WO2009121224A1 - 一种高光效球形无电极荧光灯 - Google Patents

一种高光效球形无电极荧光灯 Download PDF

Info

Publication number
WO2009121224A1
WO2009121224A1 PCT/CN2008/070655 CN2008070655W WO2009121224A1 WO 2009121224 A1 WO2009121224 A1 WO 2009121224A1 CN 2008070655 W CN2008070655 W CN 2008070655W WO 2009121224 A1 WO2009121224 A1 WO 2009121224A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluorescent lamp
electrodeless fluorescent
glass
bulb
lamp according
Prior art date
Application number
PCT/CN2008/070655
Other languages
English (en)
French (fr)
Inventor
陈民
Original Assignee
福建源光亚明电器有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 福建源光亚明电器有限公司 filed Critical 福建源光亚明电器有限公司
Priority to PCT/CN2008/070655 priority Critical patent/WO2009121224A1/zh
Publication of WO2009121224A1 publication Critical patent/WO2009121224A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J65/00Lamps without any electrode inside the vessel; Lamps with at least one main electrode outside the vessel
    • H01J65/04Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels
    • H01J65/042Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels by an external electromagnetic field
    • H01J65/048Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels by an external electromagnetic field the field being produced by using an excitation coil

Definitions

  • the present invention relates to an electric lamp, and more particularly to a high-efficiency spherical type non-electrode fluorescent lamp having a novel spherical inner structure.
  • a conventional bulb-type electrodeless fluorescent lamp is shown in Fig. 1. It includes a spherical bulb casing ⁇ , a liner 2' disposed in the bulb casing, a ferrite power coupling core 42', a braided wire 44' A power coupler composed of a heat sink 46' is placed inside the inner casing 2'.
  • Electrodeless fluorescent lamps have a long service life due to the absence of lamp electrodes that affect the life of the light source. Compared with traditional light sources, it has the advantages of long life, energy saving and high light efficiency. Widely used in various lighting occasions
  • Electrodeless fluorescent lamps Since there is no electrode, the electric power used to keep the lamp lit can only be done by electromagnetic coupling. Power couplers are the components used to accomplish this task. Power frequency (50Hz, 60Hz power supply) The electric energy is converted into 50-1000KHZ high-frequency power into the primary winding of the transformer through the electrodeless fluorescent lamp power supply circuit, and the plasma arc formed by the inert gas and mercury vapor ionization discharge is used as the transformer. The winding of the stage, the lamp power coupling between the primary and secondary windings is performed by the high-frequency transformer, and the power transmission of the electrodeless fluorescent lamp is completed.
  • Power frequency 50Hz, 60Hz power supply
  • the electric energy is converted into 50-1000KHZ high-frequency power into the primary winding of the transformer through the electrodeless fluorescent lamp power supply circuit, and the plasma arc formed by the inert gas and mercury vapor ionization discharge is used as the transformer.
  • the winding of the stage, the lamp power coupling between the primary and secondary windings is performed
  • the heat is derived from the core loss of the high frequency working ⁇ and the thermal radiation conduction of the plasma arc formed by the gas discharge of the spherical electrodeless fluorescent lamp and the ion and the inner glass
  • the thermal radiation conduction of the plasma arc formed by the electricity and the heat caused by the inelastic collision between the ions and the inner glass shell are the main factors causing the temperature rise of the power coupled core, due to the power coupler core operation.
  • the location ambient temperature is high, up to 230 ° C - 250 ° C.
  • the power loss of Mn-Zn material is less suitable for this purpose, but the Curie point of this type of core is lower than 220 °C - 230 °Co.
  • the working temperature exceeds the Curie point.
  • the loss of magnetism makes it difficult for the power coupler to operate at such high temperatures.
  • the size of the distributed capacitor directly affects the efficiency of the E field mode discharge, and the power coupler core wire ⁇
  • the distributed capacitance between the gas discharge region and the gas discharge region in the bulb decreases as the distance between the power coupler core coil and the gas discharge region in the bulb increases, and the decrease in the distributed capacitance causes the E field.
  • the discharge could not be performed, and the electrodeless fluorescent lamp could not be started. Therefore, it is not feasible to simply increase the spatial distance between the power coupler core ⁇ and the bulb inner discharge region to increase the thermal resistance between the plasma arc loop discharge region and the power coupler.
  • the technical problem to be solved by the present invention is to provide an improved luminous efficiency of a spherical electrodeless fluorescent lamp, simplifying the heat dissipation requirement of the power coupler, and ensuring that the power coupled magnetic core runs below the Curie point, thereby making the design and manufacturing large.
  • High-efficiency spherical electrodeless fluorescent lamps made possible by power spherical electrodeless fluorescent lamps.
  • a high-efficiency spherical electrodeless fluorescent lamp comprising a spherical bulb casing, a liner disposed inside the bulb casing, and the bulb casing and the inner casing are enclosed together
  • the hermetic plasma arc loop discharge region further includes an isolating device disposed between the electrodeless fluorescent lamp inner casing and the electrodeless fluorescent lamp bulb outer casing.
  • the isolating device has at least one opening.
  • the isolation device uses glass.
  • the isolation device is disposed in the discharge region of the plasma arc loop near the liner side.
  • the isolating device is a glass tube, one end of which is sealed with one end of the inner tank at the open end of the bulb housing
  • the other end is sealed, and more than one opening is opened at the circumference of the glass tube.
  • the openings are of the same size and are equally spaced apart at the circumference of the glass tube.
  • the isolating device is a glass cylinder, and the glass tube is sleeved on the outer side of the inner liner, and has an upper opening and a lower opening, and the glass cylinder is fixed on the inner casing.
  • the isolating device is a glass cylinder, and the glass tube is sleeved on the outer side of the inner casing, and the lower end is fixed on the bulb outer casing, and the upper end is open.
  • the isolating device is a glass cylinder, the upper end of the glass cylinder is sealed above the inner casing, and the lower end is open, and the glass cylinder is fixed on the inner casing.
  • the isolating device is a hollow glass cylinder having double glazing, the glass cylinder being fixed to the inner casing and having at least one opening.
  • the isolating device is one or more glass sheets, and the glass sheet is fixedly attached to the inner bladder.
  • the plasma arc loop discharge area between the inner cavity of the spherical electrodeless bulb discharge vessel and the bulb outer casing is arranged close to the inner side of the inner side of the liner side, and the high temperature plasma arc ring is added.
  • the thermal resistance of the discharge region to the in-bubble power coupler reduces the heat transfer from the high temperature radiation conduction in the discharge region of the plasma arc loop to the glass liner, which greatly reduces the high temperature of the discharge chamber to the inside of the spherical cavity of the spherical electrodeless bulb.
  • the influence of the operating temperature of the power coupler core reduces the core performance (Curie point) requirements of the spherical electrodeless fluorescent lamp power coupler, simplifies the heat dissipation requirements of the power coupler, and enables the design and manufacture of high-power spherical electrodes without electrodes. Fluorescent lamps are possible;
  • the setting of the device changes the spatial position of the annular discharge region composed of plasma in the bulb, so that the discharge loop of the plasma discharge arc is closer to the outer circle, shortening the photon from the plasma region to the inner tube of the phosphor The distance, the probability of resonance radiation absorption is reduced, and the utilization of UV photons (ultraviolet photons) is improved;
  • the combined effect of the above points has improved the luminous efficiency of the spherical electrodeless fluorescent lamp system, which is 15-20% higher than that of the conventional spherical electrodeless fluorescent lamp, and increases the high temperature plasma arc loop discharge area to the in-bubble power coupler.
  • the thermal resistance reduces the heat transfer from the high temperature radiation in the discharge zone of the plasma arc loop to the glass liner, making it possible to produce high-power spherical electrodeless fluorescent lamps with a power of 200-300W and a luminous efficiency of 75. - 85Lm/W.
  • FIG. 1 is a schematic structural view of a conventional spherical electrodeless fluorescent lamp.
  • FIG. 2 is a perspective perspective view of a first embodiment of a high luminous efficiency spherical electrodeless fluorescent lamp of the present invention.
  • FIG 3 is a partial cross-sectional view showing a second embodiment of a high-efficiency spherical electrodeless fluorescent lamp of the present invention.
  • FIG. 4 is a partial cross-sectional view showing a third embodiment of a high luminous efficiency spherical electrodeless fluorescent lamp of the present invention.
  • Figure 5 is a partial cross-sectional view showing a fourth embodiment of a high-efficiency spherical electrodeless fluorescent lamp of the present invention.
  • Figure 6 is a cross-sectional view showing the second, third and fourth embodiments of the present invention.
  • Figure 7 is a partial cross-sectional view showing a fifth embodiment of a high luminous efficiency spherical electrodeless fluorescent lamp of the present invention.
  • Figure 8 is a partial cross-sectional view showing a sixth embodiment of a high luminous efficiency spherical electrodeless fluorescent lamp of the present invention.
  • a high-efficiency spherical electrodeless fluorescent lamp of the present invention comprises a spherical bulb outer casing, a inner liner disposed inside the bulb outer casing, and the bulb outer casing and the inner tank together enclose a gas-tight plasma arc loop discharge region
  • the invention relates to a high-efficiency spherical electrodeless fluorescent lamp which is different from the existing spherical electrodeless fluorescent lamp in that the high-efficiency spherical electrodeless fluorescent lamp further comprises an isolating device disposed between the inner liner and the bulb outer casing, the isolating device Composed of a glass tube or a glass piece having at least one opening, as long as the isolation device is ensured to be transparent, the working gas between the isolating device and the inner tank and the working gas between the isolating device and the bulb outer casing are circulated, thereby It does not affect the E field discharge at the beginning of the low pressure plasma establishment process.
  • the specific location of the isolation device is disposed in the plasma arc loop discharge region near the liner side, and the isolation device may be a glass tube or a glass sheet. And the outer surface of the inner surface of the isolator (near the inner tank) (near the bulb outer casing) or the inner and outer surfaces are coated with phosphor.
  • the high-efficiency spherical electrodeless fluorescent lamp comprises a spherical bulb housing 1, a liner 2 disposed inside the bulb housing 1, the bulb housing 1 and the liner 2 Cooperating to form a hermetic plasma arc loop discharge region 12, further comprising a glass tube 3 disposed in the plasma arc loop discharge region 12, the inner surface of the bulb casing 1 being coated with a phosphor 14 for the plasma arc
  • the loop discharge region 12 contains a working gas that is discharged at a low pressure, such as a mixture of an inert gas and a mercury vapor.
  • the inner surface of the glass tube 3 is coated with a phosphor.
  • a power coupler consisting of a ferrite power coupled core, a braided wire, and a heat sink is placed on the inside of the liner 2 (not shown).
  • the glass tube 3 is disposed on the side of the plasma arc loop discharge region 12 near the inner tank 2, and one end thereof is sealed with one end of the inner liner 2 at the open end of the bulb outer casing 1, and One end is sealed, and four elongated openings 32 having the same shape and the same size are opened at the circumference of the glass tube 3.
  • the number of the openings 32 may be other numbers, such as 1, 2, 3 or more.
  • the arrangement is not limited to the equidistant setting in the embodiment, and the shape and size of each opening 32 are not necessarily identical.
  • the opening 32 does not have to be a long strip, any other The shape is also allowed, such as trapezoidal, triangular, square, etc., or the glass tube 3 can also make its upper or lower end unsealed. In short, the opening 32 is provided so as to ensure that the working gas inside and outside the glass tube 3 is not isolated. Just fine.
  • a power coupler 4 composed of a ferrite power coupling core 42, a braided wire 44, and a heat dissipating rod 46 is placed on the inner side of the inner casing 2,
  • the isolating device is a glass cylinder 5 which is sleeved on the outer side of the inner liner 2 and has an upper opening 52 and a lower opening 54. Therefore, the inside and outside of the glass cylinder 5 are ensured to be transparent, and the outer surface of the glass cylinder 5 is coated with phosphor, and of course, the inner surface of the glass cylinder 5 may be coated with fluorescent material.
  • the toner, or the same, is coated with phosphor on the inner and outer surfaces of the glass cylinder 5.
  • the glass cylinder 5 is fixed to the inner liner 2 by a pair of upper and lower glass nails 56.
  • the number of glass nails can also be increased or decreased as long as the glass cylinder 5 is secured to the inner liner 2, and can be fixed by other existing means.
  • a third embodiment of the present invention is different from the second embodiment described above.
  • the lower end of the glass cylinder as the isolating device is fixed on the bulb casing 1 and the upper end is open. .
  • a fourth embodiment of the present invention is different from the second embodiment in that, in the embodiment, the upper end of the glass cylinder as the isolating device is sealed above the inner liner 2, and the lower end Opening.
  • FIG. 6 is a cross-sectional view of the second, third, and fourth embodiments described above.
  • a fifth embodiment of the present invention is different from the second embodiment described above in that, as an isolation device, a hollow glass cylinder 6 having double glazing is used.
  • the glass cylinder 6 may have two upper and lower openings, or the lower end may be fixed to the bulb casing 1, having only an upper end opening, or only having a lower end opening, and the upper end is sealed above the inner liner 2.
  • Phosphors may be applied to the exposed surfaces of the inside and outside of the glass cylinder 6.
  • FIG. 8 is a sixth embodiment of the present invention, which differs from the first embodiment described above in that the plasma arc loop discharge region 12 is not a glass tube but at least one glass piece. 7.
  • four rectangular glass sheets 7 having the same shape and size are disposed equidistantly from the inner arc 2 of the plasma arc loop discharge region 12, and each of the glass sheets 7 is disposed in parallel with the inner liner.
  • the bottom end of each of the glass sheets 7 is fixedly attached to the bulb casing, and the upper portion is fixed to the inner liner 2 by glass nails.
  • the glass sheets 7 do not have to have the same shape and size, and need not necessarily be four, and may be, for example, one, two, three or more than four, and the arrangement thereof is not limited to the one in the embodiment.
  • the distance is set, and the glass piece 7 does not have to be rectangular, and any other shape is also allowed, such as trapezoidal, triangular, square, and the like.
  • the glass piece 7 may be suspended from the side close to the inner liner 2, and the upper and lower ends are fixed to the inner liner 2 by glass nails.
  • the isolation device has only one layer. Of course, it is also allowed to provide two layers, three layers, or more layers of the same shape structure or a different shape structure between the bulb outer casing and the inner tank. It does not depart from the scope of protection of the present invention.
  • an additional glass tube or glass sheet is installed on the side close to the inner side of the liner.
  • the thermal resistance of the high temperature plasma arc loop discharge region to the in-bubble power coupler is increased, and the high temperature of the plasma arc loop discharge region is greatly reduced to the inside of the discharge region of the spherical electrodeless bulb plasma arc loop (power coupling)
  • the operating temperature of the core is reduced by the spherical electrodeless fluorescent power coupler to the core performance (Curie point), which simplifies the heat dissipation requirements of the power coupler, making it possible to design and manufacture high-power spherical electrodeless fluorescent lamps. .
  • the loss of charged particles in the positive column of the plasma discharge is a loss of bipolar diffusion motion to the tube wall, most of which are charged.
  • the bipolar diffusion motion of the particles is received by the isolation device and no longer inelastically collides with the glass envelope of the liner to raise the temperature of the liner, thereby reducing the temperature of the liner.
  • the operating temperature of the electrodeless fluorescent lamp power coupler core is reduced, which satisfies the small loss of the core operating temperature loss curve, and improves the coupling efficiency of the circuit.
  • the arrangement of the isolating device changes the spatial position of the plasma arc loop discharge region composed of plasma in the bulb, so that the discharge loop of the plasma discharge arc is closer to the outer circle, shortening the photon from the plasma region to the inner side of the tube.
  • the distance of the phosphor the probability of resonance radiation absorption is reduced, and the utilization of UV photons is improved.
  • the isolation device is coated with phosphor, which increases the effective light-emitting area of the phosphor, which improves the luminous efficiency of the spherical electrodeless fluorescent lamp system.
  • Table 1 below is a comparison data table of the light efficiency of the present invention and the conventional ballless electrodeless fluorescent lamp and the power coupler core temperature, it can be seen that after using the isolation device of the technical solution, The luminous efficiency of the spherical electrodeless fluorescent lamp system is greatly improved.
  • ACV sample pressure rate efficiency concentrator core temperature group temperature number
  • Example 2 is 2# 220.1 120 215.4 16766.2 77.84 158 187 Isolation device

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Discharge Lamps And Accessories Thereof (AREA)

Abstract

一种高光效球形无电极荧光灯,包括球形的灯泡外壳、设置在灯泡外壳内部的内胆,所述灯泡外壳及内胆共同围成低气压等离子体电弧环路放电区,还包括设置在等离子体电弧环路放电区靠近内胆侧的玻璃制成的隔离装置,所述隔离装置由开设有至少一个开口的玻璃管或玻璃片组成,保证隔离装置的内外通透,且其表面上涂敷有荧光粉。本发明一种高光效球形无电极荧光灯的优点在于:使得球形无电极荧光灯系统的发光效率得以提高,较传统的球形无电极荧光灯提高15-20%,增加了等离子体电弧环路放电区到功率耦合器的热阻,同时也减少了相应的辐射传导给内胆带来的热量,使制作大功率球形无电极荧光灯成为可能,灯功率能达到200-300W,光效可达75-85Lm/W。

Description

说明书
球形无电极荧光灯
【技术领域】
[1] 本发明涉及一种电灯, 特别涉及一种具有新颖的球形内结构的高光效球型无电 极荧光灯。
【背景技术】
[2] 传统的球泡型无电极荧光灯如图 1所示, 包括球形的灯泡外壳 Γ, 设置在灯泡外 壳内的内胆 2', 由铁氧体功率耦合磁芯 42'、 编织线 44'和散热棒 46'组成的功率耦 合器放置于该内胆 2'的内侧。
[3] 无电极荧光灯由于不存在影响光源寿命的灯电极, 其使用寿命得以延长。 与传 统的光源对比具有长寿命, 节能, 光效较高等优点。 广泛使用于各种照明场合
[4] 无电极荧光灯的发光原理与日光灯类似。 灯管内的自由电子受电磁场力作用而 被加速。 当运动的电子与汞蒸汽原子碰撞吋, 如果电子动能足够大, 则汞原子 可以被激发, 电子动能被汞原子吸收成为其激发态, 汞原子内部的电子能级从 基态跃迁到高能态, 处于高能级的电子是不稳定的, 总是会回到基态。 当受激 汞原子内的电子返回基态吋, 所吸收的能量就以辐射光子 (253.7nm的 UV) 的 形式释放出来, 并经荧光粉光致发光进行波长转换为可见光。
[5] 无电极荧光灯由于没有电极, 用于灯维持点亮的电功率只能通过电磁耦合的方 式来进行。 功率耦合器正是用来完成这一任务的部件。 工频 (50Hz、 60Hz电源 ) 电能经无电极荧光灯电源供给电路转换为 50— 1000KHZ的高频电能馈入变压 器的初级绕组, 而惰性气体和汞蒸气电离放电所形成的等离子体电弧作为变压 器的次级绕组, 经高频变压器进行初次级绕组之间的灯功率耦合, 完成无电极 荧光灯的电能传输。
[6] 作为无电极荧光灯功率耦合器的磁芯, 其热量来自高频工作吋的磁芯损耗和由 球形无电极荧光灯气体放电所形成的等离子体电弧的热辐射传导和由离子与内 胆玻璃壳的非弹性碰撞所带来的内胆玻壳的温升, 且球形无电极荧光灯气体放 电所形成的等离子体电弧的热辐射传导和由离子与内胆玻璃壳的非弹性碰撞所 带来的热量是引起的功率耦合磁芯的温升的为主要因素, 由于功率耦合器磁芯 工作位置环境温度较高, 可达 230°C— 250°C。 在 50— ΙΟΟΟΚΗζ的频率范围内, 锰锌材料的功率损耗较小较适合用于该用途, 但该类磁芯的居里点较低 220°C - 230°Co 工作温度超过居里点吋的失磁现象使得该功率耦合器难以在如此高温的 条件下工作。
[7] 釆用增大功率耦合器磁芯绕组与泡壳内胆之间的空间距离可以增加等离子体电 弧环路放电区到功率耦合器之间的热阻, 从而降低功率耦合器磁芯的工作温度 , 但由于无电极荧光灯初始电离放电主要依靠 E场模式放电 (容性耦合放电) , 进而转入 H场模式 (感应磁场耦合放电)的环形放电过程, 在放电建立过程的初期 E场模式放电的电能主要靠功率耦合器磁芯线圏绕组与灯泡气体放电区之间的分 布电容的耦合来完成, 该分布电容的大小直接影响 E场模式放电的效率, 而功率 耦合器磁芯线圏与泡壳内气体放电区之间的分布电容随着功率耦合器磁芯线圏 与泡壳内气体放电区之间的间距的增大而减小, 而该分布电容的减小将导致 E场 放电无法进行, 无电极荧光灯无法启动。 故简单的增加功率耦合器磁芯线圏与 灯泡内胆气体放电区之间的空间距离来增加等离子体电弧环路放电区到功率耦 合器之间的热阻是不可行的。
[8] 传统的解决方法是给功率耦合器磁芯增加金属导热棒 (用铜, 铝等组成) , 用 来移去功率耦合器上磁芯的热量。 但效果并不显著, 制约了球形无极灯的发展 。 尤其是大功率球形无电极荧光灯。
【发明内容】
[9] 本发明所要解决的技术问题在于提供一种提高球形无电极荧光灯的发光效率, 简化了功率耦合器的散热要求, 保证功率耦合磁芯运行于居里点之下, 从而使 得设计制造大功率球形无电极荧光灯成为可能的高光效球形无电极荧光灯。
[10] 本发明是通过以下技术方案解决上述技术问题的: 一种高光效球形无电极荧光 灯, 包括球形的灯泡外壳、 设置在灯泡外壳内部的内胆, 所述灯泡外壳及内胆 共同围成气密性的等离子体电弧环路放电区, 还包括设置在无电极荧光灯内胆 及无电极荧光灯灯泡外壳之间的隔离装置。 [11] 该发明可进一步具体为:
[12] 所述隔离装置具有至少一个开口。
[13] 所述隔离装置釆用玻璃。
[14] 所述隔离装置设置在等离子体电弧环路放电区靠近内胆侧。
[15] 所述隔离装置内表面外表面或者同吋在内外表面上涂敷有荧光粉。
[16] 所述隔离装置为玻璃管, 其一端与内胆的一端共同密封在灯泡外壳的开口端部
, 另一端密封设置, 玻璃管的圆周处开设一个以上的开口。
[17] 所述开口形状尺寸相同且等距离开设在玻璃管的圆周处。
[18] 所述隔离装置为一玻璃筒, 所述玻璃筒套设在内胆的外侧, 具有上开口和下开 口, 所述玻璃筒固定在内胆上。
[19] 所述隔离装置为一玻璃筒, 所述玻璃筒套设在内胆的外侧, 其下端固定在灯泡 外壳上, 上端开口。
[20] 所述隔离装置为一玻璃筒, 所述玻璃筒上端密封在内胆的上方, 下端开口, 所 述玻璃筒固定在内胆上。
[21] 所述隔离装置为一具有双层玻璃的空心的玻璃筒, 该玻璃筒固定在内胆上, 具 有至少一个开口。
[22] 所述隔离装置为一个以上的玻璃片, 所述玻璃片的固定连接在内胆上。
[23] 本发明一种高光效球形无电极荧光灯的优点在于:
[24] 一、 在球形无极灯泡放电腔内胆与灯泡外壳之间的等离子体电弧环路放电区靠 近内胆侧设置隔离装置嵌套在内胆外的方式, 增加了高温的等离子体电弧环路 放电区到泡内功率耦合器的热阻, 减少了等离子体电弧环路放电区高温的辐射 传导给玻璃内胆带来的热量, 大幅降低了放电腔体的高温对球形无极灯泡放电 腔内侧的功率耦合器磁芯的工作温度的影响, 降低了球形无电极荧光灯功率耦 合器对磁芯性能 (居里点) 的要求, 简化了功率耦合器的散热要求, 使得设计 制造大功率球形无电极荧光灯成为可能;
[25] 二、 由于该隔离装置空间位置的设置介于球泡内胆和球泡外壳之间, 低气压放 电正柱区带电粒子的损失是双极性扩散运动到管壁的损失, 大多数带电粒子的 双极扩散运动被该隔离装置接收, 而不再与内胆玻壳发生非弹性碰撞而使内胆 玻璃温度上升, 降低了内胆玻璃温度;
[26] 三、 该装置的设置改变了球泡内等离子体组成的环形放电区的空间位置, 使得 等离子放电电弧的放电环路更靠近外圆, 缩短了光子从等离子区到灯管内侧荧 光粉的路程, 共振辐射吸收的几率减小, 提高了 UV光子 (紫外线光子) 的利用 率;
[27] 四、 在球形无极灯泡放电腔内胆与外泡壳之间的等离子体电弧环路放电区靠近 内胆侧设置附加玻璃管 (玻璃片等) 涂有荧光粉, 增大了荧光粉的有效发光面 积, 使得球形无电极荧光灯系统的发光效率得以提高。
[28] 以上几点的综合作用使得球形无电极荧光灯系统的发光效率得以提高, 较传统 的球形无电极荧光灯提高 15-20% , 增加了高温等离子体电弧环路放电区到泡内 功率耦合器的热阻, 减少了等离子体电弧环路放电区高温的辐射传导给玻璃内 胆带来的热量, 使制作大功率球形无电极荧光灯成为可能, 灯功率能达到 200 - 300W, 光效可达 75 - 85Lm/W。
【附图说明】
[29] 下面参照附图结合实施例对本发明作进一步的描述。
[30] 图 1是现有球形无电极荧光灯的结构示意图。
[31] 图 2是本发明一种高光效球形无电极荧光灯的第一实施例的立体透视图。
[32] 图 3是本发明一种高光效球形无电极荧光灯的第二实施例的部分剖视图。
[33] 图 4是本发明一种高光效球形无电极荧光灯的第三实施例的部分剖视图。
[34] 图 5是本发明一种高光效球形无电极荧光灯的第四实施例的部分剖视图。
[35] 图 6是本发明第二、 三、 四实施例的截面视图。
[36] 图 7是本发明一种高光效球形无电极荧光灯的第五实施例的部分剖视图。
[37] 图 8是本发明一种高光效球形无电极荧光灯的第六实施例的部分剖视图。
【具体实施方式】
[38] 本发明一种高光效球形无电极荧光灯包括球形的灯泡外壳、 设置在灯泡外壳内 部的内胆, 该灯泡外壳及内胆共同围成气密性的等离子体电弧环路放电区, 该 发明高光效球形无电极荧光灯与现有球形无电极荧光灯的区别在于, 该高光效 球形无电极荧光灯还包括设置在内胆及灯泡外壳之间的隔离装置, 该隔离装置 由具有至少一个开口的玻璃管或玻璃片组成, 只要保证隔离装置是通透的即可 , 使隔离装置与内胆之间的工作气体以及隔离装置与灯泡外壳之间的工作气体 相互流通, 从而不会影响低气压等离子体建立过程初期的 E场放电。
[39] 该隔离装置的具体位置设置在等离子体电弧环路放电区靠近内胆侧, 该隔离装 置可以是玻璃管或者玻璃片。 且该隔离装置内表面 (靠近内胆) 外表面 (靠近 灯泡外壳) 或内外表面上涂敷有荧光粉。
[40] 请参阅图 2, 为本发明的第一实施例, 该高光效球形无电极荧光灯包括球形的 灯泡外壳 1、 设置在灯泡外壳 1内部的内胆 2, 该灯泡外壳 1及内胆 2共同围成气密 性等离子体电弧环路放电区 12, 还包括设置在等离子体电弧环路放电区 12的玻 璃管 3, 灯泡外壳 1的内表面上涂敷有荧光粉 14, 该等离子体电弧环路放电区 12 包含有低气压放电的工作气体, 如惰性气体和汞蒸气的混和物。 玻璃管 3的内表 面上涂敷有荧光粉, 当然, 也可以在玻璃管 3的外表面涂敷荧光粉, 或者同吋在 玻璃管 3的内外表面涂敷荧光粉。
[41] 由铁氧体功率耦合磁芯、 编织线和散热棒组成的功率耦合器放置于该内胆 2的 内侧 (图未示) 。
[42] 在本实施例中, 该玻璃管 3设置在等离子体电弧环路放电区 12的靠近内胆 2侧, 其一端与内胆 2的一端共同密封在灯泡外壳 1的开口端部, 另一端密封设置, 玻 璃管 3的圆周处等距离开设四个形状尺寸相同的长条形的开口 32, 当然, 该开口 32的数量可以为别的数量, 如 1个、 2个、 3个或者多于 4个, 其设置方式也不用 局限于本实施例中的等距离设置, 且每个开口 32的形状及尺寸也不一定要完全 相同, 另外, 开口 32也不必一定为长条形, 任何其他的形状也是被允许的, 如 梯形、 三角形、 正方形等等形状, 或者玻璃管 3也可以使其上端或者下端不密封 , 总之, 该开口 32的设置只要保证玻璃管 3内外的工作气体不被隔离即可。
[43] 请参阅图 3, 为本发明第二实施例, 由铁氧体功率耦合磁芯 42、 编织线 44, 和 散热棒 46组成的功率耦合器 4放置于该内胆 2的内侧, 其与上述第一实施例的区 别在于, 隔离装置的形状不同, 该实施例中, 隔离装置为一玻璃筒 5, 该玻璃筒 5套设在内胆 2的外侧, 具有上开口 52和下开口 54, 从而保证玻璃筒 5内外通透, 该玻璃筒 5的外表面上涂敷有荧光粉, 当然, 也可以在玻璃筒 5的内表面涂敷荧 光粉, 或者同吋在玻璃筒 5的内外表面涂敷荧光粉。
[44] 本实施例中, 玻璃筒 5通过上下各一对玻璃钉 56固定在内胆 2上。 当然, 玻璃钉 的数量也可以增加或者减少, 只要保证玻璃筒 5固定在内胆 2上即可, 也可以通 过其它现有的方式固定。
[45] 请参阅图 4, 为本发明第三实施例, 其与上述第二实施例的区别在于, 该实施 例中, 做为隔离装置的玻璃筒的下端固定在灯泡外壳 1上, 上端开口。
[46] 请参阅图 5, 为本发明第四实施例, 其与上述第二实施例的区别在于, 该实施 例中, 做为隔离装置的玻璃筒的上端密封在内胆 2的上方, 下端开口。
[47] 请参阅图 6, 为上述第二第三以及第四实施例的截面视图。
[48] 请参阅图 7, 为本发明第五实施例, 其与上述第二实施例的区别在于, 做为隔 离装置的为一具有双层玻璃的空心的玻璃筒 6, 当然, 该玻璃筒 6可以具有上下 两个开口, 或者下端固定在灯泡外壳 1上, 只具有上端开口, 或者只具有下端开 口, 上端密闭在内胆 2的上方。
[49] 可以在该玻璃筒 6的内外的外露表面上涂敷荧光粉。
[50] 请参阅图 8, 为本发明的第六实施例, 其与上述第一实施例的区别在于, 设置 在等离子体电弧环路放电区 12的不是玻璃管, 而是至少一个的玻璃片 7, 本实施 例中, 在等离子体电弧环路放电区 12靠近内胆 2处等距离设置四个长方形的且形 状尺寸相同的玻璃片 7, 且每个玻璃片 7均与内胆平行设置, 每个玻璃片 7的底端 固定连接在灯泡外壳上, 上部通过玻璃钉固定在内胆 2上。 当然, 该玻璃片 7不 一定要是形状尺寸相同, 也不必要一定为 4个, 可以为如 1个、 2个、 3个或者多 于 4个, 其设置方式也不用局限于本实施例中的等距离设置, 且玻璃片 7也不必 一定为长方形, 任何其他的形状也是被允许的, 如梯形、 三角形、 正方形等等 形状。 且玻璃片 7也可以悬空设置在靠近内胆 2侧, 上下端通过玻璃钉固定在内 胆 2上。
[51] 上述实施例中, 隔离装置只具有一层, 当然, 在灯泡外壳以及内胆间设置 2层 、 3层、 或者更多层的同样形状结构的或者不同形状结构的隔离状置也是允许的 , 并不超出本发明的保护范围。
[52] 在等离子体电弧环路放电区靠近内胆侧设置附加的玻璃管或者玻璃片等隔离装 置, 增加了高温的等离子体电弧环路放电区到泡内功率耦合器的热阻, 大幅降 低了等离子体电弧环路放电区的高温对球形无极灯泡等离子体电弧环路放电区 内侧 (功率耦合器磁芯处) 的工作温度, 降低了球形无电极荧光灯功率耦合器 对磁芯性能 (居里点) 的要求, 简化了功率耦合器的散热要求, 使得设计制造 大功率球形无电极荧光灯成为可能。
[53] 且由于该隔离装置的空间位置设置介于球泡内胆和等泡外壳之间, 等离子体放 电正柱区带电粒子的损失是双极性扩散运动到管壁的损失, 大多数带电粒子的 双极扩散运动被隔离装置接收, 而不再与内胆的玻璃壳发生非弹性碰撞而使内 胆温度上升, 从而降低了内胆温度。
[54] 由于该结构带来无电极荧光灯功率耦合器磁芯工作温度的降低, 满足了磁芯工 作于温度损耗关系曲线的损耗较小值处, 提高了电路的耦合效率。
[55] 隔离装置的设置改变了球泡内等离子体组成的等离子体电弧环路放电区的空间 位置, 使得等离子放电电弧的放电环路更靠近外圆, 缩短了光子从等离子区到 灯管内侧荧光粉的路程, 共振辐射吸收的几率减小, 提高了 UV光子的利用率。
[56] 隔离装置上涂有荧光粉, 增大了荧光粉的有效发光面积, 使得球形无电极荧光 灯系统的发光效率得以提高。
[57] 以下表一为釆用本发明的技术方案与传统的球形无电极荧光灯的光效率与功率 耦合器磁芯温度的对比数据表, 可以看出, 使用本技术方案的隔离装置后, 使 得球形无电极荧光灯系统的发光效率得以很大提高。
[58] 表一釆用本发明的技术方案与传统的球形无电极荧光灯的光效率与功率耦合器 磁芯温度的对比数据表
被测 电源电点灯吋 测试功 光通量 系统光 功率耦 功率耦 样品 压 间 率 效率 合器绕 芯温度 组温度 序号 (ACV) (M) (W) (Lm) (LmAV) (。C ) (。C )
釆用本技 1# 220.2 120 210.2 16642.8 79.18 155 185 术方案实
施例二即 2# 220.1 120 215.4 16766.2 77.84 158 187 隔离装置
为圆筒
3# 219.8 120 224.6 17244.9 76.78 162 191
054 X
80mm
4# 220.6 120 249.6 18935.1 75.86 167 194
使用传统 1# 220.3 120 165.3 10609.7 64.3 180 220 方式的球
形无电极 2# 220.1 120 210.4 13125.3 62.5 198 231 荧光灯 虽然以上描述了本发明的具体实施方式, 但是熟悉本技术领域的技术人员应当 理解, 我们所描述的具体的实施例只是说明性的, 而不是用于对本发明的范围 的限定, 熟悉本领域的技术人员在依照本发明的精神所作的等效的修饰以及变 化, 都应当涵盖在本发明的权利要求所保护的范围内。

Claims

权利要求书
[I] 1.一种高光效球形无电极荧光灯, 包括球形的灯泡外壳、 设置在灯泡外壳 内部的内胆, 所述灯泡外壳及内胆共同围成等离子体电弧环路放电区, 功 率耦合器放置于内胆的内侧, 其特征在于: 还包括设置在内胆及灯泡外壳 之间的至少一层隔离装置。
[2] 2.如权利要求 1所述的一种高光效球形无电极荧光灯, 其特征在于: 所述隔 离装置具有至少一个开口。
[3] 3.如权利要求 1所述的一种高光效球形无电极荧光灯, 其特征在于: 所述隔 离装置釆用玻璃。
[4] 4.如权利要求 1所述的一种高光效球形无电极荧光灯, 其特征在于: 所述隔 离装置设置在等离子体电弧环路放电区靠近内胆侧。
[5] 5.如权利要求 1所述的一种高光效球形无电极荧光灯, 其特征在于: 所述隔 离装置内表面外表面或者同吋在内外表面上涂敷有荧光粉。
[6] 6.如权利要求 1所述的一种高光效球形无电极荧光灯, 其特征在于: 所述隔 离装置为玻璃管, 其一端与内胆的一端共同密封在灯泡外壳的开口端部, 另一端密封设置, 玻璃管的圆周处开设一个以上的开口。
[7] 7.如权利要求 6所述的一种高光效球形无电极荧光灯, 其特征在于: 所述开 口形状尺寸相同且等距离开设在玻璃管的圆周处。
[8] 8.如权利要求 1所述的一种高光效球形无电极荧光灯, 其特征在于: 所述隔 离装置为一玻璃筒, 所述玻璃筒套设在内胆的外侧, 具有上开口和下开口
, 所述玻璃筒固定在内胆上。
[9] 9.如权利要求 1所述的一种高光效球形无电极荧光灯, 其特征在于: 所述隔 离装置为一玻璃筒, 所述玻璃筒套设在内胆的外侧, 其下端固定在灯泡外 壳上, 上端开口。
[10] 10.如权利要求 1所述的一种高光效球形无电极荧光灯, 其特征在于: 所述 隔离装置为一玻璃筒, 所述玻璃筒上端密封在内胆的上方, 下端开口, 所 述玻璃筒固定在内胆上。
[I I] 11.如权利要求 1所述的一种高光效球形无电极荧光灯, 其特征在于: 所述 隔离装置为一具有双层玻璃的空心的玻璃筒, 该玻璃筒固定在内胆上, 具 有至少一个开口。
[12] 12.如权利要求 1所述的一种高光效球形无电极荧光灯, 其特征在于: 所述 隔离装置为一个以上的玻璃片, 所述玻璃片的固定连接在内胆上。
PCT/CN2008/070655 2008-04-01 2008-04-01 一种高光效球形无电极荧光灯 WO2009121224A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2008/070655 WO2009121224A1 (zh) 2008-04-01 2008-04-01 一种高光效球形无电极荧光灯

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2008/070655 WO2009121224A1 (zh) 2008-04-01 2008-04-01 一种高光效球形无电极荧光灯

Publications (1)

Publication Number Publication Date
WO2009121224A1 true WO2009121224A1 (zh) 2009-10-08

Family

ID=41134803

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2008/070655 WO2009121224A1 (zh) 2008-04-01 2008-04-01 一种高光效球形无电极荧光灯

Country Status (1)

Country Link
WO (1) WO2009121224A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1139992A (zh) * 1994-10-19 1997-01-08 菲利浦电子有限公司 照明单元、无电极低(气)压放电灯,及用于照明单元的放电容器
US5798618A (en) * 1993-09-30 1998-08-25 Diablo Research Corporation Electrodeless discharge lamp with control amalgam in the plasma
CN1272681A (zh) * 1999-05-03 2000-11-08 松下电器产业株式会社 无电极放电灯
JP2006108049A (ja) * 2004-10-08 2006-04-20 Matsushita Electric Ind Co Ltd Uvランプ
US20060108945A1 (en) * 2004-11-24 2006-05-25 Matsushita Electric Works Ltd. Electrodeless fluorescent lamp with stabilized operation at high and low ambient temperatures
CN200962414Y (zh) * 2006-10-25 2007-10-17 无锡斯达伯特电源技术有限公司 高频无极感应放电荧光灯

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5798618A (en) * 1993-09-30 1998-08-25 Diablo Research Corporation Electrodeless discharge lamp with control amalgam in the plasma
CN1139992A (zh) * 1994-10-19 1997-01-08 菲利浦电子有限公司 照明单元、无电极低(气)压放电灯,及用于照明单元的放电容器
CN1272681A (zh) * 1999-05-03 2000-11-08 松下电器产业株式会社 无电极放电灯
JP2006108049A (ja) * 2004-10-08 2006-04-20 Matsushita Electric Ind Co Ltd Uvランプ
US20060108945A1 (en) * 2004-11-24 2006-05-25 Matsushita Electric Works Ltd. Electrodeless fluorescent lamp with stabilized operation at high and low ambient temperatures
CN200962414Y (zh) * 2006-10-25 2007-10-17 无锡斯达伯特电源技术有限公司 高频无极感应放电荧光灯

Similar Documents

Publication Publication Date Title
WO2001035446A1 (fr) Lampe sans electrode
WO2008154797A1 (fr) Luminaire à énergie magnétique doté d'un générateur à énergie magnétique incorporé
KR100934323B1 (ko) 세라믹 아크튜브를 이용한 제논 램프
JPH08171886A (ja) 無電極放電ランプ
CN201160067Y (zh) 高频无极荧光灯
WO2009121224A1 (zh) 一种高光效球形无电极荧光灯
CN201796860U (zh) 一种改进型内耦合无极荧光灯
JP3611569B2 (ja) 電球形無電極放電ランプおよび無電極放電ランプ点灯装置
CN203481188U (zh) 具有辅助加热装置的无极灯灯管
CN201185181Y (zh) 一种高光效球形无电极荧光灯
CN201638791U (zh) 无极灯
CN201126810Y (zh) 内置高低电磁场强耦合无极灯
CN205828349U (zh) 自镇流无极灯
CN201527962U (zh) 低频无极灯
KR100896035B1 (ko) 고효율 무전극 램프
CN203800014U (zh) 中空螺旋管式线圈新型节能无极灯
WO2023060894A1 (zh) 2650kHz射频感应真空紫外灯
CN204464240U (zh) 新型高频无极灯
JP2005158356A (ja) 無電極放電ランプ
JP2002324520A (ja) 無電極放電ランプ
CN203055865U (zh) 适宜在井场固控系统中使用的照明光源
CN201311914Y (zh) 小型无极放电灯
CN201156524Y (zh) 高频无极磁能灯工厂灯具
CN201191601Y (zh) 无灯丝离子荧光灯
JP2007273137A (ja) 無電極放電灯装置、およびそれを用いた照明器具

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08715387

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08715387

Country of ref document: EP

Kind code of ref document: A1