の 取鍋中のスラグ組成は、 CaO濃度: 42mass%、 Si〇2濃度: 13mass%、 A1203濃度: 30mass%、 Ti02濃度: 4mass%、 MgO濃度: 6mass%、トータル Fe濃度: lmass%、 MnO濃度: 2mass%であ つた (その他不可避的酸化物: 2mass%)。 真空脱ガス処理終了後、取鍋内の溶鋼に 30mass% Ca— 70mass%Si合金を鉄被覆ワイヤーにより 0. 27kg/溶鋼 ton添加し、溶鋼中の介在物の組 成制御を行った。溶製された溶鋼の Ca濃度は 0. 0006腿 ss%であった。 以上のようにして溶製した溶鋼を 2ストランドスラブ連続鏺造装置にて連続鎢造し、铸片を製造 した。 この鎳造時のタンディッシュ内の介在物の形態および組成を調査した結果、 72mass%Ti2 03— 12mass%CaO— 16mass%Al23の球状介在物であった。 連続铸造は、浸漬ノズノレを流 下する溶鋼に Arや N2などのガスを吹き込むことなく行い、铸造時の溶鋼スループットは 4. Oton Zminとした。 また、铸型内の溶鋼に直流磁場による静磁場を印加し、溶鋼流動を制動した。な お、铸造後の浸漬ノズル内面には付着物はほとんどな力 た。 Next, the following series of treatments were performed in the RH vacuum degassing facility. First, the molten steel was decarburized, and the composition of the molten steel was changed to C: 0.0015 mass%, Si: 0.01 mass%, Mn: 0.12 mass%, P: 0.015 mass%, S: 0.006 mass%, The oxygen concentration was 400 massppm, and the molten steel temperature was adjusted to 1600 ° C. Next, A1 was added to the molten steel at 0.4 kg / mol steel ton, and the dissolved oxygen concentration in the molten steel was lowered to lOOmassppm. The A1 concentration of the molten steel at this time was 0.002 mass%. Furthermore, Fe-70mass% Ti alloy was added to the molten steel by 1. lkgZ molten steel ton, and Ti deoxidation treatment was performed for 5 minutes. In this Ti deoxidation treatment, the vacuum degassing treatment was completed 5 minutes after the addition of the Fe-Ti alloy, and the Ti concentration of the molten steel at the end was 0.042 mass%, the A1 concentration was 0.002 mass%, and the total oxygen concentration was It was 30 massppm. Moreover, the slag composition in the ladle after the vacuum degassing treatment (deacidification) is, CaO concentration: 42mass%, Si_〇 2 concentration: 13mass%, A1 2 0 3 concentration: 30 mass%, Ti0 2 concentration: 4 mass% MgO concentration: 6 mass%, total Fe concentration: lmass%, MnO concentration: 2 mass% (other inevitable oxides: 2 mass%). After the vacuum degassing treatment, 0.2 mass / ton of 30mass% Ca-70mass% Si alloy was added to the molten steel in the ladle with iron-coated wire, and the composition of inclusions in the molten steel was controlled. The Ca concentration of the molten steel was 0.0006 thigh ss%. The molten steel melted as described above was continuously forged with a two-strand slab continuous forging device to produce a piece. As a result of investigating the form and composition of inclusions in the tundish at the time of fabrication, it was a spherical inclusion of 7 2 mass% Ti 2 0 3 —12 mass% CaO—16 mass% Al 2 O 3 . Continuous forging was performed without blowing gas such as Ar or N 2 into the molten steel flowing through the immersion nozzle, and the molten steel throughput during forging was 4. Oton Zmin. In addition, a static magnetic field by a direct current magnetic field was applied to the molten steel in the vertical mold to brake the molten steel flow. There was almost no deposit on the inner surface of the immersion nozzle after fabrication.
鎳造されたスラブを板厚 3. 5mmまで熱間圧延し、さらに板厚 0. 8mmまで冷間圧延し、次い で、 780°C X 45秒の焼鈍条件で連続焼鈍を行った。 このようにして得られた焼鈍板には、非金 属介在物性および気泡性の欠陥が 0. 2個/ 1000mしか認められなかった。 さらに、冷延鋼板 のバルジ試験における割れ部の板厚歪み率は 55%であり、良好であった。  The fabricated slab was hot-rolled to a thickness of 3.5 mm, further cold-rolled to a thickness of 0.8 mm, and then subjected to continuous annealing at 780 ° C x 45 seconds. In the annealed sheet thus obtained, only 0.2 / 1000 m non-metallic inclusion physical properties and bubble defects were observed. Furthermore, the thickness distortion rate of the cracked portion in the bulge test of the cold-rolled steel sheet was 55%, which was good.
[発明例 4] [Invention Example 4]
発明例 1と同一条件で溶製した溶鋼を 2ストランドスラブ連続铸造装置にて連続錄造し、錶 を製造した (铸造時のタンディッシュ内の介在物の形態および組成は発明例 1と同様)。 連続鏡 造装置には、浸漬ノズルの吐出孔の下端よりも 500nmi下方位置に静磁場印加装置を設置した。 なお、浸漬ノズルの吐出孔の形状は、縦 ·横 80mmの正方形とした。 溶鋼の連続鐃造では、浸漬ノズル内での Arガス吹き込み流量を 0〜: LONLZminとし、静磁 場印加装置により印加する磁場強度 (直流静磁場)を 0. 1〜0· 3テスラの範囲で変化させ、幅 12 00〜1500mm、厚み 250mmのスラブを、 4. 5〜6. 0トン Ζπώιの注湯速度で鎳造した。 The molten steel melted under the same conditions as in Invention Example 1 was continuously forged using a two-strand slab continuous forging device to produce a flaw (the form and composition of inclusions in the tundish during forging were the same as in Inventive Example 1) . In the continuous mirror device, a static magnetic field application device was installed at a position 500 nm below the lower end of the discharge hole of the immersion nozzle. In addition, the shape of the discharge hole of the immersion nozzle was a square of 80mm length and width. In continuous forging of molten steel, the Ar gas blowing flow rate in the immersion nozzle is set to 0 to LONLZmin, and the magnetic field strength (DC static magnetic field) applied by the static magnetic field application device is in the range of 0.1 to 0.3 Tesla. A slab having a width of 12,000 to 1,500 mm and a thickness of 250 mm was produced at a pouring speed of 4.5 to 6.0 tons Ζπώι.
鎳造されたスラブを熱間圧延および冷間圧延して薄鋼板とした後、この薄鋼板に溶融亜鉛め つきを施した。 このようにして得られた溶融亜鉛めつき鋼板は、介在物性および気泡製の表面欠 陥が極めて少なぐ鎊造時に静磁場を印加することにより、表面及ぴ内部ともに清浄なスラブを錶 造できることが確認できた。  The forged slab was hot-rolled and cold-rolled to form a thin steel plate, and this thin steel plate was hot dip galvanized. The hot dip galvanized steel sheet obtained in this way is capable of producing a clean slab both on the surface and inside by applying a static magnetic field during the fabrication with very few inclusions and bubble surface defects. Was confirmed.
[発明例 5] [Invention Example 5]
発明例 1と同一条件で溶製した溶鋼を 2ストランドスラブ連続铸造装置にて連続鎢造し、铸片 を製造した (鎢造時のタンディッシュ内の介在物の形態および組成は発明例 1と同様)。 連続铸 造装置には、铸型内溶鋼湯面から 2mの位置に交流移動磁場印加装置を設置した。なお、浸漬 ノズルの吐出孔の形状は、縦.横 80mmの正方形とした。  The molten steel melted under the same conditions as in Invention Example 1 was continuously forged using a two-strand slab continuous forging machine to produce a flake (the form and composition of inclusions in the tundish at the time of forging were as in Inventive Example 1. The same). In the continuous forging machine, an AC moving magnetic field applying device was installed at a position 2m from the molten steel surface of the vertical mold. In addition, the shape of the discharge hole of the immersion nozzle was a square of 80 mm in length and width.
溶鋼の連続鎳造では、浸漬ノズル内での Arガス吹き込み流量を 0〜10NL/minとし、交流 移動磁場印加装置により印加する磁場強度 (交流移動磁場)を 0. 05〜0. 2ステラの範囲で変化 させ、幅1200〜150011^1、厚み 250mmのスラブを、 4. 5〜6. 0トン Zminの注湯速度で鎊造 した。  In continuous casting of molten steel, the Ar gas blowing flow rate in the immersion nozzle is set to 0 to 10 NL / min, and the magnetic field strength (AC moving magnetic field) applied by the AC moving magnetic field application device is in the range of 0.05 to 0.2 stellar. Slabs with a width of 1200 to 150011 ^ 1 and a thickness of 250 mm were fabricated at a pouring rate of 4.5 to 6.0 tons Zmin.
铸造されたスラブを熱間圧延および冷間圧延して薄鋼板とした後、この薄鋼板に溶融亜鉛め つきを施した。このようにして得られた溶融亜鉛めつき鋼板は、介在物性および気泡製の表面欠 陥が極めて少なぐ铸造時に交流移動磁場を印加することにより、表面及び内部ともに清浄なス ラブを鎵造できることが確認できた。  The forged slab was hot-rolled and cold-rolled to form a thin steel plate, and this thin steel plate was hot dip galvanized. The hot-dip galvanized steel sheet obtained in this way is capable of forging a clean slab both on the surface and inside by applying an AC moving magnetic field during fabrication with very few inclusions and bubble surface defects. Was confirmed.
[発明例 6] [Invention Example 6]
発明例 1の鋼組成をベースとし、  Based on the steel composition of Invention Example 1,
A: Nb = 0.010mass%、 B=0.0010mass%をさらに含有する溶鋼、および、  A: Molten steel further containing Nb = 0.010 mass%, B = 0.0010 mass%, and
B :Mo=0.0100mass%をさらに含有する溶鋼  B: Molten steel further containing Mo = 0.0100 mass%
とを準備し、他は発明例 1と同一条件となるよう調整して焼鈍板 ¾製造した。  The other conditions were the same as in Invention Example 1, and an annealed sheet was manufactured.
A、 Bとも焼鈍板には、非金属介在物性および気泡性の欠陥が 0. 2個/ 1000mしか認められ なかった。 さらに、冷延鋼板のバルジ試験における割れ部の板厚歪み率は 50%であり、良好で あ 7こ [比較例 1] In both A and B, only 0.2 / 1000m of non-metallic inclusion physical properties and bubble defects were observed on the annealed plate. Furthermore, the thickness distortion rate of the cracked part in the bulge test of cold-rolled steel sheet is 50%, which is good. [Comparative Example 1]
転炉から出鋼して取鍋に入れられた溶鋼(300ton)に対して、スラグ中の FeO、 MnOを還元 するために、 A1滓を 100kg添カロした。  In order to reduce FeO and MnO in the slag, 100 kg of A1 滓 was added to the molten steel (300 tons) that was removed from the converter and placed in the ladle.
次いで、 RH真空脱ガス設備において、次のような一連の処理を行った。 まず、溶鋼を脱炭 処理し、溶鋼の成分組成を C : 0. 0010mass%、 Si: 0. 01mass%、 Mn: 0. 15mass% P : 0. 01 5mass%、 S : 0. 005mass%、酸素濃度: 500massPpmとし、溶鋼温度を 1600°Cに調整した。 次いで、溶鋼に A1を 0. 3kgZ溶鋼 ton添カ卩し、溶鋼中の溶存酸素濃度を 220massPpmまで低 下させた。 この時の溶鋼の 濃度は 0. 002mass%であった。 さらに、溶鋼に Fe— 70mass% Ti合金を 1. 2kg/溶鋼 ton添カ卩し、 Ti脱酸処理を 7分間行った。 この Ti脱酸処理では、 Fe— Ti合金添加後 7分で真空脱ガス処理を終了し、終了時の溶銅の Ti濃度は 0. 035mass%、 Al濃 度は 0. 001mass%、全酸素濃度は 40massppniであった。 また、真空脱ガス処理(脱酸処理) 後の取鍋中のスラグ組成は、 CaO濃度: 23mass%、 Si02濃度: 27mass%、 A1203濃度: 20 mass%、Ti02濃度: 0. 8mass%、 MgO濃度: 9mass%、トータル Fe濃度: 8mass%、 MnO濃度: 6mass%であった(その他不可避的酸化物:6. 2mass%)。 Next, the following series of treatments were performed in the RH vacuum degassing facility. First, the molten steel was decarburized, and the composition of the molten steel was changed to C: 0.0010 mass%, Si: 0.01 mass%, Mn: 0.15 mass% P: 0.15 mass%, S: 0.005 mass%, oxygen. Concentration: 500 mass P pm, and the molten steel temperature was adjusted to 1600 ° C. Then 0. 3KgZ molten steel ton添Ka卩the A1 to molten steel was made as low a dissolved oxygen concentration in the molten steel to 220mass P pm. The molten steel concentration at this time was 0.002 mass%. Furthermore, Fe-70mass% Ti alloy was added to the molten steel by 1.2kg / molten steel ton, and Ti deoxidation treatment was performed for 7 minutes. In this Ti deoxidation treatment, the vacuum degassing treatment was completed 7 minutes after the addition of the Fe-Ti alloy. At the end, the Ti concentration of the molten copper was 0.035 mass%, the Al concentration was 0.001 mass%, and the total oxygen concentration Was 40 massppni. Moreover, the slag composition in the ladle after the vacuum degassing treatment (deacidification) is, CaO concentration: 23mass%, Si0 2 concentration: 27mass%, A1 2 0 3 concentration: 20 mass%, Ti0 2 concentration: 0. 8 mass%, MgO concentration: 9 mass%, total Fe concentration: 8 mass%, MnO concentration: 6 mass% (other inevitable oxides: 6.2 mass%).
真空脱ガス処理終了後、取鍋内の溶鋼に 30mass%Ca— 70mass%Si合金を鉄被覆ワイヤー により 0. 2kgZ溶鋼 ton添カ卩し、溶鋼中の介在物の組成制御を行った。 以上のようにして溶製した溶鋼を 2ストランドスラブ連続铸造装置にて連続铸造し、铸片を製造 した。この鍀造時のタンディッシュ内の介在物の形態おょぴ組成を調査した結果、 70mass%Ti2 03— 15mass%CaO— 15mass%Al203の球状介在物であった。 連続鐯造は、浸漬ノズルを流 下する溶鋼に Arや N2などのガスを吹き込むことなく行い、鎳造時の溶鋼スループットは 4. 8ton /minとした。 なお、铸造後の浸漬ノズル内面には付着物はほとんどな力 た。 After the vacuum degassing treatment, 30mass% Ca-70mass% Si alloy was added to the molten steel in the ladle by 0.2kgZ molten steel with iron-coated wire, and the composition of inclusions in the molten steel was controlled. The molten steel melted as described above was continuously forged with a two-strand slab continuous forging device to produce a piece. As a result of investigating the morphology and composition of inclusions in the tundish during the fabrication, it was a spherical inclusion of 70 mass% Ti 2 0 3 — 15 mass% CaO — 15 mass% Al 2 0 3 . Continuous forging was performed without blowing gas such as Ar or N 2 into the molten steel flowing down the immersion nozzle, and the molten steel throughput during forging was set to 4.8 ton / min. There was almost no deposit on the inner surface of the immersion nozzle after fabrication.
鍚造されたスラブを板厚 3. 5nunまで熱間圧延し、さらに板厚 0. 8mmまで冷間圧延し、次い で、 780°C X 45秒の焼鈍条件で連続焼鈍を行った。このようにして得られた焼鈍板には、非金属 介在物性おょぴ気泡性の欠陥が 0. 5個/ 1000m認められた。さらに、冷延鋼板のパルジ試験 における割れ部の板厚歪み率は 25%であり、不良であった。  The fabricated slab was hot-rolled to a thickness of 3.5 nun, further cold-rolled to a thickness of 0.8 mm, and then subjected to continuous annealing under annealing conditions of 780 ° C x 45 seconds. In the annealed sheet thus obtained, 0.5 non-metallic inclusions and 0.5 bubble defects were observed. Furthermore, the plate thickness distortion rate of the cracked part in the bulge test of the cold-rolled steel sheet was 25%, which was poor.
[比較例 2] [Comparative Example 2]
比較例 2とほぼ同一条件で焼鈍板を製造し、ただし特許文献 5の技術を参考に、 Ti脱酸処理 前の A1脱酸(500massppm→220massppm)時間を 120秒とした(a0Zt=4.2)。 このようにして得ら れた焼鈍板のパルジ試験における割れ部の板厚歪み率は 30%と比較例 1より改善された力 依 然として、本願の目標とする水準には達しなかった。 なお、非金属介在物性および気泡性の 欠陥は 0. 4個/ 1000m認められた。 産業上の利用の可能' I"生 An annealed plate was manufactured under almost the same conditions as in Comparative Example 2, except that the A1 deoxidation (500 massppm → 220 massppm) time before Ti deoxidation treatment was set to 120 seconds (a 0 Zt = 4.2 ). The thickness distortion rate of the cracked portion in the bulge test of the annealed plate thus obtained was 30%, which was an improved force compared to Comparative Example 1, but did not reach the target level of the present application. Non-metallic inclusions and cellular Defects were found to be 0.4 / 1000m. Industrial use possible 'I' raw
本発明の含 Ti極低炭素鋼の溶製方法によれば、溶鋼中の酸化物系介在物の組成が最適化 されるとともに、介在物量が低減される。 このため、連続鑤造する際の酸化物系介在物による浸 潰ノズルの閉塞(ノズル詰まり)を防止できるとともに、表面性状及び内質に優れた冷延鋼板、特 に酸化物系介在物や気泡などによる表面欠陥が少なぐ且つ酸化物系介在物起因のプレス割れ に対する高い抵抗性を有する冷延鋼板を製造可能な、含 Ti極低炭素鋼を溶製することができ る。  According to the method for melting Ti-containing ultra-low carbon steel of the present invention, the composition of oxide inclusions in the molten steel is optimized and the amount of inclusions is reduced. For this reason, it is possible to prevent clogging of the smashing nozzle (nozzle clogging) due to oxide inclusions during continuous forging, as well as cold-rolled steel sheets with excellent surface properties and quality, especially oxide inclusions and bubbles. Ti-containing ultra-low carbon steel that can produce cold-rolled steel sheets with few surface defects due to the above and high resistance to press cracking caused by oxide inclusions can be produced.
また、本発明の含 Ti極低炭素鋼铸片の製造方法によれば、連続铸造条件を最適化することに より、上記溶製方法で溶製された含 Ti極低炭素鋼から、冷延鋼板の表面性状及び内質をより高 めることができる铸片を、製造することができる。  Further, according to the method for producing a Ti-containing ultra-low carbon steel piece of the present invention, by optimizing the continuous forging conditions, from the Ti-containing ultra-low carbon steel produced by the above-described melting method, A piece that can further enhance the surface properties and quality of the steel sheet can be produced.

Claims

請求'の範囲 The scope of the claims
1. C:0.020mass%以下、 Ti:0.010mass%以上、 Ca:0.0005mass%以上を含有する極 低炭素 Ti脱酸鋼を溶製するに当たり、 1. In melting ultra-low carbon Ti deoxidized steel containing C: 0.020 mass% or less, Ti: 0.010 mass% or more, Ca: 0.0005 mass% or more,
溶鋼を脱炭処理し、次いで取鍋中にて、 Tiを添カ卩して脱酸処理することにより、 A1含有量 (mass%)と Ti含有量 (mass%)が [%A1]≤ [%Ti]ZlOを満足する組成の脱酸溶鋼とし、  By decarburizing the molten steel, then adding Ti to the ladle and deoxidizing it, the A1 content (mass%) and Ti content (mass%) are [% A1] ≤ [ % De] deoxidized molten steel with a composition satisfying ZlO,
その後、該取鍋中にて該脱酸溶鋼に Caを添加することにより、溶鋼中の介在物組成を Ti 酸化物: 90mass%以下、 CaO:5〜50mass%、 A1203: 70mass%以下に調整し、かつ、 After that, by adding Ca to the deoxidized molten steel in the ladle, the inclusion composition in the molten steel is Ti oxide: 90 mass% or less, CaO: 5 to 50 mass%, A1 2 0 3 : 70 mass% or less And adjust
前記 Tiを添加して溶鋼を脱酸処理した後の取鍋スラグ中の、  In the ladle slag after adding the Ti and deoxidizing the molten steel,
'トータル Fe濃度と MnO濃度の合計を 10mass%以下、  'Total Fe concentration and MnO concentration are less than 10 mass%,
•CaO濃度と Si〇2濃度の質量比(%CaO)Z(%Si02)を 1以上、 • CaO concentration Si_〇 2 concentration mass ratio of (% CaO) Z (% Si0 2) one or more,
.Ti02濃度を lmass%以上、および、 .Ti0 2 concentration over lmass%, and
•A1203濃度を 10〜50mass% • A1 20 3 concentration 10-50mass%
とする、含 Ti極低炭素鋼の溶製方法。 ·  A method for melting Ti-containing ultra-low carbon steel. ·
2. 請求項 1に記載の含 Ti極低炭素鋼の溶製方法であって、 2. A method for melting Ti-containing ultra-low carbon steel according to claim 1,
C:0.020mass%以下、 Ti:0.010mass%以上、 Ca: 0· 0005mass%以上、 Si:0. 2 mass%以下、 Mn:2. Omass。/。以下、 S:0.050mass%以下、 P:0.005〜0. 12mass%、 N:0. 0005-0.0040mass%、残部 Feおよび不可避的不純物からなる極低炭素 Ti脱酸鋼を溶製す る方法。  C: 0.020 mass% or less, Ti: 0.010 mass% or more, Ca: 0 · 0005 mass% or more, Si: 0.2 mass% or less, Mn: 2. Omass. /. Hereafter, S: 0.050 mass% or less, P: 0.005 to 0.12 mass%, N: 0.0005-0.0040 mass%, the method of melting ultra-low carbon Ti deoxidized steel composed of the balance Fe and inevitable impurities.
3. 請求項 2に記載の含 Ti極低炭素鋼の溶製方法であって、 3. A method for melting Ti-containing ultra-low carbon steel according to claim 2,
請求項 2に記載の組成に加えさらに、 Nb:0.100mass%以下、 B:0.050II^SS%以下、 Mo: 1.0mass%以下の 1種以上を含有する極低炭素 Ti脱酸鋼を溶製する方法。  In addition to the composition according to claim 2, an ultra-low carbon Ti deoxidized steel containing at least one of Nb: 0.100 mass% or less, B: 0.050II ^ SS% or less, Mo: 1.0 mass% or less is melted. how to.
4. 請求項 1〜3のいずれかに記載の含 Ti極低炭素鋼の溶製方法であって、 4. A method for melting Ti-containing ultra-low carbon steel according to any one of claims 1 to 3,
溶鋼を脱炭処理した後、 Tiを添加して脱酸処理するのに先立ち、 Al、 Siおよび Mnの中 から選ばれる 1種または 2種以上を添加して予備脱酸することにより、溶鋼の溶存酸素濃度を予 め 200massppm以下とする方法。  After decarburizing the molten steel, prior to deoxidizing by adding Ti, by adding one or more selected from Al, Si and Mn and pre-deoxidizing, A method in which the dissolved oxygen concentration is set to 200 massppm or less in advance.
5. 請求項 1〜 3のいずれかに記載の含 Ti極低炭素鋼の溶製方法であって、 5. A method for melting Ti-containing ultra-low carbon steel according to any one of claims 1 to 3,
Tiを添加して行う溶鋼の脱酸処理時間を 5分以上とする方法。 A method in which the deoxidation time of molten steel is 5 minutes or longer by adding Ti.
6. 請求項 1〜5のいずれかに記載の溶製方法で溶製された溶鋼を連続鍚造して、铸片を製 造する方法であって、 6. A method of continuously forging molten steel melted by the melting method according to any one of claims 1 to 5 to produce a flake piece,
タンディッシュ底部に設置された浸漬ノズルを通じてタンディッシュから錶型内に溶鋼を 注入する際に、前記浸漬ノズルを流下する溶鋼にガスを吹き込むことなく溶鋼を鎊造する、含 Ti 極低炭素鋼铸片の製造方法。  Ti-containing ultra-low carbon steel steel forging molten steel without injecting gas into the molten steel flowing down the immersion nozzle when the molten steel is poured into the mold from the tundish through the immersion nozzle installed at the bottom of the tundish A manufacturing method of a piece.
7. 請求項 1〜5のいずれかに記載の溶製方法で溶製された溶鋼を連続鍚造して、铸片を製 造する方法であって、 7. A method of continuously forging molten steel produced by the melting method according to any one of claims 1 to 5 to produce a flake piece,
錶型内の溶鋼を磁場によってもたらされる電磁力により撹拌する、含 Ti極低炭素鋼铸片 の製造方法。  A method for producing Ti-containing ultra-low carbon steel pieces, in which molten steel in the mold is agitated by electromagnetic force generated by a magnetic field.
8. 請求項 1〜5のいずれかに記載の溶製方法で溶製された溶鋼を連続铸造して、铸片を製 造する方法であって、 8. A method of continuously forging molten steel produced by the melting method according to any one of claims 1 to 5 to produce a flake piece,
錶型内の溶鋼に静磁場を印加し、溶鋼流動を制動する、含 Ti極低炭素鋼鍚片の製造方 法。  A method for producing Ti-containing ultra-low carbon steel pieces that applies a static magnetic field to the molten steel in the mold and brakes the molten steel flow.
9. 請求項 1〜5のいずれかに記載の溶製方法で溶製された溶鋼を連続錡造して、铸片を製 造する方法であって、 9. A method for continuously producing molten steel produced by the melting method according to any one of claims 1 to 5 to produce a flake piece,
鎊型内の溶鋼を磁場によってもたらされる電磁力により撹拌するとともに、溶鋼に静磁場 を印加し、溶鋼流動を制動する、含 Ti極低炭素鋼铸片の製造方法。  A method for producing Ti-containing ultra-low carbon steel pieces that stirs molten steel in a mold by electromagnetic force generated by a magnetic field and applies a static magnetic field to the molten steel to brake the molten steel flow.
10. 請求項 7に記載の含 Ti極低炭素鋼鍀片の製造方法であって、 10. A method for producing a Ti-containing ultra-low carbon steel piece according to claim 7,
タンディッシュ底部に設置された浸漬ノズルを通じてタンディッシュから錶型内に溶鋼を 注入する際に、前記浸漬ノズルを流下する溶鋼にガスを吹き込むことなぐ溶鋼を铸造する方 法。  A method of forging molten steel without blowing gas into the molten steel flowing down the immersion nozzle when the molten steel is poured into the mold from the tundish through the immersion nozzle installed at the bottom of the tundish.
11. 請求項 8に記載の含 Ti極低炭素鋼鍀片の製造方法であって、 11. A method for producing a Ti-containing ultra-low carbon steel piece according to claim 8,
タンディッシュ底部に設置された浸漬ノズルを通じてタンディッシュから铸型内に溶鋼を 注入する際に、前記浸漬ノズルを流下する溶鋼にガスを吹き込むことな 溶鋼を鍚造する方 法。 A method of forging molten steel without injecting gas into the molten steel flowing down the immersion nozzle when the molten steel is poured into the mold from the tundish through the immersion nozzle installed at the bottom of the tundish.
12. 請求項 9に記載の含 Ti極低炭素鋼錄片の製造方法であって、 12. A method for producing a Ti-containing ultra-low carbon steel flake according to claim 9,
タンディッシュ底部に設置された浸潰ノズルを通じてタンディッシュから鏡型内に溶鋼を 注入する際に、前記浸漬ノズルを流下する溶鋼にガスを吹き込むことなぐ溶鋼を錄造する方 法。  A method of forging molten steel that does not blow gas into the molten steel flowing down the immersion nozzle when the molten steel is poured into the mirror mold from the tundish through the immersion nozzle installed at the bottom of the tundish.
13. 請求項 6に記載の含 Ti極低炭素鋼鍚片の製造方法であって、 13. A method for producing a Ti-containing ultra-low carbon steel flake according to claim 6,
溶鋼をスループット: 4ΐοηΖπΰη以下で連続鎵造する方法。  A method of continuously forging molten steel at a throughput of 4ΐοηΖπΰη or less.
PCT/JP2009/056835 2008-03-31 2009-03-26 Steel-making method for titanium-containing ultralow carbon steel and method for manufacturing titanium-containing ultralow carbon steel slab WO2009123272A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008093236A JP2009242912A (en) 2008-03-31 2008-03-31 Method for melting and manufacturing titanium-added ultra-low carbon steel and method for producing titanium-added ultra-low carbon steel cast slab
JP2008-093236 2008-03-31

Publications (1)

Publication Number Publication Date
WO2009123272A1 true WO2009123272A1 (en) 2009-10-08

Family

ID=41135639

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/056835 WO2009123272A1 (en) 2008-03-31 2009-03-26 Steel-making method for titanium-containing ultralow carbon steel and method for manufacturing titanium-containing ultralow carbon steel slab

Country Status (3)

Country Link
JP (1) JP2009242912A (en)
TW (1) TWI394843B (en)
WO (1) WO2009123272A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103952627A (en) * 2014-05-16 2014-07-30 武汉钢铁(集团)公司 High-elongation and low-yield-ratio ferrite weathering-resistant steel and production method thereof
EP2586878A4 (en) * 2010-06-23 2017-02-08 Baoshan Iron & Steel Co., Ltd. Method for controlling titanium content in ultra-low carbon killed steel
CN113072384A (en) * 2021-03-29 2021-07-06 安徽工业大学 Novel oxide metallurgy process
CN115074487A (en) * 2022-06-29 2022-09-20 武汉钢铁有限公司 Smelting method for desulfurizing low-carbon, low-silicon and low-sulfur titanium deoxidized steel in LF (ladle furnace)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6214493B2 (en) * 2014-08-21 2017-10-18 株式会社神戸製鋼所 Method for controlling Ti concentration in steel
CN112368402B (en) * 2018-06-26 2022-03-22 日本制铁株式会社 Method for producing steel

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0671403A (en) * 1992-08-28 1994-03-15 Nippon Steel Corp Controller for fluid of molten steel in continuous casting mold
JPH0671401A (en) * 1992-08-28 1994-03-15 Nippon Steel Corp Controller for fluid of molten steel in continuous casting mold
JPH11100611A (en) * 1997-09-29 1999-04-13 Kawasaki Steel Corp Production of titanium-containing extra low carbon steel
JP2002220636A (en) * 2000-11-27 2002-08-09 Sumitomo Metal Ind Ltd Extra low-carbon thin steel sheet and manufacturing method therefor
JP2003293029A (en) * 2002-04-09 2003-10-15 Sumitomo Metal Ind Ltd Method of melting titanium-containing steel
JP2007239062A (en) * 2006-03-10 2007-09-20 Jfe Steel Kk Method for producing titanium-containing ultra-low carbon steel slab
JP2008240137A (en) * 2007-03-29 2008-10-09 Jfe Steel Kk Method for smelting ti-containing extra-low carbon steel, and method for producing ti-containing extra-low carbon steel slab

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW434059B (en) * 1999-04-08 2001-05-16 Nippon Steel Corp Cast strip and steel material with excellent workability, and method for processing molten steel therefor and method for manufacturing the strip and material
JP4747564B2 (en) * 2004-11-30 2011-08-17 Jfeスチール株式会社 Oriented electrical steel sheet

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0671403A (en) * 1992-08-28 1994-03-15 Nippon Steel Corp Controller for fluid of molten steel in continuous casting mold
JPH0671401A (en) * 1992-08-28 1994-03-15 Nippon Steel Corp Controller for fluid of molten steel in continuous casting mold
JPH11100611A (en) * 1997-09-29 1999-04-13 Kawasaki Steel Corp Production of titanium-containing extra low carbon steel
JP2002220636A (en) * 2000-11-27 2002-08-09 Sumitomo Metal Ind Ltd Extra low-carbon thin steel sheet and manufacturing method therefor
JP2003293029A (en) * 2002-04-09 2003-10-15 Sumitomo Metal Ind Ltd Method of melting titanium-containing steel
JP2007239062A (en) * 2006-03-10 2007-09-20 Jfe Steel Kk Method for producing titanium-containing ultra-low carbon steel slab
JP2008240137A (en) * 2007-03-29 2008-10-09 Jfe Steel Kk Method for smelting ti-containing extra-low carbon steel, and method for producing ti-containing extra-low carbon steel slab

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2586878A4 (en) * 2010-06-23 2017-02-08 Baoshan Iron & Steel Co., Ltd. Method for controlling titanium content in ultra-low carbon killed steel
CN103952627A (en) * 2014-05-16 2014-07-30 武汉钢铁(集团)公司 High-elongation and low-yield-ratio ferrite weathering-resistant steel and production method thereof
CN113072384A (en) * 2021-03-29 2021-07-06 安徽工业大学 Novel oxide metallurgy process
CN113072384B (en) * 2021-03-29 2022-11-29 安徽工业大学 Oxide metallurgy process
CN115074487A (en) * 2022-06-29 2022-09-20 武汉钢铁有限公司 Smelting method for desulfurizing low-carbon, low-silicon and low-sulfur titanium deoxidized steel in LF (ladle furnace)
CN115074487B (en) * 2022-06-29 2023-09-22 武汉钢铁有限公司 Smelting method for desulfurizing low-carbon, low-silicon and low-sulfur titanium deoxidized steel in LF furnace

Also Published As

Publication number Publication date
TW201002832A (en) 2010-01-16
JP2009242912A (en) 2009-10-22
TWI394843B (en) 2013-05-01

Similar Documents

Publication Publication Date Title
JP5277556B2 (en) Method for producing Ti-containing ultra-low carbon steel and method for producing Ti-containing ultra-low carbon steel slab
KR101022068B1 (en) Process for producing steel for high-carbon steel wire material with excellent drawability and fatigue characteristics
WO2009123272A1 (en) Steel-making method for titanium-containing ultralow carbon steel and method for manufacturing titanium-containing ultralow carbon steel slab
CN104233098A (en) Low-cost 60Si2Mn spring steel and production technology thereof
JP5381243B2 (en) Method for refining molten steel
US20120261085A1 (en) Extremely low carbon steel plate excellent in surface characteristics, workability, and formability and a method of producing extremely low carbon cast slab
JP5053042B2 (en) Continuous casting method of ultra-low carbon steel
JP5343305B2 (en) Method for producing Ti-containing ultra-low carbon steel slab
TW202138587A (en) Stainless steel, stainless steel material, and method for manufacturing stainless steel
JPWO2003002771A1 (en) Low carbon steel sheet, low carbon steel slab, and method for producing the same
JP4780084B2 (en) Titanium killed steel material with good surface properties and method for producing the same
JP7087724B2 (en) Steel manufacturing method
JP6547638B2 (en) Method of manufacturing high purity steel
JP4516923B2 (en) Continuously cast slab of aluminum killed steel and method for producing the same
JP2008266706A (en) Method for continuously casting ferritic stainless steel slab
JP2009270165A (en) Extra-low carbon steel sheet, and method for producing the same
JP4299757B2 (en) Thin steel plate and slab excellent in surface properties and internal quality, and method for producing the same
JP3760144B2 (en) Ultra-low carbon steel sheet, ultra-low carbon steel slab and method for producing the same
CN117230276A (en) Composite additive for forming core-shell structure inclusion, preparation and smelting method
JP2002105527A (en) Method for producing high cleanliness steel
CN116574965B (en) Method for improving inclusion level of wind power steel
RU2768098C1 (en) Sheet from unstructured electrical steel and method of making slab used as material therefor
JP2006152444A (en) MELTING AND MANUFACTURING METHOD OF Ti-ADDED ULTRA-LOW CARBON STEEL
JP3629955B2 (en) High tensile steel plate with excellent deformability
JP4025718B2 (en) Extremely low carbon steel sheet excellent in surface properties, workability and formability, and method for producing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09726765

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09726765

Country of ref document: EP

Kind code of ref document: A1