WO2009119688A1 - Sealing material for liquid-crystal dropping process, vertical-conduction material, and liquid-crystal display element - Google Patents

Sealing material for liquid-crystal dropping process, vertical-conduction material, and liquid-crystal display element Download PDF

Info

Publication number
WO2009119688A1
WO2009119688A1 PCT/JP2009/056002 JP2009056002W WO2009119688A1 WO 2009119688 A1 WO2009119688 A1 WO 2009119688A1 JP 2009056002 W JP2009056002 W JP 2009056002W WO 2009119688 A1 WO2009119688 A1 WO 2009119688A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
sealing agent
meth
weight
integer
Prior art date
Application number
PCT/JP2009/056002
Other languages
French (fr)
Japanese (ja)
Inventor
尹一男
山口真史
西出勝則
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to CN200980110096.4A priority Critical patent/CN101978313B/en
Priority to JP2009514280A priority patent/JP5508001B2/en
Publication of WO2009119688A1 publication Critical patent/WO2009119688A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/14Polycondensates modified by chemical after-treatment
    • C08G59/1433Polycondensates modified by chemical after-treatment with organic low-molecular-weight compounds
    • C08G59/1438Polycondensates modified by chemical after-treatment with organic low-molecular-weight compounds containing oxygen
    • C08G59/1455Monocarboxylic acids, anhydrides, halides, or low-molecular-weight esters thereof
    • C08G59/1461Unsaturated monoacids
    • C08G59/1466Acrylic or methacrylic acids
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • C09J163/10Epoxy resins modified by unsaturated compounds

Definitions

  • the present invention is a liquid crystal that is excellent in coating properties, has high adhesion between a seal and a substrate, and hardly causes liquid crystal contamination, and is optimal for manufacturing a liquid crystal display element with little color unevenness in liquid crystal display.
  • the present invention relates to a sealing agent for dripping method.
  • this invention relates to the vertical conduction material and liquid crystal display element which use this sealing compound for liquid crystal dropping methods.
  • a liquid crystal display element such as a liquid crystal display cell forms a cell by facing two transparent substrates with electrodes facing each other at a predetermined interval and sealing the periphery with a sealing agent made of a curable resin composition.
  • a sealing agent made of a curable resin composition.
  • it was produced by injecting liquid crystal into the cell from a liquid crystal injection port provided in a part thereof, and sealing the liquid crystal injection port with a sealing agent or a sealing agent.
  • a seal pattern provided with a liquid crystal injection port is formed on one of two transparent substrates with electrodes using a thermosetting sealant, and prebaked at 60 to 100 ° C. in the sealant. Dry the solvent.
  • the two substrates are placed facing each other with a spacer in between and bonded, and hot pressing is performed at 110 to 220 ° C. for 10 to 90 minutes to adjust the gap near the seal, and then in an oven at 110 to 220 ° C. Heat for 10 to 120 minutes to fully cure the sealant.
  • liquid crystal was injected from the liquid crystal injection port, and finally, the liquid crystal injection port was sealed using a sealing agent to produce a liquid crystal display element.
  • thermal distortion causes positional deviation, gap variation, decrease in adhesion between the sealing agent and the substrate, etc.
  • residual solvent thermally expands, bubbles are generated, cap variation and seal path are
  • problems such as generation of a seal, a long seal curing time, a complicated pre-baking process, a short usable time of the sealant due to volatilization of the solvent, and a long time for liquid crystal injection.
  • a large liquid crystal display device in recent years it takes a very long time to inject liquid crystal.
  • the manufacturing method of the liquid crystal display element called the dripping method using the sealing agent which consists of a photocurable thermosetting combined type resin composition is examined (for example, refer patent document 1).
  • the dropping method first, a rectangular seal pattern is formed on one of the two transparent substrates with electrodes by screen printing. Next, a liquid crystal micro-droplet is applied to the entire surface of the transparent substrate in an uncured state with the sealant uncured, and the other transparent substrate is stacked under vacuum to return to normal pressure. To temporarily cure. Thereafter, heating is performed at the time of liquid crystal annealing to perform main curing, and a liquid crystal display element is manufactured.
  • a liquid crystal display element can be manufactured with extremely high efficiency, and this dropping method is currently the mainstream of the manufacturing method of the liquid crystal display element.
  • the liquid crystal dropping method can significantly reduce the liquid crystal introduction process time compared to the vacuum injection method, while the sealant is in contact with the liquid crystal in an uncured state, so the components of the sealant are easily eluted into the liquid crystal.
  • As one of the methods for solving such a problem there is a method of performing two-stage curing by ultraviolet rays and heating using a photocuring and thermosetting combined sealing agent. In this two-stage curing, a sealing agent is used. The higher the percentage of photocured is, the more the elution of the sealing agent component into the liquid crystal can be suppressed.
  • the photocuring / thermosetting sealant has a problem in that when it is photocured, stress is generated inside the cured product, so that the adhesiveness to the substrate is not sufficient.
  • Patent Document 2 describes that the adhesion between the sealing agent and the substrate is increased by adding a (meth) acrylate compound having a structure derived from a cyclic lactone to the sealing agent.
  • the sealing agent described in Patent Document 2 has a problem that the viscosity is very high, so that the coating property is inferior, and the sealing agent may break when applied to the substrate. .
  • the present invention is a liquid crystal dropping method that is excellent in coating properties, has high adhesion between a seal and a substrate, and hardly causes liquid crystal contamination, and is optimal for manufacturing a liquid crystal display device with little color unevenness in a liquid crystal display.
  • An object of the present invention is to provide a sealing agent.
  • an object of this invention is to provide the vertical conduction material and liquid crystal display element which use this sealing compound for liquid crystal dropping methods.
  • This invention is the sealing compound for liquid crystal dropping methods containing the (meth) acrylate compound which has a structure represented by following General formula (1).
  • R 1 represents a hydrogen atom or a methyl group
  • R 2 represents the following chemical formula (2-1) or (2-2)
  • R 3 represents a structure derived from an acid anhydride
  • R 2 4 represents a structure derived from an epoxy compound
  • X represents a ring-opening structure of a cyclic lactone
  • n represents an integer of 2 to 5
  • a represents an integer of 1 to 4.
  • b represents an integer of 0 to 8
  • c represents an integer of 0 to 3
  • d represents an integer of 0 to 8
  • e represents an integer of 0 to 8
  • Any one of c and d is 1 or more.
  • the present inventors have so far proposed a sealing agent for liquid crystal display elements using a curable resin composition containing an acrylated epoxy resin as a suitable sealing agent particularly in the dropping method.
  • the sealing agent for liquid crystal display elements can be a combined type of photocuring and thermosetting, and the polarity of the contained resin is high, which is compatible with liquid crystals. Therefore, contamination of the liquid crystal can be effectively prevented.
  • a (meth) acrylate compound having a structure derived from a cyclic lactone is further added to such a sealing agent for liquid crystal display elements, or a (meth) acrylate compound having a structure derived from a cyclic lactone instead of an acrylated epoxy resin.
  • Patent Document 2 the adhesiveness between the sealing agent and the substrate could be increased.
  • the sealing agent for liquid crystal dropping method of the present invention contains a (meth) acrylate compound having a structure represented by the general formula (1).
  • the sealing agent of the present invention has an appropriate viscosity and excellent coatability. And the outstanding effect that the adhesiveness of the seal
  • (meth) acrylate means acrylate or methacrylate.
  • X represents a ring-opening structure of a cyclic lactone.
  • the (meth) acrylate compound having the structure represented by the general formula (1) can increase the adhesion between the sealing agent and the substrate.
  • the lower limit of n indicating the number of units of X is 2 and the upper limit is 5.
  • the molecular weight of the (meth) acrylate compound having the structure represented by the general formula (1) is too small, the number of OH groups per molecule increases, and the intermolecular hydrogen bond strength increases. Since it becomes strong, the viscosity of the resulting sealant becomes too high.
  • n exceeds 5
  • the OH group per molecule decreases and the intermolecular hydrogen bond strength becomes weak, so the viscosity becomes too low, the synthesis reaction becomes multistage, and the unreacted raw material is added to the target product. Since it remains, the liquid crystal may be contaminated when used as a sealant.
  • a preferable upper limit of n is 4.
  • the cyclic lactone that forms the ring-opening structure of the cyclic lactone is not particularly limited.
  • ⁇ -undecalactone, ⁇ -caprolactone, ⁇ -decalactone, ⁇ -dodecalactone, ⁇ -nonalactone, ⁇ -heptalactone examples thereof include ⁇ -valerolactone, ⁇ -valerolactone, ⁇ -butyrolactone, ⁇ -butyrolactone, ⁇ -propiolactone, ⁇ -hexanolactone, 7-butyl-2-oxepanone and the like.
  • These cyclic lactones may be used alone or in combination of two or more. Among them, those having 5 to 7 carbon atoms in the straight chain portion of the main skeleton when the ring is opened are preferable.
  • R 2 is represented by the chemical formula (2-2) in which b is 1 to 4, c is 0, and d is 0. Is preferred.
  • the (meth) acrylate compound having the structure represented by the general formula (1) is preferably a polyfunctional (meth) acrylate compound having a 2 or more, that is, 2 or more (meth) acryl groups.
  • the (meth) acrylate compound is a polyfunctional (meth) acrylate compound having two or more (meth) acryl groups
  • the cured product of the sealing agent of the present invention has excellent heat resistance due to an increase in crosslink density. , Become reliable. Especially, it is more preferable that said a is 2.
  • the (meth) acrylate (A) can be obtained, for example, by a method in which a (meth) acrylic ester having a hydroxyl group such as 2-hydroxyethyl acrylate and a cyclic lactone are mixed and heated to react. it can.
  • a (meth) acrylic ester having a hydroxyl group such as 2-hydroxyethyl acrylate and a cyclic lactone
  • Specific examples of the (meth) acrylate (A) include caprolactone-2- (meth) acryloyloxyethyl.
  • the cyclic anhydride in (B), R 3 is the same as the R 3 in having a structure represented by the general formula (1) (meth) acrylate compounds, cyclic acids such as the following specific examples
  • the acid structure portion is removed from the anhydride.
  • Specific examples of the cyclic anhydride (B) include, for example, maleic anhydride, succinic anhydride, phthalic anhydride, citraconic anhydride, Ricacid TH, Jamaicacid HT-1, Jamaicacid HH, Jamaicacid HT-700, Jamaicacid MH, Ricacid MT-500, Jamaicacid HNA, Ricacid HNA-100, Ricacid OSA, Ricacid DDSA (all of which are manufactured by Shin Nippon Rika Co., Ltd.) and the like.
  • the (meth) acrylate compound having the structure represented by the general formula (1) can be obtained by reacting the obtained carboxylic acid (C) with an epoxy compound.
  • the epoxy compound may be a monofunctional epoxy compound, but is preferably a polyfunctional epoxy compound having two or more epoxy groups.
  • the resulting (meth) acrylate compound having a structure represented by the general formula (1) is two or more (meth) acrylic compounds. It becomes a polyfunctional (meth) acrylate compound having a group. Specifically, a polyfunctional epoxy group having two or more (meth) acryl groups by reacting 1 mol of the polyfunctional epoxy with a carboxylic acid (C) having the number of moles corresponding to the number of epoxy groups of the polyfunctional epoxy. A (meth) acrylate compound is obtained. At this time, the number of (meth) acryl groups of the (meth) acrylate compound having the structure represented by the general formula (1) to be obtained is the same as the number of epoxy groups of the used polyfunctional epoxy.
  • the monofunctional epoxy compound examples include Licarresin L-100 (manufactured by Shin Nippon Rika Co., Ltd.), EPICLON 520, EPICLON 703 (all of which are manufactured by DIC), n-butyl glycidyl ether, glycidyl (meth) acrylate, Examples thereof include 4-hydroxybutyl acrylate glycidyl, and the number of carbon atoms constituting the main chain is preferably 10 or less.
  • bifunctional epoxy compound among the polyfunctional epoxy compounds include, for example, bisphenol types such as EPICLON EXA-850CRP (made by DIC), hydrogenated bisphenol types such as EPICLON EXA-7015 (made by DIC), Examples thereof include ethylene glycol diglycidyl ether, and specific examples of the trifunctional or higher functional epoxy compound include EPICLON 725 (manufactured by DIC).
  • bisphenol type and hydrogenated bisphenol type include A type, E type, and F type.
  • R 4 in the (meth) acrylate compound having the structure represented by the general formula (1) produced by such a method becomes a structure derived from the epoxy compound, and when the epoxy compound is a polyfunctional epoxy, a is 2 or more.
  • the sealing agent of the present invention may contain other curable resins in addition to the (meth) acrylate compound having the structure represented by the general formula (1).
  • the preferable minimum of the compounding quantity of the (meth) acrylate compound which has a structure represented by the said General formula (1) in all the curable resin components to contain is 5 weight%, and a preferable upper limit is 80 weight%.
  • the blending amount of the (meth) acrylate compound having the structure represented by the general formula (1) is less than 5% by weight, the residual stress of the cured sealant obtained cannot be sufficiently relaxed, and the produced liquid crystal The adhesion between the substrates of the display elements may be insufficient.
  • the blending amount of the (meth) acrylate compound having the structure represented by the general formula (1) exceeds 80% by weight, a cured product of the obtained sealing agent is used to disperse the residual stress. Although the adhesiveness between the substrates is enhanced, the workability such as the dispensing property of the obtained sealant may be extremely deteriorated.
  • the more preferable lower limit of the blending amount of the (meth) acrylate compound having the structure represented by the general formula (1) is 10% by weight, and the more preferable upper limit is 50% by weight.
  • the other curable resin is not particularly limited, and examples thereof include those having a reactive functional group such as a (meth) acryloyl group, a cyclic ether such as an epoxy group or an oxetanyl group, and a styryl group.
  • a reactive functional group such as a (meth) acryloyl group, a cyclic ether such as an epoxy group or an oxetanyl group, and a styryl group.
  • (meth) acrylic acid ester, partial epoxy (meth) acrylate resin, epoxy resin and the like are suitable.
  • Examples of the (meth) acrylic acid ester include an ester compound obtained by reacting a compound having a hydroxyl group with (meth) acrylic acid, and an epoxy obtained by reacting (meth) acrylic acid with an epoxy compound ( Examples thereof include urethane (meth) acrylates obtained by reacting (meth) acrylates and isocyanates with (meth) acrylic acid derivatives having a hydroxyl group.
  • the epoxy (meth) acrylate obtained by reacting the (meth) acrylic acid and the epoxy compound is not particularly limited.
  • an epoxy resin and (meth) acrylic acid are combined in the presence of a basic catalyst according to a conventional method. What is obtained by reacting with is mentioned.
  • Examples of the urethane (meth) acrylate obtained by reacting the above isocyanate with a (meth) acrylic acid derivative having a hydroxyl group include, for example, a (meth) acrylic acid derivative having a hydroxyl group with respect to 1 equivalent of a compound having two isocyanate groups. Two equivalents can be obtained by reacting in the presence of a catalytic amount of a tin-based compound.
  • Examples of the partial epoxy (meth) acrylate resin include a compound obtained by reacting a partial epoxy group of a compound having two or more epoxy groups with (meth) acrylic acid, or a hydroxyl group in a bifunctional or higher isocyanate. And a compound obtained by reacting a (meth) acrylic acid derivative having glycidol and then glycidol.
  • the epoxy resin is not particularly limited, and examples thereof include epichlorohydrin derivatives, cycloaliphatic epoxy resins, compounds obtained from the reaction of isocyanate and glycidol, and the like.
  • the other curable resin is preferably a compound having two or more reactive groups in one molecule in order to reduce the uncured residue at the time of curing as much as possible.
  • the other curable resin preferably has at least one hydrogen-bonding functional group in one molecule in order to further suppress the elution of the uncured sealing agent of the present invention into the liquid crystal.
  • the hydrogen bonding functional group is not particularly limited, and examples thereof include an —OH group, —SH group, —NHR group (R represents an aromatic or aliphatic hydrocarbon, and derivatives thereof), —COOH group , Functional groups such as —NHOH groups, and residues such as —NHCO—, —NH—, —CONHCO—, —NH—NH—, etc. present in the molecule.
  • An OH group is preferred.
  • the sealing agent of the present invention preferably contains a photopolymerization initiator.
  • the photopolymerization initiator is not particularly limited, and for example, benzophenone compounds, acetophenone compounds, acylphosphine oxide compounds, titanocene compounds, oxime ester compounds, benzoin ether compounds, benzyl, thioxanthone, etc. are suitable. Can be used. These photoinitiators may be used independently and may use 2 or more types together.
  • Examples of commercially available photopolymerization initiators include Irgacure 907, Irgacure 819, Irgacure 651, Irgacure 369, Irgacure OXE01 (all of which are manufactured by Ciba Specialty Chemicals), Bensoin Methyl.
  • Examples include ether, benzoin ethyl ether, benzoin isopropyl ether, Lucillin TPO (BASF Japan), KR-02 (Light Chemical).
  • content of the said photoinitiator is not specifically limited, A preferable minimum with respect to a total of 100 weight part of the (meth) acrylate compound and other curable resin which have a structure represented by General formula (1) mentioned above. Is 0.1 part by weight, and the preferred upper limit is 10 parts by weight. If the content of the photopolymerization initiator is less than 0.1 parts by weight, the ability to start photopolymerization may be insufficient and the above-described effects of the present invention may not be obtained. When content of the said photoinitiator exceeds 10 weight part, many unreacted radical polymerization initiators remain, and the weather resistance of the sealing agent of this invention may worsen.
  • the minimum with more preferable content of the said photoinitiator is 1 weight part, and a more preferable upper limit is 5 weight part.
  • the sealing agent of the present invention preferably contains a polymerization inhibitor. By containing the said polymerization inhibitor, it can suppress that gelatinization advances after carrying out the vacuum degassing of the sealing agent of this invention.
  • the polymerization inhibitor is not particularly limited.
  • 2,6-di-t-butylcresol, butylated hydroxyanisole, 2,6-di-t-butyl-4, ethylphenol, stearyl ⁇ - (3,5 -Di-t-butyl-4-hydroxyphenyl) propionate 2,2'-methylenebis (4-methyl-6-t-butylphenol), 2,2'-methylenebis (4-ethyl-6-t-butylphenol), 4,4′-thiobis-3-methyl-6-tert-butylphenol), 4,4-butylidenebis (3-methyl-6-tert-butylphenol), 3,9-bis [1,1-dimethyl-2- [ ⁇ - (3-tert-butyl-4-hydroxy-5-methylphenyl) propionyloxy] ethyl] -2,4,8,10-tetraoxaspiro [5,5] undeca Tetrakis- [methylene-3- (3 ′, 5′
  • the content of the polymerization inhibitor is not particularly limited, but the preferable lower limit is 50 ppm and the preferable upper limit is 2000 ppm with respect to the total amount of the sealing agent. If the content of the polymerization inhibitor is less than 50 ppm, gelation proceeds after the resulting sealant composition is degassed in vacuum, and it may be difficult to store and use. When content of the said polymerization inhibitor exceeds 2000 ppm, the photoreactivity of the sealing agent obtained may be suppressed and sclerosis
  • the minimum with more preferable content of the said polymerization inhibitor is 70 ppm, and a more preferable upper limit is 1800 ppm.
  • thermosetting agent When using together the curable resin which has an epoxy group in the sealing compound of this invention, it is preferable to contain a thermosetting agent.
  • thermosetting agent examples include hydrazide compounds such as 1,3-bis [hydrazinocarbonoethyl-5-isopropylhydantoin], dicyandiamide, guanidine derivatives, 1-cyanoethyl-2-phenylimidazole, N- [2- (2-Methyl-1-imidazolyl) ethyl] urea, 2,4-diamino-6- [2′-methylimidazolyl- (1 ′)]-ethyl-s-triazine, N, N′-bis (2-methyl -1-imidazolylethyl) urea, N, N ′-(2-methyl-1-imidazolylethyl) -adipamide, 2-phenyl-4-methyl-5-hydroxymethylimidazole, 2-phenyl-4,5-dihydroxymethyl Imidazole derivatives such as imidazole, modified aliphatic polyamines, tetrahydrophthalic anhydride, ethylene
  • the compounding quantity of the said thermosetting agent is not specifically limited, A preferable minimum is 0 with respect to a total of 100 weight part of the (meth) acrylate compound which has a structure represented by the said General formula (1), and other curable resin. .1 part by weight, the preferred upper limit is 50 parts by weight.
  • the blending amount of the thermosetting agent is less than 0.1 parts by weight, the curable resin having an epoxy group may not be sufficiently cured.
  • the blending amount of the thermosetting agent exceeds 50 parts by weight, the moisture resistance of the cured product may be lowered.
  • a more preferable lower limit of the amount of the thermosetting agent is 1 part by weight, and a more preferable upper limit is 20 parts by weight.
  • the sealing agent of the present invention may contain a silane coupling agent.
  • the silane coupling agent mainly serves as an adhesion assistant that improves the adhesion between the sealing agent of the present invention and the substrate.
  • the silane coupling agent is not particularly limited, but is excellent in the effect of improving the adhesion to the substrate and can be prevented from flowing into the liquid crystal material by chemically bonding with the curable resin.
  • Propyltrimethoxysilane, ⁇ -mercaptopropyltrimethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -isocyanatopropyltrimethoxysilane and the like are preferably used.
  • These silane coupling agents may be used alone or in combination of two or more.
  • the sealing agent of the present invention may contain a filler for the purpose of improving the adhesiveness due to the stress dispersion effect and improving the linear expansion coefficient.
  • the filler is not particularly limited, for example, talc, asbestos, silica, diatomaceous earth, smectite, bentonite, calcium carbonate, magnesium carbonate, alumina, montmorillonite, diatomaceous earth, zinc oxide, iron oxide, magnesium oxide, tin oxide, titanium oxide, Inorganic fillers such as magnesium hydroxide, aluminum hydroxide, glass beads, silicon nitride, barium sulfate, gypsum, calcium silicate, talc, glass beads, sericite activated clay, bentonite, aluminum nitride, polyester fine particles, polyurethane fine particles, vinyl heavy Organic fillers such as coalesced fine particles and acrylic polymer fine particles can be mentioned.
  • the sealing agent of the present invention further comprises a reactive diluent for adjusting the viscosity, a thixotropic agent for adjusting the thixotropy, a spacer such as a polymer bead for adjusting the panel gap, and 3-P-chlorophenyl as necessary.
  • a curing accelerator such as 1,1-dimethylurea, an antifoaming agent, a leveling agent, and other additives may be contained.
  • the sealing agent of the present invention includes, for example, a three-roll, etc. (meth) acrylate compound having a structure represented by the above general formula (1), other curable resins and additives blended as necessary. It can be obtained by a method of mixing and uniformly dispersing by a conventionally known method using
  • the preferable lower limit of the viscosity when the sealing agent of the present invention is applied to the substrate by dispensing is 200,000 mPa ⁇ s
  • the preferable upper limit is 400,000 mPa ⁇ s. If the viscosity is less than 200,000 mPa ⁇ s, the viscosity may be too low, and the applied sealing agent may be pushed by the liquid crystal and the shape may collapse. When the viscosity exceeds 400,000 mPa ⁇ s, the coating property is inferior, and the sealant may break when applied to the substrate.
  • the sealing agent of the present invention has an appropriate viscosity in the production of a liquid crystal display element, it has excellent coating properties and can be applied without disconnection. Further, since it has excellent adhesion to the substrate and hardly causes liquid crystal contamination, it can be suitably used for the production of a liquid crystal display element with little color unevenness in liquid crystal display.
  • a vertical conduction material can be produced by blending conductive fine particles with the liquid crystal dropping method sealing agent of the present invention. If such a vertical conduction material is used, the electrodes of the substrate can be reliably conductively connected.
  • the vertical conduction material containing the sealing agent for liquid crystal dropping method of the present invention and conductive fine particles is also one aspect of the present invention.
  • the conductive fine particles are not particularly limited, and, for example, metal balls, those obtained by forming a conductive metal layer on the surface of resin fine particles, and the like can be used.
  • the one in which the conductive metal layer is formed on the surface of the resin fine particles is preferable because the conductive connection is possible without damaging the substrate or the like due to the excellent elasticity of the resin fine particles.
  • the method for producing a liquid crystal display element using the sealing agent of the present invention and / or the vertical conduction material of the present invention is not particularly limited, and for example, it can be produced by a conventionally known method.
  • a liquid crystal display element using the sealing agent of the present invention and / or the vertical conduction material of the present invention is also one aspect of the present invention.
  • a liquid crystal that is excellent in coating properties, has high adhesion between a seal and a substrate, and hardly causes liquid crystal contamination, so that it is optimal for manufacturing a liquid crystal display element with little color unevenness in liquid crystal display. It is possible to provide a sealing agent for dropping method, a vertical conduction material, and a liquid crystal display element.
  • Examples 1 to 15, Comparative Examples 1 to 7 were prepared by stirring the raw materials in the blending amounts shown in Tables 1 to 3 with a planetary stirrer (“Shinky Co., Ltd.”, “Awatori Netaro”) and then uniformly mixing them with a three-roll ceramic roll. The sealing agents for the liquid crystal dropping method of Comparative Examples 1 to 7 were obtained.
  • a planetary stirrer (“Shinky Co., Ltd.”, “Awatori Netaro”)
  • the sealing agents for the liquid crystal dropping method of Comparative Examples 1 to 7 were obtained.
  • As raw materials in the table other than the curable resins A to M synthesized above “KR-02” manufactured by Light Chemical Co., Ltd. is used as a photopolymerization initiator, and “EBECRYL 3700” manufactured by Daicel Cytec Co., Ltd. is used as a bisphenol A type epoxy acrylate resin.
  • silane coupling agent “KBM403” manufactured by Shin-Etsu Chemical Co., Ltd., “SO-C1” manufactured by Admatechs Corporation as the silica, and malonic acid dihydrazide or sebacic acid dihydrazide were used as the thermosetting agent.
  • liquid droplets manufactured by Chisso Co., Ltd., “JC-5004LA”
  • JC-5004LA liquid droplets
  • a metal halide lamp was used for the agent part, and 100 mW / cm 2 of ultraviolet rays were irradiated for 30 seconds to prepare 20 evaluation panels.
  • the number of defective panels due to disconnection and the number of defective panels due to liquid crystal leakage from the inside of the panel were counted and evaluated according to the following criteria.
  • Number of defective panels 0: Number of defective panels 1 to 2
  • Number of defective panels 3 to 5
  • substrate 6 which vapor-deposited the whole surface were prepared.
  • Each sealing agent was applied in the form of dots on the boundary between the portions of the substrate 5 where the chromium was not deposited, and the substrates 6 were bonded together and then crushed sufficiently.
  • the substrates 5 and 6 are peeled off, washed with toluene, and the portion where the seal remains without being washed. This distance was measured using a microscope.
  • the coating property is excellent, the adhesiveness between the seal and the substrate is high, and the liquid crystal is hardly contaminated.
  • a sealing agent for a certain liquid crystal dropping method, a vertical conduction material, and a liquid crystal display element can be provided.

Abstract

A sealing material for the liquid-crystal dropping process is provided which has excellent applicability and high adhesion between the seal and a substrate and causes almost no liquid-crystal contamination. The sealing material is hence optimal for producing a liquid-crystal display element giving a liquid-crystal display reduced in color unevenness. Also provided are a vertical-conduction material and a liquid-crystal display element. The sealing material for the liquid-crystal dropping process comprises a (meth)acrylate compound having a structure represented by general formula (1). In formula (1), R1 represents hydrogen or methyl; R2 represents chemical formula (2-1) or (2-2); R3 represents a structure derived from an acid anhydride; R4 represents a structure derived from an epoxy compound; X represents a structure formed by the ring cleavage of a cyclic lactone; n is an integer of 2-5; and a is an integer of 1-4. In formula (2-2), b is an integer of 0-8, c is an integer of 0-3, d is an integer of 0-8, and e is an integer of 0-8, provided that any one of b, c, and d is 1 or larger.

Description

液晶滴下工法用シール剤、上下導通材料、及び、液晶表示素子Liquid crystal dropping method sealing agent, vertical conduction material, and liquid crystal display element
本発明は、塗工性に優れ、シールと基板との間の接着性が高く、かつ、液晶汚染を引き起こすことがほとんどないため液晶表示において色むらが少ない液晶表示素子の製造に最適である液晶滴下工法用シール剤に関する。また、本発明は、該液晶滴下工法用シール剤を用いてなる上下導通材料及び液晶表示素子に関する。 The present invention is a liquid crystal that is excellent in coating properties, has high adhesion between a seal and a substrate, and hardly causes liquid crystal contamination, and is optimal for manufacturing a liquid crystal display element with little color unevenness in liquid crystal display. The present invention relates to a sealing agent for dripping method. Moreover, this invention relates to the vertical conduction material and liquid crystal display element which use this sealing compound for liquid crystal dropping methods.
従来、液晶表示セル等の液晶表示素子は、2枚の電極付き透明基板を、所定の間隔をおいて対向させ、その周囲を硬化性樹脂組成物からなるシール剤で封着してセルを形成し、その一部に設けられた液晶注入口からセル内に液晶を注入し、その液晶注入口をシール剤又は封口剤を用いて封止することにより作製されていた。 Conventionally, a liquid crystal display element such as a liquid crystal display cell forms a cell by facing two transparent substrates with electrodes facing each other at a predetermined interval and sealing the periphery with a sealing agent made of a curable resin composition. However, it was produced by injecting liquid crystal into the cell from a liquid crystal injection port provided in a part thereof, and sealing the liquid crystal injection port with a sealing agent or a sealing agent.
この方法では、まず、2枚の電極付き透明基板のいずれか一方に、熱硬化性シール剤を用いて液晶注入口を設けたシールパターンを形成し、60~100℃でプリベイクを行いシール剤中の溶剤を乾燥させる。次いで、スペーサーを挟んで2枚の基板を対向させてアライメントを行い貼り合わせ、110~220℃で10~90分間熱プレスを行いシール近傍のギャップを調整した後、オーブン中で110~220℃で10~120分間加熱しシール剤を本硬化させる。次いで、液晶注入口から液晶を注入し、最後に封口剤を用いて液晶注入口を封止して、液晶表示素子を作製していた。 In this method, first, a seal pattern provided with a liquid crystal injection port is formed on one of two transparent substrates with electrodes using a thermosetting sealant, and prebaked at 60 to 100 ° C. in the sealant. Dry the solvent. Next, the two substrates are placed facing each other with a spacer in between and bonded, and hot pressing is performed at 110 to 220 ° C. for 10 to 90 minutes to adjust the gap near the seal, and then in an oven at 110 to 220 ° C. Heat for 10 to 120 minutes to fully cure the sealant. Next, liquid crystal was injected from the liquid crystal injection port, and finally, the liquid crystal injection port was sealed using a sealing agent to produce a liquid crystal display element.
しかし、この作製方法によると、熱歪により位置ズレ、ギャップのバラツキ、シール剤と基板との密着性の低下等が発生する、残留溶剤が熱膨張して気泡が発生しキャップのバラツキやシールパスが発生する、シール硬化時間が長い、プリベイクプロセスが煩雑、溶剤の揮発によりシール剤の使用可能時間が短い、液晶の注入に時間がかかる等の問題があった。とりわけ、近年の大型の液晶表示装置にあっては、液晶の注入に非常に時間がかかることが大きな問題となっていた。 However, according to this manufacturing method, thermal distortion causes positional deviation, gap variation, decrease in adhesion between the sealing agent and the substrate, etc., residual solvent thermally expands, bubbles are generated, cap variation and seal path are There are problems such as generation of a seal, a long seal curing time, a complicated pre-baking process, a short usable time of the sealant due to volatilization of the solvent, and a long time for liquid crystal injection. In particular, in a large liquid crystal display device in recent years, it takes a very long time to inject liquid crystal.
これに対して、光硬化熱硬化併用型の樹脂組成物からなるシール剤を用いた滴下工法と呼ばれる液晶表示素子の製造方法が検討されている(例えば、特許文献1参照)。滴下工法では、まず、2枚の電極付き透明基板の一方に、スクリーン印刷により長方形状のシールパターンを形成する。次いで、シール剤未硬化の状態で液晶の微小滴を透明基板の枠内全面に滴下塗布し、真空下で他方の透明基板を重ねあわせ、常圧に戻した後、シール部に紫外線を照射して仮硬化を行う。その後、液晶アニール時に加熱して本硬化を行い、液晶表示素子を作製する。この方法では、極めて高い効率で液晶表示素子を製造することができ、現在この滴下工法が液晶表示素子の製造方法の主流となっている。 On the other hand, the manufacturing method of the liquid crystal display element called the dripping method using the sealing agent which consists of a photocurable thermosetting combined type resin composition is examined (for example, refer patent document 1). In the dropping method, first, a rectangular seal pattern is formed on one of the two transparent substrates with electrodes by screen printing. Next, a liquid crystal micro-droplet is applied to the entire surface of the transparent substrate in an uncured state with the sealant uncured, and the other transparent substrate is stacked under vacuum to return to normal pressure. To temporarily cure. Thereafter, heating is performed at the time of liquid crystal annealing to perform main curing, and a liquid crystal display element is manufactured. In this method, a liquid crystal display element can be manufactured with extremely high efficiency, and this dropping method is currently the mainstream of the manufacturing method of the liquid crystal display element.
液晶滴下工法は、真空注入法と比べて液晶導入工程時間の大幅な短縮が可能となる一方でシール剤が未硬化の状態で液晶と接するために、シール剤の成分が液晶に溶出しやすく、液晶汚染の原因となるという問題があった。
このような問題を解決するための方法の1つとして、光硬化熱硬化併用型シール剤を用いて、紫外線と加熱とによる二段階硬化を行う方法が挙げられ、この二段階硬化において、シール剤が光硬化した割合が大きければ大きいほど、シール剤成分の液晶への溶出を抑えることができる。
しかしながら、光硬化熱硬化併用型シール剤は、光硬化すると硬化物の内部に応力が生じるため基板との接着性が充分でないという問題があった。
The liquid crystal dropping method can significantly reduce the liquid crystal introduction process time compared to the vacuum injection method, while the sealant is in contact with the liquid crystal in an uncured state, so the components of the sealant are easily eluted into the liquid crystal. There was a problem of causing liquid crystal contamination.
As one of the methods for solving such a problem, there is a method of performing two-stage curing by ultraviolet rays and heating using a photocuring and thermosetting combined sealing agent. In this two-stage curing, a sealing agent is used. The higher the percentage of photocured is, the more the elution of the sealing agent component into the liquid crystal can be suppressed.
However, the photocuring / thermosetting sealant has a problem in that when it is photocured, stress is generated inside the cured product, so that the adhesiveness to the substrate is not sufficient.
これに対して特許文献2には、環状ラクトン由来の構造を有する(メタ)アクリレート化合物をシール剤に添加することにより、シール剤と基板の接着性を上昇させることが記載されている。
しかしながら、特許文献2に記載されたシール剤は、粘度が非常に高いことから塗工性に劣り、基板に塗工する際にシール剤の断線が発生してしまうことがあるという問題があった。
On the other hand, Patent Document 2 describes that the adhesion between the sealing agent and the substrate is increased by adding a (meth) acrylate compound having a structure derived from a cyclic lactone to the sealing agent.
However, the sealing agent described in Patent Document 2 has a problem that the viscosity is very high, so that the coating property is inferior, and the sealing agent may break when applied to the substrate. .
特開2001-133794号公報JP 2001-133794 A 特開2007-41559号公報JP 2007-41559 A
本発明は、塗工性に優れ、シールと基板との接着性が高く、かつ、液晶汚染を引き起こすことがほとんどないため液晶表示において色むらが少ない液晶表示素子の製造に最適である液晶滴下工法用シール剤を提供することを目的とする。また、本発明は、該液晶滴下工法用シール剤を用いてなる上下導通材料及び液晶表示素子を提供することを目的とする。 The present invention is a liquid crystal dropping method that is excellent in coating properties, has high adhesion between a seal and a substrate, and hardly causes liquid crystal contamination, and is optimal for manufacturing a liquid crystal display device with little color unevenness in a liquid crystal display. An object of the present invention is to provide a sealing agent. Moreover, an object of this invention is to provide the vertical conduction material and liquid crystal display element which use this sealing compound for liquid crystal dropping methods.
本発明は、下記一般式(1)で表される構造を有する(メタ)アクリレート化合物を含有する液晶滴下工法用シール剤である。 This invention is the sealing compound for liquid crystal dropping methods containing the (meth) acrylate compound which has a structure represented by following General formula (1).
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
式(1)中、Rは水素原子又はメチル基を表し、Rは下記化学式(2-1)、又は(2-2)を表し、Rは酸無水物由来の構造を表し、Rはエポキシ化合物由来の構造を表し、Xは環状ラクトンの開環構造を表し、nは2~5の整数を表し、aは1~4の整数を表す。 In formula (1), R 1 represents a hydrogen atom or a methyl group, R 2 represents the following chemical formula (2-1) or (2-2), R 3 represents a structure derived from an acid anhydride, R 2 4 represents a structure derived from an epoxy compound, X represents a ring-opening structure of a cyclic lactone, n represents an integer of 2 to 5, and a represents an integer of 1 to 4.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
式(2-2)中、bは0~8の整数を表し、cは0~3の整数を表し、dは0~8の整数を表し、eは0~8の整数を表し、b、c、dのいずれか1つは1以上である。
以下に本発明を詳述する。
In the formula (2-2), b represents an integer of 0 to 8, c represents an integer of 0 to 3, d represents an integer of 0 to 8, e represents an integer of 0 to 8, b, Any one of c and d is 1 or more.
The present invention is described in detail below.
本発明者らは、これまでに特に滴下工法において好適なシール剤として、アクリル化エポキシ樹脂を含有する硬化性樹脂組成物を用いた液晶表示素子用シール剤を提案している。
このような硬化性樹脂組成物を用いた場合、液晶表示素子用シール剤を光硬化と熱硬化との併用タイプとすることができるとともに、含有される樹脂の極性が高く、液晶との相溶性が低いことから、液晶の汚染を効果的に防止することができる。このような液晶表示素子用シール剤に、更に環状ラクトン由来の構造を有する(メタ)アクリレート化合物を添加する、又は、アクリル化エポキシ樹脂の代わりに環状ラクトン由来の構造を有する(メタ)アクリレート化合物を用いることで、シール剤と基板の接着性を上昇させることができた(特許文献2)。
The present inventors have so far proposed a sealing agent for liquid crystal display elements using a curable resin composition containing an acrylated epoxy resin as a suitable sealing agent particularly in the dropping method.
When such a curable resin composition is used, the sealing agent for liquid crystal display elements can be a combined type of photocuring and thermosetting, and the polarity of the contained resin is high, which is compatible with liquid crystals. Therefore, contamination of the liquid crystal can be effectively prevented. A (meth) acrylate compound having a structure derived from a cyclic lactone is further added to such a sealing agent for liquid crystal display elements, or a (meth) acrylate compound having a structure derived from a cyclic lactone instead of an acrylated epoxy resin. By using it, the adhesiveness between the sealing agent and the substrate could be increased (Patent Document 2).
本発明者らは、特許文献2に記載された液晶表示素子用シール剤の粘度が非常に高く塗工性に劣る原因について鋭意検討した結果、(メタ)アクリレート化合物中の環状ラクトン開環ユニット数により、得られる液晶表示素子用シール剤の塗工性を調整できることを見出した。即ち、特許文献2に記載された液晶表示素子用シール剤においては環状ラクトン開環ユニット数が1であったのに対して、これを2~5とすることにより劇的に塗工性を改善できることを見出し、本発明を完成するに到った。 As a result of intensive studies on the cause of the viscosity of the sealant for liquid crystal display elements described in Patent Document 2 being very high and poor in coating properties, the number of cyclic lactone ring-opening units in the (meth) acrylate compound Thus, it was found that the coating property of the obtained sealing agent for liquid crystal display elements can be adjusted. That is, in the sealing agent for liquid crystal display elements described in Patent Document 2, the number of cyclic lactone ring-opening units was 1, but the coating property was dramatically improved by setting this to 2-5. The present inventors have found that the present invention can be accomplished and have completed the present invention.
本発明の液晶滴下工法用シール剤(以下、単に本発明のシール剤ともいう)は、上記一般式(1)で表される構造を有する(メタ)アクリレート化合物を含有する。このような(メタ)アクリレート化合物を含有することにより本発明のシール剤は、粘度が適当であって塗工性に優れる。しかも、硬化後のシールと基板との接着性が高いという優れた効果を発揮することができる。
なお、本明細書において、(メタ)アクリレートとは、アクリレート又はメタクリレートを意味する。
The sealing agent for liquid crystal dropping method of the present invention (hereinafter also simply referred to as the sealing agent of the present invention) contains a (meth) acrylate compound having a structure represented by the general formula (1). By containing such a (meth) acrylate compound, the sealing agent of the present invention has an appropriate viscosity and excellent coatability. And the outstanding effect that the adhesiveness of the seal | sticker after hardening and a board | substrate is high can be exhibited.
In the present specification, (meth) acrylate means acrylate or methacrylate.
上記一般式(1)においてXは環状ラクトンの開環構造を表す。このような環状ラクトンの開環構造を分子内に有することにより、一般式(1)で表される構造を有する(メタ)アクリレート化合物は、シール剤と基板の接着性を上昇させることができる。
上記Xのユニット数を示すnの下限は2、上限は5である。上記nが2未満であると、上記一般式(1)で表される構造を有する(メタ)アクリレート化合物の分子量が小さすぎて、1分子あたりのOH基が多くなって分子間水素結合力が強くなることから、得られるシール剤の粘度が高くなりすぎる。上記nが5を超えると、1分子あたりのOH基が少なくなって分子間水素結合力が弱くなることから粘度が低くなりすぎたり、合成反応が多段になり、目的生成物に未反応原料が残存してしまうため、シール剤としたときに液晶を汚染したりすることがある。上記nの好ましい上限は4である。
In the general formula (1), X represents a ring-opening structure of a cyclic lactone. By having such a ring-opening structure of a cyclic lactone in the molecule, the (meth) acrylate compound having the structure represented by the general formula (1) can increase the adhesion between the sealing agent and the substrate.
The lower limit of n indicating the number of units of X is 2 and the upper limit is 5. When the n is less than 2, the molecular weight of the (meth) acrylate compound having the structure represented by the general formula (1) is too small, the number of OH groups per molecule increases, and the intermolecular hydrogen bond strength increases. Since it becomes strong, the viscosity of the resulting sealant becomes too high. When n exceeds 5, the OH group per molecule decreases and the intermolecular hydrogen bond strength becomes weak, so the viscosity becomes too low, the synthesis reaction becomes multistage, and the unreacted raw material is added to the target product. Since it remains, the liquid crystal may be contaminated when used as a sealant. A preferable upper limit of n is 4.
上記環状ラクトンの開環構造のもととなる環状ラクトンは特に限定されず、例えば、γ-ウンデカラクトン、ε-カプロラクトン、γ-デカラクトン、σ-ドデカラクトン、γ-ノナラクトン、γ-ヘプタラクトン、γ-バレロラクトン、σ-バレロラクトン、β-ブチロラクトン、γ-ブチロラクトン、β-プロピオラクトン、σ-ヘキサノラクトン、7-ブチル-2-オキセパノン等が挙げられる。これらの環状ラクトンは、単独で用いられてもよいし、2種以上が併用されてもよい。
なかでも、開環したときに主骨格の直鎖部分の炭素数が5~7となるものが好適である。
The cyclic lactone that forms the ring-opening structure of the cyclic lactone is not particularly limited. For example, γ-undecalactone, ε-caprolactone, γ-decalactone, σ-dodecalactone, γ-nonalactone, γ-heptalactone, Examples thereof include γ-valerolactone, σ-valerolactone, β-butyrolactone, γ-butyrolactone, β-propiolactone, σ-hexanolactone, 7-butyl-2-oxepanone and the like. These cyclic lactones may be used alone or in combination of two or more.
Among them, those having 5 to 7 carbon atoms in the straight chain portion of the main skeleton when the ring is opened are preferable.
上記一般式(1)で表される構造を有する(メタ)アクリレート化合物において、Rはbが1~4、cが0、dが0である化学式(2-2)で表されるものが好適である。このようなRを選択することにより、樹脂が柔軟になり、シール剤と基板の接着性が向上するという効果が得られる。 In the (meth) acrylate compound having the structure represented by the general formula (1), R 2 is represented by the chemical formula (2-2) in which b is 1 to 4, c is 0, and d is 0. Is preferred. By selecting such R 2 , the resin becomes flexible and the effect of improving the adhesion between the sealing agent and the substrate can be obtained.
上記一般式(1)で表される構造を有する(メタ)アクリレート化合物は、aが2以上、すなわち2以上の(メタ)アクリル基を有する多官能(メタ)アクリレート化合物であることが好ましい。上記(メタ)アクリレート化合物が2以上の(メタ)アクリル基を有する多官能(メタ)アクリレート化合物であると、本発明のシール剤の硬化物は、架橋密度が高くなることにより、耐熱性に優れ、信頼性の高いものとなる。なかでも、上記aは2であることがより好ましい。 The (meth) acrylate compound having the structure represented by the general formula (1) is preferably a polyfunctional (meth) acrylate compound having a 2 or more, that is, 2 or more (meth) acryl groups. When the (meth) acrylate compound is a polyfunctional (meth) acrylate compound having two or more (meth) acryl groups, the cured product of the sealing agent of the present invention has excellent heat resistance due to an increase in crosslink density. , Become reliable. Especially, it is more preferable that said a is 2.
上記一般式(1)で表される構造を有する(メタ)アクリレート化合物を調製する方法としては特に限定されないが、例えば、下記反応式(3)に示す反応により得られたカルボン酸(C)とエポキシ化合物とを反応させる方法等が挙げられる。 Although it does not specifically limit as a method of preparing the (meth) acrylate compound which has a structure represented by the said General formula (1), For example, carboxylic acid (C) obtained by reaction shown to following Reaction formula (3) and Examples include a method of reacting with an epoxy compound.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
上記反応式(3)においては、(メタ)アクリレート(A)と、環状の無水物(B)とを反応させてカルボン酸(C)を得る。
上記(メタ)アクリレート(A)において、R、R、及びXは、上記一般式(1)で表される構造を有する(メタ)アクリレート化合物におけるR、R、及びXと同様のものである。
In the reaction formula (3), the (meth) acrylate (A) and the cyclic anhydride (B) are reacted to obtain the carboxylic acid (C).
In the (meth) acrylate (A), R 1, R 2, and X has a structure represented by the above general formula (1) (meth) in the acrylate compound R 1, R 2, and similar to the X Is.
上記(メタ)アクリレート(A)は、例えば、2-ヒドロキシエチルアクリレ-ト等の水酸基を有する(メタ)アクリル酸エステルと環状ラクトンとを混合し、加熱して反応させる方法等により得ることができる。
上記(メタ)アクリレート(A)の具体例としては、例えば、カプロラクトン-2-(メタ)アクリロイルオキシエチル等が挙げられる。
The (meth) acrylate (A) can be obtained, for example, by a method in which a (meth) acrylic ester having a hydroxyl group such as 2-hydroxyethyl acrylate and a cyclic lactone are mixed and heated to react. it can.
Specific examples of the (meth) acrylate (A) include caprolactone-2- (meth) acryloyloxyethyl.
上記環状の無水物(B)において、Rは、上記一般式(1)で表される構造を有する(メタ)アクリレート化合物におけるRと同様のものであり、下記具体例等の環状の酸無水物から酸構造部分を除いたものである。
上記環状の無水物(B)の具体例としては、例えば、無水マレイン酸、無水コハク酸、無水フタル酸、無水シトラコン酸や、リカシッドTH、リカシッドHT-1、リカシッドHH、リカシッドHT-700、リカシッドMH、リカシッドMT-500、リカシッドHNA、リカシッドHNA-100、リカシッドOSA、リカシッドDDSA(以上、いずれも新日本理化社製)等が挙げられる。
The cyclic anhydride in (B), R 3 is the same as the R 3 in having a structure represented by the general formula (1) (meth) acrylate compounds, cyclic acids such as the following specific examples The acid structure portion is removed from the anhydride.
Specific examples of the cyclic anhydride (B) include, for example, maleic anhydride, succinic anhydride, phthalic anhydride, citraconic anhydride, Ricacid TH, Ricacid HT-1, Ricacid HH, Ricacid HT-700, Ricacid MH, Ricacid MT-500, Ricacid HNA, Ricacid HNA-100, Ricacid OSA, Ricacid DDSA (all of which are manufactured by Shin Nippon Rika Co., Ltd.) and the like.
上記一般式(1)で表される構造を有する(メタ)アクリレート化合物は、得られたカルボン酸(C)とエポキシ化合物とを反応させることにより得ることができる。
上記エポキシ化合物としては、単官能エポキシ化合物であってもよいが、2以上のエポキシ基を有する多官能エポキシ化合物であることが好ましい。
The (meth) acrylate compound having the structure represented by the general formula (1) can be obtained by reacting the obtained carboxylic acid (C) with an epoxy compound.
The epoxy compound may be a monofunctional epoxy compound, but is preferably a polyfunctional epoxy compound having two or more epoxy groups.
上記エポキシ化合物が2以上のエポキシ基を有する多官能エポキシ化合物である場合には、得られる上記一般式(1)で表される構造を有する(メタ)アクリレート化合物は、2以上の(メタ)アクリル基を有する多官能(メタ)アクリレート化合物となる。具体的には、多官能エポキシ1モルに対して、上記多官能エポキシのエポキシ基数に対応するモル数のカルボン酸(C)を反応させることで、2以上の(メタ)アクリル基を有する多官能(メタ)アクリレート化合物が得られる。このとき、得られる上記一般式(1)で表される構造を有する(メタ)アクリレート化合物の(メタ)アクリル基の数は、用いた多官能エポキシのエポキシ基数と同数となる。 When the epoxy compound is a polyfunctional epoxy compound having two or more epoxy groups, the resulting (meth) acrylate compound having a structure represented by the general formula (1) is two or more (meth) acrylic compounds. It becomes a polyfunctional (meth) acrylate compound having a group. Specifically, a polyfunctional epoxy group having two or more (meth) acryl groups by reacting 1 mol of the polyfunctional epoxy with a carboxylic acid (C) having the number of moles corresponding to the number of epoxy groups of the polyfunctional epoxy. A (meth) acrylate compound is obtained. At this time, the number of (meth) acryl groups of the (meth) acrylate compound having the structure represented by the general formula (1) to be obtained is the same as the number of epoxy groups of the used polyfunctional epoxy.
単官能エポキシ化合物としては、具体的には例えば、リカレジンL-100(新日本理化社製)、EPICLON520、EPICLON703(以上、いずれもDIC社製)のn-ブチルグリシジルエーテル、グリシジル(メタ)アクリレート、4-ヒドロキシブチルアクリレートグリシジル等が挙げられ、好ましくは主鎖を構成する炭素原子の数が10以下のものである。
上記多官能エポキシ化合物のうち2官能エポキシ化合物としては、具体的には例えば、EPICLON EXA-850CRP(DIC社製)等のビスフェノール型、EPICLON EXA-7015(DIC社製)等の水添ビスフェノール型、エチレングリコールジグリシジルエーテル等が挙げられ、3官能以上のエポキシ化合物としては、具体的には例えば、EPICLON 725(DIC社製)等が挙げられる。また、上記ビスフェノール型、水添ビスフェノール型としては、例えば、A型、E型、F型等が挙げられる。
Specific examples of the monofunctional epoxy compound include Licarresin L-100 (manufactured by Shin Nippon Rika Co., Ltd.), EPICLON 520, EPICLON 703 (all of which are manufactured by DIC), n-butyl glycidyl ether, glycidyl (meth) acrylate, Examples thereof include 4-hydroxybutyl acrylate glycidyl, and the number of carbon atoms constituting the main chain is preferably 10 or less.
Specific examples of the bifunctional epoxy compound among the polyfunctional epoxy compounds include, for example, bisphenol types such as EPICLON EXA-850CRP (made by DIC), hydrogenated bisphenol types such as EPICLON EXA-7015 (made by DIC), Examples thereof include ethylene glycol diglycidyl ether, and specific examples of the trifunctional or higher functional epoxy compound include EPICLON 725 (manufactured by DIC). Examples of the bisphenol type and hydrogenated bisphenol type include A type, E type, and F type.
このような方法により製造する上記一般式(1)で表される構造を有する(メタ)アクリレート化合物中のRは、上記エポキシ化合物由来の構造となり、上記エポキシ化合物が多官能エポキシである場合、aが2以上となる。 R 4 in the (meth) acrylate compound having the structure represented by the general formula (1) produced by such a method becomes a structure derived from the epoxy compound, and when the epoxy compound is a polyfunctional epoxy, a is 2 or more.
本発明のシール剤は、上記一般式(1)で表される構造を有する(メタ)アクリレート化合物以外にも、その他の硬化性樹脂を含有してもよい。
その場合、含有する全ての硬化性樹脂成分に占める上記一般式(1)で表される構造を有する(メタ)アクリレート化合物の配合量の好ましい下限は5重量%、好ましい上限は80重量%である。上記一般式(1)で表される構造を有する(メタ)アクリレート化合物の配合量が5重量%未満であると、得られるシール剤の硬化物の残留応力を充分に緩和しきれず、製造した液晶表示素子の基板間の接着性が不充分となることがある。上記一般式(1)で表される構造を有する(メタ)アクリレート化合物の配合量が80重量%を超えると、得られるシール剤の硬化物は、残留応力を分散させるため製造する液晶表示素子の基板間の接着性を高めるが、得られるシール剤のディスペンス性等の作業性が非常に悪くなってしまうことがある。上記一般式(1)で表される構造を有する(メタ)アクリレート化合物の配合量のより好ましい下限は10重量%、より好ましい上限は50重量%である。
The sealing agent of the present invention may contain other curable resins in addition to the (meth) acrylate compound having the structure represented by the general formula (1).
In that case, the preferable minimum of the compounding quantity of the (meth) acrylate compound which has a structure represented by the said General formula (1) in all the curable resin components to contain is 5 weight%, and a preferable upper limit is 80 weight%. . When the blending amount of the (meth) acrylate compound having the structure represented by the general formula (1) is less than 5% by weight, the residual stress of the cured sealant obtained cannot be sufficiently relaxed, and the produced liquid crystal The adhesion between the substrates of the display elements may be insufficient. When the blending amount of the (meth) acrylate compound having the structure represented by the general formula (1) exceeds 80% by weight, a cured product of the obtained sealing agent is used to disperse the residual stress. Although the adhesiveness between the substrates is enhanced, the workability such as the dispensing property of the obtained sealant may be extremely deteriorated. The more preferable lower limit of the blending amount of the (meth) acrylate compound having the structure represented by the general formula (1) is 10% by weight, and the more preferable upper limit is 50% by weight.
上記その他の硬化性樹脂としては特に限定されず、例えば、反応性官能基として(メタ)アクリロイル基、エポキシ基やオキセタニル基等の環状エーテル、スチリル基等を有するものが挙げられる。具体的には例えば、(メタ)アクリル酸エステル、部分エポキシ(メタ)アクリレート樹脂、エポキシ樹脂等が好適である。 The other curable resin is not particularly limited, and examples thereof include those having a reactive functional group such as a (meth) acryloyl group, a cyclic ether such as an epoxy group or an oxetanyl group, and a styryl group. Specifically, for example, (meth) acrylic acid ester, partial epoxy (meth) acrylate resin, epoxy resin and the like are suitable.
上記(メタ)アクリル酸エステルとしては、例えば、(メタ)アクリル酸に水酸基を有する化合物を反応させることにより得られるエステル化合物、(メタ)アクリル酸とエポキシ化合物とを反応させることにより得られるエポキシ(メタ)アクリレート、イソシアネートに水酸基を有する(メタ)アクリル酸誘導体を反応させることにより得られるウレタン(メタ)アクリレート等が挙げられる。 Examples of the (meth) acrylic acid ester include an ester compound obtained by reacting a compound having a hydroxyl group with (meth) acrylic acid, and an epoxy obtained by reacting (meth) acrylic acid with an epoxy compound ( Examples thereof include urethane (meth) acrylates obtained by reacting (meth) acrylates and isocyanates with (meth) acrylic acid derivatives having a hydroxyl group.
上記(メタ)アクリル酸とエポキシ化合物とを反応させることにより得られるエポキシ(メタ)アクリレートは特に限定されず、例えば、エポキシ樹脂と(メタ)アクリル酸とを、常法に従って塩基性触媒の存在下で反応することにより得られるものが挙げられる。 The epoxy (meth) acrylate obtained by reacting the (meth) acrylic acid and the epoxy compound is not particularly limited. For example, an epoxy resin and (meth) acrylic acid are combined in the presence of a basic catalyst according to a conventional method. What is obtained by reacting with is mentioned.
上記イソシアネートに水酸基を有する(メタ)アクリル酸誘導体を反応させることにより得られるウレタン(メタ)アクリレートとしては、例えば、2つのイソシアネート基を有する化合物1当量に対して水酸基を有する(メタ)アクリル酸誘導体2当量を、触媒量のスズ系化合物存在下で反応させることによって得ることができる。 Examples of the urethane (meth) acrylate obtained by reacting the above isocyanate with a (meth) acrylic acid derivative having a hydroxyl group include, for example, a (meth) acrylic acid derivative having a hydroxyl group with respect to 1 equivalent of a compound having two isocyanate groups. Two equivalents can be obtained by reacting in the presence of a catalytic amount of a tin-based compound.
上記部分エポキシ(メタ)アクリレート樹脂としては、例えば、2つ以上のエポキシ基を有する化合物の一部分のエポキシ基を(メタ)アクリル酸と反応させることによって得られる化合物や、2官能以上のイソシアネートに水酸基を有する(メタ)アクリル酸誘導体を反応させ、次いでグリシドールを反応させることにより得られる化合物等が挙げられる。 Examples of the partial epoxy (meth) acrylate resin include a compound obtained by reacting a partial epoxy group of a compound having two or more epoxy groups with (meth) acrylic acid, or a hydroxyl group in a bifunctional or higher isocyanate. And a compound obtained by reacting a (meth) acrylic acid derivative having glycidol and then glycidol.
上記エポキシ樹脂としては特に限定されず、例えば、エピクロロヒドリン誘導体、環式脂肪族エポキシ樹脂、イソシアネートとグリシドールとの反応から得られる化合物等が挙げられる。 The epoxy resin is not particularly limited, and examples thereof include epichlorohydrin derivatives, cycloaliphatic epoxy resins, compounds obtained from the reaction of isocyanate and glycidol, and the like.
上記その他の硬化性樹脂は、硬化時の未硬化残分を少しでも低減させるため、1分子中に2つ以上の反応性基を有する化合物であることが好ましい。
上記その他の硬化性樹脂は、未硬化の本発明のシール剤の液晶への成分溶出をより抑制するために、1分子中に少なくとも1つ以上の水素結合性官能基を有することが好ましい。
上記水素結合性官能基としては特に限定されず、例えば、-OH基、-SH基、-NHR基(Rは、芳香族又は脂肪族炭化水素、及び、これらの誘導体を表す)、-COOH基、-NHOH基等の官能基、また、分子内に存在する-NHCO-、-NH-、-CONHCO-、-NH-NH-等の残基が挙げられ、なかでも、導入の容易さから-OH基であることが好ましい。
The other curable resin is preferably a compound having two or more reactive groups in one molecule in order to reduce the uncured residue at the time of curing as much as possible.
The other curable resin preferably has at least one hydrogen-bonding functional group in one molecule in order to further suppress the elution of the uncured sealing agent of the present invention into the liquid crystal.
The hydrogen bonding functional group is not particularly limited, and examples thereof include an —OH group, —SH group, —NHR group (R represents an aromatic or aliphatic hydrocarbon, and derivatives thereof), —COOH group , Functional groups such as —NHOH groups, and residues such as —NHCO—, —NH—, —CONHCO—, —NH—NH—, etc. present in the molecule. An OH group is preferred.
本発明のシール剤は、光重合開始剤を含有することが好ましい。
上記光重合開始剤としては特に限定されないが、例えば、ベンゾフェノン系化合物、アセトフェノン系化合物、アシルフォスフィンオキサイド系化合物、チタノセン系化合物、オキシムエステル系化合物、ベンゾインエーテル系化合物、ベンジル、チオキサントン等を好適に用いることができる。これらの光重合開始剤は単独で用いてもよく、2種以上を併用してもよい。
The sealing agent of the present invention preferably contains a photopolymerization initiator.
The photopolymerization initiator is not particularly limited, and for example, benzophenone compounds, acetophenone compounds, acylphosphine oxide compounds, titanocene compounds, oxime ester compounds, benzoin ether compounds, benzyl, thioxanthone, etc. are suitable. Can be used. These photoinitiators may be used independently and may use 2 or more types together.
また、上記光重合開始剤のうち市販されているものとしては、例えば、イルガキュア907、イルガキュア819、イルガキュア651、イルガキュア369、イルガキュアOXE01(以上、いずれもチバ・スペシャリティーケミカルズ社製)、ベンソインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ルシリンTPO(BASF Japan社製)、KR-02(ライトケミカル社製)等が挙げられる。 Examples of commercially available photopolymerization initiators include Irgacure 907, Irgacure 819, Irgacure 651, Irgacure 369, Irgacure OXE01 (all of which are manufactured by Ciba Specialty Chemicals), Bensoin Methyl. Examples include ether, benzoin ethyl ether, benzoin isopropyl ether, Lucillin TPO (BASF Japan), KR-02 (Light Chemical).
上記光重合開始剤の含有量は特に限定されないが、上述した一般式(1)で表される構造を有する(メタ)アクリレート化合物及びその他の硬化性樹脂の合計100重量部に対して、好ましい下限は0.1重量部、好ましい上限は10重量部である。上記光重合開始剤の含有量が0.1重量部未満であると、光重合を開始する能力が不足して上述した本発明の効果が得られなくなることがある。上記光重合開始剤の含有量が10重量部を超えると、未反応のラジカル重合開始剤が多く残り、本発明のシール剤の耐候性が悪くなることがある。上記光重合開始剤の含有量のより好ましい下限は1重量部、より好ましい上限は5重量部である。 Although content of the said photoinitiator is not specifically limited, A preferable minimum with respect to a total of 100 weight part of the (meth) acrylate compound and other curable resin which have a structure represented by General formula (1) mentioned above. Is 0.1 part by weight, and the preferred upper limit is 10 parts by weight. If the content of the photopolymerization initiator is less than 0.1 parts by weight, the ability to start photopolymerization may be insufficient and the above-described effects of the present invention may not be obtained. When content of the said photoinitiator exceeds 10 weight part, many unreacted radical polymerization initiators remain, and the weather resistance of the sealing agent of this invention may worsen. The minimum with more preferable content of the said photoinitiator is 1 weight part, and a more preferable upper limit is 5 weight part.
本発明のシール剤は、重合禁止剤を含有することが好ましい。
上記重合禁止剤を含有することにより、本発明のシール剤を真空脱泡した後にゲル化が進行することを抑制できる。
The sealing agent of the present invention preferably contains a polymerization inhibitor.
By containing the said polymerization inhibitor, it can suppress that gelatinization advances after carrying out the vacuum degassing of the sealing agent of this invention.
上記重合禁止剤は特に限定されず、例えば、2,6-ジ-t-ブチルクレゾール、ブチル化ヒドロキシアニソール、2,6-ジ-t-ブチル-4 -エチルフェノール、ステアリルβ-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、2,2’-メチレンビス(4-メチル-6-t-ブチルフェノール)、2,2’-メチレンビス(4-エチル-6-t-ブチルフェノール)、4,4’-チオビス-3-メチル-6-t-ブチルフェノール)、4,4-ブチリデンンビス(3-メチル-6-t-ブチルフェノール)、3,9 -ビス[1,1-ジメチル-2-[β-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ]エチル]-2,4,8,10-テトラオキサスピロ[5,5]ウンデカン、テトラキス-[メチレン-3-(3’,5’-ジ-t-ブチル-4’-ヒドロキシフェニル)プロピオネート]メタン、1,3,5-トリス(3’,5’-ジ-t-ブチル-4’-ヒドロキシベンジル)-sec-トリアジン-2,4,6-(1H,3H, 5H)トリオン、ハイドロキノン、p-メトキシフェノール等が挙げられる。 The polymerization inhibitor is not particularly limited. For example, 2,6-di-t-butylcresol, butylated hydroxyanisole, 2,6-di-t-butyl-4, ethylphenol, stearyl β- (3,5 -Di-t-butyl-4-hydroxyphenyl) propionate, 2,2'-methylenebis (4-methyl-6-t-butylphenol), 2,2'-methylenebis (4-ethyl-6-t-butylphenol), 4,4′-thiobis-3-methyl-6-tert-butylphenol), 4,4-butylidenebis (3-methyl-6-tert-butylphenol), 3,9-bis [1,1-dimethyl-2- [ β- (3-tert-butyl-4-hydroxy-5-methylphenyl) propionyloxy] ethyl] -2,4,8,10-tetraoxaspiro [5,5] undeca Tetrakis- [methylene-3- (3 ′, 5′-di-t-butyl-4′-hydroxyphenyl) propionate] methane, 1,3,5-tris (3 ′, 5′-di-t- Butyl-4'-hydroxybenzyl) -sec-triazine-2,4,6- (1H, 3H, 5H) trione, hydroquinone, p-methoxyphenol and the like.
上記重合禁止剤の含有量は特に制限されないが、シール剤の全量に対して、好ましい下限は50ppm、好ましい上限は2000ppmである。上記重合禁止剤の含有量が50ppm未満であると、得られるシール剤組成物を真空脱泡した後にゲル化が進行し、保存して使用することが困難となることがある。上記重合禁止剤の含有量が2000ppmを超えると、得られるシール剤の光反応性が抑制され、硬化性が充分に得られなくなることがある。上記重合禁止剤の含有量のより好ましい下限は70ppm、より好ましい上限は1800ppmである。 The content of the polymerization inhibitor is not particularly limited, but the preferable lower limit is 50 ppm and the preferable upper limit is 2000 ppm with respect to the total amount of the sealing agent. If the content of the polymerization inhibitor is less than 50 ppm, gelation proceeds after the resulting sealant composition is degassed in vacuum, and it may be difficult to store and use. When content of the said polymerization inhibitor exceeds 2000 ppm, the photoreactivity of the sealing agent obtained may be suppressed and sclerosis | hardenability may not fully be obtained. The minimum with more preferable content of the said polymerization inhibitor is 70 ppm, and a more preferable upper limit is 1800 ppm.
本発明のシール剤において、エポキシ基を有する硬化性樹脂を併用する場合、熱硬化剤を含有することが好ましい。 When using together the curable resin which has an epoxy group in the sealing compound of this invention, it is preferable to contain a thermosetting agent.
上記熱硬化剤としては、例えば、1,3-ビス[ヒドラジノカルボノエチル-5-イソプロピルヒダントイン]等のヒドラジド化合物、ジシアンジアミド、グアニジン誘導体、1-シアノエチル-2-フェニルイミダゾール、N-[2-(2-メチル-1-イミダゾリル)エチル]尿素、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン、N,N’-ビス(2-メチル-1-イミダゾリルエチル)尿素、N,N’-(2-メチル-1-イミダゾリルエチル)-アジポアミド、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール、2-フェニル-4,5-ジヒドロキシメチルイミダゾール等のイミダゾール誘導体、変性脂肪族ポリアミン、テトラヒドロ無水フタル酸、エチレングリコールービス(アンヒドロトリメリテート)等の酸無水物、各種アミンとエポキシ樹脂との付加生成物等が挙げられる。これらは、単独で用いても、2種類以上が用いられてもよい。なかでも、ヒドラジド系化合物を用いることが好ましく、液晶汚染を殆ど起こさないことよりマロン酸ジヒドラジドを用いることがより好ましい。 Examples of the thermosetting agent include hydrazide compounds such as 1,3-bis [hydrazinocarbonoethyl-5-isopropylhydantoin], dicyandiamide, guanidine derivatives, 1-cyanoethyl-2-phenylimidazole, N- [2- (2-Methyl-1-imidazolyl) ethyl] urea, 2,4-diamino-6- [2′-methylimidazolyl- (1 ′)]-ethyl-s-triazine, N, N′-bis (2-methyl -1-imidazolylethyl) urea, N, N ′-(2-methyl-1-imidazolylethyl) -adipamide, 2-phenyl-4-methyl-5-hydroxymethylimidazole, 2-phenyl-4,5-dihydroxymethyl Imidazole derivatives such as imidazole, modified aliphatic polyamines, tetrahydrophthalic anhydride, ethylene glycol Acid anhydrides such as-bis (anhydrotrimellitate), addition products such as the various amines and epoxy resins. These may be used alone or in combination of two or more. Especially, it is preferable to use a hydrazide compound, and it is more preferable to use malonic acid dihydrazide because it hardly causes liquid crystal contamination.
上記熱硬化剤の配合量は特に限定されないが、上記一般式(1)で表される構造を有する(メタ)アクリレート化合物及びその他の硬化性樹脂の合計100重量部に対して、好ましい下限は0.1重量部、好ましい上限は50重量部である。上記熱硬化剤の配合量が0.1重量部未満であると、エポキシ基を有する硬化性樹脂を充分に硬化できないことがある。上記熱硬化剤の配合量が50重量部を超えると、硬化物の耐湿性が低下することがある。上記熱硬化剤の配合量のより好ましい下限は1重量部、より好ましい上限は20重量部である。 Although the compounding quantity of the said thermosetting agent is not specifically limited, A preferable minimum is 0 with respect to a total of 100 weight part of the (meth) acrylate compound which has a structure represented by the said General formula (1), and other curable resin. .1 part by weight, the preferred upper limit is 50 parts by weight. When the blending amount of the thermosetting agent is less than 0.1 parts by weight, the curable resin having an epoxy group may not be sufficiently cured. When the blending amount of the thermosetting agent exceeds 50 parts by weight, the moisture resistance of the cured product may be lowered. A more preferable lower limit of the amount of the thermosetting agent is 1 part by weight, and a more preferable upper limit is 20 parts by weight.
本発明のシール剤は、シランカップリング剤を含有していてもよい。シランカップリング剤は、主に本発明のシール剤と基板との接着性を向上させる接着助剤としての役割を有する。
上記シランカップリング剤としては特に限定されないが、基板との接着性向上効果に優れ、硬化性樹脂と化学結合することにより液晶材料中への流出を防止することができることから、例えば、γ-アミノプロピルトリメトキシシラン、γ-メルカプトプロピルトリメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-イソシアネートプロピルトリメトキシシラン等が好適に用いられる。これらのシランカップリング剤は単独で用いてもよく、2種以上を併用してもよい。
The sealing agent of the present invention may contain a silane coupling agent. The silane coupling agent mainly serves as an adhesion assistant that improves the adhesion between the sealing agent of the present invention and the substrate.
The silane coupling agent is not particularly limited, but is excellent in the effect of improving the adhesion to the substrate and can be prevented from flowing into the liquid crystal material by chemically bonding with the curable resin. Propyltrimethoxysilane, γ-mercaptopropyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-isocyanatopropyltrimethoxysilane and the like are preferably used. These silane coupling agents may be used alone or in combination of two or more.
本発明のシール剤は、応力分散効果による接着性の改善、線膨張率の改善等の目的にフィラーを含有してもよい。上記フィラーとしては特に限定されず、例えば、タルク、石綿、シリカ、珪藻土、スメクタイト、ベントナイト、炭酸カルシウム、炭酸マグネシウム、アルミナ、モンモリロナイト、珪藻土、酸化亜鉛、酸化鉄、酸化マグネシウム、酸化錫、酸化チタン、水酸化マグネシウム、水酸化アルミニウム、ガラスビーズ、窒化珪素、硫酸バリウム、石膏、珪酸カルシウム、タルク、ガラスビーズ、セリサイト活性白土、ベントナイト、窒化アルミニウム等の無機フィラーや、ポリエステル微粒子、ポリウレタン微粒子、ビニル重合体微粒子、アクリル重合体微粒子等の有機フィラーが挙げられる。 The sealing agent of the present invention may contain a filler for the purpose of improving the adhesiveness due to the stress dispersion effect and improving the linear expansion coefficient. The filler is not particularly limited, for example, talc, asbestos, silica, diatomaceous earth, smectite, bentonite, calcium carbonate, magnesium carbonate, alumina, montmorillonite, diatomaceous earth, zinc oxide, iron oxide, magnesium oxide, tin oxide, titanium oxide, Inorganic fillers such as magnesium hydroxide, aluminum hydroxide, glass beads, silicon nitride, barium sulfate, gypsum, calcium silicate, talc, glass beads, sericite activated clay, bentonite, aluminum nitride, polyester fine particles, polyurethane fine particles, vinyl heavy Organic fillers such as coalesced fine particles and acrylic polymer fine particles can be mentioned.
本発明のシール剤は、更に、必要に応じて、粘度調整の為の反応性希釈剤、チクソ性を調整する揺変剤、パネルギャップ調整の為のポリマービーズ等のスペーサー、3-P-クロロフェニル-1,1-ジメチル尿素等の硬化促進剤、消泡剤、レベリング剤、その他添加剤等を含有してもよい。 The sealing agent of the present invention further comprises a reactive diluent for adjusting the viscosity, a thixotropic agent for adjusting the thixotropy, a spacer such as a polymer bead for adjusting the panel gap, and 3-P-chlorophenyl as necessary. A curing accelerator such as 1,1-dimethylurea, an antifoaming agent, a leveling agent, and other additives may be contained.
本発明のシール剤は、例えば、上記一般式(1)で表される構造を有する(メタ)アクリレート化合物、その他の硬化性樹脂及び必要に応じて配合される添加剤等を、3本ロール等を用いた従来公知の方法により混合し、均一に分散させる方法等で得ることができる。 The sealing agent of the present invention includes, for example, a three-roll, etc. (meth) acrylate compound having a structure represented by the above general formula (1), other curable resins and additives blended as necessary. It can be obtained by a method of mixing and uniformly dispersing by a conventionally known method using
本発明のシール剤をディスペンスにより基板に塗布する際の粘度の好ましい下限は20万mPa・s、好ましい上限は40万mPa・sである。上記粘度が20万mPa・s未満であると、粘度が低すぎて塗工したシール剤が液晶に押されて形状が崩れることがある。上記粘度が40万mPa・sを超えると、塗工性が劣り、基板に塗工する際にシール剤の断線が発生してしまうことがある。 The preferable lower limit of the viscosity when the sealing agent of the present invention is applied to the substrate by dispensing is 200,000 mPa · s, and the preferable upper limit is 400,000 mPa · s. If the viscosity is less than 200,000 mPa · s, the viscosity may be too low, and the applied sealing agent may be pushed by the liquid crystal and the shape may collapse. When the viscosity exceeds 400,000 mPa · s, the coating property is inferior, and the sealant may break when applied to the substrate.
本発明のシール剤は、液晶表示素子の製造において、適度な粘度を有することから塗工性に優れ、断線等することなく塗工することができる。また、基板に対する接着性に優れ、更に、液晶汚染を引き起こすことがほとんどないため、液晶表示において色むらが少ない液晶表示素子の製造に好適に用いることができる。 Since the sealing agent of the present invention has an appropriate viscosity in the production of a liquid crystal display element, it has excellent coating properties and can be applied without disconnection. Further, since it has excellent adhesion to the substrate and hardly causes liquid crystal contamination, it can be suitably used for the production of a liquid crystal display element with little color unevenness in liquid crystal display.
本発明の液晶滴下工法用シール剤に、導電性微粒子を配合することにより、上下導通材料を製造することができる。このような上下導通材料を用いれば、基板の電極を確実に導電接続することができる。
本発明の液晶滴下工法用シール剤と導電性微粒子とを含有する上下導通材料もまた、本発明の1つである。
A vertical conduction material can be produced by blending conductive fine particles with the liquid crystal dropping method sealing agent of the present invention. If such a vertical conduction material is used, the electrodes of the substrate can be reliably conductively connected.
The vertical conduction material containing the sealing agent for liquid crystal dropping method of the present invention and conductive fine particles is also one aspect of the present invention.
上記導電性微粒子は特に限定されず、例えば、金属ボール、樹脂微粒子の表面に導電金属層を形成したもの等を用いることができる。なかでも、樹脂微粒子の表面に導電金属層を形成したものは、樹脂微粒子の優れた弾性により、基板等を損傷することなく導電接続が可能であることから好適である。 The conductive fine particles are not particularly limited, and, for example, metal balls, those obtained by forming a conductive metal layer on the surface of resin fine particles, and the like can be used. Among them, the one in which the conductive metal layer is formed on the surface of the resin fine particles is preferable because the conductive connection is possible without damaging the substrate or the like due to the excellent elasticity of the resin fine particles.
本発明のシール剤及び/又は本発明の上下導通材料を用いて液晶表示素子を製造する方法としては特に限定されず、例えば、従来公知の方法により製造することができる。
本発明のシール剤及び/又は本発明の上下導通材料を用いてなる液晶表示素子もまた、本発明の1つである。
The method for producing a liquid crystal display element using the sealing agent of the present invention and / or the vertical conduction material of the present invention is not particularly limited, and for example, it can be produced by a conventionally known method.
A liquid crystal display element using the sealing agent of the present invention and / or the vertical conduction material of the present invention is also one aspect of the present invention.
本発明によれば、塗工性に優れ、シールと基板との接着性が高く、かつ、液晶汚染を引き起こすことがほとんどないため液晶表示において色むらが少ない液晶表示素子の製造に最適である液晶滴下工法用シール剤、上下導通材料及び液晶表示素子を提供することができる。 According to the present invention, a liquid crystal that is excellent in coating properties, has high adhesion between a seal and a substrate, and hardly causes liquid crystal contamination, so that it is optimal for manufacturing a liquid crystal display element with little color unevenness in liquid crystal display. It is possible to provide a sealing agent for dropping method, a vertical conduction material, and a liquid crystal display element.
以下に実施例を挙げて本発明の態様を更に詳しく説明するが、本発明はこれら実施例にのみ限定されない。 Hereinafter, embodiments of the present invention will be described in more detail with reference to examples. However, the present invention is not limited to these examples.
(硬化性樹脂Aの合成)
反応フラスコに2-ヒドロエキシエチルアクリレート116重量部とβ-プロピオラクトン144重量部を入れ、重合禁止剤としてハイドロキノン0.3重量部加え、マントルヒーターで90℃に加熱して5時間撹拌した。撹拌生成物に無水フタル酸148重量部を加えてさらに5時間撹拌した。
続いて、ビスフェノールAジグリシジルエーテル170重量部を加え、90℃で5時間撹拌することで硬化性樹脂Aを得た。
(Synthesis of curable resin A)
To the reaction flask, 116 parts by weight of 2-hydrooxyethyl acrylate and 144 parts by weight of β-propiolactone were added, 0.3 part by weight of hydroquinone was added as a polymerization inhibitor, heated to 90 ° C. with a mantle heater, and stirred for 5 hours. To the stirred product, 148 parts by weight of phthalic anhydride was added and further stirred for 5 hours.
Subsequently, 170 parts by weight of bisphenol A diglycidyl ether was added, and the resulting mixture was stirred at 90 ° C. for 5 hours to obtain a curable resin A.
(硬化性樹脂Bの合成)
反応フラスコに2-ヒドロエキシエチルアクリレート116重量部とβ-プロピオラクトン360重量部を入れ、重合禁止剤としてハイドロキノン0.3重量部加え、マントルヒーターで90℃に加熱して5時間撹拌した。撹拌生成物に無水フタル酸148重量部を加えてさらに5時間撹拌した。
続いて、ビスフェノールAジグリシジルエーテル170重量部を加え、90℃で5時間撹拌することで硬化性樹脂Bを得た。
(Synthesis of curable resin B)
Into the reaction flask, 116 parts by weight of 2-hydrooxyethyl acrylate and 360 parts by weight of β-propiolactone were added, 0.3 part by weight of hydroquinone was added as a polymerization inhibitor, heated to 90 ° C. with a mantle heater, and stirred for 5 hours. To the stirred product, 148 parts by weight of phthalic anhydride was added and further stirred for 5 hours.
Subsequently, 170 parts by weight of bisphenol A diglycidyl ether was added and the resulting mixture was stirred at 90 ° C. for 5 hours to obtain a curable resin B.
(硬化性樹脂Cの合成)
反応フラスコに2-ヒドロエキシエチルアクリレート116重量部とγ-バレロラクトン200重量部を入れ、重合禁止剤としてハイドロキノン0.3重量部加え、マントルヒーターで90℃に加熱して5時間撹拌した。撹拌生成物に無水フタル酸148重量部を加えてさらに5時間撹拌した。
続いて、ビスフェノールAジグリシジルエーテル170重量部を加え、90℃で5時間撹拌することで硬化性樹脂Cを得た。
(Synthesis of curable resin C)
To the reaction flask, 116 parts by weight of 2-hydrooxyethyl acrylate and 200 parts by weight of γ-valerolactone were added, 0.3 part by weight of hydroquinone was added as a polymerization inhibitor, heated to 90 ° C. with a mantle heater, and stirred for 5 hours. To the stirred product, 148 parts by weight of phthalic anhydride was added and further stirred for 5 hours.
Subsequently, 170 parts by weight of bisphenol A diglycidyl ether was added and the resulting mixture was stirred at 90 ° C. for 5 hours to obtain a curable resin C.
(硬化性樹脂Dの合成)
反応フラスコに2-ヒドロエキシエチルアクリレート116重量部とγ-バレロラクトン500重量部を入れ、重合禁止剤としてハイドロキノン0.3重量部加え、マントルヒーターで90℃に加熱して5時間撹拌した。撹拌生成物に無水フタル酸148重量部を加えてさらに5時間撹拌した。
続いて、ビスフェノールAジグリシジルエーテル170重量部を加え、90℃で5時間撹拌することで硬化性樹脂Dを得た。
(Synthesis of curable resin D)
In a reaction flask, 116 parts by weight of 2-hydrooxyethyl acrylate and 500 parts by weight of γ-valerolactone were added, 0.3 part by weight of hydroquinone was added as a polymerization inhibitor, heated to 90 ° C. with a mantle heater, and stirred for 5 hours. To the stirred product, 148 parts by weight of phthalic anhydride was added and further stirred for 5 hours.
Subsequently, 170 parts by weight of bisphenol A diglycidyl ether was added and the resulting mixture was stirred at 90 ° C. for 5 hours to obtain a curable resin D.
(硬化性樹脂Eの合成)
反応フラスコに2-ヒドロエキシエチルアクリレート116重量部とε-カプロラクトン114重量部を入れ、重合禁止剤としてハイドロキノン0.3重量部加え、マントルヒーターで90℃に加熱して5時間撹拌した。撹拌生成物に無水フタル酸148重量部を加えてさらに5時間撹拌した。
続いて、ビスフェノールAジグリシジルエーテル170重量部を加え、90℃で5時間撹拌することで硬化性樹脂Eを得た。
(Synthesis of curable resin E)
Into the reaction flask, 116 parts by weight of 2-hydrooxyethyl acrylate and 114 parts by weight of ε-caprolactone were added, 0.3 part by weight of hydroquinone was added as a polymerization inhibitor, heated to 90 ° C. with a mantle heater, and stirred for 5 hours. To the stirred product, 148 parts by weight of phthalic anhydride was added and further stirred for 5 hours.
Subsequently, 170 parts by weight of bisphenol A diglycidyl ether was added and the resulting mixture was stirred at 90 ° C. for 5 hours to obtain a curable resin E.
(硬化性樹脂Fの合成)
反応フラスコに2-ヒドロエキシエチルアクリレート116重量部とε-カプロラクトン228重量部を入れ、重合禁止剤としてハイドロキノン0.3重量部加え、マントルヒーターで90℃に加熱して5時間撹拌した。撹拌生成物に無水フタル酸148重量部を加えてさらに5時間撹拌した。
続いて、ビスフェノールAジグリシジルエーテル170重量部を加え、90℃で5時間撹拌することで硬化性樹脂Fを得た。
(Synthesis of curable resin F)
In a reaction flask, 116 parts by weight of 2-hydrooxyethyl acrylate and 228 parts by weight of ε-caprolactone were added, 0.3 part by weight of hydroquinone was added as a polymerization inhibitor, heated to 90 ° C. with a mantle heater, and stirred for 5 hours. To the stirred product, 148 parts by weight of phthalic anhydride was added and further stirred for 5 hours.
Then, 170 weight part of bisphenol A diglycidyl ether was added, and the curable resin F was obtained by stirring at 90 degreeC for 5 hours.
(硬化性樹脂Gの合成)
反応フラスコに2-ヒドロエキシエチルアクリレート116重量部とε-カプロラクトン342重量部を入れ、重合禁止剤としてハイドロキノン0.3重量部加え、マントルヒーターで90℃に加熱して5時間撹拌した。撹拌生成物に無水フタル酸148重量部を加えてさらに5時間撹拌した。
続いて、ビスフェノールAジグリシジルエーテル170重量部を加え、90℃で5時間撹拌することで硬化性樹脂Gを得た。
(Synthesis of curable resin G)
In a reaction flask, 116 parts by weight of 2-hydrooxyethyl acrylate and 342 parts by weight of ε-caprolactone were added, 0.3 part by weight of hydroquinone was added as a polymerization inhibitor, heated to 90 ° C. with a mantle heater, and stirred for 5 hours. To the stirred product, 148 parts by weight of phthalic anhydride was added and further stirred for 5 hours.
Then, 170 weight part of bisphenol A diglycidyl ether was added, and the curable resin G was obtained by stirring at 90 degreeC for 5 hours.
(硬化性樹脂Hの合成)
反応フラスコに2-ヒドロエキシエチルアクリレート116重量部とε-カプロラクトン456重量部を入れ、重合禁止剤としてハイドロキノン0.3重量部加え、マントルヒーターで90℃に加熱して5時間撹拌した。撹拌生成物に無水フタル酸148重量部を加えてさらに5時間撹拌した。
続いて、ビスフェノールAジグリシジルエーテル170重量部を加え、90℃で5時間撹拌することで硬化性樹脂Hを得た。
(Synthesis of curable resin H)
Into the reaction flask, 116 parts by weight of 2-hydrooxyethyl acrylate and 456 parts by weight of ε-caprolactone were added, 0.3 part by weight of hydroquinone was added as a polymerization inhibitor, heated to 90 ° C. with a mantle heater, and stirred for 5 hours. To the stirred product, 148 parts by weight of phthalic anhydride was added and further stirred for 5 hours.
Subsequently, 170 parts by weight of bisphenol A diglycidyl ether was added and the resulting mixture was stirred at 90 ° C. for 5 hours to obtain a curable resin H.
(硬化性樹脂Iの合成)
反応フラスコに2-ヒドロエキシエチルアクリレート116重量部とε-カプロラクトン570重量部を入れ、重合禁止剤としてハイドロキノン0.3重量部加え、マントルヒーターで90℃に加熱して5時間撹拌した。撹拌生成物に無水フタル酸148重量部を加えてさらに5時間撹拌した。
続いて、ビスフェノールAジグリシジルエーテル170重量部を加え、90℃で5時間撹拌することで硬化性樹脂Iを得た。
(Synthesis of curable resin I)
In a reaction flask, 116 parts by weight of 2-hydrooxyethyl acrylate and 570 parts by weight of ε-caprolactone were added, 0.3 part by weight of hydroquinone was added as a polymerization inhibitor, heated to 90 ° C. with a mantle heater, and stirred for 5 hours. To the stirred product, 148 parts by weight of phthalic anhydride was added and further stirred for 5 hours.
Subsequently, 170 parts by weight of bisphenol A diglycidyl ether was added and the resulting mixture was stirred at 90 ° C. for 5 hours to obtain a curable resin I.
(硬化性樹脂Jの合成)
反応フラスコに2-ヒドロエキシエチルアクリレート116重量部とε-カプロラクトン684重量部を入れ、重合禁止剤としてハイドロキノン0.3重量部加え、マントルヒーターで90℃に加熱して5時間撹拌した。撹拌生成物に無水フタル酸148重量部を加えてさらに5時間撹拌した。
続いて、ビスフェノールAジグリシジルエーテル170重量部を加え、90℃で5時間撹拌することで硬化性樹脂Jを得た。
(Synthesis of curable resin J)
In a reaction flask, 116 parts by weight of 2-hydrooxyethyl acrylate and 684 parts by weight of ε-caprolactone were added, 0.3 part by weight of hydroquinone was added as a polymerization inhibitor, heated to 90 ° C. with a mantle heater, and stirred for 5 hours. To the stirred product, 148 parts by weight of phthalic anhydride was added and further stirred for 5 hours.
Then, 170 weight part of bisphenol A diglycidyl ether was added, and curable resin J was obtained by stirring at 90 degreeC for 5 hours.
(硬化性樹脂Kの合成)
反応フラスコに2-ヒドロエキシエチルアクリレート116重量部とγ-ヘプタラクトン256重量部を入れ、重合禁止剤としてハイドロキノン0.3重量部加え、マントルヒーターで90℃に加熱して5時間撹拌した。撹拌生成物に無水フタル酸148重量部を加えてさらに5時間撹拌した。
続いて、ビスフェノールAジグリシジルエーテル170重量部を加え、90℃で5時間撹拌することで硬化性樹脂Kを得た。
(Synthesis of curable resin K)
Into the reaction flask, 116 parts by weight of 2-hydrooxyethyl acrylate and 256 parts by weight of γ-heptalactone were added, 0.3 part by weight of hydroquinone was added as a polymerization inhibitor, heated to 90 ° C. with a mantle heater, and stirred for 5 hours. To the stirred product, 148 parts by weight of phthalic anhydride was added and further stirred for 5 hours.
Then, 170 weight part of bisphenol A diglycidyl ether was added, and curable resin K was obtained by stirring at 90 degreeC for 5 hours.
(硬化性樹脂Lの合成)
反応フラスコに2-ヒドロエキシエチルアクリレート116重量部とγ-ヘプタラクトン640重量部を入れ、重合禁止剤としてハイドロキノン0.3重量部加え、マントルヒーターで90℃に加熱して5時間撹拌した。撹拌生成物に無水フタル酸148重量部を加えてさらに5時間撹拌した。
続いて、ビスフェノールAジグリシジルエーテル170重量部を加え、90℃で5時間撹拌することで硬化性樹脂Lを得た。
(Synthesis of curable resin L)
Into the reaction flask, 116 parts by weight of 2-hydrooxyethyl acrylate and 640 parts by weight of γ-heptalactone were added, 0.3 part by weight of hydroquinone was added as a polymerization inhibitor, heated to 90 ° C. with a mantle heater, and stirred for 5 hours. To the stirred product, 148 parts by weight of phthalic anhydride was added and further stirred for 5 hours.
Then, 170 weight part of bisphenol A diglycidyl ether was added, and the curable resin L was obtained by stirring at 90 degreeC for 5 hours.
(硬化性樹脂Mの合成)
反応フラスコにアクリル酸72重量部とビスフェノールFジグリシジルエーテル312重量部とを入れ、重合禁止剤としてハイドロキノン0.3重量部加え、反応触媒としてトリエチルアミン0.3重量部を加え、マントルヒーターで90℃に加熱して5時間撹拌し、硬化性樹脂M(部分エポキシアクリレート)を得た。
(Synthesis of curable resin M)
A reaction flask was charged with 72 parts by weight of acrylic acid and 312 parts by weight of bisphenol F diglycidyl ether, 0.3 part by weight of hydroquinone was added as a polymerization inhibitor, 0.3 part by weight of triethylamine was added as a reaction catalyst, and 90 ° C. with a mantle heater. And stirred for 5 hours to obtain a curable resin M (partial epoxy acrylate).
(実施例1~15、比較例1~7)
表1~3に記載した配合量の各原料を遊星式攪拌機(シンキー社製、「あわとり練太郎」)にて攪拌した後、セラミック3本ロールにて均一に混合させて実施例1~15、比較例1~7の液晶滴下工法用シール剤を得た。上記で合成した硬化性樹脂A~M以外の表中の原料として、光重合開始剤にはライトケミカル社製「KR-02」、ビスフェノールA型エポキシアクリレート樹脂にはダイセルサイテック社製「EBECRYL 3700」、シランカップリング剤には信越化学工業社製「KBM403」、シリカにはアドマテックス社製「SO-C1」、熱硬化剤にはマロン酸ジヒドラジド又はセバシン酸ジヒドラジドを用いた。
(Examples 1 to 15, Comparative Examples 1 to 7)
Examples 1 to 15 were prepared by stirring the raw materials in the blending amounts shown in Tables 1 to 3 with a planetary stirrer (“Shinky Co., Ltd.”, “Awatori Netaro”) and then uniformly mixing them with a three-roll ceramic roll. The sealing agents for the liquid crystal dropping method of Comparative Examples 1 to 7 were obtained. As raw materials in the table other than the curable resins A to M synthesized above, “KR-02” manufactured by Light Chemical Co., Ltd. is used as a photopolymerization initiator, and “EBECRYL 3700” manufactured by Daicel Cytec Co., Ltd. is used as a bisphenol A type epoxy acrylate resin. As the silane coupling agent, “KBM403” manufactured by Shin-Etsu Chemical Co., Ltd., “SO-C1” manufactured by Admatechs Corporation as the silica, and malonic acid dihydrazide or sebacic acid dihydrazide were used as the thermosetting agent.
(評価)
実施例1~15、比較例1~7で得られた各シール剤を用いて以下の評価を行った。結果を表1~3に示した。
(Evaluation)
The following evaluations were performed using the sealing agents obtained in Examples 1 to 15 and Comparative Examples 1 to 7. The results are shown in Tables 1-3.
(シール剤の粘度の測定)
各シール剤を0.5g取り、E型粘度計(BROOK FIELD社製、「DV-III」)に入れ、25℃において回転速度1rpmで測定を行った。
(Measurement of viscosity of sealant)
0.5 g of each sealant was taken, put in an E-type viscometer (manufactured by BROOK FIELD, “DV-III”), and measured at 25 ° C. and a rotation speed of 1 rpm.
(作業性評価)
得られたそれぞれのシール剤100重量部にスペーサー微粒子(積水化学工業社製、「ミクロパールSI-H050」、5μm)1重量部を分散させてシリンジに充填し、遠心脱泡機(アワトロンAW-1)にて脱泡し、シリンジの吐出圧200kPa、ノズルギャップ42μm、塗布速度80mm/sec、ノズル径が0.4mmφで2枚ガラス基板の一方にディスペンサーで塗布した。続いて液晶(チッソ社製、「JC-5004LA」)の微小滴をガラス基板のシール剤の枠内全面に滴下塗布し、真空下でもう一方のガラス基板を貼り合わせ、10分間放置後、シール剤部分にメタルハライドランプを用いて100mW/cmの紫外線を30秒照射して評価用パネルを20枚ずつ作製した。各評価用パネルにおいて断線による不良パネルの数とパネル内側からの液晶漏れによる不良パネルの数を数え、以下の基準により評価した。
◎:不良パネル数0枚
○:不良パネル数1~2枚
△:不良パネル数3~5枚
×:不良パネル数5枚以上
(Workability evaluation)
1 part by weight of spacer fine particles (manufactured by Sekisui Chemical Co., Ltd., “Micropearl SI-H050”, 5 μm) is dispersed in 100 parts by weight of each obtained sealing agent and filled into a syringe, and a centrifugal defoamer (Awatron AW- In 1), defoaming was performed, and a syringe discharge pressure of 200 kPa, a nozzle gap of 42 μm, a coating speed of 80 mm / sec, and a nozzle diameter of 0.4 mmφ were applied to one of two glass substrates with a dispenser. Subsequently, liquid droplets (manufactured by Chisso Co., Ltd., “JC-5004LA”) are applied dropwise onto the entire surface of the sealant frame of the glass substrate, and the other glass substrate is bonded together under vacuum, left for 10 minutes, and then sealed. A metal halide lamp was used for the agent part, and 100 mW / cm 2 of ultraviolet rays were irradiated for 30 seconds to prepare 20 evaluation panels. In each evaluation panel, the number of defective panels due to disconnection and the number of defective panels due to liquid crystal leakage from the inside of the panel were counted and evaluated according to the following criteria.
◎: Number of defective panels 0: Number of defective panels 1 to 2 △: Number of defective panels 3 to 5 ×: Number of defective panels 5 or more
(基板接着性評価)
図1に示すように、ガラス基板1(150mm×150mm)に端から30mm内側四方に得られたシール剤2をディスペンスし、ガラス基板3(110mm×110mm)を真空下で重ねて貼り合わせた。紫外線(100mW/cm、3000mJ)を照射し、続いて120℃で1時間加熱してシール剤を硬化し、接着試験片を得た。
得られた接着試験片の基板の端部を半径5mmの金属棒4を使って5mm/minの速度で押し込んだときに、パネル剥がれが起こる際の強度(Kgf)を測定した。なお、基板が割れてしまうまで押し込んでもパネル剥がれがおきなかった場合は、「割れ」と表現した。
(Board adhesion evaluation)
As shown in FIG. 1, a sealant 2 obtained 30 mm inside from the end was dispensed on a glass substrate 1 (150 mm × 150 mm), and a glass substrate 3 (110 mm × 110 mm) was stacked and bonded together under vacuum. Ultraviolet rays (100 mW / cm 2 , 3000 mJ) were irradiated, followed by heating at 120 ° C. for 1 hour to cure the sealant, thereby obtaining an adhesion test piece.
When the end of the substrate of the obtained adhesion test piece was pushed in at a speed of 5 mm / min using a metal rod 4 having a radius of 5 mm, the strength (Kgf) at which panel peeling occurred was measured. In addition, when the panel was not peeled even if it was pushed in until the substrate broke, it was expressed as “crack”.
(液晶パネル評価(色むら評価))
得られたそれぞれのシール剤100重量部にスペーサー微粒子(積水化学工業社製、「ミクロパールSI-H050」、5μm)1重量部を分散させ、シリンジに充填し、遠心脱泡機(アワトロンAW-1)にて脱泡し、シリンジの吐出圧100~400kPa、ノズル径0.4mmφ、ノズルギャップ42μm、塗布速度60mm/secで2枚の配向膜及びITO付き基板の一方にディスペンサーで塗布した。
続いて液晶(チッソ社製、「JC-5004LA」)の微小滴をITO付き基板のシール剤の枠内全面に滴下塗布し、真空下でもう一方のITO付き基板を貼り合わせた。このときシール剤の線幅が約1.5mmになるように各シール剤ごとに吐出圧を調整した。貼り合わせた後、すぐにシール剤部分にメタルハライドランプを用いて100mW/cmの紫外線を30秒照射して仮硬化した。次いで、120℃で1時間加熱して本硬化を行い、液晶表示パネルを作製した。
得られたそれぞれの液晶表示パネルについて、表示パネル作製直後におけるシール剤付近の液晶配向乱れを目視によって確認した。配向乱れは表示部の色ムラより判断しており、色ムラの程度に応じて、以下の4段階で評価を行った。結果を表1~3に示した。なお、評価が◎、○の液晶パネルは、実用に全く問題のないレベルである。
◎:色むらが全くない
○:色むらが微かにある
△:色むらが少しある
×:色むらがかなりある
(Liquid crystal panel evaluation (color unevenness evaluation))
1 part by weight of spacer fine particles (“Micropearl SI-H050”, 5 μm, manufactured by Sekisui Chemical Co., Ltd.) is dispersed in 100 parts by weight of each obtained sealing agent, filled into a syringe, and centrifuged with a centrifugal defoamer (Awatron AW- Defoaming was performed in 1), and applied to one of the two alignment films and the substrate with ITO with a dispenser at a discharge pressure of 100 to 400 kPa, a nozzle diameter of 0.4 mmφ, a nozzle gap of 42 μm, and a coating speed of 60 mm / sec.
Subsequently, fine droplets of liquid crystal (manufactured by Chisso Corporation, “JC-5004LA”) were dropped onto the entire surface of the sealing agent frame of the substrate with ITO, and the other substrate with ITO was bonded together under vacuum. At this time, the discharge pressure was adjusted for each sealing agent so that the line width of the sealing agent was about 1.5 mm. Immediately after bonding, the sealant portion was irradiated with 100 mW / cm 2 of ultraviolet rays for 30 seconds using a metal halide lamp and temporarily cured. Next, main curing was performed by heating at 120 ° C. for 1 hour, and a liquid crystal display panel was produced.
About each obtained liquid crystal display panel, the liquid crystal orientation disorder in the sealant vicinity immediately after display panel preparation was confirmed visually. The alignment disorder was judged from the color unevenness of the display portion, and the evaluation was performed in the following four stages according to the degree of the color unevenness. The results are shown in Tables 1-3. Note that liquid crystal panels with evaluations of ◎ and ○ are at a level where there is no problem in practical use.
◎: No color unevenness ○: Color unevenness is slightly △: Color unevenness is slightly ×: Color unevenness is considerable
(参考例1~6)
表4に記載した配合量の各原料を遊星式攪拌機(シンキー社製、「あわとり練太郎」)にて攪拌した後、セラミック3本ロールにて均一に混合させて参考例1~6の液晶滴下工法用シール剤を得た。上記で合成した硬化性樹脂F及び硬化性樹脂M以外の表中の原料として、光重合開始剤にはライトケミカル社製「KR-02」、ビスフェノールA型エポキシアクリレート樹脂にはダイセルサイテック社製「EBECRYL 3700」、シランカップリング剤には信越化学工業社製「KBM403」、シリカにはアドマテックス社製「SO-C1」、熱硬化剤にはマロン酸ジヒドラジドを用いた。
また、得られた参考例1~6のシール剤中の残存ハイドロキノン量を液体クロマトグラフィーを用いて測定した。結果を表4に示した。なお、参考例1は実施例5と同一のシール剤である。
(Reference Examples 1 to 6)
Each raw material of the blending amounts shown in Table 4 was stirred with a planetary stirrer (“Shinky Co., Ltd.”, “Awatori Netaro”), and then mixed uniformly with three ceramic rolls to obtain the liquid crystals of Reference Examples 1-6. A sealant for the dripping method was obtained. As raw materials in the table other than the curable resin F and curable resin M synthesized above, “KR-02” manufactured by Light Chemical Co., Ltd. is used for the photopolymerization initiator, and Daicel Cytec Co., Ltd. is used for the bisphenol A type epoxy acrylate resin. “EBECRYL 3700”, “KBM403” manufactured by Shin-Etsu Chemical Co., Ltd. was used as the silane coupling agent, “SO-C1” manufactured by Admatechs was used as the silica, and malonic acid dihydrazide was used as the thermosetting agent.
In addition, the amount of residual hydroquinone in the obtained sealants of Reference Examples 1 to 6 was measured using liquid chromatography. The results are shown in Table 4. Reference Example 1 is the same sealant as Example 5.
(評価)
参考例1~6で得られた各シール剤を用いて以下の評価を行った。
結果を表4に示した。
(Evaluation)
The following evaluations were performed using the sealing agents obtained in Reference Examples 1 to 6.
The results are shown in Table 4.
(ゲル化の評価)
得られたシール剤をシリンジに入れ、真空脱泡装置(シンキー社製、「ARV-200」)で、1500rpm、3torr、の条件で10分間真空脱泡し、温度23℃、湿度50%で二週間放置し、少量をスパチュラで取り出しガラス基板に手作業で塗布し、シール剤のゲル化が進んでいないかを調べた。ゲル化せず、基板に塗布できたものを「○」、ゲル化して基板にうまく塗布できなかったものを「×」として評価した。
(Evaluation of gelation)
The obtained sealant is put into a syringe and vacuum deaerated for 10 minutes under conditions of 1500 rpm and 3 torr with a vacuum deaerator (“ARV-200”, manufactured by Shinky Corporation). It was left for a week, a small amount was taken out with a spatula and applied to a glass substrate by hand, and it was examined whether or not gelling of the sealant had progressed. Evaluation was made as “◯” for those that did not gel and could be applied to the substrate, and “×” for those that gelled and could not be successfully applied to the substrate.
(遮光部硬化性の評価)
図2に示すように、コーニングガラス0.7mmtの半面をクロム蒸着した基板5と全面をクロム蒸着した基板6とを準備した。基板5のクロム蒸着した部分としていない部分の境に各シール剤を点状に塗布し、基板6を貼り合わせてから充分に押しつぶした。
次に、貼り合わせた基板に基板5面側から100mW/cmの紫外線を30秒間照射した後、基板5、6を剥がし、トルエンを用いて洗浄後、洗浄されずにシールが残った部分を硬化したとみなし、この距離をマイクロスコープを用いて測定した。
(Evaluation of light-shielding part curability)
As shown in FIG. 2, the board | substrate 5 which vapor-deposited the half surface of the Corning glass 0.7mmt and the board | substrate 6 which vapor-deposited the whole surface were prepared. Each sealing agent was applied in the form of dots on the boundary between the portions of the substrate 5 where the chromium was not deposited, and the substrates 6 were bonded together and then crushed sufficiently.
Next, after irradiating the bonded substrate with 100 mW / cm 2 ultraviolet rays from the surface of the substrate 5 for 30 seconds, the substrates 5 and 6 are peeled off, washed with toluene, and the portion where the seal remains without being washed. This distance was measured using a microscope.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
本発明によれば、塗工性に優れ、シールと基板との間の接着性が高く、かつ、液晶汚染を引き起こすことがほとんどないため液晶表示において色むらが少ない液晶表示素子の製造に最適である液晶滴下工法用シール剤、上下導通材料及び液晶表示素子を提供することができる。 According to the present invention, the coating property is excellent, the adhesiveness between the seal and the substrate is high, and the liquid crystal is hardly contaminated. A sealing agent for a certain liquid crystal dropping method, a vertical conduction material, and a liquid crystal display element can be provided.
基板接着性の評価方法を示す説明図である。It is explanatory drawing which shows the evaluation method of board | substrate adhesiveness. 遮光部硬化性の評価方法を示す説明図である。It is explanatory drawing which shows the evaluation method of light-shielding part sclerosis | hardenability.

Claims (8)

  1. 下記一般式(1)で表される構造を有する(メタ)アクリレート化合物を含有することを特徴とする液晶滴下工法用シール剤。
    Figure JPOXMLDOC01-appb-C000001
    式(1)中、Rは水素原子又はメチル基を表し、Rは下記化学式(2-1)、又は、(2-2)を表し、Rは酸無水物由来の構造を表し、Rはエポキシ化合物由来の構造を表し、Xは環状ラクトンの開環構造を表し、nは2~5の整数を表し、aは1~4の整数を表す。
    Figure JPOXMLDOC01-appb-C000002
    式(2-2)中、bは0~8の整数を表し、cは0~3の整数を表し、dは0~8の整数を表し、eは0~8の整数を表し、b、c、dのいずれか1つは1以上である。
    The sealing agent for liquid crystal dropping methods characterized by including the (meth) acrylate compound which has a structure represented by following General formula (1).
    Figure JPOXMLDOC01-appb-C000001
    In the formula (1), R 1 represents a hydrogen atom or a methyl group, R 2 represents the following chemical formula (2-1) or (2-2), R 3 represents a structure derived from an acid anhydride, R 4 represents a structure derived from an epoxy compound, X represents a ring-opening structure of a cyclic lactone, n represents an integer of 2 to 5, and a represents an integer of 1 to 4.
    Figure JPOXMLDOC01-appb-C000002
    In the formula (2-2), b represents an integer of 0 to 8, c represents an integer of 0 to 3, d represents an integer of 0 to 8, e represents an integer of 0 to 8, b, Any one of c and d is 1 or more.
  2. 一般式(1)中、Rは、bが1~4、cが0、dが0である化学式(2-2)で表されるものであることを特徴とする請求項1記載の液晶滴下工法用シール剤。 2. The liquid crystal according to claim 1, wherein in the general formula (1), R 2 is represented by the chemical formula (2-2) wherein b is 1 to 4, c is 0, and d is 0. Sealing agent for dripping method.
  3. 一般式(1)で表される構造を有する(メタ)アクリレート化合物は、aが2~4であることを特徴とする請求項1又は2記載の液晶滴下工法用シール剤。 3. The sealing agent for liquid crystal dropping method according to claim 1, wherein the (meth) acrylate compound having a structure represented by the general formula (1) has a of 2 to 4.
  4. 一般式(1)で表される構造を有する(メタ)アクリレート化合物の含有量が、硬化性樹脂成分全体の5~80重量%であることを特徴とする請求項1、2又は3記載の液晶滴下工法用シール剤。 4. The liquid crystal according to claim 1, 2 or 3, wherein the content of the (meth) acrylate compound having a structure represented by the general formula (1) is 5 to 80% by weight of the entire curable resin component. Sealing agent for dripping method.
  5. 更に、エポキシ基を有する硬化性樹脂及びマロン酸ジヒドラジドを含有することを特徴とする請求項1、2、3又は4記載の液晶滴下工法用シール剤。 Furthermore, the sealing agent for liquid crystal dropping methods of Claim 1, 2, 3 or 4 characterized by containing the curable resin which has an epoxy group, and malonic acid dihydrazide.
  6. 更に、液晶滴下工法用シール剤の全量に対して、重合禁止剤を50~2000ppm含有することを特徴とする請求項1、2、3、4又は5記載の液晶滴下工法用シール剤。 6. The sealing agent for liquid crystal dropping method according to claim 1, further comprising 50 to 2000 ppm of a polymerization inhibitor based on the total amount of the sealing agent for liquid crystal dropping method.
  7. 請求項1、2、3、4、5又は6記載の液晶滴下工法用シール剤と、導電性微粒子とを含有することを特徴とする上下導通材料。 A vertical conduction material comprising the sealing agent for a liquid crystal dropping method according to claim 1, 2, 3, 4, 5, or 6, and conductive fine particles.
  8. 請求項1、2、3、4、5又は6記載の液晶滴下工法用シール剤及び/又は請求項7記載の上下導通材料を用いてなることを特徴とする液晶表示素子。 A liquid crystal display element comprising the sealing agent for liquid crystal dropping method according to claim 1, 2, 3, 4, 5 or 6, and / or the vertical conduction material according to claim 7.
PCT/JP2009/056002 2008-03-26 2009-03-25 Sealing material for liquid-crystal dropping process, vertical-conduction material, and liquid-crystal display element WO2009119688A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN200980110096.4A CN101978313B (en) 2008-03-26 2009-03-25 Sealing material for liquid-crystal dropping process, vertical-conduction material, and liquid-crystal display element
JP2009514280A JP5508001B2 (en) 2008-03-26 2009-03-25 Liquid crystal dropping method sealing agent, vertical conduction material, and liquid crystal display element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008080881 2008-03-26
JP2008-080881 2008-03-26

Publications (1)

Publication Number Publication Date
WO2009119688A1 true WO2009119688A1 (en) 2009-10-01

Family

ID=41113878

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/056002 WO2009119688A1 (en) 2008-03-26 2009-03-25 Sealing material for liquid-crystal dropping process, vertical-conduction material, and liquid-crystal display element

Country Status (5)

Country Link
JP (3) JP5508001B2 (en)
KR (1) KR101579331B1 (en)
CN (1) CN101978313B (en)
TW (1) TWI474089B (en)
WO (1) WO2009119688A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010058767A1 (en) * 2008-11-21 2010-05-27 積水化学工業株式会社 Sealing agent for one drop fill, and liquid crystal display element
JP2011090213A (en) * 2009-10-23 2011-05-06 Sekisui Chem Co Ltd Sealing agent for liquid crystal drop-fill process, vertical conducting material and liquid crystal display element
JP2014080567A (en) * 2012-09-25 2014-05-08 Sekisui Chem Co Ltd Curable resin composition, sealing material, vertically conducting material, photoelectric conversion element, dye-sensitized solar cell and dye-sensitized solar cell module
WO2023171613A1 (en) * 2022-03-11 2023-09-14 三井化学株式会社 Photocurable composition, sealing material for liquid crystal display devices, and liquid crystal display device

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012137807A1 (en) * 2011-04-08 2012-10-11 積水化学工業株式会社 Sealant for one-drop fill process, vertical-conduction material, and liquid crystal display element
CN107255893A (en) * 2013-03-06 2017-10-17 积水化学工业株式会社 Sealant for liquid crystal dripping process, up and down conductive material and liquid crystal display cells
JP6603580B2 (en) * 2014-07-02 2019-11-06 積水化学工業株式会社 Liquid crystal display element and sealing agent for liquid crystal display element
JP6539160B2 (en) * 2014-09-04 2019-07-03 積水化学工業株式会社 Sealant for liquid crystal display element and vertical conduction material
WO2016047496A1 (en) * 2014-09-24 2016-03-31 積水化学工業株式会社 Sealing agent for liquid crystal display elements, vertically conducting material and liquid crystal display element
CN109897599B (en) * 2015-11-09 2020-09-01 积水化学工业株式会社 Sealing agent for liquid crystal display element, vertical conduction material, and liquid crystal display element
KR102426816B1 (en) * 2016-05-17 2022-07-28 세키스이가가쿠 고교가부시키가이샤 Sealing agent for liquid crystal display elements, vertical conduction material, and liquid crystal display element
WO2018124023A1 (en) * 2016-12-27 2018-07-05 積水化学工業株式会社 Sealing agent for liquid crystal display elements, vertically conducting material and liquid crystal display element
US11656503B2 (en) * 2017-07-14 2023-05-23 Sharp Kabushiki Kaisha Sealing material composition, liquid crystal cell and scanning antenna
CN113661438A (en) 2019-05-10 2021-11-16 三井化学株式会社 Liquid crystal sealing agent, liquid crystal display panel using same, and method for manufacturing same
JP7145329B2 (en) 2019-05-17 2022-09-30 三井化学株式会社 Sealing agent for liquid crystal dripping method, liquid crystal display panel using the same, and method for manufacturing the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005091064A1 (en) * 2004-03-22 2005-09-29 Nippon Kayaku Kabushiki Kaisha Sealing material for liquid crystal and method for producing same
JP2007041559A (en) * 2005-07-06 2007-02-15 Sekisui Chem Co Ltd Sealing agent for liquid crystal one-drop-fill method, vertical conducting material, and liquid crystal display element
WO2007114184A1 (en) * 2006-03-29 2007-10-11 Sekisui Chemical Co., Ltd. Sealing material for liquid-crystal dropping process, vertical-conduction material, and liquid-crystal display element
JP2008088167A (en) * 2006-09-07 2008-04-17 Mitsui Chemicals Inc Compound having (meth)acryloyl group and glycidyl group, polymerizable composition containing the compound and method for producing the compound

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3583326B2 (en) 1999-11-01 2004-11-04 協立化学産業株式会社 Sealant for dripping method of LCD panel
TWI232339B (en) * 2002-09-19 2005-05-11 Mitsui Chemicals Inc A liquid crystal sealer composite and a manufacturing method of a liquid crystal display panel by the composite being used
KR101050702B1 (en) * 2005-05-09 2011-07-20 세키스이가가쿠 고교가부시키가이샤 Sealing material for the liquid crystal dispensing method, transferring material and liquid crystal display devices
KR101227206B1 (en) * 2005-11-25 2013-01-28 가부시끼가이샤 쓰리본드 Curable composition
CN101512421B (en) * 2006-09-07 2011-05-11 三井化学株式会社 Liquid crystal sealing agent, method for manufacturing liquid crystal display panel using the liquid crystal sealing agent, and liquid crystal display panel

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005091064A1 (en) * 2004-03-22 2005-09-29 Nippon Kayaku Kabushiki Kaisha Sealing material for liquid crystal and method for producing same
JP2007041559A (en) * 2005-07-06 2007-02-15 Sekisui Chem Co Ltd Sealing agent for liquid crystal one-drop-fill method, vertical conducting material, and liquid crystal display element
WO2007114184A1 (en) * 2006-03-29 2007-10-11 Sekisui Chemical Co., Ltd. Sealing material for liquid-crystal dropping process, vertical-conduction material, and liquid-crystal display element
JP2008088167A (en) * 2006-09-07 2008-04-17 Mitsui Chemicals Inc Compound having (meth)acryloyl group and glycidyl group, polymerizable composition containing the compound and method for producing the compound

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010058767A1 (en) * 2008-11-21 2010-05-27 積水化学工業株式会社 Sealing agent for one drop fill, and liquid crystal display element
JPWO2010058767A1 (en) * 2008-11-21 2012-04-19 積水化学工業株式会社 Sealant for liquid crystal dropping method and liquid crystal display element
JP2011090213A (en) * 2009-10-23 2011-05-06 Sekisui Chem Co Ltd Sealing agent for liquid crystal drop-fill process, vertical conducting material and liquid crystal display element
JP2014080567A (en) * 2012-09-25 2014-05-08 Sekisui Chem Co Ltd Curable resin composition, sealing material, vertically conducting material, photoelectric conversion element, dye-sensitized solar cell and dye-sensitized solar cell module
WO2023171613A1 (en) * 2022-03-11 2023-09-14 三井化学株式会社 Photocurable composition, sealing material for liquid crystal display devices, and liquid crystal display device

Also Published As

Publication number Publication date
CN101978313A (en) 2011-02-16
JP5584800B2 (en) 2014-09-03
CN101978313B (en) 2013-01-16
JP2013257567A (en) 2013-12-26
KR20100138893A (en) 2010-12-31
TW200949392A (en) 2009-12-01
JP2013257568A (en) 2013-12-26
TWI474089B (en) 2015-02-21
JPWO2009119688A1 (en) 2011-07-28
JP5584801B2 (en) 2014-09-03
JP5508001B2 (en) 2014-05-28
KR101579331B1 (en) 2015-12-21

Similar Documents

Publication Publication Date Title
JP5584801B2 (en) Liquid crystal dropping method sealing agent, vertical conduction material, and liquid crystal display element
KR100926926B1 (en) Sealants for liquid crystal dropping methods, top and bottom conductive materials and liquid crystal display elements
JP4157896B2 (en) Sealant for liquid crystal dropping method, vertical conduction material, and liquid crystal display element
CN103026292A (en) Light-shielding sealing agent for liquid crystal display element, top-to-bottom conductive material, and liquid crystal display element
JP3796254B2 (en) Curable resin composition for liquid crystal display element, sealing agent for liquid crystal dropping method, vertical conduction material, and liquid crystal display element
JP2008003260A (en) Sealant for liquid crystal dripping methods, top-bottom conducting material, and liquid crystal display element
JP6539160B2 (en) Sealant for liquid crystal display element and vertical conduction material
TW200940588A (en) Curable composition
JP2010230713A (en) Sealing agent for liquid crystal one-drop-fill method, vertical conducting material and liquid crystal display element
WO2013005691A1 (en) Novel (meth)acrylic resin and resin composition utilizing same
JP2006003433A (en) Sealant for liquid crystal display element, vertically conducting material, and liquid crystal display element
JP4668538B2 (en) Curable resin composition, sealing agent for liquid crystal dropping method, vertical conduction material, and liquid crystal display element
JP2005308811A (en) Curable resin composition for liquid crystal display element, sealant for liquid crystal dispensing method, vertically conducting material and liquid crystal display element
JP2010230712A (en) Sealing agent for liquid crystal one-drop-fill method, vertical conducting material and liquid crystal display element
JP4452530B2 (en) Sealant for liquid crystal dropping method, vertical conduction material, and liquid crystal display element
JP2006039096A (en) Composition for liquid crystal display device
TW202104321A (en) Curable resin composition, sealing agent for liquid crystal display element, vertical conductive material, and liquid crystal display element
JP6445780B2 (en) Liquid crystal dropping method sealing agent, vertical conduction material, and liquid crystal display element
JP2009227969A (en) Photopolymerization initiator, sealing compound for liquid crystal dropping method, vertically conducting material, and liquid crystal display
KR20190103351A (en) Radiation curable sealant compositions
JP5255549B2 (en) Sealant for liquid crystal dropping method
JP4874581B2 (en) Sealant for liquid crystal dropping method, vertical conduction material, and liquid crystal display element
JP2011141576A (en) Curable resin composition for one drop fill, sealant for one drop fill, vertical conduction material, and liquid crystal display element
JP2006022228A (en) Curable resin composition for liquid crystal display element, sealing agent for liquid crystal display element, material for vertical conduction and liquid crystal display element
JP2005195978A (en) Curing resin composition for liquid crystal display element, sealant for liquid crystal display element, and vertical conduction material

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980110096.4

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2009514280

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09726335

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20107019067

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09726335

Country of ref document: EP

Kind code of ref document: A1