WO2009119599A1 - クロック同期システム、ノード、クロック同期方法及びプログラム - Google Patents
クロック同期システム、ノード、クロック同期方法及びプログラム Download PDFInfo
- Publication number
- WO2009119599A1 WO2009119599A1 PCT/JP2009/055845 JP2009055845W WO2009119599A1 WO 2009119599 A1 WO2009119599 A1 WO 2009119599A1 JP 2009055845 W JP2009055845 W JP 2009055845W WO 2009119599 A1 WO2009119599 A1 WO 2009119599A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- time stamp
- resolution
- clock
- frequency
- jitter
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 54
- 238000006243 chemical reaction Methods 0.000 claims abstract description 31
- 239000006185 dispersion Substances 0.000 claims description 15
- 238000012545 processing Methods 0.000 claims description 11
- 238000012544 monitoring process Methods 0.000 claims description 10
- 230000005540 biological transmission Effects 0.000 description 7
- 230000001360 synchronised effect Effects 0.000 description 7
- 238000010586 diagram Methods 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 238000004891 communication Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 230000006870 function Effects 0.000 description 3
- 238000001514 detection method Methods 0.000 description 2
- 239000000969 carrier Substances 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J3/00—Time-division multiplex systems
- H04J3/02—Details
- H04J3/06—Synchronising arrangements
- H04J3/0635—Clock or time synchronisation in a network
- H04J3/0638—Clock or time synchronisation among nodes; Internode synchronisation
- H04J3/0658—Clock or time synchronisation among packet nodes
- H04J3/0661—Clock or time synchronisation among packet nodes using timestamps
- H04J3/0664—Clock or time synchronisation among packet nodes using timestamps unidirectional timestamps
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03L—AUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
- H03L7/00—Automatic control of frequency or phase; Synchronisation
- H03L7/06—Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
- H03L7/08—Details of the phase-locked loop
- H03L7/085—Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03L—AUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
- H03L7/00—Automatic control of frequency or phase; Synchronisation
- H03L7/06—Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
- H03L7/16—Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop
- H03L7/18—Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop using a frequency divider or counter in the loop
Definitions
- the present invention relates to a clock synchronization system, a node, a clock synchronization method, and a program for synchronizing clocks between devices via a packet network, and more particularly to a clock offset between a master node and a slave node in a packet network.
- the present invention relates to a clock synchronization system, a node, a clock synchronization method, and a program for correction.
- Telecommunications carriers are building high-speed data communication networks to realize higher value-added services.
- IP Internet Protocol
- TDM time division multiplexing
- an accurate clock is indispensable in order to realize handover between cells without delay.
- each base station on the mobile network it is necessary to synchronize clocks with an accuracy of 50 ppb (parts per billion). If the base station clock drifts beyond this frame, handover between cells may fail and packets may be dropped or communication quality may deteriorate.
- a method for transmitting accurate clock information via a packet network is required.
- a useful technique that can solve this problem is a time stamp method.
- the time stamp method can be easily implemented and can achieve excellent clock synchronization accuracy.
- FIG. 14 shows a configuration example based on the time stamp method described above.
- the master node transmits a packet with a time stamp to the slave node, and the slave node adjusts its own clock based on the time stamp to achieve clock synchronization.
- this time stamp is used to generate a phase locked loop (PLL) control signal. That is, the PLL calculates the difference between its own clock and the newly arrived time stamp, and adjusts the clock based on the difference, thereby realizing clock synchronization.
- PLL phase locked loop
- the PLL circuit 300 mainly includes six functions. That is, the PLL circuit 300 includes a phase comparison unit 301, a loop filter (LPF) unit 302, a proportional / integral (PI) control unit 303, a voltage control transmission unit (VCO) 304, a frequency division unit 305, and a time stamp generation unit 306. It has.
- LPF loop filter
- PI proportional / integral
- VCO voltage control transmission unit
- the phase comparison unit 301 calculates a difference signal between the reception time stamp and the time stamp generated on the slave node side. This difference signal is input to the LPF unit 302 to suppress jitter and noise.
- the PI control unit 303 outputs a control signal that finally drives the difference signal to zero to the VCO unit 304.
- the VCO unit 304 outputs a clock having a frequency determined by a control signal from the PI control unit 303.
- the frequency divider 305 converts the frequency from the VCO unit 304 and generates an up-converted or down-converted clock.
- the time stamp generation unit 306 outputs a time stamp based on the received clock.
- Patent Literature 1 JP 05-37560 A JP 2003-258894 A
- the clock synchronization state is a state in which the timing of the reception time stamp 400 and the time stamp 401 generated by the slave node completely coincide with each other as shown in FIG.
- FIG. 16 shows the situation. First, consider a case where the clock frequency on the slave node side is lower than that on the master node side.
- the time stamp on the slave node side is represented by the middle pattern in FIG. 16, and proceeds more slowly than the master node side. In this case, the time stamp deviation between the master node and the slave node can be detected by the second time stamp.
- the time stamp on the slave node side is represented by the lower pattern in FIG. 16, and proceeds faster than the master node side. In this case, the time stamp deviation between the master node and the slave node cannot be detected until the eighth time stamp arrives.
- the present invention has been made to solve the above-described problem.
- the purpose is to provide.
- a clock synchronization system is a clock synchronization system that uses a time stamp packet transmitted from a master node on a packet network to a slave node to synchronize the clock of the slave node with the clock of the master node.
- a phase comparison unit that calculates a difference between the reception time stamp and a time stamp generated on the slave node side, a unit that suppresses jitter and noise included in the difference obtained by the phase comparison unit, and a difference
- a control means for generating a control signal that finally drives to zero, a clock output means for outputting a clock signal having a frequency corresponding to the generated control signal, and a clock signal having a frequency obtained by up-converting the frequency of the clock signal
- the frequency dividing means to generate and the clock signal from the frequency dividing means Including the time stamp generation means for outputting a time stamp, and a resolution converting means for increasing the resolution of the time stamp from the time stamp generating means.
- a node is a node that synchronizes a clock with a clock of a master node using a time stamp packet transmitted from a master node on a packet network, and includes a reception time stamp and a time stamp generated on the node side.
- a phase comparison means for calculating the difference between them, a means for suppressing jitter and noise included in the difference obtained by the phase comparison means, and a control means for generating a control signal for finally driving the difference to zero
- a clock output means for outputting a clock signal having a frequency according to the generated control signal; a frequency dividing means for generating a clock signal having a frequency obtained by up-converting the frequency of the clock signal; and a clock signal from the frequency dividing means.
- Time stamp generating means for outputting a time stamp to the time, and the time from the time stamp generating means And a resolution converting means for increasing the resolution of the stamp.
- a clock synchronization method is a clock synchronization method for synchronizing a clock of a slave node with a clock of a master node using a time stamp packet transmitted from a master node to a slave node on a packet network, A phase comparison step for calculating a difference between the reception time stamp and the time stamp generated on the slave node side, a step for suppressing jitter and noise included in the difference obtained in the phase comparison step, and a difference Generate a control signal that finally drives to zero, a clock output step that outputs a clock signal with a frequency according to the generated control signal, and a clock signal with a frequency obtained by up-converting the frequency of the clock signal Dividing frequency step and dividing step Including a time stamp generating step of outputting a timestamp based on the clock signal, and a resolution conversion step of increasing the resolution of the time stamp from the time stamp generating step.
- a clock synchronization program is a clock synchronization program for synchronizing a slave node clock with a master node clock using a time stamp packet transmitted from a master node on a packet network to a slave node.
- a phase comparison process for calculating a difference between the reception time stamp and the time stamp generated on the slave node side, a process for suppressing jitter and noise included in the difference obtained by the phase comparison process, and a difference
- a process that generates a control signal that eventually drives to zero, a clock output process that outputs a clock signal with a frequency according to the generated control signal, and a clock signal with a frequency obtained by up-converting the frequency of the clock signal Frequency division processing and the clock signal from the frequency division processing
- the detection time and the detection accuracy when the reception time stamp and the reproduction time stamp are misaligned are improved, and the clock frequency is quickly and accurately set. Can be adjusted.
- the system according to the first embodiment of the present invention includes a packet network 30, a master node 10, and a slave node 20.
- the master node 10 periodically transmits a packet with a time stamp for clock synchronization to the slave node 20.
- the time stamp is generated based on the clock of the master node 10, and the value is increased by 1 for each packet, for example.
- the slave node 20 includes a phase comparison unit 201, an LPF unit 202, a PI control unit 203, a VCO unit 204, a frequency division unit 205, a time stamp generation unit 206, and a resolution conversion unit 207. Contains.
- the slave node 20 receives a packet with a time stamp from the master node 10.
- the time stamp of the received packet is sent to the phase comparison unit 201.
- the phase comparison unit 201 calculates a timing error that is a difference (difference) between the time stamp of the received packet and the time stamp reproduced by the slave node 20 to generate a difference signal, and sends the difference signal to the LPF unit 202. send.
- the LPF unit 202 executes processing for suppressing jitter and noise included in the received differential signal, and sends the differential signal in which jitter and noise are suppressed to the PI control unit 203.
- the PI control unit 203 converts the differential signal from which the jitter and noise from the LPF unit 202 are suppressed into a control signal that finally drives to zero.
- This control signal is sent to the VCO unit 204, and the VCO unit 204 outputs a clock signal having a frequency corresponding to the magnitude of the control signal.
- the frequency divider 205 generates a clock signal obtained by up-converting the clock signal from the VCO unit 204 to a higher frequency.
- the down-converted frequency is used as the frequency of the transmission time stamp.
- the frequency division unit sets the down-converted frequency to 8 kHz.
- the frequency divider 205 of the present embodiment up-converts to a higher frequency in order to increase the time stamp resolution. For example, if a resolution of 1000 times is to be realized, it is up-converted to 8 MHz, which is 1000 times 8 kHz.
- the time stamp generation unit 206 receives the clock signal down-converted by the frequency division unit 205, and outputs a time stamp based on this clock signal.
- the resolution conversion unit 207 performs conversion processing to increase the resolution of the time stamp, and outputs a time stamp with an increased resolution.
- FIG. 2 shows a configuration example of the resolution conversion unit 207 that generates an 8 kHz time stamp whose resolution is 1000 times from an 8 MHz time stamp.
- the resolution conversion unit 207 includes a first calculation unit 207a, a second calculation unit 207b, a third calculation unit 207c, and an adder 207d.
- the first calculation unit 207a obtains a quotient when the time stamp value from the time stamp generation unit 206 is divided by a magnification factor indicating the degree of improvement in resolution.
- the second calculation unit 207b and the third calculation unit 207c obtain a value obtained by further dividing the remainder when the time stamp value is divided by the magnification factor.
- the adder 207d adds the calculation result (quotient) by the first calculation unit 207a and the calculation results by the second calculation unit 207b and the third calculation unit 207c and outputs the sum.
- the resolution conversion unit 207 branches the received time stamp into two, and then obtains a quotient when the value of the time stamp is divided by a magnification factor “1000” that improves the resolution. Int (in / 1000) "is calculated.
- the time stamp of 8 kHz with a resolution of 1000 times can be generated by adding these two calculation results by the adder 207d.
- the first embodiment is basically based on a general phase locked loop (PLL). Therefore, the operation of each element such as the phase comparison unit 201, the LPF unit 202, the PI control unit 203, the VCO unit 204, the frequency division unit 205, and the time stamp generation unit 206 is the same as a general element of related technology. .
- PLL phase locked loop
- the resolution of the time stamp on the slave node 20 side is increased in the first embodiment.
- the frequency divider 205 and the resolution converter 207 of the first embodiment operate as follows.
- the frequency division unit 205 up-converts the clock frequency of the VCO unit 204 to a higher frequency assuming that the resolution of the time stamp is increased. Then, the resolution conversion unit 207 performs a conversion process as shown in FIG. 2 in order to increase the time stamp resolution, and outputs a time stamp with an increased resolution.
- FIG. 3 shows an example when the time stamp resolution is increased.
- the time stamp on the slave node 20 side is represented by the middle pattern in FIG. 3, and proceeds more slowly than the master node 10 side.
- the time stamp deviation between the master node 10 and the slave node 20 can be detected by the second time stamp as in the related art.
- the time stamp resolution is increased, the amount of time stamp misalignment can be accurately grasped.
- the reproduction time stamp when the second time stamp is received from the transmission side, the reproduction time stamp is still 1.999, and thus a deviation (delay) of 0.001 is detected.
- the time stamp on the slave node 20 side is represented by the pattern in the lower part of FIG. 3, and proceeds faster than the master node 10 side.
- the time stamp misalignment could not be detected with the related technology method until the eighth time stamp arrives.
- the time stamp resolution is increased, it is possible to detect a deviation with the second time stamp.
- FIG. 4 shows the results of an experiment conducted to evaluate the effectiveness of the first embodiment.
- FIG. 4 shows a clock synchronization error between the method according to the related technique to which the present invention is not applied and the method according to the first embodiment.
- the clock synchronization accuracy according to the first embodiment is always stable and the synchronization error can be suppressed.
- the time required to detect the time stamp deviation can be shortened, and the clock frequency can be adjusted quickly. As a result, the time during which the clock frequency is shifted can be minimized, so that accurate clock synchronization can be realized.
- the time required to detect the time stamp misalignment can be significantly shortened, so that the clock frequency can be quickly adjusted.
- the time during which the clock frequency is shifted can be minimized, so that accurate clock synchronization can be realized.
- the second embodiment of the present invention includes a packet network 30, a master node 10, and a slave node 20 as in the first embodiment.
- the master node 10 periodically transmits a packet with a time stamp for clock synchronization to the slave node 20.
- the slave node 20 includes a phase comparison unit 201, an LPF unit 202, a PI control unit 203, a VCO unit 204, a frequency division unit 205, a time stamp generation unit 206, and a resolution conversion unit 207. Is included.
- the slave node 20 of the second embodiment differs from the first embodiment in that it includes a jitter monitor 208 in addition to the above configuration.
- This jitter monitor 208 measures the delay jitter amount of the network based on the arrival time of the reception time stamp.
- the jitter monitor 208 has a function of adjusting the frequency division ratio of the frequency divider 205 and the resolution of the resolution converter 207 based on the measured delay jitter amount.
- phase comparison unit 201 the LPF unit 202, the PI control unit 203, the VCO unit 204, the frequency division unit 205, the time stamp generation unit 206, and the resolution conversion unit 207 in the slave node 20, Since it is the same as that of the first embodiment, the description thereof is omitted.
- FIG. 6 shows a time stamp in a state where there is delay jitter. Here, it is assumed that clock synchronization is established.
- FIG. 6 shows a time stamp according to the related art, but when there is no delay jitter (synchronized state without jitter), the timing of the reception time stamp and the playback time stamp are exactly the same. On the other hand, if there is delay jitter (synchronized state with jitter), the timing of the received timestamps will be scattered.
- the delay jitter does not exceed one time stamp interval, the timing shift is not detected, and the related art method is not affected by the delay jitter.
- FIG. 6 shows a time stamp when the resolution of the reproduction time stamp is increased by the method according to the first embodiment described above.
- a timing shift is detected according to the amount of delay jitter. For example, when the resolution is increased to 100 times, even a slight delay jitter of 1/100 of the time stamp interval causes a timing shift.
- FIG. 7 shows how synchronization accuracy deteriorates due to the influence of delay jitter.
- FIG. 8 shows the relationship between time stamp resolution and clock synchronization accuracy.
- the second embodiment of the present invention makes it possible to achieve the best clock synchronization accuracy in any situation by finding this optimal resolution.
- the characteristic configuration of the second embodiment is that the delay jitter is monitored, and the resolution is controlled based on the monitoring result.
- the jitter monitor 208 measures the variation in the reception time stamp.
- the variation of the reception time stamp can be measured from the output signal of the phase comparison unit 201.
- FIG. 9 shows the occurrence probability of time stamp variation.
- the variation of the time stamp is a form in which the normal distribution is halved as shown in FIG.
- a range in which the area is halved is defined as a dispersion value ( ⁇ ) of delay jitter.
- FIG. 10 shows an example of the relationship between resolution and clock synchronization accuracy using the variance value ⁇ as a parameter.
- the shape of the graph changes using the dispersion value ⁇ of delay jitter as a parameter.
- the resolution 20 times indicates the optimum resolution.
- the jitter monitor 209 shows the relationship between the resolution using the dispersion value of the delay jitter as a parameter and the clock synchronization accuracy based on a characteristic curve as shown in FIG. Data is preset.
- the jitter monitor 208 obtains the optimum resolution that maximizes the clock synchronization accuracy from the relationship between the preset resolution and the clock synchronization accuracy based on the measured dispersion value ⁇ of the delay jitter, and the time stamp resolution. Is adjusted to the frequency dividing unit 205 and the resolution converting unit 207.
- the frequency division unit 205 is instructed to up-convert the frequency of the clock signal to 10 times the frequency of the transmission time stamp.
- the jitter monitor 208 Each time the jitter monitor 208 receives time stamp deviation information from the phase comparison unit 201 (step S301), the jitter monitor 208 increments the number of samples of the deviation information (step S302).
- step S303 it is determined whether or not the number of samples of deviation information has reached a preset specified value (X) (step S303). If the specified value is not reached, the reception of deviation information is continued.
- step S304 the number of samples of deviation information is initialized (step S304), and a dispersion value ⁇ of delay jitter is calculated from the obtained deviation information (step S305).
- step S306 based on the calculated dispersion value ⁇ of delay jitter, an optimal resolution that maximizes the clock synchronization accuracy is obtained from the relationship between the preset resolution and the clock synchronization accuracy.
- step S307 adjustment is instructed to the frequency divider 205 and the resolution converter 207 (step S307).
- the best clock synchronization accuracy can be achieved in any situation by finding the optimum resolution according to the amount of delay jitter.
- the slave node 20 can be realized by a hardware configuration similar to a general computer device, and is a main memory such as a CPU (Central Processing Unit) 401 and a RAM (Random Access Memory).
- Main storage unit 402 used for data work area and data temporary save area, communication unit 403 for transmitting / receiving data via network 600, input / output interface unit 404 for transmitting / receiving data by connecting to external device, ROM (Read Only Memory), an auxiliary storage unit 405 that is a hard disk device composed of a nonvolatile memory such as a magnetic disk, a semiconductor memory, etc.
- an output device 407 and input device 408 such as a keyboard, such as a play device.
- the slave node 20 implements its operation by mounting a circuit component that is a hardware component such as an LSI (Large Scale Integration) incorporating a clock synchronization program for performing clock synchronization by a time stamp method.
- a circuit component that is a hardware component such as an LSI (Large Scale Integration) incorporating a clock synchronization program for performing clock synchronization by a time stamp method.
- the phase comparison unit 201, the LPF unit 202, the PI control unit 203, the VOC unit 204, the frequency division unit 205, the time stamp generation unit 206, the resolution conversion unit 207, and the jitter monitoring unit 208 can be realized as hardware.
- a clock synchronization program that provides each function is stored in the auxiliary storage unit 405, loaded into the main storage unit 402 and executed by the CPU 401, and can be realized in software.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Synchronisation In Digital Transmission Systems (AREA)
- Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)
- Data Exchanges In Wide-Area Networks (AREA)
Abstract
Description
本発明は、上述した問題を解決するためになされたものであり、タイムスタンプのズレを迅速に検出することにより、正確なクロック同期を実現可能なクロック同期システム、ノード、クロック同期方法及びプログラムを提供することを目的とする。
本発明を実施するための第1の実施の形態について、図面を参照して詳細に説明する。
図1を参照すると、本発明の第1の実施の形態によるシステムは、パケットネットワーク30と、マスタノード10と、スレーブノード20とを含む。
マスタノード10は、クロック同期のためのタイムスタンプが付いたパケットをスレーブノード20に対して定期的に送信する。ここで、タイムスタンプは、マスタノード10のクロックを元にして生成され、その値は、例えば、パケット毎に1ずつ増加するようなものである。
スレーブノード20は、図示のように、位相比較部201と、LPF部202と、PI制御部203と、VCO部204と、分周部205と、タイムスタンプ生成部206と、分解能変換部207を含んでいる。
受信したパケットのタイムスタンプは、位相比較部201に送られる。
位相比較部201は、受信したパケットのタイムスタンプと、スレーブノード20で再生されたタイムスタンプの間のズレ(差分)であるタイミング誤差を計算し差分信号を生成し、差分信号をLPF部202に送る。
次に、第1の実施の形態による動作についに説明する。
次に、第1の実施の形態による効果について説明する。
本発明の第2の実施の形態について図面を参照して詳細に説明する。
図5を参照すると、本発明の第2の実施の形態は、第1の実施の形態と同様、パケットネットワーク30と、マスタノード10とスレーブノード20とを含む。
マスタノード10は、クロック同期のためのタイムスタンプが付いたパケットをスレーブノード20に定期的に送信する。
スレーブノード20は、図1と同様に、位相比較部201と、LPF部202と、PI制御部203と、VCO部204と、分周部205と、タイムスタンプ生成部206と、分解能変換部207を含んでいる。
次に、本発明の第2の実施の形態による動作について詳細に説明する。
with ジッタ)、受信タイムスタンプのタイミングがバラバラになってくる。
次に、本発明の第2の実施の形態の効果について説明する。
第2の実施の形態では、遅延ジッタを計測して、ネットワークの遅延ジッタ量に応じてタイムスタンプの分解能を調整することにより、遅延ジッタの影響を回避しながらクロック周波数を迅速に調整することができる。これにより、本発明の正確なクロック同期を実現するという目的を達成することができる。
Claims (28)
- パケットネットワーク上のマスタノードからスレーブノードに送信されたタイムスタンプパケットを利用して、前記スレーブノードのクロックを前記マスタノードのクロックに同期させるクロック同期システムであって、
前記スレーブノードが、
受信タイムスタンプとスレーブノード側で生成されたタイムスタンプとの間の差分を計算する位相比較手段と、
前記位相比較手段で得られた差分に含まれるジッタやノイズを抑圧する手段と、
前記差分を最終的にゼロに追い込むような制御信号を生成する制御手段と、
生成された制御信号に応じた周波数のクロック信号を出力するクロック出力手段と、
前記クロック信号の周波数をアップコンバートした周波数のクロック信号を生成する分周手段と、
前記分周手段からのクロック信号を元にタイムスタンプを出力するタイムスタンプ生成手段と、
前記タイムスタンプ生成手段からのタイムスタンプの分解能を上げる分解能変換手段と、
を備えたことを特徴とするクロック同期システム。 - 前記分解能変換手段は、
前記タイムスタンプ生成手段からのタイムスタンプの値を、分解能を向上させる度合いを示す倍率係数で割ったときの商を求めると共に、
前記タイムスタンプの値を前記倍率係数で割った際の剰余を、前記倍率係数で割った値を求め、
前記商と前記余りを前記倍率係数で割った値を足した値を出力することを特徴とする請求項1に記載のクロック同期システム。 - 前記分周手段は、
前記マスタノードからクロック信号の周波数を、分解能を向上させる度合いを示す倍率係数倍の周波数のクロック信号を生成することを特徴とする請求項1又は請求項2に記載のクロック同期システム。 - 前記スレーブノードが、
前記位相比較手段からのタイミング誤差を元にネットワークの遅延ジッタをモニタし、前記遅延ジッタの量に応じてタイムスタンプの分解能を調整するジッタモニタ手段を備えたことを特徴とする請求項1から請求項3の何れかに記載の記載のクロック同期システム。 - 前記ジッタモニタ手段は、
前記位相比較手段から予め規定された数のタイミング誤差情報を受け取ると、得られた前記タイミング誤差情報から前記遅延ジッタの分散値を算出することを特徴とする請求項4に記載のクロック同期システム。 - 前記ジッタモニタ手段は、
算出した前記遅延ジッタの分散値を元に、クロック同期精度が最大となる最適な分解能を求めることを特徴とすることを特徴とする請求項5に記載のクロック同期システム。 - 前記ジッタモニタ手段は、
前記分解能を最適な値に合わせるために、前記分周手段に対してアップコンバートする周波数の変更を指示すると共に、前記分解能変換手段に分解能を向上させる度合いを示す倍率係数の変更を指示することを特徴とする請求項6に記載のクロック同期システム。 - パケットネットワーク上のマスタノードから送信されたタイムスタンプパケットを利用して、クロックを前記マスタノードのクロックに同期させるノードであって、
受信タイムスタンプとノード側で生成したタイムスタンプとの間の差分を計算する位相比較手段と、
前記位相比較手段で得られた差分に含まれるジッタやノイズを抑圧する手段と、
前記差分を最終的にゼロに追い込むような制御信号を生成する制御手段と、
生成された制御信号に応じた周波数のクロック信号を出力するクロック出力手段と、
前記クロック信号の周波数をアップコンバートした周波数のクロック信号を生成する分周手段と、
前記分周手段からのクロック信号を元にタイムスタンプを出力するタイムスタンプ生成手段と、
タイムスタンプ生成手段からのタイムスタンプの分解能を上げる分解能変換手段と、
を備えたことを特徴とするノード。 - 前記分解能変換手段は、
前記タイムスタンプ生成手段からのタイムスタンプの値を、分解能を向上させる度合いを示す倍率係数で割ったときの商を求めると共に、
前記タイムスタンプの値を前記倍率係数で割った際の剰余を、前記倍率係数で割った値を求め、
前記商と前記余りを前記倍率係数で割った値を足した値を出力することを特徴とする請求項8に記載のノード。 - 前記分周手段は、
前記マスタノードからクロック信号の周波数を、分解能を向上させる度合いを示す倍率係数倍の周波数のクロック信号を生成することを特徴とする請求項8又は請求項9に記載のノード。 - 前記位相比較手段からのタイミング誤差を元にネットワークの遅延ジッタをモニタし、前記遅延ジッタの量に応じてタイムスタンプの分解能を調整するジッタモニタ手段を備えたことを特徴とする請求項8から請求項10の何れかに記載の記載のノード。
- 前記ジッタモニタ手段は、
前記位相比較手段から予め規定された数のタイミング誤差情報を受け取ると、得られた前記タイミング誤差情報から前記遅延ジッタの分散値を算出することを特徴とする請求項11に記載のノード。 - 前記ジッタモニタ手段は、
算出した前記遅延ジッタの分散値を元に、クロック同期精度が最大となる最適な分解能を求めることを特徴とすることを特徴とする請求項12に記載のノード。 - 前記ジッタモニタ手段は、
前記分解能を最適な値に合わせるために、前記分周手段に対してアップコンバートする周波数の変更を指示すると共に、前記分解能変換手段に分解能を向上させる度合いを示す倍率係数の変更を指示することを特徴とする請求項13に記載のノード。 - パケットネットワーク上のマスタノードからスレーブノードに送信されたタイムスタンプパケットを利用して、前記スレーブノードのクロックを前記マスタノードのクロックに同期させるクロック同期方法であって、
前記スレーブノードが、
受信タイムスタンプとスレーブノード側で生成されたタイムスタンプとの間の差分を計算する位相比較ステップと、
前記位相比較ステップで得られた差分に含まれるジッタやノイズを抑圧するステップと、
前記差分を最終的にゼロに追い込むような制御信号を生成するステップと、
生成された制御信号に応じた周波数のクロック信号を出力するクロック出力ステップと、
前記クロック信号の周波数をアップコンバートした周波数のクロック信号を生成する分周ステップと、
前記分周ステップからのクロック信号を元にタイムスタンプを出力するタイムスタンプ生成ステップと、
タイムスタンプ生成ステップからのタイムスタンプの分解能を上げる分解能変換ステップと、
を含むことを特徴とするクロック同期方法。 - 前記分解能変換ステップにおいて、
前記タイムスタンプ生成ステップからのタイムスタンプの値を、分解能を向上させる度合いを示す倍率係数で割ったときの商を求めると共に、
前記タイムスタンプの値を前記倍率係数で割った際の剰余を、前記倍率係数で割った値を求め、
前記商と前記余りを前記倍率係数で割った値を足した値を出力することを特徴とする請求項15に記載のクロック同期方法。 - 前記分周ステップにおいて、
前記マスタノードからクロック信号の周波数を、分解能を向上させる度合いを示す倍率係数倍の周波数のクロック信号を生成することを特徴とする請求項15又は請求項16に記載のクロック同期方法。 - 前記スレーブノードが、
前記位相比較ステップからのタイミング誤差を元にネットワークの遅延ジッタをモニタし、前記遅延ジッタの量に応じてタイムスタンプの分解能を調整するジッタモニタステップを含むことを特徴とする請求項15から請求項17の何れかに記載の記載のクロック同期方法。 - 前記ジッタモニタステップにおいて、
前記位相比較ステップから予め規定された数のタイミング誤差情報を受け取ると、得られた前記タイミング誤差情報から前記遅延ジッタの分散値を算出することを特徴とする請求項18に記載のクロック同期方法。 - 前記ジッタモニタステップにおいて、
算出した前記遅延ジッタの分散値を元に、クロック同期精度が最大となる最適な分解能を求めることを特徴とすることを特徴とする請求項19に記載のクロック同期方法。 - 前記ジッタモニタステップにおいて、
前記分解能を最適な値に合わせるために、前記分周ステップに対してアップコンバートする周波数の変更を指示すると共に、前記分解能変換ステップに分解能を向上させる度合いを示す倍率係数の変更を指示することを特徴とする請求項20に記載のクロック同期方法。 - パケットネットワーク上のマスタノードからスレーブノードに送信されたタイムスタンプパケットを利用して、前記スレーブノードのクロックを前記マスタノードのクロックに同期させるクロック同期プログラムであって、
前記スレーブノードに、
受信タイムスタンプとスレーブノード側で生成されたタイムスタンプとの間の差分を計算する位相比較処理と、
前記位相比較処理で得られた差分に含まれるジッタやノイズを抑圧する処理と、
前記差分を最終的にゼロに追い込むような制御信号を生成する処理と、
生成された制御信号に応じた周波数のクロック信号を出力するクロック出力処理と、
前記クロック信号の周波数をアップコンバートした周波数のクロック信号を生成する分周処理と、
前記分周処理からのクロック信号を元にタイムスタンプを出力するタイムスタンプ生成処理と、
タイムスタンプ生成処理からのタイムスタンプの分解能を上げる分解能変換処理とを実行させることを特徴とするクロック同期プログラム。 - 前記分解能変換処理において、
前記タイムスタンプ生成処理からのタイムスタンプの値を、分解能を向上させる度合いを示す倍率係数で割ったときの商を求めると共に、
前記タイムスタンプの値を前記倍率係数で割った際の剰余を、前記倍率係数で割った値を求め、
前記商と前記余りを前記倍率係数で割った値を足した値を出力することを特徴とする請求項22に記載のクロック同期プログラム。 - 前記分周処理において、
前記マスタノードからクロック信号の周波数を、分解能を向上させる度合いを示す倍率係数倍の周波数のクロック信号を生成することを特徴とする請求項22又は請求項23に記載のクロック同期プログラム。 - 前記スレーブノードが、
前記位相比較処理からのタイミング誤差を元にネットワークの遅延ジッタをモニタし、前記遅延ジッタの量に応じてタイムスタンプの分解能を調整するジッタモニタ処理を含むことを特徴とする請求項22から請求項24の何れかに記載の記載のクロック同期プログラム。 - 前記ジッタモニタ処理において、
前記位相比較処理から予め規定された数のタイミング誤差情報を受け取ると、得られた前記タイミング誤差情報から前記遅延ジッタの分散値を算出することを特徴とする請求項25に記載のクロック同期プログラム。 - 前記ジッタモニタ処理において、
算出した前記遅延ジッタの分散値を元に、クロック同期精度が最大となる最適な分解能を求めることを特徴とすることを特徴とする請求項26に記載のクロック同期プログラム。 - 前記ジッタモニタ処理において、
前記分解能を最適な値に合わせるために、前記分周処理に対してアップコンバートする周波数の変更を指示すると共に、前記分解能変換処理に分解能を向上させる度合いを示す倍率係数の変更を指示することを特徴とする請求項27に記載のクロック同期プログラム。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200980107057.9A CN101960770B (zh) | 2008-03-27 | 2009-03-24 | 时钟同步系统、节点和时钟同步方法 |
JP2010505685A JP5321923B2 (ja) | 2008-03-27 | 2009-03-24 | クロック同期システム、ノード、クロック同期方法及びプログラム |
US12/919,635 US8824511B2 (en) | 2008-03-27 | 2009-03-24 | Clock synchronization system, node, clock synchronization method, and program |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008-082937 | 2008-03-27 | ||
JP2008082937 | 2008-03-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009119599A1 true WO2009119599A1 (ja) | 2009-10-01 |
Family
ID=41113791
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/055845 WO2009119599A1 (ja) | 2008-03-27 | 2009-03-24 | クロック同期システム、ノード、クロック同期方法及びプログラム |
Country Status (4)
Country | Link |
---|---|
US (1) | US8824511B2 (ja) |
JP (1) | JP5321923B2 (ja) |
CN (1) | CN101960770B (ja) |
WO (1) | WO2009119599A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101895383A (zh) * | 2010-07-07 | 2010-11-24 | 中国人民解放军国防科学技术大学 | 时钟外同步系统及其控制流程 |
CN102170345A (zh) * | 2011-04-27 | 2011-08-31 | 浙江大华技术股份有限公司 | 一种高清摄像机自适应数字化外同步的方法 |
US20210126766A1 (en) * | 2018-07-10 | 2021-04-29 | Socionext Inc. | Phase synchronization circuit, transmission and reception circuit, and integrated circuit |
CN113765613A (zh) * | 2021-07-01 | 2021-12-07 | 齐鲁空天信息研究院 | 动态双节点时频同步方法、装置、设备及存储介质 |
CN115801175A (zh) * | 2023-01-30 | 2023-03-14 | 国仪量子(合肥)技术有限公司 | 时间频率同步方法、系统、存储介质及电子设备 |
Families Citing this family (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102907021B (zh) * | 2010-05-17 | 2016-06-01 | 瑞典爱立信有限公司 | 优化定时分组传输 |
FR2967535B1 (fr) * | 2010-11-15 | 2012-11-02 | Alcatel Lucent | Procede de synchronisation d'horloges maitre et esclave d'un reseau a commutation de paquets et a liaisons agregees entre noeuds, et dispositifs de synchronisation associes |
JP5743573B2 (ja) * | 2011-01-28 | 2015-07-01 | キヤノン株式会社 | 画像形成装置及び画像形成方法 |
US20130003757A1 (en) * | 2011-06-30 | 2013-01-03 | Harman International Industries, Incorporated | Syntonized communication system |
WO2013163793A1 (en) * | 2012-05-02 | 2013-11-07 | Qualcomm Incorporated | Automatic time and frequency synchronization over an asynchronous network |
US9094308B2 (en) | 2012-06-06 | 2015-07-28 | Juniper Networks, Inc. | Finding latency through a physical network in a virtualized network |
US10110367B2 (en) * | 2012-08-21 | 2018-10-23 | Artesyn Embedded Computing, Inc. | High precision timer in CPU cluster |
US9996105B1 (en) * | 2013-03-14 | 2018-06-12 | Marvell Israel (M.I.S.L) Ltd | High precision event timing in network devices |
JP2015035158A (ja) * | 2013-08-09 | 2015-02-19 | ルネサスエレクトロニクス株式会社 | データ処理システム |
GB2518921B (en) | 2014-03-24 | 2016-02-17 | Imagination Tech Ltd | High definition timing synchronisation function |
US9787559B1 (en) * | 2014-03-28 | 2017-10-10 | Juniper Networks, Inc. | End-to-end monitoring of overlay networks providing virtualized network services |
US9552247B2 (en) * | 2014-11-05 | 2017-01-24 | Dell Products, Lp | Method for detection of soft media errors for hard drive |
US10423468B2 (en) * | 2015-02-10 | 2019-09-24 | Red Hat, Inc. | Complex event processing using pseudo-clock |
US9891966B2 (en) | 2015-02-10 | 2018-02-13 | Red Hat, Inc. | Idempotent mode of executing commands triggered by complex event processing |
RU2585325C1 (ru) * | 2015-05-05 | 2016-05-27 | Акционерное общество "Научно-производственное предприятие "Радиосвязь" (АО "НПП "Радиосвязь") | Система синхронизации частоты и шкалы времени удаленных пунктов |
US10313041B2 (en) * | 2016-06-10 | 2019-06-04 | Apple Inc. | Determination of accuracy of a chain of clocks |
CN106357459B (zh) * | 2016-11-02 | 2019-09-17 | 瑞斯康达科技发展股份有限公司 | 一种延迟抖动处理的方法及装置、时钟同步装置 |
WO2020165134A1 (de) * | 2019-02-13 | 2020-08-20 | Lambda:4 Entwicklungen Gmbh | Laufzeitmessung basierend auf frequenzumschaltung |
WO2020218236A1 (ja) * | 2019-04-26 | 2020-10-29 | ソニーセミコンダクタソリューションズ株式会社 | イベント検出装置、イベント検出装置を備えるシステムおよびイベント検出方法 |
DE112020002162T5 (de) * | 2019-04-29 | 2022-01-20 | Maxlinear, Inc. | Hochpräzisionszeitstempeldetektion für verbesserte kabelmodemtaktsynchronisation |
US11070304B1 (en) * | 2020-02-25 | 2021-07-20 | Mellanox Technologies, Ltd. | Physical hardware clock chaining |
US11483087B2 (en) | 2020-08-07 | 2022-10-25 | Hyannis Port Research, Inc. | Systems and methods for clock synchronization using special physical layer clock sync symbols |
CN112003668B (zh) * | 2020-08-28 | 2023-04-14 | 石家庄科林电气股份有限公司 | 一种实时动态跟踪的对时方法 |
CN114205065A (zh) * | 2020-09-02 | 2022-03-18 | 深圳市朗强科技有限公司 | 时钟频率同步方法、装置、设备及计算机存储介质 |
US11323312B1 (en) | 2020-11-25 | 2022-05-03 | Juniper Networks, Inc. | Software-defined network monitoring and fault localization |
CN112636860B (zh) * | 2020-12-23 | 2023-06-02 | 西安云维智联科技有限公司 | 基于比例积分算法的ieee1588协议时间校准方法 |
US20230108121A1 (en) * | 2021-10-05 | 2023-04-06 | Alex Feinman | Reconciling events in multi-node systems using hardware timestamps |
US11775005B2 (en) | 2021-10-06 | 2023-10-03 | Snap Inc. | Synchronizing systems on a chip using a shared clock |
CN115309347B (zh) * | 2022-10-10 | 2023-03-24 | 苏州浪潮智能科技有限公司 | 基于ssd主控变频的时间管理方法、装置、设备及介质 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0537560A (ja) * | 1991-07-29 | 1993-02-12 | Nec Corp | パケツト網における送受信間クロツク同期方式及びクロツク同期装置 |
JPH10173522A (ja) * | 1996-10-08 | 1998-06-26 | Sony Corp | 受信装置、受信方法、pll回路 |
JP2000244473A (ja) * | 1999-02-24 | 2000-09-08 | Matsushita Electric Ind Co Ltd | Pll回路 |
JP2001244809A (ja) * | 2000-02-28 | 2001-09-07 | Matsushita Electric Ind Co Ltd | Pll回路 |
JP2003258894A (ja) * | 2002-03-05 | 2003-09-12 | Matsushita Electric Ind Co Ltd | データ受信再生方法およびデータ通信装置 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6640193B2 (en) * | 1999-12-15 | 2003-10-28 | Texas Instruments Incorporated | Method and system for measuring jitter |
US6924711B2 (en) * | 2002-06-07 | 2005-08-02 | Utstarcom, Inc. | Multimode modulator employing a phase lock loop for wireless communications |
US7830881B2 (en) * | 2002-07-16 | 2010-11-09 | Panasonic Corporation | Content receiver and content transmitter |
US7372875B2 (en) * | 2002-09-30 | 2008-05-13 | Lucent Technologies Inc. | Systems and methods for synchronization in asynchronous transport networks |
AU2003217053A1 (en) * | 2003-04-02 | 2004-10-25 | Christopher Julian Travis | Method of establishing an oscillator clock signal |
JP4105192B2 (ja) * | 2005-01-07 | 2008-06-25 | シャープ株式会社 | 通信装置、通信方法、プログラム、および、プログラムを記録したコンピュータ読み取り可能な記録媒体 |
US7613268B2 (en) * | 2005-04-23 | 2009-11-03 | Nortel Networks Limited | Method and apparatus for designing a PLL |
US7626462B1 (en) * | 2006-05-02 | 2009-12-01 | Rf Micro Devices, Inc. | Fractional-N based digital AFC system with a translational PLL transmitter |
US20080019398A1 (en) * | 2006-07-20 | 2008-01-24 | Adimos Systems Ltd. | Clock recovery in wireless media streaming |
US7391368B1 (en) * | 2007-03-06 | 2008-06-24 | Cisco Technology, Inc. | Determining the time of arrival of a wireless signal |
US8867520B2 (en) * | 2008-03-07 | 2014-10-21 | Charles Nicholls | Using a network frequency reference to augment timing Synchronization in a wireless base station |
-
2009
- 2009-03-24 US US12/919,635 patent/US8824511B2/en not_active Expired - Fee Related
- 2009-03-24 CN CN200980107057.9A patent/CN101960770B/zh not_active Expired - Fee Related
- 2009-03-24 JP JP2010505685A patent/JP5321923B2/ja not_active Expired - Fee Related
- 2009-03-24 WO PCT/JP2009/055845 patent/WO2009119599A1/ja active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0537560A (ja) * | 1991-07-29 | 1993-02-12 | Nec Corp | パケツト網における送受信間クロツク同期方式及びクロツク同期装置 |
JPH10173522A (ja) * | 1996-10-08 | 1998-06-26 | Sony Corp | 受信装置、受信方法、pll回路 |
JP2000244473A (ja) * | 1999-02-24 | 2000-09-08 | Matsushita Electric Ind Co Ltd | Pll回路 |
JP2001244809A (ja) * | 2000-02-28 | 2001-09-07 | Matsushita Electric Ind Co Ltd | Pll回路 |
JP2003258894A (ja) * | 2002-03-05 | 2003-09-12 | Matsushita Electric Ind Co Ltd | データ受信再生方法およびデータ通信装置 |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101895383A (zh) * | 2010-07-07 | 2010-11-24 | 中国人民解放军国防科学技术大学 | 时钟外同步系统及其控制流程 |
CN102170345A (zh) * | 2011-04-27 | 2011-08-31 | 浙江大华技术股份有限公司 | 一种高清摄像机自适应数字化外同步的方法 |
US20210126766A1 (en) * | 2018-07-10 | 2021-04-29 | Socionext Inc. | Phase synchronization circuit, transmission and reception circuit, and integrated circuit |
US11777701B2 (en) * | 2018-07-10 | 2023-10-03 | Socionext Inc. | Phase synchronization circuit, transmission and reception circuit, and integrated circuit |
CN113765613A (zh) * | 2021-07-01 | 2021-12-07 | 齐鲁空天信息研究院 | 动态双节点时频同步方法、装置、设备及存储介质 |
CN115801175A (zh) * | 2023-01-30 | 2023-03-14 | 国仪量子(合肥)技术有限公司 | 时间频率同步方法、系统、存储介质及电子设备 |
CN115801175B (zh) * | 2023-01-30 | 2023-05-23 | 国仪量子(合肥)技术有限公司 | 时间频率同步方法、系统、存储介质及电子设备 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2009119599A1 (ja) | 2011-07-28 |
US8824511B2 (en) | 2014-09-02 |
CN101960770B (zh) | 2014-12-31 |
CN101960770A (zh) | 2011-01-26 |
US20110006818A1 (en) | 2011-01-13 |
JP5321923B2 (ja) | 2013-10-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5321923B2 (ja) | クロック同期システム、ノード、クロック同期方法及びプログラム | |
Mahmood et al. | Clock synchronization over IEEE 802.11—A survey of methodologies and protocols | |
JP5350787B2 (ja) | タイムスタンプを用いたタイム同期方法及び装置 | |
US8913632B2 (en) | Method and system for frequency synchronization | |
US8532241B2 (en) | Time synchronization apparatus based on parallel processing | |
KR101496108B1 (ko) | 무선 네트워크에서의 시간 동기화를 위한 방법 및 장치 | |
CN1934809B (zh) | 由不可靠数据分组网络分离时校准时间基准的方法和装置 | |
US7539889B2 (en) | Media data synchronization in a wireless network | |
US9407388B2 (en) | Method and device for resident time calculation and synchronization | |
US20100296524A1 (en) | Multi input timing recovery over packet network | |
US20110019699A1 (en) | Method and System for Precise-Clock Synchronization, and Device for Precise-Clock Frequency/Time Synchronization | |
US9167545B2 (en) | Receiver, method of calculating time difference, and program | |
WO2013051447A1 (ja) | 時刻制御装置、時刻制御方法、およびプログラム | |
US20140241381A1 (en) | Time control device, time control method, and program | |
US20110228834A1 (en) | Packet-filter-used clock synchronization system, apparatus, method and program thereof | |
US20130215910A1 (en) | Transmission apparatus, transmission method, program, and communication system | |
CN106899370A (zh) | 一种时钟链路切换方法、装置及基站 | |
CN101795190B (zh) | 用于调整时钟信号的方法和装置 | |
CN114389735A (zh) | 一种基于ieee802.1as冗余主时钟的时钟同步方法 | |
US20240143269A1 (en) | Audio synchronous circuit and audio synchronous method | |
US11343007B2 (en) | Time synchronization method and device | |
Luan et al. | Design and Hardware Implementation of Improved Precision Time Protocol for High Speed Automotive Wireless Transmission System | |
JP2023045230A (ja) | 情報通信システム及び情報通信装置 | |
JP2023045229A (ja) | 情報通信システム及び情報通信装置 | |
Kang et al. | Timing and Synchronization with Propagation Delay Symmetry and Originated Slave Clock Frequency for Ubiquitous Computing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980107057.9 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09724525 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010505685 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12919635 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09724525 Country of ref document: EP Kind code of ref document: A1 |