WO2009119079A1 - データ暗号化装置 - Google Patents

データ暗号化装置 Download PDF

Info

Publication number
WO2009119079A1
WO2009119079A1 PCT/JP2009/001313 JP2009001313W WO2009119079A1 WO 2009119079 A1 WO2009119079 A1 WO 2009119079A1 JP 2009001313 W JP2009001313 W JP 2009001313W WO 2009119079 A1 WO2009119079 A1 WO 2009119079A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
storage unit
encryption
circuit
encryption key
Prior art date
Application number
PCT/JP2009/001313
Other languages
English (en)
French (fr)
Inventor
横田薫
野仲真佐男
布田裕一
松崎なつめ
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to EP09724457A priority Critical patent/EP2244414A1/en
Priority to CN2009801097868A priority patent/CN101978649B/zh
Priority to US12/933,437 priority patent/US8683229B2/en
Priority to JP2010505343A priority patent/JP5436412B2/ja
Publication of WO2009119079A1 publication Critical patent/WO2009119079A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/08Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
    • H04L9/0894Escrow, recovery or storing of secret information, e.g. secret key escrow or cryptographic key storage
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L2209/00Additional information or applications relating to cryptographic mechanisms or cryptographic arrangements for secret or secure communication H04L9/00
    • H04L2209/80Wireless
    • H04L2209/805Lightweight hardware, e.g. radio-frequency identification [RFID] or sensor

Definitions

  • the present invention relates to a health care management service that receives health information such as a user's weight and blood pressure measured on the user side via a communication network and returns health advice to the user based on the health information.
  • the present invention relates to a secure healthcare management system capable of protecting confidentiality.
  • tags that have both sensor functions such as temperature sensors, chemical sensors, pressure sensors, and biosensors, and communication functions such as RFID (Radio Frequency Identification).
  • RFID Radio Frequency Identification
  • Various applications using these tags are also being studied.
  • an application may be conceived in which a tag having a sensor function such as a temperature sensor or a humidity sensor is attached to fresh food or artwork to be transported to control the temperature and humidity during transportation.
  • a health management application for patients who need to measure body temperature, blood glucose level, heart rate, etc. for a long period or regularly.
  • tags By sticking tags (hereinafter referred to as “sensor tags”) having the biological information measurement function to the patient's body, the biological information can be measured periodically. The measured biological information is accumulated in the sensor tag.
  • the sensor tag is removed from the patient's body after measurement for a certain period, and the data stored in the sensor tag is read out. By miniaturizing the sensor tag, it is possible to periodically measure biological information without the patient being aware of it.
  • the measured biological information is privacy information for the person to be measured. For this reason, for example, if the sensor tag attached to the body peels off without being noticed and is picked up by a third party, or if the sensor tag is not thoroughly managed after data is read, it is transferred to the third party. If this happens, the measurement data recorded inside may be leaked. In order to prevent such data leakage, a mechanism for encrypting and storing the measured biological information inside the sensor tag is necessary.
  • the key When performing encryption processing in the sensor tag, the key needs to be set after the product (sensor tag) is shipped.
  • sensor tags are purchased by the hospital and provided to the patient from the hospital. Therefore, it is necessary to make the key different for each hospital so that there is no possibility that the measurement information of the patient of another hospital will be leaked due to the leakage of the key of a certain hospital. That is, the sensor tag needs to be shipped without a key being set and delivered to a hospital so that the key can be set at each hospital.
  • the sensor tag needs to be supplied with electric power during measurement, and since there is no means for supplying electric power from the outside of the sensor tag during measurement, it is a battery built-in type. Furthermore, since it is always affixed to the patient's body, it is necessary to have an ultra-compact shape. For this reason, it is difficult to provide a switch mechanism that turns ON / OFF the power supply from the power source. Therefore, for example, an insulator must be attached between the battery and the sensor tag circuit, and in use, the insulator must be removed to turn on the power supply from the power source. In this case, it is difficult to attach the insulator once removed between the battery and the sensor tag. In other words, once the power supply from the power source is changed from the OFF state to the ON state, the power supply from the power source cannot be returned to the OFF state (until the battery runs out).
  • a sensor tag without a key is delivered to a hospital.
  • the power supply from the power source of the sensor tag is turned on and a key is set.
  • the hospital provides a key-set sensor tag to the patient, and the patient attaches the received sensor tag to the body to measure biometric information.
  • biometric information is measured, encrypted with a set key, and stored inside.
  • the hospital reads the encrypted biometric information measured from the sensor tag and decrypts it with the key held by the hospital to obtain plaintext biometric information.
  • the prior art it is necessary to turn on the power supply from the power source of the sensor tag when setting the key. For this reason, it has the subject that a battery will be consumed by the time of a measurement start. That is, the sensor tag needs to be small in structure, and it is conceivable to make the power switch as simple as possible, for example, a one-way switch.
  • the power supply from the power supply is turned ON, it cannot be turned OFF. Therefore, the power supply from the power supply is performed until the patient wears the sensor tag on the body after setting the key. Will remain on and the battery will be wasted.
  • Patent Document 1 discloses an electronic tag equipped with a passive structure body that is supplied with power source energy by radio waves and an active structure body that is supplied with power source energy from an internal power source.
  • the identification information is received in the passive structure, and the identification information received in the active structure is transmitted. That is, in the electronic tag disclosed in Patent Document 1, since passive structures are used when setting identification information, it is not necessary to turn on the power supply from the internal power supply.
  • Patent Document 1 only identification information such as articles is set in the electronic tag, and a method for performing encryption processing in the electronic tag and a method for setting a key are not disclosed. The problem cannot be solved.
  • the present invention solves the above-mentioned problems, and in a sensor tag system that requires prior key setting before use, it does not impose an operational burden on the key setter and the sensor tag user, and It is an object of the present invention to provide a sensor tag with an encryption function capable of maintaining a hygienic state immediately before the sensor tag is used.
  • a data encryption device is a portable data encryption device, which receives a wireless activation signal from a storage unit and an external terminal, and uses the received activation signal.
  • a wireless communication circuit that receives an encryption key from the external terminal by operating with the generated electromotive force, stores the received encryption key in the storage unit, a primary battery that supplies power, and power from the primary battery Switching means for switching the supply from the OFF state to the ON state, and after the power supply from the primary battery is switched to the ON state, the device operates with the power supplied from the primary battery, and reads the encryption key from the storage unit And an encryption circuit that encrypts predetermined data to be encrypted using the read encryption key and stores the encrypted data in the storage unit.
  • the wireless communication circuit receives the wireless activation signal from the external terminal, operates with the electromotive force generated by the received activation signal, receives the encryption key from the external terminal, and stores it in the storage unit .
  • the encryption circuit operates with the power supplied from the primary battery when the power supply from the primary battery is turned on, reads the encryption key, encrypts the data to be encrypted, and Store in the storage. According to this, when the wireless communication circuit receives the encryption key from the external device, the primary battery in the data encryption device is not used, and therefore, the encryption of the predetermined encryption target data from the reception of the encryption key. Even when the time elapses until the data is converted, it is possible to prevent the primary battery in the apparatus from being consumed when the encryption circuit encrypts predetermined data to be encrypted.
  • the wireless communication circuit receives an encryption key from an external device, the power of the primary battery is not used.
  • the data to be encrypted is encrypted, it is possible to prevent a situation where the power of the primary battery is consumed.
  • the encryption key can be received wirelessly, the encryption key can be set in the data encryption device without breaking the sterilized package. Therefore, a hygienic state can be maintained until just before the data encryption device is used.
  • the above-described data encryption device further includes a storage unit control unit that controls access from the wireless communication circuit to the storage unit and access from the encryption circuit to the storage unit, The storage unit control unit prohibits writing of data from the wireless communication circuit to the storage unit when the encryption circuit operates with the power supplied from the primary battery.
  • the storage unit control unit prohibits writing of data from the wireless communication circuit to the storage unit. According to this, when encryption of the data to be encrypted is started, a new encryption key cannot be stored in the storage unit, so when the encryption of the data to be encrypted is started, It is possible to prevent the encryption key from being rewritten.
  • the encryption circuit is a sensor circuit that measures biometric data of a user of the data encryption device, reads the encryption key from the storage unit, and uses the read encryption key to generate the biometric data. Is encrypted, and the encrypted biometric data is stored in the storage unit.
  • the encryption circuit is a sensor circuit that measures biometric data of a user of a data encryption device, and the sensor circuit reads the encryption key from the storage unit and encrypts the biometric data to store the data.
  • the data encryption device can be used as a measuring device for measuring user biometric data.
  • the data encryption device further includes an input unit that receives the biometric data as an input from an external measurement device that measures the biometric data of the user, and the encryption circuit receives the biometric data as the predetermined data.
  • the data to be encrypted may be encrypted, and the encrypted biometric data may be stored in the storage unit.
  • the input unit receives the biometric data as an input from an external measuring device that measures the biometric data of the user, and the encryption circuit encrypts the biometric data as the predetermined encryption target data.
  • the data encryption device can be used as a data encryption device separate from the measurement device that measures the biometric data of the user.
  • the encryption circuit may store the predetermined data to be encrypted in the storage unit without encryption.
  • the power supply from the primary battery is turned on and the encryption circuit operates with the power supplied from the primary battery.
  • the predetermined data to be encrypted can be stored in the storage unit without being encrypted.
  • the encryption circuit may discard the predetermined data to be encrypted and store it in the storage unit.
  • the power supply from the primary battery is turned on and the encryption circuit operates with the power supplied from the primary battery.
  • the predetermined data to be encrypted can be discarded and not stored in the storage unit. In this case, since the predetermined data to be encrypted is not stored in the storage unit without being encrypted, the confidentiality of the data to be encrypted can be ensured.
  • the switching unit switches the power supply from the primary battery only in one direction from the OFF state to the ON state.
  • the switching means can switch the power supply from the primary battery only in one direction from the OFF state to the ON state.
  • the mechanism for turning on the power supply from the primary battery can be simplified.
  • the data encryption device can be reduced in size.
  • the primary battery and the encryption circuit are energized in a direction in which they are in contact with each other, and the switching means includes an insulation interposed between the energized primary battery and the encryption circuit. Is the body.
  • the switching means can be an insulator interposed between the primary battery and the encryption circuit.
  • the power supply from the primary battery can be turned on by pulling out the insulator from the data encryption device main body.
  • the data to be encrypted is personal information of a user of the data encryption device.
  • the data to be encrypted can be personal information of the user of the data encryption device.
  • the encryption circuit is a sensor circuit that measures environmental information around an article to which the data encryption device is attached, reads the encryption key from the storage unit, and uses the read encryption key
  • the environment information may be encrypted, and the encrypted environment information may be stored in the storage unit.
  • the encryption circuit is a sensor circuit that measures environmental information around an article to which a data encryption device is attached, and reads the encryption key from the storage unit to encrypt the environmental information. It can be stored in the storage unit. In this case, for example, it is possible to attach a data encryption device to perishable foods being transported and store environmental information such as temperature, humidity, and illuminance during transport in the data encryption device.
  • the wireless communication circuit may be an RFID (Radio Frequency Identification) communication circuit.
  • the wireless communication circuit can be an RFID communication circuit.
  • the data encryption device can be used as an RFID tag.
  • the above-described data encryption device may further include a display unit that displays that the storage unit stores the encryption key.
  • the data encryption device determines whether or not the encryption key is stored in the storage unit by providing the display unit that displays that the storage unit stores the encryption key. Can be confirmed easily by visually recognizing from the outside. Therefore, the user can use the data encryption apparatus after confirming that the encryption key is stored in the storage unit, and can ensure the confidentiality of the data to be encrypted. .
  • the above-described data encryption device further includes a storage unit control unit that controls access from the wireless communication circuit to the storage unit and access from the encryption circuit to the storage unit.
  • the unit control unit permits writing of data from the encryption circuit to the storage unit when the encryption circuit operates with power supplied from the primary battery, and transmits data from the wireless communication circuit to the storage unit. Data writing is prohibited, and the encryption circuit is a sensor circuit that measures biometric data of a user of the data encryption device, reads the encryption key from the storage unit, and uses the read encryption key
  • the biometric data is encrypted, the encrypted data is stored in the storage unit, and the storage unit control unit retrieves the encrypted data stored in the storage unit from the wireless communication circuit.
  • writing of data from the encryption circuit to the storage unit is prohibited, and the wireless communication circuit is prohibited from writing data from the encryption circuit to the storage unit, and then stores the memory.
  • the encrypted data stored in the section may be transmitted to a predetermined destination.
  • the storage unit control unit when the storage unit control unit receives an encrypted data acquisition request stored in the storage unit from the wireless communication circuit, the storage unit control unit writes the data from the encryption circuit to the storage unit. Is prohibited. On the other hand, after the wireless communication circuit is prohibited from writing data from the encryption circuit to the storage unit, the wireless communication circuit reads out the encrypted data encrypted by the encryption circuit and stored in the storage unit. To the destination. Thus, since the encryption circuit does not write to the storage unit during data transmission by the wireless communication circuit, it is possible to prevent transmission data leakage of the encrypted data stored in the storage unit.
  • the storage unit control unit when the storage unit control unit receives an acquisition request for the encrypted data stored in the storage unit from the wireless communication circuit, the storage unit control unit transfers the encryption unit to the storage unit within a predetermined period. If it is determined that there has been no writing from the encryption circuit to the storage unit for the predetermined period, data writing from the encryption circuit to the storage unit is prohibited.
  • the storage unit control unit regards that the power of the primary battery is consumed when there is no writing from the encryption circuit to the storage unit for a predetermined period, and from the encryption circuit to the storage unit Writing data to the part is prohibited.
  • the wireless communication circuit reads the encrypted data from the storage unit and sends it to a predetermined destination. Can be sent. Therefore, for example, when the acquisition request by the wireless communication circuit is received immediately after the power supply from the primary battery is turned on, the storage unit is encrypted to be transmitted to the wireless communication circuit It is possible to prevent inefficiency in which the encrypted data is transmitted from the storage unit in a state where the data is not sufficiently stored with a simple configuration.
  • the storage unit control unit when the storage unit control unit receives an acquisition request for the encrypted data stored in the storage unit from the wireless communication circuit, the storage unit control unit transfers the encryption unit to the storage unit within a predetermined period. If it is determined that writing from the encryption circuit to the storage unit was within the predetermined period, the writing of data from the encryption circuit to the storage unit is permitted, A state in which writing of data from the wireless communication circuit to the storage unit is prohibited is maintained.
  • the storage unit control unit determines that the power life of the primary battery is still present when writing from the encryption circuit to the storage unit exists within the predetermined period, and the encryption unit The state in which the writing of data to the storage unit from the control circuit is permitted and the writing of data from the wireless communication circuit to the storage unit is prohibited is maintained. Thereby, when it is determined that the power life of the primary battery is still present, the storage unit even when the acquisition request of the encrypted data stored in the storage unit is received from the wireless communication circuit In addition, the process of storing the encrypted data to be transmitted to the wireless communication circuit is continued.
  • the storage unit is encrypted to be transmitted to the wireless communication circuit It is possible to prevent inefficiency in which the encrypted data is transmitted from the storage unit in a state where the data is not sufficiently stored with a simple configuration.
  • the storage unit control unit when the storage unit control unit receives an acquisition request for the encrypted data stored in the storage unit from the wireless communication circuit, the storage unit control unit confirms that the encryption circuit is in an operating state. A signal is output to the encryption circuit, and it is determined whether or not there is a response within a predetermined period. When it is determined that the response is not within the predetermined period, data is written from the encryption circuit to the storage unit. May be prohibited.
  • the storage unit control unit considers that the power of the primary battery has been consumed, and transfers the encryption circuit to the storage unit. Prohibit writing of data.
  • the wireless communication circuit reads the encrypted data from the storage unit and sends it to a predetermined destination. Can be sent. Therefore, for example, when the acquisition request by the wireless communication circuit is received immediately after the power supply from the primary battery is turned on, the storage unit is encrypted to be transmitted to the wireless communication circuit It is possible to prevent inefficiency in which the encrypted data is transmitted from the storage unit in a state where the data is not sufficiently stored with a simple configuration.
  • the storage unit control unit when the storage unit control unit receives an acquisition request for the encrypted data stored in the storage unit from the wireless communication circuit, the storage unit control unit confirms that the encryption circuit is in an operating state.
  • a predetermined signal is output to the encryption circuit, it is determined whether there is a response within a predetermined period, and when it is determined that the response is within the predetermined period, data from the encryption circuit to the storage unit Is maintained, and a state in which writing of data from the wireless communication circuit to the storage unit is prohibited is maintained.
  • the storage unit control unit determines that the power of the primary battery still has a life, and A state in which writing of data to the storage unit is permitted and writing of data from the wireless communication circuit to the storage unit is prohibited is maintained.
  • the storage unit is encrypted to be transmitted to the wireless communication circuit It is possible to prevent inefficiency in which the encrypted data is transmitted from the storage unit in a state where the data is not sufficiently stored with a simple configuration.
  • the above-described data encryption device further includes a storage unit control unit that controls access from the wireless communication circuit to the storage unit and access from the encryption circuit to the storage unit.
  • the unit control unit permits writing of data from the encryption circuit to the storage unit when the encryption circuit operates with power supplied from the primary battery, and transmits data from the wireless communication circuit to the storage unit.
  • the encryption circuit is a sensor circuit that measures biometric data of a user of the data encryption device, reads the encryption key from the storage unit, encrypts the biometric data, and
  • the storage unit control unit is notified that the biometric data has been measured the predetermined number of times, and the storage unit control unit
  • the wireless communication circuit prohibits writing of data from the encryption circuit to the storage unit, and the wireless communication circuit writes data from the encryption circuit to the storage unit. After being prohibited, the encrypted biometric data stored in the storage unit may be transmitted to a predetermined destination.
  • the storage unit control unit when the storage unit control unit receives notification from the encryption circuit that the biometric data has been measured a predetermined number of times, the storage unit control unit transmits data from the encryption circuit to the storage unit. Prohibit writing.
  • the wireless communication circuit reads the encrypted data encrypted by the encryption circuit and stored in the storage unit, and transmits it to a predetermined destination.
  • the encryption circuit since the encryption circuit does not write to the storage unit during transmission of the encrypted data by the wireless communication circuit, transmission data leakage of the encrypted data stored in the storage unit Can be prevented.
  • the above-described data encryption device further includes a storage unit control unit that controls access from the wireless communication circuit to the storage unit and access from the encryption circuit to the storage unit.
  • the unit control unit permits writing of data from the encryption circuit to the storage unit when the encryption circuit operates with power supplied from the primary battery, and transmits data from the wireless communication circuit to the storage unit. Data writing is prohibited, and the encryption circuit is a sensor circuit that measures biometric data of a user of the data encryption device, reads the encryption key from the storage unit, encrypts the biometric data, and
  • the storage unit control unit writes data from the encryption circuit to the storage unit after a predetermined time has elapsed since the power supply from the primary battery is turned on.
  • the wireless communication circuit may transmit the encrypted biometric data stored in the storage unit to a predetermined destination after the writing of data from the encryption circuit to the storage unit is prohibited. Good.
  • the storage unit control unit prohibits writing of data from the encryption circuit to the storage unit when a predetermined time elapses.
  • the wireless communication circuit reads the encrypted data encrypted by the encryption circuit and stored in the storage unit, and transmits it to a predetermined destination.
  • the encryption circuit does not write to the storage unit during transmission of the encrypted data by the wireless communication circuit, transmission data leakage of the encrypted data stored in the storage unit Can be prevented.
  • the present invention can be realized not only as a data encryption apparatus including such a characteristic processing unit, but also as a data encryption method including a characteristic processing unit included in the data encryption apparatus as a step. It can also be realized as a program that causes a computer to execute characteristic steps included in the data encryption method. It goes without saying that such a program can be distributed via a recording medium such as a CD-ROM (Compact Disc-Read Only Memory) or a communication network such as the Internet.
  • a recording medium such as a CD-ROM (Compact Disc-Read Only Memory) or a communication network such as the Internet.
  • the power supply from the built-in battery is switched from OFF to ON when the encryption key is set even in the case of a small sensor tag that cannot be mounted with a switch mechanism that can be freely switched ON / OFF Therefore, there is an effect that the battery consumption problem until the measurement start described as the problem does not occur.
  • FIG. 1 is a block diagram showing a configuration of a sensor tag system according to Embodiments 1 and 2 of the present invention.
  • FIG. 2 is a diagram showing how the sensor tag system according to Embodiments 1 and 2 of the present invention is used.
  • FIG. 3 is a block diagram showing the configuration of the sensor tag according to Embodiments 1 and 2 of the present invention.
  • FIG. 4 is a block diagram showing a configuration of the data communication circuit according to the first and second embodiments of the present invention.
  • FIG. 5 is a block diagram showing a configuration of the sensor circuit according to Embodiments 1 and 2 of the present invention.
  • FIG. 6 is a block diagram showing the configuration of the encryption key writing apparatus according to Embodiments 1 and 2 of the present invention.
  • FIG. 1 is a block diagram showing a configuration of a sensor tag system according to Embodiments 1 and 2 of the present invention.
  • FIG. 2 is a diagram showing how the sensor tag system according to Embodiments 1 and 2 of the present invention is
  • FIG. 7 is a block diagram showing the configuration of the measurement data reading apparatus according to Embodiments 1 and 2 of the present invention.
  • FIG. 8 is a flowchart showing the overall operation of the sensor tag according to Embodiments 1 and 2 of the present invention.
  • FIG. 9 is a detailed flowchart of encryption key acquisition processing according to Embodiments 1 and 2 of the present invention.
  • FIG. 10 is a detailed flowchart of the encryption key setting process according to Embodiments 1 and 2 of the present invention.
  • FIG. 11 is a detailed flowchart of the power ON detection process according to Embodiment 1 of the present invention.
  • FIG. 12 is a detailed flowchart of the mode change process according to Embodiment 1 of the present invention.
  • FIG. 13 is a detailed flowchart of sensor measurement processing according to Embodiment 1 of the present invention.
  • FIG. 14 is a detailed flowchart of the measurement data accumulation process according to Embodiment 1 of the present invention.
  • FIG. 15 is a block diagram showing a configuration of an encrypted measurement data group according to Embodiments 1 and 2 of the present invention.
  • FIG. 16 is a detailed flowchart of data acquisition request processing according to Embodiments 1 and 2 of the present invention.
  • FIG. 17 is a detailed flowchart of the measurement stop process according to Embodiments 1 and 2 of the present invention.
  • FIG. 18 is a detailed flowchart of data acquisition processing according to Embodiments 1 and 2 of the present invention.
  • FIG. 19 is a detailed flowchart of data output processing according to Embodiments 1 and 2 of the present invention.
  • FIG. 20 is a diagram for explaining transition of memory access control rules (modes) held by the memory access control circuit 25 according to the first embodiment of the present invention.
  • FIG. 21 is a detailed flowchart of measurement stop processing according to Modification 1 of Embodiment 1 of the present invention.
  • FIG. 22 is a detailed flowchart of measurement stop processing according to Modification 2 of Embodiment 1 of the present invention.
  • FIG. 23 is a detailed flowchart of sensor measurement processing according to Modification 3 of Embodiment 1 of the present invention.
  • FIG. 24 is a flowchart showing the overall operation of the sensor tag 2 according to Embodiment 2 of the present invention.
  • FIG. 20 is a diagram for explaining transition of memory access control rules (modes) held by the memory access control circuit 25 according to the first embodiment of the present invention.
  • FIG. 21 is a detailed flowchart of measurement stop processing according to Modification
  • FIG. 25 is a detailed flowchart of power ON detection processing according to Embodiment 2 of the present invention.
  • FIG. 26 is a detailed flowchart of the mode change process according to Embodiment 2 of the present invention.
  • FIG. 27 is a detailed flowchart of sensor measurement processing according to Embodiment 2 of the present invention.
  • FIG. 28 is a detailed flowchart of measurement data storage processing according to Embodiment 2 of the present invention.
  • FIG. 1 is a block diagram showing a configuration of the sensor tag system 1.
  • the sensor tag system 1 includes a sensor tag 2, an encryption key writing device 11, and a measurement data reading device 13. Further, the processes performed in the sensor tag system 1 include three processes: a key setting process 3, a measurement process 4, and a measurement data reading process 5.
  • the sensor tag 2 periodically measures biological information such as a body temperature, a pulse, a heart rate, and a heart sound of the person 12 to be measured.
  • biological information such as a body temperature, a pulse, a heart rate, and a heart sound of the person 12 to be measured.
  • the measured biological information is encrypted using an encryption key preset in the sensor tag 2 and accumulated in the sensor tag 2.
  • the encryption key writing device 11 is a device for writing an encryption key to the sensor tag 2 to which no encryption key is set.
  • the measured person 12 is a person whose biological information such as body temperature, pulse, heart rate, heart sound, etc. is measured by the sensor tag 2.
  • the measurement data reading device 13 is a device for reading the encrypted measurement data stored inside the sensor tag 2 from the sensor tag 2 for which the measurement of biological information has been completed. Further, the measurement data reading device 13 decrypts the read encrypted measurement data using a decryption key, and calculates plaintext measurement data.
  • the key setting process 3 is a process in which the encryption key writing device 11 sets an encryption key for the sensor tag 2 in which the encryption key is not set.
  • the measurement process 4 is performed by the sensor tag 2 with the encryption key set pasted on the person to be measured 12 measuring and encrypting the biological information of the person to be measured 12. It is a process to accumulate.
  • the measurement data reading process 5 is a process in which the measurement data reading device 13 reads the encrypted measurement data from the sensor tag 2 that has been measured, decrypts it, and calculates plaintext measurement data.
  • the encryption key writing device 11 and the measurement data reading device 13 are held and managed by the hospital, and the hospital purchases the sensor tag 2 with no encryption key set from the sensor tag manufacturer.
  • the hospital sets an encryption key for the purchased sensor tag 2 using the encryption key writing device 11.
  • the sensor tag 2 for which the encryption key has been set is provided to the measurement subject 12 who is a patient in the hospital.
  • the subject 12 measures the biometric information by attaching the sensor tag 2 with the encryption key set to his / her body at an appropriate timing according to the instruction of the hospital.
  • the person 12 to be measured removes the sensor tag 2 whose measurement has been completed from the body and submits it to the hospital.
  • the hospital uses the measurement data reader 13 to read the encrypted measurement data from the submitted sensor tag 2 and further decrypts the encrypted measurement data using the decryption key to obtain plaintext measurement data. . Based on the obtained measurement data, the hospital diagnoses the person 12 to be measured who is a patient.
  • FIG. 3 is a block diagram showing the configuration of the sensor tag 2.
  • the sensor tag 2 includes a data communication circuit 20, an antenna 21, a sensor circuit 22, a power supply 23, a memory 24, a memory access control circuit 25, a memory access control rule update unit 26, an insulator 27, and a reception circuit 28.
  • the display unit 29 and the electromotive force generation circuit 30 are included.
  • the electromotive force generation circuit 30 is a circuit that generates an electromotive force from an activation signal received by the antenna 21.
  • the data communication circuit 20 is a circuit that operates with the electromotive force generated by the electromotive force generation circuit 30, and is an RFID communication circuit.
  • the data communication circuit 20 sets the encryption key sent from the encryption key writing device 11 in the memory 24. Further, the data communication circuit 20 reads out the encrypted measurement data stored in the memory 24 and sends it to the measurement data reader 13 in response to a request from the measurement data reader 13.
  • the internal configuration of the data communication circuit 20 will be described later.
  • the antenna 21 receives signals from the encryption key writing device 11 and the measurement data reading device 13 and outputs them to the data communication circuit 20. Further, the antenna 21 transmits the signal output from the data communication circuit 20 to the encryption key writing device 11 or the measurement data reading device 13 on a radio wave, electromagnetic wave, microwave, or the like having a predetermined frequency.
  • the sensor circuit 22 is a circuit that operates with electric power supplied from the power source 23, and periodically measures biological information from the measurement subject 12 and encrypts it using an encryption key stored in the memory 24. Thus, the process of storing in the memory 24 is performed.
  • the internal configuration of the sensor circuit 22 will be described later.
  • the power source 23 is a primary battery built in the sensor tag 2 and supplies power to the sensor circuit 22 and the like.
  • the memory 24 is a nonvolatile data storage element shared by both the sensor circuit 22 and the data communication circuit 20, and stores various data such as encryption key data and encrypted measurement data.
  • the memory 24 receives power from the sensor circuit 22 (that is, from the power source 23) when accessed from the sensor circuit 22, and from the data communication circuit 20 when accessed from the data communication circuit 20 ( In other words, power is supplied from the electromotive force generation circuit 30.
  • the memory access control circuit 25 controls memory access from the sensor circuit 22 and the data communication circuit 20 to the memory 24. Requests for data writing and data reading from the sensor circuit 22 and the data communication circuit 20 to the memory 24 are received by the memory access control circuit 25, and whether or not they are possible is determined based on a memory access control rule held inside. As a result of the determination, when data writing and data reading are permitted, predetermined data writing to the memory 24 and predetermined data reading from the memory 24 are performed according to the request.
  • the memory access control circuit 25 is supplied with power from the sensor circuit 22 (that is, from the power supply 23), and when accessed from the data communication circuit 20, the memory access control circuit 25 is a data communication circuit. Power is supplied from 20 (that is, from the electromotive force generation circuit 30).
  • the memory access control rule update unit 26 updates the memory access control rule held in the memory access control circuit 25 when the sensor circuit 22 operates by receiving power supply from the power source 23 for the first time. Thereafter, the memory access control circuit 25 controls data access from the sensor circuit 22 and the data communication circuit 20 based on the updated memory access control rule.
  • the memory access control rule update unit 26 is implemented as a part of an initialization program that is executed when the sensor circuit 22 is first operated, and is executed as a part of the initialization process of the sensor circuit 22. It can be considered.
  • the insulator 27 is mounted so as to cut off the electrical connection between the sensor circuit 22 and the power source 23, whereby the power supply to the sensor circuit 22 is cut off.
  • the insulator 27 is mounted in a state where a part of the insulator 27 is exposed to the outside of the sensor tag 2 and can be removed from the outside.
  • the measured person 12 removes the insulator 27 to thereby remove the power source 23.
  • Power supply to the sensor circuit 22 can be started and measurement of biological information can be started at any time.
  • the sensor circuit 22 and the power source 23 are urged in a direction in contact with each other, and the insulator 27 switches the power supply from the power source 23 only in one direction from the OFF state to the ON state. That is, once the insulator 27 is removed, the insulator 27 cannot be inserted between the sensor circuit 22 and the power source 23. Thereby, size reduction can be achieved, simplifying the structure of the sensor tag 2.
  • the receiving circuit 28 receives biometric data as an input from an external measuring device that measures the biometric data of the person 12 to be measured.
  • the accepted biometric data is encrypted in the sensor circuit 22 and then stored in the memory 24.
  • the display unit 29 indicates that the memory 24 stores the encryption key.
  • the display unit 29 is configured by, for example, an LED or the like, and is turned on when an encryption key is stored in the memory 24 under the control of the memory access control circuit 25, and is turned off when the encryption key is not stored. Thereby, it can prevent that a user starts measurement using the sensor tag 2 by which the encryption key is not set accidentally. Therefore, the confidentiality of the measurement data can be ensured.
  • FIG. 4 is a block diagram showing a configuration of the data communication circuit 20. As shown in FIG. 4, the data communication circuit 20 includes a data communication unit 200, an authentication unit 201, an encryption key writing unit 202, an ID writing unit 203, and a measurement data reading unit 204.
  • the antenna 21 receives data to be received and output from the encryption key writing device 11 and the measurement data reading device 13, and outputs the data to an appropriate processing unit in the data communication circuit 20.
  • the data communication unit 200 receives data output from other processing units in the data communication circuit 20 and transmits the data to the encryption key writing device 11 and the measurement data reading device 13 via the antenna 21.
  • the authentication unit 201 authenticates the validity of the encryption key writing device 11 and the measurement data reading device 13 that are going to perform data transmission / reception with the data communication circuit 20 using the authentication verification data stored inside.
  • the encryption key writing unit 202 writes the encryption key data sent from the encryption key writing device 11 into the memory 24 via the memory access control circuit 25.
  • the ID writing unit 203 writes the ID data sent from the encryption key writing device 11 into the memory 24 via the memory access control circuit 25.
  • the measurement data reading unit 204 reads the encrypted measurement data from the memory 24 via the memory access control circuit 25 in response to a request from the measurement data reading device 13 and sends it to the measurement data reading device 13.
  • FIG. 5 is a block diagram showing a configuration of the sensor circuit 22. As shown in FIG. 5, the sensor circuit 22 includes a biometric data measurement unit 220, a timer unit 221, an encryption key reading unit 222, a data encryption unit 223, a measurement data writing unit 224, and a power supply state detection unit 225.
  • the biometric data measurement unit 220 Based on the count value of the timer unit 221, the biometric data measurement unit 220 measures the biometric information from the measurement subject at predetermined intervals to obtain measurement data, and outputs the measurement data to the data encryption unit 223 together with the timer data (count value). .
  • the timer unit 221 increments (adds 1) the count value at regular intervals, and notifies the biometric data measurement unit 220 together with the count value that the count value has been reached each time the count value reaches the predetermined value.
  • the encryption key reading unit 222 reads the encryption key from the memory 24 via the memory access control circuit 25 and outputs it to the data encryption unit 223.
  • the data encryption unit 223 When the data encryption unit 223 receives the measurement data from the biometric data measurement unit 220, the data encryption unit 223 instructs the encryption key reading unit 222 to acquire the encryption key and receives the encryption key. Then, the measurement data received from the biometric data measurement unit 220 is encrypted with the encryption key received from the encryption key reading unit 222 to be encrypted measurement data and output to the measurement data writing unit 224.
  • the measurement data writing unit 224 writes the encrypted measurement data received from the data encryption unit 223 into the memory 24 via the memory access control circuit 25.
  • the power supply state detection unit 225 detects the state of the power supply 23, that is, whether or not the power supply from the power supply 23 is in an ON state.
  • FIG. 6 is a block diagram showing the configuration of the encryption key writing device 11. As illustrated in FIG. 6, the encryption key writing device 11 includes a data communication unit 110, an encryption key storage unit 111, an encryption key sending unit 112, an ID receiving unit 113, an ID sending unit 114, and an authentication unit 115.
  • the data communication unit 110 performs data transmission / reception with the sensor tag 2.
  • the encryption key storage unit 111 stores an encryption key set by the administrator of the encryption key writing device 11.
  • the encryption key sending unit 112 reads the encryption key stored in the encryption key storage unit 111 and sends it to the sensor tag 2 via the data communication unit 110.
  • the ID receiving unit 113 receives ID data input from the outside of the encryption key writing device 11 and outputs the received ID data to the ID sending unit 114.
  • the ID sending unit 114 sends the ID data output from the ID receiving unit 113 to the sensor tag 2 via the data communication unit 110.
  • the authentication unit 115 performs an authentication process for proving the validity of the encryption key writing device 11 for the sensor tag 2 using the authentication data stored inside.
  • FIG. 7 is a block diagram illustrating a configuration of the measurement data reading device 13. As shown in FIG. 7, the measurement data reading device 13 includes a data communication unit 130, an authentication unit 131, a decryption key storage unit 135, a measurement data reading unit 132, a data decryption unit 133, and a measurement data storage unit 134.
  • the data communication unit 130 performs data transmission / reception with the sensor tag 2.
  • the authentication unit 131 performs an authentication process for proving the validity of the measurement data reading device 13 for the sensor tag 2 using the authentication data stored inside.
  • the decryption key storage unit 135 stores a decryption key set by the administrator of the measurement data reader 13.
  • the measurement data reading unit 132 receives the encrypted measurement data from the sensor tag 2 via the data communication unit 130 and outputs it to the data decryption unit 133.
  • the data decryption unit 133 uses the decryption key read from the decryption key storage unit 135 to decrypt the encrypted measurement data received from the measurement data reading unit 132, and calculates plaintext measurement data.
  • the data decryption unit 133 outputs the calculated plaintext measurement data to the measurement data storage unit 134.
  • the measurement data storage unit 134 stores the plaintext measurement data received from the data decryption unit 133.
  • FIG. 8 is a flowchart showing the overall operation of the sensor tag 2. In the figure, the flow of processing among the sensor circuit 22, the memory access control circuit 25, and the data communication circuit 20 is shown.
  • the processing performed by the sensor tag 2 is roughly classified into three: key setting processing 3, measurement processing 4, and measurement data reading processing 5.
  • key setting processing 3 is performed. That is, the data communication unit 110 of the encryption key writing device 11 transmits an activation signal to the antenna 21 of the sensor tag 2.
  • the antenna 21 outputs the received start signal to the electromotive force generation circuit 30, and the electromotive force generation circuit 30 generates an electromotive force from the start signal, so that each circuit in the sensor tag 2 including the data communication circuit 20 is transmitted.
  • Operate (S2) Hereinafter, the data communication circuit 20 performs processing while operating with the electromotive force generated by the activation signal appropriately received from the data communication unit 110 of the encryption key writing device 11.
  • the data communication circuit 20 acquires an encryption key from the encryption key writing device 11 (S4).
  • the memory access control circuit 25 sets the acquired encryption key in the memory 24 (S6).
  • the encryption key is set in the memory 24 by the processing so far.
  • the processes of S4 and S6 will be described later in detail.
  • the measurement process 4 is started. That is, the power supply 23 is switched to the ON state, and the power supply state detection unit 225 detects the ON state of the power supply 23 (S8).
  • the memory access control circuit 25 changes the memory access control rule (mode) (S10). That is, encryption key writing and ID writing to the memory 24 from the data communication circuit 20 are prohibited. After this mode change, the encryption key cannot be updated thereafter (S16, S18, S20). Therefore, it is possible to prevent the encryption key from being rewritten accidentally when the measurement data is encrypted.
  • mode memory access control rule
  • the sensor circuit 22 measures the biological information of the person 12 to be measured and outputs the measurement data to the memory access control circuit 25 (S12).
  • the memory access control circuit 25 accumulates the output measurement data in the memory 24 (S14). Thereafter, the processes of S12 and S14 are repeatedly executed. The processing of S8 to S14 will be described in detail later.
  • measurement data reading processing 5 is performed. That is, the data communication unit 130 of the measurement data reading device 13 transmits an activation signal to the antenna 21 of the sensor tag 2.
  • the antenna 21 outputs the received start signal to the electromotive force generation circuit 30, and the electromotive force generation circuit 30 generates an electromotive force from the start signal, so that each circuit in the sensor tag 2 including the data communication circuit 20 is transmitted.
  • the data communication circuit 20 performs processing while operating with an electromotive force generated by an activation signal appropriately received from the data communication unit 130 of the measurement data reading device 13.
  • the data communication circuit 20 outputs a measurement data acquisition request signal to the memory access control circuit 25 based on the measurement data acquisition request from the measurement data reader 13 (S24).
  • the memory access control circuit 25 stops the measurement of biological information by the sensor circuit 22 (S26). Thereafter, the memory access control circuit 25 reads the measurement data stored in the memory 24 and outputs it to the data communication circuit 20 (S28).
  • the data communication circuit 20 receives the measurement data from the memory access control circuit 25 and outputs it to the measurement data reading device 13 (S30). The processing of S24 to S30 will be described in detail later.
  • the key setting process 3 is a process in which the encryption key writing device 11 sets an encryption key for the sensor tag 2 for which no encryption key is set.
  • the encryption key writing device 11 is held and managed by the hospital, and the key setting process 3 is performed when the hospital purchases the sensor tag 2 for which the encryption key is not set.
  • the encryption key storage unit 111 stores an encryption key preset by an administrator of the encryption key writing device 11.
  • the authentication unit 115 stores password data having a predetermined number of digits.
  • the authentication unit 201 in the data communication circuit 20 of the sensor tag 2 stores a hash value, which is a result of calculating a hash function for the password data, as authentication verification data.
  • the memory access control circuit 25 of the sensor tag 2 is set with a memory access control rule that permits only the following memory access and denies other memory access.
  • FIG. 9 is a detailed flowchart of the encryption key acquisition process (S4).
  • the authentication unit 115 of the encryption key writing device 11 sends password data, which is stored authentication data, to the sensor tag 2 via the data communication unit 110.
  • the antenna 21 of the sensor tag 2 receives the authentication data and transfers it to the authentication unit 201 via the data communication unit 200 of the data communication circuit 20.
  • the authentication unit 201 calculates a hash value that is a result of calculating a hash function for the received authentication data.
  • the authentication unit 201 compares the calculated hash value with the authentication verification data stored therein, and if the two match, the authentication unit 201 validates the encryption key writing device 11 and performs subsequent key setting processing. Allow to do. If they do not match, it is assumed that the encryption key writing device 11 is not valid, and the subsequent key setting process is stopped (S402).
  • the operator of the encryption key writing device 11 inputs the ID to be set to the sensor tag 2 to the encryption key writing device 11.
  • the input ID is received by the ID receiving unit 113 and transferred to the data communication unit 110 via the ID sending unit 114.
  • the encryption key sending unit 112 reads the encryption key stored in the encryption key storage unit 111 and transfers it to the data communication unit 110.
  • the data communication unit 110 transmits the ID and encryption key to the sensor tag 2.
  • the antenna 21 of the sensor tag 2 receives the ID and the encryption key transmitted from the encryption key writing device 11.
  • the antenna 21 transfers the received ID and encryption key to the data communication unit 200 of the data communication circuit 20.
  • the data communication unit 200 transfers the ID to the ID writing unit 203, and transfers the encryption key to the encryption key writing unit 202 (S404).
  • the ID writing unit 203 transfers the received ID to the memory access control circuit 25 (S406).
  • the encryption key writing unit 202 transfers the received encryption key to the memory access control circuit 25 (S408).
  • FIG. 10 is a detailed flowchart of the encryption key setting process (S6).
  • the memory access control circuit 25 receives the ID from the ID writing unit 203 and the encryption key from the encryption key writing unit 202 (S602).
  • the memory access control circuit 25 checks the memory access control rules set inside, and confirms that ID writing from the data communication circuit 20 and encryption key writing from the data communication circuit 20 are permitted. (Yes in S604) The ID is written in the ID storage area of the memory 24, and the encryption key is written in the encryption key storage area of the memory 24 (S606).
  • the key setting process 3 is completed by the above series of processes (S4, S6).
  • the measurement process 4 is a process in which the sensor tag 2 with the encryption key set periodically measures the biological information of the person 12 to be measured.
  • the measurement is performed when a measurement subject 12 who is a patient who has been provided with a sensor tag 2 with an encryption key set from a hospital performs measurement of biological information by attaching the sensor tag 2 to the body at home or the like. Is called.
  • FIG. 11 is a detailed flowchart of the power ON detection process (S8).
  • the power supply state detection unit 225 confirms the state of power supply from the power supply 23 (S802).
  • the person to be measured 12 removes the insulator 27 from the sensor tag 2 at the start of measurement.
  • power is supplied to the sensor circuit 22 from the power source 23, and the sensor circuit 22 starts to operate.
  • the sensor circuit 22 performs processing while operating with electric power supplied from the power source 23.
  • the power supply state detection unit 225 sends the memory access control circuit 25 to the memory 24 from the data communication circuit 20.
  • the encryption key write disable signal for instructing prohibition of the encryption key writing and ID writing is output (S806).
  • FIG. 12 is a detailed flowchart of the mode change process (S10).
  • the memory access control circuit 25 receives data from the sensor circuit 22 (S1002).
  • the data received by the memory access control circuit 25 is an encryption key write disable signal (Yes in S1004)
  • the memory access control rule update unit 26 performs the encryption key write from the data communication circuit 20 to the memory 24.
  • the memory access control rule (mode) is changed so as to prohibit the ID writing (S1006). That is, the memory access control rule update unit 26 updates the memory access control rule set in the memory access control circuit 25 so that only the following memory access is permitted and other memory accesses are denied.
  • FIG. 13 is a detailed flowchart of the sensor measurement process (S12).
  • the biological data measurement unit 220 measures biological information from the measurement subject 12. Data obtained by adding the count value transferred from the timer unit 221 to the measured biometric information (hereinafter referred to as “measurement data”) is transferred to the data encryption unit 223 (S1202).
  • the encryption key reading unit 222 requests an encryption key from the memory access control circuit 25 (S1204).
  • the encryption key reading unit 222 acquires the encryption key from the memory access control circuit 25 (Yes in S1206)
  • the data encryption unit 223 receives the encryption key from the encryption key reading unit 222 and uses the encryption key. Then, the measurement data received from the biometric data measurement unit 220 is encrypted to generate encrypted measurement data (S1208).
  • the count value is not encrypted, but may be encrypted.
  • the data encryption unit 223 adds the count value received from the biometric data measurement unit 220 to the encrypted measurement data and transfers it to the measurement data writing unit 224.
  • the measurement data writing unit 224 transfers the encrypted measurement data and the count value received from the data encryption unit 223 to the memory access control circuit 25 and makes a write request to the memory 24 (S1210).
  • the data encryption unit 223 encrypts the measurement data into the biometric data without encrypting the measurement data.
  • the count value received from the data measurement unit 220 is added and transferred to the measurement data writing unit 224.
  • the measurement data writing unit 224 transfers the unencrypted measurement data and the count value received from the data encryption unit 223 to the memory access control circuit 25 and makes a write request to the memory 24 (S1210).
  • FIG. 14 is a detailed flowchart of the measurement data accumulation process (S14).
  • the memory access control circuit 25 receives an encryption key request from the sensor circuit 22 (S1402).
  • the memory access control circuit 25 checks the memory access control rules held therein to confirm that the encryption key reading from the sensor circuit 22 is permitted. If the above can be confirmed, the memory access control circuit 25 confirms whether or not an encryption key is set in the memory 24 (S1404).
  • the memory access control circuit 25 reads the encryption key from the encryption key storage area of the memory 24 and transfers it to the encryption key reading unit 222 of the sensor circuit 22 (S1406). .
  • the memory access control circuit 25 waits until it receives the encrypted measurement data and the count value from the measurement data writing unit 224 of the sensor circuit 22 (S1408).
  • the memory access control circuit 25 checks the memory access control rule held inside, and writing of the encrypted measurement data from the sensor circuit 22 is permitted. Make sure. If the above can be confirmed, the memory access control circuit 25 writes the encrypted measurement data and the count value received from the measurement data writing unit 224 of the sensor circuit 22 in the encrypted measurement data storage area of the memory 24 (S1410). . If the encryption key is not set in the memory 24 (No in S1404), the same processing (S1408, S1410) is performed on the unencrypted measurement data.
  • the encrypted measurement data group 6 includes one ID 60, one or more sets of timer data (timer data 610, 620, 630,...) And encrypted measurement data (encrypted measurement data 611, 621, 631,. ..)) And a data set (data sets 61, 62, 63,).
  • ID 60 is the ID set in the sensor tag 2 together with the encryption key in the key setting process 3.
  • the timer data and the encrypted measurement data are added one by one every time the measurement data storage process is executed.
  • the measurement data reading process 5 is a process in which the measurement data reading device 13 reads the encrypted measurement data from the sensor tag 2 that has been subjected to the measurement process, as shown on the right side of FIG. As a typical example, this is performed in a hospital when the measurement data reading device 13 is used to read the encrypted measurement data from the sensor tag 2 that has been subjected to the measurement process and is submitted from the measurement subject 12 as a patient.
  • the decryption key storage unit 135 stores a decryption key preset by the administrator of the measurement data reading device 13.
  • the decryption key is paired with the encryption key stored in the encryption key storage unit 111 of the encryption key writing device 11. That is, original data can be obtained by decrypting encrypted data obtained by encrypting certain data with an encryption key with a decryption key.
  • the authentication unit 131 stores the same password data stored in the authentication unit 115 of the encryption key writing device 11.
  • the encrypted measurement data group 6 as shown in FIG. 15 is stored in the memory 24 of the sensor tag 2.
  • FIG. 16 is a detailed flowchart of the data acquisition request process (S24).
  • the authentication unit 131 of the measurement data reading device 13 sends password data that is stored authentication data to the sensor tag 2 via the data communication unit 130.
  • the antenna 21 of the sensor tag 2 receives the authentication data and transfers it to the authentication unit 201 via the data communication unit 200 of the data communication circuit 20.
  • the authentication unit 201 calculates a hash value that is a result of calculating a hash function for the received authentication data.
  • the authentication unit 201 compares the calculated hash value with the authentication verification data stored therein, and if they match, makes the measurement data reading device 13 valid and performs the subsequent measurement data reading process. Admit. If they do not match, it is assumed that the measurement data reading device 13 is not valid, and the subsequent measurement data reading process is stopped (S2402).
  • the measurement data reading unit 132 transmits a measurement data acquisition request signal to the sensor tag 2 via the data communication unit 130.
  • the antenna 21 of the sensor tag 2 receives the measurement data acquisition request signal transmitted from the measurement data reader 13.
  • the antenna 21 transfers the received measurement data acquisition request signal to the data communication unit 200 of the data communication circuit 20.
  • the data communication unit 200 transfers the measurement data acquisition request signal to the measurement data reading unit 204 (S2404).
  • the measurement data reading unit 204 transmits a measurement data acquisition request signal to the memory access control circuit 25 (S2406).
  • FIG. 17 is a detailed flowchart of the measurement stop process (S26).
  • the memory access control circuit 25 When the memory access control circuit 25 receives the measurement data acquisition request signal from the measurement data reading unit 204 of the data communication circuit 20 (S2602), it outputs a measurement stop signal to the sensor circuit 22 (S2604). At the same time, the memory access control rule update unit 26 sets the memory access control rule (mode) set in the memory access control circuit 25 so as to prohibit the writing of the encrypted measurement data from the sensor circuit 22 to the memory 24. ). Thus, since the encrypted measurement data is not written to the memory 24 by the sensor circuit 22 during transmission of the encrypted measurement data by the data communication circuit 20, the encrypted encrypted measurement stored in the memory 24 is not performed. Data transmission leakage can be prevented.
  • the sensor circuit 22 that has received the measurement stop signal stops the subsequent measurement of biological information.
  • the memory access control circuit 25 may not store the encrypted measurement data in the memory 24 instead of the sensor circuit 22 stopping the measurement.
  • FIG. 18 is a detailed flowchart of the data acquisition process (S28).
  • the memory access control circuit 25 checks the memory access control rule set inside, and confirms that reading of the encrypted measurement data from the data communication circuit 20 is permitted. If the above confirmation can be made, the memory access control circuit 25 reads the encrypted measurement data group 6 from the memory 24 (S2802) and transfers it to the measurement data reading unit 204 (S2804).
  • FIG. 19 is a detailed flowchart of the data output process (S30).
  • the measurement data reading unit 204 receives the encrypted measurement data group 6 transferred from the memory access control circuit 25 (S3002).
  • the measurement data reading unit 204 transmits the received encrypted measurement data group 6 to the measurement data reading device 13 via the data communication unit 200 and the antenna 21 (S3004).
  • the encrypted measurement data group 6 is transferred to the data decryption unit 133 via the data communication unit 130 and the measurement data reading unit 132 of the measurement data reading device 13.
  • the data decryption unit 133 decrypts the encrypted measurement data 611, 621, 631 of the received encrypted measurement data group 6 using the decryption key read from the decryption key storage unit 135, and obtains the plaintext measurement data thereof.
  • the data obtained by replacing the encrypted measurement data 611, 621, and 631 in the encrypted measurement data group 6 with the plaintext measurement data is transferred to the measurement data storage unit 134 as a measurement data group.
  • the measurement data storage unit 134 stores the received plaintext measurement data group.
  • the measurement data reading process 5 is completed by the series of processes (S24 to S30).
  • the measurement data storage unit 134 stores a measurement data group including one ID, one or more sets of timer data, and plaintext measurement data.
  • the ID to be set may be determined according to the operation mode of the administrator who manages the encryption key writing device 11 and the measurement data reading device 13. For example, in order to identify a sensor tag, it may be a sensor tag ID, or may be a measured person ID that identifies a patient (measured person) to whom the sensor tag is passed. In the former operation, the ID to be set differs for each sensor tag, but in the latter operation, the same ID (patient ID) is set for all sensor tags to be passed to a patient.
  • the timer data paired with each measurement data is used as time information when the measurement data is measured.
  • the measurement data group stored in the measurement data storage unit 134 is read out as necessary, and is used for health management, health checkup, and the like of the patient 12 as a patient.
  • FIG. 20 is a diagram for explaining the transition of the memory access control rule (mode) held by the memory access control circuit 25.
  • the power supply from the power source 23 is in an OFF state, and no measurement is performed. Also, the encryption key is not set in the memory 24, and the encryption key writing from the data communication circuit 20 is permitted according to the memory access control rule.
  • the process proceeds to a state (S4009) in which the measurement data subjected to the encryption process is stored (S4009), and the measurement process ends. That state is maintained until.
  • the measurement stop process (S26) is executed, and then the process proceeds to a state where the measurement of biological information is stopped (S4007). Thereafter, the acquisition process (S24) is executed, and a series of processes ends.
  • the data communication circuit that performs the encryption key setting process is operated by the electric power generated from the activation signal received from the encryption key writing device 11.
  • the power supply from the built-in battery is turned off when setting the encryption key, even in the case of a small sensor tag that cannot be mounted with a switch mechanism that can freely switch on and off the power supply from the power source 23. Since there is no need to turn it ON, the problem of battery consumption until the start of measurement described as a problem does not occur.
  • the encryption key can be received wirelessly, the encryption key can be set in the sensor tag 2 without breaking the sterilized package. Therefore, a hygienic state can be maintained until immediately before the sensor tag 2 is used.
  • the memory access control rule update unit 26 updates the memory access control rule of the memory access control circuit 25 so that the encryption key cannot be written. . Thereby, after power is supplied from the power source 23 to the sensor circuit 22 and measurement is started, an erroneous operation that erroneously rewrites the encryption key can be prevented.
  • a measurement stop process (S26) described below may be executed.
  • FIG. 21 is a detailed flowchart of the measurement stop process (S26) according to the first modification of the first embodiment.
  • the memory access control circuit 25 When the memory access control circuit 25 receives the measurement data acquisition request signal from the measurement data reading unit 204 of the data communication circuit 20 (S2602), the encryption from the sensor circuit 22 to the memory 24 within the past predetermined period with reference to the present. It is determined whether or not there has been a write processing of the measurement data (S2612).
  • the memory access control rule update unit 26 transmits data from the sensor circuit 22 to the memory 24.
  • the memory access control rule (mode) set in the memory access control circuit 25 is changed so as to permit writing of the encrypted measurement data (S2614).
  • the memory access control rule update unit 26 transfers the data from the sensor circuit 22 to the memory 24.
  • the memory access control rule (mode) set in the memory access control circuit 25 is changed so as to prohibit the writing of the encrypted measurement data (S2616).
  • the memory access control circuit 25 After the processing of S2616, the memory access control circuit 25 outputs a measurement stop signal to the sensor circuit 22 (S2604).
  • the memory access control circuit 25 considers that the power of the power supply 23 is consumed when there is no writing from the sensor circuit 22 to the memory 24 for a predetermined period, and the sensor circuit 22 Data writing to the memory 24 is prohibited. Thereby, when the encrypted measurement data to be transmitted to the data communication circuit 20 is sufficiently stored in the memory 24, the data communication circuit 20 can read the encrypted measurement data from the memory 24 and transmit it to a predetermined destination. Therefore, for example, when the acquisition request from the data communication circuit 20 is received immediately after the power supply from the power supply 23 is turned on, the encrypted measurement data to be transmitted to the data communication circuit 20 is stored in the memory 24. It is possible to prevent the inefficiency that the encrypted measurement data is transmitted from the memory 24 in a state where it is not sufficiently stored with a simple configuration.
  • the memory access control circuit 25 determines that the life of the power of the power supply 23 still exists when the writing from the encryption circuit to the memory 24 exists within a predetermined period, and the data from the sensor circuit 22 to the memory 24 Is maintained, and a state in which data writing from the data communication circuit 20 to the memory 24 is prohibited is maintained. As a result, when it is determined that the power life of the power source 23 is still present, even if a request for acquisition of encrypted measurement data stored in the memory 24 is received from the data communication circuit 20, the memory 24 stores The process of storing the encrypted measurement data to be transmitted to the data communication circuit 20 is continued.
  • the encrypted measurement data to be transmitted to the data communication circuit 20 is stored in the memory 24. It is possible to prevent the inefficiency that the encrypted measurement data is transmitted from the memory 24 in a state where it is not sufficiently stored with a simple configuration.
  • a measurement stop process (S26) described below may be executed.
  • FIG. 22 is a detailed flowchart of the measurement stop process (S26) according to the second modification of the first embodiment.
  • the memory access control circuit 25 When the memory access control circuit 25 receives a measurement data acquisition request signal from the measurement data reading unit 204 of the data communication circuit 20 (S2602), the memory access control circuit 25 detects an operation confirmation signal for confirming that the sensor circuit 22 is in an operation state. The data is output to the circuit 22 (S2622). It is assumed that the sensor circuit 22 in the operating state outputs a response signal to the memory access control circuit 25 when receiving the operation confirmation signal.
  • the memory access control circuit 25 determines whether or not a response signal has been received from the sensor circuit 22 within a predetermined period (S2624).
  • the memory access control rule update unit 26 allows the memory access control circuit 25 to permit the writing of the encrypted measurement data from the sensor circuit 22 to the memory 24.
  • the memory access control rule (mode) set inside is changed (S2614).
  • the memory access control rule update unit 26 prohibits the writing of the encrypted measurement data from the sensor circuit 22 to the memory 24.
  • the memory access control rule (mode) set in 25 is changed (S2616).
  • the memory access control circuit 25 After the processing of S2616, the memory access control circuit 25 outputs a measurement stop signal to the sensor circuit 22 (S2604).
  • the memory access control circuit 25 considers that the power of the power supply 23 has been consumed when the response from the sensor circuit 22 is not within a predetermined period, and the sensor circuit 22 Writing data to the memory 24 is prohibited. Thereby, when the encrypted measurement data to be transmitted to the data communication circuit 20 is sufficiently stored in the memory 24, the data communication circuit 20 can read the encrypted measurement data from the memory 24 and transmit it to a predetermined destination. Therefore, for example, when the acquisition request from the data communication circuit 20 is received immediately after the power supply from the power supply 23 is turned on, the encrypted measurement data to be transmitted to the data communication circuit 20 is stored in the memory 24. It is possible to prevent the inefficiency that the encrypted measurement data is transmitted from the memory 24 in a state where it is not sufficiently stored with a simple configuration.
  • the memory access control circuit 25 determines that the power of the power source 23 is still present, and writes the data from the sensor circuit 22 to the memory 24. The state of permitting and prohibiting the writing of data from the data communication circuit 20 to the memory 24 is maintained. As a result, if it is determined that the power supply 23 still has a life, the memory 24 stores the encrypted measurement data stored in the memory 24 from the data communication circuit 20 even when it receives an acquisition request. Then, the process of storing the encrypted measurement data to be transmitted to the data communication circuit 20 is continued.
  • the encrypted measurement data to be transmitted to the data communication circuit 20 is stored in the memory 24. It is possible to prevent the inefficiency that the encrypted measurement data is transmitted from the memory 24 in a state where it is not sufficiently stored with a simple configuration.
  • the sensor circuit 22 may discard the measurement data and not transfer it to the memory access control circuit 25.
  • FIG. 23 is a detailed flowchart of the sensor measurement process (S12) according to the third modification of the first embodiment.
  • Each process is the same as that shown in FIG. 7, but as described above, when the encryption key reading unit 222 cannot acquire the encryption key (No in S1208), the sensor circuit 22 performs nothing. Do not execute processing. As a result, the measurement data is not discarded and transmitted to the memory access control circuit 25.
  • measurement of biological information by the sensor circuit 22 ends when a measurement data acquisition request is made from the measurement data reader 13 to the sensor tag 2.
  • the measurement of the biological information by the sensor circuit 22 ends when the sensor circuit 22 measures the biological information a predetermined number of times or for a predetermined time.
  • the configurations of the sensor tag system 1, the sensor tag 2, the encryption key writing device 11, and the measurement data reading device 13 constituting the sensor tag system 1 are the same as those described in the first embodiment. Therefore, detailed description thereof will not be repeated here.
  • the measurement process 4 executed by the sensor circuit 22 is partly different from the first embodiment.
  • the description will focus on the different points.
  • FIG. 24 is a flowchart showing the entire operation of the sensor tag 2. In the same figure, similarly to FIG. 8, the flow of processing among the sensor circuit 22, the memory access control circuit 25, and the data communication circuit 20 is shown.
  • the key setting process 3 (S2 to S6) is the same as that shown in the first embodiment. Therefore, detailed description thereof will not be repeated here.
  • the measurement process 4 is started. That is, the power supply from the power supply 23 is switched to the ON state, and the power supply state detection unit 225 detects the ON state of the power supply from the power supply 23 (S38).
  • the memory access control circuit 25 changes the memory access control rule (mode) (S40). That is, encryption key writing and ID writing to the memory 24 from the data communication circuit 20 are prohibited. Further, reading of the encrypted measurement data from the data communication circuit 20 is also prohibited. After this mode change, the encryption key cannot be updated thereafter (S16, S18, S20). Further, it becomes impossible to acquire the encrypted measurement data (S22, S24, S28).
  • the sensor circuit 22 measures the biological information of the person 12 to be measured and outputs the measurement data to the memory access control circuit 25 (S42).
  • the memory access control circuit 25 accumulates the output measurement data in the memory 24 (S44). Thereafter, the processes of S42 and S14 are repeatedly executed a predetermined number of times. Thereby, the measurement data for a predetermined number of times is accumulated in the memory 24.
  • the processing of S42 and S44 will be described in detail later.
  • the sensor measurement process (S42) ends.
  • reading of the encrypted measurement data from the data communication circuit 20 is permitted, and the measurement data reading process 5 (S22 to S30) is performed.
  • the power supply state detection unit 225 transmits data to the memory access control circuit 25.
  • a measurement data read disable signal instructing prohibition of reading of the encrypted measurement data from the memory 24 by the communication circuit 20 is output (S812).
  • the memory access control circuit 25 determines whether or not a measurement data read disable signal has been received (S1012).
  • the memory access control rule update unit 26 controls the memory access so as to prohibit the data communication circuit 20 from reading the encrypted measurement data from the memory 24.
  • the rule (mode) is changed (S1014). That is, the memory access control rule update unit 26 updates the memory access control rule set in the memory access control circuit 25 so that only the following memory access is permitted and other memory accesses are denied.
  • the biological data measurement unit 220 increments the number of measurements stored therein by one (S1212). Note that the number of times of measurement is set to 0 in advance at the start of measurement.
  • the biological data measurement unit 220 determines whether or not the current measurement count exceeds a predetermined threshold (S1214). When it is determined that the threshold value is exceeded (Yes in S1214), the biometric data measurement unit 220 stops measuring biometric information (S1216). Further, the measurement data writing unit 224 outputs a measurement stop signal indicating that the measurement of the biological information is stopped to the memory access control circuit 25 (S1218). Thereby, after measurement of biological information is performed a predetermined number of times, measurement of biological information ends.
  • the memory access control circuit 25 may not store the encrypted measurement data in the memory 24 instead of the sensor circuit 22 stopping the measurement.
  • S1410 it is determined whether or not the memory access control circuit 25 has received a measurement stop signal (S1412). If it is determined that the measurement stop signal has been received (Yes in S1412), the memory access control rule update unit 26 prohibits writing of the encrypted measurement data from the sensor circuit and performs the encrypted measurement from the data communication circuit 20.
  • the memory access control rule (mode) is changed so as to permit data reading (S1413, S1414). That is, the memory access control rule update unit 26 updates the memory access control rule set in the memory access control circuit 25 so that only the following memory access is permitted and other memory accesses are denied.
  • the measurement of biological information is stopped when the number of measurements exceeds a predetermined threshold.
  • the stop condition is not limited to this.
  • the biological data measuring unit 220 of the sensor circuit 22 may be configured to monitor the timer data (count value) of the timer unit 221 and stop measuring biological information when the count value exceeds a predetermined threshold.
  • the timer unit 221 manages the time from the start of measurement
  • the biometric data measurement unit 220 monitors the time from the start of measurement, and stops measuring biometric information when the time exceeds a predetermined threshold. It is also good.
  • the second embodiment has the same effects as the first embodiment.
  • the sensor circuit 22 does not write to the memory 24. For this reason, it is possible to prevent leakage of reading of the encrypted measurement data stored in the memory 24.
  • the encryption method used for encryption and decryption is not limited to a specific algorithm.
  • Public key cryptosystems such as RSA (Rivest Shamir Adleman) cryptosystem, elliptic curve cryptosystem, and ElGamal cryptosystem may be used, and common key cryptography such as AES (Advanced Encryption Standard) cryptography and DES (Data Encryption Standard) cryptography. It may be a method.
  • the data size and the number of data of each data are not limited to a specific size and number.
  • the encryption target is not limited to the data described in the above embodiment.
  • counter information indicating what number the measurement data is after the measurement is started is recorded together with the measurement data, and the counter information may also be encrypted.
  • the data written to the sensor tag 2 is not limited to the measurement data by the sensor tag 2.
  • personal information such as a patient's name, address, and telephone number may be written. In that case, you may encrypt with the set key.
  • the sensor tag 2 may include two or more types of sensor circuits. That is, the sensor tag 2 may measure and accumulate two or more types of measurement data. In that case, a sensor type ID for identifying the type of measurement data may be added and stored together with the measurement data. Further, depending on the type of measurement data, it may be set to be encrypted and saved or not encrypted. Furthermore, a rule for determining whether to encrypt the measurement data from the type of the measurement data may be set from the outside. The rule setting process may be performed at the time of key setting, or may be changed by an instruction from the outside during the measurement.
  • the number of encryption keys that can be set in the sensor tag 2 is one, but a plurality of encryption keys may be set in the sensor tag 2.
  • an encryption key used for encryption of the measurement data may be set depending on the type of measurement data, or the encryption key may be changed depending on the time and place where the measurement data is measured.
  • the rules for determining the encryption key to be used as described above may have a mechanism that can be acquired inside the sensor tag 2, or may be acquired from outside the sensor tag 2.
  • the method in which the sensor tag 2 authenticates the validity of the encryption key writing device 11 and the measurement data reading device 13 is not limited to the method using the hash value shown in the above embodiment. Alternatively, challenge-response authentication using a common key cryptosystem or a public key cryptosystem may be used. Communication data between the sensor tag 2 and the encryption key writing device 11 or the measurement data reading device 13 may be encrypted using SSL (Secure Socket Layer) or the like. Furthermore, there are a plurality of authentication methods for the sensor tag 2 to authenticate the measurement data reading device 13 during the measurement data reading process, and the measurement data reading device 13 acquires from the sensor tag 2 depending on the type of authentication method used. The information that can be changed. Further, when there are a plurality of measurement data reading devices, the information provided by the sensor tag 2 may be changed for each device.
  • SSL Secure Socket Layer
  • the sensor tag 2 measures the biological information by the biological data measurement unit 220 in the sensor circuit 22, but the measurement function of the biological information may be performed by a device other than the sensor tag 2.
  • the biological information measuring device there is a biological information measuring device other than the sensor tag 2, and the biological information measuring device transmits the measured biological data to the sensor tag 2 by wireless communication or the like.
  • the receiving circuit 28 of the sensor tag 2 receives the transmitted biological data.
  • the sensor tag 2 can be used as the sensor tag 2 that is separate from the biological information measuring device.
  • the hospital manages the encryption key writing device 11 and the measurement data reading device 13 and provides the patient with the sensor tag 2 after setting the encryption key.
  • the encryption key writing device 11 and the measurement data reading device 13 may be managed by the patient, and the encryption key uniquely determined by the patient may be set in the sensor tag 2.
  • the encryption key writing device 11 and the measurement data reading device 13 may be connected to a server via a network. At this time, the encryption key and the decryption key are held by the server. When the encryption key is set in the sensor tag 2 or when the encrypted measurement data is read from the measured sensor tag 2 and decrypted, the encryption key is written. The apparatus 11 and the measurement data reading apparatus 13 may acquire an encryption key and a decryption key from the server.
  • the sensor tag 2 may not only encrypt the measurement data but also generate falsification detection data of the measurement data.
  • a method for generating falsification detection data a MAC (Message Authentication Code) generation method using a known encryption key may be used.
  • the sensor tag system 1 is not limited to the use case of measuring biological information. For example, it can be used for environmental management of fresh foods during transportation.
  • the sensor tag 2 is installed in a fresh food product or a container that transports it, and measures and accumulates temperature, humidity, illuminance, and the like during transportation.
  • the sensor circuit 22 may be an acceleration sensor or a GPS (Global Positioning System) receiving module, and the sensor tag system 1 may be used as an action tracking system that measures a position history and a moving speed. In this case, the position history and movement speed of the measurement subject wearing the sensor tag 2 can be encrypted and recorded in the sensor tag 2.
  • the present invention is not limited to a tag with a sensor function, and may be an authentication tag that performs challenge-response authentication using a set encryption key, for example. That is, the present invention can be applied to any cryptographic processing apparatus that performs cryptographic processing inside the apparatus and can set an encryption key used for the cryptographic processing from the outside.
  • the method is performed by removing the attached insulator 27, but the method is not limited thereto.
  • the power supply from the power supply 23 to the sensor circuit 22 may be switched from OFF to ON by a mechanism such as a magnetic switch or an infrared switch.
  • the measurement data reader 13 uses non-contact wireless communication via the antenna 21 as a communication method for reading measurement data from the sensor tag 2, it is not limited to this and is not limited to this. May be used.
  • the power supply at the time of data reading is not limited to the activation signal from the measurement data reading device 13 and may be supplied from the power supply 23 built in the sensor tag 2.
  • the encryption key writing device 11 may hold the encryption key to be set for the sensor tag 2 inside the encryption key writing device 11 or from the outside of the device. It may be input. Further, the encryption key writing device 11 may be connected to the encryption key management device during the encryption key setting process via the network, received from the encryption key management device, and set to the sensor tag 2.
  • the measurement data reading device 13 may be connected to the sensor tag 2 via a network such as the Internet and read the encrypted measurement data group.
  • the method of updating the memory access control rule of the memory access control circuit 25 when power is supplied from the power supply 23 to the sensor circuit 22 is not limited to the method described in the above embodiment.
  • the signal line for writing the encryption key may be cut so that the encryption key cannot be written physically.
  • each of the above devices is a computer system including a microprocessor, ROM, RAM, a hard disk unit, a display unit, a keyboard, a mouse, and the like.
  • a computer program is stored in the RAM or hard disk unit.
  • Each device achieves its functions by the microprocessor operating according to the computer program.
  • the computer program is configured by combining a plurality of instruction codes indicating instructions for the computer in order to achieve a predetermined function.
  • a part or all of the components constituting each of the above devices may be configured by one system LSI (Large Scale Integration).
  • the system LSI is an ultra-multifunctional LSI manufactured by integrating a plurality of components on a single chip, and specifically, a computer system including a microprocessor, ROM, RAM, and the like. .
  • a computer program is stored in the RAM.
  • the system LSI achieves its functions by the microprocessor operating according to the computer program.
  • a part or all of the constituent elements constituting each of the above devices may be constituted by an IC card or a single module that can be attached to and detached from each device.
  • the IC card or the module is a computer system including a microprocessor, a ROM, a RAM, and the like.
  • the IC card or the module may include the super multifunctional LSI described above.
  • the IC card or the module achieves its function by the microprocessor operating according to the computer program. This IC card or this module may have tamper resistance.
  • the present invention may be the method described above. Further, the present invention may be a computer program that realizes these methods by a computer, or may be a digital signal composed of the computer program.
  • the present invention also provides a computer-readable recording medium such as a flexible disk, hard disk, CD-ROM, MO, DVD, DVD-ROM, DVD-RAM, BD (Blu-ray Disc). ), Recorded in a semiconductor memory or the like.
  • the digital signal may be recorded on these recording media.
  • the computer program or the digital signal may be transmitted via an electric communication line, a wireless or wired communication line, a network represented by the Internet, a data broadcast, or the like.
  • the present invention may be a computer system including a microprocessor and a memory, the memory storing the computer program, and the microprocessor operating according to the computer program.
  • the program or the digital signal is recorded on the recording medium and transferred, or the program or the digital signal is transferred via the network or the like, and executed by another independent computer system. It is good.
  • the sensor tag according to the present invention is characterized in that the encryption key can be set without wasting the built-in battery even when the ON / OFF mechanism for freely supplying power from the built-in battery cannot be mounted. Therefore, it is useful for realizing a sensor tag that requires encryption of sensor information stored under severe restrictions on battery capacity and mounting size.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)
  • Storage Device Security (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

 可搬型のデータセンサータグ(2)であって、メモリ(24)と、外部端末から無線の起動信号を受信し、受信した前記起動信号により発生する起電力で動作することにより前記外部端末から暗号鍵を受信し、受信した前記暗号鍵をメモリ(24)に格納するデータ通信回路(20)と、電力を供給する電源(23)と、前記電源(23)からの電力供給をOFF状態からON状態に切替える絶縁体(27)と、前記電源(23)からの電力供給がON状態に切替えられた後、前記電源(23)から供給される電力で動作し、前記メモリ(24)から前記暗号鍵を読み出し、読み出した前記暗号鍵を用いて計測データを暗号化し、暗号化された計測データを前記メモリ(24)に格納するセンサー回路(22)とを具備する。

Description

データ暗号化装置
 本発明は、ユーザ側で計測されたユーザの体重、血圧などの健康情報を通信ネットワーク経由で受信し、前記健康情報を元に健康アドバイスなどをユーザに返送するヘルスケア管理サービスにおいて、健康情報の機密性を保護することが可能なセキュアヘルスケア管理システムに関する。
 温度センサー、化学センサー、圧力センサー、バイオセンサーなどの各種センサー機能と、RFID(Radio Frequency Identification)などの通信機能との両方の機能を兼ね備えたタグの開発が進められている。また、それらタグを用いた各種アプリケーションも検討されている。例えば、輸送する生鮮食料品や美術品に、温度センサーや湿度センサーなどのセンサー機能を有するタグを付けて、輸送時の温度、湿度を管理をするような応用が考えられる。他にも、体温、血糖値、心拍数などを長期間あるいは定期的に計測する必要のある患者向けの健康管理用途が考えられる。それらの生体情報計測機能を有するタグ(以降、「センサータグ」と呼ぶ)を患者の体に貼り付けることにより、定期的に生体情報を計測することができる。計測した生体情報は、センサータグ内に蓄積しておく。センサータグは、一定期間の計測が終わった後に、患者の体から取り外され、内部に蓄積されたデータが読み出される。センサータグを超小型化することにより、患者が意識することなく定期的な生体情報計測が可能となる。
 上記の健康管理用途にセンサータグを用いる場合、センサータグ内に蓄積される計測情報の機密性担保が必要となる。即ち、計測した生体情報は、被計測者にとってはプライバシー情報である。このため、例えば、体に貼り付けていたセンサータグが気づかないうちに剥がれ落ちて第三者に拾得された場合や、データ読出し後のセンサータグの管理の不徹底により第三者の手に渡った場合には、内部に記録されている計測データが漏洩してしまう恐れがある。そのようなデータ漏洩を防止するために、計測した生体情報をセンサータグ内部で暗号化して蓄積するような仕組みが必要である。
 センサータグ内で暗号化処理を行う場合、鍵は商品(センサータグ)の出荷後に設定できる必要がある。健康管理用途の場合、センサータグは病院が購入し病院から患者に提供される。したがって、ある病院の鍵が漏洩することで、他の病院の患者の計測情報が漏洩してしまう恐れがないように、鍵は病院ごとに異ならせることが必要である。即ち、センサータグは、鍵が設定されていない状態で出荷されて病院に納入され、各病院で鍵の設定ができるようにする必要がある。
 また、センサータグは、計測中は電力が供給されている必要があり、かつ、計測中はセンサータグ外部から電力供給する手段がないために、電池内蔵式である。さらに、常時患者の身に貼り付けておくことから、超小型形状である必要がある。このため、電源からの電力供給をON、OFFするようなスイッチ機構を設けることは難しい。したがって、例えば、電池とセンサータグ回路との間に絶縁体を装着しておき、使用時には絶縁体を取り除いて電源からの電力供給をONとするような仕組みを取らざるを得ない。この場合、一旦除去した絶縁体を再び電池とセンサータグとの間に装着することは難しい。即ち、電源からの電力供給をOFFの状態からONの状態に一旦すると、電源からの電力供給をOFFの状態に戻すことは(電池が切れるまでは)できない。
 上記の前提の下で、従来のセンサータグに暗号化機能を付加すると、以下の通りになる。まず、鍵が設定されていないセンサータグが、病院に納入される。病院では、センサータグの電源からの電力供給をONにして、鍵を設定する。病院は鍵設定済みのセンサータグを患者に提供し、患者は受け取ったセンサータグを体に貼り付けて生体情報の計測を行う。センサータグは体に貼り付けられている間、生体情報を計測し設定されている鍵で暗号化して内部に蓄積してゆく。計測が完了した後、患者は計測済みのセンサータグを病院に引き渡す。そして、病院は、センサータグから計測された暗号化生体情報を読出し、病院が保持している鍵で復号して、平文の生体情報を得る。センサータグ内の生体情報は暗号化されている。このため、たとえセンサータグが第三者の手に渡ったとしても、第三者は鍵を持っていないため平文の生体情報を得ることはできず、情報漏洩の心配はない。
特開2006-197202号公報
 しかしながら、従来技術においては、鍵の設定を行う際にセンサータグの電源からの電力供給をONにする必要がある。このため、計測開始までに電池が消耗してしまうという課題を有している。即ち、センサータグは、構成上小さくする必要があり、電源スイッチをできるだけ簡略化した構成、例えば片方向のスイッチにすることが考えられる。しかし、この構成では、一度電源からの電力供給をONにするとOFFにすることができないため、鍵の設定を行ってから患者がセンサータグを体に装着するまでの間は、電源からの電力供給がONのままになり、電池を無駄に消耗してしまう。これを避けるためには、病院は患者にセンサータグを渡す直前に鍵の設定を行う必要があり、患者はセンサータグを受け取るとできるだけ早く体に貼り付けて計測を開始する必要がある。しかし、病院は、まとめ買いしたセンサータグを入手後、一括して鍵設定を行い在庫として保管するような運用ができなくなり、また、長期に渡って継続的な計測が必要な患者に対して、まとまった数のセンサータグを渡すことができず、運用面で多大な負担を強いることになる。
 また以下のような別の課題もある。センサータグは体につけるものであるため、滅菌処理したうえでパッケージに入った状態で出荷されることが想定される。この場合、病院で鍵を設定するために、パッケージを破って電源からの電力供給をONにする必要がある。しかし、患者である被計測者が使用するより前に滅菌処理されたパッケージが破られてしまうのは、衛生上問題を生じると考えられる。
 特許文献1には、電波により電源エネルギーの供給を受けるパッシブ構造体と内部の電源から電源エネルギーの供給を受けるアクティブ構造体とを搭載した電子タグが開示されている。この電子タグでは、パッシブ構造体において識別情報を受信し、アクティブ構造体において受信した識別情報を送信する。即ち、特許文献1が開示する電子タグにおいては、識別情報の設定時には、パッシブ構造体が用いられるため、内部電源からの電力供給をONにする必要がない。しかし、特許文献1では、電子タグに設定するのは、物品などの識別情報だけであり、電子タグ内で暗号処理を行う方法や、鍵を設定するための方法については開示されておらず、前記課題を解決することはできない。
 本発明は、前記課題を解決するもので、使用する前に事前の鍵設定が必要となるセンサータグシステムにおいて、鍵設定者やセンサータグ使用者に運用上の負担を強いることがなく、かつ、センサータグが使用される直前まで衛生的な状態を保つことが可能な暗号化機能付きセンサータグを提供することを目的とする。
 上記目的を達成するために、本発明に係るデータ暗号化装置は、可搬型のデータ暗号化装置であって、記憶部と、外部端末から無線の起動信号を受信し、受信した前記起動信号により発生する起電力で動作することにより前記外部端末から暗号鍵を受信し、受信した前記暗号鍵を前記記憶部に格納する無線通信回路と、電力を供給する一次電池と、前記一次電池からの電力供給をOFF状態からON状態に切替える切替手段と、前記一次電池からの電力供給がON状態に切替えられた後、前記一次電池から供給される電力で動作し、前記記憶部から前記暗号鍵を読み出し、読み出した前記暗号鍵を用いて所定の暗号化対象のデータを暗号化し、暗号化されたデータを前記記憶部に格納する暗号化回路と、を具備する。
 本態様によると、無線通信回路は、外部端末から無線の起動信号を受信し、この受信した起動信号により発生する起電力で動作して前記外部端末から暗号鍵を受信し、記憶部に格納する。一方、暗号化回路は、一次電池からの電力供給がON状態になったとき前記一次電池から供給された電力で動作し、前記暗号鍵を読み出して所定の暗号化対象のデータを暗号化して前記記憶部に格納する。これによると、前記無線通信回路が外部装置から暗号鍵を受信する際には、データ暗号化装置内の一次電池を使用しないので、前記暗号鍵の受信から前記所定の暗号化対象のデータの暗号化までに時間が経過する場合であっても、前記暗号化回路が所定の暗号化対象のデータを暗号化する際に装置内の一次電池が消耗されているという事態を防止できる。
 また、電源として寿命の短い一次電池を用いた場合であっても、前記無線通信回路が外部装置から暗号鍵を受信する際には前記一次電池の電力を使用しないので、前記暗号化回路が所定の暗号化対象のデータを暗号化する際に前記一次電池の電力が消耗されているという事態を防止できる。
 また、無線で暗号鍵を受信できるため、滅菌処理されたパッケージを破ることなくデータ暗号化装置に暗号鍵を設定することができる。よって、データ暗号化装置が使用される直前まで衛生的な状態を保つことができる。
 好ましくは、上述のデータ暗号化装置は、さらに、前記無線通信回路から前記記憶部へのアクセスと、前記暗号化回路から前記記憶部へのアクセスと、を制御する記憶部制御部を備え、前記記憶部制御部は、前記暗号化回路が前記一次電池から供給された電力で動作するとき、前記無線通信回路から前記記憶部へのデータの書込みを禁止する。
 本態様によると、前記暗号化回路が前記一次電池から供給された電力で動作したとき、前記記憶部制御部は前記無線通信回路から前記記憶部へのデータの書込みを禁止する。これによると、前記暗号化対象のデータの暗号化が開始されるときには、あらたな暗号鍵を前記記憶部に記憶できないので、前記暗号化対象のデータの暗号化が開始されるときに、誤って暗号鍵が書き換えられるのを防止できる。
 さらに好ましくは、前記暗号化回路は、前記データ暗号化装置のユーザの生体データを計測するセンサー回路であって、前記記憶部から前記暗号鍵を読み出し、読み出した前記暗号鍵を用いて前記生体データを暗号化し、暗号化された生体データを前記記憶部に格納する。
 本態様によると、前記暗号化回路を、データ暗号化装置のユーザの生体データを計測するセンサー回路とし、センサー回路が、前記記憶部から前記暗号鍵を読み出して前記生体データを暗号化して前記記憶部に格納することができる。この場合、前記データ暗号化装置を、ユーザの生体データを計測する計測装置として用いることができる。
 また、上述のデータ暗号化装置は、さらに、ユーザの生体データを計測する外部の計測装置から、前記生体データを入力として受け付ける入力部を備え、前記暗号化回路は、前記生体データを前記所定の暗号化対象のデータとして暗号化し、暗号化された生体データを前記記憶部に格納してもよい。
 本態様によると、入力部が、ユーザの生体データを計測する外部の計測装置から前記生体データを入力として受け、前記暗号化回路が、前記生体データを前記所定の暗号化対象のデータとして暗号化して前記記憶部に格納することができる。この場合、前記データ暗号化装置を、ユーザの生体データを計測する計測装置とは別体のデータ暗号化装置として用いることができる。
 また、前記記憶部に前記暗号鍵が記憶されていない状態で、前記一次電池からの電力供給がON状態になって前記暗号化回路が前記一次電池から供給された電力で動作する場合、前記暗号化回路は前記所定の暗号化対象のデータを暗号化せずに前記記憶部に格納してもよい。
 本態様によると、前記記憶部に前記暗号鍵が記憶されていない状態で、前記一次電池からの電力供給がON状態になって前記暗号化回路が前記一次電池から供給された電力で動作した場合、前記所定の暗号化対象のデータを暗号化せずに前記記憶部に格納することができる。
 また、前記記憶部に前記暗号鍵が記憶されていない状態で、前記一次電池からの電力供給がON状態になって前記暗号化回路が前記一次電池から供給された電力で動作する場合、前記暗号化回路は前記所定の暗号化対象のデータを破棄して前記記憶部への格納は行わなくてもよい。
 本態様によると、前記記憶部に前記暗号鍵が記憶されていない状態で、前記一次電池からの電力供給がON状態になって前記暗号化回路が前記一次電池から供給された電力で動作した場合、前記所定の暗号化対象のデータを破棄して前記記憶部への格納は行わないようにすることができる。この場合、前記記憶部には暗号化されない状態で、前記所定の暗号化対象のデータが格納されることはないので、前記所定の暗号化対象のデータの秘匿性を保障できる。
 好ましくは、前記切替手段は、前記一次電池からの電力供給をOFF状態からON状態への一方向にのみ切替える。
 本態様によると、前記切替手段を、前記一次電池からの電力供給をOFF状態からON状態への一方向にのみ切替えることができる。この場合、前記一次電池からの電力供給をON状態とする機構を簡易にできる。その結果、データ暗号化装置を小型化できる。
 さらに好ましくは、前記一次電池と前記暗号化回路とは、互いに接触する方向に付勢されており、前記切替手段は、付勢された前記一次電池と前記暗号化回路との間に介在する絶縁体である。
 本態様によると、前記切替手段を、前記一次電池と前記暗号化回路との間に介在する絶縁体とすることができる。この場合、前記絶縁体をデータ暗号化装置本体から引き抜けば、前記一次電池からの電力供給をON状態にできる。その結果、データ暗号化装置の構成を簡易にしつつ小型化を図ることができる。
 好ましくは、前記暗号化対象データは、前記データ暗号化装置のユーザの個人情報である。
 本態様によると、前記暗号化対象データを、データ暗号化装置のユーザの個人情報とすることができる。
 また、前記暗号化回路は、前記データ暗号化装置が付与されている物品の周囲の環境情報を計測するセンサー回路であって、前記記憶部から前記暗号鍵を読み出し、読み出した前記暗号鍵を用いて前記環境情報を暗号化し、暗号化された環境情報を前記記憶部に格納してもよい。
 本態様によると、前記暗号化回路を、データ暗号化装置が付与されている物品の周囲の環境情報を計測するセンサー回路とし、前記記憶部から前記暗号鍵を読み出して前記環境情報を暗号化して前記記憶部に格納することができる。この場合、例えば、輸送中の生鮮食料品にデータ暗号化装置を付けて、データ暗号化装置に輸送中の温度、湿度、照度などの環境情報を格納することができる。
 また、前記無線通信回路は、RFID(Radio Frequency Identification)の通信回路であってもよい。
 本態様によると、前記無線通信回路を、RFIDの通信回路とすることができる。この場合、データ暗号化装置をRFIDタグとして用いることができる。
 また、上述のデータ暗号化装置は、さらに、前記記憶部が前記暗号鍵を記憶していることを示す表示を行う表示部を備えていてもよい。
 本態様によると、前記記憶部が前記暗号鍵を記憶していることを示す表示を行う表示部を設けることにより、前記記憶部に前記暗号鍵が格納された状態か否かをデータ暗号化装置を外部から視認することにより用意に確認できる。そのため、ユーザは、前記記憶部に前記暗号鍵が格納されていることを確認した上で、本データ暗号化装置を使用することができ、前記所定の暗号化対象のデータの秘匿性を保障できる。
 また、上述のデータ暗号化装置は、さらに、前記無線通信回路から前記記憶部へのアクセスと、前記暗号化回路から前記記憶部へのアクセスと、を制御する記憶部制御部を備え、前記記憶部制御部は、前記暗号化回路が前記一次電池から供給された電力で動作するとき、前記暗号化回路から前記記憶部へのデータの書込みを許可し、前記無線通信回路から前記記憶部へのデータの書込みを禁止し、前記暗号化回路は、前記データ暗号化装置のユーザの生体データを計測するセンサー回路であって、前記記憶部から前記暗号鍵を読み出し、読み出した前記暗号鍵を用いて前記生体データを暗号化し、暗号化されたデータを前記記憶部に格納し、前記記憶部制御部は、前記無線通信回路から前記記憶部に格納された前記暗号化されたデータの取得依頼を受けた場合、前記暗号化回路から前記記憶部へのデータの書込みを禁止し、前記無線通信回路は、前記暗号化回路から前記記憶部へのデータの書込みを禁止された後、前記記憶部に格納された前記暗号化されたデータを所定の宛先に送信してもよい。
 本態様によると、前記記憶部制御部は、前記無線通信回路から前記記憶部に格納された暗号化されたデータの取得依頼を受けた場合、前記暗号化回路から前記記憶部へのデータの書込みを禁止する。一方、前記無線通信回路は、前記暗号化回路から前記記憶部へのデータの書込みを禁止された後、前記暗号化回路が暗号化して前記記憶部に格納した暗号化されたデータを読み出して所定の宛先に送信する。これにより、前記無線通信回路によるデータ送信中に前記暗号化回路による前記記憶部への書込みは行われないので、前記記憶部内に格納された暗号化されたデータの送信データ漏れを防止できる。
 さらに好ましくは、前記記憶部制御部は、前記無線通信回路から前記記憶部に格納された前記暗号化されたデータの取得依頼を受けた場合、所定期間内に前記暗号化回路から前記記憶部への書き込みがあったか否かを判断し、前記暗号化回路から前記記憶部への書き込みが前記所定期間無かったと判断した場合、前記暗号化回路から前記記憶部へのデータの書込みを禁止する。
 本態様によると、前記記憶部制御部は、前記暗号化回路から前記記憶部への書き込みが所定期間無かった場合、前記一次電池の電力が消耗したものとみなして、前記暗号化回路から前記記憶部へのデータの書込みを禁止する。これにより、前記記憶部に、無線通信回路に送信すべき暗号化されたデータが十分格納された場合に、前記無線通信回路は前記記憶部から前記暗号化されたデータを読み出して所定の宛先に送信できる。そのため、例えば、前記一次電池からの電力供給がON状態となった直後に前記無線通信回路による取得依頼を受けた場合のように、前記記憶部に、無線通信回路に送信すべき暗号化されたデータが十分格納されていない状態で、前記記憶部から前記暗号化されたデータが送信される非効率を簡易な構成で防止できる。
 さらに好ましくは、前記記憶部制御部は、前記無線通信回路から前記記憶部に格納された前記暗号化されたデータの取得依頼を受けた場合、所定期間内に前記暗号化回路から前記記憶部への書き込みがあったか否かを判断し、前記暗号化回路から前記記憶部への書き込みが前記所定期間内にあったと判断した場合、前記暗号化回路から前記記憶部へのデータの書込みを許可し、前記無線通信回路から前記記憶部へのデータの書込みを禁止する状態を維持する。
 本態様によると、前記記憶部制御部は、前記暗号化回路から前記記憶部への書き込みが前記所定期間内に存在する場合、前記一次電池の電力の寿命はまだあると判断して、前記暗号化回路から前記記憶部へのデータの書込みを許可し、前記無線通信回路から前記記憶部へのデータの書込みを禁止する状態を維持する。これにより、前記一次電池の電力の寿命はまだあると判断した場合には、前記無線通信回路から前記記憶部に格納された暗号化データの取得依頼を受けた場合であっても、前記記憶部に、無線通信回路に送信すべき暗号化されたデータを格納する処理を継続する。そのため、例えば、前記一次電池からの電力供給がON状態となった直後に前記無線通信回路による取得依頼を受けた場合のように、前記記憶部に、無線通信回路に送信すべき暗号化されたデータが十分格納されていない状態で、前記記憶部から前記暗号化されたデータが送信される非効率を簡易な構成で防止できる。
 また、前記記憶部制御部は、前記無線通信回路から前記記憶部に格納された前記暗号化されたデータの取得依頼を受けた場合、前記暗号化回路が動作状態にあることを確認する所定の信号を前記暗号化回路に出力し、所定期間内に応答があったか否かを判断し、前記応答が前記所定期間内に無かったと判断した場合、前記暗号化回路から前記記憶部へのデータの書込みを禁止してもよい。
 本態様によると、前記記憶部制御部は、前記暗号化回路からの応答が所定期間内に無かった場合、前記一次電池の電力が消耗したものとみなして、前記暗号化回路から前記記憶部へのデータの書込みを禁止する。これにより、前記記憶部に、無線通信回路に送信すべき暗号化されたデータが十分格納された場合に、前記無線通信回路は前記記憶部から前記暗号化されたデータを読み出して所定の宛先に送信できる。そのため、例えば、前記一次電池からの電力供給がON状態となった直後に前記無線通信回路による取得依頼を受けた場合のように、前記記憶部に、無線通信回路に送信すべき暗号化されたデータが十分格納されていない状態で、前記記憶部から前記暗号化されたデータが送信される非効率を簡易な構成で防止できる。
 さらに好ましくは、前記記憶部制御部は、前記無線通信回路から前記記憶部に格納された前記暗号化されたデータの取得依頼を受けた場合、前記暗号化回路が動作状態にあることを確認する所定の信号を前記暗号化回路に出力し、所定期間内に応答があったか否かを判断し、前記応答が前記所定期間内にあったと判断した場合、前記暗号化回路から前記記憶部へのデータの書込みを許可し、前記無線通信回路から前記記憶部へのデータの書込みを禁止する状態を維持する。
 本態様によると、前記記憶部制御部は、前記暗号化回路からの応答が前記所定期間内に存在した場合、前記一次電池の電力の寿命はまだあると判断して、前記暗号化回路から前記記憶部へのデータの書込みを許可し、前記無線通信回路から前記記憶部へのデータの書込みを禁止する状態を維持する。これにより、前記一次電池の電力の寿命はまだあると判断した場合には、前記無線通信回路から前記記憶部に格納された暗号化されたデータの取得依頼を受けた場合であっても、前記記憶部に、無線通信回路に送信すべき暗号化されたデータを格納する処理を継続する。そのため、例えば、前記一次電池からの電力供給がON状態となった直後に前記無線通信回路による取得依頼を受けた場合のように、前記記憶部に、無線通信回路に送信すべき暗号化されたデータが十分格納されていない状態で、前記記憶部から前記暗号化されたデータが送信される非効率を簡易な構成で防止できる。
 また、上述のデータ暗号化装置は、さらに、前記無線通信回路から前記記憶部へのアクセスと、前記暗号化回路から前記記憶部へのアクセスと、を制御する記憶部制御部を備え、前記記憶部制御部は、前記暗号化回路が前記一次電池から供給された電力で動作するとき、前記暗号化回路から前記記憶部へのデータの書込みを許可し、前記無線通信回路から前記記憶部へのデータの書込みを禁止し、前記暗号化回路は、前記データ暗号化装置のユーザの生体データを計測するセンサー回路であって、前記記憶部から前記暗号鍵を読み出して前記生体データを暗号化して前記記憶部に格納し、前記生体データを所定回数計測した場合、前記記憶部制御部に、前記生体データを前記所定回数計測した旨を通知し、前記記憶部制御部は、前記生体データを前記所定回数計測した旨の通知を受けると、前記暗号化回路から前記記憶部へのデータの書込みを禁止し、前記無線通信回路は、前記暗号化回路から前記記憶部へのデータの書込みが禁止された後、前記記憶部に格納された暗号化された生体データを所定の宛先に送信してもよい。
 本態様によると、前記生体データを所定回数計測した旨の通知を前記記憶部制御部が前記暗号化回路から受けた場合、前記記憶部制御部は、前記暗号化回路から前記記憶部へのデータの書込みを禁止する。一方、前記無線通信回路は、前記暗号化回路が暗号化して前記記憶部に格納した暗号化されたデータを読み出して所定の宛先に送信する。これにより、前記無線通信回路による暗号化されたデータの送信中に前記暗号化回路による前記記憶部への書込みは行われないので、前記記憶部内に格納された暗号化されたデータの送信データ漏れを防止できる。
 また、上述のデータ暗号化装置は、さらに、前記無線通信回路から前記記憶部へのアクセスと、前記暗号化回路から前記記憶部へのアクセスと、を制御する記憶部制御部を備え、前記記憶部制御部は、前記暗号化回路が前記一次電池から供給された電力で動作するとき、前記暗号化回路から前記記憶部へのデータの書込みを許可し、前記無線通信回路から前記記憶部へのデータの書込みを禁止し、前記暗号化回路は、前記データ暗号化装置のユーザの生体データを計測するセンサー回路であって、前記記憶部から前記暗号鍵を読み出して前記生体データを暗号化して前記記憶部に格納し、前記記憶部制御部は、前記一次電池からの電力供給がON状態になってから所定時間が経過すると、前記暗号化回路から前記記憶部へのデータの書込みを禁止し、前記無線通信回路は、前記暗号化回路から前記記憶部へのデータの書込みが禁止された後、前記記憶部に格納された暗号化された生体データを所定の宛先に送信してもよい。
 本態様によると、前記記憶部制御部は、所定時間が経過すると、前記暗号化回路から前記記憶部へのデータの書込みを禁止する。一方、前記無線通信回路は、前記暗号化回路が暗号化して前記記憶部に格納した暗号化されたデータを読み出して所定の宛先に送信する。これにより、前記無線通信回路による暗号化されたデータの送信中に前記暗号化回路による前記記憶部への書込みは行われないので、前記記憶部内に格納された暗号化されたデータの送信データ漏れを防止できる。
 なお、本発明は、このような特徴的な処理部を備えるデータ暗号化装置として実現することができるだけでなく、データ暗号化装置に含まれる特徴的な処理部をステップとするデータ暗号化方法として実現したり、データ暗号化方法に含まれる特徴的なステップをコンピュータに実行させるプログラムとして実現したりすることもできる。そして、そのようなプログラムは、CD-ROM(Compact Disc-Read Only Memory)等の記録媒体やインターネット等の通信ネットワークを介して流通させることができるのは言うまでもない。
 本発明のセンサータグによれば、ON・OFFを自由に切り替え可能なスイッチ機構が実装できない小型センサータグのような場合であっても、暗号鍵設定時に内蔵電池からの電力供給をOFFからONにする必要がないので、課題として述べた計測開始までの電池消耗課題は起こらないという効果がある。
図1は、本発明の実施の形態1および2に係るセンサータグシステムの構成を示すブロック図である。 図2は、本発明の実施の形態1および2に係るセンサータグシステムの使用態様を示す図である。 図3は、本発明の実施の形態1および2に係るセンサータグの構成を示すブロック図である。 図4は、本発明の実施の形態1および2に係るデータ通信回路の構成を示すブロック図である。 図5は、本発明の実施の形態1および2に係るセンサー回路の構成を示すブロック図である。 図6は、本発明の実施の形態1および2に係る暗号鍵書込み装置の構成を示すブロック図である。 図7は、本発明の実施の形態1および2に係る計測データ読取装置の構成を示すブロック図である。 図8は、本発明の実施の形態1および2に係るセンサータグの全体動作を示すフローチャートである。 図9は、本発明の実施の形態1および2に係る暗号鍵取得処理の詳細なフローチャートである。 図10は、本発明の実施の形態1および2に係る暗号鍵設定処理の詳細なフローチャートである。 図11は、本発明の実施の形態1に係る電力ON検知処理の詳細なフローチャートである。 図12は、本発明の実施の形態1に係るモード変更処理の詳細なフローチャートである。 図13は、本発明の実施の形態1に係るセンサー計測処理の詳細なフローチャートである。 図14は、本発明の実施の形態1に係る計測データ蓄積処理の詳細なフローチャートである。 図15は、本発明の実施の形態1および2に係る暗号化計測データ群の構成を示すブロック図である。 図16は、本発明の実施の形態1および2に係るデータ取得依頼処理の詳細なフローチャートである。 図17は、本発明の実施の形態1および2に係る計測停止処理の詳細なフローチャートである。 図18は、本発明の実施の形態1および2に係るデータ取得処理の詳細なフローチャートである。 図19は、本発明の実施の形態1および2に係るデータ出力処理の詳細なフローチャートである。 図20は、本発明の実施の形態1に係るメモリアクセス制御回路25が保持するメモリアクセス制御規則(モード)の遷移について説明するための図である。 図21は、本発明の実施の形態1の変形例1に係る計測停止処理の詳細なフローチャートである。 図22は、本発明の実施の形態1の変形例2に係る計測停止処理の詳細なフローチャートである。 図23は、本発明の実施の形態1の変形例3に係るセンサー計測処理の詳細なフローチャートである。 図24は、本発明の実施の形態2に係るセンサータグ2の全体動作を示すフローチャートである。 図25は、本発明の実施の形態2に係る電力ON検知処理の詳細なフローチャートである。 図26は、本発明の実施の形態2に係るモード変更処理の詳細なフローチャートである。 図27は、本発明の実施の形態2に係るセンサー計測処理の詳細なフローチャートである。 図28は、本発明の実施の形態2に係る計測データ蓄積処理の詳細なフローチャートである。
符号の説明
   1 センサータグシステム
   2 センサータグ
   3 鍵設定処理
   4 計測処理
   5 計測データ読取処理
   6 暗号化計測データ群
  11 暗号鍵書込み装置
  12 被計測者
  13 計測データ読取装置
  20 データ通信回路
  21 アンテナ
  22 センサー回路
  23 電源
  24 メモリ
  25 メモリアクセス制御回路
  26 メモリアクセス制御規則更新部
  27 絶縁体
  28 受信回路
  29 表示部
  30 起電力発生回路
 110、130、200 データ通信部
 111 暗号鍵記憶部
 112 暗号鍵送付部
 113 ID受付部
 114 ID送付部
 115、131、201 認証部
 132、204 計測データ読取部
 133 データ復号部
 134 計測データ蓄積部
 135 復号鍵保管部
 202 暗号鍵書込み部
 203 ID書込み部
 220 生体データ計測部
 221 タイマー部
 222 暗号鍵読取部
 223 データ暗号化部
 224 計測データ書込み部
 225 電源状態検知部
(実施の形態1)
 以下、本発明の実施の形態1について、図面を参照しながら説明する。
 <概要>
 図1は、センサータグシステム1の構成を示すブロック図である。
 センサータグシステム1は、センサータグ2、暗号鍵書込み装置11、計測データ読取装置13を含む。また、センサータグシステム1内で行われる処理としては、鍵設定処理3、計測処理4、計測データ読取処理5の3つの処理がある。
 センサータグ2は、被計測者12の体温、脈拍、心拍数、心音などの生体情報を定期的に計測する。計測した生体情報は、センサータグ2の内部に予め設定された暗号鍵を用いて暗号化され、センサータグ2の内部に蓄積される。
 暗号鍵書込み装置11は、暗号鍵が未設定のセンサータグ2に対して、暗号鍵を書き込むための装置である。
 被計測者12は、センサータグ2に体温、脈拍、心拍数、心音などの生体情報を計測される人のことである。
 計測データ読取装置13は、生体情報の計測が終わったセンサータグ2から、センサータグ2の内部に蓄積された暗号化計測データを読出すための装置である。さらに、計測データ読取装置13は、読み出した暗号化計測データを、復号鍵を用いて復号し、平文の計測データを算出する。
 鍵設定処理3は、暗号鍵が未設定の状態であるセンサータグ2に対して、暗号鍵書込み装置11が暗号鍵を設定する処理である。
 計測処理4は、図2に示すように被計測者12に貼り付けられた暗号鍵設定済みのセンサータグ2が、被計測者12の生体情報を計測して、暗号化した上で、内部に蓄積する処理である。
 計測データ読取処理5は、計測データ読取装置13が、計測が終わったセンサータグ2から、暗号化計測データを読み取って復号を行い、平文の計測データを算出する処理である。
 センサータグシステム1の具体的な適用例としては、以下のようなものが考えられる。暗号鍵書込み装置11、計測データ読取装置13は、病院が保持、管理しており、病院は、暗号鍵が未設定のセンサータグ2を、センサータグメーカーから買い入れる。病院は、暗号鍵書き込み装置11を用いて、買い入れた前記センサータグ2に暗号鍵を設定する。暗号鍵設定済みのセンサータグ2は、病院の患者である被計測者12に提供される。被計測者12は、病院の指示に従って、適切なタイミングで暗号鍵設定済みのセンサータグ2を自身の体に貼り付けて、生体情報の計測を行う。被計測者12は、計測が終わったセンサータグ2を、体から取り外して、病院に提出する。病院は、計測データ読取装置13を用いて、提出された計測済みセンサータグ2から暗号化計測データを読み取り、さらに、復号鍵を用いて暗号化計測データを復号して、平文の計測データを得る。病院は、得られた計測データを元に、患者である被計測者12の診断などを行う。
 <構成>
 次に、センサータグシステム1の構成について説明する。
 1.センサータグ2
 図3は、センサータグ2の構成を示すブロック図である。図3に示す通り、センサータグ2は、データ通信回路20、アンテナ21、センサー回路22、電源23、メモリ24、メモリアクセス制御回路25、メモリアクセス制御規則更新部26、絶縁体27、受信回路28、表示部29、起電力発生回路30を含む。
 起電力発生回路30は、アンテナ21が受信する起動信号から起電力を発生する回路である。
 データ通信回路20は、起電力発生回路30が発生した起電力で動作する回路であり、RFIDの通信回路である。データ通信回路20は、暗号鍵書込み装置11から送付される暗号鍵をメモリ24に設定する。また、データ通信回路20は、計測データ読取装置13の要求に応じて、メモリ24に蓄積されている暗号化計測データを読み出して計測データ読取装置13に送付する。データ通信回路20の内部構成については後で説明する。
 アンテナ21は、暗号鍵書込み装置11や計測データ読取装置13からの信号を受信してデータ通信回路20に出力する。また、アンテナ21は、データ通信回路20から出力された信号を、所定周波数の電波、電磁波、又はマイクロ波などに乗せて、暗号鍵書込み装置11や計測データ読取装置13に送信する。
 センサー回路22は、電源23から供給される電力により動作する回路であり、被計測者12から定期的に生体情報を計測して、メモリ24に記憶されている暗号鍵を用いて暗号化した上で、メモリ24に蓄積する処理を行う。センサー回路22の内部構成については、後で説明する。
 電源23は、センサータグ2の内蔵の一次電池であり、センサー回路22などに電力を供給する。
 メモリ24は、センサー回路22、データ通信回路20の両方の回路によって共有されている不揮発のデータ記憶素子であり、暗号鍵データや、暗号化計測データなどの各種データを記憶している。メモリ24は、センサー回路22からアクセスされる場合には、センサー回路22から(即ち、電源23から)電力の供給を受け、データ通信回路20からアクセスされる場合には、データ通信回路20から(即ち、起電力発生回路30から)電力の供給を受ける。
 メモリアクセス制御回路25は、センサー回路22、データ通信回路20からメモリ24へのメモリアクセスを制御する。センサー回路22、データ通信回路20からメモリ24へのデータ書込み、データ読出し要求は、メモリアクセス制御回路25が受け付けて、内部に保持するメモリアクセス制御規則に基づいて、その可否を判断する。判断の結果、データ書込み、データ読出しを許可する場合には、要求に従って、メモリ24への所定のデータ書込み、メモリ24からの所定のデータ読出しを行う。メモリアクセス制御回路25は、センサー回路22からアクセスされる場合には、センサー回路22から(即ち、電源23から)電力の供給を受け、データ通信回路20からアクセスされる場合には、データ通信回路20から(即ち、起電力発生回路30から)電力の供給を受ける。
 メモリアクセス制御規則更新部26は、センサー回路22が、初めて電源23から電力の供給を受け動作する時に、メモリアクセス制御回路25の内部に保持するメモリアクセス制御規則を更新する。メモリアクセス制御回路25は、それ以降は、更新されたメモリアクセス制御規則に基づいて、センサー回路22、データ通信回路20からのデータアクセスを制御する。メモリアクセス制御規則更新部26のひとつの実現例としては、センサー回路22が最初に動作したときに実行する初期化プログラムの一部として実装され、センサー回路22の初期化処理の一部として実行されることが考えられる。
 絶縁体27は、センサータグ2の出荷時は、センサー回路22と電源23の電気的な接続を遮断する形で装着され、これにより、センサー回路22への電力供給は遮断されている。絶縁体27は、その一部分がセンサータグ2の外部に露出しているなど、外部から除去が可能な状態で装着されており、被計測者12は、絶縁体27を除去することで、電源23からセンサー回路22への電力供給を開始して、好きなときに生体情報の計測を開始することができる。なお、センサー回路22と電源23とは互いに接触する方向に付勢されており、絶縁体27は、電源23からの電力供給をOFF状態からON状態への一方向にのみ切替える。つまり、絶縁体27を一度除去すると、センサー回路22と電源23との間に絶縁体27を挿入することはできない。これにより、センサータグ2の構成を簡易にしつつ小型化を図ることができる。
 受信回路28は、被計測者12の生体データを計測する外部の計測装置から、生体データを入力として受け付ける。受け付けられた生体データは、センサー回路22において暗号化が施された後、メモリ24に蓄積される。
 表示部29は、メモリ24が暗号鍵を記憶していることを示す。表示部29は、例えば、LEDなどにより構成され、メモリアクセス制御回路25からの制御により、メモリ24に暗号鍵が記憶されているときに点灯し、暗号鍵が記憶されていないときに消灯する。これにより、ユーザが誤って暗号鍵が未設定のセンサータグ2を使用して計測を開始してしまうことが防止できる。よって、計測データの秘匿性を保障できる。
 1.1.データ通信回路20
 図4は、データ通信回路20の構成を示すブロック図である。図4に示す通り、データ通信回路20は、データ通信部200、認証部201、暗号鍵書込み部202、ID書込み部203、計測データ読取部204を含む。
 データ通信部200は、アンテナ21が、暗号鍵書込み装置11、計測データ読取装置13から受信して、出力するデータを受け取って、データ通信回路20内の適切な処理部に出力する。また、データ通信部200は、データ通信回路20内の他の処理部から出力されるデータを受け取って、アンテナ21を介して暗号鍵書込み装置11、計測データ読取装置13に送信する。
 認証部201は、内部に保管する認証検証用データを用いて、データ通信回路20とデータ送受信を行おうとしている暗号鍵書込み装置11、計測データ読取装置13の正当性を認証する。
 暗号鍵書込み部202は、暗号鍵書込み装置11から送付される暗号鍵データを、メモリアクセス制御回路25を介してメモリ24に書き込む。
 ID書込み部203は、暗号鍵書込み装置11から送付されるIDデータを、メモリアクセス制御回路25を介してメモリ24に書き込む。
 計測データ読取部204は、計測データ読取装置13からの要求に応じて、メモリアクセス制御回路25を介してメモリ24から暗号化計測データを読み出して、計測データ読取装置13に送付する。
 1.2.センサー回路22
 図5は、センサー回路22の構成を示すブロック図である。図5に示す通り、センサー回路22は、生体データ計測部220、タイマー部221、暗号鍵読取部222、データ暗号化部223、計測データ書込み部224、電源状態検知部225を含む。
 生体データ計測部220は、タイマー部221のカウント値に基づいて、所定間隔で被計測者から生体情報を計測して計測データとし、タイマーデータ(カウント値)とともに、データ暗号化部223に出力する。
 タイマー部221は、一定間隔ごとにカウント値をインクリメント(1加える)し、カウント値が所定の値になるたびに、所定の値に到達したことをカウント値とともに生体データ計測部220に通知する。
 暗号鍵読取部222は、データ暗号化部223の要求に応じて、メモリアクセス制御回路25を介して、メモリ24から暗号鍵を読み出して、データ暗号化部223に出力する。
 データ暗号化部223は、生体データ計測部220から計測データを受け付けると、暗号鍵読取部222に暗号鍵取得を指示して暗号鍵を受け取る。そして、暗号鍵読取部222から受け取った暗号鍵で生体データ計測部220から受け取った計測データを暗号化して暗号化計測データとし、計測データ書込み部224に出力する。
 計測データ書込み部224は、データ暗号化部223から受け付けた暗号化計測データを、メモリアクセス制御回路25を介して、メモリ24に書き込む。
 電源状態検知部225は、電源23の状態、つまり、電源23からの電力供給がON状態にあるか否かを検知する。
 2.暗号鍵書込み装置11
 図6は、暗号鍵書込み装置11の構成を示すブロック図である。図6に示す通り、暗号鍵書込み装置11は、データ通信部110、暗号鍵記憶部111、暗号鍵送付部112、ID受付部113、ID送付部114、認証部115を含む。
 データ通信部110は、センサータグ2とのデータ送受信を行う。
 暗号鍵記憶部111は、暗号鍵書込み装置11の管理者が設定した暗号鍵を保管している。
 暗号鍵送付部112は、暗号鍵記憶部111に保管する暗号鍵を読み出して、データ通信部110を介して、センサータグ2に送付する。
 ID受付部113は、暗号鍵書込み装置11外部からのIDデータ入力を受け付けて、受け付けたIDデータをID送付部114に出力する。
 ID送付部114は、ID受付部113から出力されたIDデータを、データ通信部110を介して、センサータグ2に送付する。
 認証部115は、内部に保管する認証用データを用いて、センサータグ2に対して暗号鍵書込み装置11の正当性を証明するための認証処理を行う。
 3.計測データ読取装置13
 図7は、計測データ読取装置13の構成を示すブロック図である。図7に示す通り、計測データ読取装置13は、データ通信部130、認証部131、復号鍵保管部135、計測データ読取部132、データ復号部133、計測データ蓄積部134を含む。
 データ通信部130は、センサータグ2とのデータ送受信を行う。
 認証部131は、内部に保管する認証用データを用いて、センサータグ2に対して計測データ読取装置13の正当性を証明するための認証処理を行う。
 復号鍵保管部135は、計測データ読取装置13の管理者が設定した復号鍵を保管している。
 計測データ読取部132は、データ通信部130を介して、センサータグ2から、暗号化計測データを受け取って、データ復号部133に出力する。
 データ復号部133は、復号鍵保管部135から読み出した復号鍵を用いて、計測データ読取部132から受け取った暗号化計測データを復号して、平文の計測データを算出する。データ復号部133は、算出した平文の計測データを、計測データ蓄積部134に出力する。
 計測データ蓄積部134は、データ復号部133から受け取った平文の計測データを、保管する。
 <動作>
 以下、センサータグ2が行う処理について図面を参照しながら説明する。
 図8は、センサータグ2の全体動作を示すフローチャートである。同図では、センサー回路22と、メモリアクセス制御回路25と、データ通信回路20との間での処理の流れを示している。
 センサータグ2が行なう処理は、大きく分けて、鍵設定処理3、計測処理4、計測データ読取処理5の3つに分類される。
 まず、鍵設定処理3が行なわれる。つまり、暗号鍵書込み装置11のデータ通信部110は、センサータグ2のアンテナ21に起動信号を送信する。アンテナ21は、受信した前記起動信号を起電力発生回路30に出力し、起電力発生回路30は、起動信号から起電力を発生して、データ通信回路20を含むセンサータグ2内の各回路を動作させる(S2)。以下、データ通信回路20は、暗号鍵書込み装置11のデータ通信部110から適宜受信した起動信号により発生する起電力で動作しながら処理を行う。
 データ通信回路20は、暗号鍵書込み装置11より、暗号鍵を取得する(S4)。
 メモリアクセス制御回路25は、取得した暗号鍵をメモリ24に設定する(S6)。
 ここまでの処理で、メモリ24に暗号鍵が設定されることとなる。なお、S4およびS6の処理については後に詳述する。
 その後、絶縁体27がセンサータグ2より除去されると、計測処理4が開始される。つまり、電源23がON状態に切替えられ、電源状態検知部225が電源23のON状態を検知する(S8)。電源23のON状態が検知されると、メモリアクセス制御回路25は、メモリアクセス制御規則(モード)を変更する(S10)。つまり、データ通信回路20からのメモリ24への暗号鍵書込みとID書込みを禁止する。このモード変更により、これ以降は、暗号鍵を更新することが不可能となる(S16、S18、S20)。よって、計測データが暗号化されるときに、誤って暗号鍵が書き換えられるのを防止できる。
 電源23がON状態になると、センサー回路22は、被計測者12の生体情報を計測し、計測データをメモリアクセス制御回路25に出力する(S12)。メモリアクセス制御回路25は、出力された計測データをメモリ24に蓄積する(S14)。以降、S12およびS14の処理が繰り返し実行される。なお、S8~S14の処理については後に詳述する。
 次に、計測データ読取処理5が行なわれる。つまり、計測データ読取装置13のデータ通信部130は、センサータグ2のアンテナ21に起動信号を送信する。アンテナ21は、受信した前記起動信号を起電力発生回路30に出力し、起電力発生回路30は、起動信号から起電力を発生して、データ通信回路20を含むセンサータグ2内の各回路を動作する(S22)。以下、データ通信回路20は、計測データ読取装置13のデータ通信部130から適宜受信した起動信号により発生する起電力で動作しながら処理を行う。
 データ通信回路20は、計測データ読取装置13からの計測データ取得依頼に基づいて、メモリアクセス制御回路25へ計測データ取得依頼信号を出力する(S24)。メモリアクセス制御回路25は、計測データ取得依頼信号に応答して、センサー回路22による生体情報の計測を停止させる(S26)。その後、メモリアクセス制御回路25は、メモリ24に蓄積された計測データを読み出し、データ通信回路20に出力する(S28)。データ通信回路20は、メモリアクセス制御回路25より計測データを受け取り、計測データ読取装置13に出力する(S30)。なお、S24~S30の処理については後に詳述する。
 1.鍵設定処理3(S4、S6)
 次に、鍵設定処理3の詳細について説明する。鍵設定処理3は、図1の左側に示すとおり、暗号鍵書込み装置11が、暗号鍵が未設定のセンサータグ2に、暗号鍵を設定する処理である。典型的には、暗号鍵書込み装置11は、病院が保持・管理し、鍵設定処理3は、病院が暗号鍵未設定のセンサータグ2を買い入れたときに行われる。
 [データ設定など]
 図6の暗号鍵書込み装置11において、暗号鍵記憶部111には、当該暗号鍵書込み装置11の管理者が予め設定した暗号鍵が、保管されている。認証部115には、所定桁数のパスワードデータが格納されている。また、センサータグ2のデータ通信回路20内部にある認証部201には、前記パスワードデータに対してハッシュ関数を計算した結果であるハッシュ値が、認証検証用データとして保管されている。
 センサータグ2のメモリアクセス制御回路25には、以下のメモリアクセスだけを許可し、それ以外のメモリアクセスは拒否するようなメモリアクセス制御規則が設定されている。
    (1)データ通信回路20からの暗号鍵書込み
    (2)データ通信回路20からのID書込み
    (3)データ通信回路20からの暗号化計測データ読出し
    (4)センサー回路22からの暗号鍵読出し
    (5)センサー回路22からの暗号化計測データ書込み
 鍵設定処理3を行う時点では、図3に示すセンサータグ2は、絶縁体27が装着された状態なので、センサー回路22は、電源23からの電力供給を受けておらず、動作していない。
 [暗号鍵取得処理(S4)]
 図9は、暗号鍵取得処理(S4)の詳細なフローチャートである。
 暗号鍵書込み装置11の認証部115は、保管している認証データであるパスワードデータを、データ通信部110を介してセンサータグ2に送付する。センサータグ2のアンテナ21は、前記認証データを受信し、データ通信回路20のデータ通信部200を介して、認証部201に転送する。認証部201は、受け取った認証データに対してハッシュ関数を計算した結果であるハッシュ値を計算する。認証部201は、計算したハッシュ値と、内部に保管している認証検証用データとの比較を行い、両者が一致すれば、暗号鍵書込み装置11を正当なものとし、以降の鍵設定処理を行うことを認める。一致しなければ、暗号鍵書込み装置11が正当ではないものとし、以降の鍵設定処理を中止する(S402)。
 暗号鍵書込み装置11の操作者は、センサータグ2に設定したいIDを、暗号鍵書込み装置11に入力する。入力されたIDは、ID受付部113にて受け付けられ、ID送付部114を介してデータ通信部110に転送される。それと同時に、暗号鍵送付部112は、暗号鍵記憶部111に保管されている暗号鍵を読出し、データ通信部110に転送する。データ通信部110は、前記のIDと暗号鍵を、センサータグ2に送信する。センサータグ2のアンテナ21は、暗号鍵書込み装置11から送信されたIDと暗号鍵を受信する。アンテナ21は、受信したIDと暗号鍵を、データ通信回路20のデータ通信部200に転送する。データ通信部200は、前記IDをID書込み部203に転送し、前記暗号鍵を暗号鍵書込み部202に、ぞれぞれ、転送する(S404)。
 ID書込み部203は、受け取った前記IDを、メモリアクセス制御回路25に転送する(S406)。
 暗号鍵書込み部202は、受け取った前記暗号鍵を、メモリアクセス制御回路25に転送する(S408)。
 [暗号鍵設定処理(S6)]
 次に、暗号鍵設定処理(S6)について説明する。
 図10は、暗号鍵設定処理(S6)の詳細なフローチャートである。
 メモリアクセス制御回路25は、ID書込み部203よりIDを受け取り、暗号鍵書込み部202より暗号鍵を受け取る(S602)。
 メモリアクセス制御回路25は、内部に設定されているメモリアクセス制御規則をチェックして、データ通信回路20からのID書込みおよびデータ通信回路20からの暗号鍵書込みが許可されていることを確認して(S604でYes)メモリ24のID記憶領域にIDを書き込み、メモリ24の暗号鍵記憶領域に暗号鍵を書き込む(S606)。
 以上の一連の処理(S4、S6)により、鍵設定処理3が完了する。
 2.計測処理4(S8~S14)
 次に、計測処理4の詳細について説明する。計測処理4は、図1の中程に示すとおり、暗号鍵設定済みのセンサータグ2が、被計測者12の生体情報を定期的に計測する処理である。典型的には、病院から暗号鍵設定済みのセンサータグ2を提供された患者である被計測者12が、自宅などで、センサータグ2を体に装着して生体情報の計測を行うときに行われる。
 [電源ON検知処理(S8)]
 図11は、電源ON検知処理(S8)の詳細なフローチャートである。
 電源状態検知部225は、電源23からの電力供給の状態を確認する(S802)。被計測者12は、計測を開始時に、センサータグ2から絶縁体27を除去する。これにより、センサー回路22に電源23から電力が供給されるようになり、センサー回路22が動作を開始する。以下、センサー回路22は、電源23から供給される電力で動作しながら処理を行う。
 電源23からの電力供給がOFF状態からON状態に変更されたことを確認すると(S804でYes)、電源状態検知部225は、メモリアクセス制御回路25に対し、データ通信回路20からのメモリ24への暗号鍵書込みとID書込みを禁止させることを指示する暗号鍵書込不可信号を出力する(S806)。
 [モード変更処理(S10)]
 図12は、モード変更処理(S10)の詳細なフローチャートである。
 メモリアクセス制御回路25は、センサー回路22からデータを受信する(S1002)。メモリアクセス制御回路25が受信したデータが暗号鍵書込不可信号である場合には(S1004でYes)、メモリアクセス制御規則更新部26は、データ通信回路20からのメモリ24への暗号鍵書込みとID書込みを禁止するように、メモリアクセス制御規則(モード)を変更する(S1006)。つまり、メモリアクセス制御規則更新部26は、メモリアクセス制御回路25の内部に設定されているメモリアクセス制御規則を以下のメモリアクセスだけを許可し、それ以外のメモリアクセスは拒否するように更新する。
    (3)データ通信回路20からの暗号化計測データ読出し
    (4)センサー回路22からの暗号鍵読出し
    (5)センサー回路22からの暗号化計測データ書込み
 上述したように、このメモリアクセス制御規則の更新により、これ以降は、暗号鍵を更新することが不可能となる(図8のS16、S18、S20)。
 [センサー計測処理(S12)]
 図13は、センサー計測処理(S12)の詳細なフローチャートである。
 生体データ計測部220は、被計測者12から生体情報を計測する。計測した生体情報(以下、「計測データ」と呼ぶ)に、タイマー部221から転送されたカウント値を付加したものを、データ暗号化部223に転送する(S1202)。
 暗号鍵読取部222は、メモリアクセス制御回路25に、暗号鍵を要求する(S1204)。
 暗号鍵読取部222が、メモリアクセス制御回路25より暗号鍵を取得した場合には(S1206でYes)、データ暗号化部223は、暗号鍵読取部222から暗号鍵を受け取り、その暗号鍵を用いて、生体データ計測部220から受け取った計測データを暗号化して、暗号化計測データを生成する(S1208)。なお、ここでは、カウント値は、暗号化しないものとするが、暗号化してもよい。
 データ暗号化部223は、暗号化計測データに、生体データ計測部220から受け取ったカウント値を付加して、計測データ書込み部224に転送する。計測データ書込み部224は、データ暗号化部223から受け取った暗号化計測データとカウント値を、メモリアクセス制御回路25に転送して、メモリ24への書込み要求を行う(S1210)。
 暗号鍵読取部222が、メモリアクセス制御回路25より暗号鍵を取得していない場合には(S1206でNo)、データ暗号化部223は、計測データを暗号化することなく、計測データに、生体データ計測部220から受け取ったカウント値を付加して、計測データ書込み部224に転送する。計測データ書込み部224は、データ暗号化部223から受け取った暗号化されていない計測データとカウント値を、メモリアクセス制御回路25に転送して、メモリ24への書込み要求を行う(S1210)。
 [計測データ蓄積処理(S14)]
 図14は、計測データ蓄積処理(S14)の詳細なフローチャートである。
 メモリアクセス制御回路25は、センサー回路22より暗号鍵の要求を受け取る(S1402)。メモリアクセス制御回路25は、内部に保持するメモリアクセス制御規則をチェックして、センサー回路22からの暗号鍵読出しが許可されていることを確認する。メモリアクセス制御回路25は、前記のことが確認できれば、メモリ24に暗号鍵が設定されているか否かを確認する(S1404)。
 暗号鍵が設定されていれば(S1404でYes)、メモリアクセス制御回路25は、メモリ24の暗号鍵記憶領域から暗号鍵を読み出して、センサー回路22の暗号鍵読取部222に転送する(S1406)。
 メモリアクセス制御回路25は、センサー回路22の計測データ書込み部224から暗号化計測データとカウント値とを受信するまで待機する(S1408)。暗号化計測データとカウント値とを受信すると(S1408でYes)、メモリアクセス制御回路25は、内部に保持するメモリアクセス制御規則をチェックして、センサー回路22からの暗号化計測データ書込みが許可されていることを確認する。メモリアクセス制御回路25は、前記のことが確認できれば、センサー回路22の計測データ書込み部224から受け取った暗号化計測データとカウント値とを、メモリ24の暗号化計測データ記憶領域に書き込む(S1410)。なお、メモリ24に暗号鍵が設定されていない場合には(S1404でNo)、暗号化されていない計測データに対して同様の処理(S1408、S1410)が実行される。
 以上の一連の計測処理4(S12、S14)が繰り返し実行される。
 [計測処理4終了後のメモリ24内のデータ]
 計測処理4では、定期的に被計測者12の生体情報が計測されて、逐次、メモリ24に追記される。計測処理4が終了後には、メモリ24には、暗号鍵以外に、図15に示すような暗号化計測データ群6が記憶されている。暗号化計測データ群6は、1個のID60と、1組以上のタイマーデータ(タイマーデータ610、620、630、・・・)と暗号化計測データ(暗号化計測データ611、621、631、・・・)からなるデータ組(データ組61、62、63、・・・)とからなる。ID60は、鍵設定処理3で、暗号鍵とともにセンサータグ2に設定されたIDである。タイマーデータと暗号化計測データは、計測処理4において、計測データ蓄積処理が実行される度に1組ずつ追記されていく。
 3.計測データ読取処理5(S24~S30)
 次に、計測データ読取処理5の詳細について説明する。計測データ読取処理5は、図1の右側に示すとおり、計測データ読取装置13が、計測処理済みのセンサータグ2から、暗号化計測データを読み出す処理である。典型的な例として、病院において、計測データ読取装置13を用いて、患者である被計測者12から提出された計測処理済みのセンサータグ2から暗号化計測データを読み出すときに行われる。
 [データ設定など]
 図7の計測データ読取装置13において、復号鍵保管部135には、当該計測データ読取装置13の管理者が予め設定した復号鍵が、保管されている。復号鍵は、暗号鍵書込み装置11の暗号鍵記憶部111に記憶されている暗号鍵と対をなすものである。即ち、あるデータを暗号鍵で暗号化した暗号化データを復号鍵で復号すると、元のデータが得られるようになっている。認証部131には、暗号鍵書込み装置11の認証部115に保管されているものと同じパスワードデータが格納されている。
 また、センサータグ2のメモリ24には、先ほど説明したとおり、図15に示すような暗号化計測データ群6が、記憶されている。
 [データ取得依頼処理(S24)]
 図16は、データ取得依頼処理(S24)の詳細なフローチャートである。
 計測データ読取装置13の認証部131は、保管している認証データであるパスワードデータを、データ通信部130を介してセンサータグ2に送付する。センサータグ2のアンテナ21は、前記認証データを受信し、データ通信回路20のデータ通信部200を介して、認証部201に転送する。認証部201は、受け取った認証データに対してハッシュ関数を計算した結果であるハッシュ値を計算する。認証部201は、計算したハッシュ値が、内部に保管している認証検証用データと比較を行い、一致すれば、計測データ読取装置13を正当なものとし、以降の計測データ読取処理を行うことを認める。一致しなければ、計測データ読取装置13が正当ではないものとし、以降の計測データ読取処理を中止する(S2402)。
 計測データ読取部132は、計測データ取得依頼信号を、データ通信部130を介して、センサータグ2に送信する。センサータグ2のアンテナ21は、計測データ読取装置13から送信された計測データ取得依頼信号を受信する。アンテナ21は、受信した計測データ取得依頼信号を、データ通信回路20のデータ通信部200に転送する。さらに、データ通信部200は、計測データ取得依頼信号を計測データ読取部204に転送する(S2404)。そして、計測データ読取部204は、計測データ取得依頼信号を、メモリアクセス制御回路25に送信する(S2406)。
 [計測停止処理(S26)]
 図17は、計測停止処理(S26)の詳細なフローチャートである。
 メモリアクセス制御回路25は、データ通信回路20の計測データ読取部204より、計測データ取得依頼信号を受け取ると(S2602)、計測停止信号をセンサー回路22に出力する(S2604)。それとともに、メモリアクセス制御規則更新部26は、センサー回路22からメモリ24への暗号化計測データの書込みを禁止するように、メモリアクセス制御回路25の内部に設定されているメモリアクセス制御規則(モード)を変更する。これにより、データ通信回路20による暗号化計測データの送信中にセンサー回路22によるメモリ24への暗号化計測データの書込みは行われないので、メモリ24内に格納された暗号化された暗号化計測データの送信漏れを防止できる。
 計測停止信号を受け取ったセンサー回路22は、それ以降の生体情報の計測を停止させる。なお、センサー回路22が計測を停止するのではなく、メモリアクセス制御回路25が、暗号化計測データをメモリ24に格納しないようにしても良い。
 [データ取得処理(S28)]
 図18は、データ取得処理(S28)の詳細なフローチャートである。
 メモリアクセス制御回路25は、内部に設定されているメモリアクセス制御規則をチェックして、データ通信回路20からの暗号化計測データ読出しが許可されていることを確認する。メモリアクセス制御回路25は、前記の確認ができれば、メモリ24から暗号化計測データ群6を読出して(S2802)、計測データ読取部204に転送する(S2804)。
 [データ出力処理(S30)]
 図19は、データ出力処理(S30)の詳細なフローチャートである。
 計測データ読取部204は、メモリアクセス制御回路25より転送された暗号化計測データ群6を受け取る(S3002)。計測データ読取部204は、受け取った暗号化計測データ群6を、データ通信部200、アンテナ21を経て計測データ読取装置13に送信する(S3004)。
 暗号化計測データ群6は、計測データ読取装置13のデータ通信部130、計測データ読取部132を経て、データ復号部133に転送される。データ復号部133は、復号鍵保管部135から読み出した復号鍵を用いて、受け取った暗号化計測データ群6の暗号化計測データ611、621、631を復号し、それらの平文計測データを得る。そして、暗号化計測データ群6の暗号化計測データ611、621、631を、それぞれ前記の平文計測データに置き換えたものを、計測データ群として、計測データ蓄積部134に転送する。
 計測データ蓄積部134は、受け取った平文の計測データ群を保管する。
 以上の一連の処理(S24~S30)により、計測データ読取処理5が完了する。
 計測データ蓄積部134には、1個のIDと、1組以上のタイマーデータおよび平文の計測データの組とからなる、計測データ群が保管されている。設定するIDは、暗号鍵書込み装置11、計測データ読取装置13を管理する管理者の運用形態に応じて決めればよい。例えば、センサータグを識別するために、センサータグIDとしても良いし、センサータグを渡す患者(被計測者)を識別する被計測者IDとしても良い。前者の運用の場合、設定するIDはセンサータグごとに異なるが、後者の運用の場合には、ある患者に渡すセンサータグには全て同一のID(患者ID)が設定される。各計測データと対となっているタイマーデータは、その計測データが計測された時間情報として使用される。
 計測データ蓄積部134に保管されている計測データ群は、必要に応じて、読み出されて、患者である被計測者12の健康管理や健康診断などに利用される。
 図20は、メモリアクセス制御回路25が保持するメモリアクセス制御規則(モード)の遷移について説明するための図である。
 初期状態(S4001)では、電源23からの電力供給はOFF状態であり、計測は行なわれていない。また、メモリ24にも暗号鍵が設定されておらず、メモリアクセス制御規則では、データ通信回路20からの暗号鍵書込みが許可されている。
 この状態で、絶縁体27がセンサータグ2より除去されると(S4002)、上述のモード変更処理(S10)が実行され、次の状態(S4003)に移行する。状態(S4003)では、電源23からの電力供給がON状態となるが、計測は行なわれていない状態となる。また、依然としてメモリ24には暗号鍵が設定されていない。さらに、メモリアクセス制御規則では、データ通信回路20からの暗号鍵書込みが禁止される。
 この状態で、センサー計測処理(S12)および計測データ蓄積処理(S14)が開始されると、暗号化処理が施されない計測データが蓄積される状態(S4004)に移行し、計測処理が終了するまでその状態が維持される。計測処理が終了すると(S4005でYes)、計測停止処理(S26)が実行された後、生体情報の計測が停止した状態(S4007)に移行する。その後、取得処理(S24)が実行され、一連の処理が終了する。
 また、初期状態(S4001)において、暗号鍵設定処理(S6)が実行されると、暗号鍵が設定済みの状態(S4008)に移行する。
 この状態で、絶縁体27がセンサータグ2より除去されると(S4002)、上述のモード変更処理(S10)が実行され、次の状態(S4003)に移行する。状態(S4003)では、電源23からの電力供給がON状態となるが、計測は行なわれていない状態となる。また、依然としてメモリ24には暗号鍵が設定されていない。さらに、メモリアクセス制御規則では、データ通信回路20からの暗号鍵書込みが禁止される。
 この状態で、センサー計測処理(S12)および計測データ蓄積処理(S14)が開始されると、暗号化処理が施された計測データが蓄積される状態(S4009)に移行し、計測処理が終了するまでその状態が維持される。計測処理が終了すると(S4011でYes)、計測停止処理(S26)が実行された後、生体情報の計測が停止した状態(S4007)に移行する。その後、取得処理(S24)が実行され、一連の処理が終了する。
 <まとめ>
 以上のように、本実施の形態のセンサータグ2では、暗号鍵の設定処理を行うデータ通信回路は、暗号鍵書込み装置11から受信する起動信号から生起される電力によって動作するので、暗号鍵設定時に、絶縁体27を除去して、内蔵の電源23から電力供給を受ける必要がない。このために、電源23からの電力供給のON、OFFを自由に切り替え可能なスイッチ機構が実装できない小型センサータグのような場合であっても、暗号鍵設定時に、内蔵電池からの電力供給をOFFからONにする必要がないので、課題として述べた、計測開始までの電池消耗課題は起こらない。
 また、無線で暗号鍵を受信できるため、滅菌処理されたパッケージを破ることなくセンサータグ2に暗号鍵を設定することができる。よって、センサータグ2が使用される直前まで衛生的な状態を保つことができる。
 また、一旦、電源23からセンサー回路22へ電力が供給されると、メモリアクセス制御規則更新部26は、暗号鍵の書き込みができなくなるように、メモリアクセス制御回路25のメモリアクセス制御規則を更新する。これにより、電源23からセンサー回路22へ電力が供給され、計測が開始された後に、誤って暗号鍵を書き換えてしまうような誤操作が防止できる。
 (実施の形態1の変形例1)
 実施の形態1の図17に示した計測停止処理(S26)の代わりに、以下に説明する計測停止処理(S26)を実行するようにしてもよい。
 図21は、実施の形態1の変形例1に係る計測停止処理(S26)の詳細なフローチャートである。
 メモリアクセス制御回路25は、データ通信回路20の計測データ読取部204より、計測データ取得依頼信号を受け取ると(S2602)、現在を基準として過去の所定期間内にセンサー回路22からメモリ24への暗号化計測データの書込み処理があったかどうかを判断する(S2612)。
 所定期間内にセンサー回路22からメモリ24への暗号化計測データの書込み処理があったと判断した場合には(S2612でYes)、メモリアクセス制御規則更新部26は、センサー回路22からメモリ24への暗号化計測データの書込みを許可するように、メモリアクセス制御回路25の内部に設定されているメモリアクセス制御規則(モード)を変更する(S2614)。
 所定期間内にセンサー回路22からメモリ24への暗号化計測データの書込み処理がなかったと判断した場合には(S2612でNo)、メモリアクセス制御規則更新部26は、センサー回路22からメモリ24への暗号化計測データの書込みを禁止するように、メモリアクセス制御回路25の内部に設定されているメモリアクセス制御規則(モード)を変更する(S2616)。
 S2616の処理の後、メモリアクセス制御回路25は、計測停止信号をセンサー回路22に出力する(S2604)。
 以上説明したように、本変形例によると、メモリアクセス制御回路25は、センサー回路22からメモリ24への書き込みが所定期間無かった場合、電源23の電力が消耗したものとみなして、センサー回路22からメモリ24へのデータの書込みを禁止する。これにより、メモリ24に、データ通信回路20に送信すべき暗号化計測データが十分格納された場合に、データ通信回路20はメモリ24から暗号化計測データを読み出して所定の宛先に送信できる。そのため、例えば、電源23からの電力供給がON状態となった直後にデータ通信回路20による取得依頼を受けた場合のように、メモリ24に、データ通信回路20に送信すべき暗号化計測データが十分格納されていない状態で、メモリ24から暗号化計測データが送信される非効率を簡易な構成で防止できる。
 また、メモリアクセス制御回路25は、暗号化回路からメモリ24への書き込みが所定期間内に存在する場合、電源23の電力の寿命はまだあると判断して、センサー回路22からメモリ24へのデータの書込みを許可し、データ通信回路20からメモリ24へのデータの書込みを禁止する状態を維持する。これにより、電源23の電力の寿命はまだあると判断した場合には、データ通信回路20からメモリ24に格納された暗号化計測データの取得依頼を受けた場合であっても、メモリ24に、データ通信回路20に送信すべき暗号化計測データを格納する処理を継続する。そのため、例えば、電源23からの電力供給がON状態となった直後にデータ通信回路20による取得依頼を受けた場合のように、メモリ24に、データ通信回路20に送信すべき暗号化計測データが十分格納されていない状態で、メモリ24から暗号化計測データが送信される非効率を簡易な構成で防止できる。
 (実施の形態1の変形例2)
 実施の形態1の図17に示した計測停止処理(S26)の代わりに、以下に説明する計測停止処理(S26)を実行するようにしてもよい。
 図22は、実施の形態1の変形例2に係る計測停止処理(S26)の詳細なフローチャートである。
 メモリアクセス制御回路25は、データ通信回路20の計測データ読取部204より、計測データ取得依頼信号を受け取ると(S2602)、センサー回路22が動作状態にあることを確認するための動作確認信号をセンサー回路22に出力する(S2622)。動作状態にあるセンサー回路22は、動作確認信号を受け取ると、応答信号をメモリアクセス制御回路25に出力するものとする。
 メモリアクセス制御回路25は、所定期間内に、センサー回路22から応答信号を受信したか否かを判断する(S2624)。
 動作確認信号を受信した場合には(S2624でYes)、メモリアクセス制御規則更新部26は、センサー回路22からメモリ24への暗号化計測データの書込みを許可するように、メモリアクセス制御回路25の内部に設定されているメモリアクセス制御規則(モード)を変更する(S2614)。
 動作確認信号を受信しなかった場合には(S2624でNo)、メモリアクセス制御規則更新部26は、センサー回路22からメモリ24への暗号化計測データの書込みを禁止するように、メモリアクセス制御回路25の内部に設定されているメモリアクセス制御規則(モード)を変更する(S2616)。
 S2616の処理の後、メモリアクセス制御回路25は、計測停止信号をセンサー回路22に出力する(S2604)。
 以上説明したように、本変形例によると、メモリアクセス制御回路25は、センサー回路22からの応答が所定期間内に無かった場合、電源23の電力が消耗したものとみなして、センサー回路22からメモリ24へのデータの書込みを禁止する。これにより、メモリ24に、データ通信回路20に送信すべき暗号化計測データが十分格納された場合に、データ通信回路20はメモリ24から暗号化計測データを読み出して所定の宛先に送信できる。そのため、例えば、電源23からの電力供給がON状態となった直後にデータ通信回路20による取得依頼を受けた場合のように、メモリ24に、データ通信回路20に送信すべき暗号化計測データが十分格納されていない状態で、メモリ24から暗号化計測データが送信される非効率を簡易な構成で防止できる。
 また、メモリアクセス制御回路25は、センサー回路22からの応答が所定期間内にあった場合、電源23の電力の寿命はまだあると判断して、センサー回路22からメモリ24へのデータの書込みを許可し、データ通信回路20からメモリ24へのデータの書込みを禁止する状態を維持する。これにより、電源23の電力の寿命はまだあると判断した場合には、データ通信回路20から、メモリ24に格納された暗号化計測データの取得依頼を受けた場合であっても、メモリ24に、データ通信回路20に送信すべき暗号化計測データを格納する処理を継続する。そのため、例えば、電源23からの電力供給がON状態となった直後にデータ通信回路20による取得依頼を受けた場合のように、メモリ24に、データ通信回路20に送信すべき暗号化計測データが十分格納されていない状態で、メモリ24から暗号化計測データが送信される非効率を簡易な構成で防止できる。
 (実施の形態1の変形例3)
 実施の形態1の図13に示したセンサー計測処理(S12)では、暗号鍵読取部222が暗号鍵を取得できなかった場合には(図13のS1206)、センサー回路22は、計測データを暗号化することなくメモリアクセス制御回路25に転送していた。
 これに対して、暗号鍵読取部222が暗号鍵を取得できなかった場合には、センサー回路22は、計測データを破棄してメモリアクセス制御回路25に転送しないようにしても良い。
 図23は、実施の形態1の変形例3に係るセンサー計測処理(S12)の詳細なフローチャートである。各処理は、図7に示したものと同様であるが、上述したように、暗号鍵読取部222が暗号鍵を取得できなかった場合には(S1208でNo)、センサー回路22は、何も処理を実行しない。これにより、計測データが破棄され、メモリアクセス制御回路25に送信されることがなくなる。
 本変形例によると、メモリ24に暗号化されていない計測データが蓄積されることがない。このため、計測データの秘匿性を保障できる。
 (実施の形態2)
 次に、本発明の実施の形態2について、図面を参照しながら説明する。実施の形態1では、センサー回路22による生体情報の計測は、計測データ読取装置13からセンサータグ2に対して計測データ取得依頼が行なわれた時点で終了する。これに対して、実施の形態2では、センサー回路22により、所定回数または所定時間、生体情報の計測が行なわれた時点で、センサー回路22による生体情報の計測が終了する。
 センサータグシステム1と、センサータグシステム1を構成するセンサータグ2、暗号鍵書込み装置11および計測データ読取装置13との構成は、実施の形態1に示したものと同様である。このため、その詳細な説明はここでは繰り返さない。
 実施の形態2では、センサー回路22が実行する計測処理4が、実施の形態1と一部異なる。以下、異なる点を中心に説明を行なう。
 <動作>
 以下、センサータグ2が行う処理について図面を参照しながら説明する。
 図24は、センサータグ2の全体動作を示すフローチャートである。同図では、図8と同様に、センサー回路22と、メモリアクセス制御回路25と、データ通信回路20との間での処理の流れを示している。
 鍵設定処理3(S2~S6)は、実施の形態1に示したものと同様である。このため、その詳細な説明はここでは繰り返さない。
 鍵設定処理3の後に、絶縁体27がセンサータグ2より除去されると、計測処理4が開始される。つまり、電源23からの電力供給がON状態に切替えられ、電源状態検知部225が電源23からの電力供給のON状態を検知する(S38)。電源23からの電力供給のON状態が検知されると、メモリアクセス制御回路25は、メモリアクセス制御規則(モード)を変更する(S40)。つまり、データ通信回路20からのメモリ24への暗号鍵書込みとID書込みを禁止する。また、データ通信回路20からの暗号化計測データの読み出しも禁止する。このモード変更により、これ以降は、暗号鍵を更新することが不可能となる(S16、S18、S20)。また、暗号化計測データを取得することが不可能となる(S22、S24、S28)。
 電源23からの電力供給がON状態になると、センサー回路22は、被計測者12の生体情報を計測し、計測データをメモリアクセス制御回路25に出力する(S42)。メモリアクセス制御回路25は、出力された計測データをメモリ24に蓄積する(S44)。以降、S42およびS14の処理が所定回数だけ繰り返し実行される。これにより、所定回数分の計測データがメモリ24に蓄積される。なお、S42およびS44の処理については後に詳述する。
 所定回数分の計測データを計測するとセンサー計測処理(S42)は終了する。センサー計測処理(S42)が終了すると、データ通信回路20からの暗号化計測データの読出しが許可され、計測データ読取処理5(S22~S30)が行なわれる。
 [電源ON検知処理(S38)]
 次に、図25を参照して、電源ON検知処理(S38)について説明する。
 S802~S806の処理は、図11に示したものと同様であるため、その詳細な説明はここでは繰り返さない。実施の形態2では、さらに、電源23からの電力供給がOFF状態からON状態に変更されたことを確認すると(S804でYes)、電源状態検知部225は、メモリアクセス制御回路25に対し、データ通信回路20によるメモリ24からの暗号化計測データの読出しを禁止させることを指示する計測データ読出し不可信号を出力する(S812)。
 [モード変更処理(S40)]
 図26を参照して、モード変更処理(S40)について説明する。
 S1002~S1006の処理は、図12に示したものと同様であるため、その詳細な説明はここでは繰り返さない。実施の形態2では、さらに、S1006の処理の後、メモリアクセス制御回路25は、計測データ読出し不可信号を受信したか否かを判断する(S1012)。計測データ読出し不可信号を受信した場合には(S1012でYes)、メモリアクセス制御規則更新部26は、データ通信回路20によるメモリ24からの暗号化計測データの読出しを禁止するように、メモリアクセス制御規則(モード)を変更する(S1014)。つまり、メモリアクセス制御規則更新部26は、メモリアクセス制御回路25の内部に設定されているメモリアクセス制御規則を以下のメモリアクセスだけを許可し、それ以外のメモリアクセスは拒否するように更新する。
    (4)センサー回路22からの暗号鍵読出し
    (5)センサー回路22からの暗号化計測データ書込み
 上述したように、このメモリアクセス制御規則の更新により、これ以降は、暗号化計測データを取得することが不可能となる(S22、S24、S28)。
 [センサー計測処理(S42)]
 図27を参照して、センサー計測処理(S42)について説明する。
 S1202~S1210の処理は、図13に示したものと同様であるため、その詳細な説明はここでは繰り返さない。実施の形態2では、さらに、S1210の後、生体データ計測部220が、内部に記憶している計測回数を1つ増加させる(S1212)。なお、計測回数は計測開始時には予め0にセットされているものとする。
 生体データ計測部220は、現在の計測回数が予め定められた閾値を超えているか否かを判断する(S1214)。閾値を超えていると判断した場合には(S1214でYes)、生体データ計測部220は、生体情報の計測を停止する(S1216)。また、計測データ書込み部224は、メモリアクセス制御回路25に対して、生体情報の計測を停止したことを示す計測停止信号を出力する(S1218)。これにより、生体情報の計測が所定回数行なわれた後、生体情報の計測が終了する。なお、センサー回路22が計測を停止するのではなく、メモリアクセス制御回路25が、暗号化計測データをメモリ24に格納しないようにしても良い。
 [計測データ蓄積処理(S44)]
 図28を参照して、計測データ蓄積処理(S44)について説明する。
 S1402~S1410の処理は、図14に示したものと同様であるため、その詳細な説明はここでは繰り返さない。実施の形態2では、さらに、S1410の後、メモリアクセス制御回路25が計測停止信号を受信したか否かを判断する(S1412)。計測停止信号を受信したと判断した場合には(S1412でYes)、メモリアクセス制御規則更新部26は、センサー回路からの暗号化計測データの書込みを禁止し、データ通信回路20からの暗号化計測データの読出しを許可するように、メモリアクセス制御規則(モード)を変更する(S1413、S1414)。つまり、メモリアクセス制御規則更新部26は、メモリアクセス制御回路25の内部に設定されているメモリアクセス制御規則を以下のメモリアクセスだけを許可し、それ以外のメモリアクセスは拒否するように更新する。
    (3)データ通信回路20からの暗号化計測データ読出し
    (4)センサー回路22からの暗号鍵読出し
 これにより、生体情報の計測が終了した後、メモリ24内の暗号化計測データは更新されることがなくなり、データ通信回路20からの暗号化計測データの読出しが可能となる。
 なお、実施の形態2では、計測回数が所定の閾値を越えた時点で、生体情報の計測を停止することとしたが、停止条件はこれに限定されるものではない。例えば、センサー回路22の生体データ計測部220は、タイマー部221のタイマーデータ(カウント値)を監視し、カウント値が所定の閾値を越えた場合に、生体情報の計測を停止する構成としても良い。また、タイマー部221が計測開始からの時間を管理し、生体データ計測部220が計測開始からの時間を監視し、当該時間が所定の閾値を超えた場合に、生体情報の計測を停止する構成としても良い。
 以上説明したように、実施の形態2は、実施の形態1と同様の効果を奏する。
 それに加えて、データ通信回路20により暗号化計測データが読み出されている最中には、センサー回路22によるメモリ24への書込みは行われない。このため、メモリ24内に格納された暗号化計測データの読み出しの漏れを防止できる。
 <変形例>
 なお、本発明は、上記の実施の形態に限定されないのはもちろんである。以下のような場合も本発明に含まれる。
 (1)暗号化、復号に用いる暗号方式は、特定のアルゴリズムに限定されない。RSA(Rivest Shamir Adleman)暗号方式、楕円曲線暗号方式、ElGamal暗号方式などの公開鍵暗号方式であっても良いし、AES(Advanced Encryption Standard)暗号、DES(Data Encryption Standard)暗号などの共通鍵暗号方式であってもよい。各データのデータサイズ、データ個数は、特定のサイズ、個数に限定されない。
 (2)暗号化対象は、上述の実施の形態に記載のデータのみに限らない。例えば、計測データとともに当該計測データが計測を開始してから何番目のデータであるかを示すカウンタ情報を記録するものとし、このカウンタ情報も暗号化するようにしてもよい。さらに、センサータグ2に書き込むデータは、センサータグ2による計測データに限定されない。例えば、患者の氏名や住所、電話番号といった個人情報を書き込んでも良い。その場合、設定される鍵で暗号化してもよい。
 (3)センサータグ2は、2種類以上のセンサー回路を備えていてもよい。即ち、センサータグ2は、2種類以上の計測データを計測して内部に蓄積してもよい。その場合、計測データの種類を識別するための、センサー種別IDを加えて、計測データとともに蓄積するようにしてもよい。また、計測データの種類に依存して、暗号化して保存したり暗号化せずに保存したり設定できても良い。さらに、計測データの種類からその計測データを暗号化するかどうかを判定する規則を、外部から設定できるようにしてもよい。規則の設定処理は、鍵設定時にできるようにしてもよいし、計測途中に外部からの指示により変更できるようにしてもよい。
 (4)上述の実施の形態では、センサータグ2に設定できる暗号鍵の個数を1つとしているが、センサータグ2に複数の暗号鍵を設定できるようにしても良い。この場合、計測データの種類に依存してその計測データの暗号化に用いる暗号鍵を設定してもよいし、その計測データを計測した時間や場所に依存して暗号鍵を変えても良い。さらに、前記のような使用する暗号鍵を決定する規則は、センサータグ2の内部で取得できる仕組みを有していても良いし、センサータグ2の外部から取得してもよい。
 (5)センサータグ2が暗号鍵書込み装置11、計測データ読取装置13の正当性を認証する方法としては、上記の実施の形態に示したハッシュ値を用いる方法に限定されるものではなく、例えば、共通鍵暗号方式や公開鍵暗号方式を用いたチャレンジ―レスポンス式認証であってもよい。また、センサータグ2と暗号鍵書込み装置11または計測データ読取装置13との間の通信データは、SSL(Secure Socket Layer)などを用いて暗号化してもよい。さらに、計測データ読取処理時において、センサータグ2が計測データ読取装置13を認証する認証方式が複数あって、用いた認証方式の種類に依存して、計測データ読取装置13がセンサータグ2から取得できる情報を変えても良い。また、複数の計測データ読取装置が存在した場合に、その装置毎にセンサータグ2が与える情報を変えても良い。
 (6)センサータグ2は、センサー回路22内の生体データ計測部220で生体情報を計測しているが、生体情報の計測機能は、センサータグ2以外の機器が行うようにしてもよい。この場合、センサータグ2以外に、生体情報計測装置があり、生体情報計測装置は、計測した生体データを、センサータグ2に無線通信などで送信する。センサータグ2の受信回路28は、前記送信されてくる生体データを受信する。この場合、センサータグ2を、生体情報計測装置とは別体のセンサータグ2として用いることができる。
 (7)センサータグシステム1の適用例として、暗号鍵書込み装置11と計測データ読取装置13を病院が管理して、暗号鍵設定後のセンサータグ2を患者に提供する、というモデルを説明したが、このモデルに限定されない。例えば、暗号鍵書込み装置11と計測データ読取装置13を、患者が管理して、患者が独自に決定した暗号鍵をセンサータグ2に設定できるようにしてもよい。
 (8)暗号鍵書込み装置11や計測データ読取装置13は、ネットワークを介してサーバに接続していてもよい。このとき、暗号鍵、復号鍵はサーバが保持しており、暗号鍵をセンサータグ2に設定するときや、計測済みセンサータグ2から暗号化計測データを読み取って復号する際には、暗号鍵書込み装置11や計測データ読取装置13は、前記サーバから暗号鍵、復号鍵を取得するようにしてもよい。
 (9)センサータグ2は、計測データを暗号化するだけでなく、計測データの改ざん検出データを生成してもよい。改ざん検出データの生成方法としては、公知の暗号鍵を用いたMAC(Message Authentication Code)生成方法を用いればよい。
 (10)センサータグシステム1は、生体情報の計測というユースケースに限定されるものでない。例えば、輸送中の生鮮食料品の環境管理にも用いることができる。この場合、センサータグ2は、生鮮食料品もしくはそれを輸送しているコンテナに設置して、輸送中の温度、湿度、照度などを計測して蓄積する。また、センサー回路22は、加速度センサーやGPS(Global Positioning System)受信モジュールであり、センサータグシステム1を位置履歴や移動速度を計測する行動追跡システムとして使用してもよい。この場合、センサータグ2を身に着けている被計測者の位置履歴や移動速度を暗号化してセンサータグ2内部に記録することが可能になる。さらに、本発明は、センサー機能付きタグに限定されるものではなく、例えば、設定された暗号鍵を用いたチャレンジ―レスポンス式認証を行うような認証タグであっても良い。つまり、装置内部で暗号処理を行い、その暗号処理に用いる暗号鍵を外部から設定できるような暗号処理装置であれば本発明が適用可能である。
 (11)電源23からセンサー回路22への電力供給をOFF状態からON状態にする方法として、装着されている絶縁体27の除去により行ったが、これに限定されない。例えば、磁気スイッチや赤外線スイッチなどの仕組みにより、電源23からセンサー回路22への電力供給をOFFからONにするようにしてもよい。
 (12)計測データ読取装置13が、センサータグ2から計測データを読み取るための通信方法として、アンテナ21を介した非接触の無線通信を用いたが、これに限定されるものではなく、接触式の通信であってもよい。また、データ読取時の電力供給は、計測データ読取装置13からの起動信号によるものに限られず、センサータグ2に内蔵の電源23から供給されてもよい。
 (13)センサータグ2への暗号鍵設定処理の際、暗号鍵書込み装置11は、センサータグ2に設定する暗号鍵を、暗号鍵書込み装置11内部に保持していても良いし、装置外部から入力されるようにしてもよい。さらに、暗号鍵書込み装置11は、ネットワークを介して、暗号鍵設定処理の際に暗号鍵管理装置に接続し、暗号鍵管理装置から送付を受け、センサータグ2に設定するようにしても良い。
 (14)センサータグ2からの計測データ読取処理の際、計測データ読取装置13は、インターネットなどのネットワークを介してセンサータグ2に接続して、暗号化計測データ群を読み出すようにしても良い。
 (15)電源23からセンサー回路22に電力供給されたときのメモリアクセス制御回路25のメモリアクセス制御規則更新の方法は、上述の実施の形態に記載の方法に限定されない。例えば、メモリアクセス制御規則の異なる二つ以上のメモリアクセス制御回路があって、センサー回路22に電源23からの電力が供給されると、使用するアクセス制御回路が切り替わるようにしてもよい。あるいは、絶縁体27を除去することにより、暗号鍵を書き込むための信号線が切断されて、暗号鍵を書き込むことが物理的に不可能になるようにしても良い。
 (16)電池消耗や電源からの電力供給がOFF状態になることにより、電源23からセンサー回路22へ電力が供給されている状態から供給されていない状態になった場合には、「暗号鍵書込み不可」の状態から「暗号鍵書込み可」の状態になるようにしてもよい。
 (17)上記の各装置は、具体的には、マイクロプロセッサ、ROM、RAM、ハードディスクユニット、ディスプレイユニット、キーボード、マウスなどから構成されるコンピュータシステムである。前記RAMまたはハードディスクユニットには、コンピュータプログラムが記憶されている。前記マイクロプロセッサが、前記コンピュータプログラムにしたがって動作することにより、各装置は、その機能を達成する。ここでコンピュータプログラムは、所定の機能を達成するために、コンピュータに対する指令を示す命令コードが複数個組み合わされて構成されたものである。
 (18)上記の各装置を構成する構成要素の一部または全部は、1個のシステムLSI(Large Scale Integration:大規模集積回路)から構成されているとしてもよい。システムLSIは、複数の構成部を1個のチップ上に集積して製造された超多機能LSIであり、具体的には、マイクロプロセッサ、ROM、RAMなどを含んで構成されるコンピュータシステムである。前記RAMには、コンピュータプログラムが記憶されている。前記マイクロプロセッサが、前記コンピュータプログラムにしたがって動作することにより、システムLSIは、その機能を達成する。
 (19)上記の各装置を構成する構成要素の一部または全部は、各装置に脱着可能なICカードまたは単体のモジュールから構成されているとしてもよい。前記ICカードまたは前記モジュールは、マイクロプロセッサ、ROM、RAMなどから構成されるコンピュータシステムである。前記ICカードまたは前記モジュールは、上記の超多機能LSIを含むとしてもよい。マイクロプロセッサが、コンピュータプログラムにしたがって動作することにより、前記ICカードまたは前記モジュールは、その機能を達成する。このICカードまたはこのモジュールは、耐タンパ性を有するとしてもよい。
 (20)本発明は、上記に示す方法であるとしてもよい。また、これらの方法をコンピュータにより実現するコンピュータプログラムであるとしてもよいし、前記コンピュータプログラムからなるデジタル信号であるとしてもよい。
 また、本発明は、前記コンピュータプログラムまたは前記デジタル信号をコンピュータ読み取り可能な記録媒体、例えば、フレキシブルディスク、ハードディスク、CD-ROM、MO、DVD、DVD-ROM、DVD-RAM、BD(Blu-ray Disc)、半導体メモリなどに記録したものとしてもよい。また、これらの記録媒体に記録されている前記デジタル信号であるとしてもよい。
 また、本発明は、前記コンピュータプログラムまたは前記デジタル信号を、電気通信回線、無線または有線通信回線、インターネットを代表とするネットワーク、データ放送等を経由して伝送するものとしてもよい。
 また、本発明は、マイクロプロセッサとメモリを備えたコンピュータシステムであって、前記メモリは、上記コンピュータプログラムを記憶しており、前記マイクロプロセッサは、前記コンピュータプログラムにしたがって動作するとしてもよい。
 また、前記プログラムまたは前記デジタル信号を前記記録媒体に記録して移送することにより、または前記プログラムまたは前記デジタル信号を前記ネットワーク等を経由して移送することにより、独立した他のコンピュータシステムにより実施するとしてもよい。
 (21)上記実施の形態及び上記変形例をそれぞれ組み合わせるとしてもよい。
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される
 本発明にかかるセンサータグは、内蔵電池からの電力供給の自由なON,OFF機構が実装できない場合であっても、内蔵電池を無駄に消耗せずに、暗号鍵設定が可能になるという特徴を有するので、電池容量や実装サイズの厳しい制約の下で蓄積するセンサー情報の暗号化の必要性があるようなセンサータグの実現に有用である。

Claims (21)

  1.  可搬型のデータ暗号化装置であって、
     記憶部と、
     外部端末から無線の起動信号を受信し、受信した前記起動信号により発生する起電力で動作することにより前記外部端末から暗号鍵を受信し、受信した前記暗号鍵を前記記憶部に格納する無線通信回路と、
     電力を供給する一次電池と、
     前記一次電池からの電力供給をOFF状態からON状態に切替える切替手段と、
     前記一次電池からの電力供給がON状態に切替えられた後、前記一次電池から供給される電力で動作し、前記記憶部から前記暗号鍵を読み出し、読み出した前記暗号鍵を用いて所定の暗号化対象のデータを暗号化し、暗号化されたデータを前記記憶部に格納する暗号化回路と、
     を具備するデータ暗号化装置。
  2.  さらに、前記無線通信回路から前記記憶部へのアクセスと、前記暗号化回路から前記記憶部へのアクセスと、を制御する記憶部制御部を備え、
     前記記憶部制御部は、前記暗号化回路が前記一次電池から供給された電力で動作するとき、前記無線通信回路から前記記憶部へのデータの書込みを禁止する
     ことを特徴とする請求項1記載のデータ暗号化装置。
  3.  前記暗号化回路は、前記データ暗号化装置のユーザの生体データを計測するセンサー回路であって、前記記憶部から前記暗号鍵を読み出し、読み出した前記暗号鍵を用いて前記生体データを暗号化し、暗号化された生体データを前記記憶部に格納する
     ことを特徴とする請求項2記載のデータ暗号化装置。
  4.  さらに、ユーザの生体データを計測する外部の計測装置から、前記生体データを入力として受け付ける入力部を備え、
     前記暗号化回路は、前記生体データを前記所定の暗号化対象のデータとして暗号化し、暗号化された生体データを前記記憶部に格納する
     ことを特徴とする請求項2記載のデータ暗号化装置。
  5.  前記記憶部に前記暗号鍵が記憶されていない状態で、前記一次電池からの電力供給がON状態になって前記暗号化回路が前記一次電池から供給された電力で動作する場合、前記暗号化回路は前記所定の暗号化対象のデータを暗号化せずに前記記憶部に格納する
     ことを特徴とする請求項2記載のデータ暗号化装置。
  6.  前記記憶部に前記暗号鍵が記憶されていない状態で、前記一次電池からの電力供給がON状態になって前記暗号化回路が前記一次電池から供給された電力で動作する場合、前記暗号化回路は前記所定の暗号化対象のデータを破棄して前記記憶部への格納は行わない
     ことを特徴とする請求項2記載のデータ暗号化装置。
  7.  前記切替手段は、前記一次電池からの電力供給をOFF状態からON状態への一方向にのみ切替える
     ことを特徴とする請求項1記載のデータ暗号化装置。
  8.  前記一次電池と前記暗号化回路とは、互いに接触する方向に付勢されており、
     前記切替手段は、付勢された前記一次電池と前記暗号化回路との間に介在する絶縁体である
     ことを特徴とする請求項7記載のデータ暗号化装置。
  9.  前記暗号化対象データは、前記データ暗号化装置のユーザの個人情報である
     ことを特徴とする請求項1記載のデータ暗号化装置。
  10.  前記暗号化回路は、前記データ暗号化装置が付与されている物品の周囲の環境情報を計測するセンサー回路であって、前記記憶部から前記暗号鍵を読み出し、読み出した前記暗号鍵を用いて前記環境情報を暗号化し、暗号化された環境情報を前記記憶部に格納する
     ことを特徴とする請求項1記載のデータ暗号化装置。
  11.  前記無線通信回路は、RFID(Radio Frequency Identification)の通信回路である
     ことを特徴とする請求項1記載のデータ暗号化装置。
  12.  さらに、前記記憶部が前記暗号鍵を記憶していることを示す表示を行う表示部を備える
     ことを特徴とする請求項1記載のデータ暗号化装置。
  13.  さらに、前記無線通信回路から前記記憶部へのアクセスと、前記暗号化回路から前記記憶部へのアクセスと、を制御する記憶部制御部を備え、
     前記記憶部制御部は、前記暗号化回路が前記一次電池から供給された電力で動作するとき、前記暗号化回路から前記記憶部へのデータの書込みを許可し、前記無線通信回路から前記記憶部へのデータの書込みを禁止し、
     前記暗号化回路は、前記データ暗号化装置のユーザの生体データを計測するセンサー回路であって、前記記憶部から前記暗号鍵を読み出し、読み出した前記暗号鍵を用いて前記生体データを暗号化し、暗号化されたデータを前記記憶部に格納し、
     前記記憶部制御部は、
     前記無線通信回路から前記記憶部に格納された前記暗号化されたデータの取得依頼を受けた場合、前記暗号化回路から前記記憶部へのデータの書込みを禁止し、
     前記無線通信回路は、
     前記暗号化回路から前記記憶部へのデータの書込みを禁止された後、前記記憶部に格納された前記暗号化されたデータを所定の宛先に送信する
     ことを特徴とする請求項1記載のデータ暗号化装置。
  14.  前記記憶部制御部は、
     前記無線通信回路から前記記憶部に格納された前記暗号化されたデータの取得依頼を受けた場合、所定期間内に前記暗号化回路から前記記憶部への書き込みがあったか否かを判断し、前記暗号化回路から前記記憶部への書き込みが前記所定期間無かったと判断した場合、前記暗号化回路から前記記憶部へのデータの書込みを禁止する
     ことを特徴とする請求項13記載のデータ暗号化装置。
  15.  前記記憶部制御部は、
     前記無線通信回路から前記記憶部に格納された前記暗号化されたデータの取得依頼を受けた場合、所定期間内に前記暗号化回路から前記記憶部への書き込みがあったか否かを判断し、前記暗号化回路から前記記憶部への書き込みが前記所定期間内にあったと判断した場合、前記暗号化回路から前記記憶部へのデータの書込みを許可し、前記無線通信回路から前記記憶部へのデータの書込みを禁止する状態を維持する
     ことを特徴とする請求項14記載のデータ暗号化装置。
  16.  前記記憶部制御部は、
     前記無線通信回路から前記記憶部に格納された前記暗号化されたデータの取得依頼を受けた場合、前記暗号化回路が動作状態にあることを確認する所定の信号を前記暗号化回路に出力し、所定期間内に応答があったか否かを判断し、前記応答が前記所定期間内に無かったと判断した場合、前記暗号化回路から前記記憶部へのデータの書込みを禁止する
     ことを特徴とする請求項14記載のデータ暗号化装置。
  17.  前記記憶部制御部は、
     前記無線通信回路から前記記憶部に格納された前記暗号化されたデータの取得依頼を受けた場合、前記暗号化回路が動作状態にあることを確認する所定の信号を前記暗号化回路に出力し、所定期間内に応答があったか否かを判断し、前記応答が前記所定期間内にあったと判断した場合、前記暗号化回路から前記記憶部へのデータの書込みを許可し、前記無線通信回路から前記記憶部へのデータの書込みを禁止する状態を維持する
     ことを特徴とする請求項16記載のデータ暗号化装置。
  18.  さらに、前記無線通信回路から前記記憶部へのアクセスと、前記暗号化回路から前記記憶部へのアクセスと、を制御する記憶部制御部を備え、
     前記記憶部制御部は、前記暗号化回路が前記一次電池から供給された電力で動作するとき、前記暗号化回路から前記記憶部へのデータの書込みを許可し、前記無線通信回路から前記記憶部へのデータの書込みを禁止し、
     前記暗号化回路は、前記データ暗号化装置のユーザの生体データを計測するセンサー回路であって、前記記憶部から前記暗号鍵を読み出して前記生体データを暗号化して前記記憶部に格納し、前記生体データを所定回数計測した場合、前記記憶部制御部に、前記生体データを前記所定回数計測した旨を通知し、
     前記記憶部制御部は、前記生体データを前記所定回数計測した旨の通知を受けると、前記暗号化回路から前記記憶部へのデータの書込みを禁止し、
     前記無線通信回路は、前記暗号化回路から前記記憶部へのデータの書込みが禁止された後、前記記憶部に格納された暗号化された生体データを所定の宛先に送信する
     ことを特徴とする請求項1記載のデータ暗号化装置。
  19.  さらに、前記無線通信回路から前記記憶部へのアクセスと、前記暗号化回路から前記記憶部へのアクセスと、を制御する記憶部制御部を備え、
     前記記憶部制御部は、前記暗号化回路が前記一次電池から供給された電力で動作するとき、前記暗号化回路から前記記憶部へのデータの書込みを許可し、前記無線通信回路から前記記憶部へのデータの書込みを禁止し、
     前記暗号化回路は、前記データ暗号化装置のユーザの生体データを計測するセンサー回路であって、前記記憶部から前記暗号鍵を読み出して前記生体データを暗号化して前記記憶部に格納し、
     前記記憶部制御部は、前記一次電池からの電力供給がON状態になってから所定時間が経過すると、前記暗号化回路から前記記憶部へのデータの書込みを禁止し、
     前記無線通信回路は、前記暗号化回路から前記記憶部へのデータの書込みが禁止された後、前記記憶部に格納された暗号化された生体データを所定の宛先に送信する
     ことを特徴とする請求項1記載のデータ暗号化装置。
  20.  外部端末から無線の起動信号を受信し、受信した前記起動信号により発生する起電力で動作する無線通信回路と、データの記憶部と、電力を供給する一次電池と、前記一次電池からの電力供給をOFF状態からON状態に切替える切替手段と、前記一次電池から供給された電力で動作する暗号化回路と、を具備した可搬型のデータ暗号化装置の制御方法であって、
     前記一次電池からの電力供給がOFF状態のとき、前記無線通信回路にて前記外部端末から暗号鍵を受信して前記暗号鍵を前記記憶部に格納し、
     前記切替手段により前記一次電池からの電力供給がOFF状態からON状態に切替えられた後、前記暗号化回路にて前記記憶部から前記暗号鍵を読み出し、所定の暗号化対象のデータを暗号化して前記記憶部に格納する
     ことを特徴とする制御方法。
  21.  可搬型の集積回路であって、
     記憶部と、
     外部端末から無線の起動信号を受信し、受信した前記起動信号により発生する起電力で動作することにより前記外部端末から暗号鍵を受信し、受信した前記暗号鍵を前記記憶部に格納する無線通信回路と、
     電力を供給する一次電池と、
     前記一次電池からの電力供給をOFF状態からON状態に切替える切替手段と、
     前記一次電池からの電力供給がON状態に切替えられた後、前記一次電池から供給される電力で動作し、前記記憶部から前記暗号鍵を読み出し、読み出した前記暗号鍵を用いて所定の暗号化対象のデータを暗号化し、暗号化されたデータを前記記憶部に格納する暗号化回路と、
     を具備する集積回路。
PCT/JP2009/001313 2008-03-25 2009-03-25 データ暗号化装置 WO2009119079A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP09724457A EP2244414A1 (en) 2008-03-25 2009-03-25 Data encryption device
CN2009801097868A CN101978649B (zh) 2008-03-25 2009-03-25 数据加密装置
US12/933,437 US8683229B2 (en) 2008-03-25 2009-03-25 Data encryption device
JP2010505343A JP5436412B2 (ja) 2008-03-25 2009-03-25 データ暗号化装置、制御方法および集積回路

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-077315 2008-03-25
JP2008077315 2008-03-25

Publications (1)

Publication Number Publication Date
WO2009119079A1 true WO2009119079A1 (ja) 2009-10-01

Family

ID=41113290

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/001313 WO2009119079A1 (ja) 2008-03-25 2009-03-25 データ暗号化装置

Country Status (5)

Country Link
US (1) US8683229B2 (ja)
EP (1) EP2244414A1 (ja)
JP (1) JP5436412B2 (ja)
CN (1) CN101978649B (ja)
WO (1) WO2009119079A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010113522A1 (ja) * 2009-04-03 2010-10-07 パナソニック株式会社 測定装置及び測定装置の制御方法
WO2010116678A1 (ja) * 2009-03-30 2010-10-14 パナソニック株式会社 ヘルスケアシステム
JP2015510291A (ja) * 2011-12-15 2015-04-02 ベクトン・ディキンソン・アンド・カンパニーBecton, Dickinson And Company 生理的状態監視システムにおいて共有シークレットを渡してセキュア無線周波数通信リンクを確立するための近接場テレメトリリンク
JP2016106454A (ja) * 2012-10-30 2016-06-16 横河電機株式会社 無線機器、入出力ユニット、無線ユニット、及び無線機器の設定方法
US10212656B2 (en) 2012-10-30 2019-02-19 Yokogawa Electric Corporation Wireless device, sensor unit, wireless unit, and method for setting wireless device
US10218533B2 (en) 2013-05-20 2019-02-26 Yokogawa Electric Corporation Wireless device and interface module
WO2019111471A1 (ja) * 2017-12-08 2019-06-13 ソニー株式会社 情報処理装置及びその制御方法、並びに記録媒体
US10979987B2 (en) 2018-07-30 2021-04-13 Hitachi, Ltd. Sensor system for collecting data using an encryption key
US11998692B2 (en) 2016-11-03 2024-06-04 Resmed Inc. Secure networked respiratory therapy systems

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101824503B1 (ko) * 2011-03-09 2018-02-01 삼성전자 주식회사 저전력 무선 통신 장치
JP5698614B2 (ja) 2011-06-22 2015-04-08 インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation コンテキスト情報処理システム及び方法
US9251900B2 (en) * 2011-11-15 2016-02-02 Sandisk Technologies Inc. Data scrambling based on transition characteristic of the data
KR20140071605A (ko) * 2012-12-04 2014-06-12 삼성전자주식회사 데이터 처리 방법, 센서 장치 및 사용자 단말
US9392446B1 (en) * 2013-08-05 2016-07-12 Sprint Communications Company L.P. Authenticating environmental sensor systems based on security keys in communication systems
JP6237363B2 (ja) * 2014-03-14 2017-11-29 ソニー株式会社 情報処理装置、情報処理方法及びコンピュータプログラム
EP3032453B1 (en) * 2014-12-08 2019-11-13 eperi GmbH Storing data in a server computer with deployable encryption/decryption infrastructure
US20170089968A1 (en) * 2015-09-30 2017-03-30 Sky Align Solutions Private Limited Antenna communication system and antenna integrated smart device thereof
US10912283B2 (en) * 2016-04-02 2021-02-09 Intel Corporation Technologies for managing the health of livestock
JP2017192117A (ja) * 2016-04-15 2017-10-19 富士通株式会社 センサ装置、情報収集システム、および情報収集方法
DE102017109415A1 (de) 2017-05-03 2018-11-08 Krohne Messtechnik Gmbh Elektrisches Gerät und Speichersystem mit einem elektrischen Gerät
US11115215B2 (en) * 2017-07-27 2021-09-07 Fingerprint Cards Ab Methods and devices of enabling authentication of a user of a client device over a secure communication channel based on biometric data
US12069174B2 (en) * 2019-02-08 2024-08-20 Malikie Innovations Limited Secure communication with an authentication process
CN111053575A (zh) * 2019-12-30 2020-04-24 无锡祥生医疗科技股份有限公司 超声设备扫查方法、装置和存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5655919U (ja) * 1979-10-04 1981-05-15
JPH11272822A (ja) * 1998-03-24 1999-10-08 Toshiba Corp 接触式及び非接触式インターフェイスを有する複合icカード及び複合icカード用icモジュール
JP2002230161A (ja) * 2001-02-06 2002-08-16 Nidek Co Ltd 計測情報管理システム
JP2005348306A (ja) * 2004-06-07 2005-12-15 Yokosuka Telecom Research Park:Kk 電子タグシステム、電子タグ、電子タグリーダライタ、およびプログラム
JP2006072565A (ja) * 2004-08-31 2006-03-16 Fuji Electric Holdings Co Ltd セキュリティ端末活性化システム及び活性化端末装置
JP2006197202A (ja) 2005-01-13 2006-07-27 Nec Corp 電子タグを用いた情報システム、および電子タグ
JP2008065360A (ja) * 2005-03-07 2008-03-21 Wise Media Technology Inc 時限付き使い捨てidタグ

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5655919A (en) 1979-10-13 1981-05-16 Mitsubishi Electric Corp Light modulating device
JPH09160899A (ja) * 1995-12-06 1997-06-20 Matsushita Electric Ind Co Ltd 情報サービス処理装置
DE69933963T2 (de) * 1998-03-24 2007-09-20 Kabushiki Kaisha Toshiba IC Karte mit kontaktbehafteten und kontaktlosen Schnittstellen
JP2005128996A (ja) * 2003-09-30 2005-05-19 Dainippon Printing Co Ltd 情報処理装置、情報処理システム及びプログラム
US20050278222A1 (en) * 2004-05-24 2005-12-15 Nortrup Edward H Systems and methods for performing transactions
US20070210923A1 (en) * 2005-12-09 2007-09-13 Butler Timothy P Multiple radio frequency network node rfid tag
US20070244825A1 (en) * 2006-04-14 2007-10-18 Gilbert Semmer Item, accessory kit, and method for software based medical resource activation
CN101101637A (zh) * 2006-07-03 2008-01-09 上海中策工贸有限公司 传感器密码系统
US20090058648A1 (en) * 2007-08-29 2009-03-05 Micron Technology, Inc. Methods and systems of using rfid tags in emergency situations
US8174362B2 (en) * 2008-03-06 2012-05-08 Round Rock Research, Llc Methods and apparatuses to secure data transmission in RFID systems

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5655919U (ja) * 1979-10-04 1981-05-15
JPH11272822A (ja) * 1998-03-24 1999-10-08 Toshiba Corp 接触式及び非接触式インターフェイスを有する複合icカード及び複合icカード用icモジュール
JP2002230161A (ja) * 2001-02-06 2002-08-16 Nidek Co Ltd 計測情報管理システム
JP2005348306A (ja) * 2004-06-07 2005-12-15 Yokosuka Telecom Research Park:Kk 電子タグシステム、電子タグ、電子タグリーダライタ、およびプログラム
JP2006072565A (ja) * 2004-08-31 2006-03-16 Fuji Electric Holdings Co Ltd セキュリティ端末活性化システム及び活性化端末装置
JP2006197202A (ja) 2005-01-13 2006-07-27 Nec Corp 電子タグを用いた情報システム、および電子タグ
JP2008065360A (ja) * 2005-03-07 2008-03-21 Wise Media Technology Inc 時限付き使い捨てidタグ

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010116678A1 (ja) * 2009-03-30 2010-10-14 パナソニック株式会社 ヘルスケアシステム
JP5361993B2 (ja) * 2009-03-30 2013-12-04 パナソニック株式会社 ヘルスケアシステム
US8886936B2 (en) 2009-03-30 2014-11-11 Panasonic Corporation Health care system
WO2010113522A1 (ja) * 2009-04-03 2010-10-07 パナソニック株式会社 測定装置及び測定装置の制御方法
JP5497007B2 (ja) * 2009-04-03 2014-05-21 パナソニック株式会社 測定装置及び測定装置の制御方法
US8938620B2 (en) 2009-04-03 2015-01-20 Panasonic Corporation Measurement device and method of controlling the same
US10039496B2 (en) 2011-12-15 2018-08-07 Becton, Dickinson And Company Near field telemetry link for passing a shared secret to establish a secure radio frequency communication link in a physiological condition monitoring system
JP2015510291A (ja) * 2011-12-15 2015-04-02 ベクトン・ディキンソン・アンド・カンパニーBecton, Dickinson And Company 生理的状態監視システムにおいて共有シークレットを渡してセキュア無線周波数通信リンクを確立するための近接場テレメトリリンク
US10327706B2 (en) 2011-12-15 2019-06-25 Becton, Dickinson And Company Near field telemetry link for passing a shared secret to establish a secure radio frequency communication link in a physiological condition management system
JP2016106454A (ja) * 2012-10-30 2016-06-16 横河電機株式会社 無線機器、入出力ユニット、無線ユニット、及び無線機器の設定方法
US10212656B2 (en) 2012-10-30 2019-02-19 Yokogawa Electric Corporation Wireless device, sensor unit, wireless unit, and method for setting wireless device
US10218533B2 (en) 2013-05-20 2019-02-26 Yokogawa Electric Corporation Wireless device and interface module
US11998692B2 (en) 2016-11-03 2024-06-04 Resmed Inc. Secure networked respiratory therapy systems
WO2019111471A1 (ja) * 2017-12-08 2019-06-13 ソニー株式会社 情報処理装置及びその制御方法、並びに記録媒体
US11642431B2 (en) 2017-12-08 2023-05-09 Sony Corporation Information processing apparatus, control method of the same, and recording medium
US10979987B2 (en) 2018-07-30 2021-04-13 Hitachi, Ltd. Sensor system for collecting data using an encryption key

Also Published As

Publication number Publication date
EP2244414A1 (en) 2010-10-27
CN101978649A (zh) 2011-02-16
US20110022851A1 (en) 2011-01-27
CN101978649B (zh) 2013-11-06
JP5436412B2 (ja) 2014-03-05
US8683229B2 (en) 2014-03-25
JPWO2009119079A1 (ja) 2011-07-21

Similar Documents

Publication Publication Date Title
JP5436412B2 (ja) データ暗号化装置、制御方法および集積回路
KR101460811B1 (ko) 보안 시스템을 위한 바이-프로세서 아키텍처
US8180060B2 (en) Telemedical system
US6957333B2 (en) System and method for encrypted communications between electronic devices
US9679126B2 (en) Decryption device, method for decrypting and method and system for secure data transmission
KR101338323B1 (ko) 사용자 인증 시스템 및 사용자 인증 방법
JP2007329884A (ja) 通信システムおよび通信方法、デバイス、情報処理装置および方法、プログラム、並びに記録媒体
JP2009111974A (ja) ヘルスケアシステム、鍵管理サーバ及びその方法、並びに暗号化装置及びその方法
US8607073B2 (en) Storage medium having an encrypting device
Siddiqi et al. Imdfence: Architecting a secure protocol for implantable medical devices
CN104102863A (zh) 一种身份认证设备及该设备控制方法
WO2015154186A1 (en) Self-authenticating card
EP3643101B1 (en) Wireless authentication systems
WO2018170576A1 (en) Secure wireless communication device and method
KR101467636B1 (ko) 의료정보 교환 시스템, 인증 프록시 서버 및 의료정보 교환 방법
Ukalkar et al. Cloud based NFC health card system
US9129099B1 (en) Portable health record system and method
JP2010066929A (ja) サーバシステム、電子機器、通信端末及び認証方法
JP2010286936A (ja) 半導体素子および認証装置、認証システム
KR101210605B1 (ko) 보안 모드에 따른 수동형 rfid 보안 방법
JP2005311456A (ja) 通信装置および通信システム
Hamze et al. An improvement of NFC-SEC with signed exchanges for an e-prescription-based application
Lee et al. Privacy management for medical service application using mobile phone collaborated with RFID reader
Kim Privacy and security issues for RFID healthcare system in wireless sensor networks
JP4146331B2 (ja) 情報交換方法および情報交換システム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980109786.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09724457

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009724457

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12933437

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010505343

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE