WO2009121776A1 - Size scaling of a burner - Google Patents

Size scaling of a burner Download PDF

Info

Publication number
WO2009121776A1
WO2009121776A1 PCT/EP2009/053555 EP2009053555W WO2009121776A1 WO 2009121776 A1 WO2009121776 A1 WO 2009121776A1 EP 2009053555 W EP2009053555 W EP 2009053555W WO 2009121776 A1 WO2009121776 A1 WO 2009121776A1
Authority
WO
WIPO (PCT)
Prior art keywords
quarl
burner
section
fuel
quarl section
Prior art date
Application number
PCT/EP2009/053555
Other languages
English (en)
French (fr)
Inventor
Vladimir Milosavljevic
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to ES09728642T priority Critical patent/ES2417158T3/es
Priority to US12/935,923 priority patent/US20110027728A1/en
Priority to EP09728642.1A priority patent/EP2263044B1/de
Priority to CN2009801112622A priority patent/CN101981379B/zh
Publication of WO2009121776A1 publication Critical patent/WO2009121776A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/286Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply having fuel-air premixing devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/34Feeding into different combustion zones
    • F23R3/346Feeding into different combustion zones for staged combustion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/00016Retrofitting in general, e.g. to respect new regulations on pollution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/00017Assembling combustion chamber liners or subparts

Definitions

  • the present invention refers to quarls in a burner preferably for use in gas turbine engines, and more particularly to quarls in a burner adapted to stabilize engine combustion, and further to a burner that use a pilot combustor to provide combustion products to stabilize main lean premixed combustion.
  • Gas turbine engines are employed in a variety of applications including electric power generation, military and commercial aviation, pipeline transmission and marine transportation.
  • fuel and air are provided to a burner chamber where they are mixed and ignited by a flame, thereby initiating combustion.
  • the major problems associated with the combustion process in gas turbine engines, in addition to thermal efficiency and proper mixing of the fuel and the air, are associated to flame stabilization, the elimination of pulsations and noise, and the control of polluting emissions, especially nitrogen oxides (NOx) , CO, UHC, smoke and particulated emission
  • flame temperature is reduced by an addition of more air than required for the combustion process itself.
  • the excess air that is not reacted must be heated during combustion, and as a result flame temperature of the combustion process is reduced (below stoichiometric point) from approximately 2300K to 1800 K and below.
  • This reduction in flame temperature is required in order to significantly reduce NOx emissions.
  • a method shown to be most successful in reducing NOx emissions is to make combustion process so lean that the temperature of the flame is reduced below the temperature at which diatomic Nitrogen and Oxygen (N2 and 02) dissociate and recombine into NO and N02.
  • Swirl stabilized combustion flows are commonly used in industrial gas turbine engines to stabilize combustion by, as indicated above, developing reverse flow (Swirl Induced Recirculation Zone) about the centreline, whereby the reverse flow returns heat and free radicals back to the incoming un-burnt fuel and air mixture.
  • the heat and free radicals from the previously reacted fuel and air are required to initiate (pyrolyze fuel and initiate chain branching process) and sustain stable combustion of the fresh un-reacted fuel and air mixture.
  • Stable combustion in gas turbine engines requires a cyclic process of combustion producing combustion products that are transported back upstream to initiate the combustion process. A flame front is stabilised in a Shear-Layer of the Swirl Induced Recirculation Zone.
  • the amount of air required to reduce the flame temperature from 2300K to 1700-1800 K is approximately twice the amount of air required for stoichiometric combustion. This makes the overall fuel/air ratio ( ⁇ ) very close (around or below 0.5; ⁇ >_ 0.5) or similar to a fuel/air ratio at which lean extinction of the premixed flame occurs. Under these conditions the flame can locally extinguish and re-light in a periodic manner .
  • Radiation heating of the fluid does not produce a sharp gradient; therefore, stability must come from the generation, diffusion and convection of heat into the pre-reacted zone. Diffusion only produces a sharp gradient in laminar flow and not turbulent flows, leaving only convection and energy generation to produce the sharp gradients desired for flame stabilization which is actually heat and free radial gradients. Both, heat and free radial gradients, are generated, diffused and convected by the same mechanisms through recirculating products of combustion within the Swirl Induced Recirculation Zone.
  • An object of the present invention is to present a way to scale the size of a burner.
  • a lean-rich partially premixed low emissions burner for a gas turbine combustor that provides stable ignition and combustion process at all engine load conditions.
  • This burner operates according to the principle of "supplying" heat and high concentration of free radicals from a pilot combustor exhaust to a main flame burning in a lean premixed air/fuel swirl, whereby a rapid and stable combustion of the main lean premixed flame is supported.
  • the pilot combustor supplies heat and supplements a high concentration of free radicals directly to a forward stagnation point and a shear layer of the main swirl induced recirculation zone, where the main lean premixed flow is mixed with hot gases products of combustion provided by the pilot combustor. This allows a leaner mix and lower temperatures of the main premixed air/fuel swirl combustion that otherwise would not be self-sustaining in swirl stabilized recirculating flows during the operating conditions of the burner.
  • the burner utilizes:
  • Sn swirl number
  • active species -non-equilibrium free radicals being released close to the forward stagnation point, particular type of the burner geometry with a multi quarl device, and internal staging of fuel and air within the burner to stabilize combustion process at all gas turbine operating conditions.
  • the disclosed burner provides stable ignition and combustion process at all engine load conditions.
  • Some important features related to the inventive burner are: the geometric location of the burner elements; the amount of fuel and air staged within the burner; the minimum amount of active species - radicals generated and required at different engine/burner operating conditions; fuel profile; mixing of fuel and air at different engine operating conditions; imparted level of swirl; multi (minimum double quarl) quarl arrangement.
  • a target in this design/invention is to have uniform mixing profiles at the exit of lean premixing channels.
  • Two distinct combustion zones exist within the burner covered by this disclosure, where fuel is burnt simultaneously at all times. Both combustion zones are swirl stabilized and fuel and air are premixed prior to the combustion process.
  • a main combustion process during which more than 90 % of fuel is burned, is lean.
  • a bluff body is not needed in the pilot combustor as the present invention uses un un-quenched flow of radicals directed downstream from a combustion zone of the pilot combustor along a centre line of the pilot combustor, said flow of radicals being released through the full opening area of a throat of the pilot combustor at an exit of the pilot combustor .
  • the main reason why the supporting combustion process in the small pilot combustor could be lean, stoichiometric or rich and still provide stable ignition and combustion process at all engine load conditions is related to combustion efficiency.
  • the combustion process which occurs within the small combustor-pilot, has low efficiency due to the high surface area which results in flame quenching on the walls of the pilot combustor.
  • Inefficient combustion process either being lean, stoichiometric or rich, could generate a large pool of active species - radicals which is necessary to enhance stability of the main lean flame and is beneficial for a successful operation of the present burner design/invention (Note: the flame occurring in the premixed lean air/fuel mixture is herein called the lean flame) .
  • Relatively large amount of fuel can be added to the small pilot combustor cooling air which corresponds to very rich equivalence ratios ( ⁇ > 3) .
  • Swirled cooling air and fuel and hot products of combustion from the small pilot combustor can very effectively sustain combustion of the main lean flame below, at and above LBO limits.
  • the combustion process is very stable and efficient because hot combustion products and very hot cooling air (above 750 0 C) , premixed with fuel, provide heat and active species (radicals) to the forward stagnation point of the main flame recirculation zone.
  • the small pilot combustor combined with very hot cooling air (above 750 0 C) premixed with fuel act as a flameless burner, where reactants (oxygen & fuel ) are premixed with products of combustion and a distributed flame is established at the forward stagnation point of the swirl induced recirculation zone.
  • a strong recirculation zone is required to enable transport of heat and free radicals from the previously combusted fuel and air, back upstream towards the flame front.
  • a well established and a strong recirculation zone is required to provide a shear layer region where turbulent flame speed can "match" or be proportional to the local fuel/air mixture, and a stable flame can establish.
  • This flame front established in the shear layer of the main recirculation zone has to be steady and no periodic movements or procession of the flame front should occur.
  • the imparted swirl number can be high, but should not be higher then 0.8, because at and above this swirl number more then 80% of the total amount of the flow will be recirculated back.
  • a further increase in swirl number will not contribute more to the increase in the amount of the recirculated mass of the combustion products, and the flame in the shear layer of the recirculation zone will be subjected to high turbulence and strain which can result in quenching and partial extinction and reignition of the flame.
  • Any type of the swirl generator, radial, axial and axial- radial can be used in the burner, covered by this disclosure. In this disclosure a radial swirler configuration is shown.
  • the burner utilizes aerodynamics stabilization of the flame and confines the flame stabilization zone - the recirculation zone - in the multiple quarl arrangement .
  • the multiple quarl arrangement is an important feature of the design of the provided burner for the following reasons.
  • the quarl (or also called diffuser) :
  • quadrl half angle ⁇ and length L is important to control size and shape of the recirculation zone in conjunction with the swirl number.
  • the length of the recirculation zone is roughly proportional to 2 to 2,5 of the quarl length;
  • D is the quarl throat diameter
  • - optimal quarl half angle ⁇ should not be smaller then 20 and larger then 25 degrees, allows for a lower swirl before decrease in stability, when compared to a less confined flame front;
  • Fig. 1 is a simplified cross section schematically showing the burner according to the aspects of the invention enclosed in a housing without any details showing how the burner is configured inside said housing.
  • Fig. 2 is a cross section through the burner schematically showing a section above a symmetry axis, whereby a rotation around the symmetry axis forms a rotational body displaying a layout of the burner.
  • Figure 3 shows a diagram of stability limits of the flame as a function of the swirl number, imparted level of swirl and equivalence ratio.
  • Figure 4a shows a diagram of combustor near field aerodynamics .
  • Figure 4b shows a diagram of combustor near field aerodynamics .
  • Figure 5 shows a diagram of turbulence intensity.
  • Figure 6 shows a diagram of relaxation time as a function of combustion pressure.
  • Figure 7 illustrates in a perspective view fuel tubes 15 at the inlet of swirler 3.
  • FIG 1 the burner is depicted with the burner 1 having a housing 2 enclosing the burner components.
  • Figure 2 shows for the sake of clarity a cross sectional view of the burner above a rotational symmetry axis.
  • the main parts of the burner are the radial swirler 3, the multi quarl 4a, 4b, 4c and the pilot combustor 5.
  • the burner loperates according to the principle of "supplying" heat and high concentration of free radicals from the a pilot combustor 5 exhaust 6 to a main flame 7 burning in a lean premixed air/fuel swirl emerging from a first exit
  • first lean premixing channel 10 is formed by and between the walls 4a and 4b of the multi quarl.
  • the second lean premixing channel 11 is formed by and between the walls 4b and 4c of the multi quarl.
  • the outermost rotational symmetric wall 4c of the multi quarl is provided with an extension 4cl to provide for the optimal length of the multi quarl arrangement.
  • the first 10 and second 11 lean premixing channels are provided with swirler wings forming the swirler 3 to impart rotation to the air/fuel mixture passing through the channels.
  • Air 12 is provided to the first 10 and second 11 channels at the inlet 13 of said first and second channels.
  • the swirler 3 is located close to the inlet 13 of the first and second channels.
  • fuel 14 is introduced to the air/fuel swirl through a tube 15 provided with small diffusor holes 15b located at the air 12 inlet 13 between the swirler 3 wings, whereby the fuel is distributed into the air flow through said holes as a spray and effectively mixed with the air flow. Additional fuel can be added through a second tube 16 emerging into the first channel 10.
  • the flame 7 is generated as a conical rotational symmetric shear layer 18 around a main recirculation zone 20 (below sometimes abbreviated RZ) .
  • the flame 7 is enclosed inside the extension 4cl of the outermost quarl, in this example quarl 4c.
  • the pilot combustor 5 supplies heat and supplements a high concentration of free radicals directly to a forward stagnation point P and the shear layer 18 of the main swirl induced recirculation zone 20, where the main lean premixed flow is mixed with hot gases products of combustion provided by the pilot combustor 5.
  • the pilot combustor 5 is provided with walls 21 enclosing a combustion room for a pilot combustion zone 22. Air is supplied to the combustion room through fuel channel 23 and air channel 24.
  • a distributor plate 25 provided with holes over the surface of the plate. Said distributor plate 25 is separated a certain distance from said walls 21 forming a cooling space layer 25a. Cooling air 26 is taken in through a cooling inlet 27 and meets the outside of said distributor plate 25, whereupon the cooling air 26 is distributed across the walls 21 of the pilot combustor to effectively cool said walls 21.
  • the cooling air 26 is after said cooling let out through a second swirler 28 arranged around a pilot quarl 29 of the pilot combustor 5.
  • Further fuel can be added to the combustion in the main lean flame 7 by supplying fuel in a duct 30 arranged around and outside the cooling space layer 25a. Said further fuel is then let out and into the second swirler 28, where the now hot cooling air 26 and the fuel added through duct 30 is effectively premixed.
  • a relatively large amount of fuel can be added to the small pilot combustor 5 cooling air which corresponds to very rich equivalence ratios ( ⁇ > 3) . Swirled cooling air and fuel and hot products of combustion from the small pilot combustor, can very effectively sustain combustion of the main lean flame 7 below, at and above LBO limits.
  • the combustion process is very stable and efficient because hot combustion products and very hot cooling air (above 750 0 C) , premixed with fuel, provide heat and active species (radicals) to the forward stagnation point P of the main flame recirculation zone 20.
  • the small pilot combustor 5 combined with very hot cooling air (above 750 0 C) premixed with fuel act as a flameless burner, where reactants (oxygen & fuel ) are premixed with products of combustion and a distributed flame is established at the forward stagnation point P of the swirl induced recirculation zone 20.
  • the imparted level of swirl and the swirl number (equation 1) is above the critical one (not lower then 0.6 and not higher then 0.8, see also fig. 3) at which vortex breakdown - recirculation zone 20 - will form and will be firmly positioned within the multi quarl 4a, 4b, 4c arrangement.
  • the forward stagnation point P should be located within the quarl 4a, 4b, 4c and at the exit 6 of the pilot combustor 5.
  • the swirling flow will extend to the exit of the combustor, which can result in an overheating of subsequent guide vanes of a turbine.
  • the imparted level of swirl (the ratio between tangential and axial momentum) has to be higher then the critical one (0.4- 0.6), so that a stable central recirculation zone 20 can form.
  • the critical swirl number, SN is also a function of the burner geometry, which is the reason for why it varies between 0.4 and 0.6. If the imparted swirl number is ⁇ 0.4 or in the range of 0.4 to 0.6, the main recirculation zone 20, may not form at all or may form and extinguish periodically at low frequencies (below 150Hz) and the resulting aerodynamics could be very unstable which will result in a transient combustion process.
  • flame stabilization can occur if:
  • Recirculating products which are: source of heat and active species (symbolized by means of arrows Ia and Ib) , located within the recirculation zone 20, have to be stationary in space and time downstream from the mixing section of the burner 1 to enable pyrolysis of the incoming mixture of fuel and air. If a steady combustion process is not prevailing, thermo-acoustics instabilities will occur.
  • Swirl stabilized flames are up to five times shorter and have significantly leaner blow-off limits then jet flames.
  • a premixed or turbulent diffusion combustion swirl provides an effective way of premixing fuel and air.
  • the entrainiment of the fuel/air mixture into the shear layer of the recirculation zone 20 is proportional to the strength of the recirculation zone, the swirl number and the characteristics recirculation zone velocity URZ.
  • the characteristics recirculation zone velocity, URZ can be expressed as:
  • MR should be ⁇ 1.
  • the process is initiated and stabilized by means of transporting heat and free radicals 31 from the previously combusted fuel and air, back upstream towards the flame front 7.
  • the combustion process is very lean, as is the case in lean-partially premixed combustion systems, and as a result the combustion temperature is low, the equilibrium levels of free radicals is also very low.
  • the free radicals produced by the combustion process quickly relax, see Fig. 6, to the equilibrium level that corresponds to the temperature of the combustion products. This is due to the fact that the rate of this relaxation of the free radicals to equilibrium increases exponentially with increase in pressure, while on the other hand the equilibrium level of free radicals decreases exponentially with temperature decrease.
  • the relaxation time of the free radicals can be short compared to the "transport" time required for the free radicals (symbolized by arrows 31) to be convected downstream, from the point where they were produced in the shear layer 18 of the main recirculation zone 20, back upstream, towards the flame front 7 and the forward stagnation point P of the main recirculation zone 20.
  • This invention utilizes high non-equilibrium levels of free radicals 32 to stabilize the main lean combustion 7.
  • the scale of the small pilot combustor 5 is kept small and most of the combustion of fuel occurs in the lean premixed main combustor (at 7 and 18), and not in the small pilot combustor 5.
  • the small pilot combustor 5, can be kept small, because the free radicals 32 are released near the forward stagnation point P of the main recirculation zone 20. This is generally the most efficient location to supply additional heat and free radicals to swirl stabilized combustion (7) .
  • the time scale between quench and utilization of free radicals 32 is very short not allowing free radicals 32 to relax to low equilibrium levels.
  • the forward stagnation point P of the main-lean re-circulating zone 20 is maintained and aerodynamically stabilized in the quarl (4a), at the exit 6 of the small pilot combustor 5.
  • zone 22 the exit of the small pilot combustor 5 is positioned on the centerline and at the small pilot combustor 5 throat 33.
  • the burner utilizes aerodynamics stabilization of the flame and confines the flame stabilization zone - recirculation zone (5) , in the multiple quarl arrangement (4a, 4b and 4c) .
  • the multiple quarl (the term multiple quarl is herein sometimes used for multiple quarl sections defining the completed quarl of the burner) arrangement is an important feature of the disclosed burner design for the reasons listed below.
  • the quarl (or sometimes called the diffuser) :
  • the minimum length of the quarl should not be smaller then 0,5 and not longer then 2 (Refl:The influence of Burner Geometry and Flow Rates on the Stability and Symmetry of Swirl-Stabilized Nonpremixed Flames; V. Milsavljevic et al; Combustion and Flame 80, pages 196-208, 1990)
  • optimal quarl half angle ⁇ (Refl) should not be smaller then 20 and larger then 25 degrees
  • is important to control size and shape of recirculation zone due to expansion as a result of combustion and reduces transport time of free radicals in recirculation zone .
  • Quarl section 4c should be designed in the same as quarl section 4b (formed as a thin splitter plate) ,
  • a new third channel (herein fictively called lib and not disclosed) should be arranged outside and surrounding the second channel 11 and a new quarl section 4d (only shown in the schematic quarl drawing of fig. 8) outside and surrounding the second channel 11, thus forming an outer wall of the third channel; the shape of the new quarl section 4d should be of a shape similar to the shape of former outmost quarl section 4c.
  • Burner operation and fuel staging within the burner should stay the same or similar.
  • the igniter 34 as in prior art burners, is placed in the outer recirculation zone, which is illustrated in Figure 4b, the fuel/air mixture entering this region must often be made rich in order to make the flame temperature sufficiently hot to sustain stable combustion in this region.
  • the flame then often cannot be propagated to the main recirculation until the main premixed fuel and airflow becomes sufficiently rich, hot and has a sufficient pool of free radicals, which occurs at higher fuel flow rates.
  • the flame cannot propagate from the outer recirculation zone to the inner main recirculation zone shortly after ignition, it must propagate at higher pressure after the engine speed begins to increase.
  • the present invention also allows for the ignition of the main combustion 7 to occur at the forward stagnation point P of the main recirculation zone 20.
  • Most gas turbine engines must use an outer recirculation zone, see Figure 4b, as the location where the spark, or torch igniter, ignites the engine. Ignition can only occur if stable combustion can also occur; otherwise the flame will just blow out immediately after ignition.
  • the inner or main recirculation zone 22, as in the present invention, is generally more successful at stabilizing the flame, because the recirculated gas 31 is transported back and the heat from the combustion products of the recirculated gas 31 is focused to a small region at the forward stagnation point P of the main recirculation zone 20.
  • the combustion - flame front 7 also expands outwards in a conical shape from this forward stagnation point P, as illustrated in Figure 2.
  • This conical expansion downstream allows the heat and free radicals 32 generated upstream to support the combustion downstream allowing the flame front 7 to widen as it moves downstream.
  • a more conical flame front allows for a point source of heat to initiate combustion of the whole flow field effectively.
  • the combustion process within the burner 1 is staged.
  • lean flame 35 is initiated in the small pilot combustor 5 by adding fuel 23 mixed with air 24 and igniting the mixture utilizing ignitor 34.
  • ignition equivalence ratio of the flame 35 in the small pilot combustor 5 is adjusted at either lean (below equivalence ratio 1, and at approximately equivalence ratio of 0,8) or rich conditions (above equivalence ratio 1, and at approximately equivalence ratio between 1,4 and 1,6) .
  • lean low equivalence ratio 1, and at approximately equivalence ratio of 0,8
  • rich conditions above equivalence ratio 1, and at approximately equivalence ratio between 1,4 and 1,6 .
  • the reason why the equivalence ratio within the small pilot combustor 5 is at rich conditions in the range between 1,4 and 1,6 is emission levels.
  • the amount of the fuel which can be added to the hot cooling air can correspond to equivalence ratios >3.
  • a third part and full load stage fuel 15a is gradually added to the air 12, which is the main air flow to the main flame 7.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Gas Burners (AREA)
PCT/EP2009/053555 2008-04-01 2009-03-26 Size scaling of a burner WO2009121776A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
ES09728642T ES2417158T3 (es) 2008-04-01 2009-03-26 Ajuste a escala del tamaño de un quemador
US12/935,923 US20110027728A1 (en) 2008-04-01 2009-03-26 Size scaling of a burner
EP09728642.1A EP2263044B1 (de) 2008-04-01 2009-03-26 Grössenskalierung eines brenners
CN2009801112622A CN101981379B (zh) 2008-04-01 2009-03-26 燃烧器的尺寸缩放

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP08006666A EP2107311A1 (de) 2008-04-01 2008-04-01 Größenskalierung eines Brenners
EP08006666.5 2008-04-01

Publications (1)

Publication Number Publication Date
WO2009121776A1 true WO2009121776A1 (en) 2009-10-08

Family

ID=39810145

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/053555 WO2009121776A1 (en) 2008-04-01 2009-03-26 Size scaling of a burner

Country Status (6)

Country Link
US (1) US20110027728A1 (de)
EP (2) EP2107311A1 (de)
CN (1) CN101981379B (de)
ES (1) ES2417158T3 (de)
RU (1) RU2455570C1 (de)
WO (1) WO2009121776A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI576509B (zh) * 2013-11-29 2017-04-01 三菱日立電力系統股份有限公司 噴嘴、燃燒器、及燃氣渦輪機
US11156164B2 (en) 2019-05-21 2021-10-26 General Electric Company System and method for high frequency accoustic dampers with caps
US11174792B2 (en) 2019-05-21 2021-11-16 General Electric Company System and method for high frequency acoustic dampers with baffles

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITMI20122154A1 (it) * 2012-12-17 2014-06-18 Ansaldo Energia Spa Gruppo bruciatore, camera di combustione comprendente detto gruppo bruciatore e metodo per alimentare detto gruppo bruciatore
US9366443B2 (en) 2013-01-11 2016-06-14 Siemens Energy, Inc. Lean-rich axial stage combustion in a can-annular gas turbine engine
US8794217B1 (en) 2013-02-07 2014-08-05 Thrival Tech, LLC Coherent-structure fuel treatment systems and methods
US20150159877A1 (en) * 2013-12-06 2015-06-11 General Electric Company Late lean injection manifold mixing system
GB202013274D0 (en) * 2020-08-25 2020-10-07 Siemens Gas And Power Gmbh & Co Kg Combuster for a gas turbine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB812317A (en) * 1956-05-18 1959-04-22 Rene Leduc Improvements in combustion chambers for gas turbines and ram-jets
US5321948A (en) * 1991-09-27 1994-06-21 General Electric Company Fuel staged premixed dry low NOx combustor
JPH09264536A (ja) * 1996-03-28 1997-10-07 Toshiba Corp ガスタービン燃焼器
US20070113555A1 (en) * 2004-08-27 2007-05-24 Richard Carroni Mixer Assembly

Family Cites Families (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2787120A (en) * 1950-08-05 1957-04-02 Leduc Rene Plural annular coaxial combustion chambers
GB1048968A (en) * 1964-05-08 1966-11-23 Rolls Royce Combustion chamber for a gas turbine engine
GB1421399A (en) * 1972-11-13 1976-01-14 Snecma Fuel injectors
US3866413A (en) * 1973-01-22 1975-02-18 Parker Hannifin Corp Air blast fuel atomizer
DE2460740C3 (de) * 1974-12-21 1980-09-18 Mtu Motoren- Und Turbinen-Union Muenchen Gmbh, 8000 Muenchen Brennkammer für Gasturbinentriebwerke
US4204402A (en) * 1976-05-07 1980-05-27 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Reduction of nitric oxide emissions from a combustor
US4845940A (en) * 1981-02-27 1989-07-11 Westinghouse Electric Corp. Low NOx rich-lean combustor especially useful in gas turbines
EP0114062A3 (de) * 1983-01-18 1986-02-19 Stubinen Utveckling AB Verfahren und Vorrichtung zum Verbrennen fester Brennstoffe, insbesondere Kohle, Torf oder dergleichen, in pulverisierter Form
DE3663189D1 (en) * 1985-03-04 1989-06-08 Siemens Ag Burner disposition for combustion installations, especially for combustion chambers of gas turbine installations, and method for its operation
JP2644745B2 (ja) * 1987-03-06 1997-08-25 株式会社日立製作所 ガスタービン用燃焼器
JPH01114623A (ja) * 1987-10-27 1989-05-08 Toshiba Corp ガスタービン燃焼器
JPH0684817B2 (ja) * 1988-08-08 1994-10-26 株式会社日立製作所 ガスタービン燃焼器及びその運転方法
US5040371A (en) * 1988-12-12 1991-08-20 Sundstrand Corporation Fuel injectors for use with combustors
CH678757A5 (de) * 1989-03-15 1991-10-31 Asea Brown Boveri
US5094082A (en) * 1989-12-22 1992-03-10 Sundstrand Corporation Stored energy combustor
CA2093316C (en) * 1990-10-05 2002-12-03 Janos M. Beer Combustion system for reduction of nitrogen oxides
GB9023004D0 (en) * 1990-10-23 1990-12-05 Rolls Royce Plc A gas turbine engine combustion chamber and a method of operating a gas turbine engine combustion chamber
US5131334A (en) * 1991-10-31 1992-07-21 Monro Richard J Flame stabilizer for solid fuel burner
GB2262981B (en) * 1991-12-30 1995-08-09 Ind Tech Res Inst Dual fuel low nox burner
US5284438A (en) * 1992-01-07 1994-02-08 Koch Engineering Company, Inc. Multiple purpose burner process and apparatus
JPH05203148A (ja) * 1992-01-13 1993-08-10 Hitachi Ltd ガスタービン燃焼装置及びその制御方法
US5237812A (en) * 1992-10-07 1993-08-24 Westinghouse Electric Corp. Auto-ignition system for premixed gas turbine combustors
US5407347A (en) * 1993-07-16 1995-04-18 Radian Corporation Apparatus and method for reducing NOx, CO and hydrocarbon emissions when burning gaseous fuels
US5394688A (en) * 1993-10-27 1995-03-07 Westinghouse Electric Corporation Gas turbine combustor swirl vane arrangement
US5477685A (en) * 1993-11-12 1995-12-26 The Regents Of The University Of California Lean burn injector for gas turbine combustor
GB2284884B (en) * 1993-12-16 1997-12-10 Rolls Royce Plc A gas turbine engine combustion chamber
JP2950720B2 (ja) * 1994-02-24 1999-09-20 株式会社東芝 ガスタービン燃焼装置およびその燃焼制御方法
US5647215A (en) * 1995-11-07 1997-07-15 Westinghouse Electric Corporation Gas turbine combustor with turbulence enhanced mixing fuel injectors
US6201029B1 (en) * 1996-02-13 2001-03-13 Marathon Oil Company Staged combustion of a low heating value fuel gas for driving a gas turbine
GB2311596B (en) * 1996-03-29 2000-07-12 Europ Gas Turbines Ltd Combustor for gas - or liquid - fuelled turbine
US5983642A (en) * 1997-10-13 1999-11-16 Siemens Westinghouse Power Corporation Combustor with two stage primary fuel tube with concentric members and flow regulating
US6109038A (en) * 1998-01-21 2000-08-29 Siemens Westinghouse Power Corporation Combustor with two stage primary fuel assembly
US6354072B1 (en) * 1999-12-10 2002-03-12 General Electric Company Methods and apparatus for decreasing combustor emissions
EP1710506A2 (de) * 1999-12-15 2006-10-11 Osaka Gas Co., Ltd. Brenner, Gasturbinenantrieb und Kraft-Wärme-Kopplungsanlage
US6272840B1 (en) * 2000-01-13 2001-08-14 Cfd Research Corporation Piloted airblast lean direct fuel injector
US6769903B2 (en) * 2000-06-15 2004-08-03 Alstom Technology Ltd Method for operating a burner and burner with stepped premix gas injection
US6488496B1 (en) * 2001-09-06 2002-12-03 Hauck Manufacturing Co. Compact combination burner with adjustable spin section
UA68446C2 (en) * 2002-02-18 2004-08-16 Res And Production Complex Of Combustion chamber of gas turbine of power unit
US6820411B2 (en) * 2002-09-13 2004-11-23 The Boeing Company Compact, lightweight high-performance lift thruster incorporating swirl-augmented oxidizer/fuel injection, mixing and combustion
US6969249B2 (en) * 2003-05-02 2005-11-29 Hauck Manufacturing, Inc. Aggregate dryer burner with compressed air oil atomizer
DE10326720A1 (de) * 2003-06-06 2004-12-23 Rolls-Royce Deutschland Ltd & Co Kg Brenner für eine Gasturbinenbrennkammer
JP3940705B2 (ja) * 2003-06-19 2007-07-04 株式会社日立製作所 ガスタービン燃焼器及びその燃料供給方法
JP4767851B2 (ja) * 2003-09-05 2011-09-07 シーメンス アクチエンゲゼルシヤフト ガスタービン・エンジンの燃焼を安定させる装置
EP1659339A1 (de) * 2004-11-18 2006-05-24 Siemens Aktiengesellschaft Verfahren zum Anfahren eines Brenners
US20080083224A1 (en) * 2006-10-05 2008-04-10 Balachandar Varatharajan Method and apparatus for reducing gas turbine engine emissions
EP2107300A1 (de) * 2008-04-01 2009-10-07 Siemens Aktiengesellschaft Dralleinrichtung mit Gasinjektor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB812317A (en) * 1956-05-18 1959-04-22 Rene Leduc Improvements in combustion chambers for gas turbines and ram-jets
US5321948A (en) * 1991-09-27 1994-06-21 General Electric Company Fuel staged premixed dry low NOx combustor
JPH09264536A (ja) * 1996-03-28 1997-10-07 Toshiba Corp ガスタービン燃焼器
US20070113555A1 (en) * 2004-08-27 2007-05-24 Richard Carroni Mixer Assembly

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI576509B (zh) * 2013-11-29 2017-04-01 三菱日立電力系統股份有限公司 噴嘴、燃燒器、及燃氣渦輪機
US10570820B2 (en) 2013-11-29 2020-02-25 Mitsubishi Hitachi Power Systems, Ltd. Nozzle, combustion apparatus, and gas turbine
US11156164B2 (en) 2019-05-21 2021-10-26 General Electric Company System and method for high frequency accoustic dampers with caps
US11174792B2 (en) 2019-05-21 2021-11-16 General Electric Company System and method for high frequency acoustic dampers with baffles

Also Published As

Publication number Publication date
CN101981379A (zh) 2011-02-23
US20110027728A1 (en) 2011-02-03
RU2455570C1 (ru) 2012-07-10
EP2107311A1 (de) 2009-10-07
EP2263044A1 (de) 2010-12-22
RU2010144571A (ru) 2012-05-10
CN101981379B (zh) 2012-06-20
ES2417158T3 (es) 2013-08-06
EP2263044B1 (de) 2013-05-15

Similar Documents

Publication Publication Date Title
EP2257743B1 (de) Brenner
US8033112B2 (en) Swirler with gas injectors
EP2107301B1 (de) Gaseinspritzung in einem Brenner
EP2263043B1 (de) Brennersteine in einem brenner
EP2107312A1 (de) Pilotverbrennkammer in einem Brenner
EP2107313A1 (de) Gestufte Brennstoffversorgung in einem Brenner
EP2263044B1 (de) Grössenskalierung eines brenners
EP2434218A1 (de) Brenner mit geringen NOx-Emissionen

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980111262.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09728642

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009728642

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 3642/KOLNP/2010

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 12935923

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010144571

Country of ref document: RU