WO2009116645A1 - 光学ガラス、それを用いた精密プレス成形用プリフォームおよびそれを用いた光学素子 - Google Patents

光学ガラス、それを用いた精密プレス成形用プリフォームおよびそれを用いた光学素子 Download PDF

Info

Publication number
WO2009116645A1
WO2009116645A1 PCT/JP2009/055508 JP2009055508W WO2009116645A1 WO 2009116645 A1 WO2009116645 A1 WO 2009116645A1 JP 2009055508 W JP2009055508 W JP 2009055508W WO 2009116645 A1 WO2009116645 A1 WO 2009116645A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
content
optical glass
optical
refractive index
Prior art date
Application number
PCT/JP2009/055508
Other languages
English (en)
French (fr)
Inventor
暁 留野
裕己 近藤
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to JP2010503939A priority Critical patent/JPWO2009116645A1/ja
Publication of WO2009116645A1 publication Critical patent/WO2009116645A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • C03C3/068Glass compositions containing silica with less than 40% silica by weight containing boron containing rare earths

Definitions

  • the present invention relates to an optical glass having a high refractive index and low dispersibility, a precision press molding preform using the same, and an optical element using the same.
  • the precision press molding method includes a direct press method in which molten glass is directly dropped onto a mold and pressed as it is, and a glass preform having a predetermined mass and shape is once formed by dripping from the molten glass (hereinafter, this process is referred to as a process). It is roughly classified into a reheat press method in which the obtained glass preform is put in a mold, reheated and press-molded. In the latter reheat press method, press moldability is also important, but it is also important to make an accurate glass preform (glass preform moldability) from molten glass.
  • a glass mainly composed of B 2 O 3 —La 2 O 3 is conventionally known.
  • this focuses on improving chemical durability, devitrification resistance or press formability, and glass preform formability, that is, low liquidus temperature and resistance to devitrification (devitrification resistance).
  • Characteristics) and an appropriate viscosity for obtaining a predetermined shape are not necessarily sufficient.
  • Patent Document 1 proposes a glass mainly composed of B 2 O 3 —SiO 2 —La 2 O 3 —Gd 2 O 3 —ZnO in order to solve the above problem.
  • Patent Document 1 does not specifically present an optical glass composition having a refractive index of 1.73 or more and an Abbe number of 48 or more, and is not necessarily sufficient in terms of optical characteristics.
  • optical glass of Patent Document 2 and Patent Document 3 although containing both ingredients of La 2 O 3 or La 2 O 3 and Gd 2 O 3, the ratio of La 2 O 3 and Gd 2 O 3 is not optimal Therefore, the liquidus temperature is very high, which is not always sufficient in terms of glass preform moldability.
  • JP 2006-111482 A Japanese Patent No. 3458461 Japanese Patent No. 3458462 JP 2002-249337 A
  • An object of the present invention is to provide an optical glass having optical characteristics of high refractive index and low dispersibility, hardly devitrifying, excellent in preform moldability, low in molding temperature, and excellent in press moldability. To do.
  • the present invention is expressed in mass% based on the following oxide as an essential component.
  • B 2 O 3 18-30% SiO 2 : 3 to 12%, La 2 O 3 : 15-30%, Gd 2 O 3 : 20.5-30% ZnO: 20-30%, Li 2 O: 0.1-2% and ZrO 2 : 0.1-5%
  • the total content of ZnO and Li 2 O is 20 to 30%
  • the refractive index (n d ) is 1.73 to 1.76
  • the Abbe number ( ⁇ d ) is 48 to 51
  • the glass transition temperature An optical glass having (Tg) of 580 ° C. or lower is provided.
  • the present invention is expressed by mass% on the basis of oxide, and as essential components, B 2 O 3 : 18 to 30%, SiO 2 : 3 to 12%, La 2 O 3 : 15 to 30%, Gd 2 O 3 : 20.5 to 30%, ZnO: 20 to 30%, Li 2 O: 0.1 to 2%, and ZrO 2 : 0.1 to 5%, and the total content of Li 2 O and ZnO Of optical glass having a refractive index (n d ) of 1.73 to 1.76, an Abbe number ( ⁇ d ) of 48 to 51, and a glass transition temperature (Tg) of 580 ° C. or less.
  • a glass preform for press molding is provided.
  • this glass has a low glass transition temperature (Tg) of 580 ° C or lower, the press molding temperature is low, the durability of the mold used for press molding is improved, and the molding cycle can be shortened. Excellent in properties.
  • the present glass preferably has a mass ratio of La 2 O 3 / (La 2 O 3 + Gd 2 O 3 ) of 0.4 to 0.6 and a liquidus temperature (T L ) of 1000. It is preferable that it is below °C. By doing so, the present glass has excellent devitrification resistance, and also has a preform moldability of 8 to 15 dPa ⁇ s at a liquidus temperature. Therefore, this glass is excellent in three balances of an optical characteristic, glass preform moldability, and press moldability as glass for an aspherical large diameter lens.
  • B 2 O 3 is a component that forms a glass skeleton and lowers the liquidus temperature TL , and is an essential component.
  • the content of B 2 O 3 is 18 to 30% by mass (hereinafter, mass% is simply abbreviated as%). If the B 2 O 3 content is less than 18%, vitrification becomes difficult, or the liquidus temperature TL increases. In order to lower the liquidus temperature TL , the B 2 O 3 content is preferably 18.5% or more. When the B 2 O 3 content is 19% or more, the liquidus temperature is lowered, and the Abbe number can be increased to 48 to 51. Therefore, the B 2 O 3 content is more preferably 19.5% or more. And particularly preferred.
  • B 2 O 3 refractive index n d decreases in content of 30 percent, or chemical durability such as water resistance is also likely to deteriorate.
  • the B 2 O 3 content is preferably 28% or less, the B 2 O 3 content is more preferably 27% or less, and the B 2 O 3 content is 26%. The following is particularly preferable.
  • SiO 2 is a component that forms a glass skeleton, stabilizes the glass, or suppresses devitrification at the time of molding a glass preform, as in B 2 O 3, and is an essential component.
  • the SiO 2 content is 3 to 12%. It suppresses devitrification when the glass preform, or from the viewpoint of viscosity adjustment, preferably when the SiO 2 content is 3.5% or more, further preferable to set the SiO 2 content of 4% or more. For the same reason, the SiO 2 content is particularly preferably 4.5% or more.
  • the SiO 2 content exceeds 12%, there is a possibility that the press molding temperature becomes too high, the refractive index n d becomes too low.
  • the SiO 2 content is less 11.5%, further preferably SiO 2 content is 11% or less.
  • the SiO 2 content is particularly preferably 10.5% or less.
  • La 2 O 3 is higher refractive index n d, a component that improves the chemical durability is an essential component.
  • the La 2 O 3 content is 15 to 30%. Content of La 2 O 3, there is a possibility that a refractive index n d becomes too low at less than 15%.
  • the La 2 O 3 content is preferably 18% or more, and the La 2 O 3 content is more preferably 19% or more.
  • the content of La 2 O 3 is particularly preferably 20% or more.
  • the La 2 O 3 content is preferably 27% or less, and the La 2 O 3 content is more preferably 26% or less.
  • the La 2 O 3 content is particularly preferably 25% or less.
  • Gd 2 O 3 is increased similarly refractive index n d and La 2 O 3, is a component that improves the chemical durability is an essential component.
  • the content of Gd 2 O 3 is 20.5 to 30%.
  • the content of Gd 2 O 3 is the refractive index n d is lowered less than 20.5%.
  • n d is preferably When the content of Gd 2 O 3 21% or more, more preferably when the content of Gd 2 O 3 22% or more, the content of Gd 2 O 3 22.5 % Or more is particularly preferable.
  • the Gd 2 O 3 content is preferably 29% or less, and the Gd 2 O 3 content is more preferably 28% or less.
  • the Gd 2 O 3 content is particularly preferably 27% or less.
  • the effect of lowering the liquidus temperature TL can be obtained.
  • Optimizing the ratio of La 2 O 3 and Gd 2 O 3 has the effect of greatly reducing the liquidus temperature TL . That is, satisfying the relationship that the mass ratio of La 2 O 3 / (La 2 O 3 + Gd 2 O 3 ) (hereinafter, this ratio is abbreviated as La ratio) is 0.4 to 0.6. It is preferable from the viewpoint of the phase temperature TL .
  • the La ratio is more preferably 0.41 to 0.55, and the La ratio is particularly preferably 0.42 to 0.54.
  • ZnO is a component that stabilizes the glass and lowers the molding temperature or melting temperature, and is an essential component.
  • the ZnO content is 20 to 30%.
  • the ZnO content is 29.5 to 40 mol% in terms of mol%.
  • the ZnO content is less than 20%, the glass becomes unstable and the chemical durability decreases.
  • the ZnO content is preferably 20.5% or more, and more preferably 21.0% or more.
  • it is particularly preferable that the ZnO content is 21.6% or more.
  • the ZnO content is preferably 27% or less, and the ZnO content is more preferably 26% or less. From the viewpoint of resistance to devitrification, the content of ZnO is particularly preferably 25% or less.
  • Li 2 O is a component that stabilizes the glass and lowers the molding temperature and the melting temperature, and is an essential component.
  • the Li 2 O content is 0.1 to 2%. If the Li 2 O content is less than 0.1%, the molding temperature or the melting temperature may be too high.
  • the Li 2 O content is preferably 0.2% or more, and the Li 2 O content is more preferably 0.3% or more. For the same reason, it is particularly preferable that the Li 2 O content is 0.4% or more.
  • the Li 2 O content is preferably 1.8% or less, and the Li 2 O content is more preferably 1.6% or less.
  • the Li 2 O content is particularly preferably 1.5% or less.
  • both components Li 2 O and ZnO are essential components.
  • the total content of ZnO and Li 2 O (hereinafter referred to as the total amount of ZnLi) is 20 to 30%. If the ZnLi content is less than 20%, the glass transition temperature will be insufficiently reduced. On the other hand, if the ZnLi content exceeds 30%, the viscosity at the liquidus temperature will be reduced.
  • the ZnLi content is preferably 20.3% or more, the ZnLi content is more preferably 20.5% or more, and the ZnLi content is particularly preferably 21% or more.
  • the ZnLi content is preferably 28% or less, more preferably 27% or less, and particularly preferably 26% or less.
  • ZrO 2 stabilizes the glass, increasing the refractive index n d, a component to suppress devitrification during glass preform, it is an essential component.
  • the ZrO 2 content is 0.1 to 5%. If the ZrO 2 content exceeds 5%, the molding temperature may be too high, or the Abbe number ⁇ d may be too small.
  • the ZrO 2 content is more preferably 4.5% or less, and the ZrO 2 content is further preferably 4% or less. It is particularly preferable that the ZrO 2 content is 3.5% or less.
  • the ZrO 2 content is preferably 0.2% or more, and more preferably ZrO 2 content is 0.3% or more.
  • the ZrO 2 content is particularly preferably 0.4% or more.
  • a Ta 2 O 5 is an essential component, a glass to stabilize, to increase the refractive index n d, a component to suppress devitrification during glass preform contains 0-5% May be. If the Ta 2 O 5 content exceeds 5%, the molding temperature may become too high, or the Abbe number ⁇ d may become too small. Ta 2 O 5 is also a component having a higher cost than other components. Therefore, when added, the content is more preferably 4% or less, and particularly preferably 3% or less.
  • a glass to stabilize in the present glass, but not in WO 3 is an essential component, a glass to stabilize, to increase the refractive index n d, a component to suppress devitrification during glass preform, also contain 0-5% Good. If the WO 3 content exceeds 5%, the molding temperature increases, and the Abbe number ⁇ d may decrease. Preferably, the WO 3 content is 4% or less. WO 3 is more easily colored than other components and may reduce the transmittance. Therefore, when added, it is more preferably 3% or less, and particularly preferably 2.5% or less.
  • Nb 2 O 5 is not an essential component to stabilize the glass, to increase the refractive index n d, it contains 0-5% for such suppress devitrification during glass preform May be. If the Nb 2 O 5 content exceeds 5%, the Abbe number ⁇ d may be too small, or the transmittance may be reduced.
  • the Nb 2 O 5 content is more preferably 5% or less, and the Nb 2 O 5 content is particularly preferably 4% or less.
  • Y 2 is O 3
  • Yb 2 O 3 is not an Any essential component to increase the refractive index n d, respectively 0-20% for such suppress devitrification during glass preform You may contain. However, if these contents exceed 20%, the glass becomes unstable and the molding temperature may become too high.
  • the content of Y 2 O 3 or Yb 2 O 3 is more preferably 19% or less, and the content of Y 2 O 3 or Yb 2 O 3 is particularly preferably 18% or less.
  • Al 2 O 3 is not an essential component to stabilize the glass, purpose may contain 0-5% of such to adjust the refractive index n d. When the content of Al 2 O 3 exceeds 5%, the Abbe number ⁇ d may be too low.
  • the content of Al 2 O 3 is more preferably 4% or less, and the content of Al 2 O 3 is particularly preferably 3% or less.
  • This glass may contain 0-2% of Sb 2 O 3 for the purpose of clarification.
  • the present glass consists essentially of the above components, and the total content of essential components and optional components is preferably 95% or more from the viewpoint of balance of various properties, and the total content is more preferably 96% or more.
  • the total content is particularly preferably 97% or more.
  • each component of 2 O may be contained in a total amount of 0 to 5%.
  • Na 2 O, K 2 O it is preferred not to contain any of the components of Rb 2 O or Cs 2 O.
  • T g may contain SnO 2 0 to 4%.
  • TeO 2 may be contained in an amount of 0 to 6%.
  • the content of TeO 2 exceeds 6%, the glass becomes unstable, and the transmittance may be remarkably reduced.
  • substantially none of Bi 2 O 3 , PbO, TlO 2 , F and As 2 O 3 is contained in order to reduce the environmental load. Containing fluorine increases the coefficient of thermal expansion, adversely affects releasability and moldability, and the components tend to volatilize, making the composition of optical glass non-uniform and durability of molds such as release films. There are problems such as lowering the sex.
  • the Fe 2 O 3 content in the present glass is preferably 0.0001% or less.
  • the optical properties of the glass is 1.73 to 1.76.
  • refractive index n d is 1.735 or more, reduction of the lens, preferably to suit thinner, but more preferably a 1.74 or more.
  • Refractive index n d is preferably a 1.755 below.
  • the Abbe number ⁇ d of the present glass is 48 to 51.
  • the Abbe number ⁇ d of the present glass is preferably 48.5 or more because it is suitable for reducing the size and thickness of the lens, and the Abbe number ⁇ d is more preferably 49 or more.
  • Glass transition point T g of the present glass is 580 ° C. or less. Since the glass transition point Tg is 580 ° C. or lower, the press molding temperature can be lowered, and the durability of the protective film and the like formed on the mold surface is improved. Preferably the glass transition point T g is at 575 ° C. or less, more preferably a glass transition point T g is at 570 ° C. or less.
  • the liquidus temperature TL of the present glass is preferably 1000 ° C. or lower. If the liquidus temperature TL exceeds 1000 ° C., the molded object tends to be devitrified at the time of glass preform molding, and the preform moldability may be deteriorated.
  • the liquid phase temperature TL is more preferably 995 ° C. or lower, and the liquid phase temperature TL is particularly preferably 990 ° C. or lower.
  • the liquidus temperature TL is defined as the maximum temperature at which a crystal solidified product is not generated from the glass melt when it is kept at a certain temperature.
  • the glass viscosity at the liquidus temperature is less than 6 dPa ⁇ s, there is a risk that when the gas is blown at the time of molding the glass preform, the gas enters into the foam from the bottom of the glass preform, resulting in a defective product. .
  • the glass viscosity at the liquidus temperature exceeds 15 dPa ⁇ s, there is a risk of quality deterioration due to yarn residue at the time of cutting. Accordingly, the glass viscosity at the liquidus temperature is preferably 6 to 15 dPa ⁇ s.
  • the glass After the glass is melted in a melting tank or the like provided with a discharge nozzle, it is dropped from the discharge nozzle and cooled to obtain a press molding preform having a predetermined mass.
  • the obtained preform is set in a precision press-molding mold (typically composed of an upper mold, a lower mold, and a body mold), heated to a deformable temperature, pressurized, cooled, The optical element is taken out.
  • optical element of the present glass various lenses for digital still cameras, digital video cameras, camera-equipped mobile phones and the like, particularly aspherical lenses, are preferable.
  • Examples 1 to 16 are examples of the present application, and examples 17 to 19 are comparative examples of the present application.
  • Example 17 is Example 4 of Patent Document 1.
  • Example 18 is Example 7 of Patent Document 2.
  • Example 19 is Example 7 of Patent Document 3.
  • Examples 17 and 18 were devitrified and did not vitrify, and thus physical properties as glass could not be measured.
  • the following raw materials were prepared and put in a platinum crucible so as to obtain a glass having the composition shown in the table, and melted at 1100 to 1300 ° C. for 1 hour.
  • the molten glass was homogenized by stirring for 0.5 hour with a platinum stirrer.
  • the homogenized molten glass was poured out and formed into a plate shape, held at a temperature of T g + 10 ° C. for 4 hours, and then gradually cooled to room temperature at a cooling rate of ⁇ 60 ° C./h.
  • the part indicated by “ ⁇ ” in the chemical composition indicates that there is no corresponding component.
  • reagents manufactured by Kanto Chemical Co. were used as boron oxide, aluminum oxide, lithium carbonate, zirconium dioxide, zinc oxide, antimony oxide, sodium carbonate, barium carbonate and arsenic oxide.
  • lanthanum oxide, gadolinium oxide and yttrium oxide reagents with a purity of 99.9% manufactured by Shin-Etsu Chemical Co., Ltd. were used.
  • tantalum oxide silicon dioxide, tungsten oxide, niobium oxide, and ytterbium oxide, reagents having a purity of 99.9% or more manufactured by Kojundo Chemical Laboratory Co., Ltd. were used.
  • Optical constant (refractive index n d , Abbe number ⁇ d ): A sample processed into a rectangular parallelepiped shape with a side of 20 mm and a thickness of 10 mm was used with a precision refractometer (trade name: KPR-2, manufactured by Kalnew Optical Co., Ltd.) Measured. Refractive index n d was measured for the sample obtained by the slow cooling temperature decrease rate -60 ° C. / h. The Abbe number ⁇ d was obtained by the calculation formula ⁇ (n d ⁇ 1) / (n F ⁇ n C ) ⁇ .
  • Thermal characteristics Ascending 5 ° C./minute using a thermomechanical analyzer (trade name: DILATOMETER 5000, manufactured by Mac Science, Inc.) using a sample processed into a cylindrical shape having a diameter of 5 mm and a length of 20 mm Measured at temperature rate.
  • Liquid phase temperature T L A sample processed into a cube shape having a side of 10 mm is placed on a platinum plate, left in an electric furnace set at a constant temperature for 1 hour, and taken out with a 10 ⁇ optical microscope. The maximum temperature at which no crystal precipitation was observed was defined as the liquidus temperature TL .
  • Viscosity measurement at liquidus temperature TL Measured based on JIS Z8803 using a coaxial double cylindrical rotational viscometer.
  • An optical glass suitable as an optical component such as a digital camera, particularly as an aspherical lens having a large diameter can be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)

Abstract

 本発明は、下記酸化物基準の質量%表示で、必須成分として、B:18~30%、SiO:3~12%、La:15~30%、Gd:20.5~30%、ZnO:20~30%、LiO:0.1~2%、およびZrO:0.1~5%を含有し、ZnOとLiOの合計含有量が20~30%であり、屈折率(n)が1.73~1.76、アッベ数(ν)が48~51、ガラス転移温度(Tg)が580°C以下である光学ガラスに関する。上記のような構成とすることで、高屈折率・低分散性の光学特性を有し、失透しにくくプリフォーム成形性に優れ、しかも、成形温度が低く、プレス成形性にも優れた光学ガラスが提供される。

Description

光学ガラス、それを用いた精密プレス成形用プリフォームおよびそれを用いた光学素子
 本発明は、高屈折率で低分散性の光学ガラス、それを用いた精密プレス成形用プリフォームおよびそれを用いた光学素子に関する。
 近年、高精細かつ小型のデジタルカメラやカメラ付携帯電話等の普及により、光学系の軽量化・小型化の要求が急速に高まっている。それらの要求に応えるため、高機能のガラス製非球面レンズを使用した光学設計が主流となっている。特に、高屈折率で低分散特性を示すガラスを使用した大口径の非球面レンズは、光学設計上重要なものとなっている。 また、非球面レンズの製造法としては、生産性と製造原価の点から研磨工程を必要としない精密プレス成形法が主流となっている。精密プレス成形法は、溶融ガラスを直接、型に滴下してそのままプレスするダイレクトプレス法と、溶融ガラスから滴下等により、一度、所定の質量、形状を有するガラスプリフォームとし(以下、この工程をガラスプリフォーム成形と称す)、得られたガラスプリフォームを型内に入れて再加熱、プレス成形するリヒートプレス法とに大別される。後者のリヒートプレス法では、プレス成形性も重要であるが、溶融ガラスから、精度のよいガラスプリフォームを作ること(ガラスプリフォーム成形性)も重要である。
 高屈折率で低分散特性を示すガラスとしては、従来、B-Laを主成分とするガラスが知られている。しかしながら、これは化学的耐久性、耐失透性またはプレス成形性の向上に重点がおかれており、ガラスプリフォーム成形性、すなわち、液相温度が低く、失透しにくいこと(耐失透性)と、所定の形状とするための適正な粘性(液相温度での粘性が、例えば、6~15×dPa・s)を有すること等、については必ずしも充分ではない。
 一方、光学ガラスとしては、プレス成形温度が低いほど、型の耐久性が向上し、成形サイクルが短く生産性が上がるため、プレス成形温度の低いことも要求される。特許文献1には、上記問題を解決するためにB-SiO-La-Gd-ZnOを主成分とするガラスが提案されている。しかしながら、特許文献1には、屈折率1.73以上かつアッベ数48以上の光学ガラス組成は具体的に提示されておらず、光学特性の面で必ずしも充分ではない。
 また、特許文献2には、B-La3-ZnO-LiOを必須成分とし、n=1.66~1.77、ν=43~55、屈伏点が620℃以下で、高屈折率・低分散特性を示すガラスが提案されている。同様に、特許文献3には、B-La3-Gd-ZnO-LiOを必須成分とし、n=1.68~1.8、ν=44~53、屈伏点が630℃以下で、高屈折率・低分散特性を示すガラスが提案されている。しかしながら、特許文献2および特許文献3の光学ガラスは、LaもしくはLaとGdの両成分を含有するが、LaとGdの比率が最適でないため、液相温度が非常に高く、ガラスプリフォーム成形性の点で必ずしも充分なものではない。
 さらに、特許文献4には、B-SiO-La-Gd-ZnO-ZrOを必須成分とし、n=1.72~1.83、ν=45~55、ガラス転移温度が630℃以下で、高屈折率・低分散特性を示すガラスが提案されている。しかしながら、特許文献4に提案されている光学ガラスでは、成形温度の低下に寄与する成分であるLiOとZnOの合計含有量が20質量%未満であるため、ガラス転移点が高く、プレス成形性の点で必ずしも充分ではない。
特開2006-111482号公報 特許第3458461号公報 特許第3458462号公報 特開2002-249337号公報
 本発明は、高屈折率・低分散性の光学特性を有し、失透しにくくプリフォーム成形性に優れ、しかも、成形温度が低く、プレス成形性にも優れた光学ガラスの提供を目的とする。
 本発明は、下記酸化物基準の質量%表示で、必須成分として、
:18~30%、
SiO:3~12%、
La:15~30%、
Gd:20.5~30%、
ZnO:20~30%、
LiO:0.1~2%、および
ZrO:0.1~5%
を含有し、ZnOとLiOの合計含有量が20~30%であり、屈折率(n)が1.73~1.76、アッベ数(ν)が48~51、ガラス転移温度(Tg)が580℃以下である光学ガラスを提供する。
 さらに、本発明は、酸化物基準の質量%表示で、必須成分として、B:18~30%、SiO:3~12%、La:15~30%、Gd:20.5~30%、ZnO:20~30%、LiO:0.1~2%、およびZrO:0.1~5%を含有し、LiOとZnOの合計含有量が20~30%であり、屈折率(n)が1.73~1.76、アッベ数(ν)が48~51、ガラス転移温度(Tg)が580℃以下である光学ガラスからなるプレス成形用ガラスプリフォームを提供する。
 本発明の光学ガラス(以下、本ガラスという)は、屈折率n=1.73~1.76と高屈折率であり、しかも、アッベ数ν=48~51と低分散性であることから、非球面の大口径レンズ用として好適な光学特性を有する。
 本ガラスは、ガラス転移温度(Tg)が580℃以下と低いため、プレス成形温度が低く、プレス成形に使用する型の耐久性が向上し、しかも、成形サイクルを短くできるため、プレス成形の生産性にも優れる。
 さらに、本ガラスは、La/(La+Gd)の質量比が0.4~0.6であることが好ましく、また、液相温度(T)が1000℃以下であることが好ましい。そうすることにより、本ガラスは耐失透性に優れ、しかも液相温度での粘性が8~15dPa・sとプリフォーム成形性にも優れる。したがって、本ガラスは、非球面の大口径レンズ用ガラスとして、光学特性、ガラスプリフォーム成形性およびプレス成形性の3つのバランスに優れている。
 本ガラスの各成分範囲を設定した理由を以下に説明する。
  本ガラスにおいて、Bはガラス骨格を形成し、また液相温度Tを低下させる成分であり、必須成分である。本ガラスにおいて、B含有量は18~30質量%(以下、質量%を単に%と略す)である。B含有量が18%未満ではガラス化が困難になるか、または液相温度Tが高くなる。液相温度Tを低くするためにはB含有量を18.5%以上とすると好ましい。B含有量が19%以上であると、液相温度が低下するとともに、アッベ数を48~51と高くできるため、さらに好ましく、B含有量が19.5%以上であると特に好ましい。
 一方、本ガラスでは、B含有量が30%超では屈折率nが低くなり、または耐水性等の化学的耐久性が低下するおそれもある。本ガラスにおいて、屈折率の点から、B含有量が28%以下であると好ましく、B含有量を27%以下であるとさらに好ましく、B含有量を26%以下とすると特に好ましい。
 本ガラスにおいて、SiOはBと同様、ガラス骨格を形成し、ガラスを安定化させ、または、ガラスプリフォーム成形時の失透を抑制する成分であり、必須成分である。本ガラスにおいて、SiO含有量は3~12%である。ガラスプリフォーム成形時の失透を抑制したり、または粘性調整の観点からは、SiO含有量を3.5%以上とすると好ましく、SiO含有量を4%以上とするとさらに好ましい。同様の理由で、SiO含有量を4.5%以上とすると特に好ましい。
 一方、SiO含有量が12%を超えると、プレス成形温度が高くなり過ぎたり、屈折率nが低くなりすぎるおそれがある。SiO含有量が11.5%以下であると好ましく、SiO含有量が11%以下であるとさらに好ましい。同様の理由で、SiO含有量が10.5%以下であると特に好ましい。
 本ガラスにおいて、Laは屈折率nを高くし、化学的耐久性を向上させる成分であり、必須成分である。本ガラスにおいて、La含有量は15~30%である。La含有量が、15%未満では屈折率nが低くなり過ぎるおそれがある。La含有量が18%以上であると好ましく、La含有量が19%以上であるとさらに好ましい。La含有量が20%以上であると特に好ましい。
 一方、La含有量が30%を超えるとガラス化しにくくなり成形温度が高くなったり、液相温度Tが高くなるおそれがある。La含有量が27%以下であると好ましく、La含有量が26%以下であるとより好ましい。La含有量が25%以下であると特に好ましい。
 本ガラスにおいて、GdはLaと同様に屈折率nを高くし、化学的耐久性を向上させる成分であり、必須成分である。本ガラスにおいて、Gd含有量は20.5~30%である。Gd含有量が20.5%未満では屈折率nが低くなる。屈折率nを高くするためには、Gd含有量を21%以上とすると好ましく、Gd含有量を22%以上とするとさらに好ましく、Gd含有量を22.5%以上とすると特に好ましい。
 一方、Gd含有量が30%を超えるとガラス化しにくくなり成形温度が高くなったり、液相温度Tが高くなるおそれがある。Gd含有量が29%以下であると好ましく、Gd含有量が28%以下であるとさらに好ましい。Gd含有量が27%以下であると特に好ましい。
 本ガラスにおいて、LaとGdの両成分を含有することにより、液相温度Tを下げる効果が得られる。LaとGdの比を最適化すると、液相温度Tを大幅に下げる効果がある。すなわち、La/(La+Gd)の質量比(以下、この比をLa比と略称する)が0.4~0.6となる関係を満たすことが、液相温度Tの観点から好ましい。La比が0.41~0.55であるとさらに好ましく、La比が0.42~0.54であると特に好ましい。
 本ガラスにおいて、ZnOはガラスを安定化させ、成形温度または溶解温度を低下させる成分であり、必須成分である。本ガラスにおいて、ZnO含有量は20~30%である。また、ZnO含有量は、モル%表示で29.5~40モル%である。
 ZnO含有量が20%未満ではガラスが不安定になり、化学的耐久性が低下する。成形温度および溶解温度の点からは、ZnO含有量を20.5%以上とすると好ましく、ZnO含有量を21.0%以上とするとさらに好ましい。同様の理由で、ZnO含有量を21.6%以上とすると特に好ましい。
 一方、本ガラスにおいて、ZnO含有量が30%を超えると、ガラスの安定性が悪くなり、失透しやすくなる。ZnO含有量が27%以下であると好ましく、ZnO含有量が26%以下であるとさらに好ましい。耐失透性の点から、ZnO含有量を25%以下とすると特に好ましい。
 本ガラスにおいて、LiOは、ガラスを安定化させ、成形温度、溶解温度を低下させる成分であり、必須成分である。本ガラスにおいて、LiO含有量は0.1~2%である。LiO含有量が0.1%未満では、成形温度または溶解温度が高くなり過ぎるおそれがある。LiO含有量が0.2%以上であると好ましく、LiO含有量が0.3%以上であるとさらに好ましい。同様の理由で、LiO含有量を0.4%以上とすると特に好ましい。
 一方、LiO含有量が2%を超えると失透しやすくなり、化学的耐久性の低下や溶解時の成分の揮散が激しくなるおそれがある。LiO含有量が1.8%以下であると好ましく、LiO含有量が1.6%以下であるとさらに好ましい。LiO含有量が1.5%以下であると特に好ましい。
 本ガラスにおいては、ガラスプリフォーム成形性とプレス成形性とを両立させるため、LiOおよびZnOの両成分を必須成分としている。本ガラスにおいて、ZnOとLiOの合計含有量(以下、ZnLi合量という)は、20~30%である。ZnLi合量が20%未満であるとガラス転移温度の低下が不十分となり、一方、ZnLi合量が30%を超えると液相温度における粘性が低下してしまう。
 本ガラスにおいて、ZnLi合量を20.3%以上とすると好ましく、ZnLi合量を20.5%以上とするとさらに好ましく、ZnLi合量を21%以上とすると特に好ましい。一方、ZnLi合量が28%以下とすると好ましく、ZnLi合量を27%以下とするとさらに好ましく、ZnLi合量を26%以下とすると特に好ましい。
 本ガラスにおいて、ZrOはガラスを安定化させる、屈折率nを高くする、ガラスプリフォーム成形時の失透を抑制する成分であり、必須成分である。本ガラスにおいて、ZrO含有量は0.1~5%である。ZrO含有量が5%を超えると成形温度が高くなり過ぎたり、アッベ数νが小さくなりすぎるおそれがある。ZrO含有量が4.5%以下であるとより好ましく、ZrO含有量が4%以下であるとさらに好ましい。ZrO含有量が3.5%以下であると特に好ましい。
 一方、添加の効果を得るためには、ZrO含有量が0.2%以上であると好ましく、ZrO含有量が0.3%以上であるとさらに好ましい。同様の理由で、ZrO含有量が0.4%以上であると特に好ましい。
 本ガラスにおいて、Taは必須成分ではないが、ガラスを安定化させ、屈折率nを高くする、ガラスプリフォーム成形時の失透を抑制する成分であり、0~5%含有してもよい。Ta含有量が5%を超えると、成形温度が高くなりすぎたり、アッベ数νが小さくなりすぎるおそれがある。また、Taは他の成分に比べて原価が高い成分でもあるので、添加する場合には、含有量を4%以下とするとさらに好ましく、含有量を3%以下とすると特に好ましい。
 本ガラスにおいて、WOは必須成分ではないが、ガラスを安定化させ、屈折率nを高くする、ガラスプリフォーム成形時の失透を抑制する成分であり、0~5%含有してもよい。WO含有量が5%を超えると成形温度が高くなり、アッベ数νが小さくなるおそれがある。好ましくはWO含有量が4%以下である。WOは他の成分に比べて着色しやすく透過率を低下させるおそれもあるので、添加する場合には、3%以下とするとさらに好ましく、含有量を2.5%以下とすると特に好ましい。
 本ガラスにおいて、Nbは必須成分ではないが、ガラスを安定化させる、屈折率nを高くする、ガラスプリフォーム成形時の失透を抑制する等のために0~5%含有してもよい。Nb含有量が5%を超えると、アッベ数νが小さくなりすぎる、または透過率が低下するおそれがある。Nb含有量が5%以下であるとさらに好ましく、Nb含有量が4%以下であると特に好ましい。
 本ガラスにおいて、Y、Ybはいずれも必須成分ではないが、屈折率nを高くする、ガラスプリフォーム成形時の失透を抑制する等のためにそれぞれ0~20%含有してもよい。しかしながら、これらの含有量がそれぞれ20%を超えると、ガラスがかえって不安定になり、成形温度が高くなり過ぎるおそれがある。YまたはYbの含有量がそれぞれ19%以下であるとさらに好ましく、YまたはYbの含有量がそれぞれ18%以下であると特に好ましい。
 本ガラスにおいて、Alは必須成分ではないが、ガラスを安定化させる、屈折率nの調整をする等の目的で0~5%含有しても良い。Alの含有量が5%を超えると、アッベ数νが低くなりすぎるおそれがある。Alの含有量が4%以下であるとより好ましく、Alの含有量が3%以下であると特に好ましい。
 本ガラスにおいて、清澄等の目的で、Sbを0~2%含有してもよい。
 本ガラスは本質的に上記成分からなり、必須成分と任意成分との合計含有量が95%以上であると諸特性のバランスの点で好ましく、前記合計含有量が96%以上であるとさらに好ましく、前記合計含有量が97%以上であると特に好ましい。なお、本発明の目的を損なわない範囲で、それぞれの要求特性に応じて、その他の成分を含有してもよい。そのような成分を含有する場合それら成分の含有量の合計は、好ましくは5%以下である。
 上記の成分以外としては、例えば、ガラスをより安定化させる、屈折率nの調整、比重調整、溶解温度の低下等の目的のために、NaO、KO、RbOまたはCsOの各成分を合量で0~5%含有してもよい。NaO、KO、RbOまたはCsOの各成分の合量が5%を超えると、ガラスが不安定になる、屈折率nが低くなる、硬度が小さくなる、または化学的耐久性が低下するおそれがある。なお、硬度または化学的耐久性を重視する場合には、NaO、KO、RbOまたはCsOの各成分をいずれも含有しないことが好ましい。
 同様に、例えば、高屈折率nとガラス転移点Tを重視する場合には、SnOを0~4%まで含有してもよい。同様に、高屈折率を重視する場合には、TeOを0~6%含有してもよい。TeOの含有量が6%を超えるとガラスが不安定になる、透過率が著しく低下するおそれがある。ただし、アッベ数νを大きくしたい場合には、TeOを含有しないことが好ましい。
 本ガラスにおいては、環境面での負荷を減少させるため、Bi、PbO、TlO、F、Asをいずれも実質的に含有しないことが好ましい。フッ素を含有すると、熱膨張係数を大きくし、離型性、成形性に悪影響を与えるほか、成分が揮散しやすいことから、光学ガラスの組成が不均一になりやすく、離型膜など型の耐久性を下げるなどの問題がある。
 本ガラスにおいては、着色の防止等の理由により、Feを含有しないことが好ましいが、通常は原料から不可避的に混入する。その場合でも、本ガラスにおいてFe含有量は0.0001%以下とすることが好ましい。
 本ガラスの光学特性としては、屈折率nが1.73~1.76である。屈折率nが1.735以上であると、レンズの小型化、薄型化に適するため好ましく、が1.74以上であるとさらに好ましい。一方、本ガラスの屈折率nが1.76を超えるとアッベ数が小さくなりすぎ、またその他の熱物性に悪影響を及ぼすため好ましくない。屈折率nが1.755以下であると好ましい。
 本ガラスのアッベ数νは、48~51である。本ガラスのアッベ数νが48.5以上であるとレンズの小型化、薄型化に適するため好ましく、アッベ数νが49以上であるとさらに好ましい。
 本ガラスのガラス転移点Tは、580℃以下である。ガラス転移点Tが580℃以下であるため、プレス成形温度を低くでき、型表面に形成されている保護膜等の耐久性が向上する。ガラス転移点Tが575℃以下であると好ましく、ガラス転移点Tが570℃以下であるとさらに好ましい。
 本ガラスの液相温度Tは、1000℃以下であると好ましい。液相温度Tが、1000℃を超えるとガラスプリフォーム成形時に被成形物が失透しやすくなり、プリフォーム成形性が悪くなるおそれがある。液相温度Tが995℃以下であるとさらに好ましく、液相温度Tが990℃以下であると特に好ましい。なお、本明細書において、液相温度Tとは、ある温度に保持した場合に、ガラス融液から結晶固化物が生成しない最高温度として定義される。
 液相温度でのガラス粘性が6dPa・s未満であると、ガラスプリフォーム成形時にガスをブローさせる際にガラスプリフォームの底より内部にガスが泡状に入り込んでしまい不良品となるおそれがある。一方、液相温度でのガラス粘性が15dPa・sを超えると、切断時の糸残りなどによる品質悪化のおそれがある。したがって、液相温度でのガラス粘性が6~15dPa・sであると好ましい。
 本ガラスを、排出ノズルを付設した溶解槽等で溶融させた後、前記排出ノズルから滴下、冷却することにより、所定の質量を有するプレス成形用プリフォームとすることができる。得られたプリフォームを精密プレス成形用の型(代表的な構成としては、上型、下型及び胴型で構成される)にセットし、変形可能な温度まで加熱後、加圧、冷却、取り出しして、光学素子とする。
 本ガラスによる光学素子としては、デジタルスチルカメラ用、デジタルビデオカメラ用、カメラ付携帯電話用等の各種レンズ、特に非球面レンズが好適なものとして挙げられる。
 以下、本発明を実施例により説明するが、本発明はこれらに限定されない。なお、例1~例16は本願の実施例であり、例17~例19は本願の比較例である。例17は、特許文献1の実施例4である。例18は、特許文献2の実施例7である。例19は、特許文献3の実施例7である。なお、本発明者の実験では、例17と例18は失透してしまい、ガラス化しなかったため、ガラスとしての物性の測定ができなかった。
 原料調製法としては、表に示す組成のガラスが得られるように下記原料を調合して白金製るつぼに入れ、1100~1300℃で1時間溶解した。この際、白金製スターラにより0.5時間撹拌して溶融ガラスを均質化した。均質化された溶融ガラスは流し出して板状に成形後、T+10℃の温度で4時間保持後、-60℃/hの冷却速度で室温まで徐冷した。なお、表中の化学組成で「-」で表示する部分は、該当成分がないことを示す。
 原料としては、酸化ホウ素、酸化アルミニウム、炭酸リチウム、二酸化ジルコニウム、酸化亜鉛、酸化アンチモン、炭酸ナトリウム、炭酸バリウムおよび酸化ヒ素として、関東化学社製の特級試薬を使用した。酸化ランタン、酸化ガドリニウムおよび酸化イットリウムとして信越化学工業社製の純度99.9%の試薬を使用した。酸化タンタル、二酸化珪素、酸化タングステン、酸化ニオブおよび酸化イッテルビウムとして、高純度化学研究所社製の純度99.9%以上の試薬を使用した。
 得られたガラスについて、波長587.6nm(d線)における屈折率n、波長656.3nm(C線)における屈折率nC、波長486.1nm(F線)における屈折率nF、アッベ数ν、ガラス転移点T(単位:℃)、屈伏点At(単位:℃)、液相温度T(単位:℃)および液相温度での溶融ガラスの粘性を測定した。これらの測定法を以下に述べる。
 光学恒数(屈折率n、アッベ数ν):一辺が20mm、厚みが10mmの直方体形状に加工したサンプルを、精密屈折率計(カルニュー光学社製、商品名:KPR-2)を用いて測定した。屈折率nは、除冷降温速度-60℃/hにして得られたサンプルについて測定した。なお、アッベ数νは、計算式{(n-1)/(n―n)}により求めた。
 熱的特性(ガラス転移点T):直径5mm、長さ20mmの円柱状に加工したサンプルを、熱機械分析装置(マックサイエンス社製、商品名:DILATOMETER5000)を用いて5℃/分の昇温速度で測定した。
 液相温度T:1辺が10mmの立方体形状に加工したサンプルを白金製の皿に載せ、一定温度に設定した電気炉内で1時間静置した後に取り出したものを10倍の光学顕微鏡で観察し、結晶の析出が見られない最高温度を液相温度Tとした。
 液相温度Tでの粘性測定:共軸二重円筒型回転粘度計を用いてJIS Z8803に基づいて測定した。
 以下、結果を表1~表4に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは、当業者にとって明らかである。
 本出願は、2008年3月21日出願の日本特許出願2008-073691に基づくものであり、その内容はここに参照として取り込まれる。
 デジタルカメラ等の光学部品、特に、大口径の非球面レンズとして好適な光学ガラスを提供できる。

Claims (7)

  1.  下記酸化物基準の質量%表示で、必須成分として、
    :18~30%、
    SiO:3~12%、
    La:15~30%、
    Gd:20.5~30%、
    ZnO:20~30%、
    LiO:0.1~2%、および
    ZrO:0.1~5%
    を含有し、ZnOとLiOの合計含有量が20~30%であり、屈折率(n)が1.73~1.76、アッベ数(ν)が48~51、ガラス転移温度(Tg)が580℃以下である光学ガラス。
  2.  任意成分として、
    Al:0~5%、
    :0~20%、
    Yb:0~20%、
    Sb:0~2%、
    Nb:0~5%、
    Ta:0~5%、および
    WO:0~5%
    を含み、必須成分と任意成分との合計含有量が質量%で95%以上である請求項1記載の光学ガラス。
  3.  Bi、PbO、TlO、FおよびAsを実質的に含まない請求項1または2記載の光学ガラス。
  4.  La/(La+Gd)の質量比が0.4~0.6である請求項1、2または3記載の光学ガラス。
  5.  液相温度(T)が1000℃以下である請求項1~4のいずれかに記載の光学ガラス。
  6.  請求項1~5のいずれかに記載の光学ガラスからなるプレス成形用プリフォーム。
  7.  請求項1~5のいずれかに記載の光学ガラスを精密プレス形成することによって得られる光学素子。
PCT/JP2009/055508 2008-03-21 2009-03-19 光学ガラス、それを用いた精密プレス成形用プリフォームおよびそれを用いた光学素子 WO2009116645A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010503939A JPWO2009116645A1 (ja) 2008-03-21 2009-03-19 光学ガラス、それを用いた精密プレス成形用プリフォームおよびそれを用いた光学素子

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-073691 2008-03-21
JP2008073691 2008-03-21

Publications (1)

Publication Number Publication Date
WO2009116645A1 true WO2009116645A1 (ja) 2009-09-24

Family

ID=41091043

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/055508 WO2009116645A1 (ja) 2008-03-21 2009-03-19 光学ガラス、それを用いた精密プレス成形用プリフォームおよびそれを用いた光学素子

Country Status (3)

Country Link
JP (1) JPWO2009116645A1 (ja)
TW (1) TW200948736A (ja)
WO (1) WO2009116645A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3480177A4 (en) * 2016-06-29 2020-02-19 Ohara Inc. OPTICAL GLASS, PREFORM AND OPTICAL ELEMENT

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60221338A (ja) * 1984-04-12 1985-11-06 Ohara Inc 光学ガラス
JPS62100449A (ja) * 1985-10-24 1987-05-09 Ohara Inc 光学ガラス
JPH06305769A (ja) * 1993-04-22 1994-11-01 Ohara Inc 光学ガラス
JPH08259257A (ja) * 1995-03-28 1996-10-08 Nikon Corp 光学ガラス
JPH10226533A (ja) * 1997-02-10 1998-08-25 Nikon Corp 放射線遮蔽ガラス
JP2006111482A (ja) * 2004-10-14 2006-04-27 Konica Minolta Opto Inc 光学ガラス及び光学素子

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60221338A (ja) * 1984-04-12 1985-11-06 Ohara Inc 光学ガラス
JPS62100449A (ja) * 1985-10-24 1987-05-09 Ohara Inc 光学ガラス
JPH06305769A (ja) * 1993-04-22 1994-11-01 Ohara Inc 光学ガラス
JPH08259257A (ja) * 1995-03-28 1996-10-08 Nikon Corp 光学ガラス
JPH10226533A (ja) * 1997-02-10 1998-08-25 Nikon Corp 放射線遮蔽ガラス
JP2006111482A (ja) * 2004-10-14 2006-04-27 Konica Minolta Opto Inc 光学ガラス及び光学素子

Also Published As

Publication number Publication date
TW200948736A (en) 2009-12-01
JPWO2009116645A1 (ja) 2011-07-21

Similar Documents

Publication Publication Date Title
JP5365523B2 (ja) 光学ガラス、およびそれを用いた精密プレス成形用プリフォームおよび光学素子
JP5678477B2 (ja) 光学ガラス
JP5317521B2 (ja) 光学ガラス組成物、プリフォーム及び光学素子
JP5275674B2 (ja) 光学ガラス組成物、プリフォーム及び光学素子
JPWO2007145173A1 (ja) 光学ガラスおよびそれを用いたレンズ
JPWO2008032742A1 (ja) 光学ガラスおよびそれを用いたレンズ
JP5317522B2 (ja) 光学ガラス組成物、プリフォーム及び光学素子
JP5317523B2 (ja) 光学ガラス組成物、プリフォーム及び光学素子
CN106167354B (zh) 一种光学玻璃以及光学元件
JPWO2007099857A1 (ja) 光学ガラスおよびレンズ
JP2013180919A (ja) 光学ガラス、及びそれを用いた精密プレス成形用プリフォーム及び光学素子
JP6721087B2 (ja) 光学ガラス、プレス成形用プリフォームおよび光学素子
JPWO2009072586A1 (ja) 光学ガラス、およびそれを用いた精密プレス成形用プリフォームおよび光学素子
JP5874558B2 (ja) プレス成形用プリフォームおよびプリフォームから作られる光学素子
JP5327955B2 (ja) 光学ガラス組成物、プリフォーム及び光学素子
TW201441174A (zh) 光學玻璃、預成形材及光學元件
WO2009116645A1 (ja) 光学ガラス、それを用いた精密プレス成形用プリフォームおよびそれを用いた光学素子
JP5305436B2 (ja) 光学ガラス組成物、プリフォーム及び光学素子
JP5160947B2 (ja) 光学ガラス組成物、プリフォーム及び光学素子
JP2021534063A (ja) 光学ガラス、光学ガラスで製造されるガラスプリフォーム又は光学素子及び光学機器
JP5327954B2 (ja) 光学ガラス組成物、プリフォーム及び光学素子
JP5327943B2 (ja) 光学ガラス組成物、プリフォーム及び光学素子
JP5327956B2 (ja) 光学ガラス組成物、プリフォーム及び光学素子
JP5327953B2 (ja) 光学ガラス組成物、プリフォーム及び光学素子
JP5160949B2 (ja) 光学ガラス組成物、プリフォーム及び光学素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09722975

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010503939

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09722975

Country of ref document: EP

Kind code of ref document: A1