WO2009122843A1 - Frequency synthesizer and method for controlling oscillation frequency of oscillator - Google Patents

Frequency synthesizer and method for controlling oscillation frequency of oscillator Download PDF

Info

Publication number
WO2009122843A1
WO2009122843A1 PCT/JP2009/053987 JP2009053987W WO2009122843A1 WO 2009122843 A1 WO2009122843 A1 WO 2009122843A1 JP 2009053987 W JP2009053987 W JP 2009053987W WO 2009122843 A1 WO2009122843 A1 WO 2009122843A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
phase
output
reference signal
target
Prior art date
Application number
PCT/JP2009/053987
Other languages
French (fr)
Japanese (ja)
Inventor
正 前多
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2010505488A priority Critical patent/JP5333439B2/en
Publication of WO2009122843A1 publication Critical patent/WO2009122843A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/085Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/085Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal
    • H03L7/087Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal using at least two phase detectors or a frequency and phase detector in the loop
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/16Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop
    • H03L7/18Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop using a frequency divider or counter in the loop
    • H03L7/1806Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop using a frequency divider or counter in the loop the frequency divider comprising a phase accumulator generating the frequency divided signal
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L2207/00Indexing scheme relating to automatic control of frequency or phase and to synchronisation
    • H03L2207/06Phase locked loops with a controlled oscillator having at least two frequency control terminals

Definitions

  • the present invention relates to a frequency synthesizer and an oscillation frequency control method of an oscillator, and in particular, a phase for detecting a phase difference between an oscillation clock of a voltage controlled oscillator built in a phase locked loop (PLL) and a reference clock as a digital signal.
  • the present invention relates to a frequency synthesizer having a comparator, a voltage controlled oscillator digitally controlled by the output of the phase comparator, and a method of manufacturing an oscillation frequency of the oscillator.
  • High-speed wireless communication methods such as IEEE 802.11a / g WLAN introduce advanced modulation such as 16 QAM and 64 QAM in order to efficiently perform large-capacity signal transmission within a limited frequency band.
  • these wireless chips because of the large power consumption of the digital signal processing unit, they have not been incorporated into terminals such as mobile phones except for the relatively low speed IEEE 802.11b.
  • application to a baseband of a fine CMOS device is advanced. Along with that, the power supply voltage of the baseband is low.
  • SoC system-on-chip
  • FIG. 5 is an example of a related analog PLL.
  • 1 is a phase comparator
  • 2 is a charge pump
  • 3 ' is a loop filter
  • 4 is a voltage controlled oscillator (VCO)
  • 5 is a divider.
  • the phase comparator 1 generates output signals S1 and S2 based on the result of comparison between the reference signal FREF and the divided signal CKV of the VCO.
  • the signal S1 is a signal indicating the amount of phase advance of the reference signal FREF with respect to the CKV signal.
  • the signal S2 is a signal indicating the amount of phase advance of the CKV signal with respect to the reference signal FREF.
  • These signals S 1 and S 2 are input to the charge pump 2.
  • the output signal S3 of the charge pump 2 is input to the loop filter 3 ', where high frequency components are removed therefrom, and then input as the control voltage S4 of the VCO 4.
  • the PLL circuit when it operates so that the phases of the reference signals FREF and CKV coincide with each other, the PLL circuit locks and the frequency (fVCO) obtained from the voltage control oscillator 4 becomes the frequency division number of the reference signal FREF.
  • the frequency of the VCO is determined, for example, by changing the control voltage of the MOS varactor in the case of the type utilizing the resonance frequency of the inductor and the MOS varactor capacitance.
  • the modulation sensitivity which is the amount of change in frequency, to the change in control DC potential
  • the control range of the capacitance is limited to the linear region of the varactor. Therefore, when the power supply voltage is lowered, the modulation sensitivity of the VCO has to be increased as a result, and there has been a problem that the frequency of the local oscillator fluctuates due to the noise outside the chip and the inside.
  • a circuit for digitally controlling a VCO has been disclosed (see, for example, Patent Document 1 and Non-patent Document 1).
  • the control of the varactor of the VCO is a method of repeating on / off temporally and changing the time ratio, instead of applying a direct current potential.
  • the signal is randomized by using a sigma delta ( ⁇ modulation) modulator because the time ratio causes a large spurious emission if it is performed at a constant period.
  • the phase of the reference signal FREF output from the reference crystal oscillator is obtained by accumulating the frequency control word FCW in the latch 102 at each rise of the signal in the phase detector 51 (this frequency control word is This corresponds to the frequency ratio of the output signal CKV of the VCO 105 with respect to the reference signal, ie, the multiplication number).
  • the phase of the output signal CKV of the oscillator is obtained by counting the number of clock transitions of its rising edge in the phase detector 52 in the latch 118 and further by accumulating the output on the reference signal in the latch 119. ing.
  • FIG. 7A is a circuit for detecting the phase of the output signal CKV of the VCO, and has the same configuration as that of the phase detector 52 in FIG.
  • a 4-bit adder and latch circuit are used.
  • the value of the adder is accumulated at the rising edge of the CKV signal, and the value of the output of the VCO is latched at each rising edge of the reference signal.
  • the initial value of the adder is 0 and the CKV count starts and the frequency ratio of the CKV signal and the reference signal FREF is 10.
  • the adder since the adder has a 4-bit configuration, the value of 16 or more that causes an overflow is counted from zero. Therefore, the latch outputs at the timing of FREF are 0, 10, 4, 14, 8.
  • the phase of the reference signal is performed by the circuit of FIG. 7C, which is also the same configuration as the phase detector 51 in FIG. As described above, 10 is input to the frequency control word (FCW) indicating the target multiplication number, and the phase signal is incremented by 10 each time the reference frequency FREF rises.
  • FIG. 7D is a diagram for explaining this operation, and shows the case where the initial value of the adder is three. Since the initial value is 3 and incremented by 10 each time, the output of the circuit for each FREF is 3, 13, 7, 1, 11. In the example of this figure, the frequency of the VCO matches the target but the phase is shifted by three pulses of the VCO.
  • phase error of these signals is performed in a phase comparator 81 provided with phase detectors 51 and 52 and an adder / subtractor 122. That is, the phase error is obtained by simply performing arithmetic subtraction in the adder / subtractor 122 of the two digital numerical values described above.
  • the obtained phase error signal is fed back to the oscillator via the interface circuit 107 which performs processing such as gain adjustment to the oscillator after the high speed component is removed by the digital loop filter 103.
  • the resolution equal to or less than the oscillation period of the VCO can not be realized only by the phase detection method based on the accumulation of the number of transitions for each rising edge of the CKV signal described above. Therefore, in the example of the above document, the small phase comparator 82 is provided, and a minute phase error is detected using the time digital converter (TDC) 83.
  • TDC time digital converter
  • the position of the detected “1” to “0” transition of the CKV signal is the sampling edge of FREF 110 and the rising edge of CKV signal.
  • the position of the detected “0” to “1” transition of the CKV signal is the delay time between the sampling edge of FREF 110 and the falling edge 400 of CKV signal 114 It is shown by ⁇ tf.
  • the delay times ⁇ tr, ⁇ tf are quantized and are shown as multiples of the circuit time resolution ⁇ tres.
  • the small phase error ⁇ F is given by ⁇ tr / 2 ( ⁇ tf ⁇ tr) when ⁇ tf> ⁇ tr, and 1 ⁇ tr / 2 ( ⁇ tr ⁇ tf) when ⁇ tr> ⁇ tf.
  • FIG. 10 is a circuit example of the time-to-digital converter 83 for detecting a phase error less than the CKV signal cycle shown in FIG.
  • the time-to-digital converter 500 is composed of a plurality of inverter delay elements 502 and a latch / register 504.
  • CKV signal 114 is sequentially delayed by a plurality of inverters, and the delayed vectors are latched in latch / register 504 on the rising edge of the reference clock from reference crystal oscillator FREF 110, respectively.
  • the total delay of the inverter array sufficiently covers the clock cycle of CKV 114, it is possible to detect a phase error up to the resolution ⁇ tres of the delay time of the inverter.
  • FIG. 11 shows a timing chart 600 for explaining the operation of the circuit shown in FIG.
  • the plurality of latches / registers 504 are accessed to obtain a plurality of instantaneous values 604 indicative of the delay of the CKV signal 114 relative to the rising edge of the reference oscillator FREF 110.
  • This instantaneous value 604 can be viewed as indicating the time difference as a digital value.
  • the digital value is added to or subtracted from the output of the phase detector 51 by the adder-subtractor 123.
  • the minute phase error signal calculated by the adder / subtractor 123 has its high speed component removed by the digital loop filter 104, and after being modulated by the ⁇ modulator 108, the frequency of the VCO 105 is controlled with high accuracy.
  • the VCO digitally, it is possible to realize a stable, highly accurate oscillation signal even in the low voltage operation of the fine CMOS device.
  • the oscillation frequency of the VCO increases, it is expected that the demand for time resolution will become severe.
  • the time resolution of the related art described above is determined by the delay time of the inverter, a delay time less than a certain level can not be realized in semiconductor manufacturing technology. For example, where one cycle is 125 ps at 8 GHz, the resolution is about 20 ps at 90 nm process.
  • the variation of the delay time of each inverter directly leads to the accuracy of the phase detector, so that the VCO can not be controlled with high accuracy.
  • An object of the present invention is to solve the problems of the related art described above, and its object is to increase the phase difference between a VCO and a reference signal as a digital signal without using a multistage inverter even in low voltage operation.
  • An object of the present invention is to provide a phase comparator that can be detected with high accuracy, and it is possible to control the oscillation frequency with high accuracy even if the oscillation frequency of the VCO is further increased.
  • a first phase detector that latches at the timing of the signal, a second phase detector that latches the target signal at the timing of the output of the reference signal, and a target signal, and the count value A third phase detector that latches at the timing of the output of the delay element; a counter (counting means) that receives the target signal and counts the number of pulses of the target signal for the delay time of the delay element;
  • a first adder / subtractor for adding / subtracting the output of the second phase detector with the output of the second phase detector, the sum of the output of the first phase detector and the output of the counter, and the second phase detector
  • a second adder / subtractor for addition / subtraction with an output
  • a multiplexer signal switching means
  • a delay element to which a reference signal is input and whose delay time is approximately 1 / n (n is an integer of 2 or more) of the period of the reference signal A delay circuit having a cascade connection, and a first phase detector which receives a frequency control word which is a target multiplication number for a target signal of a reference signal and latches the accumulated number of frequency control words at the timing of the reference signal; (N + 1) phase detectors [each of the second, third,..., (N + 1) phase detectors inputs the target signal and latches its count value at the timing of the reference signal and the output of each delay element , (N + 2) phase detector], a first adder / subtractor for adding / subtracting the output of the second phase detector and the output of the (n + 2) phase detector, and the first addition / subtraction Divide the output of the A divider for calculating the number of pulses corresponding to the delay time of the latch timing in the (n + 1) th
  • the delay time of the delay element to which the reference signal is input and whose delay time is equal to or less than that of the reference signal is measured by the target signal.
  • the phase signal of the reference signal is acquired by accumulating the frequency control word which is the target multiplication number for the target signal of 1, the first phase signal of the target signal, the count value of the target signal, the timing accumulation of the output of the reference signal To obtain the second phase signal of the target signal by accumulating the count value of the target signal by the timing of the output of the delay element, and the first phase difference signal as the phase signal of the reference signal.
  • the second phase difference signal is calculated from the first phase signal of the target signal, and the second phase difference signal is calculated from the measured value of the delay time, the phase signal of the reference signal, and the second phase signal of the target signal, Oscillation frequency control method of an oscillator and controls the oscillation frequency of the oscillator using the first phase difference signal and the second phase difference signals alternately, is provided.
  • a delay element to which a reference signal is input and whose delay time is approximately 1 / n (n is an integer of 2 or more) of the period of the reference signal The delay time of the delay circuit formed by cascade connection is measured by the target signal, and based on the result, the delay time to the k [k is 1, 2, ..., (n-1)] stage is calculated, and the reference A phase signal of a reference signal is acquired by accumulating a frequency control word which is a target multiplication number for a target signal of the signal, a first phase signal of the target signal, a count value of the target signal, and a timing of the output of the reference signal To obtain the second, third,..., N-th phase signal of the target signal, and the count value of the target signal to the first, second,.
  • the first phase difference signal is calculated from the phase signal of the reference signal and the first phase signal of the target signal
  • the second, third,..., N-th phase difference signals are calculated as 1, 2,. n-1) Calculated from the delay time to the delay element of the stage, the phase signal of the reference signal, and the second, third,..., n-th phase signals of the target signal, and the first to n-th
  • a method of controlling an oscillation frequency of an oscillator characterized in that the oscillation frequency of the oscillator is controlled by sequentially using the phase difference signal of
  • a reference signal can be input to delay elements connected in multiple stages in cascade, and a plurality of signals with different phases generated from the output of each stage can provide a frequency synthesizer multiple times in one cycle of the reference signal. .
  • a digital synthesizer operating at a low voltage and at an extremely high speed, it is possible to realize a synthesizer that can perform phase control with high accuracy and has low phase noise with low power consumption. Therefore, it is possible to provide a phase comparator suitable for advanced wireless systems using future micro CMOS devices and a PLL using the same.
  • FIG. 1 is a block diagram of a frequency synthesizer according to a first embodiment of this invention.
  • FIG. 7 is a block diagram of a phase comparison unit of a frequency synthesizer according to a second embodiment of the present invention.
  • FIG. 7 is a timing chart for explaining the circuit operation of the second embodiment of the present invention.
  • FIG. 10 is a block diagram of a phase comparison unit of a frequency synthesizer according to a third embodiment of the present invention.
  • FIG. 8 is a block diagram of a related art digital PLL circuit.
  • FIG. 7B is a timing chart explaining the operation of FIG. 7A.
  • FIG. 7C is a timing chart explaining the operation of FIG. 7C.
  • FIG. 7 is a timing chart (part 1) for explaining the principle of the small phase comparison in the related art of FIG. 6;
  • FIG. 7 is a timing chart (part 2) for explaining the principle of the small phase comparison in the related art of FIG. 6;
  • FIG. 7 is a block diagram of a phase comparison circuit of a fractional part in the related art of FIG. 6.
  • FIG. 11 is a timing chart for explaining the phase comparison operation in the circuit shown in FIG. 10;
  • phase comparator 2 charge pump 3 'loop filter 105, 4 VCO 5 divider 51, 52, 53, 54, 55, 57 phase detector 61, 62, 63, 64 delay element 81 phase comparator 82 small phase comparator 83 time digital converter 86, 87 divider 102, 118, 119 latch 103, 104 digital loop filter 107 interface circuit 108 ⁇ modulator 122, 123 adder / subtractor
  • FIG. 1 is a block diagram of a PLL for explaining a first embodiment of the present invention.
  • the same components are denoted by the same reference symbols, and redundant description will be omitted as appropriate.
  • the reference signal FREF is a signal obtained from the reference crystal oscillator, and its phase is obtained by accumulating the frequency control word FCW indicating the target multiplication number in the phase detector 51 by the latch LT1 at each rise of the signal. .
  • the phase of the output signal CKV of the VCO 105 is obtained by counting the number of rising edge clock transitions in the phase detector 52 in the latch LT2, and accumulating the count value in the latch LT3.
  • the phase error between the phase of the detected CKV digital number and the phase of the digital number of the reference signal FREF is obtained by simply arithmetic subtraction of these two digital numbers in the adder / subtractor 122.
  • phase comparison is performed a plurality of times within one cycle of the reference signal using the reference signal delayed by a certain constant delay element.
  • the oscillation frequency of the VCO can be controlled with high accuracy.
  • the number of clock transitions of CKV is counted by the latch LT4, and the count value is accumulated by the latch LT5 using the reference signal fR1 delayed by the delay element 61.
  • the value latched after the accumulation should be larger than the target output of the phase detector 51 by the number of counts of the CKV rising edge corresponding to the delay amount of the delay element 61.
  • FIG. 2 is a block diagram of a phase comparison unit of a PLL for explaining a second embodiment of the present invention.
  • This circuit is a diagram showing in detail how to extract the count number of the rising edge of the VCO from the delay time of the delay element 61 in the phase comparison section described with reference to FIG.
  • means for generating a delayed reference signal using delay elements 61 and 62 having a delay of about 1 ⁇ 2 period of the reference signal and a circuit for measuring the delay amount between the reference signals are added.
  • the delay elements 61 and 62 are realized, for example, in a multistage configuration of inverter circuits, and in this embodiment, a delay of about one cycle of the reference signal is generated by two delay elements.
  • the reference signal fR1 is delayed by about 1 ⁇ 2 cycle from the original reference signal inputted, the reference signal fR2 is delayed by about 1 cycle, and each delay amount is assumed to be the same. doing.
  • the phase detector 57 accumulates the edge of CKV by the latches LT6 and LT7 using the reference signal delayed about one cycle by the delay elements 61 and 62, and the value latched after the accumulation is the phase detector 52.
  • the number of CKV rising edges corresponding to the delay amount corresponding to two stages of delay elements should be larger than the output of the circuit. Therefore, the difference between these accumulated results is calculated by the adder / subtractor 124, and the result is divided by 2 in the divider 86. The division result corresponds to the CKV count number of one delay element stage.
  • the phase RR01 of the reference signal FREF is obtained by accumulating the frequency control word FCW indicating the target multiplication number in the phase detector 51 at each rise of the signal.
  • the phase VV01 of the oscillator output signal CKV is obtained by accumulating in the phase detector 52 the number of clock transitions of its rising edge.
  • the phase error between the detected VCO and the reference signal FREF is obtained by simple arithmetic subtraction of the two digital values described above in the adder / subtractor 122.
  • the phase detector 53 accumulates the edge of CKV using the reference signal fR1 delayed by the delay element 61.
  • the post-accumulation latched digital phase value VV 02 should be larger than the target output of the phase detector 51 by the number of counts of the CKV rising edge corresponding to the delay amount of the delay element 61.
  • the count number ( ⁇ 0) corresponding to the count number is calculated as follows.
  • the phase detector 57 accumulates the number of CKV clocks with the delay element 61 of FREF with the reference signal fR2 delayed by 62 minutes to detect the phase ⁇ V00 of CKV.
  • phase error in the reference signal fR1 is calculated by adding / subtracting the sum of the output ( ⁇ R01) of the phase detector 51 and the output ( ⁇ 0) of the divider 86 and the output ( ⁇ V02) of the phase detector 53 with an adder / subtractor 123 It is obtained.
  • phase comparisons are performed in one cycle of the reference signal. If a plurality of reference signals delayed in this way are prepared, frequency control with high accuracy becomes possible and phase noise of the PLL can be reduced without increasing the time resolution within one cycle of CKV.
  • FIG. 3 is a time chart showing the operation. Since the output of the phase detector 57 accumulates the edge of the output signal CKV of the VCO for the time shown in the figure with respect to the output of the phase detector 52, the difference between the accumulated values is the delay element 2 It corresponds to the stage. By dividing this by 2, it is possible to calculate the number of counts for one delay element stage. As described above, the delay amount can be accurately estimated by calculating the count number using a plurality of delay elements.
  • FIG. 4 is a block diagram of a phase comparison unit of a PLL for explaining the third embodiment of the present invention.
  • the reference signals fR1-fR4 delayed using delay elements 61-64 having a delay time of about 1/4 period of the reference signal are generated, and the phase detector 57 determines the number of clock transitions of CKV by fR4. Accumulate.
  • the accumulated value and the output of the phase detector 52 are added / subtracted to calculate the number of clock transitions of CKV for about one cycle of the reference signal, and the calculated value is divided by the divisor 2 divider 86, 87
  • the number of CKV clock transitions in about 1/4 period-3/4 period of the reference signal is calculated.
  • the phase error when there is no delay of the reference signal is calculated by directly comparing the outputs of the phase detector 51 of the reference signal and the phase detector 52 of CKV.
  • the phase error at the delay timing of 1 ⁇ 4 cycle of the reference signal is a value obtained by calculating the CKV count number for the delay of 4 stages of delay elements as the output difference between phase detector 51 and phase detector 53. It is obtained by adding the value divided by.
  • phase error at the timing of delaying the reference signal by a half cycle thereof is similarly to the phase error between the output of the phase detector 51 of the reference signal and the output of the phase detector 54 of CKV. It is calculated by adding the CKV counts for two stages.
  • the phase error at the timing when the reference signal is delayed by 3 ⁇ 4 period is obtained by subtracting the CKV count number increased by 3 stages of delay elements obtained by the phase detector 55 from the output of the phase detector 51, and further delay elements It is obtained by adding 1/2 and 1/4 of the CKV count numbers for four stages.
  • the delay amount is set to 1 ⁇ 2 cycle or 1 ⁇ 4 cycle.
  • the present invention is not limited to this, and may be set to 1 ⁇ 3 cycle or 1 ⁇ 5 cycle.
  • four delay elements are stacked in the embodiment, the present invention is not limited to this, and more or less stages may be connected.
  • the present invention detects a phase difference between an oscillation clock of a voltage controlled oscillator incorporated in a phase locked loop (PLL) and a reference clock as a digital signal, and outputs an output from the phase comparator.
  • PLL phase locked loop
  • the present invention can be applied to a frequency synthesizer having a voltage controlled oscillator controlled as described above and a method of manufacturing an oscillation frequency of the oscillator.

Landscapes

  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)
  • Pulse Circuits (AREA)
  • Manipulation Of Pulses (AREA)

Abstract

Frequency control with a high accuracy is carried out by means of a high-speed PLL circuit driven at low voltage. A frequency control word (FCW) represents a target multiplier of a reference signal (FREF) with respect to an oscillator output (CVK). A phase detector (51) accumulates the frequency control word (FCW) at the timing of the reference signal (FREF) to detect the phase φR01 of the reference signal (FREF). A phase detector (52) accumulates the number of clocks of the oscillator output (CVK) at the timing of the reference signal (FREF) to detect the phase φV01 of the oscillator output (CVK). A phase detector (53) accumulates the number of clocks of the oscillator output (CVK) at the timing fR1 of the reference signal (FREF) which is delayed by a delay element (61) to detect the phase φV02 of the oscillator output (CVK). A phase detector (57) accumulates the number of clocks of the oscillator output (CVK) at the timing fR2 of the reference signal (FREF) which is delayed by the delay element (61) and a delay element (62) to detect the phase φV00 of the oscillator output (CVK). The sum of the phase φV00 and the phase φV01 and the difference between them are calculated. The results are divided by a divider (86) to calculate the number of clocks φ0 of the oscillator output (CVK) for the time delayed by one delay element. The sum of the phase φR01 and the phase φV01 and the difference between them are calculated to obtain a first phase error signal. The sum of the phase φR01, the phase φ0, and the phase φV02 and the difference between the sum of the phase φR01 and the phase φ0 and the phase φV02 are calculated to obtain a second phase error signal. The first and second phase error signals are combined into a composite signal, and the frequency of the oscillator is controlled by the composite signal.

Description

周波数シンセサイザおよび発振器の発振周波数制御方法Frequency synthesizer and method of controlling oscillation frequency of oscillator
 本発明は、周波数シンセサイザおよび発振器の発振周波数制御方法に関し、特にフェーズロックドループ(PLL:Phase Locked Loop)に内蔵された電圧制御発振器の発振クロックと基準クロックとの位相差をデジタル信号として検出する位相比較器と、この位相比較器の出力によってデジタル的に制御される電圧制御発振器を有する周波数シンセサイザとその発振器の発振周波数製造方法に関する。 The present invention relates to a frequency synthesizer and an oscillation frequency control method of an oscillator, and in particular, a phase for detecting a phase difference between an oscillation clock of a voltage controlled oscillator built in a phase locked loop (PLL) and a reference clock as a digital signal. The present invention relates to a frequency synthesizer having a comparator, a voltage controlled oscillator digitally controlled by the output of the phase comparator, and a method of manufacturing an oscillation frequency of the oscillator.
 IEEE802.11a/gのWLANなどの高速無線通信方式は、限られた周波数帯域内で、効率的に大容量の信号伝送を行うために、16QAM、64QAMなどの高度変調を導入している。これら無線用のチップでは、デジタル信号処理部の消費電力が大きいために、比較的低速なIEEE802.11bを除き、携帯電話などの端末への内蔵がすすんでいない。近年、このような信号処理を低消費電力で行うことを目的として、微細CMOSデバイスのベースバンドへの適用が進められている。それに伴いベースバンドの電源電圧は低くなっている。今後は、低コスト化のために、デジタル部とRF部を一体化した、いわゆるシステムオンチップ(SoC)化が加速される傾向にある。この場合、微細デバイスでRF部も作る必要があるために、RF回路も低電圧動作が必要になってくる。しかしながら、関連するアナログ方式をベースとしたRF回路では、微細化による素子特性変動を考えると、これ以上の低電圧化は困難である。低電圧化により、大きな影響を受けるRFブロックのひとつに、PLLがある。図5は、関連するアナログ方式のPLLの例である。図5において、1は位相比較器、2はチャージポンプ、3'はループフィルタ、4は電圧制御発振器(VCO: Voltage Controlled Oscillator)、5は分周器である。 High-speed wireless communication methods such as IEEE 802.11a / g WLAN introduce advanced modulation such as 16 QAM and 64 QAM in order to efficiently perform large-capacity signal transmission within a limited frequency band. In these wireless chips, because of the large power consumption of the digital signal processing unit, they have not been incorporated into terminals such as mobile phones except for the relatively low speed IEEE 802.11b. In recent years, in order to perform such signal processing with low power consumption, application to a baseband of a fine CMOS device is advanced. Along with that, the power supply voltage of the baseband is low. In the future, there is a tendency to accelerate so-called system-on-chip (SoC) integration in which the digital part and the RF part are integrated in order to reduce the cost. In this case, the RF circuit also needs to operate at a low voltage because it is necessary to form an RF unit with a fine device. However, in the RF circuit based on the related analog method, it is difficult to lower the voltage beyond this in consideration of the element characteristic fluctuation due to the miniaturization. One of the RF blocks that are greatly affected by the reduction in voltage is the PLL. FIG. 5 is an example of a related analog PLL. In FIG. 5, 1 is a phase comparator, 2 is a charge pump, 3 'is a loop filter, 4 is a voltage controlled oscillator (VCO), and 5 is a divider.
 この回路の動作を以下に説明する。位相比較器1は、基準信号FREFとVCOの分周信号CKVを比較した結果に基づいて、出力信号S1、S2を発生する。信号S1は基準信号FREFのCKV信号に対する位相の進み量を示す信号である。信号S2はCKV信号の基準信号FREFに対する位相の進み量を示す信号である。これらの信号S1、S2はチャージポンプ2に入力される。このチャージポンプ2の出力信号S3は、ループフィルタ3'に入力してそこで高周波成分が除去された後、VCO4の制御電圧S4として入力する。 The operation of this circuit is described below. The phase comparator 1 generates output signals S1 and S2 based on the result of comparison between the reference signal FREF and the divided signal CKV of the VCO. The signal S1 is a signal indicating the amount of phase advance of the reference signal FREF with respect to the CKV signal. The signal S2 is a signal indicating the amount of phase advance of the CKV signal with respect to the reference signal FREF. These signals S 1 and S 2 are input to the charge pump 2. The output signal S3 of the charge pump 2 is input to the loop filter 3 ', where high frequency components are removed therefrom, and then input as the control voltage S4 of the VCO 4.
 このPLL回路では、基準信号FREFとCKVの周波数と位相が一致するように動作したときロックして、電圧制御発振器4から得られる周波数(fVCO)が基準信号FREFの分周数倍となる。 In this PLL circuit, when it operates so that the phases of the reference signals FREF and CKV coincide with each other, the PLL circuit locks and the frequency (fVCO) obtained from the voltage control oscillator 4 becomes the frequency division number of the reference signal FREF.
 VCOの周波数は、例えばインダクタと、MOSバラクタ容量の共振周波数を利用するタイプの場合、MOSバラクタの制御電圧を変化させることで行う。しかし、制御直流電位の変化に対する、周波数の変化量である変調感度を大きくすると、電源雑音や、誘導雑音の影響により、VCOの周波数が変動するという問題がある。これを解決するために、変調感度を低く設定しつつ、複数の共振回路を切り替える方式なども提案されている。一方で、容量の制御範囲は、バラクタの線形領域に限られる。そのため、電源電圧が低下すると、結果的にVCOの変調感度を大きくせざるを得ず、チップの外部及び内部の雑音などにより局部発振器の周波数が変動する問題があった。 The frequency of the VCO is determined, for example, by changing the control voltage of the MOS varactor in the case of the type utilizing the resonance frequency of the inductor and the MOS varactor capacitance. However, when the modulation sensitivity, which is the amount of change in frequency, to the change in control DC potential is increased, there is a problem that the frequency of the VCO fluctuates due to the influence of power supply noise and induced noise. In order to solve this, a method of switching a plurality of resonance circuits while setting the modulation sensitivity low has also been proposed. On the other hand, the control range of the capacitance is limited to the linear region of the varactor. Therefore, when the power supply voltage is lowered, the modulation sensitivity of the VCO has to be increased as a result, and there has been a problem that the frequency of the local oscillator fluctuates due to the noise outside the chip and the inside.
 この問題を回避する一手段として、デジタル的にVCOを制御する回路が発表されている(例えば、特許文献1、非特許文献1参照)。この関連技術では、VCOのバラクタの制御は、直流電位を印加させるのではなく、時間的にオン・オフを繰り返し、その時間比率を変化させることで行う方式である。時間比率は、一定の周期で行わせると、大きなスプリアスが発生するので、上述した特許及び文献では、シグマデルタ(ΣΔ変調)変調器を用いることで、信号をランダム化している。 As a means for avoiding this problem, a circuit for digitally controlling a VCO has been disclosed (see, for example, Patent Document 1 and Non-patent Document 1). In this related art, the control of the varactor of the VCO is a method of repeating on / off temporally and changing the time ratio, instead of applying a direct current potential. In the above-mentioned patent and the literature, the signal is randomized by using a sigma delta (ΣΔ modulation) modulator because the time ratio causes a large spurious emission if it is performed at a constant period.
 このPLLがどのように、デジタル制御発振器(VCO)の周波数を検出し、制御しているかを、図6を用いて説明する。基準水晶発振器からの出力である基準信号FREFの位相は、位相検出器51において、当該信号の立ち上がりごとに、ラッチ102で周波数制御語FCWを累積することによって得ている(この周波数制御語は、基準信号に対するVCO 105の出力信号CKVの周波数比、すなわち逓倍数に相当する)。発振器の出力信号CKVの位相は、位相検出器52において、その立ち上がりエッジのクロック遷移の数をラッチ118でカウントすることによって得、さらにこの出力を、ラッチ119にて基準信号で累積することにより得ている。 How this PLL detects and controls the frequency of the digitally controlled oscillator (VCO) will be described using FIG. The phase of the reference signal FREF output from the reference crystal oscillator is obtained by accumulating the frequency control word FCW in the latch 102 at each rise of the signal in the phase detector 51 (this frequency control word is This corresponds to the frequency ratio of the output signal CKV of the VCO 105 with respect to the reference signal, ie, the multiplication number). The phase of the output signal CKV of the oscillator is obtained by counting the number of clock transitions of its rising edge in the phase detector 52 in the latch 118 and further by accumulating the output on the reference signal in the latch 119. ing.
 各々の位相検出器で算出される位相の関係は、図7A~図7Dを用いて具体的に説明する。図7Aは、VCOの出力信号CKVの位相を検出する回路で、図6における位相検出器52と同一の構成である。この図では4ビットの加算器及びラッチ回路を用いている。VCOの出力は、図7Bに示したように、CKV信号の立ち上がりエッジごとに、加算器の数値が累積されていき、基準信号の立ち上がりエッジごとに、その値がラッチされる。この例では、加算器の初期値が0でCKVのカウントがスタートしており、CKV信号と基準信号FREFの周波数比が10の場合を想定している。一方で、加算器は4ビット構成なので、オーバフローとなる16以上の数値は0からとしてカウントされる。従って、FREFのタイミングでのラッチ出力は、0、10、4、14、8となる。 The relationship of the phase calculated by each phase detector will be specifically described with reference to FIGS. 7A to 7D. FIG. 7A is a circuit for detecting the phase of the output signal CKV of the VCO, and has the same configuration as that of the phase detector 52 in FIG. In this figure, a 4-bit adder and latch circuit are used. As shown in FIG. 7B, the value of the adder is accumulated at the rising edge of the CKV signal, and the value of the output of the VCO is latched at each rising edge of the reference signal. In this example, it is assumed that the initial value of the adder is 0 and the CKV count starts and the frequency ratio of the CKV signal and the reference signal FREF is 10. On the other hand, since the adder has a 4-bit configuration, the value of 16 or more that causes an overflow is counted from zero. Therefore, the latch outputs at the timing of FREF are 0, 10, 4, 14, 8.
 一方、基準信号の位相は、図7Cの回路で行うが、これも図6における位相検出器51と同一の構成で、ここでは4ビット構成の回路となっている。上述したように、目標逓倍数を示す周波数制御語(FCW)は、10が入力され、基準周波数FREFの立ち上がりごとに、位相信号は10インクリメントされる。図7Dは、この動作を説明する図であり、加算器の初期値は3である場合を示している。初期値が3で、毎回10インクリメントされるので、FREFごとの回路の出力は、3、13、7、1、11となる。この図の例では、VCOの周波数は、目標と一致しているが、位相がVCOの3パルス分だけシフトしている。 On the other hand, the phase of the reference signal is performed by the circuit of FIG. 7C, which is also the same configuration as the phase detector 51 in FIG. As described above, 10 is input to the frequency control word (FCW) indicating the target multiplication number, and the phase signal is incremented by 10 each time the reference frequency FREF rises. FIG. 7D is a diagram for explaining this operation, and shows the case where the initial value of the adder is three. Since the initial value is 3 and incremented by 10 each time, the output of the circuit for each FREF is 3, 13, 7, 1, 11. In the example of this figure, the frequency of the VCO matches the target but the phase is shifted by three pulses of the VCO.
 検出したVCO及び基準信号FREFの位相差信号の検出手段を、再び図6に戻り説明を行うことにする。これら信号の位相誤差は、位相検出器51、52および加減算器122を備えた位相比較器81において行われる。すなわち、上述した2つのデジタル数値を加減算器122において単純に算術減算することによって位相誤差を得ている。得られた位相誤差信号は、デジタルループフィルタ103によって、高速成分が取り除かれた後に、発振器への利得調整などの処理を行うインターフェイス回路107を介して、発振器に帰還されている。 The means for detecting the phase difference signal of the detected VCO and the reference signal FREF will be described again by returning to FIG. The phase error of these signals is performed in a phase comparator 81 provided with phase detectors 51 and 52 and an adder / subtractor 122. That is, the phase error is obtained by simply performing arithmetic subtraction in the adder / subtractor 122 of the two digital numerical values described above. The obtained phase error signal is fed back to the oscillator via the interface circuit 107 which performs processing such as gain adjustment to the oscillator after the high speed component is removed by the digital loop filter 103.
 しかしながら、上述した、CKV信号の立ち上がりエッジごとの遷移数の累積による位相検出方法だけでは、VCOの発振周期以下の分解能は実現できない。そのため、上記文献の例では、小位相比較器82を設け、時間デジタル変換器(TDC)83を用いて微小位相誤差を検出している。 However, the resolution equal to or less than the oscillation period of the VCO can not be realized only by the phase detection method based on the accumulation of the number of transitions for each rising edge of the CKV signal described above. Therefore, in the example of the above document, the small phase comparator 82 is provided, and a minute phase error is detected using the time digital converter (TDC) 83.
 時間デジタル変換器(TDC)では、図8および図9に示すように、CKV信号の検出された「1」から「0」への遷移の位置は、FREF110のサンプリングするエッジとCKV信号の立ち上がりエッジ302の間の遅れ時間Δtrで示され、CKV信号の検出された「0」から「1」への遷移の位置は、FREF110のサンプリングするエッジとCKV信号114の立ち下がりエッジ400の間の遅れ時間Δtfで示されている。遅れ時間Δtr、Δtfは量子化され、回路の時間分解能Δtresの倍数で示されている。
 ここで、小さな位相誤差ΦFは、Δtf>Δtrである場合には、-Δtr/2(Δtf-Δtr)で与えられ、Δtr>Δtfである場合には、1-Δtr/2(Δtr-Δtf)で与えられる。
In a time-to-digital converter (TDC), as shown in FIG. 8 and FIG. 9, the position of the detected “1” to “0” transition of the CKV signal is the sampling edge of FREF 110 and the rising edge of CKV signal. The position of the detected “0” to “1” transition of the CKV signal, indicated by the delay time Δtr during 302, is the delay time between the sampling edge of FREF 110 and the falling edge 400 of CKV signal 114 It is shown by Δtf. The delay times Δtr, Δtf are quantized and are shown as multiples of the circuit time resolution Δtres.
Here, the small phase error ΦF is given by −Δtr / 2 (Δtf−Δtr) when Δtf> Δtr, and 1−Δtr / 2 (Δtr−Δtf) when Δtr> Δtf. Given by
 図10は、図6に示される、CKV信号周期以下の位相誤差を検出するための時間デジタル変換器83の回路例である。この時間デジタル変換器500は、複数のインバータによる遅延要素502とラッチ/レジスタ504から構成されている。CKV信号114は、複数のインバータで順次遅延され、遅延されたベクトルはそれぞれ基準水晶発振器FREF110からの基準クロックの立ち上がりエッジでラッチ/レジスタ504にラッチされる。インバータアレイの遅れの総計がCKV 114のクロック周期を十分カバーする限り、位相誤差をインバータの遅延時間の分解能Δtresまでは検出することが可能である。 FIG. 10 is a circuit example of the time-to-digital converter 83 for detecting a phase error less than the CKV signal cycle shown in FIG. The time-to-digital converter 500 is composed of a plurality of inverter delay elements 502 and a latch / register 504. CKV signal 114 is sequentially delayed by a plurality of inverters, and the delayed vectors are latched in latch / register 504 on the rising edge of the reference clock from reference crystal oscillator FREF 110, respectively. As long as the total delay of the inverter array sufficiently covers the clock cycle of CKV 114, it is possible to detect a phase error up to the resolution Δtres of the delay time of the inverter.
 図11に、図10に示す回路の動作を説明するタイミングチャート600を示す。基準水晶発振器FREF110の正への遷移602で、複数のラッチ/レジスタ504がアクセスされ、基準発振器のFREF110の立ち上がりエッジを基準とするCKV信号114の遅れを示す複数の値の瞬時値604を得る。この瞬時値604は、時間差をデジタル値で示すものと見ることができる。 FIG. 11 shows a timing chart 600 for explaining the operation of the circuit shown in FIG. At the positive transition 602 of the reference crystal oscillator FREF 110, the plurality of latches / registers 504 are accessed to obtain a plurality of instantaneous values 604 indicative of the delay of the CKV signal 114 relative to the rising edge of the reference oscillator FREF 110. This instantaneous value 604 can be viewed as indicating the time difference as a digital value.
 このデジタル値は、加減算器123により位相検出器51の出力と加減算される。加減算器123により算出された微小位相誤差信号は、デジタルループフィルタ104によって高速成分が除かれ、ΣΔ変調器108により変調された後に、VCO105の周波数を高精度に制御している。
特開2002-76886号公報 Journal of Solid-State Circuit, Vol39, No.12, 2004, pp.2278-2291
The digital value is added to or subtracted from the output of the phase detector 51 by the adder-subtractor 123. The minute phase error signal calculated by the adder / subtractor 123 has its high speed component removed by the digital loop filter 104, and after being modulated by the ΔΔ modulator 108, the frequency of the VCO 105 is controlled with high accuracy.
Japanese Patent Laid-Open No. 2002-76886 Journal of Solid-State Circuit, Vol 39, No. 12, 2004, pp. 2278-2291
 このようにデジタル的にVCOを制御することで、微細CMOSデバイスの低電圧動作でも、安定で、高精度な発振信号を実現することができる。しかし、VCOの発振周波数が高くなるにつれて、時間分解能への要求が厳しくなることが予想される。上述した関連技術の時間分解能は、インバータの遅延時間で決定されるので、半導体製造技術上ある一定以下の遅延時間は実現できない。例えば、8GHzでは1周期が125psであるところ、90nmプロセスでは分解能は20ps程度となる。これに加え、たとえ分解能が向上しても、各インバータの遅延時間の変動(チップ内ばらつき)が、そのまま位相検出器の精度に直結するので、高い精度でVCOの制御ができないという問題が起こる。 By thus controlling the VCO digitally, it is possible to realize a stable, highly accurate oscillation signal even in the low voltage operation of the fine CMOS device. However, as the oscillation frequency of the VCO increases, it is expected that the demand for time resolution will become severe. Since the time resolution of the related art described above is determined by the delay time of the inverter, a delay time less than a certain level can not be realized in semiconductor manufacturing technology. For example, where one cycle is 125 ps at 8 GHz, the resolution is about 20 ps at 90 nm process. In addition to this, even if the resolution is improved, the variation of the delay time of each inverter (in-chip variation) directly leads to the accuracy of the phase detector, so that the VCO can not be controlled with high accuracy.
 本発明の課題は上述した関連技術の問題点を解決することであって、その目的は、低電圧動作時においても、多段インバータを用いずにVCOと参照信号との位相差をデジタル信号として高精度に検知できる位相比較器を提供できるようにすることであって、これにより、VCOの発振周波数がより高速化されても高い精度で発振周波数を制御できるようにしようとするものである。 An object of the present invention is to solve the problems of the related art described above, and its object is to increase the phase difference between a VCO and a reference signal as a digital signal without using a multistage inverter even in low voltage operation. An object of the present invention is to provide a phase comparator that can be detected with high accuracy, and it is possible to control the oscillation frequency with high accuracy even if the oscillation frequency of the VCO is further increased.
 上記の目的を達成するため、本発明によれば、基準信号が入力される遅延素子と、基準信号の対象信号に対する目標逓倍数である周波数制御語が入力され周波数制御語の累積数を前記基準信号のタイミングでラッチする第1の位相検出器と、対象信号が入力されそのカウント値を前記基準信号の出力のタイミングでラッチする第2の位相検出器と、対象信号が入力されそのカウント値を前記遅延素子の出力のタイミングでラッチする第3の位相検出器と、対象信号が入力され、前記遅延素子の遅延時間分の前記対象信号のパルス数をカウントするカウンタ(カウント手段)と、第1の位相検出器の出力と第2の位相検出器の出力との加減算を行なう第1の加減算器と、第1の位相検出器の出力と前記カウンタの出力の和と第2の位相検出器の出力との加減算を行なう第2の加減算器と、前記第1、第2の加減算器の出力が入力されそれらを交互に出力するマルチプレクサ(信号切り換え手段)と、マルチプレクサの出力により制御される発振器と、を備えた周波数シンセサイザ、が提供される。 In order to achieve the above object, according to the present invention, a delay element to which a reference signal is input and a frequency control word which is a target multiplication number for a target signal of the reference signal are input and the cumulative number of frequency control words is the reference A first phase detector that latches at the timing of the signal, a second phase detector that latches the target signal at the timing of the output of the reference signal, and a target signal, and the count value A third phase detector that latches at the timing of the output of the delay element; a counter (counting means) that receives the target signal and counts the number of pulses of the target signal for the delay time of the delay element; A first adder / subtractor for adding / subtracting the output of the second phase detector with the output of the second phase detector, the sum of the output of the first phase detector and the output of the counter, and the second phase detector A second adder / subtractor for addition / subtraction with an output, a multiplexer (signal switching means) for receiving the outputs of the first and second adder / subtractors and alternately outputting them, an oscillator controlled by the output of the multiplexer A frequency synthesizer is provided.
 また、上記の目的を達成するため、本発明によれば、基準信号が入力される、遅延時間が前記基準信号の周期の概略1/n(nは2以上の整数)である遅延素子をn段縦列接続してなる遅延回路と、基準信号の対象信号に対する目標逓倍数である周波数制御語が入力され周波数制御語の累積数を前記基準信号のタイミングでラッチする第1の位相検出器と、対象信号が入力されそのカウント値を前記基準信号および各遅延素子の出力のタイミングでラッチする(n+1)個の位相検出器〔それぞれの位相検出器を第2、第3、…、第(n+1)、第(n+2)の位相検出器とする〕と、第2の位相検出器の出力と第(n+2)の位相検出器の出力との加減算を行なう第1の加減算器と、前記第1の加減算器の出力の除算を行ない、第3、…、第(n+1)の位相検出器でのラッチタイミングの遅れ時間に対応するパルス数を算出する除算器と、第1の位相検出器の出力と第2の位相検出器の出力との加減算を行なう第2の加減算器と、第1の位相検出器の出力と、第3、第4、…、第(n+1)の位相検出器の出力と、前記除算器の出力である第3、第4、…、第(n+1)の位相検出器でのラッチタイミングの遅れ時間に対応するパルス数との加減算を行なう(n-1)個の加減算器〔それぞれの加減算器を第3、第4、…、第(n+1)の加減算器とする〕と、前記第2、第3、…、第(n+1)の加減算器の出力が入力されそれらを順次出力するマルチプレクサ(信号切り換え手段)と、マルチプレクサの出力により制御される発振器と、を備えた周波数シンセサイザ、が提供される。 Further, in order to achieve the above object, according to the present invention, a delay element to which a reference signal is input and whose delay time is approximately 1 / n (n is an integer of 2 or more) of the period of the reference signal A delay circuit having a cascade connection, and a first phase detector which receives a frequency control word which is a target multiplication number for a target signal of a reference signal and latches the accumulated number of frequency control words at the timing of the reference signal; (N + 1) phase detectors [each of the second, third,..., (N + 1) phase detectors inputs the target signal and latches its count value at the timing of the reference signal and the output of each delay element , (N + 2) phase detector], a first adder / subtractor for adding / subtracting the output of the second phase detector and the output of the (n + 2) phase detector, and the first addition / subtraction Divide the output of the A divider for calculating the number of pulses corresponding to the delay time of the latch timing in the (n + 1) th phase detector, and addition and subtraction between the output of the first phase detector and the output of the second phase detector , The outputs of the first phase detector, the outputs of the third, fourth,..., (N + 1) th phase detectors, and the third, fourth,. , (N−1) adders / subtractors performing addition / subtraction with the pulse number corresponding to the delay time of the latch timing in the (n + 1) th phase detector [each of the third, fourth,. And (n + 1) adder / subtractor], and a multiplexer (signal switching means) for sequentially outputting the outputs of the second, third,..., (N + 1) adder / subtractor, and control by the output of the multiplexer A frequency synthesizer comprising an oscillator It is subjected.
 また、上記の目的を達成するため、本発明によれば、基準信号が入力される、遅延時間が前記基準信号の周期程度ないしそれ以下の遅延素子の遅延時間を対象信号によって計測し、基準信号の対象信号に対する目標逓倍数である周波数制御語を累積することによって基準信号の位相信号を取得し、対象信号の第1の位相信号を、対象信号のカウント値を前記基準信号の出力のタイミング累積することによって取得し、対象信号の第2の位相信号を、対象信号のカウント値を前記遅延素子の出力のタイミング累積することによって取得し、第1の位相差信号を、基準信号の位相信号と対象信号の第1の位相信号とから算出し、第2の位相差信号を、前記遅延時間の計測値と基準信号の位相信号と対象信号の第2の位相信号とから算出し、前記第1の位相差信号と前記第2の位相差信号とを交互に用いて発振器の発振周波数を制御することを特徴とする発振器の発振周波数制御方法、が提供される。 Further, in order to achieve the above object, according to the present invention, the delay time of the delay element to which the reference signal is input and whose delay time is equal to or less than that of the reference signal is measured by the target signal. The phase signal of the reference signal is acquired by accumulating the frequency control word which is the target multiplication number for the target signal of 1, the first phase signal of the target signal, the count value of the target signal, the timing accumulation of the output of the reference signal To obtain the second phase signal of the target signal by accumulating the count value of the target signal by the timing of the output of the delay element, and the first phase difference signal as the phase signal of the reference signal. The second phase difference signal is calculated from the first phase signal of the target signal, and the second phase difference signal is calculated from the measured value of the delay time, the phase signal of the reference signal, and the second phase signal of the target signal, Oscillation frequency control method of an oscillator and controls the oscillation frequency of the oscillator using the first phase difference signal and the second phase difference signals alternately, is provided.
 また、上記の目的を達成するため、本発明によれば、基準信号が入力される、遅延時間が前記基準信号の周期の概略1/n(nは2以上の整数)である遅延素子をn段縦列接続してなる遅延回路の遅延時間を対象信号によって計測しその結果に基づいてk〔kは、1、2、…、(n-1)〕段目までの遅延時間を算出し、基準信号の対象信号に対する目標逓倍数である周波数制御語を累積することによって基準信号の位相信号を取得し、対象信号の第1の位相信号を、対象信号のカウント値を前記基準信号の出力のタイミングで累積することによって取得し、対象信号の第2、第3、…、第nの位相信号を、対象信号のカウント値を前記基準信号の1、2、…、(n-1)段目の遅延素子の出力のタイミングで累積することによって取得し、第1の位相差信号を、基準信号の位相信号と対象信号の第1の位相信号とから算出し、第2、第3、…、第nの位相差信号を、1、2、…、(n-1)段目の遅延素子までの前記遅延時間と基準信号の位相信号と対象信号の第2、第3、…、第nの位相信号とから算出し、前記第1から前記第nまでの位相差信号を順次用いて発振器の発振周波数を制御することを特徴とする発振器の発振周波数制御方法、が提供される。 Further, in order to achieve the above object, according to the present invention, a delay element to which a reference signal is input and whose delay time is approximately 1 / n (n is an integer of 2 or more) of the period of the reference signal The delay time of the delay circuit formed by cascade connection is measured by the target signal, and based on the result, the delay time to the k [k is 1, 2, ..., (n-1)] stage is calculated, and the reference A phase signal of a reference signal is acquired by accumulating a frequency control word which is a target multiplication number for a target signal of the signal, a first phase signal of the target signal, a count value of the target signal, and a timing of the output of the reference signal To obtain the second, third,..., N-th phase signal of the target signal, and the count value of the target signal to the first, second,. Acquired by accumulating at the timing of the output of the delay element The first phase difference signal is calculated from the phase signal of the reference signal and the first phase signal of the target signal, and the second, third,..., N-th phase difference signals are calculated as 1, 2,. n-1) Calculated from the delay time to the delay element of the stage, the phase signal of the reference signal, and the second, third,..., n-th phase signals of the target signal, and the first to n-th A method of controlling an oscillation frequency of an oscillator, characterized in that the oscillation frequency of the oscillator is controlled by sequentially using the phase difference signal of
 本発明によれば、基準信号を、複数段縦列接続した遅延素子に入力し、各々の段の出力から生成した位相の異なる複数の信号により、基準信号の1周期に複数回周波数シンセサイザが提供できる。その結果、低電圧動作で、しかも超高速で動作するデジタルシンセサイザでも、高精度に位相制御が可能で位相雑音の低いシンセサイザを低消費電力で実現することが可能となる。よって、将来の微細CMOSデバイスを用いた高度無線システムに好適な位相比較器とそれを用いたPLLを提供することができる。 According to the present invention, a reference signal can be input to delay elements connected in multiple stages in cascade, and a plurality of signals with different phases generated from the output of each stage can provide a frequency synthesizer multiple times in one cycle of the reference signal. . As a result, even with a digital synthesizer operating at a low voltage and at an extremely high speed, it is possible to realize a synthesizer that can perform phase control with high accuracy and has low phase noise with low power consumption. Therefore, it is possible to provide a phase comparator suitable for advanced wireless systems using future micro CMOS devices and a PLL using the same.
本発明の第1の実施の形態の周波数シンセサイザのブロック図。FIG. 1 is a block diagram of a frequency synthesizer according to a first embodiment of this invention. 本発明の第2の実施の形態の周波数シンセサイザの位相比較部のブロック図。FIG. 7 is a block diagram of a phase comparison unit of a frequency synthesizer according to a second embodiment of the present invention. 本発明の第2の実施の形態の回路動作を説明するタイミング図。FIG. 7 is a timing chart for explaining the circuit operation of the second embodiment of the present invention. 本発明の第3の実施の形態の周波数シンセサイザの位相比較部のブロック図。FIG. 10 is a block diagram of a phase comparison unit of a frequency synthesizer according to a third embodiment of the present invention. 関連技術のアナログ方式のPLL回路のブロック図。The block diagram of the related art PLL circuit of an analog system. 関連技術のデジタル方式のPLL回路のブロック図。FIG. 8 is a block diagram of a related art digital PLL circuit. VCOの出力信号CKVの位相を検出する回路のブロック図。The block diagram of the circuit which detects the phase of output signal CKV of VCO. 図7Aの動作を説明するタイミング図。FIG. 7B is a timing chart explaining the operation of FIG. 7A. 基準信号FREFの位相を検出する回路のブロック図。The block diagram of the circuit which detects the phase of reference signal FREF. 図7Cの動作を説明するタイミング図。FIG. 7C is a timing chart explaining the operation of FIG. 7C. 図6の関連技術における小位相比較の原理を説明するタイミング図(その1)。FIG. 7 is a timing chart (part 1) for explaining the principle of the small phase comparison in the related art of FIG. 6; 図6の関連技術における小位相比較の原理を説明するタイミング図(その2)。FIG. 7 is a timing chart (part 2) for explaining the principle of the small phase comparison in the related art of FIG. 6; 図6の関連技術における小数部の位相比較回路のブロック図。FIG. 7 is a block diagram of a phase comparison circuit of a fractional part in the related art of FIG. 6. 図10に示す回路おける位相比較の動作を説明するタイミング図。FIG. 11 is a timing chart for explaining the phase comparison operation in the circuit shown in FIG. 10;
符号の説明Explanation of sign
1 位相比較器
2 チャージポンプ
3' ループフィルタ
105、4 VCO
5 分周器
51、52、53、54、55、57 位相検出器
61、62、63、64 遅延素子
81 位相比較器
82 小位相比較器
83 時間デジタル変換器
86、87 除算器
102、118、119 ラッチ
103、104 デジタルループフィルタ
107 インターフェース回路
108 ΣΔ変調器
122、123 加減算器
1 phase comparator 2 charge pump 3 ' loop filter 105, 4 VCO
5 divider 51, 52, 53, 54, 55, 57 phase detector 61, 62, 63, 64 delay element 81 phase comparator 82 small phase comparator 83 time digital converter 86, 87 divider 102, 118, 119 latch 103, 104 digital loop filter 107 interface circuit 108 ΔΔ modulator 122, 123 adder / subtractor
 次に、本発明の実施の形態を図面を参照して詳細に説明する。
[第1の実施の形態]
 図1は、本発明の第1の実施の形態を説明するためのPLLのブロック図である。以下の実施の形態において、同一のものには同一の符号を付して、重複する説明は適宜省略する。
Next, embodiments of the present invention will be described in detail with reference to the drawings.
First Embodiment
FIG. 1 is a block diagram of a PLL for explaining a first embodiment of the present invention. In the following embodiments, the same components are denoted by the same reference symbols, and redundant description will be omitted as appropriate.
 基準信号FREFは、基準水晶発振器から得られる信号であり、その位相は当該信号の立ち上がりごとに、位相検出器51で目標逓倍数を示す周波数制御語FCWをラッチLT1により累積することによって得ている。一方、VCO105の出力信号CKVの位相は、位相検出器52において、その立ち上がりエッジのクロック遷移の数をラッチLT2でカウントし、そのカウント値をラッチLT3にて累積することによって得ている。検出したCKVのデジタル数値の位相と基準信号FREFのデジタル数値の位相との間の位相誤差は、これら2つのデジタル数値を加減算器122において単純に算術減算することによって得られる。 The reference signal FREF is a signal obtained from the reference crystal oscillator, and its phase is obtained by accumulating the frequency control word FCW indicating the target multiplication number in the phase detector 51 by the latch LT1 at each rise of the signal. . On the other hand, the phase of the output signal CKV of the VCO 105 is obtained by counting the number of rising edge clock transitions in the phase detector 52 in the latch LT2, and accumulating the count value in the latch LT3. The phase error between the phase of the detected CKV digital number and the phase of the digital number of the reference signal FREF is obtained by simply arithmetic subtraction of these two digital numbers in the adder / subtractor 122.
 VCOの発振周波数が高い場合には、インバータの遅延時間で決定される関連技術の時間デジタル変換回路では、CKV周期に対する時間分解能を十分小さくできない。そのため、本実施の形態では、ある一定の遅延素子により遅延させた基準信号を用いて、基準信号1周期内に複数回の位相比較を行わせる。これにより、VCOの発振周波数がより高速化されても高い精度で発振周波数を制御できるようにしている。
 位相検出器53では、CKVのクロック遷移の数をラッチLT4にてカウントし、さらにこのカウント値を遅延素子61により遅延させた基準信号fR1を用いてラッチLT5により累積する。累積後ラッチされた値は、位相検出器51の目標出力より、遅延素子61の遅延量に相当するCKV立ち上がりエッジのカウント数だけ大きくなっているはずである。そのカウント数に見合うカウント数をカウンタ131で検出して、加減算器123で加減算することにより、遅延させた基準信号のタイミングでの位相比較ができる。上述した2つの位相誤差は、マルチプレクサ126によって、合成され、デジタルループフィルタ103によって、高速成分が取り除かれた後に、発振器への利得調整などの処理を行うインターフェイス回路107を介して、発振器に帰還されている。
When the oscillation frequency of the VCO is high, the related art time-to-digital converter determined by the delay time of the inverter can not sufficiently reduce the time resolution for the CKV period. Therefore, in the present embodiment, phase comparison is performed a plurality of times within one cycle of the reference signal using the reference signal delayed by a certain constant delay element. Thus, even if the oscillation frequency of the VCO is further increased, the oscillation frequency can be controlled with high accuracy.
In the phase detector 53, the number of clock transitions of CKV is counted by the latch LT4, and the count value is accumulated by the latch LT5 using the reference signal fR1 delayed by the delay element 61. The value latched after the accumulation should be larger than the target output of the phase detector 51 by the number of counts of the CKV rising edge corresponding to the delay amount of the delay element 61. By detecting the count number corresponding to the count number with the counter 131 and performing addition / subtraction with the adder / subtractor 123, it is possible to perform phase comparison at the timing of the delayed reference signal. The two phase errors described above are synthesized by the multiplexer 126 and fed back to the oscillator via the interface circuit 107 which performs processing such as gain adjustment to the oscillator after the high speed component is removed by the digital loop filter 103. ing.
 これにより、基準信号の1周期内に2回の位相比較が行われたことになる。このように遅延した基準信号を複数用意すれば、CKVの1周期以内の時間分解能を高くしなくとも、高い精度で発振周波数を制御できると共にPLLの位相雑音を低減することが可能となる。 Thus, two phase comparisons are performed in one cycle of the reference signal. By preparing a plurality of reference signals delayed in this manner, it is possible to control the oscillation frequency with high accuracy and reduce the phase noise of the PLL without increasing the time resolution within one cycle of CKV.
[第2の実施の形態]
 図2は、本発明の第2の実施の形態を説明するためのPLLの位相比較部のブロック図である。この回路は、図1で説明した、位相比較部で遅延素子61の遅延時間から、どのようにVCO立ち上がりエッジのカウント数を抽出するかを詳細に示した図である。この形態では、基準信号の約1/2周期の遅延を持つ遅延素子61及び62を用いて、遅延させた基準信号を生成する手段と、基準信号間の遅延量を計測する回路が付加されている。遅延素子61、62は、たとえばインバータ回路の多段構成で実現され、この形態では、2つの遅延素子で基準信号約1周期分の遅延を生成している。したがって、基準信号fR1は、入力された元の基準信号から、約1/2周期だけ遅延しており、基準信号fR2は約1周期分だけ遅延しているとし、各々の遅延量は同一を仮定している。位相検出器57では、遅延素子61及び62により約1周期遅延させた基準信号を用いて、ラッチLT6、LT7によりCKVのエッジを累積しており、累積後ラッチされた値は、位相検出器52の出力より、遅延素子2段分の遅延量に相当するCKV立ち上がりエッジのカウント数だけ大きくなっているはずである。したがって、これらの累積結果の差を加減算器124で計算し、その結果を除算器86において2で除す。その除算結果は、遅延素子1段分のCKVカウント数に相当する。
Second Embodiment
FIG. 2 is a block diagram of a phase comparison unit of a PLL for explaining a second embodiment of the present invention. This circuit is a diagram showing in detail how to extract the count number of the rising edge of the VCO from the delay time of the delay element 61 in the phase comparison section described with reference to FIG. In this embodiment, means for generating a delayed reference signal using delay elements 61 and 62 having a delay of about 1⁄2 period of the reference signal and a circuit for measuring the delay amount between the reference signals are added. There is. The delay elements 61 and 62 are realized, for example, in a multistage configuration of inverter circuits, and in this embodiment, a delay of about one cycle of the reference signal is generated by two delay elements. Therefore, it is assumed that the reference signal fR1 is delayed by about 1⁄2 cycle from the original reference signal inputted, the reference signal fR2 is delayed by about 1 cycle, and each delay amount is assumed to be the same. doing. The phase detector 57 accumulates the edge of CKV by the latches LT6 and LT7 using the reference signal delayed about one cycle by the delay elements 61 and 62, and the value latched after the accumulation is the phase detector 52. The number of CKV rising edges corresponding to the delay amount corresponding to two stages of delay elements should be larger than the output of the circuit. Therefore, the difference between these accumulated results is calculated by the adder / subtractor 124, and the result is divided by 2 in the divider 86. The division result corresponds to the CKV count number of one delay element stage.
 基準信号FREFの位相ΦR01は、当該信号の立ち上がりごとに、位相検出器51で目標逓倍数を示す周波数制御語FCWを累積することによって得られる。発振器の出力信号CKVの位相ΦV01は、その立ち上がりエッジのクロック遷移の数を位相検出器52で累積することによって得られる。検出したVCOと基準信号FREFとの間の位相誤差は、上述した2つのデジタル数値を加減算器122において単純に算術減算することによって得られる。 The phase RR01 of the reference signal FREF is obtained by accumulating the frequency control word FCW indicating the target multiplication number in the phase detector 51 at each rise of the signal. The phase VV01 of the oscillator output signal CKV is obtained by accumulating in the phase detector 52 the number of clock transitions of its rising edge. The phase error between the detected VCO and the reference signal FREF is obtained by simple arithmetic subtraction of the two digital values described above in the adder / subtractor 122.
 位相検出器53は、遅延素子61により遅延させた基準信号fR1を用いて、CKVのエッジを累積する。累積後ラッチされたデジタル位相値ΦV02は、位相検出器51の目標出力より、遅延素子61の遅延量に相当するCKV立ち上がりエッジのカウント数だけ大きくなっているはずである。そのカウント数に見合うカウント数(Φ0)を以下のように算出している。位相検出器57で、CKVのクロック数をFREFの遅延素子61、62分遅れた基準信号fR2で累算して、CKVの位相ΦV00を検出する。これと位相検出器52の出力であるΦV01とを加減算器124にて加減算し、その結果を除算器86にて2で除して遅延素子1段分のCKVのカウント数Φ0を算出する。基準信号fR1での位相誤差は、位相検出器51の出力(ΦR01)と除算器86の出力(Φ0)との和と、位相検出器53の出力(ΦV02)とを加減算器123にて加減算して得ている。これら2つの位相誤差は、マルチプレクサ126によって、合成され、デジタルフィルタによって、高速成分が取り除かれた後に、発振器への利得調整などの処理を行うインターフェイス部を介して、発振器に帰還されている。 The phase detector 53 accumulates the edge of CKV using the reference signal fR1 delayed by the delay element 61. The post-accumulation latched digital phase value VV 02 should be larger than the target output of the phase detector 51 by the number of counts of the CKV rising edge corresponding to the delay amount of the delay element 61. The count number (Φ0) corresponding to the count number is calculated as follows. The phase detector 57 accumulates the number of CKV clocks with the delay element 61 of FREF with the reference signal fR2 delayed by 62 minutes to detect the phase ΦV00 of CKV. This and the output 01V01 of the phase detector 52 are added / subtracted by the adder / subtractor 124, and the result is divided by 2 by the divider 86 to calculate the count number 数 0 of CKV for one delay element stage. The phase error in the reference signal fR1 is calculated by adding / subtracting the sum of the output (ΦR01) of the phase detector 51 and the output (Φ0) of the divider 86 and the output (ΦV02) of the phase detector 53 with an adder / subtractor 123 It is obtained. These two phase errors are synthesized by the multiplexer 126, and after the high speed component is removed by the digital filter, are fed back to the oscillator through an interface unit that performs processing such as gain adjustment to the oscillator.
 これにより、基準信号の1周期内に2回の位相比較が行われたことになる。このように遅延した基準信号を複数用意すれば、CKVの1周期以内の時間分解能を高くしなくとも、高精度の周波数制御が可能になると共にPLLの位相雑音を低減することが可能となる。 Thus, two phase comparisons are performed in one cycle of the reference signal. If a plurality of reference signals delayed in this way are prepared, frequency control with high accuracy becomes possible and phase noise of the PLL can be reduced without increasing the time resolution within one cycle of CKV.
 図3は、その動作をタイムチャートで表したものである。位相検出器57の出力は、位相検出器52の出力に対して、図で示した時間だけ余分にVCOの出力信号CKVのエッジを累積しているので、積算した値の差は、遅延素子2段分に相当している。これを2で除算すると、遅延素子1段分のカウント数が算出できる。この様に、複数の遅延素子を用いてカウント数を算出することにより、遅延量を正確に見積もることが可能となる。 FIG. 3 is a time chart showing the operation. Since the output of the phase detector 57 accumulates the edge of the output signal CKV of the VCO for the time shown in the figure with respect to the output of the phase detector 52, the difference between the accumulated values is the delay element 2 It corresponds to the stage. By dividing this by 2, it is possible to calculate the number of counts for one delay element stage. As described above, the delay amount can be accurately estimated by calculating the count number using a plurality of delay elements.
[第3の実施の形態]
 図4は、本発明の第3の実施の形態を説明するためのPLLの位相比較部のブロック図である。この形態では、基準信号の約1/4周期の遅延時間を有する遅延素子61-64を用いて遅延した基準信号fR1-fR4を生成し、位相検出器57において、fR4によりCKVのクロック遷移の数を累算する。その累算値と位相検出器52の出力とを加減算して基準信号の約1周期分のCKVのクロック遷移の数を算出し、その算出値を除数2の除算器86、87で除して、基準信号の約1/4周期-3/4周期でのCKVのクロック遷移の数を算出している。
Third Embodiment
FIG. 4 is a block diagram of a phase comparison unit of a PLL for explaining the third embodiment of the present invention. In this embodiment, the reference signals fR1-fR4 delayed using delay elements 61-64 having a delay time of about 1/4 period of the reference signal are generated, and the phase detector 57 determines the number of clock transitions of CKV by fR4. Accumulate. The accumulated value and the output of the phase detector 52 are added / subtracted to calculate the number of clock transitions of CKV for about one cycle of the reference signal, and the calculated value is divided by the divisor 2 divider 86, 87 The number of CKV clock transitions in about 1/4 period-3/4 period of the reference signal is calculated.
 基準信号の遅延が無い場合の位相誤差は、基準信号の位相検出器51とCKVの位相検出器52の出力を直接比較して算出している。基準信号の1/4周期の遅延タイミングでの位相誤差は、位相検出器51と位相検出器53の出力差に、遅延素子4段分の遅延分だけのCKVのカウント数を算出した値を4で除算した値を加算して求めている。 The phase error when there is no delay of the reference signal is calculated by directly comparing the outputs of the phase detector 51 of the reference signal and the phase detector 52 of CKV. The phase error at the delay timing of 1⁄4 cycle of the reference signal is a value obtained by calculating the CKV count number for the delay of 4 stages of delay elements as the output difference between phase detector 51 and phase detector 53. It is obtained by adding the value divided by.
 基準信号を、その1/2周期だけ遅延させたタイミングでの位相誤差は、同様に基準信号の位相検出器51の出力とCKVの位相検出器54の出力との間の位相誤差に、遅延素子2段分のCKVカウント数を加算して求めている。 The phase error at the timing of delaying the reference signal by a half cycle thereof is similarly to the phase error between the output of the phase detector 51 of the reference signal and the output of the phase detector 54 of CKV. It is calculated by adding the CKV counts for two stages.
 基準信号を3/4周期だけ遅延させたタイミングでの位相誤差は、位相検出器51の出力から、位相検出器55で求めた遅延素子3段分多いCKVカウント数を減算し、更に、遅延素子4段分のCKVカウント数の1/2及び1/4を加算して求めている。
 これらの結果を、マルチプレクサ126で合成し、その出力で発振器を制御して高精度に周波数制御を行なうことが可能になる。
The phase error at the timing when the reference signal is delayed by 3⁄4 period is obtained by subtracting the CKV count number increased by 3 stages of delay elements obtained by the phase detector 55 from the output of the phase detector 51, and further delay elements It is obtained by adding 1/2 and 1/4 of the CKV count numbers for four stages.
These results can be synthesized by the multiplexer 126, and the output can control the oscillator to perform frequency control with high accuracy.
 以上、好ましい実施の形態について説明したが、本発明はこれら実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において適宜の変更が可能なものである。例えば、実施の形態では遅延量を1/2周期や、1/4周期としていたが、これに限定されず、1/3周期や1/5周期としてもよい。また、実施の形態では遅延素子を4段重ねていたがこれに限定されず、より多いまたは少ない段数を接続するものであってもよい。
 この出願は、2008年3月31日に出願された日本出願特願2008-089465を基礎とする優先権を主張し、その開示の全てをここに取り込む。
As mentioned above, although preferable embodiment was described, this invention is not limited to these embodiment, A suitable change is possible in the range which does not deviate from the summary of this invention. For example, in the embodiment, the delay amount is set to 1⁄2 cycle or 1⁄4 cycle. However, the present invention is not limited to this, and may be set to 1⁄3 cycle or 1⁄5 cycle. Although four delay elements are stacked in the embodiment, the present invention is not limited to this, and more or less stages may be connected.
This application claims priority based on Japanese Patent Application No. 2008-089465 filed on March 31, 2008, the entire disclosure of which is incorporated herein.
 本発明は、フェーズロックドループ(PLL:Phase Locked Loop)に内蔵された電圧制御発振器の発振クロックと基準クロックとの位相差をデジタル信号として検出する位相比較器と、この位相比較器の出力によってデジタル的に制御される電圧制御発振器を有する周波数シンセサイザとその発振器の発振周波数製造方法に適用することができる。 The present invention detects a phase difference between an oscillation clock of a voltage controlled oscillator incorporated in a phase locked loop (PLL) and a reference clock as a digital signal, and outputs an output from the phase comparator. The present invention can be applied to a frequency synthesizer having a voltage controlled oscillator controlled as described above and a method of manufacturing an oscillation frequency of the oscillator.

Claims (6)

  1.  基準信号が入力される遅延手段と、
     基準信号の対象信号に対する目標逓倍数である周波数制御語が入力され周波数制御語の累積数を前記基準信号のタイミングでラッチする第1の位相検出手段と、
     対象信号が入力されそのカウント値を前記基準信号の出力のタイミングでラッチする第2の位相検出手段と、
     対象信号が入力されそのカウント値を前記遅延手段の出力のタイミングでラッチする第3の位相検出手段と、
     対象信号が入力され、前記遅延手段の遅延時間分の前記対象信号のパルス数をカウントするカウント手段と、
     第1の位相検出手段の出力と第2の位相検出手段の出力との加減算を行なう第1の加減算手段と、
     第1の位相検出手段の出力と前記カウント手段の出力の和と第2の位相検出手段の出力との加減算を行なう第2の加減算手段と、
     前記第1、第2の加減算手段の出力が入力されそれらを交互に出力する信号切り換え手段と、
     前記信号切り換え手段の出力により制御される発振手段と、
    を備えた周波数シンセサイザ。
    Delay means into which the reference signal is input;
    First phase detection means for inputting a frequency control word which is a target multiplication number for a target signal of a reference signal and latching the accumulated number of frequency control words at the timing of the reference signal;
    Second phase detection means for inputting a target signal and latching its count value at the timing of output of the reference signal;
    Third phase detection means for inputting a target signal and latching its count value at the timing of the output of the delay means;
    A counting unit which receives a target signal and counts the number of pulses of the target signal for the delay time of the delay unit;
    First addition and subtraction means for performing addition and subtraction between the output of the first phase detection means and the output of the second phase detection means;
    Second addition / subtraction means for performing addition / subtraction between the sum of the output of the first phase detection means, the output of the counting means and the output of the second phase detection means;
    Signal switching means which receives the outputs of the first and second addition and subtraction means and alternately outputs them;
    Oscillating means controlled by the output of the signal switching means;
    Frequency synthesizer with.
  2.  基準信号が入力される、遅延時間が前記基準信号の周期の概略1/n(nは2以上の整数)である遅延手段をn段縦列接続してなる遅延回路と、
     基準信号の対象信号に対する目標逓倍数である周波数制御語が入力され周波数制御語の累積数を前記基準信号のタイミングでラッチする第1の位相検出手段と、
     対象信号が入力されそのカウント値を前記基準信号および各遅延手段の出力のタイミングでラッチする(n+1)個の位相検出手段〔それぞれの位相検出手段を第2、第3、…、第(n+1)、第(n+2)の位相検出手段とする〕と、
     前記第2の位相検出手段の出力と第(n+2)の位相検出手段の出力との加減算を行なう第1の加減算手段と、
     前記第1の加減算手段の出力の除算を行ない、第3、…、第(n+1)の位相検出手段でのラッチタイミングの遅れ時間に対応するパルス数を算出する除算手段と、
     前記第1の位相検出手段の出力と前記第2の位相検出手段の出力との加減算を行なう第2の加減算手段と、
     前記第1の位相検出手段の出力と、第3、第4、…、第(n+1)の位相検出手段の出力と、前記除算手段の出力である第3、第4、…、第(n+1)の位相検出手段でのラッチタイミングの遅れ時間に対応するパルス数との加減算を行なう(n-1)個の加減算手段〔それぞれの加減算手段を第3、第4、…、第(n+1)の加減算手段とする〕と、
     前記第2、第3、…、第(n+1)の加減算手段の出力が入力されそれらを順次出力する信号切り換え手段と、
     前記信号切り換え手段の出力により制御される発振手段と、
    を備えた周波数シンセサイザ。
    A delay circuit in which n stages of delay means in which a reference signal is input and whose delay time is approximately 1 / n (n is an integer greater than or equal to 2) of the period of the reference signal are connected in tandem;
    First phase detection means for inputting a frequency control word which is a target multiplication number for a target signal of a reference signal and latching the accumulated number of frequency control words at the timing of the reference signal;
    (N + 1) phase detection means (each phase detection means is a second, third,..., (N + 1) phase delay means for inputting the target signal and latching its count value at the timing of the reference signal and the output of each delay means , (N + 2) phase detection means],
    First addition / subtraction means for performing addition / subtraction between the output of the second phase detection means and the output of the (n + 2) th phase detection means;
    A division unit that divides the output of the first addition / subtraction unit and calculates the number of pulses corresponding to the delay time of the latch timing in the third to (n + 1) th phase detection units;
    Second addition / subtraction means for performing addition / subtraction between the output of the first phase detection means and the output of the second phase detection means;
    The output of the first phase detection means, the output of the third, fourth,..., (N + 1) th phase detection means, and the third, fourth,. (N-1) addition / subtraction means performing addition / subtraction with the number of pulses corresponding to the delay time of the latch timing in the phase detection means of [the third, fourth,..., (N + 1) th addition / subtraction As a means],
    Signal switching means for receiving the outputs of the second, third,..., (N + 1) th addition / subtraction means and sequentially outputting them;
    Oscillating means controlled by the output of the signal switching means;
    Frequency synthesizer with.
  3.  前記除算手段は、遅延手段段数で除算を行ない、k〔kは、1、2、…、(n-1)〕段目までの遅延手段の遅れ時間に対応する対象信号の数を算出することを特徴とする請求項2に記載の周波数シンセサイザ。 The division means performs division by the number of delay means stages, and calculates the number of target signals corresponding to the delay time of the delay means up to the k [k is 1, 2, ..., (n-1)] stages. The frequency synthesizer according to claim 2, characterized in that
  4.  遅延手段の段数を、2の倍数とし、除算をビットシフトで行うことを特徴とする請求項2または3に記載の周波数シンセサイザ。 The frequency synthesizer according to claim 2 or 3, wherein the number of stages of the delay means is a multiple of 2, and the division is performed by bit shift.
  5.  基準信号が入力される、遅延時間が前記基準信号の周期程度ないしそれ以下の遅延素子の遅延時間を対象信号によって計測し、
     基準信号の対象信号に対する目標逓倍数である周波数制御語を累積することによって基準信号の位相信号を取得し、
     対象信号の第1の位相信号を、対象信号のカウント値を前記基準信号の出力のタイミング累積することによって取得し、
     対象信号の第2の位相信号を、対象信号のカウント値を前記遅延素子の出力のタイミング累積することによって取得し、
     第1の位相差信号を、基準信号の位相信号と対象信号の第1の位相信号とから算出し、
     第2の位相差信号を、前記遅延時間の計測値と基準信号の位相信号と対象信号の第2の位相信号とから算出し、
     前記第1の位相差信号と前記第2の位相差信号とを交互に用いて発振器の発振周波数を制御する発振器の発振周波数制御方法。
    Measuring a delay time of a delay element to which a reference signal is input and whose delay time is equal to or less than the period of the reference signal, using a target signal,
    Obtaining a phase signal of the reference signal by accumulating a frequency control word which is a target multiplication number for the target signal of the reference signal;
    Obtaining a first phase signal of the target signal by accumulating the count value of the target signal at the timing of the output of the reference signal;
    Obtaining a second phase signal of the target signal by accumulating the count value of the target signal at the output of the delay element;
    Calculating a first phase difference signal from the phase signal of the reference signal and the first phase signal of the target signal;
    A second phase difference signal is calculated from the measured value of the delay time, the phase signal of the reference signal, and the second phase signal of the target signal,
    A method of controlling an oscillation frequency of an oscillator, wherein the oscillation frequency of an oscillator is controlled by alternately using the first phase difference signal and the second phase difference signal.
  6.  基準信号が入力される、遅延時間が前記基準信号の周期の概略1/n(nは2以上の整数)である遅延素子をn段縦列接続してなる遅延回路の遅延時間を対象信号によって計測し、その結果に基づいてk〔kは、1、2、…、(n-1)〕段目までの遅延時間を算出し、
     基準信号の対象信号に対する目標逓倍数である周波数制御語を累積することによって基準信号の位相信号を取得し、
     対象信号の第1の位相信号を、対象信号のカウント値を前記基準信号の出力のタイミングで累積することによって取得し、
     対象信号の第2、第3、…、第nの位相信号を、対象信号のカウント値を前記基準信号の1、2、…、(n-1)段目の遅延素子の出力のタイミングで累積することによって取得し、
     第1の位相差信号を、基準信号の位相信号と対象信号の第1の位相信号とから算出し、
     第2、第3、…、第nの位相差信号を、1、2、…、(n-1)段目の遅延素子までの前記遅延時間と基準信号の位相信号と対象信号の第2、第3、…、第nの位相信号とから算出し、
     前記第1から前記第nまでの位相差信号を順次用いて発振器の発振周波数を制御する発振器の発振周波数制御方法。
    Measure the delay time of a delay circuit consisting of n stages of cascade-connected delay elements whose delay time is approximately 1 / n (n is an integer of 2 or more) of the cycle of the reference signal. Then, based on the result, the delay time to the k [k is 1, 2, ..., (n-1)] stage is calculated,
    Obtaining a phase signal of the reference signal by accumulating a frequency control word which is a target multiplication number for the target signal of the reference signal;
    Obtaining a first phase signal of the target signal by accumulating the count value of the target signal at the timing of the output of the reference signal,
    The second, third,..., N-th phase signal of the target signal is accumulated with the count value of the target signal at the timing of the output of the delay element of the first, second,. Get by
    Calculating a first phase difference signal from the phase signal of the reference signal and the first phase signal of the target signal;
    The second, third,..., N-th phase difference signal is represented by the delay time until the first, second,..., (N−1) th delay element, the phase signal of the reference signal, and the second of the target signal Calculated from the third to n th phase signals,
    A method of controlling an oscillation frequency of an oscillator, wherein an oscillation frequency of an oscillator is controlled by sequentially using the first to n-th phase difference signals.
PCT/JP2009/053987 2008-03-31 2009-03-03 Frequency synthesizer and method for controlling oscillation frequency of oscillator WO2009122843A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010505488A JP5333439B2 (en) 2008-03-31 2009-03-03 Frequency synthesizer and oscillation frequency control method of oscillator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-089465 2008-03-31
JP2008089465 2008-03-31

Publications (1)

Publication Number Publication Date
WO2009122843A1 true WO2009122843A1 (en) 2009-10-08

Family

ID=41135235

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/053987 WO2009122843A1 (en) 2008-03-31 2009-03-03 Frequency synthesizer and method for controlling oscillation frequency of oscillator

Country Status (2)

Country Link
JP (1) JP5333439B2 (en)
WO (1) WO2009122843A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011205338A (en) * 2010-03-25 2011-10-13 Toshiba Corp Local oscillator
JP2011205328A (en) * 2010-03-25 2011-10-13 Toshiba Corp Local oscillator
JP2012034029A (en) * 2010-07-28 2012-02-16 Fujitsu Ltd Pll circuit and pll circuit operation method and system
JP2017163210A (en) * 2016-03-07 2017-09-14 株式会社豊田中央研究所 Time measurement circuit and temperature sensor circuit with the same
CN113114233A (en) * 2021-03-25 2021-07-13 中国人民解放军国防科技大学 Satellite-borne clock signal frequency and phase jump monitoring method and system
CN113810046A (en) * 2020-06-12 2021-12-17 连云港坤芯微电子科技有限公司 Quick automatic frequency calibration device and method
CN114814358A (en) * 2022-06-27 2022-07-29 成都凯天电子股份有限公司 Frequency measurement system and method
CN117190998A (en) * 2023-11-01 2023-12-08 中国船舶集团有限公司第七〇七研究所 Time-sharing switching time sequence self-adaptive adjusting method for resonant gyro electrode

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002076886A (en) * 2000-06-30 2002-03-15 Texas Instruments Inc Digital fractional phase detector
JP2003324349A (en) * 2002-04-26 2003-11-14 Ando Electric Co Ltd Signaling arrangement
JP2007110370A (en) * 2005-10-13 2007-04-26 Fujitsu Ltd Digital phase detector

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002076886A (en) * 2000-06-30 2002-03-15 Texas Instruments Inc Digital fractional phase detector
JP2003324349A (en) * 2002-04-26 2003-11-14 Ando Electric Co Ltd Signaling arrangement
JP2007110370A (en) * 2005-10-13 2007-04-26 Fujitsu Ltd Digital phase detector

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011205338A (en) * 2010-03-25 2011-10-13 Toshiba Corp Local oscillator
JP2011205328A (en) * 2010-03-25 2011-10-13 Toshiba Corp Local oscillator
JP2012034029A (en) * 2010-07-28 2012-02-16 Fujitsu Ltd Pll circuit and pll circuit operation method and system
JP2017163210A (en) * 2016-03-07 2017-09-14 株式会社豊田中央研究所 Time measurement circuit and temperature sensor circuit with the same
CN113810046A (en) * 2020-06-12 2021-12-17 连云港坤芯微电子科技有限公司 Quick automatic frequency calibration device and method
CN113114233A (en) * 2021-03-25 2021-07-13 中国人民解放军国防科技大学 Satellite-borne clock signal frequency and phase jump monitoring method and system
CN113114233B (en) * 2021-03-25 2023-01-20 中国人民解放军国防科技大学 Satellite-borne clock signal frequency and phase jump monitoring method and system
CN114814358A (en) * 2022-06-27 2022-07-29 成都凯天电子股份有限公司 Frequency measurement system and method
CN114814358B (en) * 2022-06-27 2022-11-01 成都凯天电子股份有限公司 Frequency measurement system and method
CN117190998A (en) * 2023-11-01 2023-12-08 中国船舶集团有限公司第七〇七研究所 Time-sharing switching time sequence self-adaptive adjusting method for resonant gyro electrode
CN117190998B (en) * 2023-11-01 2024-01-26 中国船舶集团有限公司第七〇七研究所 Time-sharing switching time sequence self-adaptive adjusting method for resonant gyro electrode

Also Published As

Publication number Publication date
JPWO2009122843A1 (en) 2011-07-28
JP5333439B2 (en) 2013-11-06

Similar Documents

Publication Publication Date Title
JP5564550B2 (en) PLL circuit
WO2009122843A1 (en) Frequency synthesizer and method for controlling oscillation frequency of oscillator
US10911054B2 (en) Digital-to-time converter (DTC) assisted all digital phase locked loop (ADPLL) circuit
JP5347534B2 (en) Phase comparator, PLL circuit, and phase comparator control method
KR100944497B1 (en) Digital frequency detector and digital Phase Locked Loop using the digital frequency detector
US8344772B2 (en) Time-to-digital converter and all digital phase-locked loop including the same
US8106808B1 (en) Successive time-to-digital converter for a digital phase-locked loop
US20110074514A1 (en) Frequency measurement circuit and pll synthesizer provided therewith
US10505549B1 (en) Power-saving phase accumulator
TW200935748A (en) Phase-locked loop with self-correcting phase-to-digital transfer function
KR20130094446A (en) Low-power high-resolution time-to -digital converter
JP2010166392A (en) Digital phase locked-loop circuit
JP5206682B2 (en) Phase comparator and phase locked loop
US9024693B2 (en) Crystal-less clock generator and operation method thereof
TWI638526B (en) Method and apparatus of frequency synthesis
US20240039543A1 (en) Apparatus for Digital Representation of Angular Difference
US20120049912A1 (en) Digital phase difference detector and frequency synthesizer including the same
US20100182049A1 (en) Digital Phase Detection
US10739811B2 (en) Phase locked loop using direct digital frequency synthesizer
Huang et al. A time-to-digital converter based AFC for wideband frequency synthesizer
JP2010273185A (en) Digital phase locked loop circuit
JP5169008B2 (en) Phase difference detection circuit of PLL (Phase Locked Loop) circuit with built-in voltage controlled oscillator
Hong A 0.012 mm 2 and 2.5 mW bang–bang digital PLL using pseudo random number generator
EP3410602B1 (en) Pulse shift circuit and frequency synthesizer
Eren A high-resolution time to digital converter design for all digital phase-locked loops

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09727735

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010505488

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09727735

Country of ref document: EP

Kind code of ref document: A1