WO2009120046A2 - 무브러시 진동모터 - Google Patents

무브러시 진동모터 Download PDF

Info

Publication number
WO2009120046A2
WO2009120046A2 PCT/KR2009/001585 KR2009001585W WO2009120046A2 WO 2009120046 A2 WO2009120046 A2 WO 2009120046A2 KR 2009001585 W KR2009001585 W KR 2009001585W WO 2009120046 A2 WO2009120046 A2 WO 2009120046A2
Authority
WO
WIPO (PCT)
Prior art keywords
vibration motor
bracket
cogging torque
rotor
coil
Prior art date
Application number
PCT/KR2009/001585
Other languages
English (en)
French (fr)
Other versions
WO2009120046A3 (ko
Inventor
김삼종
Original Assignee
백명호
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020080029061A external-priority patent/KR100979954B1/ko
Priority claimed from KR1020080050527A external-priority patent/KR100992100B1/ko
Priority claimed from KR1020080050528A external-priority patent/KR100992099B1/ko
Priority claimed from KR1020080051155A external-priority patent/KR101011444B1/ko
Priority claimed from KR1020080080327A external-priority patent/KR100979720B1/ko
Application filed by 백명호 filed Critical 백명호
Priority to CN200980111938.8A priority Critical patent/CN101981788B/zh
Priority to JP2011501725A priority patent/JP2011516021A/ja
Publication of WO2009120046A2 publication Critical patent/WO2009120046A2/ko
Publication of WO2009120046A3 publication Critical patent/WO2009120046A3/ko

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/06Means for converting reciprocating motion into rotary motion or vice versa
    • H02K7/061Means for converting reciprocating motion into rotary motion or vice versa using rotary unbalanced masses
    • H02K7/063Means for converting reciprocating motion into rotary motion or vice versa using rotary unbalanced masses integrally combined with motor parts, e.g. motors with eccentric rotors

Definitions

  • the present invention relates to a brushless vibration motor, and more particularly, an object of the present invention relates to a vibration motor capable of forming a cogging torque generating portion in the thickness of a non-magnetic body.
  • BLDC brushless DC
  • the brushless vibration motor includes a case 10, a bracket 20 ′, a stator 30, a rotor 40, a fixed shaft 50, and a cogging torque generator 62.
  • the case 10 is configured to cover the bracket 20 'and the fixed shaft 50 in the form of a cap.
  • the bracket 20 ' is made of a nonmagnetic material, and a rib 22 in which the fixed shaft 50 is inserted is formed at the center thereof.
  • the stator 30 has a structure fixed to the upper surface of the bracket 20 ', which has a trapezoidal shape on the upper surface of the circuit board 31 and generates one or more coils 32 and a Hall element. And a controller 33 in the form of a chip which functions as a driving IC.
  • control unit 33 is configured to detect the polarity of the magnet 42 to be described later to generate an electrical signal, and determine the current direction of the coil 32 according to the polarity of the magnet 42.
  • the rotor 40 is provided with a rotor yoke 44, a magnet 42 having a predetermined number of poles, a weight 43, and a metal bearing 52 on a rotor body 41 made of a resin material. It is rotated by an action and provided in the case 10.
  • the magnet 42 is configured to interact with the electromagnetic force generated in the coil 32 to generate a force such as attractive force and repulsive force and to rotate at a predetermined speed by this force.
  • the metal bearing 52 is coupled to the center of the rotor yoke 44 and fitted to the fixed shaft 40 to minimize frictional resistance when the rotor 40 rotates.
  • the weight 43 functions to generate an oscillation force by providing an eccentric mass when the rotor 40 rotates.
  • One end of the fixed shaft 50 is fitted into the rib 22 provided at the 20 ', and the other end is fixed between the shaft grooves of the case 10, so that the rotor 40 can be rotated.
  • the slide is supported by the washer 51.
  • the cogging torque generation unit 62 serves to smoothly start the engine without stopping the starting point by stopping the rotor 40 at a predetermined position, so that a predetermined equal interval is maintained on the upper surface of the bracket 20 '. Bound and made of soft magnetic material.
  • the cogging torque generating unit 62 is designed to have a number (two) maintaining equal intervals of 180 °, and when the magnets 42 are six poles, the cogging torque generating unit ( 62) is designed as a number (three) to maintain an equal interval of 120 °.
  • each cogging torque generating unit 62 maintaining a predetermined equal interval is provided with a protrusion 61 'for reinforcing the strength of the cogging torque, while the central portion of the coiling coil 32 is wound.
  • the installation position is configured to deviate by a predetermined angle from the central portion of the.
  • the conventional brushless vibration motor includes a non-magnetic bracket 20 'and a soft magnetic material (or ferromagnetic material) having a cogging torque generating portion 62 as a separate component, and these are laminated by welding or adhesive to be bonded. Therefore, the number of parts, accordingly, it is difficult to thin, there is a problem that the assembly process is complicated.
  • the circuit board 31 has a problem in that it is inconvenient to handle, such as the part price increases according to the width, the thin and flexible film form easily bent during handling in the motor assembly process, considering that the price is expensive.
  • the present invention has been made to solve the above problems, an object of the present invention to provide a vibration motor that can form a cogging torque generating portion in the thickness of the non-magnetic body.
  • Another object of the present invention is to fix the coil to the bracket so as not to overlap the circuit board to reduce the material cost according to the size reduction of the circuit board, the process is simplified by fixing the coil directly to the bracket, the thickness of the coil by the thickness of the circuit board It can be increased to generate a higher rotational torque and thereby to provide a vibration motor that can improve the rotational vibration force.
  • the vibration motor according to the present invention includes a stator, a rotor, and a case.
  • the stator includes a nonmagnetic body and a cogging torque, which is a magnetic body accommodated within the thickness of the body.
  • a bracket configured to be negative, at least one coil fixed to an upper surface of the bracket to generate an electromagnetic force so that the rotor rotates, and a circuit board fixed directly to the upper surface of the bracket without overlapping the coil.
  • the body is formed of austenitic stainless steel that is a nonmagnetic material
  • the cogging torque generating portion is preferably formed by transforming to a magnetic material by reducing the thickness by cold processing a specific portion of the body.
  • the body is formed with an opening
  • the cogging torque generating unit is preferably a plurality of cogging torque pieces coupled to the opening.
  • the cogging torque segment is made of a linear
  • the cogging torque segment and the opening may be formed in the concave-convex shape of the mutual coupling surface.
  • circuit board is preferably formed in the shape of any one of a semi-circular, rectangular or polygonal within half of the area of the upper surface of the bracket is located inside the bracket.
  • the rotor may include a disc-shaped rotor yoke having a shaft coupling portion through which a fixed shaft penetrates at a center thereof, and a protrusion protruding upwardly; A metal bearing inserted into the shaft coupling part; A weight through which the protrusion penetrates and is coupled to one side of the upper surface of the rotor yoke; And a magnet provided on the bottom surface of the rotor yoke.
  • the protrusion of the rotor yoke is preferably riveted or caulking (coulking) in the state penetrating the through hole of the weight.
  • At least one stopper is formed at an upper end or a lower end of the axial coupling part to protrude inward to prevent separation of the metal bearing.
  • a jaw is formed at the top or bottom of the metal bearing in close contact with the stopper.
  • the process is simplified by fixing the coil directly to the bracket, and the thickness of the coil can be increased by the thickness of the circuit board. There is an effect that can generate a higher rotational torque and thereby improve the rotational vibration force.
  • the weight can also be easily coupled to the rotor yoke.
  • 1 and 2 show a conventional brushless vibration motor.
  • 3 to 5 show an embodiment according to the present invention.
  • FIG. 6 shows the rotor of the embodiment shown in FIG. 3.
  • Figure 11 shows the production rate of processed organic martensite according to the cold rolling rate for each stainless steel type.
  • an embodiment 100 according to the present invention includes a stator 130, a rotor 120, and a case 110.
  • the case 110 is configured to cover the stator 130 and the rotor 120 in the form of a cap.
  • the stator 130 includes a bracket 131, a cogging torque segment 132, an insulating coating layer 133, a circuit board 134, a coil 136, and a fixed shaft 137.
  • the bracket 131 has ribs 138 through which the fixed shaft 137 penetrates at the center of the upper surface thereof, and a plurality of openings are formed around the fixed shaft 137 and a cogging torque segment is formed in the opening. 132 is joined by indentation, welding or adhesive.
  • the rib 138 is integrally formed in the body of the bracket 131, the structural strength is improved, slimming is possible, and cogging torque is smoothly generated.
  • bracket 131 has a body having an opening formed of a nonmagnetic material, and the cogging torque segment 132 is formed of a magnetic material.
  • the cogging torque segment 132 and the opening are two linearly arranged at equal distances from the center of the rib 138 of the bracket 131, and the extension lines thereof are arranged in parallel.
  • the circuit board 134 is fixed to the upper surface of the bracket 131 so as not to overlap with the coils 136, and the shape of the circuit board 131 is formed in any one of a quadrangle or a polygon. In this embodiment, the rectangular shape is formed. At this time, the use area of the circuit board 134 has an advantage that can be reduced by more than half.
  • the circuit board 134 is provided with a driving IC (Integrated Circuit) (135) having a built-in hall sensor except for the coil 136 on the upper surface and a hole corresponding to the rib 138 is formed through the circuit board.
  • a driving IC Integrated Circuit
  • the substrate 134 is fixed, a hole is inserted into the rib 138 to fix the position.
  • the coil 136 is not bonded to the circuit board 134, the area is reduced, and thus the material cost can be reduced even when using a flexible PCB. This makes it easy to reduce the material cost.
  • At least one coil 136 is fixed to the upper surface of the bracket 131 without overlapping the circuit board 134 so that at least one of the coils 136 may be generated to generate an electromagnetic force to rotate the rotor 120, in this embodiment Illustrates that two are provided.
  • the coil 136 is first coated with an insulating paint or an adhesive on the upper surface of the bracket 131 and then adhesively fixed.
  • the stator 130 of the vibration motor of the present embodiment reduces the size of the circuit board 134 by attaching and fixing the circuit board 134 and the coil 136 so as not to overlap each other when they are attached to the upper surface of the bracket 131. This reduces material costs.
  • This part of the circuit board 134 excluding the coil 136 is not limited by the thickness of the circuit board 134, which is relatively economical because it uses a relatively inexpensive thick hard PCB instead of the expensive thin flexible PCB. This is a benefit.
  • the process is simplified by directly adhering the coil 136 to the bracket 131, and since the height is removed by the thickness of the circuit board 134 at the bottom of the coil 136, the thickness of the coil and the circuit board is reduced. There is a margin to increase the winding thickness of the coil 136 to generate a higher rotational torque thereby improving the rotational vibration force.
  • the rotor 120 of the present embodiment includes a rotor yoke 123, a metal bearing 122 inserted into an axial coupling part, and a weight coupled to one side of an upper surface of the rotor yoke 123. 124 and the magnet 121.
  • the rotor yoke 123 is formed in a disc shape, and the shaft coupling portion through which the fixed shaft 137 passes is formed integrally with the rotation center.
  • the metal bearing 122 is fitted to the fixed shaft 137 in a state of firmly press-fitting the shaft coupling portion to minimize frictional resistance when the rotor 120 rotates.
  • the stopper 123b is formed at the upper end of the shaft coupling part to protrude inwardly (inner diameter direction) to prevent the metal bearing 122 from being separated upward by an external impact.
  • the stopper 123b may be formed in various ways. However, in the present embodiment, the stopper 123b may be formed by pressing a predetermined portion of the round part with a press while the round part is formed at the upper end of the shaft coupling part. Can be.
  • a jaw 122a is formed at an upper end of the metal bearing 122 to correspond to the stopper 123b to which the stopper 123b is in close contact.
  • the shaft coupling portion is formed such that its inner circumferential surface has a sufficient height to cover the entire outer circumferential surface of the metal bearing 122.
  • the metal bearing 122 and the axial coupling portion has a large adhesion area, so that the metal bearing 122 can be more firmly coupled and fixed.
  • the rotor yoke 123 and the shaft coupling portion is formed integrally, it can be seen that the rotor yoke 123 is connected to the upper end of the shaft coupling portion, it is formed stepped downward.
  • the reason for forming in this way is to provide a coupling space of the weight 124.
  • the weight 124 may be provided within the thickness of the shaft coupling portion, thereby making it possible to reduce the thickness and improve the bonding strength.
  • the rotor yoke 123 and the weight 124 are formed with rivet holes 123a and 124a at corresponding positions, respectively. According to the present embodiment, the weights 124 can be easily coupled by riveting the rivet holes 123a and 124a.
  • a rib through which a fixed shaft penetrates is integrally formed, and is press-fitted to the opening 131a of the body 131 and the opening 131a of the body 131.
  • Cogging torque intercept 132a.
  • the openings 131a and the cogging torque segments 132a each have three linear shapes, and the extension lines of the cogging torque segments 132a are arranged in a triangular shape.
  • the body 131 is made of a nonmagnetic material, and the cogging torque segment 132a is formed of a magnetic material.
  • the cogging torque segment 132a and the opening 131a are formed in a concave-convex shape with each other. That is, a protrusion is formed at the edge of the cogging torque segment 132a, and a groove is formed in the opening 131a of the body 131 corresponding to the shape and size of the protrusion.
  • the coupling strength between the cogging torque segment 132a and the opening 131a is improved. Therefore, the separation can be prevented even during an external impact such as a drop.
  • the magnetic flux density is higher than when the uneven surface is not formed in the cogging torque segment 132a, thereby improving the cogging torque.
  • the opening 131b and the cogging torque segment 132b each have four linear shapes, and the extension lines of the cogging torque segments 132b are arranged in a quadrangular shape.
  • the non-magnetic body 131 is formed of austenitic stainless steel, the cogging torque generating portion 131c by cold-processing a specific portion of the body 131 to reduce the thickness It is formed by transforming into a magnetic body.
  • austenitic stainless steel is a nonmagnetic material having a permeability of 2 or less, although there is a difference for each grade.
  • some metastable austenite is transformed into strain-induced martensite and becomes magnetic. It is known that the processed organic martensite phase is generated as the austenite becomes unstable, and the austenitic stainless steel increases with the amount of deformation when deformed by external stress, and the permeability also increases.
  • FIG. 11 shows the processing organic martensite generation rate for each steel type according to cold rolling rate.
  • SUS304 Cr-8Ni-Fe alloy
  • the processing organic martensite production rate is changed according to the thickness reduction by cold rolling. It can be seen that the investment rate increases with the increase.
  • the present embodiment uses the characteristics of the austenitic stainless steel, and forms the body 131 of austenitic stainless steel and cold forges a specific portion of the body 131 to form a magnetic material.
  • the cogging torque generation unit 131c is formed by transforming.
  • the formation of the cogging torque generating unit 131c as described above is to cold-form due to compression, tension, etc. by pressing a specific portion of the body 131.
  • the press working is performed at a temperature below room temperature to reduce the thickness by 30% or more.
  • the magnetic body portion and the non-magnetic body portion may be integrally formed as the same material.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)
  • Brushless Motors (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

본 발명은 무브러시 진동모터에 관한 것으로서, 보다 상세하게는 본 발명의 목적은 비자성체인 몸체의 두께 내에 코깅토크 발생부를 형성할 수 있는 진동모터에 관한 것이다. 본 발명에 의한 진동모터는 스테이터와, 로터와, 케이스를 포함하고, 특히, 상기 스테이터는, 비자성체인 몸체와, 상기 몸체의 두께 내에 수용되는 자성체인 코깅토크 발생부로 구성되는 브라켓과, 상기 브라켓의 상면에 고정되어 상기 로터가 회전되도록 전자기력을 발생하는 적어도 하나의 코일과, 상기 코일과 중첩되지 않으면서 상기 브라켓의 상면에 직접 고정되는 회로기판을 포함한다.

Description

 무브러시 진동모터
본 발명은 무브러시 진동모터에 관한 것으로서, 보다 상세하게는 본 발명의 목적은 비자성체인 몸체의 두께 내에 코깅토크 발생부를 형성할 수 있는 진동모터에 관한 것이다.
근래에는 이동통신단말기의 진동모드의 사용 빈도 증가에 따른 고수명화, 고신뢰성의 요구가 증대되고 있다.
종래에도 진동모드를 수행하기 위한 진동모터들이 다양하게 연구, 개시되었다. 일예로, 무브러시 DC(BLDC) 진동모터를 도 1 및 도 2를 참조하여 설명한다.
도시된 바와 같이, 무브러시 진동모터는 케이스(10), 브라켓(20'), 고정자(30), 로터(40), 고정축(50) 그리고, 코깅토크 발생부(62)를 포함한다.
상기 케이스(10)는 캡 형태로서 상기 브라켓(20')과 고정축(50)을 덮도록 구성된다.
상기 브라켓(20')은 비자성체로 그 중앙에 상기 고정축(50)이 삽입되는 리브(22)가 형성된다.
상기 고정자(30)는 브라켓(20')의 상면에 고정되는 구조로, 이는 회로기판(31)의 상면에 사다리꼴 형상을 가지면서 소정의 전자기력을 발생하는 하나 이상의 코일(32)과, 홀소자와 구동IC의 기능을 하는 칩 형태의 제어부(33)를 포함한다.
이때, 상기 제어부(33)는 후술하는 마그네트(42)의 극성을 감지하여 전기신호를 발생시키고, 상기 마그네트(42)의 극성에 따라 상기 코일(32)의 전류방향을 결정하도록 구성된다.
상기 로터(40)는 수지재의 로터몸체(41)에 로터요크(44)와 소정의 극수를 가진 마그네트(42)와 웨이트(43)와 메탈베어링(52)이 구비되어, 상기 스테이터와의 상호 자기작용에 의해 회전하며, 상기 케이스(10)내에 마련된다.
상기 마그네트(42)는 코일(32)에서 발생되는 전자기력과 상호 작용하여 인력 및 척력 등의 힘을 발생시키고 이 힘에 의해 소정속도로 회전하도록 구성된 것이다.
상기 메탈베어링(52)은 상기 로터요크(44)의 중심에 결합되며, 상기 고정축(40)에 끼워져 로터(40)가 회전할때 마찰저항을 최소화시킨다.
상기 웨이트(43)는 로터(40)가 회전시 편심질량을 제공하여 진동력을 발생시키는 기능을 한다.
상기 고정축(50)은 상기 (20')에 마련된 리브(22)에 일단이 끼워지고, 타단은 케이스(10)의 축홈 사이에 고정되어, 상기 로터(40)의 회전이 가능하도록 구성되며, 와셔(51)에 의해 미끄럼이 지지된다.
상기 코깅토크 발생부(62)는 로터(40)를 일정위치에 정지시켜 기동시 불기동점이 없이 기동이 원활하도록 하는 역할을 하며, 상기 브라켓(20')의 상면에 소정의 등간격이 유지되도록 결합되고, 연자성체로 이루어진다.
마그네트(42)가 4극일 경우 상기 코깅토크 발생부(62)는 180°의 등간격을 유지하는 개수(2개)로 설계되고, 상기 마그네트(42)가 6극일 경우에는 상기 코깅토크 발생부(62)는 120°의 등간격을 유지하는 개수(3개)로 설계된다.
그리고, 상기와 같이 소정의 등간격을 유지하는 각각의 코깅토크 발생부(62)에는 코깅 토크의 세기를 강화하기 위한 돌기부(61')가 구성되는 한편, 그 중심부분은 권선된 코일(32)의 중심부분에서 소정각도 벗어나도록 그 설치위치가 설정되도록 구성하였다.
그러나 종래의 무브러시 진동모터는 비자성체인 브라켓(20')과, 연자성체(또는 강자성체)의 코깅토크 발생부(62)를 별도 부품으로 구비하고, 이들을 용접이나 접착제로 적층하여 결합하여야 한다. 따라서 부품수가 많고, 그에 따라 박형화가 어려우며, 조립공정이 복잡하다는 문제점이 있다.
또한 상기 회로기판(31)은 가격이 고가임을 감안할 때 그 넓이에 따라 부품 가격이 올라가며, 얇고 유연한 필름 형태라서 모터 조립공정에서 취급시 쉽게 휘어지는 등 취급이 불편한 문제점이 있었다.
또한, 구조상 상기 코일(32)을 회로기판(31)에 접착 고정시키고 이것을 다시 브라켓(20') 상면에 접착 고정시키는 번거로운 공정을 유발하여 공정이 복잡해질 수밖에 없는 문제점이 있었다.
본 발명은 상술한 문제점을 해결하기 위하여 안출된 것으로서, 본 발명의 목적은 비자성체인 몸체의 두께 내에 코깅토크 발생부를 형성할 수 있는 진동모터를 제공함에 있다.
본 발명의 다른 목적은 코일을 회로기판에 중첩되지 않도록 브라켓에 고정시켜 회로기판의 사이즈 축소에 따른 재료비가 절감되고, 코일을 브라켓에 직접 고정시켜 공정이 단순화되며, 회로기판의 두께만큼 코일의 두께를 증가시킬 수 있어 더욱 높은 회전 토크를 발생시키고 이에 회전 진동력을 향상시킬 수 있는 진동모터를 제공함에 있다.
위와 같은 기술적 과제를 해결하기 위하여 본 발명에 의한 진동모터는 스테이터와, 로터와, 케이스를 포함하고, 특히, 상기 스테이터는, 비자성체인 몸체와, 상기 몸체의 두께 내에 수용되는 자성체인 코깅토크 발생부로 구성되는 브라켓과, 상기 브라켓의 상면에 고정되어 상기 로터가 회전되도록 전자기력을 발생하는 적어도 하나의 코일과, 상기 코일과 중첩되지 않으면서 상기 브라켓의 상면에 직접 고정되는 회로기판을 포함한다.
또한 상기 몸체는 비자성체인 오스테나이트계 스테인리스강으로 형성되며, 상기 코깅토크 발생부는 상기 몸체의 특정부위를 냉간가공하여 두께를 감소시킴으로써 자성체로 변태되어 형성되는 것이 바람직하다.
또한 상기 몸체에는 개구부가 형성되며, 상기 코깅토크 발생부는 상기 개구부에 결합되는 복수의 코깅토크 절편인 것도 바람직하다.
또한 상기 코깅토크 절편은 선형으로 이루어지고, 상기 코깅토크 절편과 개구부는 상호 결합면이 요철형상으로 이루어질 수 있다.
또한 상기 회로기판은 상기 브라켓의 내부에 위치되는 형상이 상기 브라켓 상면의 면적 절반 이내에서 반원형 또는 사각형 또는 다각형 중 어느 하나의 형태로 형성되는 것이 바람직하다.
또한 상기 로터는, 중심에 고정축이 관통하는 축결합부가 형성되고, 상방으로 돌출된 돌출부가 구비되는 원판형의 로터요크; 상기 축결합부에 삽입되는 메탈베어링; 상기 돌출부가 관통하는 관통홀이 형성되어 상기 로터요크의 상면 일측에 결합되는 웨이트; 및 상기 로터요크의 저면에 구비되는 마그네트;를 포함하는 것이 바람직하다.
또한 상기 로터요크의 돌출부가 상기 웨이트의 관통홀을 관통한 상태에서 리벳결합 또는 코킹(caulking)결합되는 것이 바람직하다.
또한 상기 축결합부의 상단 또는 하단에는 내측으로 돌출형성되어 상기 메탈베어링의 이탈을 방지하는 적어도 1 이상의 스토퍼가 형성되는 것이 바람직하다.
또한 상기 메탈베어링의 상단 또는 하단에는 상기 스토퍼가 밀착되는 턱이 형성되는 것이 바람직하다.
본 발명에 따르면, 비자성체인 몸체의 두께 내에 코깅토크 발생부를 형성할 수 있는 효과가 있다.
또한 코일을 회로기판에 중첩되지 않도록 브라켓에 고정시켜 회로기판의 사이즈 축소에 따른 재료비가 절감되고, 코일을 브라켓에 직접 고정시켜 공정이 단순화되며, 회로기판의 두께만큼 코일의 두께를 증가시킬 수 있어 더욱 높은 회전 토크를 발생시키고 이에 회전 진동력을 향상시킬 수 있는 효과가 있다.
또한 메탈베어링을 견고하게 결합하고, 낙하충격에 의해 이탈되는 것을 방지할 수 있다.
또한 웨이트를 용이하게 로터요크에 결합할 수 있다.
도 1 및 도 2는 종래 무브러시 진동모터를 도시한 것이다.
도 3 내지 도 5는 본 발명에 의한 실시예를 나타낸 것이다.
도 6은 도 3에 도시된 실시예의 로터를 나타낸 것이다.
도 7 및 도 8는 본 발명에 의한 브라켓의 다양한 실시예를 나타낸 것이다.
도 9 및 도10은 본 발명에 의한 브라켓의 다른 실시예를 나타낸 것이다.
도 11는 스테인리스 강종별 냉간압연율에 따른 가공유기 마르텐사이트의 생성율을 나타낸 것이다.
이하, 첨부된 도면을 참조하여 본 발명에 의한 실시예의 구성 및 작용을 설명한다.
도 3 내지 도 5를 참조하면, 본 발명에 의한 실시예(100)는 스테이터(130)와, 로터(120)와 케이스(110)를 포함한다.
상기 케이스(110)는 캡 형태로서 스테이터(130)와 로터(120)를 덮도록 구성된다.
상기 스테이터(130)는 브라켓(131)과, 코깅토크절편(132)과, 절연코팅층(133)과, 회로기판(134)과, 코일(136)과 고정축(137)을 포함한다.
상기 브라켓(131)은 상면 중심부에 고정축(137)이 관통하는 리브(Rib,138)가 일체 형성되고 상기 고정축(137)을 중심으로 외측에 개구부가 다수 형성되며 상기 개구부에 코깅토크 절편(132)이 압입, 용접 또는 접착제에 의해 결합된다.
이때, 상기 리브(138)가 브라켓(131)의 몸체에 일체 형성되기 때문에, 구조적으로 강도가 향상되고, 슬림화가 가능할 뿐만 아니라 코깅토크가 원활하게 발생된다.
그리고 상기 브라켓(131)은 개구부가 형성된 몸체가 비자성체로 이루어지고, 상기 코깅토크 절편(132)은 자성체로 형성된다.
본 실시예에서는 상기 코깅토크 절편(132)과 개구부가 상기 브라켓(131)의 리브(138) 중심을 기점으로 동일거리인 2개가 선형으로 배치되되 그 연장선이 평행을 이루도록 위치된다.
상기 회로기판(134)은 상기 브라켓(131)의 상면에 상기 코일(136)들과 중첩되지 않도록 고정되되 상기 브라켓(131)의 내부에 위치되는 형상이 사각형 또는 다각형 중 어느 하나의 형태로 형성되며, 본 실시 예에서는 사각형 형태로 형성된다. 이때, 상기 회로기판(134)의 사용면적은 기존보다 절반 이상 축소시킬 수 있는 이점이 있다.
더욱이, 상기 회로기판(134)은 상면에 상기 코일(136)을 제외한 홀센서가 내장된 구동IC(135: Integrated Circuit)가 실장되고 선단에 상기 리브(138)에 상응하는 홀이 관통 형성되므로 회로기판(134) 고정시 리브(138)에 홀을 삽입한 후 위치 고정시킨다. 결국, 상기 회로기판(134) 상에 상기 코일(136)은 접착시키지 않음에 따라 면적이 축소되므로 연성 PCB를 사용하여도 이에 재료비를 절감할 수 있으며, 상대적으로 저가인 하드 PCB를 사용하면 더더욱 작업성이 용이해지고 재료비를 절감할 수 있게 된다.
상기 코일(136)은 상기 회로기판(134)과 중첩되지 않으면서 상기 브라켓(131)의 상면에 직접 고정되어 로터(120)가 회전되도록 전자기력을 발생할 수 있도록 적어도 하나가 고정되며, 본 실시 예에서는 2개가 구비되는 것으로 예시한다.
이때, 상기 코일(136)은 상기 브라켓(131)의 상면에 우선 절연도료 또는 접착제 등으로 코팅한 후 접착 고정하는 것이 바람직하다.
그러므로 본 실시 예의 진동모터의 스테이터(130)는 상기 회로기판(134) 및 코일(136)을 상기 브라켓(131)의 상면에 부착할 때 상호 중첩되지 않도록 부착 고정함으로써 회로기판(134)의 사이즈 축소에 따라 재료비가 절감된다.
이는 상기 코일(136)을 제외한 구동IC(135)를 배치하는 회로기판(134)의 해당 부위가 두께의 제약을 받지 않는 부분이라서 고가의 얇은 연성PCB 대신 상대적으로 저가의 두꺼운 하드PCB를 사용하므로 경제적으로 이득이 된다.
그리고 상기 코일(136)을 브라켓(131)에 직접 접착시켜 공정이 단순해지며, 기존에 코일과 회로기판의 적층 두께에서 코일(136) 바닥의 회로기판(134) 두께만큼 높이가 제거되므로 상대적으로 코일(136)의 권선 두께를 그만큼 증가시킬 수 있는 여유가 생겨 더욱 높은 회전 토크를 발생시키고 이로 인하여 회전 진동력을 향상시킬 수 있다.
또한, 상기 회로기판(134) 및 코일(136)을 동시에 상기 브라켓(131)에 부착시켜 공정 단순화가 가능한 이점이 있다.
도 5 및 도 6을 참조하면, 본 실시예의 로터(120)는 로터요크(123)와, 축결합부에 삽입되는 메탈베어링(122)과, 상기 로터요크(123)의 상면 일측에 결합되는 웨이트(124)와, 마그네트(121)로 이루어진다.
상기 로터요크(123)는 원판형으로 형성되며, 회전중심에 고정축(137)이 관통하는 축결합부가 일체형성된다.
상기 메탈베어링(122)은 상기 축결합부에 견고하게 압입된 상태에서 고정축(137)에 끼워져 로터(120)가 회전할 때 마찰저항을 최소화시킨다.
특히, 상기 축결합부의 상단에는 내측(내경방향)으로 돌출형성되어 외부충격에 의해 상기 메탈베어링(122)이 상방으로 이탈되는 것을 방지하도록 스토퍼(123b)가 형성되어 있음을 알 수 있다. 상기 스토퍼(123b)를 형성하는 방법은 여러가지가 있을 수 있으나, 본 실시예에서는 상기 축결합부의 상단에 라운드부를 형성한 상태에서, 상기 라운드부의 소정 부위를 프레스로 가압함으로써 스토퍼(123b)를 형성할 수 있다.
또한 상기 스토퍼(123b)와 대응되어 상기 메탈베어링(122)의 상단에는 상기 스토퍼(123b)가 밀착되는 턱(122a)이 형성된다.
또한 축결합부는 그 내주면이 상기 메탈베어링(122)의 외주면 전체를 감쌀 수 있도록 충분한 높이를 갖도록 형성한다. 이와 같이 형성하면 상기 메탈베어링(122)과 축결합부의 밀착면적이 커지기 때문에 메탈베어링(122)을 보다 견고하게 결합, 고정할 수 있는 것이다.
또한 상기 로터요크(123)와 축결합부는 일체형성되되, 상기 로터요크(123)는 상기 축결합부의 상단에 연결되고, 하측으로 단차지게 형성됨을 알 수 있다. 이와 같이 형성하는 이유는 상기 웨이트(124)의 결합공간을 제공하기 위한 것이다. 다시 말해, 상기 축결합부의 두께 내에서 상기 웨이트(124)를 구비할 수 있어 박형화가 가능하면서도 결합강도를 향상시킬 수 있다.
상기 로터요크(123)와 웨이트(124)에는 각각 상응되는 위치에 리벳공(123a,124a)이 형성되어 있음을 알 수 있다. 본 실시예는 이러한 리벳공(123a,124a)들을 일치시킨 후, 리벳팅함으로써 매우 용이하게 웨이트(124)를 결합시킬 수 있다.
도 7, 도 8, 도 9 및 도 10은 브라켓의 다양한 실시예를 나타낸 것이다.
도 7를 참조하면, 본 발명에 의한 일실시예는, 고정축이 관통하는 리브가 일체형성되고 개구부(131a)가 형성된 몸체(131)와, 상기 몸체(131)의 개구부(131a)에 압입 결합되는 코깅토크 절편(132a)으로 이루어진다.
상기 개구부(131a)와 코깅토크 절편(132a)은 각각 3개의 선형으로 이루어지며, 각 코깅토크 절편(132a)의 연장선이 3각형을 이루도록 배치된다.
상기 몸체(131)는 비자성체로 이루어지고, 상기 코깅토크 절편(132a)은 자성체로 형성된다.
특히, 상기 코깅토크 절편(132a)과 개구부(131a)는 상호 결합면이 요철형상으로 형성된다는 것을 알 수 있다. 즉, 코깅토크 절편(132a)의 테두리에 돌기가 형성되어 있고, 상기 돌기의 형상 및 크기에 대응하여 상기 몸체(131)의 개구부(131a)에는 홈이 형성되어 있다.
이러한 구성으로 인해, 코깅토크 절편(132a)과 개구부(131a)의 결합강도가 향상된다. 따라서 낙하 등의 외부충격시에도 분리되는 것을 방지할 수 있다. 또한 코깅토크 절편(132a)에 요철면이 형성되지 아니한 경우보다 자속밀도가 높아져 코깅토크가 향상된다.
도 8를 참조하면, 개구부(131b)와 코깅토크 절편(132b)은 각각 4개의 선형으로 이루어지며, 각 코깅토크 절편(132b)의 연장선이 4각형을 이루도록 배치된다.
도 9 및 도 10를 참조하면, 비자성체인 몸체(131)는 오스테나이트계 스테인리스강으로 형성되며, 코깅토크발생부(131c)는 상기 몸체(131)의 특정부위를 냉간가공하여 두께를 감소시킴으로써 자성체로 변태되어 형성된 것이다.
한편, 오스테나이트계 스테인리스강은 그레이드별 차이가 있으나 통상적으로 투자율 2 이하의 비자성체이다. 그러나 냉간가공에 의하여 일부 준안정 오스테나이트(austenite)가 가공유기 마르텐사이트(strain-induced martensite)로 변태하여 자성을 띠게 된다. 가공유기 마르텐사이트상은 오스테나이트가 불안정할수록 많이 생성되는 것으로 알려져 있으며, 상기 오스테나이트계 스테인리스강은 외부 응력에 의해 변형될 경우 변형량에 따라 증가하고, 투자율도 함께 높아진다.
도 11는 냉간압연율에 따른 강종별 가공유기 마르텐사이트 생성율을 나타낸 것으로서, 대표적인 오스테나이트계 스테인리스강인 SUS304(18Cr-8Ni-Fe합금)의 경우 냉간압연에 의해 두께 감소량에 따라 가공유기 마르텐사이트 생성율이 증가하고, 이와 함께 투자율도 함께 높아짐을 알 수 있다.
다시 도 10를 참조하면, 본 실시예는 이러한 오스테나이트계 스테인리스강의 특성을 이용한 것으로서, 몸체(131)를 오스테나이트계 스테인리스강으로 형성하고, 상기 몸체(131)의 특정부위를 냉간단조하여 자성체로 변태시켜 코깅토크 발생부(131c)를 형성하는 것이다.
위와 같이 코깅토크 발생부(131c)의 형성은 몸체(131)의 특정부위를 프레스 가공하여 압축, 인장 등으로 인해 냉간변형이 일어나게 한 것이다.
이 때, 프레스가공은 상온 이하의 온도에서 수행되어 두께를 30% 이상 감소시키는 것이 바람직하다. 다른 한편, 상기 코깅토크 발생부(131c)의 투자율을 10~1,000으로 하는 것이 바람직하다.
이와 같이, 본 실시예에서는 자성체부분과 비자성체부분이 동일재질로서 일체형성될 수 있는 것이다.

Claims (10)

  1. 스테이터와, 로터와, 케이스를 포함하는 진동모터에 있어서,
    상기 스테이터는,
    비자성체인 몸체와, 상기 몸체의 두께 내에 수용되는 자성체인 코깅토크 발생부로 구성되는 브라켓과,
    상기 브라켓의 상면에 고정되어 상기 로터가 회전되도록 전자기력을 발생하는 적어도 하나의 코일과,
    상기 코일과 중첩되지 않으면서 상기 브라켓의 상면에 직접 고정되는 회로기판을 포함하는 것을 특징으로 하는 진동모터.
  2. 제1항에 있어서,
    상기 몸체는 비자성체인 오스테나이트계 스테인리스강으로 형성되며, 상기 코깅토크 발생부는 상기 몸체의 특정부위를 냉간가공하여 두께를 감소시킴으로써 자성체로 변태되어 형성되는 것을 특징으로 하는 진동모터.
  3. 제1항에 있어서,
    상기 몸체에는 개구부가 형성되며, 상기 코깅토크 발생부는 상기 개구부에 결합되는 복수의 코깅토크 절편인 것을 특징으로 하는 진동모터.
  4. 제3항에 있어서,
    상기 코깅토크 절편은 선형으로 이루어지는 것을 특징으로 하는 진동모터.
  5. 제4항에 있어서,
    상기 코깅토크 절편과 개구부는 상호 결합면이 요철형상으로 이루어지는 것을 특징으로 하는 진동모터.
  6. 제1항에 있어서,
    상기 회로기판은 상기 브라켓의 내부에 위치되는 형상이 상기 브라켓 상면의 면적 절반 이내에서 반원형 또는 사각형 또는 다각형 중 어느 하나의 형태로 형성되는 것을 특징으로 하는 진동모터.
  7. 제1항에 있어서,
    상기 로터는,
    중심에 고정축이 관통하는 축결합부가 형성되고, 상방으로 돌출된 돌출부가 구비되는 원판형의 로터요크;
    상기 축결합부에 삽입되는 메탈베어링;
    상기 돌출부가 관통하는 관통홀이 형성되어 상기 로터요크의 상면 일측에 결합되는 웨이트; 및
    상기 로터요크의 저면에 구비되는 마그네트;를 포함하는 것을 특징으로 하는 진동모터.
  8. 제7항에 있어서,
    상기 로터요크의 돌출부가 상기 웨이트의 관통홀을 관통한 상태에서 리벳결합 또는 코킹(caulking)결합되는 것을 특징으로 하는 진동모터.
  9. 제7항에 있어서,
    상기 축결합부의 상단 또는 하단에는 내측으로 돌출형성되어 상기 메탈베어링의 이탈을 방지하는 적어도 1 이상의 스토퍼가 형성되는 것을 특징으로 하는 진동모터.
  10. 제9항에 있어서,
    상기 메탈베어링의 상단 또는 하단에는 상기 스토퍼가 밀착되는 턱이 형성되는 것을 특징으로 하는 진동모터.
PCT/KR2009/001585 2008-03-28 2009-03-27 무브러시 진동모터 WO2009120046A2 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN200980111938.8A CN101981788B (zh) 2008-03-28 2009-03-27 直流无刷振动电机
JP2011501725A JP2011516021A (ja) 2008-03-28 2009-03-27 ブラシレス振動モータ

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
KR10-2008-0029061 2008-03-28
KR1020080029061A KR100979954B1 (ko) 2008-03-28 2008-03-28 무브러시 진동모터의 브라켓 및 그 제조방법
KR1020080050527A KR100992100B1 (ko) 2008-05-30 2008-05-30 진동모터의 로터
KR10-2008-0050527 2008-05-30
KR10-2008-0050528 2008-05-30
KR10-2008-0051155 2008-05-30
KR1020080050528A KR100992099B1 (ko) 2008-05-30 2008-05-30 진동모터의 로터
KR1020080051155A KR101011444B1 (ko) 2008-05-30 2008-05-30 진동모터의 브라켓
KR1020080080327A KR100979720B1 (ko) 2008-08-18 2008-08-18 진동모터의 스테이터
KR10-2008-0080327 2008-08-18

Publications (2)

Publication Number Publication Date
WO2009120046A2 true WO2009120046A2 (ko) 2009-10-01
WO2009120046A3 WO2009120046A3 (ko) 2010-01-14

Family

ID=41114477

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/001585 WO2009120046A2 (ko) 2008-03-28 2009-03-27 무브러시 진동모터

Country Status (3)

Country Link
JP (1) JP2011516021A (ko)
CN (1) CN101981788B (ko)
WO (1) WO2009120046A2 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11843294B2 (en) * 2018-04-13 2023-12-12 Koninklijke Philips N.V. Motor for a personal care device
CN109038939B (zh) * 2018-07-13 2021-04-20 浙江省东阳市东磁诚基电子有限公司 一种永磁交流扁平振动马达及使用方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040060154A (ko) * 2002-12-30 2004-07-06 삼성전기주식회사 브러시리스 진동모터
KR20060022932A (ko) * 2004-09-08 2006-03-13 자화전자 주식회사 편평형 브러시리스 진동모터
KR20070046307A (ko) * 2005-10-31 2007-05-03 주식회사 모아텍 브러시리스 타입 편평형 진동모터

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0969422A (ja) * 1995-08-31 1997-03-11 Fujitsu Shintaa Kk 金属磁性材及びその製造方法
CN1592047A (zh) * 2003-09-05 2005-03-09 英福特伦株式会社 扁平型无芯振动电机

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040060154A (ko) * 2002-12-30 2004-07-06 삼성전기주식회사 브러시리스 진동모터
KR20060022932A (ko) * 2004-09-08 2006-03-13 자화전자 주식회사 편평형 브러시리스 진동모터
KR20070046307A (ko) * 2005-10-31 2007-05-03 주식회사 모아텍 브러시리스 타입 편평형 진동모터

Also Published As

Publication number Publication date
WO2009120046A3 (ko) 2010-01-14
CN101981788B (zh) 2013-03-27
JP2011516021A (ja) 2011-05-19
CN101981788A (zh) 2011-02-23

Similar Documents

Publication Publication Date Title
US9472997B2 (en) Resilient rotor assembly for interior permanent magnet motor
US6998742B2 (en) Axial-air-gap brushless vibration motor containing drive circuit
US7800274B2 (en) Thin stator, eccentric motor and axial air-gap brushless vibration motor equipped with the same
JP4186593B2 (ja) Dcブラシレスモータ及びそれを備えたdcポンプ
EP1870990A2 (en) Axial air-gap type motor
JP2000156961A (ja) 回転電気機器
JP2009521202A (ja) フラット型単相ブラシレスdcモータ
JP3125496U (ja) Bldc振動モーター
JPH11146617A (ja) ブラシレスdcモータ構造
JP2012222867A (ja) モータ
WO2018016839A1 (ko) 브러시리스 직류 진동 모터
WO2009120046A2 (ko) 무브러시 진동모터
EP1300931A3 (en) Brushless DC motor
US20100052457A1 (en) Methods and apparatus for fabrication of electric motors
KR20170045998A (ko) 로터 조립체 및 이를 포함하는 모터
JP4650707B2 (ja) 永久磁石形電動機の固定子及び永久磁石形電動機
JPS62230345A (ja) ブラシレスモ−タ
JP3741091B2 (ja) Dcブラシレスモータとそれを使用するシールレスポンプ
JPH10108441A (ja) モータ
JP3804271B2 (ja) スピンドルモータ
KR20190072894A (ko) 로터 및 이를 구비하는 모터
KR100992100B1 (ko) 진동모터의 로터
KR100979720B1 (ko) 진동모터의 스테이터
JP6035596B2 (ja) 電動機の回転子及び電動機並びに洗濯機
KR200237515Y1 (ko) 직류 무브러시 모터용 액슬 평형판

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980111938.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09723799

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2011501725

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09723799

Country of ref document: EP

Kind code of ref document: A2