WO2009116352A1 - Display element - Google Patents

Display element Download PDF

Info

Publication number
WO2009116352A1
WO2009116352A1 PCT/JP2009/053172 JP2009053172W WO2009116352A1 WO 2009116352 A1 WO2009116352 A1 WO 2009116352A1 JP 2009053172 W JP2009053172 W JP 2009053172W WO 2009116352 A1 WO2009116352 A1 WO 2009116352A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
display element
compound
general formula
substituent
Prior art date
Application number
PCT/JP2009/053172
Other languages
French (fr)
Japanese (ja)
Inventor
修 石毛
大野 香織
健 波木井
苔口 典之
Original Assignee
コニカミノルタホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタホールディングス株式会社 filed Critical コニカミノルタホールディングス株式会社
Priority to JP2010503806A priority Critical patent/JP5177218B2/en
Publication of WO2009116352A1 publication Critical patent/WO2009116352A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte
    • H01M6/162Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte
    • H01M6/164Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte by the solvent
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/1514Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material
    • G02F1/1516Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material comprising organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/488Cells or batteries combined with indicating means for external visualization of the condition, e.g. by change of colour or of light density
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0034Fluorinated solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a novel electrochemical display element that does not leak an organic solvent or the like and can be driven at a low voltage and has high durability.
  • the method using a polarizing plate such as a reflective liquid crystal has a low reflectance of about 40%, and thus it is difficult to display white, and many of the manufacturing methods used to manufacture the constituent members are not easy.
  • the polymer dispersed liquid crystal requires a high voltage and utilizes the difference in refractive index between organic substances, so that the resulting image has insufficient contrast.
  • the polymer network type liquid crystal has problems such as a high driving voltage and a complicated TFT circuit required to improve the memory performance.
  • a display element based on electrophoresis requires a high voltage of 10 V or more, and there is a concern about durability due to electrophoretic particle aggregation.
  • EC method electrochromic display element
  • ED method electrodeposition method
  • the EC method has the advantage of being capable of full-color display at a low voltage of 3V or less, a simple cell configuration, and excellent white quality.
  • the ED method can also be driven at a low voltage of 3V or less and is a simple cell.
  • advantages such as excellent configuration, black-white contrast and black quality, and various methods have been disclosed (see, for example, Patent Documents 1 to 5).
  • liquid electrolyte in which a supporting electrolyte is dissolved in water or an organic solvent has been used as an electrolyte of many electrochemical elements.
  • the liquid electrolyte has problems in that it is difficult to leak the electrolyte due to aging or damage due to long-term storage of the electrochemical element, and to reduce the size and thickness.
  • EC or ED display elements must be sealed with a transparent material such as glass or plastic in at least one direction for display applications. It is difficult to end up. For this reason, leakage and volatilization of the electrolyte become a larger problem.
  • solid thin film electrolyte materials that solidify electrolytes, are easy to handle, have high safety, and have a high ion transport number have been actively conducted.
  • a solid polymer electrolyte in which a supporting electrolyte is dissolved in a polymer having a polyether structure such as polyethylene oxide, polypropylene oxide, or a derivative or copolymer thereof.
  • a polymer having a polyether structure can dissolve one monovalent cation with four oxygen atoms in the ether structure.
  • such a solid electrolyte basically does not contain a solution, the possibility of leakage is low, but its conductivity is about three orders of magnitude lower than that of a normal non-aqueous electrolyte. .
  • a gel electrolyte that includes a liquid electrolyte in a polymer matrix that forms a mesh.
  • Such gel electrolytes can be polymerized in a liquid electrolyte mixed with monomers to produce a polymer swollen with the liquid electrolyte, or a polymer matrix that has been polymerized in advance is immersed in the liquid electrolyte to swell the polymer. Make it.
  • the polymer matrix basically has a function including a liquid electrolyte and does not contribute to ionic conduction, so that sufficient conductivity cannot be obtained.
  • Patent Documents 9 to 11 below describe that various solvents can be gelled by addition of a small amount of a specific perfluoroalkyl derivative and are preferable as gel electrolytes. It shows only the ability to form, and it does not show whether an electrolyte containing various additives can be gelled. Further, it has not been suggested that the effect of stabilizing the reflectance when repeatedly driven can be obtained.
  • the present invention has been made in view of the above problems, and its object is a display element that can be driven with a simple member configuration, low voltage, high display contrast, and high white display reflectance, and can be driven repeatedly.
  • An object of the present invention is to provide a display element with little variation in reflectance.
  • An electrolyte, a compound that changes color reversibly by an electrochemical oxidation-reduction reaction, and an auxiliary compound that can be oxidized / reduced to promote the electrochemical oxidation-reduction reaction are contained between a pair of opposed electrodes.
  • the solvent of the electrolyte is an aprotic polar solvent and includes a compound represented by the following general formula (GI) Display element.
  • Rf represents a perfluoroalkyl group
  • L represents an alkylene group which may have a substituent, or a simple bond.
  • X represents a sulfur atom, an oxygen atom or N—Rn.
  • Rn represents a hydrogen atom.
  • Ar represents a divalent aromatic group which may have a substituent
  • Y represents a linking group that binds to Ar by an oxygen atom, a sulfur atom, or a nitrogen atom, and connects Ar and R.
  • R represents an aliphatic group having 5 or more carbon atoms which may have a substituent.
  • Rl 1 represents a substituted or unsubstituted aryl group
  • Rl 2 and Rl 3 each represent a hydrogen atom or a substituent
  • X represents> N—Rl 4 , an oxygen atom or a sulfur atom
  • Rl 4 Represents a hydrogen atom or a substituent.
  • Rg 11 -S-Rg 12 (Wherein Rg 11 and Rg 12 each represent a substituted or unsubstituted hydrocarbon group. In these hydrocarbon groups, one or more nitrogen atoms, oxygen atoms, phosphorus atoms, sulfur atoms, halogen atoms are substituted. And Rg 11 and Rg 12 may be linked to each other to form a cyclic structure.)
  • M represents a hydrogen atom, a metal atom or quaternary ammonium.
  • Z represents an atomic group necessary for constituting a nitrogen-containing heterocyclic ring.
  • N represents an integer of 0 to 5
  • Rg 21 represents a substituent.
  • each Rg 21 may be the same or different, and may be linked to each other to form a condensed ring. 9.
  • a novel electrochemical display element capable of realizing bright white display, high-contrast black and white display, and full color display with a simple member configuration can be provided.
  • the display portion is provided with one of a pair of opposing electrodes.
  • the electrode 1, which is one of the electrodes close to the display unit, is provided with a transparent electrode such as an ITO electrode, and the other electrode 2 is provided with a conductive electrode.
  • an electrolyte according to the present invention and a compound that reversibly discolors by an electrochemical redox reaction are contained.
  • the white and various colored states are reversible by coloring / decoloring reaction by oxidation / reduction of a compound that reversibly discolors by electrochemical oxidation-reduction reaction. Can be switched automatically.
  • an auxiliary compound that can be oxidized and reduced, which will be described later, is added in order to promote the electrochemical reaction of the compound that reversibly changes color due to the electrochemical oxidation-reduction reaction.
  • Examples of the compound that reversibly discolors by an electrochemical redox reaction include a metal salt compound that dissolves and precipitates reversibly by an electrochemical redox reaction with an electrochromic compound.
  • a preferred embodiment is that both an electrochromic compound and a metal salt compound are contained as a compound that reversibly changes color by an electrochemical redox reaction.
  • black and white display accompanying dissolution and precipitation of the metal salt compound is performed, and coloring / decoloring reaction by oxidation / reduction of the electrochromic compound
  • the colored states other than black, white, and black can be switched reversibly.
  • the electrochromic compound is immobilized on the transparent electrode 1 on the display side.
  • Electrode Display electrode
  • a transparent electrode is used on the display portion side of a pair of opposed electrodes.
  • the transparent electrode is not particularly limited as long as it is transparent and conducts electricity.
  • ITO Indium Tin Oxide
  • IZO Indium Zinc Oxide
  • FTO Fluorine Doped Tin Oxide
  • ITO Indium Tin Oxide
  • Zinc Oxide Platinum, Gold, Silver, Rhodium, Copper
  • Examples thereof include chromium, carbon, aluminum, silicon, amorphous silicon, and BSO (Bismuth Silicon Oxide).
  • an ITO film may be vapor-deposited on the substrate by a sputtering method or the like, or an ITO film may be formed on the entire surface and then patterned by a photolithography method.
  • the surface resistance value is preferably 100 ⁇ / ⁇ or less, and more preferably 10 ⁇ / ⁇ or less.
  • the thickness of the transparent electrode is not particularly limited, but is generally 0.1 to 20 ⁇ m.
  • a semiconductor nanoporous layer can be formed on the transparent electrode on the display unit side in order to immobilize a dye or the like.
  • the semiconductor nanoporous layer has micropores capable of supporting an electrochromic dye (hereinafter also referred to as EC dye) or the like on the surface and inside thereof.
  • the specific surface area of the semiconductor nano-porous layer is preferably 1 ⁇ 5000m 2 / g, more preferably 10 ⁇ 2500m 2 / g.
  • the specific surface area means the BET specific surface area obtained from the adsorption amount of nitrogen gas. If the specific surface area is too small, the adsorption amount of the EC dye cannot be increased, and the object of the present invention may not be achieved.
  • the semiconductor fine particles contained in the semiconductor nanoporous layer are not particularly limited and may be appropriately selected according to the purpose.
  • the form of the semiconductor there is no particular limitation on the form of the semiconductor, and it may be single crystal, polycrystalline, amorphous, or a mixed form thereof.
  • the semiconductor fine particles are preferably oxide semiconductors.
  • An oxide semiconductor is a metal oxide and has semiconductor properties. For example, TiO 2 , SnO 2 , Fe 2 O 3 , SrTiO 3 , WO 3 , ZnO, ZrO 2 , Ta 2 O 5 , Nb 2 O 5 , V 2 O 5 , In 2 O 3 , CdO, MnO, CoO, TiSrO 3 , KTiO 3 , Cu 2 O, sodium titanate, barium titanate, potassium niobate and the like.
  • the shape of the semiconductor fine particles is not particularly limited and can be appropriately selected according to the purpose.
  • the shape may be any of a spherical shape, a nanotube shape, a rod shape, and a whisker shape, and two or more types having different shapes may be used.
  • Fine particles can also be mixed.
  • the average particle size is preferably 0.1 to 1000 nm, more preferably 1 to 100 nm.
  • Two or more kinds of fine particles having different particle size distributions may be mixed.
  • the aspect ratio is preferably 2 to 50000, more preferably 5 to 25000.
  • a metal electrode or a carbon electrode is used as an electrode that is not the display portion side electrode among the pair of electrodes facing each other.
  • the metal electrode for example, known metal species such as platinum, gold, silver, copper, aluminum, zinc, nickel, titanium, bismuth, and alloys thereof can be used.
  • the metal electrode is preferably a metal having a work function close to the redox potential of silver in the electrolyte.
  • silver or a silver electrode having a silver content of 80% or more is advantageous for maintaining the reduced state of silver. Excellent in preventing dirt.
  • an electrode manufacturing method an existing method such as an evaporation method, a printing method, an ink jet method, a spin coating method, or a CVD method can be used.
  • Porous carbon electrodes that can be adsorbed and supported include graphite, non-graphitizable carbon, graphitizable carbon, composite carbon, and carbon compounds obtained by doping carbon with boron, nitrogen, phosphorus, etc. Can be mentioned.
  • Examples of the shape of the carbon particles include mesophase microspheres and fibrous graphite.
  • Mesophase spherules can be obtained by firing coal tar pitch or the like at 350 to 500 ° C., and further classifying these spherules and graphitizing by high-temperature firing can provide a good porous carbon electrode.
  • fibrous graphite can be obtained from pitch-based, PAN-based, and vapor-grown fibers.
  • GI general formula
  • GII general formula (GII)
  • Rf represents a perfluoroalkyl group
  • L represents an alkylene group which may have a substituent or a simple bond
  • X represents a sulfur atom, an oxygen atom or N—Rn.
  • Rn represents a hydrogen atom or a substituent.
  • Ar represents a divalent aromatic group which may have a substituent, and Ball represents a hydrophobic group having a total carbon number of 5 or more.
  • the perfluoroalkyl group represented by Rf means a group in which all hydrogen atoms of a linear, branched, or cyclic alkyl group are substituted with fluorine atoms.
  • the number of carbon atoms of the group represented by Rf is not particularly limited, but a linear perfluoroalkyl group having 6 to 12 carbon atoms is preferred because of its strong gelling ability.
  • L is preferably an alkylene group which may have a substituent.
  • the substituent is not particularly limited, but perfluoroalkylene groups in which all substitution positions are substituted with fluorine atoms are excluded by definition.
  • the alkylene group represented by L a linear unsubstituted alkylene group having 1 to 4 methylene chains connected is preferable, and an ethylene group, a trimethylene group, and a tetramethylene group are particularly preferable.
  • Rn represents a hydrogen atom or a substituent.
  • X is particularly preferably a sulfur atom or an oxygen atom.
  • Ar represents a divalent aromatic group which may have a substituent, and may be a divalent aromatic hydrocarbon group or an aromatic heterocyclic group, Phenylene group, biphenylene group, terphenylene group, naphthylene group, anthranylene group, phenanthrylene group, pyrenylene group, chryselin group, fluoranthenylene group, pyrrolene group, furanylene group, thiophenylene group, triazolen group, oxadiazolene group, pyridylene Group, pyrimidylene group and the like.
  • a phenylene group, a biphenylene group or a naphthylene group which may have a substituent is particularly preferable.
  • the group represented by Ball is not particularly limited as long as it is a hydrophobic group having 5 or more carbon atoms.
  • an alkyl group having 5 or more carbon atoms for example, a pentyl group, a cyclohexyl group, t -Octyl group, nonyl group, dodecyl group, etc.
  • alkoxy group for example, pentyloxy group, hexyloxy group, dodecyloxy group, tetradecyloxy group
  • alkylthio group for example, pentylthio group, hexylthio group, dodecylthio group, tetradecylthio group
  • a dialkylamino group for example, a dibutylamino group, a dihexylamino group, etc.
  • the group represented by Ball may be a polyvalent linking group. That is, the compound represented by the general formula (GI) may be a multimer having a plurality of groups represented by Rf-L—X—Ar— in the molecule.
  • Rf represents a perfluoroalkyl group
  • L represents an alkylene group which may have a substituent or a simple bond
  • X represents a sulfur atom, an oxygen atom or N—Rn.
  • Rn represents a hydrogen atom or a substituent.
  • Ar represents a divalent aromatic group which may have a substituent
  • Y represents a linking group that binds to Ar by an oxygen atom, a sulfur atom, or a nitrogen atom and connects Ar and R.
  • R represents an aliphatic group having 5 or more carbon atoms which may have a substituent.
  • Rf, L, X, Ar are synonymous with Rf, L, X, Ar in the general formula (GI).
  • Y in the general formula (GII) is —O—, —O—CO—, —O—CO—O—, —O—CO—NR′—, —O—, —NR′—, —NR′—. CO-, -NR'-CO-O-, -NR'-CO-NR'- and the like.
  • These linking groups are substituted with Ar at the left-hand bond and bonded to R at the right.
  • R ′ represents a hydrogen atom or a substituent.
  • the linking group represented by Y is preferably —O— or —S—.
  • R in the general formula (GII) examples include linear or branched, cyclic alkyl groups, alkenyl groups, and alkynyl groups having 5 or more carbon atoms. These groups may further have a substituent.
  • the group represented by R is preferably an alkyl group having 5 or more carbon atoms (for example, pentyl group, cyclohexyl group, t-octyl group, decyl group, dodecyl group, tetradecyl group).
  • the upper limit of the carbon number is not particularly limited, but is preferably 20 or less, and particularly preferably 14 or less, from the viewpoint of availability of raw materials and ease of handling.
  • the amount of the compound represented by general formula (GI) or general formula (GII) can be used in the range of 0.1 to 30% by mass with respect to the solvent of the electrolyte to be used.
  • a preferable addition amount is in a range of 0.5 to 10% by mass, and a range of 1 to 5% by mass is particularly preferable.
  • the compound reversibly discolored by the electrochemical redox reaction according to the present invention refers to an electrochromic compound and a metal salt compound described below.
  • EC compound [Electrochromic compound (hereinafter referred to as EC compound or EC dye)]
  • the EC compound is not particularly limited as long as it exhibits an action of color development or decoloration by at least one of an electrochemical oxidation reaction and a reduction reaction, and can be appropriately selected according to the purpose.
  • EC compounds include tungsten oxide, iridium oxide, nickel oxide, cobalt oxide, vanadium oxide, molybdenum oxide, titanium oxide, indium oxide, chromium oxide, manganese oxide, Prussian blue, indium nitride, tin nitride, zirconium nitride chloride, etc.
  • organometallic complexes, conductive polymer compounds, and organic dyes are known.
  • organometallic complexes exhibiting EC characteristics include metal-bipyridyl complexes, metal phenanthroline complexes, metal-phthalocyanine complexes, rare earth diphthalocyanine complexes, and ferrocene dyes.
  • Examples of the conductive polymer compound exhibiting EC characteristics include polypyrrole, polythiophene, polyisothianaphthene, polyaniline, polyphenylenediamine, polybenzidine, polyaminophenol, polyvinylcarbazole, polycarbazole, and derivatives thereof.
  • a polymer material composed of a bisterpyridine derivative and a metal ion as described in, for example, JP-A-2007-112957 also exhibits EC characteristics.
  • Organic dyes exhibiting EC characteristics include pyridinium compounds such as viologen, azine dyes such as phenothiazine, styryl dyes, anthraquinone dyes, pyrazoline dyes, fluorane dyes, donor / acceptor compounds (for example, tetracyanoquinodis Methane, tetrathiafulvalene) and the like.
  • azine dyes such as phenothiazine, styryl dyes, anthraquinone dyes, pyrazoline dyes, fluorane dyes, donor / acceptor compounds (for example, tetracyanoquinodis Methane, tetrathiafulvalene) and the like.
  • redox indicators and pH indicators can also be used.
  • EC compounds are classified into the following three classes when classified in terms of color change. Class 1: EC compounds that change from one specific color to another by redox. Class 2: EC compounds that are substantially colorless in the oxidized state and exhibit a specific colored state that is the reduced state. Class 3: EC compounds that are substantially colorless in the reduced state and exhibit a particular colored state that is the oxidized state.
  • the above class 1 to class 3 EC compounds can be appropriately selected depending on the purpose and application.
  • Class 1 EC compounds are EC compounds that change from a specific color to another color by oxidation-reduction, and are compounds capable of displaying two or more colors in their possible oxidation states.
  • V 2 O 5 changes from orange to green by changing from an oxidation state to a reduction state
  • Rh 2 O 3 changes from yellow to dark green
  • organometallic complexes are classified as class 1, and ruthenium (II) bipyridine complexes, such as tris (5,5'-dicarboxylethyl-2,2'-bipyridine) ruthenium complexes, are between +2 and -4 valences, The color changes from orange to purple, blue, green blue, brown, red rust and red. Many of the rare earth diphthalocyanines also exhibit such multicolor characteristics. For example, in the case of lutetium diphthalocyanine, the color gradually changes from purple to blue, green, and red-orange according to oxidation.
  • polythiophene changes from blue to red by changing from an oxidized state to a reduced state
  • polypyrrole changes from brown to yellow
  • polyaniline or the like exhibits multi-color characteristics and changes from an amber color of an oxidation state to blue, green, and light yellow in order.
  • EC compounds classified as class 1 have a merit that multicolor display is possible with a single compound, but on the other hand, they have a drawback that a state that can be said to be virtually colorless cannot be made.
  • Class 2 EC compounds are compounds that are colorless or extremely light in an oxidized state and exhibit a specific colored state that is a reduced state.
  • Examples of the inorganic compounds classified as class 2 include the following compounds, each of which shows the color shown in parentheses in the reduced state. WO 3 (blue), MnO 3 (blue), Nb 2 O 5 (blue), TiO 2 (blue), etc.
  • organometallic complexes classified as class 2 include tris (vasophenanthroline) iron (II) complexes, which show red in the reduced state.
  • organic dyes classified as class 2 include compounds described in JP-A Nos. 62-71934 and 2006-71765, such as dimethyl terephthalate (red) and 4,4′-biphenylcarboxylic acid. Examples thereof include diethyl acid (yellow), 1,4-diacetylbenzene (cyan), and tetrazolium salt compounds described in JP-A Nos. 1-230026 and 2000-504774.
  • the most representative dyes classified in class 2 are pyridinium compounds such as viologen. Viologen compounds have the advantages of clear display and the ability to have color variations by changing substituents, etc., so they are the most actively studied among organic dyes. ing. Color development is based on organic radicals generated by reduction.
  • pyridinium-based compounds such as viologen
  • examples of pyridinium-based compounds such as viologen include compounds described in the following patents including, for example, JP-T 2000-506629.
  • pyridinium compounds such as viologen that can be used in the present invention are shown below, but are not limited thereto.
  • Class 3 EC compounds are compounds that are colorless or very pale in the reduced state and exhibit a specific colored state that is an oxidized state.
  • inorganic compounds classified into class 3 include iridium oxide (dark blue), Prussian blue (blue), etc. (each of which shows the color shown in parenthesis in the oxidized state).
  • conductive polymers classified into class 3 There are few examples of conductive polymers classified into class 3, but examples thereof include phenyl ether compounds described in JP-A-6-263846.
  • dyes are known as class 3 dyes, styryl dyes, azine dyes such as phenazine, phenothiazine, phenoxazine, and acridine, azole dyes such as imidazole, oxazole, and thiazole are preferable. .
  • styryl dyes examples include styryl dyes, azine dyes, and azole dyes that can be used in the present invention are shown below, but the invention is not limited thereto.
  • Rl 1 is preferably a substituted or unsubstituted phenyl group, more preferably a substituted or unsubstituted 2-hydroxyphenyl group or 4-hydroxyphenyl group.
  • an imidazole dye represented by the following general formula (L2) is particularly preferable.
  • a low drive is achieved by utilizing the reduction (or oxidation) reaction of the promoter on the counter electrode side. It is possible to obtain a high color density with voltage.
  • a promoter when a promoter is used as a counter electrode reactant, it is preferable to use a promoter having a redox activity opposite to that of a compound reversibly discolored by an electrochemical redox reaction, immobilized on a counter electrode. .
  • N-oxyl also called nitroxide radical
  • nitroxide radical is an oxygen-centered radical generated by radically cleaving the oxygen-hydrogen bond of hydroxylamine.
  • the nitroxide radical is known to have two reversible redox pairs as shown in the following scheme.
  • the nitroxide radical becomes an oxoammonium cation by one-electron oxidation, and this is reduced to regenerate the radical.
  • the nitroxide radical becomes an aminoxy anion by one-electron reduction, which is oxidized to regenerate the radical. Therefore, the nitroxide radical can function as a p-type counter electrode reactant or an n-type counter electrode reactant.
  • the oxoammonium cation has a high oxidation ability and can function as a mediator because it can oxidize leuco dye and the like.
  • N-oxyl derivatives derivatives substituted with various substituents such as TEMPO (2,2,6,6-tetramethylpiperidinyl-N-oxyl) are commercially available.
  • various derivatives including polymers can be easily synthesized according to known literature.
  • Rm 11 and Rm 12 are each independently an optionally substituted aliphatic hydrocarbon group, aromatic hydrocarbon group, heterocyclic group, or>C ⁇ O,>C ⁇ S,> C ⁇ N. And represents a group bonded to a nitrogen atom via —Rm 13 .
  • Rm 13 represents a hydrogen atom or an aliphatic hydrocarbon group optionally having substituent, an aromatic hydrocarbon group or a heterocyclic group.
  • Rm 11 and Rm 12 may be connected to each other to form a cyclic structure.
  • Examples of the aromatic hydrocarbon group include a phenyl group and a naphthyl group.
  • Examples of the heterocyclic group include a pyridyl group, a thiazolyl group, an oxazolyl group, an imidazolyl group, a furyl group, a pyrrolyl group, a pyrazinyl group, a pyrimidinyl group, and a pyridazinyl group.
  • the compound represented by the general formula (M1) may be a multimer such as a dimer or trimer linked by these substituents, or may be a polymer.
  • the N-oxyl derivative according to the present invention is a compound represented by the general formula (M3).
  • the N-oxyl derivative according to the present invention is a compound represented by the general formula (M5).
  • the present invention is characterized in that an aprotic polar solvent is used as a solvent for the electrolyte.
  • the aprotic polar solvent include dimethyl carbonate, diethyl carbonate, propylene carbonate, ethylene carbonate, butyrolactan, diethyl ether, 1,2-dimethoxyethane, diethylene glycol dimethyl ether, tetrahydrofuran, 2-methyltetrahydrofuran, dioxane, dioxolane, Methyldioxolane, acetonitrile, benzonitrile, nitrobenzene, N, N-dimethylformamide, N, N-diethylformamide, sulfooxide, dimethylsulfoxide dimethylsulfone, tetramethylenesulfone, sulfolane, N-methyl-2-oxdorinoline and these Mixtures can be used.
  • the boiling point of the electrolyte solvent is not particularly limited, but is preferably a high boiling point and preferably has a boiling point of 200 ° C. or higher from the viewpoint of preventing volatility and production.
  • particularly preferably used solvents are compounds represented by the following general formulas (S1) and (S2).
  • the electrolyte preferably contains a compound represented by the following general formula (S1) or (S2).
  • L represents an oxygen atom or an alkylene group
  • Rs 11 to Rs 14 each represents a hydrogen atom, an alkyl group, an alkenyl group, an aryl group, a cycloalkyl group, an alkoxyalkyl group, or an alkoxy group. These substituents may be further substituted with an arbitrary substituent.
  • alkyl group examples include a methyl group, an ethyl group, a propyl group, an isopropyl group, a tert-butyl group, a pentyl group, a hexyl group, an octyl group, a dodecyl group, a tridecyl group, a tetradecyl group, and a pentadecyl group.
  • cycloalkyl group such as phenyl group, naphthyl group, etc.
  • cyclopentyl group examples include, for example, cyclopentyl group, cyclohexyl group, etc., alkoxyalkyl groups, such as ⁇ -methoxyethyl group, ⁇ -methoxypropyl group, etc. Examples thereof include a methoxy group, an ethoxy group, a propyloxy group, a pentyloxy group, a hexyloxy group, an octyloxy group, and a dodecyloxy group.
  • Rs 21 and Rs 22 each represents an alkyl group, an alkenyl group, an aryl group, a cycloalkyl group, an alkoxyalkyl group, or an alkoxy group.
  • alkyl group examples include a methyl group, an ethyl group, a propyl group, an isopropyl group, a tert-butyl group, a pentyl group, a hexyl group, an octyl group, a dodecyl group, a tridecyl group, a tetradecyl group, and a pentadecyl group.
  • cycloalkyl group such as phenyl group, naphthyl group, etc.
  • the exemplified compounds S1-1, S1-2, and S2-3 are particularly preferable.
  • solvents are the compounds represented by the above general formulas (S1) and (S2).
  • another solvent is used as long as the object effects of the present invention are not impaired.
  • a solvent can be used in combination.
  • the salts are not particularly limited, and for example, inorganic ion salts such as alkali metal salts and alkaline earth metal salts; quaternary ammonium salts; cyclic quaternary ammonium salts; quaternary phosphonium salts and the like can be used.
  • the amount of the electrolyte salt used is arbitrary, but in general, the electrolyte salt is desirably present in the solvent as an upper limit of 20 M or less, preferably 10 M or less, more preferably 5 M or less. It is desirable that it be present at 0.01M or more, preferably 0.05M or more, more preferably 0.1M or more.
  • the silver salt compound according to the present invention is silver or a compound containing silver in the chemical structure, such as silver oxide, silver sulfide, metallic silver, silver colloidal particles, silver halide, silver complex compound, silver ion and the like.
  • phase state species such as the solid state, the solubilized state in liquid, and the gas state, and the charged state species such as neutral, anionic, and cationic.
  • the metal ion concentration contained in the electrolyte according to the present invention is preferably 0.2 mol / kg ⁇ [Metal] ⁇ 2.0 mol / kg. If the metal ion concentration is 0.2 mol / kg or more, a silver solution having a sufficient concentration can be obtained, and a desired driving speed can be obtained. If the metal ion concentration is 2 mol / kg or less, precipitation is prevented, and storage at low temperature is possible. The stability of the electrolyte solution is improved.
  • the halogen atom as used in the field of this invention means an iodine atom, a chlorine atom, a bromine atom, and a fluorine atom.
  • [X] / [Metal] is greater than 0.1, X ⁇ ⁇ X 2 is generated during the metal redox reaction, and X 2 easily cross-oxidizes with the deposited metal to dissolve the deposited metal. Therefore, the molar concentration of the halogen atom is preferably as low as possible with respect to the molar concentration of metallic silver. In the present invention, 0 ⁇ [X] / [Metal] ⁇ 0.001 is more preferable.
  • the halogen species preferably have a total molar concentration of [I] ⁇ [Br] ⁇ [Cl] ⁇ [F] from the viewpoint of improving memory properties.
  • the electrolyte preferably contains a compound represented by the following general formula (G1) or general formula (G2) in order to promote dissolution and precipitation of metal salts (particularly silver salts).
  • the compounds represented by the general formulas (G1) and (G2) are compounds that promote the solubilization of silver in the electrolyte in order to cause dissolution and precipitation of silver in the present invention.
  • it is necessary to solubilize silver in an electrolyte. For example, it causes a coordinate bond with silver or a weak covalent bond with silver.
  • Compounds containing chemical structural species that interact with silver are useful.
  • halogen atoms As the chemical structural species, halogen atoms, mercapto groups, carboxyl groups, imino groups and the like are known, but in the present invention, compounds containing thioether groups and mercaptoazoles are useful as silver solvents and They are characterized by little influence on coexisting compounds and high solubility in solvents.
  • Rg 11 -S-Rg 12 each represent a substituted or unsubstituted hydrocarbon group.
  • these hydrocarbon groups may contain one or more nitrogen atoms, oxygen atoms, phosphorus atoms, sulfur atoms and halogen atoms, and Rg 11 and Rg 12 may be linked to each other to form a cyclic structure. .
  • G1-1 CH 3 SCH 2 CH 2 OH G1-2: HOCH 2 CH 2 SCH 2 CH 2 OH G1-3: HOCH 2 CH 2 SCH 2 CH 2 SCH 2 CH 2 OH G1-4: HOCH 2 CH 2 SCH 2 CH 2 SCH 2 CH 2 SCH 2 CH 2 OH G1-5: HOCH 2 CH 2 SCH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 SCH 2 CH 2 OH G1-6: HOCH 2 CH 2 OCH 2 CH 2 SCH 2 CH 2 SCH 2 CH 2 OCH 2 CH 2 OH G1-7: H 3 CSCH 2 CH 2 COOH G1-8: HOOCCH 2 SCH 2 COOH G1-9: HOOCCH 2 CH 2 SCH 2 CH 2 COOH G1-10: HOOCCH 2 SCH 2 CH 2 SCH 2 COOH G1-11: HOOCCH 2 SCH 2 CH 2 SCH 2 CH 2 SCH 2 COOH G1-12: HOOCCH 2 CH 2 SCH 2 CH 2 SCH 2 CH (OH)
  • Exemplified Compound G1-2 is particularly preferable from the viewpoint that the objective effect of the present invention can be exhibited.
  • M represents a hydrogen atom, a metal atom or quaternary ammonium.
  • Z represents an atomic group necessary for constituting a nitrogen-containing heterocyclic ring.
  • n represents an integer of 0 to 5
  • Rg 21 represents a substituent, and when n is 2 or more, each Rg 21 may be the same or different and may be connected to each other to form a condensed ring. It may be formed.
  • Examples of the metal atom represented by M in the general formula (G2) include Li, Na, K, Mg, Ca, Zn, and Ag.
  • Examples of the quaternary ammonium include NH 4 , N (CH 3 ) 4 , N (C 4 H 9 ) 4 , N (CH 3 ) 3 C 12 H 25 , N (CH 3 ) 3 C 16 H 33 , N (CH 3 ) 3 CH 2 C 6 H 5 and the like It is done.
  • Examples of the nitrogen-containing heterocycle having Z as a constituent in the general formula (G2) include, for example, a tetrazole ring, a triazole ring, an imidazole ring, an oxadiazole ring, a thiadiazole ring, an indole ring, an oxazole ring, a benzoxazole ring, and a benzimidazole. Ring, benzothiazole ring, benzoselenazole ring, naphthoxazole ring and the like.
  • Rg 21 of the general formula (G2) is not particularly limited, include, for example, substituents as described below.
  • Halogen atom eg, fluorine atom, chlorine atom, bromine atom, iodine atom, etc.
  • Alkyl group eg, methyl, ethyl, propyl, i-propyl, butyl, t-butyl, pentyl, cyclopentyl, hexyl, cyclohexyl, octyl, dodecyl
  • aryl groups eg, phenyl, naphthyl, etc.
  • alkylcarbonamide groups eg, acetylamino, propionylamino, butyroylamino, etc.
  • arylcarbonamide groups for example, benzoylamino etc.
  • alkylsulfonamide groups eg methanesulfonylamino group, ethanesulfon
  • Exemplified Compounds G2-12, G2-18, and G2-20 are particularly preferable from the viewpoint that the objective effects of the present invention can be exhibited.
  • a white scattering material from the viewpoint of further increasing the display contrast and the white display reflectance, it is preferable to contain a white scattering material, and a porous white scattering layer may be formed and present.
  • the porous white scattering layer applicable to the present invention can be formed by applying and drying a water mixture of a water-based polymer that is substantially insoluble in an electrolyte solvent and a white pigment.
  • Examples of the white pigment applicable in the present invention include titanium dioxide (anatase type or rutile type), barium sulfate, calcium carbonate, aluminum oxide, zinc oxide, magnesium oxide and zinc hydroxide, magnesium hydroxide, magnesium phosphate, Magnesium hydrogen phosphate, alkaline earth metal salt, talc, kaolin, zeolite, acidic clay, glass and other inorganic compounds, polyethylene, polystyrene, acrylic resin, ionomer, ethylene-vinyl acetate copolymer resin, benzoguanamine resin, urea-formalin resin Organic compounds such as melamine-formalin resin and polyamide resin may be used alone or in combination, or in a state having voids that change the refractive index in the particles.
  • titanium dioxide zinc oxide, and zinc hydroxide are preferably used.
  • titanium dioxide surface-treated with inorganic oxides Al 2 O 3 , AlO (OH), SiO 2, etc.
  • trimethylolethane triethanolamine acetate, trimethylcyclosilane, etc.
  • titanium dioxide subjected to organic treatment can be used.
  • titanium oxide or zinc oxide from the viewpoint of coloring prevention at high temperature and the reflectance of the element due to the refractive index.
  • examples of the water-based polymer that does not substantially dissolve in the electrolyte solvent include water-soluble polymers and polymers dispersed in water-based solvents.
  • water-soluble compounds include proteins such as gelatin and gelatin derivatives, cellulose derivatives, natural compounds such as polysaccharides such as starch, gum arabic, dextran, pullulan and carrageenan, polyvinyl alcohol, polyvinyl pyrrolidone, acrylamide polymers and their Examples include synthetic polymer compounds such as derivatives.
  • acetylated gelatin, phthalated gelatin, polyvinyl alcohol derivatives as terminal alkyl group-modified polyvinyl alcohol, terminal mercapto group-modified polyvinyl alcohol, and cellulose derivatives include hydroxyethyl cellulose, hydroxypropyl cellulose, carboxymethyl cellulose and the like. It is done.
  • gelatin and gelatin derivatives, or polyvinyl alcohol or derivatives thereof can be preferably used.
  • Polymers dispersed in water-based solvents include natural rubber latex, styrene butadiene rubber, butadiene rubber, nitrile rubber, chloroprene rubber, isoprene rubber and other latexes, polyisocyanate, epoxy, acrylic, silicon, polyurethane, Examples thereof include a thermosetting resin in which urea, phenol, formaldehyde, epoxy-polyamide, melamine, alkyd resin, vinyl resin and the like are dispersed in an aqueous solvent. Of these polymers, the water-based polyurethane resin described in JP-A-10-76621 is preferably used.
  • substantially insoluble in the solvent of the electrolyte is defined as a state where the amount of electrolyte dissolved in 1 kg of the solvent is 0 to 10 g at a temperature of ⁇ 20 ° C. to 120 ° C.
  • the amount of dissolution can be determined by a known method such as a component determination method using a chromatogram or a gas chromatogram.
  • the water admixture of the water-based compound and the white pigment is preferably in a form in which the white pigment is dispersed in water according to a known dispersion method.
  • the mixing ratio of the aqueous compound / white pigment is preferably 1 to 0.01 by volume, more preferably 0.3 to 0.05.
  • the medium for applying the water mixture of the water-based compound and the white pigment may be at any position as long as it is on the component between the pair of opposed electrodes of the display element, but at least of the pair of opposed electrodes. It is preferable to apply on one electrode surface.
  • a method for applying to a medium for example, a coating method, a liquid spraying method, a spraying method via a gas phase, a method of flying droplets using vibration of a piezoelectric element, for example, a piezoelectric inkjet head, Examples thereof include a bubble jet (registered trademark) type ink jet head that causes droplets to fly using a thermal head that uses bumping, and a spray type that sprays liquid by air pressure or liquid pressure.
  • the coating method can be appropriately selected from known coating methods.
  • an air doctor coater, blade coater, rod coater, knife coater, squeeze coater, impregnation coater, reverse roller coater, transfer roller coater, curtain coater, double coater examples include roller coaters, slide hopper coaters, gravure coaters, kiss roll coaters, bead coaters, cast coaters, spray coaters, calendar coaters, and extrusion coaters.
  • the drying of the water mixture of the aqueous compound and the white pigment applied on the medium may be performed by any method as long as water can be evaporated. For example, heating from a heat source, a heating method using infrared light, a heating method using electromagnetic induction, and the like can be given. Further, water evaporation may be performed under reduced pressure.
  • Porous as used in the present invention refers to the formation of a porous white scattering material by applying a water admixture of the water-based compound and the white pigment onto the electrode and drying it, and then the silver or silver is chemically treated on the scattering material. After supplying an electrolyte solution containing the compound contained in the structure, it can be sandwiched between a pair of opposing electrodes, and a potential difference can be applied between the opposing pair of electrodes to cause a dissolution and precipitation reaction of silver. A penetration state that can be moved between.
  • the display element of the present invention it is desirable to carry out a curing reaction of the aqueous compound with a curing agent during or after applying and drying the water mixture described above.
  • hardeners used in the present invention include, for example, US Pat. No. 4,678,739, column 41, 4,791,042, JP-A-59-116655, and 62-245261. Nos. 61-18942, 61-249054, 61-245153, JP-A-4-218044, and the like.
  • aldehyde hardeners (formaldehyde, etc.), aziridine hardeners, epoxy hardeners, vinyl sulfone hardeners (N, N'-ethylene-bis (vinylsulfonylacetamide) Ethane, etc.), N-methylol hardeners (dimethylolurea, etc.), boric acid, metaboric acid or polymer hardeners (compounds described in JP-A-62-234157).
  • gelatin it is preferable to use a vinyl sulfone type hardener or a chlorotriazine type hardener alone or in combination.
  • boron-containing compounds such as boric acid and metaboric acid.
  • hardeners are used in an amount of 0.001 to 1 g, preferably 0.005 to 0.5 g, per 1 g of aqueous compound. It is also possible to adjust the humidity during the heat treatment or curing reaction in order to increase the film strength.
  • an electrical insulating layer can be provided.
  • the electronic insulating layer applicable to the present invention may be a layer having both ionic conductivity and electronic insulating properties.
  • the porous film can be formed by a sintering method (fusion method) (using fine particles or inorganic particles added to a binder or the like and partially fused to make use of pores formed between the particles), extraction method ( After forming a constituent layer with a solvent-soluble organic or inorganic substance and a binder that does not dissolve in the solvent, the organic or inorganic substance is dissolved with the solvent to obtain pores), and the polymer is heated or degassed Well-known formation methods such as foaming method for foaming, phase change method for phase separation of polymer mixture by manipulating good solvent and poor solvent, and radiation irradiation method for forming pores by radiating various radiations Can be used.
  • fusion method using fine particles or inorganic particles added to a binder or the like and partially fused to make use of pores formed between the particles
  • extraction method After forming a constituent layer with a solvent-soluble organic or inorganic substance and a binder that does not dissolve in the solvent, the organic or inorganic substance is dissolved with the solvent to obtain
  • auxiliary layers such as a protective layer, a filter layer, an antihalation layer, a crossover light cut layer, and a backing layer.
  • substrate examples of the substrate that can be used in the present invention include polyolefins such as polyethylene and polypropylene, polycarbonates, cellulose acetate, polyethylene terephthalate, polyethylene dinaphthalene dicarboxylate, polyethylene naphthalates, polyvinyl chloride, polyimide, and polyvinyl acetal. Synthetic plastic films such as polystyrene can also be preferably used. Syndiotactic polystyrenes are also preferred. These can be obtained, for example, by the methods described in JP-A-62-1117708, JP-A-1-46912, and 1-178505.
  • a metal substrate such as stainless steel, a paper support such as baryta paper and resin coated paper, and a support provided with a reflection layer on the plastic film, supported by JP-A-62-253195 (pages 29 to 31)
  • JP-A-62-253195 pages 29 to 31
  • RDNo. 17643, page 28, ibid. No. 18716, page 647, right column to page 648, left column, and No. 307105, page 879 can also be preferably used.
  • these supports those having resistance to curling due to heat treatment of Tg or less as in US Pat. No. 4,141,735 can be used. Further, the surface of these supports may be subjected to surface treatment for the purpose of improving the adhesion between the support and other constituent layers.
  • glow discharge treatment ultraviolet irradiation treatment, corona treatment, and flame treatment can be used as the surface treatment.
  • the support described in pages 44 to 149 of publicly known technology No. 5 (issued by Aztec Co., Ltd. on March 22, 1991) can also be used.
  • a glass substrate or an epoxy resin kneaded with glass can be used.
  • Sealing agent is for sealing so that it does not leak to the outside and is also called sealing agent.
  • a curing type such as a polymer resin, such as a thermosetting type, a photocurable type, a moisture curable type, and an anaerobic curable type can be used.
  • the columnar structure provides strong self-holding (strength) between the substrates, for example, a columnar body, a quadrangular columnar body, an elliptical columnar body, a trapezoidal array arranged in a predetermined pattern such as a lattice arrangement.
  • a columnar structure such as a columnar body can be given. Alternatively, stripes arranged at predetermined intervals may be used.
  • This columnar structure is not a random array, but can be appropriately maintained at intervals of the substrate, such as an evenly spaced array, an array in which the interval gradually changes, and an array in which a predetermined arrangement pattern is repeated at a constant period. The arrangement is preferably considered so as not to disturb the display. If the ratio of the area occupied by the columnar structure to the display area of the display element is 1 to 40%, a practically sufficient strength as a display element can be obtained.
  • a spacer may be provided between the pair of substrates for uniformly maintaining a gap between the substrates.
  • the spacer include a sphere made of resin or inorganic oxide.
  • a fixed spacer having a surface coated with a thermoplastic resin is also preferably used.
  • the diameter of the spacer is equal to or less than the height of the columnar structure, preferably equal to the height. When the columnar structure is not formed, the diameter of the spacer corresponds to the thickness of the cell gap.
  • the method for controlling the transparent state and the colored state of the display element of the present invention is preferably determined on the basis of the redox potential of the EC dye and the silver ion precipitation overvoltage.
  • the compound represented by the general formula (L) is oxidized and colored other than black by applying a noble voltage from the oxidation-reduction potential of the compound represented by the general formula (L).
  • the compound represented by the general formula (L) is reduced to a white state by applying a voltage between the oxidation-reduction potential of the compound represented by the general formula (L) and the precipitation overvoltage of the silver compound.
  • a voltage lower than the deposition overvoltage of the silver compound silver is deposited on the electrode to show a black state.
  • dissolving and decoloring silver which precipitated by applying the voltage between is mentioned.
  • the driving operation of the display element of the present invention may be simple matrix driving or active matrix driving.
  • the simple matrix driving in the present invention is a driving method in which a current is sequentially applied to a circuit in which a positive line including a plurality of positive electrodes and a negative electrode line including a plurality of negative electrodes are opposed to each other in a vertical direction. I mean.
  • the active matrix drive is a system in which scanning lines, data lines, and current supply lines are formed in a grid pattern, and are driven by TFT circuits provided in each grid pattern. Since switching can be performed for each pixel, there are advantages such as gradation and memory function. For example, a circuit described in FIG. 5 of JP-A-2004-29327 can be used.
  • the display element of the present invention can be used in an electronic book field, an ID card field, a public field, a traffic field, a broadcast field, a payment field, a distribution logistics field, and the like.
  • keys for doors student ID cards, employee ID cards, various membership cards, convenience store cards, department store cards, vending machine cards, gas station cards, subway and railway cards, bus cards, Cash cards, credit cards, highway cards, driver's licenses, hospital examination cards, electronic medical records, health insurance cards, Basic Resident Registers, passports, electronic books, etc.
  • Example 1 Production of display element >> [Production of display electrode] (Preparation of electrode A1) An ITO (Indium Tin Oxide) film having a pitch of 145 ⁇ m and an electrode width of 130 ⁇ m is formed on a 2 cm ⁇ 4 cm glass substrate having a thickness of 1.5 mm according to a known method to obtain a transparent electrode (electrode A1). It was.
  • ITO Indium Tin Oxide
  • Electrode A2 On the electrode A1, a titanium dioxide film having a thickness of 5 ⁇ m (about 4 to 10 particles having an average particle diameter of 17 nm was necked) was formed to obtain an electrode A2.
  • Electrode A4 was produced in the same manner as the electrode A3 except that the ink liquid a1 was changed to the ink liquid a2.
  • Electrode B1 A nickel electrode having an electrode thickness of 0.1 ⁇ m, a pitch of 145 ⁇ m, and an electrode interval of 130 ⁇ m is formed on a glass substrate having a thickness of 1.5 mm and a size of 2 cm ⁇ 4 cm by using a known method. To obtain a gold-nickel electrode (electrode B1) having a depth of 0.05 ⁇ m substituted with gold from the electrode surface.
  • the film thickness after drying the admixture is 20 ⁇ m. It applied so that it might become. Thereafter, the mixture was dried at 15 ° C. for 30 minutes to evaporate the solvent, and then dried in an atmosphere at 45 ° C. for 1 hour. After sprinkling glass spherical bead-shaped spacers having an average particle diameter of 20 ⁇ m on the obtained titanium dioxide layer, the electrodes B1 and A3 were bonded together and heated and pressed to produce empty cells.
  • the electrolyte solution 1-1 kept at 50 ° C. was injected into the empty cell under reduced pressure, and the injection port was sealed with an epoxy-based ultraviolet curable resin to produce a display element 1-1.
  • Display elements 1-2 to 1-15 were obtained in the same manner as in the production of the display element 1-1 except that the electrolytic solution 1-1 was changed from the electrolytic solution 1-2 to the electrolytic solution 1-15.
  • a display element 1-16 was obtained in the same manner as in the production of the display element 1-1 except that the electrolytic solution 1-1 was changed to the electrolytic solution 1-5 and the electrode A3 was changed to the electrode A4.
  • a display element 1-17 was obtained in the same manner as in the production of the display element 1-1 except that the electrolytic solution 1-1 was changed to the electrolytic solution 1-2 and the electrode A3 was changed to the electrode A4.
  • Even if the sample bottle is tapped, it does not flow down. ⁇ : When the sample bottle is tapped, it flows down.
  • ⁇ R COLOR1
  • the smaller the value of ⁇ R COLOR1 the better the stability of the reflectance when it is repeatedly driven.
  • Display elements 1-2 to 1-17 were evaluated in the same manner as display element 1-1 except that the voltage applied to the display element was changed to the values shown in Table 3.
  • the gelling agents of the present invention are found to have a stronger gelling ability than the comparative gelling agents.
  • comparative display element No. In 1-5, 1-10, 1-13, 1-14, and 1-16 a sufficient density change does not occur when a voltage of ⁇ 1.5 V is applied. The change was also great.
  • the display element satisfying the configuration of the present invention has improved reflectance stability, display unevenness, and the like even when it is repeatedly driven.
  • Example 2 Production of display element >> As the display electrode and the counter electrode, the electrode A3 and the electrode B1 used in Example 1 were used, respectively.
  • Display elements 2-1 to 2-12 were fabricated in the same manner as in the method described in Example 1.
  • ⁇ R BK2
  • , ⁇ R COLOR2
  • a and as an index of the stability of the reflectance when driven repeatedly R BK and R COLOR2.
  • the smaller the values of ⁇ R BK2 and ⁇ R COLOR2 the better the stability of the reflectance when repeatedly driven.
  • Table 5 shows the evaluation results of each electrolytic solution and display element obtained as described above.
  • the display element satisfying the configuration of the present invention has improved reflectance stability, display unevenness, and the like when it is repeatedly driven as compared with the comparative example. .
  • Example 3 Production of display element >> As the display electrode and the counter electrode, the electrode A1 and the electrode B1 used in Example 1 were used, respectively.
  • the film thickness after drying the admixture is 20 ⁇ m. It applied so that it might become. Thereafter, the mixture was dried at 15 ° C. for 30 minutes to evaporate the solvent, and then dried in an atmosphere at 45 ° C. for 1 hour. After spraying glass spherical bead-shaped spacers having an average particle diameter of 20 ⁇ m on the obtained titanium dioxide layer, the electrode B1 and the electrode A1 were bonded together and heated and pressed to produce an empty cell.
  • the electrolytic solution 3-1 kept at 50 ° C. was injected into the empty cell under reduced pressure, and the injection port was sealed with an epoxy-based ultraviolet curable resin to produce a display element 3-1.
  • Display elements 3-2 to 1-14 were obtained in the same manner as in the production of the display element 3-1, except that the electrolytic solution 3-1 was changed from the electrolytic solution 3-2 to the electrolytic solution 3-14.
  • ⁇ R COLOR1
  • a an index of the stability of the reflectance when was repeatedly drive the [Delta] R BK3.
  • ⁇ R BK3 the smaller the value of ⁇ R BK3, the better the stability of the reflectance when it is repeatedly driven.
  • the display element satisfying the configuration of the present invention has improved reflectance stability, display unevenness, and the like when it is repeatedly driven as compared with the comparative example. .

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Inorganic Chemistry (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

Disclosed is a display element having a simple member configuration, which can be driven at a low voltage. The display element is suppressed in reflectance changes during repeated operations. The display element contains, between a pair of opposing electrodes, an electrolyte, a compound the color of which is reversibly changed by an electrochemical redox reaction, and a redoxable auxiliary compound which accelerates the electrochemical redox reaction. The display element shows a white or colored display by driving the pair of opposing electrodes, and is characterized in that the solvent of the electrolyte is an aprotic polar solvent containing a compound represented by general formula (GI). Rf-L-X-Ar-Ball (GI) In the general formula, Rf represents a perfluoroalkyl group; L represents an optionally substituted alkyl group or a bonding hand; X represents a sulfur atom, an oxygen atom or an N-Rn group (wherein Rn represents a hydrogen atom or a substituent); Ar represents an optionally substituted divalent aromatic group; and Ball represents a hydrophobic group having 5 or more carbon atoms.)

Description

表示素子Display element
 本発明は、有機溶媒等の漏洩がなく、かつ低電圧駆動を可能とし、耐久性の高い新規の電気化学的な表示素子に関するものである。 The present invention relates to a novel electrochemical display element that does not leak an organic solvent or the like and can be driven at a low voltage and has high durability.
 近年、パーソナルコンピューターの動作速度の向上、ネットワークインフラの普及、データストレージの大容量化と低価格化に伴い、従来紙への印刷物で提供されたドキュメントや画像等の情報を、より簡便な電子情報として入手、電子情報を閲覧する機会がますます増大している。 In recent years, with the increase in the operating speed of personal computers, the spread of network infrastructure, the increase in capacity and price of data storage, information such as documents and images provided on printed paper on paper has become easier to use electronic information. Opportunities to obtain and browse electronic information are increasingly increasing.
 このような電子情報の閲覧手段として、従来の液晶ディスプレイやCRT、また近年では、有機ELディスプレイ等の発光型が主として用いられているが、特に、電子情報がドキュメント情報の場合、比較的長時間にわたってこの閲覧手段を注視する必要があり、これらの行為は必ずしも人間に優しい手段とは言い難く、一般に発光型のディスプレイの欠点として、フリッカーで目が疲労する、持ち運びに不便、読む姿勢が制限され、静止画面に視線を合わせる必要が生じる、長時間読むと消費電力が嵩む等が知られている。 As such electronic information browsing means, conventional liquid crystal displays and CRTs, and in recent years, light-emitting types such as organic EL displays are mainly used. Particularly, when electronic information is document information, it is relatively long time. It is necessary to pay close attention to this browsing means, and these actions are not necessarily human-friendly means. Generally, as a drawback of light-emitting displays, eyes flicker due to flickering, inconvenient to carry, reading posture is limited It is known that it is necessary to adjust the line of sight to a still screen, and that power consumption increases when read for a long time.
 これらの欠点を補う表示手段として、外光を利用し、像保持のために電力を消費しない(メモリー性)反射型ディスプレイが知られているが、下記の理由で十分な性能を有しているとは言い難い。 As a display means to compensate for these drawbacks, a reflection type display that uses external light and does not consume power for image retention (memory type) is known, but has sufficient performance for the following reasons. It's hard to say.
 すなわち、反射型液晶等の偏光板を用いる方式は、反射率が約40%と低いため白表示に難があり、また構成部材の作製に用いる製法の多くは簡便とは言い難い。また、ポリマー分散型液晶は高い電圧を必要とし、また有機物同士の屈折率差を利用しているため、得られる画像のコントラストが十分でない。また、ポリマーネットワーク型液晶は駆動電圧が高いことと、メモリー性を向上させるために複雑なTFT回路が必要である等の課題を抱えている。また、電気泳動法による表示素子は、10V以上の高い電圧が必要となり、電気泳動性粒子凝集による耐久性に懸念がある。 In other words, the method using a polarizing plate such as a reflective liquid crystal has a low reflectance of about 40%, and thus it is difficult to display white, and many of the manufacturing methods used to manufacture the constituent members are not easy. In addition, the polymer dispersed liquid crystal requires a high voltage and utilizes the difference in refractive index between organic substances, so that the resulting image has insufficient contrast. In addition, the polymer network type liquid crystal has problems such as a high driving voltage and a complicated TFT circuit required to improve the memory performance. In addition, a display element based on electrophoresis requires a high voltage of 10 V or more, and there is a concern about durability due to electrophoretic particle aggregation.
 これら上述の各方式の欠点を解消する表示方式として、エレクトロクロミック表示素子(以下、EC方式と略す)や金属または金属塩の溶解析出を利用するエレクトロデポジション方式(以下、ED方式と略す)が知られている。EC方式は、3V以下の低電圧でフルカラー表示が可能で、簡易なセル構成、白品質で優れる等の利点があり、ED方式もまた、3V以下の低電圧で駆動が可能で、簡便なセル構成、黒と白のコントラストや黒品質に優れる等の利点があり、様々な方法が開示されている(例えば、特許文献1~5参照)。 As a display method for solving the disadvantages of each of the above-mentioned methods, there are an electrochromic display element (hereinafter abbreviated as EC method) and an electrodeposition method (hereinafter abbreviated as ED method) using dissolution precipitation of metal or metal salt. Are known. The EC method has the advantage of being capable of full-color display at a low voltage of 3V or less, a simple cell configuration, and excellent white quality. The ED method can also be driven at a low voltage of 3V or less and is a simple cell. There are advantages such as excellent configuration, black-white contrast and black quality, and various methods have been disclosed (see, for example, Patent Documents 1 to 5).
 また従来多くの電気化学素子の電解質には、水あるいは有機溶媒に支持電解質を溶解した液体電解質が用いられてきた。しかし、液体電解質は電気化学素子の長期保存による経時変化や破損による電解液の漏洩、小型化・薄型化が困難であるという問題を有する。特にEC方式またはED方式の表示素子は、表示用途に用いる関係上、少なくとも一方向は、ガラスやプラスチック等の透明材料で封止する必要があるため、金属容器等で電解質を完全に密閉してしまうことは困難である。そのため、電解液の漏れや揮発がより大きな問題となる。 Conventionally, a liquid electrolyte in which a supporting electrolyte is dissolved in water or an organic solvent has been used as an electrolyte of many electrochemical elements. However, the liquid electrolyte has problems in that it is difficult to leak the electrolyte due to aging or damage due to long-term storage of the electrochemical element, and to reduce the size and thickness. In particular, EC or ED display elements must be sealed with a transparent material such as glass or plastic in at least one direction for display applications. It is difficult to end up. For this reason, leakage and volatilization of the electrolyte become a larger problem.
 このため、電解質を固体化させ、取り扱いが容易で安全性が高く、かつイオン輸率の大きい固体薄膜電解質材料の研究開発が活発に行われてきた。例えば、ポリエチレンオキサイド、ポリプロピレンオキサイドあるいはこれら誘導体や共重合体等ポリエーテル構造を有するポリマーに支持電解質を溶解した高分子固体電解質がある。このようなポリエーテル構造を有するポリマーは、エーテル構造の酸素原子4個で1価のカチオン1個を溶解することができる。このような固体電解質は基本的に溶液を含まないため漏液の可能性は低いものの、その電導度は通常の非水電解液にくらべて3桁ほど低いという実用上の課題を有している。 Therefore, research and development of solid thin film electrolyte materials that solidify electrolytes, are easy to handle, have high safety, and have a high ion transport number have been actively conducted. For example, there is a solid polymer electrolyte in which a supporting electrolyte is dissolved in a polymer having a polyether structure such as polyethylene oxide, polypropylene oxide, or a derivative or copolymer thereof. Such a polymer having a polyether structure can dissolve one monovalent cation with four oxygen atoms in the ether structure. Although such a solid electrolyte basically does not contain a solution, the possibility of leakage is low, but its conductivity is about three orders of magnitude lower than that of a normal non-aqueous electrolyte. .
 また、網の目になったポリマーマトリックス中に、液体電解質を包含するゲル電解質も知られている。このようなゲル電解質はモノマーを混合した液体電解質中で重合反応を行うことにより、液体電解質で膨潤した重合体を作製したり、あらかじめ重合したポリマーマトリックスを液体電解質に浸して、ポリマーを膨潤させて作製する。このようなゲル電解質においては、ポリマーマトリックスは基本的に液体電解質を包含する機能を有するだけでイオン伝導には寄与しないため、充分な伝導度が得られなかった。 Also known is a gel electrolyte that includes a liquid electrolyte in a polymer matrix that forms a mesh. Such gel electrolytes can be polymerized in a liquid electrolyte mixed with monomers to produce a polymer swollen with the liquid electrolyte, or a polymer matrix that has been polymerized in advance is immersed in the liquid electrolyte to swell the polymer. Make it. In such a gel electrolyte, the polymer matrix basically has a function including a liquid electrolyte and does not contribute to ionic conduction, so that sufficient conductivity cannot be obtained.
 電導度及び均一性に優れると共に、電気化学素子用固体電解質としての使用に耐えられるような充分な固体強度を有する固体電解質として、最近ゲルが注目されてきている。水素結合等の分子間力を駆動力にして繊維状会合体を形成する自己組織性を有する化合物(自己組織性化合物)は、少量の添加で液体をゲル化することが知られている(例えば特許文献6~8参照)。 Recently, gels have been attracting attention as solid electrolytes that are excellent in conductivity and uniformity and have sufficient solid strength to withstand use as solid electrolytes for electrochemical devices. It is known that a compound having a self-organization property (self-organization compound) that forms a fibrous aggregate by using an intermolecular force such as hydrogen bonding as a driving force gels a liquid with a small amount of addition (for example, (See Patent Documents 6 to 8).
 しかしながら、上記特許文献6~8に開示されている技術を詳細に検討した結果、支持電解質が多量に含まれている電解液を上記ゲル化剤でゲル化するためには、電解液に対して多量のゲル化剤を用いなければならず、本来の電気化学的特性をも変えてしまうという問題があり、繰返し駆動したときの反射率の安定性に課題があることが判明した。 However, as a result of examining the techniques disclosed in Patent Documents 6 to 8 in detail, in order to gel the electrolytic solution containing a large amount of the supporting electrolyte with the gelling agent, It has been found that a large amount of gelling agent has to be used, there is a problem that the original electrochemical characteristics are changed, and there is a problem in the stability of the reflectance when it is repeatedly driven.
 一方、下記特許文献9~11には、特定のペルフルオロアルキル誘導体が少量添加で、各種溶媒をゲル化することができ、ゲル電解質として好ましいことが記載されているが、実際には各種溶媒に対するゲル化能が示されているだけであり、各種添加剤を含んだ電解液をゲル化することができるかどうかは示されていない。また、繰返し駆動したときの反射率の安定化効果が得られることも示唆されていなかった。
国際公開第04/068231号パンフレット 国際公開第04/067673号パンフレット 米国特許第4,240,716号明細書 特許第3428603号公報 特開2003-241227号公報 特許第2599763号公報 特開2001-167629号公報 特開2006-235366号公報 特開2007-191626号公報 特開2007-191627号公報 特開2007-191661号公報
On the other hand, Patent Documents 9 to 11 below describe that various solvents can be gelled by addition of a small amount of a specific perfluoroalkyl derivative and are preferable as gel electrolytes. It shows only the ability to form, and it does not show whether an electrolyte containing various additives can be gelled. Further, it has not been suggested that the effect of stabilizing the reflectance when repeatedly driven can be obtained.
International Publication No. 04/068231 Pamphlet International Publication No. 04/066733 Pamphlet U.S. Pat. No. 4,240,716 Japanese Patent No. 3428603 JP 2003-241227 A Japanese Patent No. 2599763 JP 2001-167629 A JP 2006-235366 A JP 2007-191626 A JP 2007-191627 A JP 2007-191661 A
 本発明は、上記課題に鑑みなされたものであり、その目的は、簡便な部材構成、低電圧で駆動可能で、表示コントラスト、白表示反射率が高い表示素子であって、かつ繰返し駆動での反射率の変動が少ない表示素子を提供することにある。 The present invention has been made in view of the above problems, and its object is a display element that can be driven with a simple member configuration, low voltage, high display contrast, and high white display reflectance, and can be driven repeatedly. An object of the present invention is to provide a display element with little variation in reflectance.
 本発明の上記課題は、以下の構成により達成される。 The above object of the present invention is achieved by the following configuration.
 1.対向する一対の電極間に電解質、電気化学的な酸化還元反応により可逆的に変色する化合物及び前記電気化学的な酸化還元反応を促進する、酸化還元されうる補助化合物を含有し、前記対向する一対の電極の駆動操作により白表示及び着色表示をする表示素子において、前記電解質の溶媒が非プロトン性極性溶媒であって、かつ下記一般式(GI)で表される化合物を含むことを特徴とする表示素子。 1. An electrolyte, a compound that changes color reversibly by an electrochemical oxidation-reduction reaction, and an auxiliary compound that can be oxidized / reduced to promote the electrochemical oxidation-reduction reaction are contained between a pair of opposed electrodes. In the display element which performs white display and color display by the driving operation of the electrode, the solvent of the electrolyte is an aprotic polar solvent and includes a compound represented by the following general formula (GI) Display element.
 一般式(GI)  Rf-L-X-Ar-Ball
(式中、Rfはペルフルオロアルキル基を表し、Lは置換基を有してもよいアルキレン基もしくは、単なる結合手を表す。Xは硫黄原子、酸素原子もしくはN-Rnを表す。Rnは水素原子もしくは置換基を表す。Arは置換基を有してもよい二価の芳香族基を表し、Ballは炭素数5以上の疎水性基を表す。)
 2.前記一般式(GI)で表される化合物が、下記一般式(GII)で表される化合物であることを特徴とする前記1に記載の表示素子。
General formula (GI) Rf-LX-Ar-Ball
(In the formula, Rf represents a perfluoroalkyl group, L represents an alkylene group which may have a substituent, or a simple bond. X represents a sulfur atom, an oxygen atom or N—Rn. Rn represents a hydrogen atom. Or represents a substituent, Ar represents a divalent aromatic group which may have a substituent, and Ball represents a hydrophobic group having 5 or more carbon atoms.)
2. 2. The display device according to 1 above, wherein the compound represented by the general formula (GI) is a compound represented by the following general formula (GII).
 一般式(GII)  Rf-L-X-Ar-Y-R
(式中、Rfはペルフルオロアルキル基を表し、Lは置換基を有してもよいアルキレン基もしくは、単なる結合手を表す。Xは硫黄原子、酸素原子もしくはN-Rnを表す。Rnは水素原子もしくは置換基を表す。Arは置換基を有してもよい二価の芳香族基を表し、Yは酸素原子、硫黄原子もしくは窒素原子でArと結合し、ArとRとを連結する連結基を表す。Rは置換基を有してもよい炭素数5以上脂肪族基を表す。)
 3.前記電気化学的な酸化還元反応により可逆的に変色する化合物がエレクトロクロミック化合物であることを特徴とする前記1または2に記載の表示素子。
General formula (GII) Rf-L—X—Ar—Y—R
(In the formula, Rf represents a perfluoroalkyl group, L represents an alkylene group which may have a substituent, or a simple bond. X represents a sulfur atom, an oxygen atom or N—Rn. Rn represents a hydrogen atom. Alternatively, Ar represents a divalent aromatic group which may have a substituent, Y represents a linking group that binds to Ar by an oxygen atom, a sulfur atom, or a nitrogen atom, and connects Ar and R. R represents an aliphatic group having 5 or more carbon atoms which may have a substituent.
3. 3. The display element according to 1 or 2 above, wherein the compound that reversibly discolors by the electrochemical oxidation-reduction reaction is an electrochromic compound.
 4.前記エレクトロクロミック化合物が下記一般式(L)で表されることを特徴とする前記3に記載の表示素子。 4. 4. The display element according to 3 above, wherein the electrochromic compound is represented by the following general formula (L).
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
(式中、Rl1は置換または無置換のアリール基を表し、Rl2、Rl3は各々水素原子または置換基を表す。Xは>N-Rl4、酸素原子または硫黄原子を表し、Rl4は水素原子、または置換基を表す。)
 5.前記エレクトロクロミック化合物の電気化学反応を促進する、酸化還元されうる補助化合物がN-オキシル誘導体であることを特徴とする前記3または4に記載の表示素子。
(Wherein Rl 1 represents a substituted or unsubstituted aryl group, Rl 2 and Rl 3 each represent a hydrogen atom or a substituent, X represents> N—Rl 4 , an oxygen atom or a sulfur atom, and Rl 4 Represents a hydrogen atom or a substituent.)
5). 5. The display element according to 3 or 4 above, wherein the auxiliary compound capable of being oxidized and reduced that promotes an electrochemical reaction of the electrochromic compound is an N-oxyl derivative.
 6.前記電気化学的な酸化還元反応により可逆的に変色する化合物が金属塩化合物であることを特徴とする前記1~5のいずれか1項に記載の表示素子。 6. 6. The display device according to any one of 1 to 5, wherein the compound that reversibly discolors by the electrochemical redox reaction is a metal salt compound.
 7.前記金属塩化合物が銀塩化合物であることを特徴とする前記6に記載の表示素子。 7. 7. The display element according to 6 above, wherein the metal salt compound is a silver salt compound.
 8.前記対向する一対の電極間に、下記一般式(G1)で表される化合物または一般式(G2)で表される化合物を含有することを特徴とする前記6または7に記載の表示素子。 8. 8. The display element according to 6 or 7 above, wherein a compound represented by the following general formula (G1) or a compound represented by the general formula (G2) is contained between the pair of opposed electrodes.
  一般式(G1)  Rg11-S-Rg12
(式中、Rg11、Rg12は各々置換または無置換の炭化水素基を表す。また、これらの炭化水素基では、1個以上の窒素原子、酸素原子、リン原子、硫黄原子、ハロゲン原子を含んでもよく、Rg11とRg12が互いに連結し、環状構造を形成してもよい。)
Formula (G1) Rg 11 -S-Rg 12
(Wherein Rg 11 and Rg 12 each represent a substituted or unsubstituted hydrocarbon group. In these hydrocarbon groups, one or more nitrogen atoms, oxygen atoms, phosphorus atoms, sulfur atoms, halogen atoms are substituted. And Rg 11 and Rg 12 may be linked to each other to form a cyclic structure.)
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
(式中、Mは水素原子、金属原子または4級アンモニウムを表す。Zは含窒素複素環を構成するのに必要な原子群表す。nは0~5の整数を表し、Rg21は置換基を表し、nが2以上の場合、それぞれのRg21は同じであってもよく、異なってもよく、お互いに連結して縮合環を形成してもよい。)
 9.前記対向する一対の電極の駆動操作により実質的に黒表示、白表示及び黒以外の着色表示の3色以上の多色表示を行うことを特徴とする前記6~8のいずれか1項に記載の表示素子。
(In the formula, M represents a hydrogen atom, a metal atom or quaternary ammonium. Z represents an atomic group necessary for constituting a nitrogen-containing heterocyclic ring. N represents an integer of 0 to 5, and Rg 21 represents a substituent. In the case where n is 2 or more, each Rg 21 may be the same or different, and may be linked to each other to form a condensed ring.
9. 9. The method according to any one of 6 to 8, wherein a multi-color display of three or more colors, substantially black display, white display, and color display other than black, is performed by driving the pair of opposed electrodes. Display element.
 本発明により、明るい白表示、高コントラストの白黒表示及びフルカラー表示を、簡便な部材構成で実現することができる新規の電気化学的な表示素子を提供することができた。 According to the present invention, a novel electrochemical display element capable of realizing bright white display, high-contrast black and white display, and full color display with a simple member configuration can be provided.
 本発明者は、上記課題に鑑み鋭意検討を行った結果、対向する一対の電極間に電解質、電気化学的な酸化還元反応により可逆的に変色する化合物及び前記電気化学的な酸化還元反応を促進する、酸化還元されうる補助化合物を含有し、前記対向する一対の電極の駆動操作により白表示及び着色表示をする表示素子において、前記電解質の溶媒が非プロトン性極性溶媒であって、ゲル化剤として前記一般式(GI)で表される化合物を含む表示素子により、明るい白表示、高コントラストの白黒表示及びフルカラー表示を、簡便な部材構成で実現することができる新規の電気化学的な表示素子が得られることを見出し、本発明に至った次第である。 As a result of intensive studies in view of the above problems, the present inventors have promoted an electrolyte, a compound that reversibly changes color due to an electrochemical redox reaction, and the electrochemical redox reaction between a pair of opposed electrodes. A display element containing an auxiliary compound that can be oxidized and reduced, and performing white display and color display by driving the pair of opposed electrodes, wherein the solvent of the electrolyte is an aprotic polar solvent, and a gelling agent A novel electrochemical display element capable of realizing bright white display, high-contrast black-and-white display and full-color display with a simple member configuration by using a display element containing the compound represented by the general formula (GI) as As a result, the present invention has been found.
 以下、本発明の詳細について説明する。 Hereinafter, details of the present invention will be described.
 《表示素子の基本構成》
 本発明の表示素子においては、表示部には、対向する一対の電極の内の一つの電極が設けられている。表示部に近い電極の一つである電極1にはITO電極等の透明電極、他方の電極2には導電性電極が設けられている。電極1と電極2との間に、本発明に係わる電解質、電気化学的な酸化還元反応により可逆的に変色する化合物を含有する。対向する一対の電極間に正負両極性の電圧を印加することにより電気化学的な酸化還元反応により可逆的に変色する化合物の酸化・還元による着色・消色反応により、白及び各種着色状態を可逆的に切り替えることができる。
<< Basic configuration of display element >>
In the display element of the present invention, the display portion is provided with one of a pair of opposing electrodes. The electrode 1, which is one of the electrodes close to the display unit, is provided with a transparent electrode such as an ITO electrode, and the other electrode 2 is provided with a conductive electrode. Between the electrode 1 and the electrode 2, an electrolyte according to the present invention and a compound that reversibly discolors by an electrochemical redox reaction are contained. By applying a voltage of positive and negative polarity between a pair of opposing electrodes, the white and various colored states are reversible by coloring / decoloring reaction by oxidation / reduction of a compound that reversibly discolors by electrochemical oxidation-reduction reaction. Can be switched automatically.
 また、電気化学的な酸化還元反応により可逆的に変色する化合物の電気化学反応を促進するために、後述する酸化還元されうる補助化合物(プロモーター)を添加することを特徴とする。 Also, an auxiliary compound (promoter) that can be oxidized and reduced, which will be described later, is added in order to promote the electrochemical reaction of the compound that reversibly changes color due to the electrochemical oxidation-reduction reaction.
 電気化学的な酸化還元反応により可逆的に変色する化合物としては、エレクトロクロミック化合物と電気化学的な酸化還元反応により可逆的に溶解析出する金属塩化合物が挙げられる。 Examples of the compound that reversibly discolors by an electrochemical redox reaction include a metal salt compound that dissolves and precipitates reversibly by an electrochemical redox reaction with an electrochromic compound.
 好ましい態様は、電気化学的な酸化還元反応により可逆的に変色する化合物としてエレクトロクロミック化合物と金属塩化合物の両方を含有していることである。この態様においては、対向する一対の電極間に正負両極性の電圧を印加することにより、金属塩化合物の溶解析出に伴う白黒表示が行われ、エレクトロクロミック化合物の酸化・還元による着色・消色反応と合わせ、黒色、白色、黒以外の着色した状態を可逆的に切り替えることができる。 A preferred embodiment is that both an electrochromic compound and a metal salt compound are contained as a compound that reversibly changes color by an electrochemical redox reaction. In this embodiment, by applying a voltage of positive and negative polarity between a pair of electrodes facing each other, black and white display accompanying dissolution and precipitation of the metal salt compound is performed, and coloring / decoloring reaction by oxidation / reduction of the electrochromic compound In addition, the colored states other than black, white, and black can be switched reversibly.
 本発明のより好ましい態様においては、エレクトロクロミック化合物が、表示側の透明電極1上に固定化されている。 In a more preferred embodiment of the present invention, the electrochromic compound is immobilized on the transparent electrode 1 on the display side.
 《電極》
 (表示電極)
 本発明の表示素子においては、対向する一対の電極の内、表示部側に透明電極を用いる。透明電極としては、透明で電気を通じるものであれば特に制限はない。例えば、Indium Tin Oxide(ITO:インジウム錫酸化物)、Indium Zinc Oxide(IZO:インジウム亜鉛酸化物)、フッ素ドープ酸化スズ(FTO)、酸化インジウム、酸化亜鉛、白金、金、銀、ロジウム、銅、クロム、炭素、アルミニウム、シリコン、アモルファスシリコン、BSO(Bismuth Silicon Oxide)等が挙げられる。電極をこのように形成するには、例えば、基板上にITO膜をスパッタリング法等でマスク蒸着するか、ITO膜を全面形成した後、フォトリソグラフィ法でパターニングすればよい。表面抵抗値としては、100Ω/□以下が好ましく、10Ω/□以下がより好ましい。透明電極の厚みは特に制限はないが、0.1~20μmであるのが一般的である。
"electrode"
(Display electrode)
In the display element of the present invention, a transparent electrode is used on the display portion side of a pair of opposed electrodes. The transparent electrode is not particularly limited as long as it is transparent and conducts electricity. For example, Indium Tin Oxide (ITO: Indium Tin Oxide), Indium Zinc Oxide (IZO: Indium Zinc Oxide), Fluorine Doped Tin Oxide (FTO), Indium Oxide, Zinc Oxide, Platinum, Gold, Silver, Rhodium, Copper, Examples thereof include chromium, carbon, aluminum, silicon, amorphous silicon, and BSO (Bismuth Silicon Oxide). In order to form the electrode in this manner, for example, an ITO film may be vapor-deposited on the substrate by a sputtering method or the like, or an ITO film may be formed on the entire surface and then patterned by a photolithography method. The surface resistance value is preferably 100Ω / □ or less, and more preferably 10Ω / □ or less. The thickness of the transparent electrode is not particularly limited, but is generally 0.1 to 20 μm.
 (半導体ナノ多孔質層)
 前記表示部側の透明電極上には色素等を固定化するために、半導体ナノ多孔質層を形成することができる。半導体ナノ多孔質層は、表面積を大きくするため、その表面及び内部に、エレクトロクロミック色素(以下、EC色素ともいう)等を担持可能な微細孔を有している。前記半導体ナノ多孔質層の比表面積は、1~5000m2/gが好ましく、10~2500m2/gがより好ましい。ここで、比表面積は窒素ガスの吸着量から求めたBET比表面積を意味する。比表面積が小さすぎるとEC色素の吸着量を増大させることができなり、本発明の目的を達成できなくなる場合がある。
(Semiconductor nanoporous layer)
A semiconductor nanoporous layer can be formed on the transparent electrode on the display unit side in order to immobilize a dye or the like. In order to increase the surface area, the semiconductor nanoporous layer has micropores capable of supporting an electrochromic dye (hereinafter also referred to as EC dye) or the like on the surface and inside thereof. The specific surface area of the semiconductor nano-porous layer is preferably 1 ~ 5000m 2 / g, more preferably 10 ~ 2500m 2 / g. Here, the specific surface area means the BET specific surface area obtained from the adsorption amount of nitrogen gas. If the specific surface area is too small, the adsorption amount of the EC dye cannot be increased, and the object of the present invention may not be achieved.
 前記半導体ナノ多孔質層に含まれる半導体微粒子としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、単体半導体、酸化物半導体、化合物半導体、有機半導体、複合体酸化物半導体、またはこれらの混合物が挙げられ、これらにはドーパントとして不純物が含まれていてもよい。なお、半導体の形態の制限は特になく、単結晶、多結晶、非晶質またはこれらの混合形態であってもよい。 The semiconductor fine particles contained in the semiconductor nanoporous layer are not particularly limited and may be appropriately selected according to the purpose. For example, a single semiconductor, an oxide semiconductor, a compound semiconductor, an organic semiconductor, a composite oxide semiconductor Or a mixture thereof, which may contain impurities as a dopant. There is no particular limitation on the form of the semiconductor, and it may be single crystal, polycrystalline, amorphous, or a mixed form thereof.
 前記半導体微粒子としては、酸化物半導体が好ましい。酸化物半導体は、金属酸化物で半導体の性質を持つものであり、例えば、TiO2、SnO2、Fe23、SrTiO3、WO3、ZnO、ZrO2、Ta25、Nb25、V25、In23、CdO、MnO、CoO、TiSrO3、KTiO3、Cu2O、チタン酸ナトリウム、チタン酸バリウム、ニオブ酸カリウム等が挙げられる。 The semiconductor fine particles are preferably oxide semiconductors. An oxide semiconductor is a metal oxide and has semiconductor properties. For example, TiO 2 , SnO 2 , Fe 2 O 3 , SrTiO 3 , WO 3 , ZnO, ZrO 2 , Ta 2 O 5 , Nb 2 O 5 , V 2 O 5 , In 2 O 3 , CdO, MnO, CoO, TiSrO 3 , KTiO 3 , Cu 2 O, sodium titanate, barium titanate, potassium niobate and the like.
 前記半導体微粒子の形状は、特に制限はなく、目的に応じて適宜選定することができ、球形、ナノチューブ状、棒状、ウィスカー状のいずれの形状であっても構わず、形状の異なる2種類以上の微粒子を混合することもできる。前記球形粒子の場合には、平均粒径が0.1~1000nmが好ましく、1~100nmがより好ましい。なお、粒径分布の異なる2種類以上の微粒子を混合しても構わない。また、前記棒状粒子の場合には、アスペクト比が2~50000が好ましく、5~25000がより好ましい。 The shape of the semiconductor fine particles is not particularly limited and can be appropriately selected according to the purpose. The shape may be any of a spherical shape, a nanotube shape, a rod shape, and a whisker shape, and two or more types having different shapes may be used. Fine particles can also be mixed. In the case of the spherical particles, the average particle size is preferably 0.1 to 1000 nm, more preferably 1 to 100 nm. Two or more kinds of fine particles having different particle size distributions may be mixed. In the case of the rod-like particles, the aspect ratio is preferably 2 to 50000, more preferably 5 to 25000.
 (対向電極)
 本発明の表示素子において、対向する一対の電極の内、表示部側電極ではない電極としては金属電極もしくは炭素電極が用いられる。
(Counter electrode)
In the display element of the present invention, a metal electrode or a carbon electrode is used as an electrode that is not the display portion side electrode among the pair of electrodes facing each other.
 金属電極としては、例えば、白金、金、銀、銅、アルミニウム、亜鉛、ニッケル、チタン、ビスマス、及びそれらの合金等の公知の金属種を用いることができる。金属電極は、電解質中の銀の酸化還元電位に近い仕事関数を有する金属が好ましく、中でも銀または銀含有率80%以上の銀電極が、銀の還元状態維持のために有利であり、また電極汚れ防止にも優れる。電極の作製方法は、蒸着法、印刷法、インクジェット法、スピンコート法、CVD法等の既存の方法を用いることができる。 As the metal electrode, for example, known metal species such as platinum, gold, silver, copper, aluminum, zinc, nickel, titanium, bismuth, and alloys thereof can be used. The metal electrode is preferably a metal having a work function close to the redox potential of silver in the electrolyte. Among them, silver or a silver electrode having a silver content of 80% or more is advantageous for maintaining the reduced state of silver. Excellent in preventing dirt. As an electrode manufacturing method, an existing method such as an evaporation method, a printing method, an ink jet method, a spin coating method, or a CVD method can be used.
 炭素電極としては、多孔質炭素電極が好ましい。吸着担持可能な多孔質炭素電極としては、黒鉛質、難黒鉛化炭素質、易黒鉛化炭素質、複合炭素体や、ホウ素、窒素、りん等を炭素にドープして焼成した炭素化合物、等が挙げられる。炭素粒子の形状としては、メソフェーズ小球体、繊維状黒鉛が挙げられる。メソフェーズ小球体はコールタールピッチ等を350~500℃で焼成することで得られ、これら小球体をさらに分級して高温焼成で黒鉛化すると良好な多孔質炭素電極が得られる。また、ピッチ系、PAN系、及び気相成長繊維から、繊維状黒鉛を得ることができる。 As the carbon electrode, a porous carbon electrode is preferable. Porous carbon electrodes that can be adsorbed and supported include graphite, non-graphitizable carbon, graphitizable carbon, composite carbon, and carbon compounds obtained by doping carbon with boron, nitrogen, phosphorus, etc. Can be mentioned. Examples of the shape of the carbon particles include mesophase microspheres and fibrous graphite. Mesophase spherules can be obtained by firing coal tar pitch or the like at 350 to 500 ° C., and further classifying these spherules and graphitizing by high-temperature firing can provide a good porous carbon electrode. In addition, fibrous graphite can be obtained from pitch-based, PAN-based, and vapor-grown fibers.
 《ゲル化剤》
 本発明は、電解質のゲル化剤として、前記一般式(GI)、より好ましくは一般式(GII)で表される化合物を用いることが特徴の一つである。
《Gelling agent》
One feature of the present invention is that a compound represented by the general formula (GI), more preferably the general formula (GII) is used as the gelling agent for the electrolyte.
 一般式(GI)において、Rfはペルフルオロアルキル基を表し、Lは置換基を有してもよいアルキレン基もしくは、単なる結合手を表す。Xは硫黄原子、酸素原子もしくはN-Rnを表す。Rnは水素原子もしくは置換基を表す。Arは置換基を有してもよい二価の芳香族基を表し、Ballは総炭素数5以上の疎水性基を表す。 In General Formula (GI), Rf represents a perfluoroalkyl group, and L represents an alkylene group which may have a substituent or a simple bond. X represents a sulfur atom, an oxygen atom or N—Rn. Rn represents a hydrogen atom or a substituent. Ar represents a divalent aromatic group which may have a substituent, and Ball represents a hydrophobic group having a total carbon number of 5 or more.
 一般式(GI)において、Rfで示されるペルフルオロアルキル基は、直鎖状、もしくは分岐状、環状のアルキル基の水素原子を全てフッ素原子で置換した基を意味する。Rfで示される基の炭素数としては特に制限はないが、炭素数6~12の直鎖状ペルフルオロアルキル基はゲル化能が強く好ましい。 In the general formula (GI), the perfluoroalkyl group represented by Rf means a group in which all hydrogen atoms of a linear, branched, or cyclic alkyl group are substituted with fluorine atoms. The number of carbon atoms of the group represented by Rf is not particularly limited, but a linear perfluoroalkyl group having 6 to 12 carbon atoms is preferred because of its strong gelling ability.
 一般式(GI)において、Lは置換基を有してもよいアルキレン基であることが好ましい。Lが置換基を有してもよいアルキレンを表すとき、該置換基に特に制限はないが、定義上全ての置換位置がフッ素原子で置換されたペルフルオロアルキレン基は除外される。Lで表されるアルキレン基としては、メチレン鎖が1~4個繋がった直鎖の無置換アルキレン基が好ましく、エチレン基、トリメチレン基、テトラメチレン基が特に好ましい。 In general formula (GI), L is preferably an alkylene group which may have a substituent. When L represents alkylene which may have a substituent, the substituent is not particularly limited, but perfluoroalkylene groups in which all substitution positions are substituted with fluorine atoms are excluded by definition. As the alkylene group represented by L, a linear unsubstituted alkylene group having 1 to 4 methylene chains connected is preferable, and an ethylene group, a trimethylene group, and a tetramethylene group are particularly preferable.
 一般式(GI)において、XがN-Rnを表す場合、Rnは水素原子もしくは置換基を表す。Rnで表される置換基に特に制限はないが、置換基を有してもよいアルキル基が好ましい。Xとしては硫黄原子もしくは酸素原子が特に好ましい。 In the general formula (GI), when X represents N—Rn, Rn represents a hydrogen atom or a substituent. Although there is no restriction | limiting in particular in the substituent represented by Rn, The alkyl group which may have a substituent is preferable. X is particularly preferably a sulfur atom or an oxygen atom.
 一般式(GI)において、Arは置換基を有してもよい二価の芳香族基を表し、二価の芳香族炭化水素基であっても芳香族複素環基であってもよく、例えばフェニレン基、ビフェニレン基、ターフェニレン基、ナフチレン基、アントラニレン基、フェナンスリレン基、ピレニレン基、クリセレニン基、フルオランテニレン基、ピローレン基、フラニレン基、チオフェニレン基、トリアゾーレン基、オキサジアゾーレン基、ピリジレン基、及びピリミジレン基等が挙げられる。Arで表される基としては、置換基を有してもよいフェニレン基、ビフェニレン基、ナフチレン基が特に好ましい。 In General Formula (GI), Ar represents a divalent aromatic group which may have a substituent, and may be a divalent aromatic hydrocarbon group or an aromatic heterocyclic group, Phenylene group, biphenylene group, terphenylene group, naphthylene group, anthranylene group, phenanthrylene group, pyrenylene group, chryselin group, fluoranthenylene group, pyrrolene group, furanylene group, thiophenylene group, triazolen group, oxadiazolene group, pyridylene Group, pyrimidylene group and the like. As the group represented by Ar, a phenylene group, a biphenylene group or a naphthylene group which may have a substituent is particularly preferable.
 一般式(GI)において、Ballで表される基は、炭素数5以上の疎水性基であれば特に制限はないが、例えば炭素数5以上の、アルキル基(例えばペンチル基、シクロヘキシル基、t-オクチル基、ノニル基、ドデシル基等)、アルコキシ基(例えばペンチルオキシ基、ヘキシルオキシ基、ドデシルオキシ基、テトラデシルオキシ基)、アルキルチオ基(例えばペンチルチオ基、ヘキシルチオ基、ドデシルチオ基、テトラデシルチオ基等)、ジアルキルアミノ基(例えばジブチルアミノ基、ジヘキシルアミノ基等)が好ましい。これらの基はさらに置換基を有していてもよい。またBallで表される基は多価の連結基であってもよい。即ち一般式(GI)で表される化合物は分子内にRf-L-X-Ar-で表される基を複数有する多量体であってもよい。 In General Formula (GI), the group represented by Ball is not particularly limited as long as it is a hydrophobic group having 5 or more carbon atoms. For example, an alkyl group having 5 or more carbon atoms (for example, a pentyl group, a cyclohexyl group, t -Octyl group, nonyl group, dodecyl group, etc.), alkoxy group (for example, pentyloxy group, hexyloxy group, dodecyloxy group, tetradecyloxy group), alkylthio group (for example, pentylthio group, hexylthio group, dodecylthio group, tetradecylthio group) Group) and a dialkylamino group (for example, a dibutylamino group, a dihexylamino group, etc.) are preferable. These groups may further have a substituent. The group represented by Ball may be a polyvalent linking group. That is, the compound represented by the general formula (GI) may be a multimer having a plurality of groups represented by Rf-L—X—Ar— in the molecule.
 一般式(GII)において、Rfはペルフルオロアルキル基を表し、Lは置換基を有してもよいアルキレン基もしくは、単なる結合手を表す。Xは硫黄原子、酸素原子もしくはN-Rnを表す。Rnは水素原子もしくは置換基を表す。Arは置換基を有してもよい二価の芳香族基を表し、Yは酸素原子、硫黄原子もしくは窒素原子でArと結合し、ArとRとを連結する連結基を表す。Rは置換基を有してもよい炭素数5以上脂肪族基を表す。 In General Formula (GII), Rf represents a perfluoroalkyl group, and L represents an alkylene group which may have a substituent or a simple bond. X represents a sulfur atom, an oxygen atom or N—Rn. Rn represents a hydrogen atom or a substituent. Ar represents a divalent aromatic group which may have a substituent, and Y represents a linking group that binds to Ar by an oxygen atom, a sulfur atom, or a nitrogen atom and connects Ar and R. R represents an aliphatic group having 5 or more carbon atoms which may have a substituent.
 一般式(GII)における、Rf、L、X、Arは一般式(GI)におけるRf、L、X、Arと同義である。一般式(GII)におけるYとしては、-O-、-O-CO-、-O-CO-O-、-O-CO-NR′-、-O-、-NR′-、-NR′-CO-、-NR′-CO-O-、-NR′-CO-NR′-等が挙げられる。なお、これらの連結基は左側の結合手でArに置換し、右側でRと結合する。R′は水素原子もしくは置換基を表す。Yで表される連結基としては、-O-、-S-が好ましい。 In the general formula (GII), Rf, L, X, Ar are synonymous with Rf, L, X, Ar in the general formula (GI). Y in the general formula (GII) is —O—, —O—CO—, —O—CO—O—, —O—CO—NR′—, —O—, —NR′—, —NR′—. CO-, -NR'-CO-O-, -NR'-CO-NR'- and the like. These linking groups are substituted with Ar at the left-hand bond and bonded to R at the right. R ′ represents a hydrogen atom or a substituent. The linking group represented by Y is preferably —O— or —S—.
 一般式(GII)におけるRとしては、炭素数5以上の直鎖状もしくは分岐状、環状のアルキル基、アルケニル基、アリキニル基等が挙げられる。これらの基はさらに置換基を有していてもよい。Rで表される基としては炭素数5以上のアルキル基(例えばペンチル基、シクロヘキシル基、t-オクチル基、デシル基、ドデシル基、テトラデシル基)が好ましい。炭素数の上限は特に制限はないが、原料入手の容易性やハンドリングの容易性から炭素数20以下が好ましく、14以下が特に好ましい。 Examples of R in the general formula (GII) include linear or branched, cyclic alkyl groups, alkenyl groups, and alkynyl groups having 5 or more carbon atoms. These groups may further have a substituent. The group represented by R is preferably an alkyl group having 5 or more carbon atoms (for example, pentyl group, cyclohexyl group, t-octyl group, decyl group, dodecyl group, tetradecyl group). The upper limit of the carbon number is not particularly limited, but is preferably 20 or less, and particularly preferably 14 or less, from the viewpoint of availability of raw materials and ease of handling.
 一般式(GI)及び一般式(GII)で表される化合物は、前記特許文献9~11を参照して、容易に合成することができる。 The compounds represented by general formula (GI) and general formula (GII) can be easily synthesized with reference to Patent Documents 9 to 11.
 一般式(GI)及び一般式(GII)で表される化合物の添加量としては、用いる電解質の溶媒に対して0.1~30質量%の範囲で用いることができる。好ましい添加量は0.5~10質量%の範囲であり、1~5質量%の範囲が特に好ましい。 The amount of the compound represented by general formula (GI) or general formula (GII) can be used in the range of 0.1 to 30% by mass with respect to the solvent of the electrolyte to be used. A preferable addition amount is in a range of 0.5 to 10% by mass, and a range of 1 to 5% by mass is particularly preferable.
 以下に一般式(GI)及び一般式(GII)で表される化合物の例を示すが、本発明はこれらに限定されるものではない。 Examples of the compounds represented by the general formula (GI) and the general formula (GII) are shown below, but the present invention is not limited to these.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 《電気化学的な酸化還元反応により可逆的に変色する化合物》
 本発明に係わる電気化学的な酸化還元反応により可逆的に変色する化合物は、以下に説明するエレクトロクロミック化合物と金属塩化合物をいう。
《Compounds reversibly discolored by electrochemical redox reactions》
The compound reversibly discolored by the electrochemical redox reaction according to the present invention refers to an electrochromic compound and a metal salt compound described below.
 〔エレクトロクロミック化合物(以下EC化合物もしくはEC色素と記す)〕
 前記EC化合物としては、電気化学的な酸化反応及び還元反応の少なくとも一方により発色または消色する作用を示す限り特に制限はなく、目的に応じて適宜選択することができる。EC化合物としては、酸化タングステン、酸化イリジウム、酸化ニッケル、酸化コバルト、酸化バナジウム、酸化モリブデン、酸化チタン、酸化インジウム、酸化クロム、酸化マンガン、プルシアンブルー、窒化インジウム、窒化錫、窒化塩化ジルコニウム等の無機化合物に加え、有機金属錯体、導電性高分子化合物及び有機色素が知られている。
[Electrochromic compound (hereinafter referred to as EC compound or EC dye)]
The EC compound is not particularly limited as long as it exhibits an action of color development or decoloration by at least one of an electrochemical oxidation reaction and a reduction reaction, and can be appropriately selected according to the purpose. EC compounds include tungsten oxide, iridium oxide, nickel oxide, cobalt oxide, vanadium oxide, molybdenum oxide, titanium oxide, indium oxide, chromium oxide, manganese oxide, Prussian blue, indium nitride, tin nitride, zirconium nitride chloride, etc. In addition to compounds, organometallic complexes, conductive polymer compounds, and organic dyes are known.
 EC特性を示す有機金属錯体としては、例えば、金属-ビピリジル錯体、金属フェナントロリン錯体、金属-フタロシアニン錯体、希土類ジフタロシアニン錯体、フェロセン系色素等が挙げられる。 Examples of organometallic complexes exhibiting EC characteristics include metal-bipyridyl complexes, metal phenanthroline complexes, metal-phthalocyanine complexes, rare earth diphthalocyanine complexes, and ferrocene dyes.
 EC特性を示す導電性高分子化合物としては、例えば、ポリピロール、ポリチオフェン、ポリイソチアナフテン、ポリアニリン、ポリフェニレンジアミン、ポリベンジジン、ポリアミノフェノール、ポリビニルカルバゾール、ポリカルバゾール及びこれらの誘導体等が挙げられる。 Examples of the conductive polymer compound exhibiting EC characteristics include polypyrrole, polythiophene, polyisothianaphthene, polyaniline, polyphenylenediamine, polybenzidine, polyaminophenol, polyvinylcarbazole, polycarbazole, and derivatives thereof.
 また、例えば特開2007-112957号公報に記載されているような、ビスターピリジン誘導体と金属イオンからなる高分子材料もEC特性を示す。 In addition, a polymer material composed of a bisterpyridine derivative and a metal ion as described in, for example, JP-A-2007-112957 also exhibits EC characteristics.
 EC特性を示す有機色素としては、ビオロゲン等ピリジニウム系化合物、フェノチアジン等アジン系色素、スチリル系色素、アントラキノン系色素、ピラゾリン系色素、フルオラン系色素、ドナー/アクセプター型化合物類(例えば、テトラシアノキノジメタン、テトラチアフルバレン)等が挙げられる。その他、酸化還元指示薬、pH指示薬として知られている化合物を用いることもできる。 Organic dyes exhibiting EC characteristics include pyridinium compounds such as viologen, azine dyes such as phenothiazine, styryl dyes, anthraquinone dyes, pyrazoline dyes, fluorane dyes, donor / acceptor compounds (for example, tetracyanoquinodis Methane, tetrathiafulvalene) and the like. In addition, compounds known as redox indicators and pH indicators can also be used.
 EC化合物を、色調変化の点で分類すると、下記3つのクラスに分けられる。
クラス1:酸化還元によりある特定の色から別の色に変化するEC化合物。
クラス2:酸化状態で実質無色であり、還元状態である特定の着色状態を示すEC化合物。
クラス3:還元状態で実質無色であり、酸化状態である特定の着色状態を示すEC化合物。
EC compounds are classified into the following three classes when classified in terms of color change.
Class 1: EC compounds that change from one specific color to another by redox.
Class 2: EC compounds that are substantially colorless in the oxidized state and exhibit a specific colored state that is the reduced state.
Class 3: EC compounds that are substantially colorless in the reduced state and exhibit a particular colored state that is the oxidized state.
 本発明の表示素子においては、目的・用途により上記クラス1~クラス3のEC化合物を適宜選択することができる。 In the display element of the present invention, the above class 1 to class 3 EC compounds can be appropriately selected depending on the purpose and application.
 (クラス1のEC化合物)
 クラス1のEC化合物は、酸化還元によりある特定の色から別の色に変化するEC化合物であり、その取り得る酸化状態において、二色以上の表示が可能な化合物である。
(Class 1 EC compounds)
Class 1 EC compounds are EC compounds that change from a specific color to another color by oxidation-reduction, and are compounds capable of displaying two or more colors in their possible oxidation states.
 クラス1に分類される化合物としては、例えばV25は酸化状態から還元状態へ変化することで橙色から緑色に変化し、同様にRh23は黄色から暗緑色に変化する。 As compounds classified into class 1, for example, V 2 O 5 changes from orange to green by changing from an oxidation state to a reduction state, and similarly Rh 2 O 3 changes from yellow to dark green.
 有機金属錯体の多くはクラス1に分類され、ルテニウム(II)ビピリジン錯体、例えばトリス(5,5′-ジカルボキシルエチル-2,2′-ビピリジン)ルテニウム錯体は+2~-4価の間で、順にオレンジ色から、紫、青、緑青色、褐色、赤錆色、赤へと変化する。希土類ジフタロシアニン類の多くも、このようなマルチカラー特性を示す。例えばルテチウムジフタロシアニンの場合、酸化に従い順次、紫色から青、緑、赤橙色へと変化する。 Many of the organometallic complexes are classified as class 1, and ruthenium (II) bipyridine complexes, such as tris (5,5'-dicarboxylethyl-2,2'-bipyridine) ruthenium complexes, are between +2 and -4 valences, The color changes from orange to purple, blue, green blue, brown, red rust and red. Many of the rare earth diphthalocyanines also exhibit such multicolor characteristics. For example, in the case of lutetium diphthalocyanine, the color gradually changes from purple to blue, green, and red-orange according to oxidation.
 また、導電性ポリマーもその多くはクラス1に分類される。例えばポリチオフェンは酸化状態から還元状態へ変化することで青から赤へと変化し、ポリピロールは褐色から黄色へと変化する。またポリアニリン等では、マルチカラー特性を示し酸化状態の紺色から順に青色、緑色、淡黄色へと変化する。 Many of the conductive polymers are also classified as class 1. For example, polythiophene changes from blue to red by changing from an oxidized state to a reduced state, and polypyrrole changes from brown to yellow. In addition, polyaniline or the like exhibits multi-color characteristics and changes from an amber color of an oxidation state to blue, green, and light yellow in order.
 クラス1に分類されるEC化合物は、単一の化合物で、多色表示が可能であるというメリットを有するが、反面実質無色と言える状態を作れないという欠点を有する。 EC compounds classified as class 1 have a merit that multicolor display is possible with a single compound, but on the other hand, they have a drawback that a state that can be said to be virtually colorless cannot be made.
 (クラス2のEC化合物)
 クラス2のEC化合物は、酸化状態で無色ないし極淡色であり、還元状態である特定の着色状態を示す化合物である。
(Class 2 EC compounds)
Class 2 EC compounds are compounds that are colorless or extremely light in an oxidized state and exhibit a specific colored state that is a reduced state.
 クラス2に分類される無機化合物としては、下記化合物が挙げられ、各々還元状態でカッコ内に示した色を示す。WO3(青)、MnO3(青)、Nb25(青)、TiO2(青)等。 Examples of the inorganic compounds classified as class 2 include the following compounds, each of which shows the color shown in parentheses in the reduced state. WO 3 (blue), MnO 3 (blue), Nb 2 O 5 (blue), TiO 2 (blue), etc.
 クラス2に分類される有機金属錯体としては、例えばトリス(バソフェナントロリン)鉄(II)錯体が挙げられ、還元状態で赤色を示す。 Examples of organometallic complexes classified as class 2 include tris (vasophenanthroline) iron (II) complexes, which show red in the reduced state.
 クラス2に分類される有機色素としては、特開昭62-71934号、特開2006-71765号各公報等に記載されている化合物、例えばテレフタル酸ジメチル(赤)、4,4′-ビフェニルカルボン酸ジエチル(黄色)、1,4-ジアセチルベンゼン(シアン)、あるいは特開平1-230026号、特表2000-504764号各公報等に記載されているテトラゾリウム塩化合物等が挙げられる。 Examples of organic dyes classified as class 2 include compounds described in JP-A Nos. 62-71934 and 2006-71765, such as dimethyl terephthalate (red) and 4,4′-biphenylcarboxylic acid. Examples thereof include diethyl acid (yellow), 1,4-diacetylbenzene (cyan), and tetrazolium salt compounds described in JP-A Nos. 1-230026 and 2000-504774.
 クラス2に分類される色素として、最も代表的なのはビオロゲン等ピリジニウム系化合物である。ビオロゲン系化合物は表示が鮮明であること、置換基を変えること等により色のバリエーションを持たせることが可能であること等の長所を有しているため、有機色素の中では最も盛んに研究されている。発色は、還元で生じた有機ラジカルに基く。 The most representative dyes classified in class 2 are pyridinium compounds such as viologen. Viologen compounds have the advantages of clear display and the ability to have color variations by changing substituents, etc., so they are the most actively studied among organic dyes. ing. Color development is based on organic radicals generated by reduction.
 ビオロゲン等ピリジニウム系化合物としては、例えば特表2000-506629号を初めとして下記特許に記載されている化合物が挙げられる。 Examples of pyridinium-based compounds such as viologen include compounds described in the following patents including, for example, JP-T 2000-506629.
 特開平5-70455号、同5-170738号、特開2000-235198号、同2001-114769号、同2001-172293号、同2001-181292号、同2001-181293号、特表2001-510590号、特開2004-101729号、同2006-154683号、特表2006-519222号、特開2007-31708号、同2007-171781号、同2007-219271号、同2007-219272号、同2007-279659号、同2007-279570号、同2007-279571号、同2007-279572号等各公報。 JP-A-5-70455, JP-A-5-170738, JP-A-2000-235198, JP-A-2001-114769, JP-A-2001-172293, JP-A-2001-181292, JP-A-2001-181293, JP-T-2001-510590. JP-A-2004-101729, JP-A-2006-154683, JP-T-2006-519222, JP-A-2007-31708, JP-A-2007-171781, JP-A-2007-219271, JP-A-2007-219272, 2007-279659 No. 2007-279570, 2007-279571, 2007-279572, etc.
 以下に、本発明に用いることができるビオロゲン等ピリジニウム化合物を例示するが、これらに限定されるものではない。 Examples of pyridinium compounds such as viologen that can be used in the present invention are shown below, but are not limited thereto.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 (クラス3のEC化合物)
 クラス3のEC化合物は、還元状態で無色ないし極淡色であり、酸化状態である特定の着色状態を示す化合物である。
(Class 3 EC compounds)
Class 3 EC compounds are compounds that are colorless or very pale in the reduced state and exhibit a specific colored state that is an oxidized state.
 クラス3に分類される無機化合物としては、例えば酸化イリジウム(暗青色)、プルシアンブルー(青)等が挙げられる(各々酸化状態でカッコ内に示した色を示す)。 Examples of inorganic compounds classified into class 3 include iridium oxide (dark blue), Prussian blue (blue), etc. (each of which shows the color shown in parenthesis in the oxidized state).
 クラス3に分類される導電性ポリマーとしては、例は少ないが、例えば特開平6-263846号公報に記載のフェニルエーテル系化合物が挙げられる。 There are few examples of conductive polymers classified into class 3, but examples thereof include phenyl ether compounds described in JP-A-6-263846.
 クラス3に分類される色素としては多数の色素が知られているが、スチリル系色素、フェナジン、フェノチアジン、フェノキサジン、アクリジン等のアジン系色素、イミダゾール、オキサゾール、チアゾール等のアゾール系色素等が好ましい。 Many dyes are known as class 3 dyes, styryl dyes, azine dyes such as phenazine, phenothiazine, phenoxazine, and acridine, azole dyes such as imidazole, oxazole, and thiazole are preferable. .
 以下に、本発明に用いることができるスチリル系色素、及びアジン系色素、アゾール系色素を例示するが、これらに限定されるものではない。 Examples of styryl dyes, azine dyes, and azole dyes that can be used in the present invention are shown below, but the invention is not limited thereto.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 本発明の好ましい態様においては、前記EC色素と共に電気化学的な酸化還元反応により可逆的に溶解析出する金属塩を併用し、黒表示、白表示及び黒以外の着色表示の3色以上の多色表示を行う。この場合、該金属塩が還元されて黒表示を行うため、EC色素としては酸化により発色するクラス3のEC化合物が好ましく、特に発色の多様性、低駆動電圧、メモリー性等の点でアゾール系色素が好ましい。本発明において、最も好ましい色素は前記一般式(L)で表される化合物である。 In a preferred embodiment of the present invention, a metal salt that reversibly dissolves and precipitates by an electrochemical redox reaction is used in combination with the EC dye, and a multicolor of three or more colors of black display, white display, and non-black color display. Display. In this case, since the metal salt is reduced to give a black display, the EC dye is preferably a class 3 EC compound that develops color by oxidation, and is particularly an azole series in terms of color development diversity, low driving voltage, memory properties, and the like. A dye is preferred. In the present invention, the most preferred dye is a compound represented by the general formula (L).
 以下、本発明に係る前記一般式(L)で表されるエレクトロクロミック化合物について説明する。 Hereinafter, the electrochromic compound represented by the general formula (L) according to the present invention will be described.
 前記一般式(L)において、Rl1は置換もしくは無置換のアリール基を表し、Rl2、Rl3は各々水素原子または置換基を表す。Xは>N-Rl4、酸素原子または硫黄原子を表し、Rl4は水素原子、または置換基を表す。 In the general formula (L), Rl 1 represents a substituted or unsubstituted aryl group, and Rl 2 and Rl 3 each represent a hydrogen atom or a substituent. X represents> N—Rl 4 , an oxygen atom or a sulfur atom, and Rl 4 represents a hydrogen atom or a substituent.
 Rl1が置換基を有するアリール基を表す場合、置換基としては特に制限はなく、例えば以下のような置換基が挙げられる。 When Rl 1 represents an aryl group having a substituent, the substituent is not particularly limited, and examples thereof include the following substituents.
 アルキル基(例えば、メチル基、エチル基、プロピル基、イソプロピル基、tert-ブチル基、ペンチル基、ヘキシル基等)、シクロアルキル基(例えば、シクロヘキシル基、シクロペンチル基等)、アルケニル基、シクロアルケニル基、アルキニル基(例えば、プロパルギル基等)、グリシジル基、アクリレート基、メタクリレート基、芳香族基(例えば、フェニル基、ナフチル基、アントラセニル基等)、複素環基(例えば、ピリジル基、チアゾリル基、オキサゾリル基、イミダゾリル基、フリル基、ピロリル基、ピラジニル基、ピリミジニル基、ピリダジニル基、セレナゾリル基、スリホラニル基、ピペリジニル基、ピラゾリル基、テトラゾリル基等)、アルコキシ基(例えば、メトキシ基、エトキシ基、プロピルオキシ基、ペンチルオキシ基、シクロペンチルオキシ基、ヘキシルオキシ基、シクロヘキシルオキシ基等)、アリールオキシ基(例えば、フェノキシ基等)、アルコキシカルボニル基(例えば、メチルオキシカルボニル基、エチルオキシカルボニル基、ブチルオキシカルボニル基等)、アリールオキシカルボニル基(例えば、フェニルオキシカルボニル基等)、スルホンアミド基(例えば、メタンスルホンアミド基、エタンスルホンアミド基、ブタンスルホンアミド基、ヘキサンスルホンアミド基、シクロヘキサンスルホンアミド基、ベンゼンスルホンアミド基等)、スルファモイル基(例えば、アミノスルホニル基、メチルアミノスルホニル基、ジメチルアミノスルホニル基、ブチルアミノスルホニル基、ヘキシルアミノスルホニル基、シクロヘキシルアミノスルホニル基、フェニルアミノスルホニル基、2-ピリジルアミノスルホニル基等)、ウレタン基(例えば、メチルウレイド基、エチルウレイド基、ペンチルウレイド基、シクロヘキシルウレイド基、フェニルウレイド基、2-ピリジルウレイド基等)、アシル基(例えば、アセチル基、プロピオニル基、ブタノイル基、ヘキサノイル基、シクロヘキサノイル基、ベンゾイル基、ピリジノイル基等)、カルバモイル基(例えば、アミノカルボニル基、メチルアミノカルボニル基、ジメチルアミノカルボニル基、プロピルアミノカルボニル基、ペンチルアミノカルボニル基、シクロヘキシルアミノカルボニル基、フェニルアミノカルボニル基、2-ピリジルアミノカルボニル基等)、アシルアミノ基(例えば、アセチルアミノ基、ベンゾイルアミノ基、メチルウレイド基等)、スルホニル基(例えば、メチルスルホニル基、エチルスルホニル基、ブチルスルホニル基、シクロヘキシルスルホニル基、フェニルスルホニル基、2-ピリジルスルホニル基等)、アミノ基(例えば、アミノ基、エチルアミノ基、ジメチルアミノ基、ブチルアミノ基、シクロペンチルアミノ基、アニリノ基、2-ピリジルアミノ基等)、ハロゲン原子(例えば、塩素原子、臭素原子、沃素原子等)、シアノ基、ニトロ基、スルホ基、カルボキシル基、ヒドロキシル基、ホスホノ基(例えば、ホスホノエチル基、ホスホノプロピル基、ホスホノオキシエチル基)等を挙げることができる。また、これらの基はさらにこれらの基で置換されていてもよい。 Alkyl groups (eg, methyl, ethyl, propyl, isopropyl, tert-butyl, pentyl, hexyl, etc.), cycloalkyl groups (eg, cyclohexyl, cyclopentyl, etc.), alkenyl, cycloalkenyl , Alkynyl groups (for example, propargyl group), glycidyl groups, acrylate groups, methacrylate groups, aromatic groups (for example, phenyl group, naphthyl group, anthracenyl group, etc.), heterocyclic groups (for example, pyridyl group, thiazolyl group, oxazolyl group) Group, imidazolyl group, furyl group, pyrrolyl group, pyrazinyl group, pyrimidinyl group, pyridazinyl group, selenazolyl group, sriphoranyl group, piperidinyl group, pyrazolyl group, tetrazolyl group, etc.), alkoxy group (for example, methoxy group, ethoxy group, propyloxy) Group, pen Ruoxy group, cyclopentyloxy group, hexyloxy group, cyclohexyloxy group, etc.), aryloxy group (eg, phenoxy group, etc.), alkoxycarbonyl group (eg, methyloxycarbonyl group, ethyloxycarbonyl group, butyloxycarbonyl group, etc.) , Aryloxycarbonyl group (for example, phenyloxycarbonyl group), sulfonamide group (for example, methanesulfonamide group, ethanesulfonamide group, butanesulfonamide group, hexanesulfonamide group, cyclohexanesulfonamide group, benzenesulfonamide group ), Sulfamoyl group (for example, aminosulfonyl group, methylaminosulfonyl group, dimethylaminosulfonyl group, butylaminosulfonyl group, hexylaminosulfonyl group, cyclohexyla) Nosulfonyl group, phenylaminosulfonyl group, 2-pyridylaminosulfonyl group, etc.), urethane group (for example, methylureido group, ethylureido group, pentylureido group, cyclohexylureido group, phenylureido group, 2-pyridylureido group, etc.), Acyl group (for example, acetyl group, propionyl group, butanoyl group, hexanoyl group, cyclohexanoyl group, benzoyl group, pyridinoyl group, etc.), carbamoyl group (for example, aminocarbonyl group, methylaminocarbonyl group, dimethylaminocarbonyl group, propyl) Aminocarbonyl group, pentylaminocarbonyl group, cyclohexylaminocarbonyl group, phenylaminocarbonyl group, 2-pyridylaminocarbonyl group, etc.), acylamino group (eg acetylamino group, benzoyl group) Amino group, methylureido group, etc.), sulfonyl group (eg, methylsulfonyl group, ethylsulfonyl group, butylsulfonyl group, cyclohexylsulfonyl group, phenylsulfonyl group, 2-pyridylsulfonyl group, etc.), amino group (eg, amino group, Ethylamino group, dimethylamino group, butylamino group, cyclopentylamino group, anilino group, 2-pyridylamino group, etc.), halogen atom (eg chlorine atom, bromine atom, iodine atom etc.), cyano group, nitro group, sulfo group Carboxyl group, hydroxyl group, phosphono group (for example, phosphonoethyl group, phosphonopropyl group, phosphonooxyethyl group) and the like. Further, these groups may be further substituted with these groups.
 Rl1としては、置換もしくは無置換のフェニル基が好ましく、さらに好ましくは置換もしくは無置換の2-ヒドロキシフェニル基または4-ヒドロキシフェニル基である。 Rl 1 is preferably a substituted or unsubstituted phenyl group, more preferably a substituted or unsubstituted 2-hydroxyphenyl group or 4-hydroxyphenyl group.
 R12、Rl3で表される置換基としては特に制限はなく、前記Rl1のアリール基上への置換基として例示した置換基等が挙げられる。好ましくはRl2、Rl3は置換基を有してもよい、アルキル基、シクロアルキル基、芳香族基、複素環基である。Rl2、Rl3は互いに連結して、環構造を形成してもよい。Rl2、Rl3の組み合わせとしては、双方共に置換基を有してもよいフェニル基、複素環基である場合、もしくはいずれか一方が置換基を有してもよいフェニル基、複素環基であり、他方が置換基を有してもよいアルキル基の組み合わせである。 The substituent represented by R1 2 or Rl 3 is not particularly limited, and examples thereof include the substituents exemplified as the substituent on the aryl group of Rl 1 . Rl 2 and Rl 3 are preferably an alkyl group, a cycloalkyl group, an aromatic group, or a heterocyclic group, which may have a substituent. Rl 2 and Rl 3 may be linked to each other to form a ring structure. As a combination of Rl 2 and Rl 3 , both of them may be a phenyl group or a heterocyclic group which may have a substituent, or one of them may be a phenyl group or a heterocyclic group which may have a substituent. Yes, the other is a combination of alkyl groups which may have a substituent.
 Xとして好ましくは>N-Rl4である。Rl4として好ましくは、水素原子、アルキル基、芳香族基、複素環基、アシル基であり、より好ましくは水素原子、炭素数1~10のアルキル基、炭素数5~10のアリール基、アシル基である。 X is preferably> N—Rl 4 . Rl 4 is preferably a hydrogen atom, an alkyl group, an aromatic group, a heterocyclic group or an acyl group, more preferably a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, an aryl group having 5 to 10 carbon atoms, an acyl group It is a group.
 本発明の表示素子においては、本発明に係る一般式(L)で表される化合物が、電極表面と化学吸着または物理吸着する基を有していることが好ましい。本発明に係る化学吸着とは、電極表面との化学結合による比較的強い吸着状態であり、本発明に係る物理吸着とは、電極表面と吸着物質との間に働くファンデルワールス力による比較的弱い吸着状態である。本発明に係る吸着性基は、化学吸着性の基である方が好ましく、化学吸着する吸着性基としては、-COOH、-P=O(OH)2、-OP=O(OH)2及び-Si(OR)3(Rは、アルキル基を表す)が好ましい。 In the display element of the present invention, it is preferable that the compound represented by the general formula (L) according to the present invention has a group that chemically or physically adsorbs on the electrode surface. The chemical adsorption according to the present invention is a relatively strong adsorption state due to a chemical bond with the electrode surface, and the physical adsorption according to the present invention is a relatively strong van der Waals force acting between the electrode surface and the adsorbed substance. It is weakly adsorbed. The adsorptive group according to the present invention is preferably a chemisorbable group. Examples of the chemisorbable adsorptive group include —COOH, —P═O (OH) 2 , —OP═O (OH) 2 and —Si (OR) 3 (R represents an alkyl group) is preferred.
 一般式(L)で表されるアゾール色素の中でも、特に下記一般式(L2)で表されるイミダゾール系色素が特に好ましい。 Among the azole dyes represented by the general formula (L), an imidazole dye represented by the following general formula (L2) is particularly preferable.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 一般式(L2)において、Rl21、Rl22は脂肪族基、脂肪族オキシ基、アシルアミノ基、カルバモイル基、アシル基、スルホンアミド基、スルファモイル基を表し、R123は芳香族基もしくは芳香族複素環基を表し、Rl24は水素原子、脂肪族基、芳香族基、芳香族複素環基を表し、Rl25は水素原子、脂肪族基、芳香族基、アシル基を表す。 In formula (L2), Rl 21, Rl 22 is an aliphatic group, an aliphatic oxy group, an acylamino group, a carbamoyl group, an acyl group, a sulfonamido group, a sulfamoyl group, R1 23 is an aromatic group or an aromatic heterocyclic Rl 24 represents a hydrogen atom, an aliphatic group, an aromatic group or an aromatic heterocyclic group, and Rl 25 represents a hydrogen atom, an aliphatic group, an aromatic group or an acyl group.
 これらRl21からRl25で表される基は、さらに任意の置換基で置換されていてもよい。ただしRl21からRl25で表される基の少なくとも一つは、その部分構造として-COOH、-P=O(OH)2、-OP=O(OH)2及び-Si(OR)3(Rは、アルキル基を表す)を有する。 These groups represented by Rl 21 to Rl 25 may be further substituted with an arbitrary substituent. However, at least one of the groups represented by Rl 21 to Rl 25 has —COOH, —P═O (OH) 2 , —OP═O (OH) 2 and —Si (OR) 3 (R Represents an alkyl group).
 一般式(L2)において、Rl21、Rl22で表される基としては、アルキル基(特に分岐アルキル基)、シクロアルキル基、アルキルオキシ基、シクロアルキルオキシ基が好ましい。Rl23としては置換もしくは無置換のフェニル基、5員もしくは6員環複素環基(例えばチエニル基、フリル基、ピロリル基、ピリジル基等)が好ましい。Rl24としては置換もしくは無置換の、フェニル基、5員もしくは6員環複素環基、アルキル基が好ましい。Rl25としては特に水素原子もしくはアリール基が好ましい。 In the general formula (L2), the group represented by Rl 21 or Rl 22 is preferably an alkyl group (particularly a branched alkyl group), a cycloalkyl group, an alkyloxy group, or a cycloalkyloxy group. Rl 23 is preferably a substituted or unsubstituted phenyl group, a 5-membered or 6-membered heterocyclic group (for example, thienyl group, furyl group, pyrrolyl group, pyridyl group, etc.). Rl 24 is preferably a substituted or unsubstituted phenyl group, a 5-membered or 6-membered heterocyclic group, or an alkyl group. Rl 25 is particularly preferably a hydrogen atom or an aryl group.
 また一般式(L2)で表されるイミダゾール系色素を電極上に固定する際、これらRl21からRl25で示される基の少なくとも一つに、部分構造として、-P=O(OH)2、-Si(OR)3(Rは、アルキル基を表す)を有することが好ましく、特にRl23もしくはRl24で示される基の部分構造として-Si(OR)3(Rは、アルキル基を表す)を有することが好ましい。 Further, when the imidazole dye represented by the general formula (L2) is fixed on the electrode, at least one of the groups represented by Rl 21 to Rl 25 has a partial structure of —P═O (OH) 2 , It is preferable to have —Si (OR) 3 (R represents an alkyl group), and in particular, —Si (OR) 3 (R represents an alkyl group) as a partial structure of the group represented by Rl 23 or Rl 24 It is preferable to have.
 以下に、一般式(L2)で表されるEC色素の具体的化合物例、及び一般式(L2)には該当しないが、一般式(L)に含まれるEC色素の具体例を示すが、本発明はこれら例示する化合物にのみ限定されるものではない。 Specific examples of the EC dye represented by the general formula (L2) and specific examples of the EC dye contained in the general formula (L) that do not correspond to the general formula (L2) are shown below. The invention is not limited to these exemplified compounds.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
 《プロモーター》
 本発明の表示素子においては、電気化学的な酸化還元反応により可逆的に変色する化合物の電気化学反応を促進するために、酸化還元されうる補助化合物(以下、プロモーターと記す)を添加する。プロモーターは酸化還元反応の結果として、可視領域(400~700nm)の光学濃度が変化しないものでもよいし、変化するもの、即ち前記電気化学的な酸化還元反応により可逆的に変色する化合物であってもよく、電極上に固定化されていてもよく、電解質中に添加されていてもよい。これらプロモーターは例えば、対極反応物質としての利用あるいは、酸化還元メディエーターとしての利用が考えられる。
"promoter"
In the display element of the present invention, an auxiliary compound (hereinafter referred to as a promoter) that can be oxidized and reduced is added in order to promote the electrochemical reaction of the compound that reversibly discolors due to the electrochemical redox reaction. The promoter may be one that does not change the optical density in the visible region (400 to 700 nm) as a result of the oxidation-reduction reaction, or one that changes, that is, a compound that reversibly discolors due to the electrochemical oxidation-reduction reaction. Alternatively, it may be fixed on the electrode, or may be added to the electrolyte. These promoters can be used, for example, as counter electrode reactants or as redox mediators.
 例えば、表示電極側で電気化学的な酸化還元反応により可逆的に変色する化合物を酸化(あるいは還元)発色させる場合、対向電極側でプロモーターの還元(あるいは酸化)反応を利用することによって、低い駆動電圧で高い発色濃度を得ることが可能となる。このようにプロモーターを対極反応物質として利用する場合、電気化学的な酸化還元反応により可逆的に変色する化合物とは逆の酸化還元活性を有するプロモーターを、対向電極上に固定化して用いることが好ましい。プロモーターを対極物質として用いる場合、プロモーターは酸化還元反応の結果として可視領域(400~700nm)の光学濃度が変化しないものが好ましい。ただし、本発明の好ましい態様において記載したように、表示素子中に白色散乱物を用いて、プロモーターによる発色を遮蔽するような態様の場合、可視領域(400~700nm)の光学濃度が変化するプロモーター、即ち電気化学的な酸化還元反応により可逆的に変色する化合物を用いてもよい。このような構成の態様は、プロモーターの選択が容易となり好ましい。また別の態様として、表示電極側の電気化学的な酸化還元反応により可逆的に変色する化合物と同色の発色を示すプロモーターを用いることは、好ましい態様の一つである。 For example, when a compound that reversibly changes color due to an electrochemical redox reaction on the display electrode side is oxidized (or reduced), a low drive is achieved by utilizing the reduction (or oxidation) reaction of the promoter on the counter electrode side. It is possible to obtain a high color density with voltage. Thus, when a promoter is used as a counter electrode reactant, it is preferable to use a promoter having a redox activity opposite to that of a compound reversibly discolored by an electrochemical redox reaction, immobilized on a counter electrode. . When a promoter is used as the counter electrode material, it is preferable that the promoter does not change the optical density in the visible region (400 to 700 nm) as a result of the redox reaction. However, as described in the preferred embodiment of the present invention, in the case of using a white scatterer in the display element to shield the color development by the promoter, the promoter in which the optical density in the visible region (400 to 700 nm) changes. That is, a compound that changes color reversibly by an electrochemical redox reaction may be used. Such a configuration is preferable because it facilitates selection of a promoter. As another embodiment, it is one of preferred embodiments to use a promoter that exhibits the same color as a compound that reversibly changes color by an electrochemical redox reaction on the display electrode side.
 一方、酸化還元メディエーターは有機電解合成の分野等で一般に用いられている材料である。有機化合物はそれぞれ固有の酸化電位に加えて、電解法や電解条件にも依存する酸化過電圧を有しており、陽極電位がこれらを合せた酸化電位より高いときに、実際上酸化反応が起こる。陽極電位に実験上の限界があることから、直接法で全ての基質を酸化することは不可能である。高い酸化電位を有する基質を酸化する場合、基質から陽極への電子移動は起こらない。この反応系に低電位で陽極に対して電子移動(酸化)が起こるようなメディエーターを共存させると、まずはメディエーターが酸化され、酸化されたメディエーターによって基質が酸化されて生成物が得られる。この反応系の利点は、基質の酸化電位よりも低い陽極電位で基質を酸化することが可能であることと、酸化されたメディエーターは、基質を酸化してもとのメディエーターに戻るため、理論的には触媒量として作用することである。また低電位での酸化が可能となるため、基質や生成物の分解等も抑えられる。 On the other hand, the redox mediator is a material generally used in the field of organic electrolytic synthesis. Each organic compound has an oxidation overvoltage that depends on the electrolysis method and electrolysis conditions, in addition to its own oxidation potential, and when the anode potential is higher than the combined oxidation potential, an oxidation reaction actually occurs. Due to experimental limitations on the anodic potential, it is not possible to oxidize all substrates by direct methods. When a substrate having a high oxidation potential is oxidized, no electron transfer from the substrate to the anode occurs. When a mediator that causes electron transfer (oxidation) to the anode at a low potential coexists in this reaction system, the mediator is first oxidized, and the substrate is oxidized by the oxidized mediator to obtain a product. The advantage of this reaction system is that it is possible to oxidize the substrate at an anodic potential lower than the oxidation potential of the substrate, and that the oxidized mediator returns to the original mediator when the substrate is oxidized. It acts as a catalytic amount. Further, since oxidation at a low potential is possible, decomposition of the substrate and product can be suppressed.
 本発明において、例えば前記基質として酸化発色する電気化学的な酸化還元反応により可逆的に変色する化合物を用いる場合、触媒量の酸化メディエーターを共存させることにより、低い駆動電圧で表示素子を駆動することが可能となり、表示素子の耐久性が高まる。また表示の切り替え速度の向上、高い発色効率が得られる等の利点がある。同様に、還元メディエーターと、還元発色する電気化学的な酸化還元反応により可逆的に変色する化合物の組み合わせでも、上記効果が得られる。 In the present invention, for example, when a compound that reversibly discolors by an electrochemical redox reaction that oxidizes and develops as the substrate, the display element is driven at a low driving voltage by coexisting a catalytic amount of an oxidation mediator. The durability of the display element is increased. Further, there are advantages such as an improvement in display switching speed and high color development efficiency. Similarly, the above effect can be obtained by a combination of a reducing mediator and a compound that reversibly discolors by an electrochemical redox reaction that produces a reduction color.
 本発明の表示素子においては、有機電解合成の分野で示されているように、単一のメディエーターを用いてもよいし、複数のメディエーターを組み合わせて用いてもよい。本発明においてプロモーターをメディエーターとして用いる場合、電気化学的な酸化還元反応により可逆的に変色する化合物を表示電極上に固定化し、その近傍にプロモーターを局在化させて用いることが好ましい。 In the display element of the present invention, as shown in the field of organic electrosynthesis, a single mediator may be used, or a plurality of mediators may be used in combination. When a promoter is used as a mediator in the present invention, it is preferable to fix a compound that changes color reversibly by an electrochemical redox reaction on a display electrode and to localize the promoter in the vicinity thereof.
 本発明においては、プロモーターを対極反応物質として用いてもよく、またメディエーターとして用いてもよい。また両者の目的で、複数のプロモーターを同時に組み合わせて用いてもよい。 In the present invention, a promoter may be used as a counter electrode reactant or a mediator. For both purposes, a plurality of promoters may be used in combination at the same time.
 プロモーターとしては、特に制限はなく、目的に応じて適宜選択することができる。特に対極反応物質として利用する場合には、公知の電気化学的な酸化還元反応により可逆的に変色する化合物を利用することが可能である。また、酸化還元メディエーターとして利用する場合は、電気化学的な酸化還元反応により可逆的に変色する化合物の特性に合わせ、有機合成化学協会誌第43巻第6号(「電気エネルギーを利用する有機合成」特集号)(1985)等に記載されている公知のメディエーターを適宜選択して用いることができる。 The promoter is not particularly limited and may be appropriately selected depending on the purpose. In particular, when used as a counter electrode reactant, it is possible to use a compound that reversibly discolors by a known electrochemical redox reaction. In addition, when used as a redox mediator, in accordance with the properties of a compound that reversibly changes color by an electrochemical redox reaction, Journal of Synthetic Organic Chemistry, Vol. 43, No. 6 (“Organic synthesis using electric energy”). The known mediators described in “Special Issue” (1985) and the like can be appropriately selected and used.
 本発明に用いることができる好ましいプロモーターとしては、例えば以下のような化合物が挙げられる。
1)TEMPO等に代表されるN-オキシル誘導体、N-ヒドロキシフタルイミド誘導体、ヒドロキサム酸誘導体等、N-O結合を有する化合物
2)ガルビノキシル等、0-位に嵩高い置換基を導入したアリロキシ遊離基を有する化合物
3)フェロセン等、メタロセン誘導体
4)ベンジル(ジフェニルエタンジオン)誘導体
5)テトラゾリウム塩/ホルマザン誘導体
6)フェナジン、フェノチアジン、フェノキサジン、アクリジン等のアジン系化合物
7)ビオロゲン等ピリジニウム化合物
 その他、ベンゾキノン誘導体、ベルダジル等ヒドラジル遊離基化合物、チアジル遊離基化合物、ヒドラゾン誘導体、フェニレンジアミン誘導体、トリアリルアミン誘導体、テトラチアフルバレン誘導体、テトラシアノキノジメタン誘導体、チアントレン誘導体等もプロモーターとして用いることができる。
Examples of preferred promoters that can be used in the present invention include the following compounds.
1) N-oxyl derivatives typified by TEMPO, N-hydroxyphthalimide derivatives, hydroxamic acid derivatives, etc. Compounds having an N—O bond 2) Allyloxy free radicals introduced with bulky substituents at the 0-position, such as galvinoxyl 3) Ferrocene etc., metallocene derivatives 4) benzyl (diphenylethanedione) derivatives 5) tetrazolium salts / formazan derivatives 6) azine compounds such as phenazine, phenothiazine, phenoxazine, acridine 7) pyridinium compounds such as viologen and others, benzoquinone Derivatives, hydrazyl free radical compounds such as verdazil, thiazyl free radical compounds, hydrazone derivatives, phenylenediamine derivatives, triallylamine derivatives, tetrathiafulvalene derivatives, tetracyanoquinodimethane derivatives, thianthrene derivatives A conductor or the like can also be used as a promoter.
 本発明の表示素子においては、上記1)から7)の範疇のプロモーターが好ましく、特に1)が好ましい。 In the display element of the present invention, promoters in the categories 1) to 7) are preferable, and 1) is particularly preferable.
 以下1)の範疇の化合物について詳細に説明する。 Hereinafter, compounds in the category of 1) will be described in detail.
 N-オキシル(ニトロキシドラジカルとも呼ばれる)とは、ヒドロキシルアミンの酸素-水素結合がラジカル的に開裂して生じた酸素中心ラジカルである。ニトロキシドラジカルは、下記スキームに示すように2つの可逆的な酸化還元対を有することが知られている。ニトロキシドラジカルは1電子酸化によりオキソアンモニウムカチオンとなり、これが還元されてラジカルを再生する。またニトロキシドラジカルは1電子還元によりアミノキシアニオンとなり、これが酸化されてラジカルを再生する。従って、ニトロキシドラジカルはp型の対極反応物質、もしくはn型対極反応物質として機能することができる。またオキソアンモニウムカチオンは高い酸化能を有しており、ロイコ色素等の酸化が可能であるため、メディエーターとして機能し得る。 N-oxyl (also called nitroxide radical) is an oxygen-centered radical generated by radically cleaving the oxygen-hydrogen bond of hydroxylamine. The nitroxide radical is known to have two reversible redox pairs as shown in the following scheme. The nitroxide radical becomes an oxoammonium cation by one-electron oxidation, and this is reduced to regenerate the radical. The nitroxide radical becomes an aminoxy anion by one-electron reduction, which is oxidized to regenerate the radical. Therefore, the nitroxide radical can function as a p-type counter electrode reactant or an n-type counter electrode reactant. In addition, the oxoammonium cation has a high oxidation ability and can function as a mediator because it can oxidize leuco dye and the like.
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
 N-オキシル誘導体は、電解質中に含有されていても、電極表面上に固定化されていてもよい。電極表面上に固定化する方法は、N-オキシル誘導体に電極表面と化学吸着または物理吸着する基を導入する方法やN-オキシル誘導体をポリマー化して電極表面上に薄膜を形成する方法等が挙げられる。なお、N-オキシル誘導体はN-オキシルラジカルの状態で添加してもよく、またN-ヒドロキシ化合物の状態、さらにはオキソアンモニウムカチオンの状態で添加してもよい。 The N-oxyl derivative may be contained in the electrolyte or may be immobilized on the electrode surface. Examples of the method of immobilizing on the electrode surface include a method of introducing a group that chemically or physically adsorbs with the electrode surface into the N-oxyl derivative, a method of forming a thin film on the electrode surface by polymerizing the N-oxyl derivative, and the like. It is done. The N-oxyl derivative may be added in the form of an N-oxyl radical, or in the form of an N-hydroxy compound, and further in the form of an oxoammonium cation.
 N-オキシル誘導体としては、TEMPO(2,2,6,6-テトラメチルピペリジニル-N-オキシル)を初め、各種置換基の置換した誘導体が市販されている。また公知の文献に従って、ポリマーを含め、各種誘導体を容易に合成することができる。 As N-oxyl derivatives, derivatives substituted with various substituents such as TEMPO (2,2,6,6-tetramethylpiperidinyl-N-oxyl) are commercially available. In addition, various derivatives including polymers can be easily synthesized according to known literature.
 一般にニトロキシドラジカルのα位炭素に水素が置換している場合、容易にヒドロキシアミンとニトロンへ不均化してしまうことが知られている。このため、TEMPOのN-オキシル基α位の4つのメチル基は、安定ラジカルとして存在する上での必須の構造と言えるが、逆にこれら4つのメチル基の立体障害によって、反応性が落ちる場合がある。これら活性低下を引き起こさない点で、アザアダマンタンN-オキシル誘導体、あるいはアザビシクロN-オキシル誘導体が好ましい。 In general, it is known that when hydrogen is substituted at the α-position carbon of the nitroxide radical, it is easily disproportionated to hydroxyamine and nitrone. For this reason, the four methyl groups at the N-oxyl group α position of TEMPO can be said to be an essential structure for existing as a stable radical, but conversely, the reactivity decreases due to steric hindrance of these four methyl groups. There is. Azaadamantane N-oxyl derivatives or azabicyclo N-oxyl derivatives are preferred because they do not cause a decrease in activity.
 次に、N-ヒドロキシフタルイミド誘導体、ヒドロキサム酸誘導体等について説明する。下記スキームに示すように、N-ヒドロキシフタルイミド(NHPI)の電極酸化により生じたフタルイミドN-オキシル(PINO)は、2級アルコールを酸化してケトンを生成する。即ちNHPIが酸化メディエーターとして機能することが報告されている(Chem.Commun.,1983,479)。この例から分かるように、NHPI/PINOの酸化還元対は、本発明の表示素子においても、対極反応物質あるいはメディエーターとして機能することが理解されよう。またNHPI同様、ヒドロキサム酸誘導体、トリヒドロキシイミノシアヌル酸(THICA)も、プロモーターとして用いることができる。 Next, N-hydroxyphthalimide derivatives, hydroxamic acid derivatives, etc. will be described. As shown in the following scheme, phthalimide N-oxyl (PINO) generated by electrode oxidation of N-hydroxyphthalimide (NHPI) oxidizes a secondary alcohol to form a ketone. That is, it has been reported that NHPI functions as an oxidation mediator (Chem. Commun., 1983, 479). As can be seen from this example, it is understood that the redox couple of NHPI / PINO functions as a counter electrode reactant or mediator also in the display element of the present invention. As with NHPI, hydroxamic acid derivatives and trihydroxyimino cyanuric acid (THICA) can also be used as promoters.
 これらの化合物を用いて、本発明の表示素子を作製する場合、N-OHの状態で添加することが好ましい。N-OHの状態で表示素子を作製した後、表示素子を駆動させて酸化をすることでラジカルが生成する。 When the display element of the present invention is produced using these compounds, it is preferably added in the state of N—OH. After the display element is manufactured in the N—OH state, radicals are generated by driving the display element and performing oxidation.
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
 上記1)の範疇で示されるプロモーターは、下記一般式(M1)で表すことができ、下記一般式(M2)から(M5)で表されるプロモーターが好ましい。特に一般式(M6)で表される多環式N-オキシル誘導体が好ましい。 The promoter shown in the above category 1) can be represented by the following general formula (M1), and promoters represented by the following general formulas (M2) to (M5) are preferable. In particular, a polycyclic N-oxyl derivative represented by the general formula (M6) is preferable.
 なお、一般式(M1)から(M5)で表されるプロモーターは各種市販されており、容易に入手することができる。また公知の文献に従って、各種誘導体を容易に合成することができる。一般式(M6)で表されるプロモーターは、J.Am.Chem.Soc.,128,8412(2006)及びTetrahedron Letters 49(2008)48-52を参考として合成することができる。 Various promoters represented by the general formulas (M1) to (M5) are commercially available and can be easily obtained. Various derivatives can be easily synthesized according to known literature. The promoter represented by the general formula (M6) is J.P. Am. Chem. Soc. , 128, 8412 (2006) and Tetrahedron Letters 49 (2008) 48-52.
 また、これらをポリマー化したプロモーターは、例えば特開2004-227946号、同2004-228008号、同2006-73240号、同2007-35375号、同2007-70384号、同2007-184227号、同2007-298713号各公報等を参考にして合成することができる。 Further, promoters obtained by polymerizing these are disclosed in, for example, JP-A Nos. 2004-227946, 2004-228008, 2006-73240, 2007-35375, 2007-70384, 2007-184227, 2007. -298713 can be synthesized with reference to each publication.
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
 式中、Rm11及びRm12は各々独立に置換基を有してもよい脂肪族炭化水素基、芳香族炭化水素基、複素環基もしくは>C=O、>C=S、>C=N-Rm13を介して窒素原子と結合する基を表す。Rm13は水素原子、もしくは置換基を有してもよい脂肪族炭化水素基、芳香族炭化水素基または複素環基を表す。また、Rm11及びRm12は互いに連結して、環状構造を形成してもよい。 In the formula, Rm 11 and Rm 12 are each independently an optionally substituted aliphatic hydrocarbon group, aromatic hydrocarbon group, heterocyclic group, or>C═O,>C═S,> C═N. And represents a group bonded to a nitrogen atom via —Rm 13 . Rm 13 represents a hydrogen atom or an aliphatic hydrocarbon group optionally having substituent, an aromatic hydrocarbon group or a heterocyclic group. Rm 11 and Rm 12 may be connected to each other to form a cyclic structure.
 脂肪族炭化水素基としては、鎖状及び環状のものが包含され、鎖状のものには直鎖状のもの及び分岐状のものが包含される。このような脂肪族炭化水素基には、メチル、エチル、ビニル、プロピル、イソプロピル、プロペニル、ブチル、iso-ブチル、tert-ブチル、ペンチル、イソペンチル、ネオペンチル、ヘキシル、iso-ヘキシル、シクロヘキシル、シクロヘキセニル、オクチル、iso-オクチル、シクロオクチル、2,3-ジメチル-2-ブチル等が挙げられる。 The aliphatic hydrocarbon group includes a chain and a cyclic group, and the chain includes a linear group and a branched group. Such aliphatic hydrocarbon groups include methyl, ethyl, vinyl, propyl, isopropyl, propenyl, butyl, iso-butyl, tert-butyl, pentyl, isopentyl, neopentyl, hexyl, iso-hexyl, cyclohexyl, cyclohexenyl, Examples include octyl, iso-octyl, cyclooctyl, 2,3-dimethyl-2-butyl and the like.
 芳香族炭化水素基としては、フェニル基、ナフチル基等が挙げられ、複素環基としては、ピリジル基、チアゾリル基、オキサゾリル基、イミダゾリル基、フリル基、ピロリル基、ピラジニル基、ピリミジニル基、ピリダジニル基、セレナゾリル基、スルホラニル基、ピペリジニル基、ピラゾリル基、テトラゾリル基、モルフォリノ基等が挙げられる。 Examples of the aromatic hydrocarbon group include a phenyl group and a naphthyl group. Examples of the heterocyclic group include a pyridyl group, a thiazolyl group, an oxazolyl group, an imidazolyl group, a furyl group, a pyrrolyl group, a pyrazinyl group, a pyrimidinyl group, and a pyridazinyl group. , Serenazolyl group, sulfolanyl group, piperidinyl group, pyrazolyl group, tetrazolyl group, morpholino group and the like.
 これら置換基はさらに置換基を有していてもよい。それらの置換基には、特に制限はなく例えば、アルキル基(例えば、メチル基、エチル基、プロピル基、イソプロピル基、tert-ブチル基、ペンチル基、ヘキシル基、オクチル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基等)、シクロアルキル基(例えば、シクロプロピル基、シクロペンチル基、シクロヘキシル基等)、アルケニル基(例えば、ビニル基、アリル基、ブテニル基、オクテニル基等)、シクロアルケニル基(例えば、2-シクロペンテン-1-イル基、2-シクロヘキセン-1-イル基等)、アルキニル基(例えば、プロパルギル基、エチニル基、トリメチルシリルエチニル基等)、アリール基(例えば、フェニル基、ナフチル基、p-トリル基、m-クロロフェニル基、o-ヘキサデカノイルアミノフェニル基等)、複素環基(例えば、ピリジル基、チアゾリル基、オキサゾリル基、イミダゾリル基、フリル基、ピロリル基、ピラジニル基、ピリミジニル基、ピリダジニル基、セレナゾリル基、スルホラニル基、ピペリジニル基、ピラゾリル基、テトラゾリル基、モルフォリノ基等)、複素環オキシ基(例えば、1-フェニルテトラゾール-5-オキシ基、2-テトラヒドロピラニルオキシ基、ピリジルオキシ基、チアゾリルオキシ基、オキサゾリルオキシ基、イミダゾリルオキシ基等)、ハロゲン原子(例えば、塩素原子、臭素原子、ヨウ素原子、フッ素原子等)、アルコキシ基(例えば、メトキシ基、エトキシ基、プロピルオキシ基、tert-ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、オクチルオキシ基、ドデシルオキシ基等)、シクロアルコキシ基(例えば、シクロペンチルオキシ基、シクロヘキシルオキシ基等)、アリールオキシ基(例えば、フェノキシ基、2-ナフチルオキシ基、2-メチルフェノキシ基、4-tert-ブチルフェノキシ基、3-ニトロフェノキシ基、2-テトラデカノイルアミノフェノキシ基等)、アルキルチオ基(例えば、メチルチオ基、エチルチオ基、プロピルチオ基、ペンチルチオ基、ヘキシルチオ基、オクチルチオ基、ドデシルチオ基等)、シクロアルキルチオ基(例えば、シクロペンチルチオ基、シクロヘキシルチオ基等)、アリールチオ基(例えば、フェニルチオ基、1-ナフチルチオ基等)、複素環チオ基(例えば、ピリジルチオ基、チアゾリルチオ基、オキサゾリルチオ基、イミダゾリルチオ基、フリルチオ基、ピロリルチオ基等)、アルコキシカルボニル基(例えば、メトキシカルボニル基、エトキシカルボニル基、ブトキシカルボニル基、オクチルオキシカルボニル基、ドデシルオキシカルボニル基等)、アリールオキシカルボニル基(例えば、フェニルオキシカルボニル基、ナフチルオキシカルボニル基等)、スルファモイル基(例えば、アミノスルホニル基、メチルアミノスルホニル基、ジメチルアミノスルホニル基、ブチルアミノスルホニル基、ヘキシルアミノスルホニル基、シクロヘキシルアミノスルホニル基、オクチルアミノスルホニル基、ドデシルアミノスルホニル基、フェニルアミノスルホニル基、ナフチルアミノスルホニル基、2-ピリジルアミノスルホニル基、モルフォリノスルホニル基、ピロリジノスルホニル基等)、ウレイド基(例えば、メチルウレイド基、エチルウレイド基、ペンチルウレイド基、シクロヘキシルウレイド基、オクチルウレイド基、ドデシルウレイド基、フェニルウレイド基、ナフチルウレイド基、2-ピリジルアミノウレイド基等)、アシル基(例えば、アセチル基、エチルカルボニル基、プロピルカルボニル基、ペンチルカルボニル基、シクロヘキシルカルボニル基、オクチルカルボニル基、2-エチルヘキシルカルボニル基、ドデシルカルボニル基、フェニルカルボニル基、ナフチルカルボニル基、ピリジルカルボニル基等)、アシルオキシ基(例えば、ホルミルオキシ基、アセチルオキシ基、ピバロイルオキシ基、ステアロイルオキシ基、ベンゾイルオキシ基、p-メトキシフェニルカルボニルオキシ基、エチルカルボニルオキシ基、ブチルカルボニルオキシ基、オクチルカルボニルオキシ基、ドデシルカルボニルオキシ基、フェニルカルボニルオキシ基等)、アシルアミノ基(例えば、アセチルアミノ基、ベンゾイルアミノ基、ホルミルアミノ基、ピバロイルアミノ基、ラウロイルアミノ基、3,4,5-トリ-n-オクチルオキシフェニルカルボニルアミノ基等)、カルバモイル基(例えば、アミノカルボニル基、メチルアミノカルボニル基、ジメチルアミノカルボニル基、プロピルアミノカルボニル基、ペンチルアミノカルボニル基、シクロヘキシルアミノカルボニル基、オクチルアミノカルボニル基、2-エチルヘキシルアミノカルボニル基、ドデシルアミノカルボニル基、フェニルアミノカルボニル基、ナフチルアミノカルボニル基、2-ピリジルアミノカルボニル基、モルフォリノカルボニル基、ピペラジノカルボニル基等)、アルカンスルフィニル基またはアリールスルフィニル基(例えば、メタンスルフィニル基、エタンスルフィニル基、ブタンスルフィニル基、シクロヘキサンスルフィニル基、2-エチルヘキサンスルフィニル基、ドデカンスルフィニル基、フェニルスルフィニル基、ナフチルスルフィニル基、2-ピリジルスルフィニル基等)、アルカンスルホニル基またはアリールスルホニル基(例えば、メタンスルホニル基、エタンスルホニル基、ブタンスルホニル基、シクロヘキサンスルホニル基、2-エチルヘキサンスルホニル基、ドデカンスルホニル基、フェニルスルホニル基、ナフチルスルホニル基、2-ピリジルスルホニル基等)、アミノ基(例えば、アミノ基、メチルアミノ基、エチルアミノ基、ジメチルアミノ基、ブチルアミノ基、シクロペンチルアミノ基、2-エチルヘキシルアミノ基、ドデシルアミノ基、アニリノ基、N-メチルアニリノ基、ジフェニルアミノ基、ナフチルアミノ基、2-ピリジルアミノ基等)、シリルオキシ基(例えば、トリメチルシリルオキシ基、tert-ブチルジメチルシリルオキシ基等)、アミノカルボニルオキシ基(例えば、N,N-ジメチルカルバモイルオキシ基、N,N-ジエチルカルバモイルオキシ基、モルホリノカルボニルオキシ基、N,N-ジ-n-オクチルアミノカルボニルオキシ基、N-n-オクチルカルバモイルオキシ基等)、アルコキシカルボニルオキシ基(例えば、メトキシカルボニルオキシ基、エトキシカルボニルオキシ基、tert-ブトキシカルボニルオキシ基、n-オクチルカルボニルオキシ基等)、アリールオキシカルボニルオキシ基(例えば、フェノキシカルボニルオキシ基、p-メトキシフェノキシカルボニルオキシ基、p-n-ヘキサデシルオキシフェノキシカルボニルオキシ基等)、アルコキシカルボニルアミノ基(例えば、メトキシカルボニルアミノ基、エトキシカルボニルアミノ基、tert-ブトキシカルボニルアミノ基、n-オクタデシルオキシカルボニルアミノ基、N-メチル-メトキシカルボニルアミノ基等)、アリールオキシカルボニルアミノ基(例えば、フェノキシカルボニルアミノ基、p-クロロフェノキシカルボニルアミノ基、m-n-オクチルオキシフェノキシカルボニルアミノ基等)、スルファモイルアミノ基(例えば、スルファモイルアミノ基、N,N-ジメチルアミノスルホニルアミノ基、N-n-オクチルアミノスルホニルアミノ基等)、メルカプト基、アリールアゾ基(例えば、フェニルアゾ基、ナフチルアゾ基、p-クロロフェニルアゾ基等)、複素環アゾ基(例えば、ピリジルアゾ基、チアゾリルアゾ基、オキサゾリルアゾ基、イミダゾリルアゾ基、フリルアゾ基、ピロリルアゾ基、5-エチルチオ-1,3,4-チアジアゾール-2-イルアゾ基等)、イミノ基(例えば、N-スクシンイミド-1-イル基、N-フタルイミド-1-イル基等)、ホスフィノ基(例えば、ジメチルホスフィノ基、ジフェニルホスフィノ基、メチルフェノキシホスフィノ基等)、ホスフィニル基(例えば、ホスフィニル基、ジオクチルオキシホスフィニル基、ジエトキシホスフィニル基等)、ホスフィニルオキシ基(例えば、ジフェノキシホスフィニルオキシ基、ジオクチルオキシホスフィニルオキシ基等)、ホスフィニルアミノ基(例えば、ジメトキシホスフィニルアミノ基、ジメチルアミノホスフィニルアミノ基等)、シリル基(例えば、トリメチルシリル基、tert-ブチルジメチルシリル基、フェニルジメチルシリル基等)、シアノ基、ニトロ基、ヒドロキシル基、スルホ基、カルボキシル基等が挙げられる。 These substituents may further have a substituent. These substituents are not particularly limited, and examples thereof include alkyl groups (for example, methyl group, ethyl group, propyl group, isopropyl group, tert-butyl group, pentyl group, hexyl group, octyl group, dodecyl group, tridecyl group, Tetradecyl group, pentadecyl group etc.), cycloalkyl group (eg cyclopropyl group, cyclopentyl group, cyclohexyl group etc.), alkenyl group (eg vinyl group, allyl group, butenyl group, octenyl group etc.), cycloalkenyl group (eg 2-cyclopenten-1-yl group, 2-cyclohexen-1-yl group, etc.), alkynyl group (eg, propargyl group, ethynyl group, trimethylsilylethynyl group, etc.), aryl group (eg, phenyl group, naphthyl group, p -Tolyl group, m-chlorophenyl group, o-hexadecanoylamino Phenyl group, etc.), heterocyclic group (for example, pyridyl group, thiazolyl group, oxazolyl group, imidazolyl group, furyl group, pyrrolyl group, pyrazinyl group, pyrimidinyl group, pyridazinyl group, selenazolyl group, sulfolanyl group, piperidinyl group, pyrazolyl group, Tetrazolyl group, morpholino group, etc.), heterocyclic oxy group (for example, 1-phenyltetrazol-5-oxy group, 2-tetrahydropyranyloxy group, pyridyloxy group, thiazolyloxy group, oxazolyloxy group, imidazolyloxy group, etc.) ), Halogen atoms (for example, chlorine atom, bromine atom, iodine atom, fluorine atom, etc.), alkoxy groups (for example, methoxy group, ethoxy group, propyloxy group, tert-butoxy group, pentyloxy group, hexyloxy group, octyl) Oxy group, dodecyloxy Group), cycloalkoxy group (eg, cyclopentyloxy group, cyclohexyloxy group, etc.), aryloxy group (eg, phenoxy group, 2-naphthyloxy group, 2-methylphenoxy group, 4-tert-butylphenoxy group, 3 -Nitrophenoxy group, 2-tetradecanoylaminophenoxy group, etc.), alkylthio group (eg, methylthio group, ethylthio group, propylthio group, pentylthio group, hexylthio group, octylthio group, dodecylthio group, etc.), cycloalkylthio group (eg, Cyclopentylthio group, cyclohexylthio group, etc.), arylthio group (eg, phenylthio group, 1-naphthylthio group, etc.), heterocyclic thio group (eg, pyridylthio group, thiazolylthio group, oxazolylthio group, imidazolylthio group, furylthio group, pinyl) Rorylthio group, etc.), alkoxycarbonyl group (eg, methoxycarbonyl group, ethoxycarbonyl group, butoxycarbonyl group, octyloxycarbonyl group, dodecyloxycarbonyl group, etc.), aryloxycarbonyl group (eg, phenyloxycarbonyl group, naphthyloxycarbonyl) Group), sulfamoyl group (for example, aminosulfonyl group, methylaminosulfonyl group, dimethylaminosulfonyl group, butylaminosulfonyl group, hexylaminosulfonyl group, cyclohexylaminosulfonyl group, octylaminosulfonyl group, dodecylaminosulfonyl group, phenylamino) Sulfonyl group, naphthylaminosulfonyl group, 2-pyridylaminosulfonyl group, morpholinosulfonyl group, pyrrolidinosulfonyl group, etc.), ureido (Eg, methylureido group, ethylureido group, pentylureido group, cyclohexylureido group, octylureido group, dodecylureido group, phenylureido group, naphthylureido group, 2-pyridylaminoureido group, etc.), acyl group (eg, acetyl group Ethylcarbonyl group, propylcarbonyl group, pentylcarbonyl group, cyclohexylcarbonyl group, octylcarbonyl group, 2-ethylhexylcarbonyl group, dodecylcarbonyl group, phenylcarbonyl group, naphthylcarbonyl group, pyridylcarbonyl group, etc.), acyloxy group (for example, Formyloxy group, acetyloxy group, pivaloyloxy group, stearoyloxy group, benzoyloxy group, p-methoxyphenylcarbonyloxy group, ethylcarbonyloxy group, Rucarbonyloxy group, octylcarbonyloxy group, dodecylcarbonyloxy group, phenylcarbonyloxy group, etc.), acylamino group (for example, acetylamino group, benzoylamino group, formylamino group, pivaloylamino group, lauroylamino group, 3, 4, 5-tri-n-octyloxyphenylcarbonylamino group), carbamoyl group (for example, aminocarbonyl group, methylaminocarbonyl group, dimethylaminocarbonyl group, propylaminocarbonyl group, pentylaminocarbonyl group, cyclohexylaminocarbonyl group, octyl) Aminocarbonyl group, 2-ethylhexylaminocarbonyl group, dodecylaminocarbonyl group, phenylaminocarbonyl group, naphthylaminocarbonyl group, 2-pyridylaminocarbonyl group , Morpholinocarbonyl group, piperazinocarbonyl group, etc.), alkanesulfinyl group or arylsulfinyl group (for example, methanesulfinyl group, ethanesulfinyl group, butanesulfinyl group, cyclohexanesulfinyl group, 2-ethylhexanesulfinyl group, dodecanesulfinyl group) Phenylsulfinyl group, naphthylsulfinyl group, 2-pyridylsulfinyl group, etc.), alkanesulfonyl group or arylsulfonyl group (for example, methanesulfonyl group, ethanesulfonyl group, butanesulfonyl group, cyclohexanesulfonyl group, 2-ethylhexanesulfonyl group, Dodecanesulfonyl group, phenylsulfonyl group, naphthylsulfonyl group, 2-pyridylsulfonyl group, etc.), amino group (for example, amino group, methylamino group, Tilamino group, dimethylamino group, butylamino group, cyclopentylamino group, 2-ethylhexylamino group, dodecylamino group, anilino group, N-methylanilino group, diphenylamino group, naphthylamino group, 2-pyridylamino group, etc.), silyloxy group (Eg, trimethylsilyloxy group, tert-butyldimethylsilyloxy group, etc.), aminocarbonyloxy group (eg, N, N-dimethylcarbamoyloxy group, N, N-diethylcarbamoyloxy group, morpholinocarbonyloxy group, N, N -Di-n-octylaminocarbonyloxy group, Nn-octylcarbamoyloxy group, etc.), alkoxycarbonyloxy group (for example, methoxycarbonyloxy group, ethoxycarbonyloxy group, tert-butoxycarbonyl) Oxy group, n-octylcarbonyloxy group, etc.), aryloxycarbonyloxy group (eg, phenoxycarbonyloxy group, p-methoxyphenoxycarbonyloxy group, pn-hexadecyloxyphenoxycarbonyloxy group, etc.), alkoxycarbonylamino Groups (for example, methoxycarbonylamino group, ethoxycarbonylamino group, tert-butoxycarbonylamino group, n-octadecyloxycarbonylamino group, N-methyl-methoxycarbonylamino group, etc.), aryloxycarbonylamino groups (for example, phenoxycarbonyl) Amino group, p-chlorophenoxycarbonylamino group, mn-octyloxyphenoxycarbonylamino group, etc.), sulfamoylamino group (for example, sulfamoylamino group, N, N -Dimethylaminosulfonylamino group, Nn-octylaminosulfonylamino group, etc.), mercapto group, arylazo group (eg, phenylazo group, naphthylazo group, p-chlorophenylazo group, etc.), heterocyclic azo group (eg, pyridylazo group) , Thiazolylazo group, oxazolylazo group, imidazolylazo group, furylazo group, pyrrolylazo group, 5-ethylthio-1,3,4-thiadiazol-2-ylazo group, etc.), imino group (for example, N-succinimido-1-yl group, N-phthalimido-1-yl group), phosphino group (eg dimethylphosphino group, diphenylphosphino group, methylphenoxyphosphino group etc.), phosphinyl group (eg phosphinyl group, dioctyloxyphosphinyl group, di Ethoxyphosphinyl group, etc.), phosphine Nyloxy group (for example, diphenoxyphosphinyloxy group, dioctyloxyphosphinyloxy group, etc.), phosphinylamino group (for example, dimethoxyphosphinylamino group, dimethylaminophosphinylamino group, etc.), silyl group (For example, trimethylsilyl group, tert-butyldimethylsilyl group, phenyldimethylsilyl group, etc.), cyano group, nitro group, hydroxyl group, sulfo group, carboxyl group and the like.
 一般式(M1)で表される化合物は、これら置換基で連結された二量体、三量体等の多量体であってもよく、また重合体であってもよい。 The compound represented by the general formula (M1) may be a multimer such as a dimer or trimer linked by these substituents, or may be a polymer.
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
 式中、Rm21~Rm24は、各々独立に水素原子もしくは置換基を有してもよい脂肪族炭化水素基、芳香族炭化水素基、または複素環基を表す。またRm21~Rm24及びZ1を構成する原子は互いに連結して、環状構造を形成してもよい。 In the formula, each of Rm 21 to Rm 24 independently represents an aliphatic hydrocarbon group, an aromatic hydrocarbon group, or a heterocyclic group which may have a hydrogen atom or a substituent. The atoms constituting Rm 21 to Rm 24 and Z 1 may be connected to each other to form a cyclic structure.
 これら脂肪族炭化水素基、芳香族炭化水素基、複素環基については、前記一般式(M1)におけるそれぞれの基と同義である。 These aliphatic hydrocarbon group, aromatic hydrocarbon group and heterocyclic group have the same meanings as the respective groups in the general formula (M1).
 Z1は環状構造を形成するのに必要な原子群を表し、5員環もしくは6員環を形成するのが好ましい。Z1はさらに置換基を有していてもよく、それらの置換基としては、前記一般式(M1)で例示したのと同様の置換基が挙げられる。また、Rm21~Rm24及びZ1を構成する原子は互いに連結して、環状構造を形成してもよく、例えば、窒素原子と共にアザノルボルネン構造、アザアダマンタン構造等の多環式構造を形成してもよい。 Z 1 represents an atomic group necessary for forming a cyclic structure, and preferably forms a 5-membered ring or a 6-membered ring. Z 1 may further have a substituent, and examples of the substituent include the same substituents as exemplified in the general formula (M1). Further, the atoms constituting Rm 21 to Rm 24 and Z 1 may be connected to each other to form a cyclic structure. For example, together with the nitrogen atom, a polycyclic structure such as an azanorbornene structure or an azaadamantane structure is formed. May be.
 一般式(M2)で表される化合物の環構造としては、ピペリジン環、もしくはピロリジン環、アザアダマンタン環が好ましい。 As the ring structure of the compound represented by the general formula (M2), a piperidine ring, a pyrrolidine ring, or an azaadamantane ring is preferable.
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
 式中、Rm31は直接、もしくは酸素原子、窒素原子、硫黄原子を介してカルボニル炭素原子に置換する、置換基を有してもよい脂肪族炭化水素基、芳香族炭化水素基、または複素環基を表し、Rm32は置換基を有してもよい脂肪族炭化水素基、芳香族炭化水素基、または複素環基を表す。またRm31及びRm32は互いに連結して、環状構造を形成してもよい。 In the formula, Rm 31 is an aliphatic hydrocarbon group, an aromatic hydrocarbon group, or a heterocyclic ring, which may have a substituent, which is substituted directly or through an oxygen atom, a nitrogen atom or a sulfur atom with a carbonyl carbon atom Rm 32 represents an aliphatic hydrocarbon group, an aromatic hydrocarbon group, or a heterocyclic group which may have a substituent. Rm 31 and Rm 32 may be connected to each other to form a cyclic structure.
 これら脂肪族炭化水素基、芳香族炭化水素基、複素環基については、一般式(M1)におけるそれぞれの基と同義である。一般式(M3)において、Rm32は芳香族炭化水素基が好ましく、特に置換基を有してもよいフェニル基が好ましい。フェニル基上の置換基としては、シアノ基、アルコキシカルボニル基、トリフルオロメチル基等の電子吸引性基が好ましい。Rm31としては、カルボニル炭素原子に直接結合したフェニル基もしくは脂肪族炭化水素基が好ましく、特に、分岐アルキル基及びシクロアルキル基が好ましい。なお、一般式(M3)で表される化合物はN-OHの状態で添加し、表示素子を作製するのが好ましい。 These aliphatic hydrocarbon group, aromatic hydrocarbon group, and heterocyclic group are synonymous with the respective groups in formula (M1). In the general formula (M3), Rm 32 is preferably an aromatic hydrocarbon group, particularly preferably a phenyl group which may have a substituent. The substituent on the phenyl group is preferably an electron-withdrawing group such as a cyano group, an alkoxycarbonyl group, or a trifluoromethyl group. Rm 31 is preferably a phenyl group or an aliphatic hydrocarbon group directly bonded to a carbonyl carbon atom, particularly preferably a branched alkyl group or a cycloalkyl group. Note that the compound represented by the general formula (M3) is preferably added in the state of N—OH to manufacture a display element.
 本発明においては、本発明に係るN-オキシル誘導体が、前記一般式(M3)で表される化合物であることが好ましい態様の一つである。 In the present invention, it is one of preferred embodiments that the N-oxyl derivative according to the present invention is a compound represented by the general formula (M3).
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
 式中、Z2は環状構造を形成するのに必要な原子群を表し、さらに置換基を有していてもよい。 In the formula, Z 2 represents an atomic group necessary for forming a cyclic structure, and may further have a substituent.
 前記一般式(M4)において、Z2は環状構造を形成するのに必要な原子群を表し、5員環もしくは6員環を形成するのが好ましい。Z2はさらに置換基を有していてもよく、それらの置換基としては、一般式(M1)で例示した置換基が挙げられる。また、Z2は縮合環であってもよい。なお、一般式(M4)で表される化合物はN-OHの状態で添加し、表示素子を作製するのが好ましい。 In the general formula (M4), Z 2 represents an atomic group necessary for forming a cyclic structure, and preferably forms a 5-membered ring or a 6-membered ring. Z 2 may further have a substituent, and examples of the substituent include the substituents exemplified in Formula (M1). Z 2 may be a condensed ring. Note that the compound represented by the general formula (M4) is preferably added in the state of N—OH to manufacture a display element.
 本発明においては、本発明に係るN-オキシル誘導体が、前記一般式(M4)で表される化合物であることが好ましい態様の一つである。 In the present invention, it is one of the preferred embodiments that the N-oxyl derivative according to the present invention is a compound represented by the general formula (M4).
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
 式中、Rm51~Rm55は各々独立に置換基を有してもよい脂肪族炭化水素基、芳香族炭化水素基、複素環基を表す。これら脂肪族炭化水素基、芳香族炭化水素基、複素環基については、一般式(M1)におけるそれぞれの基と同義である。 In the formula, Rm 51 to Rm 55 each independently represents an aliphatic hydrocarbon group, an aromatic hydrocarbon group or a heterocyclic group which may have a substituent. These aliphatic hydrocarbon group, aromatic hydrocarbon group, and heterocyclic group are synonymous with the respective groups in formula (M1).
 一般式(M5)において、Rm51は芳香族炭化水素基が好ましく、特に置換基を有してもよいフェニル基が好ましい。フェニル基上の置換基としてはシアノ基、アルコキシカルボニル基、トリフルオロメチル基等の電子吸引性基が好ましい。Rm51~Rm55としては、炭素数1~6のアルキル基が好ましく、メチル基が特に好ましい。 In the general formula (M5), Rm 51 is preferably an aromatic hydrocarbon group, particularly preferably a phenyl group which may have a substituent. The substituent on the phenyl group is preferably an electron-withdrawing group such as a cyano group, an alkoxycarbonyl group, or a trifluoromethyl group. Rm 51 to Rm 55 are preferably an alkyl group having 1 to 6 carbon atoms, and particularly preferably a methyl group.
 本発明においては、本発明に係るN-オキシル誘導体が、前記一般式(M5)で表される化合物であることが好ましい態様の一つである。 In the present invention, it is one of the preferred embodiments that the N-oxyl derivative according to the present invention is a compound represented by the general formula (M5).
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
 式中、Rm61及びRm62は各々独立に水素原子もしくは置換基を有してもよい脂肪族炭化水素基を表し、Z3~Z5は環状構造を形成するのに必要な原子群を表し、nは0または1を表す。Rm61及びRm62としては、水素原子もしくは炭素数4以下の直鎖アルキル基が好ましく、Rm61及びRm62の少なくとも一方が水素原子であることが好ましい。 In the formula, Rm 61 and Rm 62 each independently represent a hydrogen atom or an aliphatic hydrocarbon group which may have a substituent, and Z 3 to Z 5 each represents an atomic group necessary for forming a cyclic structure. , N represents 0 or 1. Rm 61 and Rm 62 are preferably a hydrogen atom or a linear alkyl group having 4 or less carbon atoms, and at least one of Rm 61 and Rm 62 is preferably a hydrogen atom.
 Z3~Z5は環状構造を形成するのに必要な原子群(例えば炭素、窒素、酸素、イオウ等)を表し、各々5員環もしくは6員環を形成するのが好ましい。Z3~Z5はさらに置換基を有していてもよい。nは0または1を表すが、n=0の時、一般式(6)はビシクロ化合物を表し、n=1の場合トリシクロ化合物を表す。 Z 3 to Z 5 each represents an atomic group necessary for forming a cyclic structure (for example, carbon, nitrogen, oxygen, sulfur, etc.), and each preferably forms a 5-membered ring or a 6-membered ring. Z 3 to Z 5 may further have a substituent. n represents 0 or 1, but when n = 0, the general formula (6) represents a bicyclo compound, and when n = 1, a tricyclo compound.
 一般式(M6)で表される化合物としては、n=1が好ましく、特にアザアダマンタン誘導体が好ましい。 As the compound represented by the general formula (M6), n = 1 is preferable, and an azaadamantane derivative is particularly preferable.
 以下に、本発明で用いることのできるプロモーターの具体例を示すが、これらに限定されるものではない。 Specific examples of promoters that can be used in the present invention are shown below, but are not limited thereto.
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
 《電解質》
 本発明でいう電解質とは、一般に、水等の溶媒に溶けて溶液がイオン伝導性を示す物質(以下、狭義の電解質という。)をいうが、本発明の説明においては、狭義の電解質に電解質、非電解質を問わず他の金属、化合物等を含有させた混合物を電解質(広義の電解質)という。
"Electrolytes"
The electrolyte referred to in the present invention generally refers to a substance that dissolves in a solvent such as water and exhibits ionic conductivity in a solution (hereinafter referred to as a narrowly defined electrolyte). In the description of the present invention, the electrolyte is defined as a narrowly defined electrolyte. A mixture containing other metals, compounds and the like regardless of non-electrolytes is referred to as an electrolyte (broadly defined electrolyte).
 (電解質の溶媒)
 本発明は、電解質の溶媒として、非プロトン性極性溶媒を用いることが特徴の一つである。非プロトン性極性溶媒としては、例えばジメチルカボネート、ジエチルカーボネート、プロピレンカーボネート、エチレンカーボネート、ブチロラクタン、ジエチルエーテル、1,2-ジメトキシエタン、ジエチレングリコールジメテルエーテル、テトラヒドロフラン、2-メチルテトラヒドロフラン、ジオキサン、ジオキソラン、メチルジオキソラン、アセトトニトリル、ベンゾニトリル、ニトロベンゼン、N,N-ジメチルホルムアミド、N,N-ジエチルホルムアミド、スルホオキシド、ジメチルスルホオキシドジメチルスルホン、テトラメチレンスルホン、スルホラン、N-メチル-2-オキドリノリン及びこれら混合物を使用することができる。
(Electrolyte solvent)
The present invention is characterized in that an aprotic polar solvent is used as a solvent for the electrolyte. Examples of the aprotic polar solvent include dimethyl carbonate, diethyl carbonate, propylene carbonate, ethylene carbonate, butyrolactan, diethyl ether, 1,2-dimethoxyethane, diethylene glycol dimethyl ether, tetrahydrofuran, 2-methyltetrahydrofuran, dioxane, dioxolane, Methyldioxolane, acetonitrile, benzonitrile, nitrobenzene, N, N-dimethylformamide, N, N-diethylformamide, sulfooxide, dimethylsulfoxide dimethylsulfone, tetramethylenesulfone, sulfolane, N-methyl-2-oxdorinoline and these Mixtures can be used.
 電解質の溶媒の沸点としては、特に制限はないが、揮発性防止の点、及び製造上の理由から、高沸点であることが好ましく、200℃以上の沸点を有することが好ましい。 The boiling point of the electrolyte solvent is not particularly limited, but is preferably a high boiling point and preferably has a boiling point of 200 ° C. or higher from the viewpoint of preventing volatility and production.
 本発明において、特に好ましく用いられる溶媒は下記一般式(S1)、(S2)で表される化合物である。 In the present invention, particularly preferably used solvents are compounds represented by the following general formulas (S1) and (S2).
 (一般式(S1)、(S2)で表される化合物)
 本発明の表示素子においては、電解質が、下記一般式(S1)または(S2)で表される化合物を含有することが好ましい。
(Compounds represented by formulas (S1) and (S2))
In the display element of the present invention, the electrolyte preferably contains a compound represented by the following general formula (S1) or (S2).
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
 式中、Lは酸素原子またはアルキレン基を表し、Rs11~Rs14は各々水素原子、アルキル基、アルケニル基、アリール基、シクロアルキル基、アルコキシアルキル基またはアルコキシ基を表す。 In the formula, L represents an oxygen atom or an alkylene group, and Rs 11 to Rs 14 each represents a hydrogen atom, an alkyl group, an alkenyl group, an aryl group, a cycloalkyl group, an alkoxyalkyl group, or an alkoxy group.
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
 式中、Rs21、Rs22は各々アルキル基、アルケニル基、アリール基、シクロアルキル基、アルコキシアルキル基またはアルコキシ基を表す。 In the formula, Rs 21 and Rs 22 each represents an alkyl group, an alkenyl group, an aryl group, a cycloalkyl group, an alkoxyalkyl group or an alkoxy group.
 はじめに、一般式(S1)で表される化合物の詳細について説明する。 First, the details of the compound represented by the general formula (S1) will be described.
 一般式(S1)において、Lは酸素原子またはアルキレン基を表し、Rs11~Rs14は各々水素原子、アルキル基、アルケニル基、アリール基、シクロアルキル基、アルコキシアルキル基またはアルコキシ基を表し、これらの置換基はさらに任意の置換基で置換されていてもよい。 In the general formula (S1), L represents an oxygen atom or an alkylene group, and Rs 11 to Rs 14 each represents a hydrogen atom, an alkyl group, an alkenyl group, an aryl group, a cycloalkyl group, an alkoxyalkyl group, or an alkoxy group. These substituents may be further substituted with an arbitrary substituent.
 アルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、tert-ブチル基、ペンチル基、ヘキシル基、オクチル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基等、アリール基としては、例えば、フェニル基、ナフチル基等、シクロアルキル基としては、例えば、シクロペンチル基、シクロヘキシル基等、アルコキシアルキル基として、例えば、β-メトキシエチル基、γ-メトキシプロピル基等、アルコキシ基としては、例えば、メトキシ基、エトキシ基、プロピルオキシ基、ペンチルオキシ基、ヘキシルオキシ基、オクチルオキシ基、ドデシルオキシ基等を挙げることができる。 Examples of the alkyl group include a methyl group, an ethyl group, a propyl group, an isopropyl group, a tert-butyl group, a pentyl group, a hexyl group, an octyl group, a dodecyl group, a tridecyl group, a tetradecyl group, and a pentadecyl group. Examples of the cycloalkyl group such as phenyl group, naphthyl group, etc. include, for example, cyclopentyl group, cyclohexyl group, etc., alkoxyalkyl groups, such as β-methoxyethyl group, γ-methoxypropyl group, etc. Examples thereof include a methoxy group, an ethoxy group, a propyloxy group, a pentyloxy group, a hexyloxy group, an octyloxy group, and a dodecyloxy group.
 以下、一般式(S1)で表される化合物の具体例を示すが、本発明ではこれら例示する化合物にのみ限定されるものではない。 Hereinafter, although the specific example of a compound represented by general formula (S1) is shown, in this invention, it is not limited only to these illustrated compounds.
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000040
 次いで、一般式(S2)で表される化合物の詳細について説明する。 Next, details of the compound represented by the general formula (S2) will be described.
 前記一般式(S2)において、Rs21、Rs22は各々アルキル基、アルケニル基、アリール基、シクロアルキル基、アルコキシアルキル基またはアルコキシ基を表す。 In the general formula (S2), Rs 21 and Rs 22 each represents an alkyl group, an alkenyl group, an aryl group, a cycloalkyl group, an alkoxyalkyl group, or an alkoxy group.
 アルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、tert-ブチル基、ペンチル基、ヘキシル基、オクチル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基等、アリール基としては、例えば、フェニル基、ナフチル基等、シクロアルキル基としては、例えば、シクロペンチル基、シクロヘキシル基等、アルコキシアルキル基として、例えば、β-メトキシエチル基、γ-メトキシプロピル基等、アルコキシ基としては、例えば、メトキシ基、エトキシ基、プロピルオキシ基、ペンチルオキシ基、ヘキシルオキシ基、オクチルオキシ基、ドデシルオキシ基等を挙げることができる。 Examples of the alkyl group include a methyl group, an ethyl group, a propyl group, an isopropyl group, a tert-butyl group, a pentyl group, a hexyl group, an octyl group, a dodecyl group, a tridecyl group, a tetradecyl group, and a pentadecyl group. Examples of the cycloalkyl group such as phenyl group, naphthyl group, etc. include, for example, cyclopentyl group, cyclohexyl group, etc., alkoxyalkyl groups, such as β-methoxyethyl group, γ-methoxypropyl group, etc. Examples thereof include a methoxy group, an ethoxy group, a propyloxy group, a pentyloxy group, a hexyloxy group, an octyloxy group, and a dodecyloxy group.
 以下、一般式(S2)で表される化合物の具体例を示すが、本発明ではこれら例示する化合物にのみ限定されるものではない。 Hereinafter, although the specific example of a compound represented by general formula (S2) is shown, in this invention, it is not limited only to these illustrated compounds.
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000041
 上記例示した一般式(S1)及び一般式(S2)で表される化合物の中でも、特に、例示化合物S1-1、S1-2、S2-3が好ましい。 Among the compounds represented by the general formulas (S1) and (S2) exemplified above, the exemplified compounds S1-1, S1-2, and S2-3 are particularly preferable.
 本発明において、特に好ましく用いられる溶媒は上記一般式(S1)、(S2)で表される化合物であるが、本発明の表示素子においては、本発明の目的効果を損なわない範囲でさらに別の溶媒を併せて用いることができる。別の溶媒としては、具体的には、テトラメチル尿素、スルホラン、ジメチルスルホキシド、1,3-ジメチル-2-イミダゾリジノン、2-(N-メチル)-2-ピロリジノン、ヘキサメチルホスホルトリアミド、N-メチルプロピオンアミド、N,N-ジメチルアセトアミド、N-メチルアセトアミド、N,Nジメチルホルムアミド、N-メチルホルムアミド、ブチロニトリル、プロピオニトリル、アセトニトリル、アセチルアセトン、4-メチル-2-ペンタノン、2-ブタノール、1-ブタノール、2-プロパノール、1-プロパノール、エタノール、メタノール、無水酢酸、酢酸エチル、プロピオン酸エチル、ジメトキシエタン、ジエトキシフラン、テトラヒドロフラン、エチレングリコール、ジエチレングリコール、トリエチレングリコールモノブチルエーテル、水等が挙げられる。これらの溶媒の内、凝固点が-20℃以下、かつ沸点が120℃以上の溶媒を少なくとも1種含むことが好ましい。 In the present invention, particularly preferably used solvents are the compounds represented by the above general formulas (S1) and (S2). However, in the display element of the present invention, another solvent is used as long as the object effects of the present invention are not impaired. A solvent can be used in combination. Specific examples of the other solvent include tetramethylurea, sulfolane, dimethyl sulfoxide, 1,3-dimethyl-2-imidazolidinone, 2- (N-methyl) -2-pyrrolidinone, hexamethylphosphortriamide, N-methylpropionamide, N, N-dimethylacetamide, N-methylacetamide, N, N dimethylformamide, N-methylformamide, butyronitrile, propionitrile, acetonitrile, acetylacetone, 4-methyl-2-pentanone, 2-butanol 1-butanol, 2-propanol, 1-propanol, ethanol, methanol, acetic anhydride, ethyl acetate, ethyl propionate, dimethoxyethane, diethoxyfuran, tetrahydrofuran, ethylene glycol, diethylene glycol, triethylene Recall monobutyl ether, water and the like. Among these solvents, it is preferable to include at least one solvent having a freezing point of −20 ° C. or lower and a boiling point of 120 ° C. or higher.
 さらに本発明で用いることのできる溶媒としては、J.A.Riddick,W.B.Bunger,T.K.Sakano,“Organic Solvents”,4th ed.,John Wiley & Sons(1986)、Y.Marcus,“Ion Solvation”,John Wiley & Sons(1985)、C.Reichardt,“Solvents and Solvent Effects in Chemistry”,2nd ed.,VCH(1988)、G.J.Janz,R.P.T.Tomkins,“Nonaqueous Electorlytes Handbook”,Vol.1,Academic Press(1972)に記載の化合物を挙げることができる。 Further, examples of the solvent that can be used in the present invention include J. A. Riddick, W.M. B. Bunger, T.A. K. Sakano, “Organic Solvents”, 4th ed. , John Wiley & Sons (1986). Marcus, “Ion Solvation”, John Wiley & Sons (1985), C.I. Reichardt, “Solvents and Solvent Effects in Chemistry”, 2nd ed. VCH (1988), G .; J. et al. Janz, R.A. P. T.A. Tomkins, “Nonqueous Electrolytes Handbook”, Vol. 1, Academic Press (1972).
 (支持電解質)
 本発明において用いられる支持電解質としては、電気化学の分野または電池の分野で通常使用される塩類、酸類、アルカリ類が使用できる。
(Supporting electrolyte)
As the supporting electrolyte used in the present invention, salts, acids and alkalis which are usually used in the field of electrochemistry or the field of batteries can be used.
 塩類としては、特に制限はなく、例えば、アルカリ金属塩、アルカリ土類金属塩等の無機イオン塩;4級アンモニウム塩;環状4級アンモニウム塩;4級ホスホニウム塩等が使用できる。 The salts are not particularly limited, and for example, inorganic ion salts such as alkali metal salts and alkaline earth metal salts; quaternary ammonium salts; cyclic quaternary ammonium salts; quaternary phosphonium salts and the like can be used.
 塩類の具体例としては、ハロゲンイオン、SCN-、ClO4 -、BF4 -、CF3SO3 -、(CF3SO22-、(C25SO22-、PF6 -、AsF6 -、CH3COO-、CH3(C6H4)SO3 -、及び(C25SO23-から選ばれる対アニオンを有するLi塩、Na塩、あるいはK塩等の金属塩が挙げられる。 Specific examples of the salts include halogen ions, SCN , ClO 4 , BF 4 , CF 3 SO 3 , (CF 3 SO 2 ) 2 N , (C 2 F 5 SO 2 ) 2 N and PF. Li salt, Na salt, or K salt having a counter anion selected from 6 , AsF 6 , CH 3 COO , CH 3 (C 6 H 4) SO 3 , and (C 2 F 5 SO 2 ) 3 C The metal salt is mentioned.
 またハロゲンイオン、SCN-、ClO4 -、BF4 -、CF3SO3 -、(CF3SO2)2-、(C25SO22 -、PF6 -、AsF6 -、CH3COO-、CH3(C64)SO3 -、及び(C25SO23-から選ばれる対アニオンを有する4級アンモニウム塩、具体的には、(CH34NBF4、(C254NBF4、(n-C494NBF4、(C254NBr、(C254NClO4、(n-C494NClO4、CH3(C253NBF4、(CH32(C252NBF4、(CH34NSO3CF3、(C254NSO3CF3、(n-C494NSO3CF3、さらには、 Also, halogen ions, SCN , ClO 4 , BF 4 , CF 3 SO 3 , (CF 3 SO 2 ) 2 N , (C 2 F 5 SO 2 ) 2 , PF 6 , AsF 6 , CH A quaternary ammonium salt having a counter anion selected from 3 COO , CH 3 (C 6 H 4 ) SO 3 , and (C 2 F 5 SO 2 ) 3 C , specifically, (CH 3 ) 4 NBF 4 , (C 2 H 5 ) 4 NBF 4 , (n-C 4 H 9 ) 4 NBF 4 , (C 2 H 5 ) 4 NBr, (C 2 H 5 ) 4 NClO 4 , (n-C 4 H 9 ) 4 NClO 4 , CH 3 (C 2 H 5 ) 3 NBF 4 , (CH 3 ) 2 (C 2 H 5 ) 2 NBF 4 , (CH 3 ) 4 NSO 3 CF 3 , (C 2 H 5 ) 4 NSO 3 CF 3 , (nC 4 H 9 ) 4 NSO 3 CF 3 ,
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000042
等が挙げられる。 Etc.
 またハロゲンイオン、SCN-、ClO4 -、BF4 -、CF3SO3 -、(CF3SO2)2-、(C25SO22-、PF6 -、AsF6 -、CH3COO-、CH3(C64)SO3 -、及び(C25SO23-から選ばれる対アニオンを有するホスホニウム塩、具体的には、(CH34PBF4、(C254PBF4、(C374PBF4、(C494PBF4等が挙げられる。また、これらの混合物も好適に用いることができる。 In addition, halogen ions, SCN , ClO 4 , BF 4 , CF 3 SO 3 , (CF 3 SO 2 ) 2 N , (C 2 F 5 SO 2 ) 2 N , PF 6 , AsF 6 , A phosphonium salt having a counter anion selected from CH 3 COO , CH 3 (C 6 H 4 ) SO 3 , and (C 2 F 5 SO 2 ) 3 C , specifically, (CH 3 ) 4 PBF 4 , (C 2 H 5 ) 4 PBF 4 , (C 3 H 7 ) 4 PBF 4 , (C 4 H 9 ) 4 PBF 4 and the like. Moreover, these mixtures can also be used suitably.
 本発明の支持電解質としては環状4級アンモニウム塩が好ましく、特に4級スピロアンモニウム塩が好ましい。また対アニオンとしてはClO4 -、BF4 -、CF3SO3 -、(C25SO22-、PF6 -が好ましく、特にBF4 -が好ましい。 As the supporting electrolyte of the present invention, a cyclic quaternary ammonium salt is preferable, and a quaternary spiro ammonium salt is particularly preferable. As the counter anion, ClO 4 , BF 4 , CF 3 SO 3 , (C 2 F 5 SO 2 ) 2 N and PF 6 are preferable, and BF 4 is particularly preferable.
 電解質塩の使用量は任意であるが、一般的には、電解質塩は溶媒中に上限としては20M以下、好ましくは10M以下、さらに好ましくは5M以下存在していることが望ましく、下限としては通常0.01M以上、好ましくは0.05M以上、さらに好ましくは0.1M以上存在していることが望ましい。 The amount of the electrolyte salt used is arbitrary, but in general, the electrolyte salt is desirably present in the solvent as an upper limit of 20 M or less, preferably 10 M or less, more preferably 5 M or less. It is desirable that it be present at 0.01M or more, preferably 0.05M or more, more preferably 0.1M or more.
 本発明において上記電解質の溶媒及び支持電解質以外に、下記のような化合物を添加してもよい。 In the present invention, in addition to the electrolyte solvent and the supporting electrolyte, the following compounds may be added.
 〔金属塩化合物〕
 本発明に係る金属塩化合物とは、対向する一対の電極上の少なくとも1方の電極上で、該対向する一対の電極の駆動操作で、溶解・析出を行うことができる金属種を含む塩であれば、如何なる化合物であってもよい。好ましい金属種は、銀、ビスマス、銅、ニッケル、鉄、クロム、亜鉛等であり、特に好ましいのは銀、ビスマスであり、銀が最も好ましい。
[Metal salt compounds]
The metal salt compound according to the present invention is a salt containing a metal species that can be dissolved and precipitated by driving the pair of opposed electrodes on at least one electrode on the pair of opposed electrodes. Any compound may be used as long as it is present. Preferred metal species are silver, bismuth, copper, nickel, iron, chromium, zinc and the like, particularly preferred are silver and bismuth, and silver is most preferred.
 (銀塩化合物)
 本発明に係る銀塩化合物とは、銀または、銀を化学構造中に含む化合物、例えば、酸化銀、硫化銀、金属銀、銀コロイド粒子、ハロゲン化銀、銀錯体化合物、銀イオン等の化合物の総称であり、固体状態や液体への可溶化状態や気体状態等の相の状態種、中性、アニオン性、カチオン性等の荷電状態種は、特に問わない。
(Silver salt compound)
The silver salt compound according to the present invention is silver or a compound containing silver in the chemical structure, such as silver oxide, silver sulfide, metallic silver, silver colloidal particles, silver halide, silver complex compound, silver ion and the like. There are no particular restrictions on the phase state species such as the solid state, the solubilized state in liquid, and the gas state, and the charged state species such as neutral, anionic, and cationic.
 本発明に係る電解質に含まれる金属イオン濃度は、0.2モル/kg≦[Metal]≦2.0モル/kgが好ましい。金属イオン濃度が0.2モル/kg以上であれば、十分な濃度の銀溶液となり所望の駆動速度を得ることができ、2モル/kg以下であれば析出を防止し、低温保存時での電解質液の安定性が向上する。 The metal ion concentration contained in the electrolyte according to the present invention is preferably 0.2 mol / kg ≦ [Metal] ≦ 2.0 mol / kg. If the metal ion concentration is 0.2 mol / kg or more, a silver solution having a sufficient concentration can be obtained, and a desired driving speed can be obtained. If the metal ion concentration is 2 mol / kg or less, precipitation is prevented, and storage at low temperature is possible. The stability of the electrolyte solution is improved.
 (ハロゲンイオン、金属イオン濃度比)
 本発明の表示素子においては、電解質に含まれるハロゲンイオンまたはハロゲン原子のモル濃度を[X](モル/kg)とし、前記電解質に含まれる銀または銀を化学構造中に含む化合物の銀の総モル濃度を[Metal](モル/kg)としたとき、下式(1)で規定する条件を満たすことが好ましい。
(Halogen ion, metal ion concentration ratio)
In the display element of the present invention, the molar concentration of halogen ions or halogen atoms contained in the electrolyte is [X] (mol / kg), and silver contained in the electrolyte or the total silver of the compound containing silver in the chemical structure. When the molar concentration is [Metal] (mol / kg), it is preferable to satisfy the condition defined by the following formula (1).
 式(1):0≦[X]/[Metal]≦0.1
 本発明でいうハロゲン原子とは、ヨウ素原子、塩素原子、臭素原子、フッ素原子のことをいう。[X]/[Metal]が0.1よりも大きい場合は、金属の酸化還元反応時に、X-→X2が生じ、X2は析出した金属と容易にクロス酸化して析出した金属を溶解させ、メモリー性を低下させる要因の一つになるので、ハロゲン原子のモル濃度は金属銀のモル濃度に対してできるだけ低い方が好ましい。本発明においては、0≦[X]/[Metal]≦0.001がより好ましい。ハロゲンイオンを添加する場合、ハロゲン種については、メモリー性向上の観点から、各ハロゲン種モル濃度総和が[I]<[Br]<[Cl]<[F]であることが好ましい。
Formula (1): 0 ≦ [X] / [Metal] ≦ 0.1
The halogen atom as used in the field of this invention means an iodine atom, a chlorine atom, a bromine atom, and a fluorine atom. When [X] / [Metal] is greater than 0.1, X → X 2 is generated during the metal redox reaction, and X 2 easily cross-oxidizes with the deposited metal to dissolve the deposited metal. Therefore, the molar concentration of the halogen atom is preferably as low as possible with respect to the molar concentration of metallic silver. In the present invention, 0 ≦ [X] / [Metal] ≦ 0.001 is more preferable. In the case of adding halogen ions, the halogen species preferably have a total molar concentration of [I] <[Br] <[Cl] <[F] from the viewpoint of improving memory properties.
 (銀塩溶剤)
 本発明においては金属塩(特に銀塩)の溶解析出を促進するために、電解質が下記一般式(G1)または一般式(G2)で表される化合物を含有することが好ましい。
(Silver salt solvent)
In the present invention, the electrolyte preferably contains a compound represented by the following general formula (G1) or general formula (G2) in order to promote dissolution and precipitation of metal salts (particularly silver salts).
 一般式(G1)及び(G2)で表される化合物は、本発明において銀の溶解析出を生じさせるため、電解質中での銀の可溶化を促進する化合物である。一般に、銀の溶解析出を生じさせるためには、電解質中で銀を可溶化することが必要であり、例えば、銀と配位結合を生じさせたり、銀と弱い共有結合を生じさせるような、銀と相互作用を示す化学構造種を含む化合物が有用である。前記化学構造種として、ハロゲン原子、メルカプト基、カルボキシル基、イミノ基等が知られているが、本発明においては、チオエーテル基を含有する化合物及びメルカプトアゾール類は、銀溶剤として有用に作用しかつ、共存化合物への影響が少なく溶媒への溶解度が高い特徴がある。 The compounds represented by the general formulas (G1) and (G2) are compounds that promote the solubilization of silver in the electrolyte in order to cause dissolution and precipitation of silver in the present invention. In general, in order to cause dissolution and precipitation of silver, it is necessary to solubilize silver in an electrolyte. For example, it causes a coordinate bond with silver or a weak covalent bond with silver. Compounds containing chemical structural species that interact with silver are useful. As the chemical structural species, halogen atoms, mercapto groups, carboxyl groups, imino groups and the like are known, but in the present invention, compounds containing thioether groups and mercaptoazoles are useful as silver solvents and They are characterized by little influence on coexisting compounds and high solubility in solvents.
 (一般式(G1)で表される化合物)
  一般式(G1)  Rg11-S-Rg12
 式中、Rg11、Rg12は各々置換または無置換の炭化水素基を表す。また、これらの炭化水素基では、1個以上の窒素原子、酸素原子、リン原子、硫黄原子、ハロゲン原子を含んでもよく、Rg11とRg12が互いに連結し、環状構造を形成してもよい。
(Compound represented by General Formula (G1))
Formula (G1) Rg 11 -S-Rg 12
In the formula, Rg 11 and Rg 12 each represent a substituted or unsubstituted hydrocarbon group. In addition, these hydrocarbon groups may contain one or more nitrogen atoms, oxygen atoms, phosphorus atoms, sulfur atoms and halogen atoms, and Rg 11 and Rg 12 may be linked to each other to form a cyclic structure. .
 炭化水素基に置換可能な基としては、例えば、アミノ基、グアニジノ基、4級アンモニウム基、ヒドロキシル基、ハロゲン化合物、カルボン酸基、カルボキシレート基、アミド基、スルフィン酸基、スルホン酸基、スルフェート基、ホスホン酸基、ホスフェート基、ニトロ基、シアノ基等を挙げることができる。 Examples of groups that can be substituted for the hydrocarbon group include amino groups, guanidino groups, quaternary ammonium groups, hydroxyl groups, halogen compounds, carboxylic acid groups, carboxylate groups, amide groups, sulfinic acid groups, sulfonic acid groups, and sulfates. Groups, phosphonic acid groups, phosphate groups, nitro groups, cyano groups and the like.
 以下、本発明に係る一般式(G1)で表される化合物の具体例を示すが、本発明ではこれら例示する化合物にのみ限定されるものではない。 Hereinafter, specific examples of the compound represented by the general formula (G1) according to the present invention will be shown, but the present invention is not limited to these exemplified compounds.
 G1-1:CH3SCH2CH2OH
 G1-2:HOCH2CH2SCH2CH2OH
 G1-3:HOCH2CH2SCH2CH2SCH2CH2OH
 G1-4:HOCH2CH2SCH2CH2SCH2CH2SCH2CH2OH
 G1-5:HOCH2CH2SCH2CH2OCH2CH2OCH2CH2SCH2CH2OH
 G1-6:HOCH2CH2OCH2CH2SCH2CH2SCH2CH2OCH2CH2OH
 G1-7:H3CSCH2CH2COOH
 G1-8:HOOCCH2SCH2COOH
 G1-9:HOOCCH2CH2SCH2CH2COOH
 G1-10:HOOCCH2SCH2CH2SCH2COOH
 G1-11:HOOCCH2SCH2CH2SCH2CH2SCH2CH2SCH2COOH
 G1-12:HOOCCH2CH2SCH2CH2SCH2CH(OH)CH2SCH2CH2SCH2CH2COOH
 G1-13:HOOCCH2CH2SCH2CH2SCH2CH(OH)CH(OH)CH2SCH2CH2SCH2CH2COOH
 G1-14:H3CSCH2CH2CH2NH2
 G1-15:H2NCH2CH2SCH2CH2NH2
 G1-16:H2NCH2CH2SCH2CH2SCH2CH2NH2
 G1-17:H3CSCH2CH2CH(NH2)COOH
 G1-18:H2NCH2CH2OCH2CH2SCH2CH2SCH2CH2OCH2CH2NH2
 G1-19:H2NCH2CH2SCH2CH2OCH2CH2OCH2CH2SCH2CH2NH2
 G1-20:H2NCH2CH2SCH2CH2SCH2CH2SCH2CH2SCH2CH2NH2
 G1-21:HOOC(NH2)CHCH2CH2SCH2CH2SCH2CH2CH(NH2)COOH
 G1-22:HOOC(NH2)CHCH2SCH2CH2OCH2CH2OCH2CH2SCH2CH(NH2)COOH
 G1-23:HOOC(NH2)CHCH2OCH2CH2SCH2CH2SCH2CH2OCH2CH(NH2)COOH
 G1-24:H2N(O=)CCH2SCH2CH2OCH2CH2OCH2CH2SCH2C(=O)NH2
 G1-25:H2N(O=)CCH2SCH2CH2SCH2C(O=)NH2
 G1-26:H2NHN(O=)CCH2SCH2CH2SCH2C(=O)NHNH2
 G1-27:H3C(O=)CNHCH2CH2SCH2CH2SCH2CH2NHC(O=)CH3
 G1-28:H2NO2SCH2CH2SCH2CH2SCH2CH2SO2NH2
 G1-29:NaO3SCH2CH2CH2SCH2CH2SCH2CH2CH2SO3Na
 G1-30:H3CSO2NHCH2CH2SCH2CH2SCH2CH2NHO2SCH3
 G1-31:H2N(HN=)CSCH2CH2SC(NH)NH2・2HBr
 G1-32:H2N(HN=)CSCH2CH2OCH2CH2OCH2CH2SC(NH)NH2・2HCl
 G1-33:H2N(HN=)CNHCH2CH2SCH2CH2SCH2CH2NHC(NH)NH2・2HBr
 G1-34:〔(CH33NCH2CH2SCH2CH2SCH2CH2N(CH332+・2Cl-
G1-1: CH 3 SCH 2 CH 2 OH
G1-2: HOCH 2 CH 2 SCH 2 CH 2 OH
G1-3: HOCH 2 CH 2 SCH 2 CH 2 SCH 2 CH 2 OH
G1-4: HOCH 2 CH 2 SCH 2 CH 2 SCH 2 CH 2 SCH 2 CH 2 OH
G1-5: HOCH 2 CH 2 SCH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 SCH 2 CH 2 OH
G1-6: HOCH 2 CH 2 OCH 2 CH 2 SCH 2 CH 2 SCH 2 CH 2 OCH 2 CH 2 OH
G1-7: H 3 CSCH 2 CH 2 COOH
G1-8: HOOCCH 2 SCH 2 COOH
G1-9: HOOCCH 2 CH 2 SCH 2 CH 2 COOH
G1-10: HOOCCH 2 SCH 2 CH 2 SCH 2 COOH
G1-11: HOOCCH 2 SCH 2 CH 2 SCH 2 CH 2 SCH 2 CH 2 SCH 2 COOH
G1-12: HOOCCH 2 CH 2 SCH 2 CH 2 SCH 2 CH (OH) CH 2 SCH 2 CH 2 SCH 2 CH 2 COOH
G1-13: HOOCCH 2 CH 2 SCH 2 CH 2 SCH 2 CH (OH) CH (OH) CH 2 SCH 2 CH 2 SCH 2 CH 2 COOH
G1-14: H 3 CSCH 2 CH 2 CH 2 NH 2
G1-15: H 2 NCH 2 CH 2 SCH 2 CH 2 NH 2
G1-16: H 2 NCH 2 CH 2 SCH 2 CH 2 SCH 2 CH 2 NH 2
G1-17: H 3 CSCH 2 CH 2 CH (NH 2 ) COOH
G1-18: H 2 NCH 2 CH 2 OCH 2 CH 2 SCH 2 CH 2 SCH 2 CH 2 OCH 2 CH 2 NH 2
G1-19: H 2 NCH 2 CH 2 SCH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 SCH 2 CH 2 NH 2
G1-20: H 2 NCH 2 CH 2 SCH 2 CH 2 SCH 2 CH 2 SCH 2 CH 2 SCH 2 CH 2 NH 2
G1-21: HOOC (NH 2 ) CHCH 2 CH 2 SCH 2 CH 2 SCH 2 CH 2 CH (NH 2 ) COOH
G1-22: HOOC (NH 2 ) CHCH 2 SCH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 SCH 2 CH (NH 2 ) COOH
G1-23: HOOC (NH 2 ) CHCH 2 OCH 2 CH 2 SCH 2 CH 2 SCH 2 CH 2 OCH 2 CH (NH 2 ) COOH
G1-24: H 2 N (O =) CCH 2 SCH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 SCH 2 C (═O) NH 2
G1-25: H 2 N (O =) CCH 2 SCH 2 CH 2 SCH 2 C (O =) NH 2
G1-26: H 2 NHN (O═) CCH 2 SCH 2 CH 2 SCH 2 C (═O) NHNH 2
G1-27: H 3 C (O =) CNHCH 2 CH 2 SCH 2 CH 2 SCH 2 CH 2 NHC (O =) CH 3
G1-28: H 2 NO 2 SCH 2 CH 2 SCH 2 CH 2 SCH 2 CH 2 SO 2 NH 2
G1-29: NaO 3 SCH 2 CH 2 CH 2 SCH 2 CH 2 SCH 2 CH 2 CH 2 SO 3 Na
G1-30: H 3 CSO 2 NHCH 2 CH 2 SCH 2 CH 2 SCH 2 CH 2 NHO 2 SCH 3
G1-31: H 2 N (HN =) CSCH 2 CH 2 SC (NH) NH 2 .2HBr
G1-32: H 2 N (HN =) CSCH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 SC (NH) NH 2 .2HCl
G1-33: H 2 N (HN =) CNHCH 2 CH 2 SCH 2 CH 2 SCH 2 CH 2 NHC (NH) NH 2 .2HBr
G1-34: [(CH 3 ) 3 NCH 2 CH 2 SCH 2 CH 2 SCH 2 CH 2 N (CH 3 ) 3 ] 2 + · 2Cl
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000044
 上記例示した各化合物の中でも、本発明の目的効果をいかんなく発揮できる観点から、特に、例示化合物G1-2が好ましい。 Among the above-exemplified compounds, Exemplified Compound G1-2 is particularly preferable from the viewpoint that the objective effect of the present invention can be exhibited.
 (一般式(G2)で表される化合物) (Compound represented by general formula (G2))
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000045
 式中、Mは水素原子、金属原子または4級アンモニウムを表す。Zは含窒素複素環を構成するのに必要な原子群表す。nは0~5の整数を表し、Rg21は置換基を表し、nが2以上の場合、それぞれのRg21は同じであってもよく、異なってもよく、お互いに連結して縮合環を形成してもよい。 In the formula, M represents a hydrogen atom, a metal atom or quaternary ammonium. Z represents an atomic group necessary for constituting a nitrogen-containing heterocyclic ring. n represents an integer of 0 to 5, Rg 21 represents a substituent, and when n is 2 or more, each Rg 21 may be the same or different and may be connected to each other to form a condensed ring. It may be formed.
 一般式(G2)のMで表される金属原子としては、例えば、Li、Na、K、Mg、Ca、Zn、Ag等が挙げられ、4級アンモニウムとしては、例えば、NH4、N(CH34、N(C494、N(CH331225、N(CH331633、N(CH33CH265等が挙げられる。 Examples of the metal atom represented by M in the general formula (G2) include Li, Na, K, Mg, Ca, Zn, and Ag. Examples of the quaternary ammonium include NH 4 , N (CH 3 ) 4 , N (C 4 H 9 ) 4 , N (CH 3 ) 3 C 12 H 25 , N (CH 3 ) 3 C 16 H 33 , N (CH 3 ) 3 CH 2 C 6 H 5 and the like It is done.
 一般式(G2)のZを構成成分とする含窒素複素環としては、例えば、テトラゾール環、トリアゾール環、イミダゾール環、オキサジアゾール環、チアジアゾール環、インドール環、オキサゾール環、ベンゾオキサゾール環、ベンズイミダゾール環、ベンゾチアゾール環、ベンゾセレナゾール環、ナフトオキサゾール環等が挙げられる。 Examples of the nitrogen-containing heterocycle having Z as a constituent in the general formula (G2) include, for example, a tetrazole ring, a triazole ring, an imidazole ring, an oxadiazole ring, a thiadiazole ring, an indole ring, an oxazole ring, a benzoxazole ring, and a benzimidazole. Ring, benzothiazole ring, benzoselenazole ring, naphthoxazole ring and the like.
 一般式(G2)のRg21で表される置換基としては、特に制限はないが、例えば下記のような置換基が挙げられる。 The substituents represented by Rg 21 of the general formula (G2), is not particularly limited, include, for example, substituents as described below.
 ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子等)アルキル基(例えば、メチル、エチル、プロピル、i-プロピル、ブチル、t-ブチル、ペンチル、シクロペンチル、ヘキシル、シクロヘキシル、オクチル、ドデシル、ヒドロキシエチル、メトキシエチル、トリフルオロメチル、ベンジル等)、アリール基(例えば、フェニル、ナフチル等)、アルキルカルボンアミド基(例えば、アセチルアミノ、プロピオニルアミノ、ブチロイルアミノ等)、アリールカルボンアミド基(例えば、ベンゾイルアミノ等)、アルキルスルホンアミド基(例えば、メタンスルホニルアミノ基、エタンスルホニルアミノ基等)、アリールスルホンアミド基(例えば、ベンゼンスルホニルアミノ基、トルエンスルホニルアミノ基等)、アリールオキシ基(例えば、フェノキシ等)、アルキルチオ基(例えば、メチルチオ、エチルチオ、ブチルチオ等)、アリールチオ基(例えば、フェニルチオ基、トリルチオ基等)、アルキルカルバモイル基(例えばメチルカルバモイル、ジメチルカルバモイル、エチルカルバモイル、ジエチルカルバモイル、ジブチルカルバモイル、ピペリジルカルバモイル、モルホリルカルバモイル等)、アリールカルバモイル基(例えば、フェニルカルバモイル、メチルフェニルカルバモイル、エチルフェニルカルバモイル、ベンジルフェニルカルバモイル等)、アルキルスルファモイル基(例えば、メチルスルファモイル、ジメチルスルファモイル、エチルスルファモイル、ジエチルスルファモイル、ジブチルスルファモイル、ピペリジルスルファモイル、モルホリルスルファモイル等)、アリールスルファモイル基(例えば、フェニルスルファモイル、メチルフェニルスルファモイル、エチルフェニルスルファモイル、ベンジルフェニルスルファモイル等)、アルキルスルホニル基(例えば、メタンスルホニル基、エタンスルホニル基等)、アリールスルホニル基(例えば、フェニルスルホニル、4-クロロフェニルスルホニル、p-トルエンスルホニル等)アルコキシカルボニル基(例えば、メトキシカルボニル、エトキシカルボニル、ブトキシカルボニル等)、アリールオキシカルボニル基(例えばフェノキシカルボニル等)、アルキルカルボニル基(例えば、アセチル、プロピオニル、ブチロイル等)、アリールカルボニル基(例えば、ベンゾイル基、アルキルベンゾイル基等)、アシルオキシ基(例えば、アセチルオキシ、プロピオニルオキシ、ブチロイルオキシ等)、複素環基(例えば、オキサゾール環、チアゾール環、トリアゾール環、セレナゾール環、テトラゾール環、オキサジアゾール環、チアジアゾール環、チアジン環、トリアジン環、ベンズオキサゾール環、ベンズチアゾール環、インドレニン環、ベンズセレナゾール環、ナフトチアゾール環、トリアザインドリジン環、ジアザインドリジン環、テトラアザインドリジン環基等)が挙げられる。これらの置換基はさらに置換基を有するものを含む。 Halogen atom (eg, fluorine atom, chlorine atom, bromine atom, iodine atom, etc.) Alkyl group (eg, methyl, ethyl, propyl, i-propyl, butyl, t-butyl, pentyl, cyclopentyl, hexyl, cyclohexyl, octyl, dodecyl) , Hydroxyethyl, methoxyethyl, trifluoromethyl, benzyl, etc.), aryl groups (eg, phenyl, naphthyl, etc.), alkylcarbonamide groups (eg, acetylamino, propionylamino, butyroylamino, etc.), arylcarbonamide groups ( For example, benzoylamino etc.), alkylsulfonamide groups (eg methanesulfonylamino group, ethanesulfonylamino group etc.), arylsulfonamide groups (eg benzenesulfonylamino group, toluenesulfonylamino group etc.), A reeloxy group (for example, phenoxy), an alkylthio group (for example, methylthio, ethylthio, butylthio, etc.), an arylthio group (for example, phenylthio group, tolylthio group, etc.), an alkylcarbamoyl group (for example, methylcarbamoyl, dimethylcarbamoyl, ethylcarbamoyl, Diethylcarbamoyl, dibutylcarbamoyl, piperidylcarbamoyl, morpholylcarbamoyl, etc.), arylcarbamoyl groups (eg, phenylcarbamoyl, methylphenylcarbamoyl, ethylphenylcarbamoyl, benzylphenylcarbamoyl, etc.), alkylsulfamoyl groups (eg, methylsulfamoyl) , Dimethylsulfamoyl, ethylsulfamoyl, diethylsulfamoyl, dibutylsulfamoyl, piperidylsulfamo , Morpholylsulfamoyl, etc.), arylsulfamoyl groups (eg, phenylsulfamoyl, methylphenylsulfamoyl, ethylphenylsulfamoyl, benzylphenylsulfamoyl, etc.), alkylsulfonyl groups (eg, methane) Sulfonyl group, ethanesulfonyl group, etc.), arylsulfonyl group (eg, phenylsulfonyl, 4-chlorophenylsulfonyl, p-toluenesulfonyl, etc.) alkoxycarbonyl group (eg, methoxycarbonyl, ethoxycarbonyl, butoxycarbonyl, etc.), aryloxycarbonyl group (For example, phenoxycarbonyl), alkylcarbonyl groups (for example, acetyl, propionyl, butyroyl, etc.), arylcarbonyl groups (for example, benzoyl group, alkylbenzoyl groups, etc.), a Siloxy group (for example, acetyloxy, propionyloxy, butyroyloxy, etc.), heterocyclic group (for example, oxazole ring, thiazole ring, triazole ring, selenazole ring, tetrazole ring, oxadiazole ring, thiadiazole ring, thiazine ring, triazine ring, Benzoxazole ring, benzthiazole ring, indolenine ring, benzselenazole ring, naphthothiazole ring, triazaindolizine ring, diazaindolizine ring, tetraazaindolizine ring group and the like. These substituents further include those having a substituent.
 次に、一般式(G2)で表される化合物の好ましい具体例を示すが、本発明はこれらの化合物に限定されるものではない。 Next, preferred specific examples of the compound represented by the general formula (G2) are shown, but the present invention is not limited to these compounds.
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000047
 上記例示した各化合物の中でも、本発明の目的効果をいかんなく発揮できる観点から、特に例示化合物G2-12、G2-18、G2-20が好ましい。 Of the above-exemplified compounds, Exemplified Compounds G2-12, G2-18, and G2-20 are particularly preferable from the viewpoint that the objective effects of the present invention can be exhibited.
 《白色散乱物》
 本発明においては、表示コントラスト及び白表示反射率をより高める観点から、白色散乱物を含有することが好ましく、多孔質白色散乱層を形成させて存在させてもよい。
《White scattering material》
In the present invention, from the viewpoint of further increasing the display contrast and the white display reflectance, it is preferable to contain a white scattering material, and a porous white scattering layer may be formed and present.
 本発明に適用可能な多孔質白色散乱層は、電解質の溶媒に実質的に溶解しない水系高分子と白色顔料との水混和物を塗布乾燥して形成することができる。 The porous white scattering layer applicable to the present invention can be formed by applying and drying a water mixture of a water-based polymer that is substantially insoluble in an electrolyte solvent and a white pigment.
 本発明で適用可能な白色顔料としては、例えば、二酸化チタン(アナターゼ型あるいはルチル型)、硫酸バリウム、炭酸カルシウム、酸化アルミニウム、酸化亜鉛、酸化マグネシウム及び水酸化亜鉛、水酸化マグネシウム、リン酸マグネシウム、リン酸水素マグネシウム、アルカリ土類金属塩、タルク、カオリン、ゼオライト、酸性白土、ガラス等の無機化合物、ポリエチレン、ポリスチレン、アクリル樹脂、アイオノマー、エチレン-酢酸ビニル共重合樹脂、ベンゾグアナミン樹脂、尿素-ホルマリン樹脂、メラミン-ホルマリン樹脂、ポリアミド樹脂等の有機化合物が単体または複合混合で、または粒子中に屈折率を変化させるボイドを有する状態で使用されてもよい。 Examples of the white pigment applicable in the present invention include titanium dioxide (anatase type or rutile type), barium sulfate, calcium carbonate, aluminum oxide, zinc oxide, magnesium oxide and zinc hydroxide, magnesium hydroxide, magnesium phosphate, Magnesium hydrogen phosphate, alkaline earth metal salt, talc, kaolin, zeolite, acidic clay, glass and other inorganic compounds, polyethylene, polystyrene, acrylic resin, ionomer, ethylene-vinyl acetate copolymer resin, benzoguanamine resin, urea-formalin resin Organic compounds such as melamine-formalin resin and polyamide resin may be used alone or in combination, or in a state having voids that change the refractive index in the particles.
 本発明では、上記白色粒子の中でも、二酸化チタン、酸化亜鉛、水酸化亜鉛が好ましく用いられる。また、無機酸化物(Al23、AlO(OH)、SiO2等)で表面処理した二酸化チタン、これらの表面処理に加えて、トリメチロールエタン、トリエタノールアミン酢酸塩、トリメチルシクロシラン等の有機物処理を施した二酸化チタンを用いることができる。 In the present invention, among the white particles, titanium dioxide, zinc oxide, and zinc hydroxide are preferably used. In addition, titanium dioxide surface-treated with inorganic oxides (Al 2 O 3 , AlO (OH), SiO 2, etc.), in addition to these surface treatments, trimethylolethane, triethanolamine acetate, trimethylcyclosilane, etc. Titanium dioxide subjected to organic treatment can be used.
 これらの白色粒子のうち、高温時の着色防止、屈折率に起因する素子の反射率の観点から、酸化チタンまたは酸化亜鉛を用いることがより好ましい。 Of these white particles, it is more preferable to use titanium oxide or zinc oxide from the viewpoint of coloring prevention at high temperature and the reflectance of the element due to the refractive index.
 本発明において、電解質の溶媒に実質的に溶解しない水系高分子としては、水溶性高分子、水系溶媒に分散した高分子を挙げることができる。 In the present invention, examples of the water-based polymer that does not substantially dissolve in the electrolyte solvent include water-soluble polymers and polymers dispersed in water-based solvents.
 水溶性化合物としては、ゼラチン、ゼラチン誘導体等の蛋白質またはセルロース誘導体、澱粉、アラビアゴム、デキストラン、プルラン、カラギーナン等の多糖類のような天然化合物や、ポリビニルアルコール、ポリビニルピロリドン、アクリルアミド重合体やそれらの誘導体等の合成高分子化合物が挙げられる。ゼラチン誘導体としては、アセチル化ゼラチン、フタル化ゼラチン、ポリビニルアルコール誘導体としては、末端アルキル基変性ポリビニルアルコール、末端メルカプト基変性ポリビニルアルコール、セルロース誘導体としては、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、カルボキシメチルセルロース等が挙げられる。さらに、リサーチ・ディスクロージャー及び特開昭64-13546号の(71)頁~(75)頁に記載されたもの、また、米国特許第4,960,681号、特開昭62-245260号等に記載の高吸水性ポリマー、すなわち-COOMまたは-SO3M(Mは水素原子またはアルカリ金属)を有するビニルモノマーの単独重合体またはこのビニルモノマー同士もしくは他のビニルモノマー(例えば、メタクリル酸ナトリウム、メタクリル酸アンモニウム、アクリル酸カリウム等)との共重合体も使用される。これらのバインダーは2種以上組み合わせて用いることもできる。 Examples of water-soluble compounds include proteins such as gelatin and gelatin derivatives, cellulose derivatives, natural compounds such as polysaccharides such as starch, gum arabic, dextran, pullulan and carrageenan, polyvinyl alcohol, polyvinyl pyrrolidone, acrylamide polymers and their Examples include synthetic polymer compounds such as derivatives. As gelatin derivatives, acetylated gelatin, phthalated gelatin, polyvinyl alcohol derivatives as terminal alkyl group-modified polyvinyl alcohol, terminal mercapto group-modified polyvinyl alcohol, and cellulose derivatives include hydroxyethyl cellulose, hydroxypropyl cellulose, carboxymethyl cellulose and the like. It is done. Further, Research Disclosure and those described in pages (71) to (75) of JP-A No. 64-13546, US Pat. No. 4,960,681, JP-A No. 62-245260, etc. Homopolymers of vinyl monomers having the described superabsorbent polymers, ie —COOM or —SO 3 M (M is a hydrogen atom or an alkali metal), or these vinyl monomers or other vinyl monomers (for example, sodium methacrylate, methacryl Copolymers with ammonium acid, potassium acrylate, etc.) are also used. Two or more of these binders can be used in combination.
 本発明においては、ゼラチン及びゼラチン誘導体、または、ポリビニルアルコールもしくはその誘導体を好ましく用いることができる。 In the present invention, gelatin and gelatin derivatives, or polyvinyl alcohol or derivatives thereof can be preferably used.
 水系溶媒に分散した高分子としては、天然ゴムラテックス、スチレンブタジエンゴム、ブタジエンゴム、ニトリルゴム、クロロプレンゴム、イソプレンゴム等のラテックス類、ポリイソシアネート系、エポキシ系、アクリル系、シリコン系、ポリウレタン系、尿素系、フェノール系、ホルムアルデヒド系、エポキシ-ポリアミド系、メラミン系、アルキド系樹脂、ビニル系樹脂等を水系溶媒に分散した熱硬化性樹脂を挙げることができる。これらの高分子のうち、特開平10-76621号に記載の水系ポリウレタン樹脂を用いることが好ましい。 Polymers dispersed in water-based solvents include natural rubber latex, styrene butadiene rubber, butadiene rubber, nitrile rubber, chloroprene rubber, isoprene rubber and other latexes, polyisocyanate, epoxy, acrylic, silicon, polyurethane, Examples thereof include a thermosetting resin in which urea, phenol, formaldehyde, epoxy-polyamide, melamine, alkyd resin, vinyl resin and the like are dispersed in an aqueous solvent. Of these polymers, the water-based polyurethane resin described in JP-A-10-76621 is preferably used.
 本発明でいう電解質の溶媒に実質的に溶解しないとは、-20℃から120℃の温度において、電解質の溶媒1kg当たりの溶解量が0~10gである状態と定義し、質量測定法、液体クロマトグラムやガスクロマトグラムによる成分定量法等の公知の方法により溶解量を求めることができる。 In the present invention, “substantially insoluble in the solvent of the electrolyte” is defined as a state where the amount of electrolyte dissolved in 1 kg of the solvent is 0 to 10 g at a temperature of −20 ° C. to 120 ° C. The amount of dissolution can be determined by a known method such as a component determination method using a chromatogram or a gas chromatogram.
 本発明において、水系化合物と白色顔料との水混和物は、公知の分散方法に従って白色顔料が水中分散された形態が好ましい。水系化合物/白色顔料の混合比は、容積比で1~0.01が好ましく、より好ましくは、0.3~0.05の範囲である。 In the present invention, the water admixture of the water-based compound and the white pigment is preferably in a form in which the white pigment is dispersed in water according to a known dispersion method. The mixing ratio of the aqueous compound / white pigment is preferably 1 to 0.01 by volume, more preferably 0.3 to 0.05.
 本発明において、水系化合物と白色顔料との水混和物を塗布する媒体は、表示素子の対向する一対の電極間の構成要素上であればいずれの位置でもよいが、対向する一対の電極の少なくとも1方の電極面上に付与することが好ましい。媒体への付与の方法としては、例えば、塗布方式、液噴霧方式、気相を介する噴霧方式として、圧電素子の振動を利用して液滴を飛翔させる方式、例えば、ピエゾ方式のインクジェットヘッドや、突沸を利用したサーマルヘッドを用いて液滴を飛翔させるバブルジェット(登録商標)方式のインクジェットヘッド、また空気圧や液圧により液を噴霧するスプレー方式等が挙げられる。 In the present invention, the medium for applying the water mixture of the water-based compound and the white pigment may be at any position as long as it is on the component between the pair of opposed electrodes of the display element, but at least of the pair of opposed electrodes. It is preferable to apply on one electrode surface. As a method for applying to a medium, for example, a coating method, a liquid spraying method, a spraying method via a gas phase, a method of flying droplets using vibration of a piezoelectric element, for example, a piezoelectric inkjet head, Examples thereof include a bubble jet (registered trademark) type ink jet head that causes droplets to fly using a thermal head that uses bumping, and a spray type that sprays liquid by air pressure or liquid pressure.
 塗布方式としては、公知の塗布方式より適宜選択することができ、例えば、エアードクターコーター、ブレードコーター、ロッドコーター、ナイフコーター、スクイズコーター、含浸コーター、リバースローラーコーター、トランスファーローラーコーター、カーテンコーター、ダブルローラーコーター、スライドホッパーコーター、グラビアコーター、キスロールコーター、ビードコーター、キャストコーター、スプレイコーター、カレンダーコーター、押し出しコーター等が挙げられる。 The coating method can be appropriately selected from known coating methods. For example, an air doctor coater, blade coater, rod coater, knife coater, squeeze coater, impregnation coater, reverse roller coater, transfer roller coater, curtain coater, double coater Examples include roller coaters, slide hopper coaters, gravure coaters, kiss roll coaters, bead coaters, cast coaters, spray coaters, calendar coaters, and extrusion coaters.
 媒体上に付与した水系化合物と白色顔料との水混和物の乾燥は、水を蒸発できる方法であればいかなる方法であってもよい。例えば、熱源からの加熱、赤外光を用いた加熱法、電磁誘導による加熱法等が挙げられる。また、水蒸発は減圧下で行ってもよい。 The drying of the water mixture of the aqueous compound and the white pigment applied on the medium may be performed by any method as long as water can be evaporated. For example, heating from a heat source, a heating method using infrared light, a heating method using electromagnetic induction, and the like can be given. Further, water evaporation may be performed under reduced pressure.
 本発明でいう多孔質とは、前記水系化合物と白色顔料との水混和物を電極上に塗布乾燥して多孔質の白色散乱物を形成した後、該散乱物上に、銀または銀を化学構造中に含む化合物を含有する電解質液を与えた後に対向する一対の電極で挟み込み、対向する一対の電極間に電位差を与え、銀の溶解析出反応を生じさせることが可能で、イオン種が電極間で移動可能な貫通状態のことをいう。 Porous as used in the present invention refers to the formation of a porous white scattering material by applying a water admixture of the water-based compound and the white pigment onto the electrode and drying it, and then the silver or silver is chemically treated on the scattering material. After supplying an electrolyte solution containing the compound contained in the structure, it can be sandwiched between a pair of opposing electrodes, and a potential difference can be applied between the opposing pair of electrodes to cause a dissolution and precipitation reaction of silver. A penetration state that can be moved between.
 本発明の表示素子では、上記説明した水混和物を塗布乾燥中または乾燥後に、硬化剤により水系化合物の硬化反応を行うことが望ましい。 In the display element of the present invention, it is desirable to carry out a curing reaction of the aqueous compound with a curing agent during or after applying and drying the water mixture described above.
 本発明で用いられる硬膜剤の例としては、例えば、米国特許第4,678,739号の第41欄、同第4,791,042号、特開昭59-116655号、同62-245261号、同61-18942号、同61-249054号、同61-245153号、特開平4-218044号各公報等に記載の硬膜剤が挙げられる。より具体的には、アルデヒド系硬膜剤(ホルムアルデヒド等)、アジリジン系硬膜剤、エポキシ系硬膜剤、ビニルスルホン系硬膜剤(N,N′-エチレン-ビス(ビニルスルホニルアセタミド)エタン等)、N-メチロール系硬膜剤(ジメチロール尿素等)、ほう酸、メタほう酸あるいは高分子硬膜剤(特開昭62-234157号等に記載の化合物)が挙げられる。水系化合物としてゼラチンを用いる場合は、硬膜剤の中で、ビニルスルホン型硬膜剤やクロロトリアジン型硬膜剤を単独または併用して使用することが好ましい。また、ポリビニルアルコールを用いる場合はホウ酸やメタホウ酸等の含ホウ素化合物の使用が好ましい。 Examples of hardeners used in the present invention include, for example, US Pat. No. 4,678,739, column 41, 4,791,042, JP-A-59-116655, and 62-245261. Nos. 61-18942, 61-249054, 61-245153, JP-A-4-218044, and the like. More specifically, aldehyde hardeners (formaldehyde, etc.), aziridine hardeners, epoxy hardeners, vinyl sulfone hardeners (N, N'-ethylene-bis (vinylsulfonylacetamide) Ethane, etc.), N-methylol hardeners (dimethylolurea, etc.), boric acid, metaboric acid or polymer hardeners (compounds described in JP-A-62-234157). When gelatin is used as the aqueous compound, it is preferable to use a vinyl sulfone type hardener or a chlorotriazine type hardener alone or in combination. Moreover, when using polyvinyl alcohol, it is preferable to use boron-containing compounds such as boric acid and metaboric acid.
 これらの硬膜剤は、水系化合物1g当たり0.001~1g、好ましくは0.005~0.5gが用いられる。また、膜強度を上げるため熱処理や、硬化反応時の湿度調製を行うことも可能である。 These hardeners are used in an amount of 0.001 to 1 g, preferably 0.005 to 0.5 g, per 1 g of aqueous compound. It is also possible to adjust the humidity during the heat treatment or curing reaction in order to increase the film strength.
 《電子絶縁層》
 本発明の表示素子においては、電気絶縁層を設けることができる。
<Electronic insulation layer>
In the display element of the present invention, an electrical insulating layer can be provided.
 本発明に適用可能な電子絶縁層は、イオン電導性、電子絶縁性を合わせて有する層であればよく、例えば、極性基を有する高分子や塩をフィルム状にした固体電解質膜、電子絶縁性の高い多孔質膜とその空隙に電解質を担持する擬固体電解質膜、空隙を有する高分子多孔質膜、含ケイ素化合物のような比誘電率が低い無機材料の多孔質体、等が挙げられる。 The electronic insulating layer applicable to the present invention may be a layer having both ionic conductivity and electronic insulating properties. For example, a solid electrolyte membrane in which a polymer or salt having a polar group is formed into a film, electronic insulating properties And a porous solid body having a low relative dielectric constant such as a silicon-containing compound, and the like.
 多孔質膜の形成方法としては、燒結法(融着法)(高分子微粒子や無機粒子をバインダー等に添加して部分的に融着させ粒子間に生じた孔を利用する)、抽出法(溶剤に可溶な有機物または無機物類と溶剤に溶解しないバインダー等で構成層を形成した後に、溶剤で有機物または無機物類を溶解させ細孔を得る)、高分子重合体等を加熱や脱気する等して発泡させる発泡法、良溶媒と貧溶媒を操作して高分子類の混合物を相分離させる相転換法、各種放射線を輻射して細孔を形成させる放射線照射法等の公知の形成方法を用いることができる。具体的には、特開平10-30181号、特開2003-107626号、特公平7-95403号、特許第2635715号、同第2849523号、同第2987474号、同第3066426号、同第3464513号、同第3483644号、同第3535942号、同第3062203号等に記載の電子絶縁層を挙げることができる。 The porous film can be formed by a sintering method (fusion method) (using fine particles or inorganic particles added to a binder or the like and partially fused to make use of pores formed between the particles), extraction method ( After forming a constituent layer with a solvent-soluble organic or inorganic substance and a binder that does not dissolve in the solvent, the organic or inorganic substance is dissolved with the solvent to obtain pores), and the polymer is heated or degassed Well-known formation methods such as foaming method for foaming, phase change method for phase separation of polymer mixture by manipulating good solvent and poor solvent, and radiation irradiation method for forming pores by radiating various radiations Can be used. Specifically, JP-A-10-30181, JP-A-2003-107626, JP-B-7-95403, JP-A-2635715, JP-A-2894523, JP-A-2987474, JP-A-3066426, and JP-A-3464513. No. 3,483,464, No. 3535942, No. 30622203, and the like.
 《その他の添加剤》
 本発明の表示素子の構成層には、保護層、フィルター層、ハレーション防止層、クロスオーバー光カット層、バッキング層等の補助層を挙げることができ、これらの補助層中には、各種の化学増感剤、貴金属増感剤、感光色素、強色増感剤、カプラー、高沸点溶剤、カブリ防止剤、安定剤、現像抑制剤、漂白促進剤、定着促進剤、混色防止剤、ホルマリンスカベンジャー、色調剤、硬膜剤、界面活性剤、増粘剤、可塑剤、スベリ剤、紫外線吸収剤、イラジエーション防止染料、フィルター光吸収染料、防ばい剤、ポリマーラテックス、重金属、帯電防止剤、マット剤等を、必要に応じて含有させることができる。
《Other additives》
Examples of the constituent layers of the display element of the present invention include auxiliary layers such as a protective layer, a filter layer, an antihalation layer, a crossover light cut layer, and a backing layer. Sensitizer, noble metal sensitizer, photosensitive dye, supersensitizer, coupler, high boiling point solvent, antifoggant, stabilizer, development inhibitor, bleach accelerator, fixing accelerator, color mixing inhibitor, formalin scavenger, Toning agents, hardeners, surfactants, thickeners, plasticizers, slip agents, UV absorbers, anti-irradiation dyes, filter light absorbing dyes, anti-bacterial agents, polymer latex, heavy metals, antistatic agents, matting agents Etc. can be contained as required.
 上述したこれらの添加剤は、より詳しくは、リサーチ・ディスクロージャー(以下、RDと略す)第176巻Item/17643(1978年12月)、同184巻Item/18431(1979年8月)、同187巻Item/18716(1979年11月)及び同308巻Item/308119(1989年12月)に記載されている。 These additives mentioned above are more specifically described in Research Disclosure (hereinafter abbreviated as RD), Volume 176 Item / 17643 (December 1978), Volume 184, Item / 18431 (August 1979), 187. Volume Item / 18716 (November 1979) and Volume 308 Item / 308119 (December 1989).
 これら三つのリサーチ・ディスクロージャーに示されている化合物種類と記載箇所を、下記表1に掲載した。 The types of compounds shown in these three research disclosures and their locations are listed in Table 1 below.
Figure JPOXMLDOC01-appb-T000048
Figure JPOXMLDOC01-appb-T000048
 《基板》
 本発明で用いることのできる基板としては、例えば、ポリエチレンやポリプロピレン等のポリオレフィン類、ポリカーボネート類、セルロースアセテート、ポリエチレンテレフタレート、ポリエチレンジナフタレンジカルボキシラート、ポリエチレンナフタレート類、ポリ塩化ビニル、ポリイミド、ポリビニルアセタール類、ポリスチレン等の合成プラスチックフィルムも好ましく使用できる。また、シンジオタクチック構造ポリスチレン類も好ましい。これらは、例えば、特開昭62-117708号、特開平1-46912号、同1-178505号の各公報に記載されている方法により得ることができる。さらに、ステンレス等の金属製基盤や、バライタ紙、及びレジンコート紙等の紙支持体ならびに上記プラスチックフィルムに反射層を設けた支持体、特開昭62-253195号(29~31頁)に支持体として記載されたものが挙げられる。RDNo.17643の28頁、同No.18716の647頁右欄から648頁左欄及び同No.307105の879頁に記載されたものも好ましく使用できる。これらの支持体には、米国特許第4,141,735号のようにTg以下の熱処理を施すことで、巻き癖をつきにくくしたものを用いることができる。また、これらの支持体表面を支持体と他の構成層との接着の向上を目的に表面処理を行ってもよい。本発明では、グロー放電処理、紫外線照射処理、コロナ処理、火炎処理を表面処理として用いることができる。さらに公知技術第5号(1991年3月22日アズテック有限会社発行)の44~149頁に記載の支持体を用いることもできる。さらにRDNo.308119の1009頁やプロダクト・ライセシング・インデックス、第92巻P108の「Supports」の項に記載されているものが挙げられる。その他に、ガラス基板や、ガラスを練りこんだエポキシ樹脂を用いることができる。
"substrate"
Examples of the substrate that can be used in the present invention include polyolefins such as polyethylene and polypropylene, polycarbonates, cellulose acetate, polyethylene terephthalate, polyethylene dinaphthalene dicarboxylate, polyethylene naphthalates, polyvinyl chloride, polyimide, and polyvinyl acetal. Synthetic plastic films such as polystyrene can also be preferably used. Syndiotactic polystyrenes are also preferred. These can be obtained, for example, by the methods described in JP-A-62-1117708, JP-A-1-46912, and 1-178505. Further, a metal substrate such as stainless steel, a paper support such as baryta paper and resin coated paper, and a support provided with a reflection layer on the plastic film, supported by JP-A-62-253195 (pages 29 to 31) The thing described as a body is mentioned. RDNo. 17643, page 28, ibid. No. 18716, page 647, right column to page 648, left column, and No. 307105, page 879 can also be preferably used. As these supports, those having resistance to curling due to heat treatment of Tg or less as in US Pat. No. 4,141,735 can be used. Further, the surface of these supports may be subjected to surface treatment for the purpose of improving the adhesion between the support and other constituent layers. In the present invention, glow discharge treatment, ultraviolet irradiation treatment, corona treatment, and flame treatment can be used as the surface treatment. Further, the support described in pages 44 to 149 of publicly known technology No. 5 (issued by Aztec Co., Ltd. on March 22, 1991) can also be used. Furthermore, RDNo. 308119, page 1009, Product Licensing Index, Volume 92, P108, “Supports”, and the like. In addition, a glass substrate or an epoxy resin kneaded with glass can be used.
 《表示素子のその他の構成要素》
 本発明の表示素子には、必要に応じて、シール剤、柱状構造物、スペーサー粒子を用いることができる。
<< Other components of the display element >>
In the display element of the present invention, a sealant, a columnar structure, and spacer particles can be used as necessary.
 シール剤は外に漏れないように封入するためのものであり封止剤とも呼ばれ、エポキシ樹脂、ウレタン系樹脂、アクリル系樹脂、酢酸ビニル系樹脂、エン-チオール系樹脂、シリコン系樹脂、変性ポリマー樹脂等の、熱硬化型、光硬化型、湿気硬化型、嫌気硬化型等の硬化タイプを用いることができる。 Sealing agent is for sealing so that it does not leak to the outside and is also called sealing agent. Epoxy resin, urethane resin, acrylic resin, vinyl acetate resin, ene-thiol resin, silicon resin, modified resin A curing type such as a polymer resin, such as a thermosetting type, a photocurable type, a moisture curable type, and an anaerobic curable type can be used.
 柱状構造物は、基板間の強い自己保持性(強度)を付与し、例えば、格子配列等の所定のパターンに一定の間隔で配列された、円柱状体、四角柱状体、楕円柱状体、台形柱状体等の柱状構造物を挙げることができる。また、所定間隔で配置されたストライプ状のものでもよい。この柱状構造物はランダムな配列ではなく、等間隔な配列、間隔が徐々に変化する配列、所定の配置パターンが一定の周期で繰り返される配列等、基板の間隔を適切に保持でき、かつ、画像表示を妨げないように考慮された配列であることが好ましい。柱状構造物は表示素子の表示領域に占める面積の割合が1~40%であれば、表示素子として実用上十分な強度が得られる。 The columnar structure provides strong self-holding (strength) between the substrates, for example, a columnar body, a quadrangular columnar body, an elliptical columnar body, a trapezoidal array arranged in a predetermined pattern such as a lattice arrangement. A columnar structure such as a columnar body can be given. Alternatively, stripes arranged at predetermined intervals may be used. This columnar structure is not a random array, but can be appropriately maintained at intervals of the substrate, such as an evenly spaced array, an array in which the interval gradually changes, and an array in which a predetermined arrangement pattern is repeated at a constant period. The arrangement is preferably considered so as not to disturb the display. If the ratio of the area occupied by the columnar structure to the display area of the display element is 1 to 40%, a practically sufficient strength as a display element can be obtained.
 一対の基板間には、該基板間のギャップを均一に保持するためのスペーサーが設けられていてもよい。このスペーサーとしては、樹脂製または無機酸化物製の球体を例示できる。また、表面に熱可塑性の樹脂がコーティングしてある固着スペーサーも好適に用いられる。基板間のギャップを均一に保持するために柱状構造物のみを設けてもよいが、スペーサー及び柱状構造物をいずれも設けてもよいし、柱状構造物に代えて、スペーサーのみをスペース保持部材として使用してもよい。スペーサーの直径は柱状構造物を形成する場合はその高さ以下、好ましくは当該高さに等しい。柱状構造物を形成しない場合はスペーサーの直径がセルギャップの厚みに相当する。 A spacer may be provided between the pair of substrates for uniformly maintaining a gap between the substrates. Examples of the spacer include a sphere made of resin or inorganic oxide. Further, a fixed spacer having a surface coated with a thermoplastic resin is also preferably used. In order to hold the gap between the substrates uniformly, only the columnar structure may be provided, but both the spacer and the columnar structure may be provided, or instead of the columnar structure, only the spacer is used as the space holding member. May be used. The diameter of the spacer is equal to or less than the height of the columnar structure, preferably equal to the height. When the columnar structure is not formed, the diameter of the spacer corresponds to the thickness of the cell gap.
 《表示素子駆動方法》
 本発明の表示素子の透明状態及び着色状態の制御方法は、EC色素の酸化還元電位や銀イオンの析出過電圧を基に決められることが好ましい。
<< Display element driving method >>
The method for controlling the transparent state and the colored state of the display element of the present invention is preferably determined on the basis of the redox potential of the EC dye and the silver ion precipitation overvoltage.
 例えば、一般式(L)で表される化合物と銀化合物を対向する一対の電極間に有する表示素子の場合、酸化側で黒以外の着色状態を示し、還元側で黒色状態を示す。この場合の制御方法の一例としては、一般式(L)で表される化合物の酸化還元電位より貴な電圧を印加することで一般式(L)で表される化合物を酸化し黒以外の着色状態を示し、一般式(L)で表される化合物の酸化還元電位と銀化合物の析出過電圧の間の電圧を印加することで、一般式(L)で表される化合物を還元し白色状態に戻し、銀化合物の析出過電圧より卑な電圧を印加することで銀を電極上に析出させ黒色状態を示し、析出した銀の酸化電位と一般式(L)で表される化合物の酸化還元電位の間の電圧を印加することで析出した銀を溶解して消色する方法が挙げられる。 For example, in the case of a display element having a compound represented by the general formula (L) and a silver compound between a pair of electrodes facing each other, a colored state other than black is shown on the oxidation side and a black state is shown on the reduction side. As an example of the control method in this case, the compound represented by the general formula (L) is oxidized and colored other than black by applying a noble voltage from the oxidation-reduction potential of the compound represented by the general formula (L). The compound represented by the general formula (L) is reduced to a white state by applying a voltage between the oxidation-reduction potential of the compound represented by the general formula (L) and the precipitation overvoltage of the silver compound. By applying a voltage lower than the deposition overvoltage of the silver compound, silver is deposited on the electrode to show a black state. The method of melt | dissolving and decoloring silver which precipitated by applying the voltage between is mentioned.
 本発明の表示素子の駆動操作は、単純マトリックス駆動であっても、アクティブマトリック駆動であってもよい。本発明でいう単純マトリックス駆動とは、複数の正極を含む正極ラインと複数の負極を含む負極ラインとが対向する形で互いのラインが垂直方向に交差した回路に、順次電流を印加する駆動方法のことをいう。単純マトリックス駆動を用いることにより、回路構成や駆動ICを簡略化でき安価に製造できるメリットがある。アクティブマトリックス駆動は、走査線、データライン、電流供給ラインが碁盤目状に形成され、各碁盤目に設けられたTFT回路により駆動させる方式である。画素毎にスイッチングが行えるので、階調やメモリー機能等のメリットがあり、例えば、特開2004-29327号の図5に記載されている回路を用いることができる。 The driving operation of the display element of the present invention may be simple matrix driving or active matrix driving. The simple matrix driving in the present invention is a driving method in which a current is sequentially applied to a circuit in which a positive line including a plurality of positive electrodes and a negative electrode line including a plurality of negative electrodes are opposed to each other in a vertical direction. I mean. By using simple matrix driving, there is an advantage that the circuit configuration and driving IC can be simplified and manufactured at low cost. The active matrix drive is a system in which scanning lines, data lines, and current supply lines are formed in a grid pattern, and are driven by TFT circuits provided in each grid pattern. Since switching can be performed for each pixel, there are advantages such as gradation and memory function. For example, a circuit described in FIG. 5 of JP-A-2004-29327 can be used.
 《商品適用》
 本発明の表示素子は、電子書籍分野、IDカード関連分野、公共関連分野、交通関連分野、放送関連分野、決済関連分野、流通物流関連分野等の用いることができる。具体的には、ドア用のキー、学生証、社員証、各種会員カード、コンビニストアー用カード、デパート用カード、自動販売機用カード、ガソリンステーション用カード、地下鉄や鉄道用のカード、バスカード、キャッシュカード、クレジットカード、ハイウェイカード、運転免許証、病院の診察カード、電子カルテ、健康保険証、住民基本台帳、パスポート、電子ブック等が挙げられる。
<Product application>
The display element of the present invention can be used in an electronic book field, an ID card field, a public field, a traffic field, a broadcast field, a payment field, a distribution logistics field, and the like. Specifically, keys for doors, student ID cards, employee ID cards, various membership cards, convenience store cards, department store cards, vending machine cards, gas station cards, subway and railway cards, bus cards, Cash cards, credit cards, highway cards, driver's licenses, hospital examination cards, electronic medical records, health insurance cards, Basic Resident Registers, passports, electronic books, etc.
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例において「部」あるいは「%」の表示を用いるが、特に断りがない限り「質量部」あるいは「質量%」を表す。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto. In addition, although the display of "part" or "%" is used in an Example, unless otherwise indicated, "part by mass" or "mass%" is represented.
 実施例1
 《表示素子の作製》
 〔表示電極の作製〕
 (電極A1の作製)
 厚さ1.5mmで2cm×4cmのガラス基板上に、ピッチ145μm、電極幅130μmのITO(Indium Tin Oxide、インジウム錫酸化物)膜を公知の方法に従って形成し、透明電極(電極A1)を得た。
Example 1
<< Production of display element >>
[Production of display electrode]
(Preparation of electrode A1)
An ITO (Indium Tin Oxide) film having a pitch of 145 μm and an electrode width of 130 μm is formed on a 2 cm × 4 cm glass substrate having a thickness of 1.5 mm according to a known method to obtain a transparent electrode (electrode A1). It was.
 (電極A2の作製)
 電極A1上に、厚み5μmの二酸化チタン(平均粒子径17nmの粒子が4~10個程度ネッキング済み)膜を形成し、電極A2を得た。
(Preparation of electrode A2)
On the electrode A1, a titanium dioxide film having a thickness of 5 μm (about 4 to 10 particles having an average particle diameter of 17 nm was necked) was formed to obtain an electrode A2.
 (電極A3の作製)
 ピエゾ方式のヘッドを有するインクジェット装置にて、下記インク液a1を、120dpiで電極A2上に付与し、電極A3を作製した。なお、本発明でいうdpiとは、2.54cm当たりのドット数を表す。
(Preparation of electrode A3)
The following ink liquid a1 was applied onto the electrode A2 at 120 dpi with an inkjet apparatus having a piezo-type head, to produce an electrode A3. In the present invention, dpi represents the number of dots per 2.54 cm.
 (電極A4の作製)
 インク液a1をインク液a2に変更した以外は電極A3と同様にして、電極A4を作製した。
(Production of electrode A4)
An electrode A4 was produced in the same manner as the electrode A3 except that the ink liquid a1 was changed to the ink liquid a2.
 〈インク液a1の調製〉
 例示EC色素(L1)をアセトニトリル/エタノール混合溶媒(1/1)に溶解して、濃度3mmol/Lに調製した。
<Preparation of ink liquid a1>
Exemplified EC dye (L1) was dissolved in acetonitrile / ethanol mixed solvent (1/1) to prepare a concentration of 3 mmol / L.
 〈インク液a2の調製〉
 例示EC色素Ot1をアセトニトリル/エタノール混合溶媒(1/1)に溶解して、濃度3mmol/Lに調製した。
<Preparation of ink liquid a2>
Exemplified EC dye Ot1 was dissolved in acetonitrile / ethanol mixed solvent (1/1) to prepare a concentration of 3 mmol / L.
 〔対向電極の作製〕
 (電極B1の作製)
 厚さ1.5mmで2cm×4cmのガラス基板上に、公知の方法を用いて、電極厚み0.1μm、ピッチ145μm、電極間隔130μmのニッケル電極を形成し、得られた電極をさらに置換金メッキ浴に浸漬し、電極表面から深さ0.05μmが金で置換された金-ニッケル電極(電極B1)を得た。
[Preparation of counter electrode]
(Preparation of electrode B1)
A nickel electrode having an electrode thickness of 0.1 μm, a pitch of 145 μm, and an electrode interval of 130 μm is formed on a glass substrate having a thickness of 1.5 mm and a size of 2 cm × 4 cm by using a known method. To obtain a gold-nickel electrode (electrode B1) having a depth of 0.05 μm substituted with gold from the electrode surface.
 〔電解液の調製〕
 (電解液1-1~1-15の調製)
 下記表2に示す各種溶媒2.5gに、支持電解質としてテトラフルオロホウ酸スピロー(1,1′)-ビピロリジニウム(SBP)0.025g、表2に示す量の各種ゲル化剤、及び例示プロモーター0.05gを加え、加熱溶解し電解液1-1~1-15を調製した。
(Preparation of electrolyte)
(Preparation of electrolytes 1-1 to 1-15)
To 2.5 g of various solvents shown in Table 2 below, 0.025 g of tetrafluoroborate spiro (1,1 ′)-bipyrrolidinium (SBP) as a supporting electrolyte, various gelling agents in amounts shown in Table 2, and exemplified promoter 0 .05 g was added and dissolved by heating to prepare electrolytes 1-1 to 1-15.
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-T000050
Figure JPOXMLDOC01-appb-T000050
 〔表示素子の作製〕
 (表示素子1-1の作製)
 ポリビニルアルコール(平均重合度3500、けん化度87%)2質量%を含むイソプロパノール溶液中に、石原産業社製二酸化チタンCR-90を20質量%添加し、超音波分散機で分散した混和液を調製した。
[Production of display element]
(Preparation of display element 1-1)
20% by mass of Titanium Dioxide CR-90 manufactured by Ishihara Sangyo Co., Ltd. is added to an isopropanol solution containing 2% by mass of polyvinyl alcohol (average polymerization degree 3500, saponification degree 87%) to prepare a mixed liquid dispersed with an ultrasonic disperser. did.
 次いで周辺部を、平均粒径が40μmのガラス製球形ビーズ状スペーサーを体積分率として10%含むオレフィン系封止剤で縁取りした電極B1の上に、前記混和液を乾燥後の膜厚が20μmになるように塗布した。その後15℃で30分間乾燥して溶媒を蒸発した後、45℃の雰囲気中で1時間乾燥した。得られた二酸化チタン層上に、平均粒径が20μmのガラス製球形ビーズ状スペーサーを散布した後に、電極B1と電極A3を貼り合わせ、加熱押圧して空セルを作製した。 Next, on the periphery of the electrode B1 bordered with an olefin-based sealant containing a glass spherical bead spacer having an average particle size of 40 μm as a volume fraction of 10%, the film thickness after drying the admixture is 20 μm. It applied so that it might become. Thereafter, the mixture was dried at 15 ° C. for 30 minutes to evaporate the solvent, and then dried in an atmosphere at 45 ° C. for 1 hour. After sprinkling glass spherical bead-shaped spacers having an average particle diameter of 20 μm on the obtained titanium dioxide layer, the electrodes B1 and A3 were bonded together and heated and pressed to produce empty cells.
 該空セルに50℃に保温した電解液1-1を減圧注入し、注入口をエポキシ系の紫外線硬化樹脂にて封止し、表示素子1-1を作製した。 The electrolyte solution 1-1 kept at 50 ° C. was injected into the empty cell under reduced pressure, and the injection port was sealed with an epoxy-based ultraviolet curable resin to produce a display element 1-1.
 (表示素子1-2~1-15の作製)
 表示素子1-1の作製において、電解液1-1を電解液1-2から電解液1-15に変更した以外は同様にして、表示素子1-2~1-15を得た。
(Production of display elements 1-2 to 1-15)
Display elements 1-2 to 1-15 were obtained in the same manner as in the production of the display element 1-1 except that the electrolytic solution 1-1 was changed from the electrolytic solution 1-2 to the electrolytic solution 1-15.
 (表示素子1-16の作製)
 表示素子1-1の作製において、電解液1-1を電解液1-5に、電極A3を電極A4に変更した以外は同様にして、表示素子1-16を得た。
(Preparation of display element 1-16)
A display element 1-16 was obtained in the same manner as in the production of the display element 1-1 except that the electrolytic solution 1-1 was changed to the electrolytic solution 1-5 and the electrode A3 was changed to the electrode A4.
 (表示素子1-17の作製)
 表示素子1-1の作製において、電解液1-1を電解液1-2に、電極A3を電極A4に変更した以外は同様にして、表示素子1-17を得た。
(Preparation of display element 1-17)
A display element 1-17 was obtained in the same manner as in the production of the display element 1-1 except that the electrolytic solution 1-1 was changed to the electrolytic solution 1-2 and the electrode A3 was changed to the electrode A4.
 《ゲル化状態の評価》
 各電解液を加熱した状態で、直径1cmのサンプル瓶に加え、その後室温まで冷却し、サンプル瓶を上下反転した状態を、下記基準により目視で評価した。
<< Evaluation of gelation state >>
Each electrolyte solution was heated and added to a sample bottle having a diameter of 1 cm, then cooled to room temperature, and the state where the sample bottle was turned upside down was visually evaluated according to the following criteria.
 ○:サンプル瓶を軽くたたいても流れ落ちない
 △:軽くたたくと流れ落ちる
 ×:液状で即座に流れ落ちる。
○: Even if the sample bottle is tapped, it does not flow down. Δ: When the sample bottle is tapped, it flows down.
 《表示素子の評価》
 〔繰返し駆動させたときの反射率の安定性の評価〕
 (表示素子1-1の評価)
 定電圧電源の両端子に作製した表示素子の両電極を接続し、-1.5Vの電圧を1.5秒間印加した後に+1.5Vの電圧を1秒間印加して着色表示させたときの可視光領域の極大吸収波長での反射率をコニカミノルタセンシング社製の分光測色計CM-3700dで測定した。同様な駆動条件で合計10回駆動させ、得られた反射率の平均値をRave1とした。さらに1万回繰返し駆動させた後に同様な方法でRave2を求めた。ΔRCOLOR1=|Rave1-Rave2|とし、ΔRCOLOR1を繰返し駆動させたときの反射率の安定性の指標とした。ここでは、ΔRCOLOR1の値が小さいほど、繰返し駆動させたときの反射率の安定性に優れることになる。
<< Evaluation of display element >>
[Evaluation of reflectance stability when driven repeatedly]
(Evaluation of display element 1-1)
Visible when both electrodes of the display element are connected to both terminals of a constant voltage power supply, and a voltage of −1.5 V is applied for 1.5 seconds, and then a voltage of +1.5 V is applied for 1 second to cause color display. The reflectance at the maximum absorption wavelength in the light region was measured with a spectrocolorimeter CM-3700d manufactured by Konica Minolta Sensing. The drive was performed a total of 10 times under the same drive conditions, and the average value of the obtained reflectance was Rave1 . Further, after driving repeatedly 10,000 times, R ave2 was obtained in the same manner. ΔR COLOR1 = | R ave1 −R ave2 | was used as an index of stability of reflectance when ΔR COLOR1 was repeatedly driven. Here, the smaller the value of ΔR COLOR1 , the better the stability of the reflectance when it is repeatedly driven.
 (表示素子1-2から表示素子1-17の評価)
 表示素子に印加する電圧を、表3に記載した値に変更する以外は、表示素子1-1と同様にして表示素子1-2から表示素子1-17を評価した。
(Evaluation of display element 1-2 to display element 1-17)
Display elements 1-2 to 1-17 were evaluated in the same manner as display element 1-1 except that the voltage applied to the display element was changed to the values shown in Table 3.
 〔表示素子の均一性(ムラ)の評価〕
 上記繰返し駆動させたときの反射率の安定性の評価の繰返し数を、2万回まで延長させた後、表示素子のムラの状態を、下記基準により目視で評価した。
[Evaluation of display element uniformity (unevenness)]
After the number of repetitions of the evaluation of the stability of the reflectance when repeatedly driven was extended to 20,000 times, the state of unevenness of the display element was visually evaluated according to the following criteria.
 ○:略均一な発色・消色状態を維持している
 △:変色もしくは濃度ムラが認められる
 ×:変色もしくは濃度ムラが著しい
 ××:素子が駆動しない(電圧印加で濃度変化しない)
 以上により得られた各表示素子の評価結果を表3に示す。
○: A substantially uniform color development / decoloration state is maintained. Δ: Discoloration or density unevenness is observed. ×: Discoloration or density unevenness is remarkable. XX: The element does not drive (the density does not change when voltage is applied).
Table 3 shows the evaluation results of the respective display elements obtained as described above.
Figure JPOXMLDOC01-appb-T000051
Figure JPOXMLDOC01-appb-T000051
 表3から分かるように本発明のゲル化剤(一般式(GI)、(GII)の化合物)は比較ゲル化剤に対して、ゲル化能力が強いことが分かる。 As can be seen from Table 3, the gelling agents of the present invention (compounds of general formulas (GI) and (GII)) are found to have a stronger gelling ability than the comparative gelling agents.
 また比較の表示素子No.1-5、1-10、1-13、1-14、1-16では、±1.5Vの電圧印加では充分な濃度変化が生じないため、±3Vの電圧印加を必要とし、かつ反射率変化も大きかった。一方、ゲル化剤を用いない比較表示素子No.1-15は液状であることを除けば、低電圧で駆動し、反射率変化も小さく好ましい性能を有していたが、繰返し駆動回数を増やしたとき、徐々に駆動速度が遅くなり最終的には素子が駆動しなくなってしまった。 Also, comparative display element No. In 1-5, 1-10, 1-13, 1-14, and 1-16, a sufficient density change does not occur when a voltage of ± 1.5 V is applied. The change was also great. On the other hand, the comparative display element no. Except for being a liquid, 1-15 was driven at a low voltage and had a favorable performance with a small change in reflectance. However, when the number of times of repeated driving was increased, the driving speed gradually decreased and eventually The device has stopped driving.
 これに対し、本発明の構成を満たす表示素子は、繰返し駆動させても、反射率の安定性、表示ムラ等が改善されていることが分かる。 On the other hand, it can be seen that the display element satisfying the configuration of the present invention has improved reflectance stability, display unevenness, and the like even when it is repeatedly driven.
 実施例2
 《表示素子の作製》
 表示電極及び対向電極は、各々実施例1で用いた電極A3及び電極B1を用いた。
Example 2
<< Production of display element >>
As the display electrode and the counter electrode, the electrode A3 and the electrode B1 used in Example 1 were used, respectively.
 〔電解液の調製〕
 (電解液2-1~2-12の調製)
 下記表4に示す各種溶媒2.5gに、支持電解質としてテトラフルオロホウ酸スピロー(1,1′)-ビピロリジニウム(SBP)0.025g、電気化学的な酸化還元反応により可逆的に溶解析出する金属塩化合物として、p-トルエンスルホン酸銀0.1g、銀塩溶剤として例示化合物G1-3 0.2g、表4に示す量の各種ゲル化剤、及び例示プロモーター0.05gを加え、加熱溶解し電解液2-1~2-12を調製した。
(Preparation of electrolyte)
(Preparation of electrolytes 2-1 to 2-12)
0.025 g of tetrafluoroborate spiro (1,1 ')-bipyrrolidinium (SBP) as a supporting electrolyte, 2.5 g of various solvents shown in Table 4 below, a metal that is reversibly dissolved and precipitated by an electrochemical redox reaction As a salt compound, 0.1 g of silver p-toluenesulfonate, 0.2 g of Exemplified Compound G1-3 as a silver salt solvent, various gelling agents in the amounts shown in Table 4, and 0.05 g of an exemplary promoter are added and dissolved by heating. Electrolyte solutions 2-1 to 2-12 were prepared.
 実施例1に示した方法と同様にして、表示素子2-1から2-12を作製した。 Display elements 2-1 to 2-12 were fabricated in the same manner as in the method described in Example 1.
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-T000053
Figure JPOXMLDOC01-appb-T000053
 《表示素子の評価》
 〔繰返し駆動させたときの反射率の安定性の評価〕
 定電圧電源の両端子に作製した表示素子の両電極を接続し、-1.5Vの電圧を1.5秒間印加してグレー表示させたときの波長550nmと、+1.5Vの電圧を1.5秒間印加して着色表示させたときの可視光領域の極大吸収波長での反射率をコニカミノルタセンシング社製の分光測色計CM-3700dで測定した。同様な駆動条件で合計10回駆動させ、得られたグレーの反射率と着色状態の反射率の平均値を別々に算出し、それぞれRave3、Rave4とした。さらに1万回繰返し駆動させた後に同様な方法でRave5、Rave6を求めた。
<< Evaluation of display element >>
[Evaluation of reflectance stability when driven repeatedly]
Connect both electrodes of the display element to both terminals of the constant voltage power supply, apply a voltage of -1.5 V for 1.5 seconds and display in gray, and a wavelength of 550 nm and a voltage of +1.5 V are 1. The reflectance at the maximum absorption wavelength in the visible light region when applied and colored for 5 seconds was measured with a spectrocolorimeter CM-3700d manufactured by Konica Minolta Sensing. Driven a total of 10 times under similar driving conditions, the average values of the obtained gray reflectance and colored reflectance were calculated separately, and were designated as R ave3 and R ave4 , respectively. Further, after driving repeatedly 10,000 times, R ave5 and R ave6 were obtained by the same method.
 ΔRBK2=|Rave3-Rave5|、ΔRCOLOR2=|Rave4-Rave6|とし、RBKとRCOLOR2を繰返し駆動させたときの反射率の安定性の指標とした。ここでは、ΔRBK2とΔRCOLOR2の値が小さいほど、繰返し駆動させたときの反射率の安定性に優れることになる。 ΔR BK2 = | R ave3 -R ave5 |, ΔR COLOR2 = | R ave4 -R ave6 | a, and as an index of the stability of the reflectance when driven repeatedly R BK and R COLOR2. Here, the smaller the values of ΔR BK2 and ΔR COLOR2 , the better the stability of the reflectance when repeatedly driven.
 ゲル化状態の評価及び表示素子の均一性(ムラ)の評価は実施例1と同様の方法、基準で評価した。 Evaluation of the gelled state and evaluation of the uniformity (unevenness) of the display element were performed by the same method and standard as in Example 1.
 以上により得られた各電解液及び表示素子の評価結果を表5に示す。 Table 5 shows the evaluation results of each electrolytic solution and display element obtained as described above.
Figure JPOXMLDOC01-appb-T000054
Figure JPOXMLDOC01-appb-T000054
 表5に記載の結果より明らかなように、本発明の構成を満たす表示素子は、比較例に対し、繰返し駆動させたときの反射率の安定性、表示ムラ等が改善されているのが分かる。 As is apparent from the results shown in Table 5, it can be seen that the display element satisfying the configuration of the present invention has improved reflectance stability, display unevenness, and the like when it is repeatedly driven as compared with the comparative example. .
 実施例3
 《表示素子の作製》
 表示電極及び対向電極は、各々実施例1で用いた電極A1及び電極B1を用いた。
Example 3
<< Production of display element >>
As the display electrode and the counter electrode, the electrode A1 and the electrode B1 used in Example 1 were used, respectively.
 〔電解液の調製〕
 (電解液3-1~3-14の調製)
 下記表6に示す各種溶媒2.5gに、支持電解質としてテトラフルオロホウ酸スピロー(1,1′)-ビピロリジニウム(SBP)0.025g、表6に示す量の各種ゲル化剤、及び例示プロモーター0.05gを加え、加熱溶解し電解液3-1~3-14を調製した。
(Preparation of electrolyte)
(Preparation of electrolytes 3-1 to 3-14)
To 2.5 g of various solvents shown in Table 6 below, 0.025 g of tetrafluoroborate spiro (1,1 ′)-bipyrrolidinium (SBP) as a supporting electrolyte, various gelling agents in amounts shown in Table 6, and exemplified promoter 0 .05 g was added and dissolved by heating to prepare electrolytic solutions 3-1 to 3-14.
Figure JPOXMLDOC01-appb-T000055
Figure JPOXMLDOC01-appb-T000055
 (表示素子3-1の作製)
 ポリビニルアルコール(平均重合度3500、けん化度87%)2質量%を含むイソプロパノール溶液中に、石原産業社製二酸化チタンCR-90を20質量%添加し、超音波分散機で分散した混和液を調製した。
(Preparation of display element 3-1)
20% by mass of Titanium Dioxide CR-90 manufactured by Ishihara Sangyo Co., Ltd. is added to an isopropanol solution containing 2% by mass of polyvinyl alcohol (average polymerization degree 3500, saponification degree 87%) to prepare a mixed liquid dispersed with an ultrasonic disperser. did.
 次いで周辺部を、平均粒径が40μmのガラス製球形ビーズ状スペーサーを体積分率として10%含むオレフィン系封止剤で縁取りした電極B1の上に、前記混和液を乾燥後の膜厚が20μmになるように塗布した。その後15℃で30分間乾燥して溶媒を蒸発した後、45℃の雰囲気中で1時間乾燥した。得られた二酸化チタン層上に、平均粒径が20μmのガラス製球形ビーズ状スペーサーを散布した後に、電極B1と電極A1を貼り合わせ、加熱押圧して空セルを作製した。 Next, on the periphery of the electrode B1 bordered with an olefin-based sealant containing a glass spherical bead spacer having an average particle size of 40 μm as a volume fraction of 10%, the film thickness after drying the admixture is 20 μm. It applied so that it might become. Thereafter, the mixture was dried at 15 ° C. for 30 minutes to evaporate the solvent, and then dried in an atmosphere at 45 ° C. for 1 hour. After spraying glass spherical bead-shaped spacers having an average particle diameter of 20 μm on the obtained titanium dioxide layer, the electrode B1 and the electrode A1 were bonded together and heated and pressed to produce an empty cell.
 該空セルに50℃に保温した電解液3-1を減圧注入し、注入口をエポキシ系の紫外線硬化樹脂にて封止し、表示素子3-1を作製した。 The electrolytic solution 3-1 kept at 50 ° C. was injected into the empty cell under reduced pressure, and the injection port was sealed with an epoxy-based ultraviolet curable resin to produce a display element 3-1.
 (表示素子3-2~3-14の作製)
 表示素子3-1の作製において、電解液3-1を電解液3-2から電解液3-14に変更した以外は同様にして、表示素子3-2~1-14を得た。
(Preparation of display elements 3-2 to 3-14)
Display elements 3-2 to 1-14 were obtained in the same manner as in the production of the display element 3-1, except that the electrolytic solution 3-1 was changed from the electrolytic solution 3-2 to the electrolytic solution 3-14.
 《表示素子の評価》
 〔繰返し駆動させたときの反射率の安定性の評価〕
 定電圧電源の両端子に作製した表示素子の両電極を接続し、+1.5Vの電圧を1.5秒間印加した後に-1.5Vの電圧を1秒間印加してグレー表示させたときの波長550nmでの反射率をコニカミノルタセンシング社製の分光測色計CM-3700dで測定した。同様な駆動条件で合計10回駆動させ、得られた反射率の平均値をRave7とした。さらに1万回繰返し駆動させた後に同様な方法でRave8を求めた。ΔRCOLOR1=|Rave7-Rave8|とし、ΔRBK3を繰返し駆動させたときの反射率の安定性の指標とした。ここでは、ΔRBK3の値が小さいほど、繰返し駆動させたときの反射率の安定性に優れることになる。
<< Evaluation of display element >>
[Evaluation of reflectance stability when driven repeatedly]
Wavelength when both electrodes of the display element are connected to both terminals of a constant voltage power supply and a voltage of +1.5 V is applied for 1.5 seconds and then a voltage of -1.5 V is applied for 1 second to display gray The reflectance at 550 nm was measured with a spectrocolorimeter CM-3700d manufactured by Konica Minolta Sensing. Under the same driving conditions, driving was carried out 10 times in total, and the average value of the obtained reflectance was Rave7 . Further, after driving repeatedly 10,000 times, Rave8 was obtained by the same method. ΔR COLOR1 = | R ave7 -R ave8 | a, and as an index of the stability of the reflectance when was repeatedly drive the [Delta] R BK3. Here, the smaller the value of ΔR BK3, the better the stability of the reflectance when it is repeatedly driven.
 ゲル化状態の評価及び表示素子の均一性(ムラ)の評価は実施例1と同様の方法、基準で評価した。以上により得られた各電解液及び表示素子の評価結果を表7に示す。 Evaluation of gelation state and evaluation of display element uniformity (unevenness) were performed by the same method and standard as in Example 1. Table 7 shows the evaluation results of the electrolytic solutions and display elements obtained as described above.
Figure JPOXMLDOC01-appb-T000056
Figure JPOXMLDOC01-appb-T000056
 表7に記載の結果より明らかなように、本発明の構成を満たす表示素子は、比較例に対し、繰返し駆動させたときの反射率の安定性、表示ムラ等が改善されているのが分かる。 As is apparent from the results shown in Table 7, it can be seen that the display element satisfying the configuration of the present invention has improved reflectance stability, display unevenness, and the like when it is repeatedly driven as compared with the comparative example. .

Claims (9)

  1. 対向する一対の電極間に電解質、電気化学的な酸化還元反応により可逆的に変色する化合物及び前記電気化学的な酸化還元反応を促進する、酸化還元されうる補助化合物を含有し、前記対向する一対の電極の駆動操作により白表示及び着色表示をする表示素子において、前記電解質の溶媒が非プロトン性極性溶媒であって、かつ下記一般式(GI)で表される化合物を含むことを特徴とする表示素子。
     一般式(GI)  Rf-L-X-Ar-Ball
    (式中、Rfはペルフルオロアルキル基を表し、Lは置換基を有してもよいアルキレン基もしくは、単なる結合手を表す。Xは硫黄原子、酸素原子もしくはN-Rnを表す。Rnは水素原子もしくは置換基を表す。Arは置換基を有してもよい二価の芳香族基を表し、Ballは炭素数5以上の疎水性基を表す。)
    An electrolyte, a compound that changes color reversibly by an electrochemical oxidation-reduction reaction, and an auxiliary compound that can be oxidized / reduced to promote the electrochemical oxidation-reduction reaction are contained between a pair of opposed electrodes. In the display element that performs white display and color display by driving the electrode, the solvent of the electrolyte is an aprotic polar solvent and includes a compound represented by the following general formula (GI) Display element.
    General formula (GI) Rf-LX-Ar-Ball
    (In the formula, Rf represents a perfluoroalkyl group, L represents an alkylene group which may have a substituent, or a simple bond. X represents a sulfur atom, an oxygen atom or N—Rn. Rn represents a hydrogen atom. Or represents a substituent, Ar represents a divalent aromatic group which may have a substituent, and Ball represents a hydrophobic group having 5 or more carbon atoms.)
  2. 前記一般式(GI)で表される化合物が、下記一般式(GII)で表される化合物であることを特徴とする請求の範囲第1項に記載の表示素子。
     一般式(GII)  Rf-L-X-Ar-Y-R
    (式中、Rfはペルフルオロアルキル基を表し、Lは置換基を有してもよいアルキレン基もしくは、単なる結合手を表す。Xは硫黄原子、酸素原子もしくはN-Rnを表す。Rnは水素原子もしくは置換基を表す。Arは置換基を有してもよい二価の芳香族基を表し、Yは酸素原子、硫黄原子もしくは窒素原子でArと結合し、ArとRとを連結する連結基を表す。Rは置換基を有してもよい炭素数5以上脂肪族基を表す。)
    The display device according to claim 1, wherein the compound represented by the general formula (GI) is a compound represented by the following general formula (GII).
    General formula (GII) Rf-L—X—Ar—Y—R
    (In the formula, Rf represents a perfluoroalkyl group, L represents an alkylene group which may have a substituent, or a simple bond. X represents a sulfur atom, an oxygen atom or N—Rn. Rn represents a hydrogen atom. Alternatively, Ar represents a divalent aromatic group which may have a substituent, Y represents a linking group that binds to Ar by an oxygen atom, a sulfur atom, or a nitrogen atom, and connects Ar and R. R represents an aliphatic group having 5 or more carbon atoms which may have a substituent.
  3. 前記電気化学的な酸化還元反応により可逆的に変色する化合物がエレクトロクロミック化合物であることを特徴とする請求の範囲第1項または第2項に記載の表示素子。 3. The display element according to claim 1, wherein the compound that reversibly changes color by an electrochemical oxidation-reduction reaction is an electrochromic compound.
  4. 前記エレクトロクロミック化合物が下記一般式(L)で表されることを特徴とする請求の範囲第3項に記載の表示素子。
    Figure JPOXMLDOC01-appb-C000001

    (式中、Rl1は置換または無置換のアリール基を表し、Rl2、Rl3は各々水素原子または置換基を表す。Xは>N-Rl4、酸素原子または硫黄原子を表し、Rl4は水素原子、または置換基を表す。)
    The display element according to claim 3, wherein the electrochromic compound is represented by the following general formula (L).
    Figure JPOXMLDOC01-appb-C000001

    (Wherein Rl 1 represents a substituted or unsubstituted aryl group, Rl 2 and Rl 3 each represent a hydrogen atom or a substituent, X represents> N—Rl 4 , an oxygen atom or a sulfur atom, and Rl 4 Represents a hydrogen atom or a substituent.)
  5. 前記エレクトロクロミック化合物の電気化学反応を促進する、酸化還元されうる補助化合物がN-オキシル誘導体であることを特徴とする請求の範囲第3項または第4項に記載の表示素子。 5. The display element according to claim 3, wherein the auxiliary compound capable of being oxidized and reduced that promotes an electrochemical reaction of the electrochromic compound is an N-oxyl derivative.
  6. 前記電気化学的な酸化還元反応により可逆的に変色する化合物が金属塩化合物であることを特徴とする請求の範囲第1項~第5項のいずれか1項に記載の表示素子。 6. The display element according to claim 1, wherein the compound that reversibly changes color by the electrochemical oxidation-reduction reaction is a metal salt compound.
  7. 前記金属塩化合物が銀塩化合物であることを特徴とする請求の範囲第6項に記載の表示素子。 The display element according to claim 6, wherein the metal salt compound is a silver salt compound.
  8. 前記対向する一対の電極間に、下記一般式(G1)で表される化合物または一般式(G2)で表される化合物を含有することを特徴とする請求の範囲第6項または第7項に記載の表示素子。
      一般式(G1)  Rg11-S-Rg12
    (式中、Rg11、Rg12は各々置換または無置換の炭化水素基を表す。また、これらの炭化水素基では、1個以上の窒素原子、酸素原子、リン原子、硫黄原子、ハロゲン原子を含んでもよく、Rg11とRg12が互いに連結し、環状構造を形成してもよい。)
    Figure JPOXMLDOC01-appb-C000002

    (式中、Mは水素原子、金属原子または4級アンモニウムを表す。Zは含窒素複素環を構成するのに必要な原子群表す。nは0~5の整数を表し、Rg21は置換基を表し、nが2以上の場合、それぞれのRg21は同じであってもよく、異なってもよく、お互いに連結して縮合環を形成してもよい。)
    The compound represented by the following general formula (G1) or the compound represented by the general formula (G2) is contained between the pair of facing electrodes, according to claim 6 or 7, The display element as described.
    Formula (G1) Rg 11 -S-Rg 12
    (Wherein Rg 11 and Rg 12 each represent a substituted or unsubstituted hydrocarbon group. In these hydrocarbon groups, one or more nitrogen atoms, oxygen atoms, phosphorus atoms, sulfur atoms, halogen atoms are substituted. And Rg 11 and Rg 12 may be linked to each other to form a cyclic structure.)
    Figure JPOXMLDOC01-appb-C000002

    (In the formula, M represents a hydrogen atom, a metal atom or quaternary ammonium. Z represents an atomic group necessary for constituting a nitrogen-containing heterocyclic ring. N represents an integer of 0 to 5, and Rg 21 represents a substituent. In the case where n is 2 or more, each Rg 21 may be the same or different, and may be linked to each other to form a condensed ring.
  9. 前記対向する一対の電極の駆動操作により実質的に黒表示、白表示及び黒以外の着色表示の3色以上の多色表示を行うことを特徴とする請求の範囲第6項~第8項のいずれか1項に記載の表示素子。 The multicolor display of three or more colors of substantially black display, white display, and color display other than black is performed by driving the pair of opposed electrodes. The display element according to any one of the above.
PCT/JP2009/053172 2008-03-18 2009-02-23 Display element WO2009116352A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010503806A JP5177218B2 (en) 2008-03-18 2009-02-23 Display element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-069142 2008-03-18
JP2008069142 2008-03-18

Publications (1)

Publication Number Publication Date
WO2009116352A1 true WO2009116352A1 (en) 2009-09-24

Family

ID=41090760

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/053172 WO2009116352A1 (en) 2008-03-18 2009-02-23 Display element

Country Status (2)

Country Link
JP (1) JP5177218B2 (en)
WO (1) WO2009116352A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015168638A (en) * 2014-03-06 2015-09-28 国立大学法人山口大学 Novel aromatic compound with perfluoroalkyl groups at both ends

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001167629A (en) * 1998-10-19 2001-06-22 Canon Inc Gel electolyte, battery and electrochromic element
JP2004286884A (en) * 2003-03-19 2004-10-14 Sony Chem Corp Electrodeposition image display apparatus
JP2006235366A (en) * 2005-02-25 2006-09-07 Ricoh Co Ltd Gel electrolyte and electrochromic element using the same
JP2007191626A (en) * 2006-01-20 2007-08-02 Yamaguchi Univ Gellant for organic liquid comprising aromatic compound having perfluoroalkyl group

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001167629A (en) * 1998-10-19 2001-06-22 Canon Inc Gel electolyte, battery and electrochromic element
JP2004286884A (en) * 2003-03-19 2004-10-14 Sony Chem Corp Electrodeposition image display apparatus
JP2006235366A (en) * 2005-02-25 2006-09-07 Ricoh Co Ltd Gel electrolyte and electrochromic element using the same
JP2007191626A (en) * 2006-01-20 2007-08-02 Yamaguchi Univ Gellant for organic liquid comprising aromatic compound having perfluoroalkyl group

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015168638A (en) * 2014-03-06 2015-09-28 国立大学法人山口大学 Novel aromatic compound with perfluoroalkyl groups at both ends

Also Published As

Publication number Publication date
JP5177218B2 (en) 2013-04-03
JPWO2009116352A1 (en) 2011-07-21

Similar Documents

Publication Publication Date Title
JP5177219B2 (en) Electrochemical display element
JP5472104B2 (en) Display element and manufacturing method thereof
WO2011096298A1 (en) Display element
JP2011150054A (en) Display element
JP5177218B2 (en) Display element
JP2010085570A (en) Electrochemical device and polymeric material
JP2009300494A (en) Electrode for electrochemical display element and display element
JP2010085569A (en) Electrochemical device and polymeric material
JP5704161B2 (en) Display element
US20110266945A1 (en) Display element
JP5287849B2 (en) Display element
JP2010085568A (en) Electrochemical device and polymeric material
JP5532923B2 (en) Display element
JP2011090182A (en) Display element
JP2011081194A (en) Display element
JP5458484B2 (en) Display element
WO2010010814A1 (en) Display element and method for forming porous layer of display element
JP5568990B2 (en) Display element
JP2010085571A (en) Method of manufacturing electrode for electrochemical display element, and electrochemical display element
JP2010020149A (en) Method of manufacturing display element
JP2009098225A (en) Display element
JP5158191B2 (en) Display element
JP5315746B2 (en) Display element
JP2010072517A (en) Method of manufacturing display element
WO2009099185A1 (en) Display element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09722876

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010503806

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09722876

Country of ref document: EP

Kind code of ref document: A1