JP2010085570A - Electrochemical device and polymeric material - Google Patents

Electrochemical device and polymeric material Download PDF

Info

Publication number
JP2010085570A
JP2010085570A JP2008252756A JP2008252756A JP2010085570A JP 2010085570 A JP2010085570 A JP 2010085570A JP 2008252756 A JP2008252756 A JP 2008252756A JP 2008252756 A JP2008252756 A JP 2008252756A JP 2010085570 A JP2010085570 A JP 2010085570A
Authority
JP
Japan
Prior art keywords
group
electrode
ring
atom
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008252756A
Other languages
Japanese (ja)
Inventor
Noboru Sekine
昇 関根
Osamu Ishige
修 石毛
Takeshi Hakii
健 波木井
Noriyuki Kokeguchi
典之 苔口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2008252756A priority Critical patent/JP2010085570A/en
Publication of JP2010085570A publication Critical patent/JP2010085570A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrochemical device for performing electrochromic display having contrast holding ratios and high repeating durability, and to provide a polymeric material containing a metal complex used for it. <P>SOLUTION: In the electrochemical device having the polymeric material containing metal atoms and ligands capable of being coupled with two or more metal atoms between opposite electrodes, at least one of the ligands is a ligand A capable of being coupled with three or more metal atoms. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、新規な電気化学デバイスとそれに用いる高分子材料に関し、より詳しくはエレクトロクロミック表示を行う電気化学デバイス及びそれに用いる高分子材料に関するものである。   The present invention relates to a novel electrochemical device and a polymer material used therefor, and more particularly to an electrochemical device that performs electrochromic display and a polymer material used therefor.

近年、パーソナルコンピューターの動作速度の向上、ネットワークインフラの普及、データストレージの大容量化と低価格化等に伴い、従来、紙等の印刷物で提供されたドキュメントや画像等の情報を、より簡便な電子情報として入手、電子情報を閲覧する機会が益々増大している。   In recent years, with the increase in the operating speed of personal computers, the spread of network infrastructure, the increase in capacity and price of data storage, etc., information such as documents and images conventionally provided in printed materials such as paper has become easier. Opportunities for obtaining and browsing electronic information are increasing.

この様な電子情報の閲覧手段として、従来の液晶ディスプレイやCRT(ブラウン管)、また近年では、有機エレクトロルミネッセンスディスプレイ等の発光型ディスプレイが主として用いられているが、特に、電子情報がドキュメント情報の場合、比較的長時間にわたってこの閲覧手段を注視する必要があり、これらの行為は人間に優しい手段とは言い難く、一般に発光型ディスプレイの欠点として、フリッカーで目が疲労する、持ち運びに不便、読む姿勢が制限され、静止画面に視線を合わせる必要が生じる、長時間読むと消費電力が嵩む等の課題が知られている。   As a means for browsing such electronic information, conventional liquid crystal displays, CRTs (CRTs), and in recent years, light-emitting displays such as organic electroluminescence displays are mainly used. In particular, when electronic information is document information. It is necessary to keep an eye on this browsing means for a relatively long time, and these actions are hardly human-friendly means. Generally, as a disadvantage of light-emitting displays, eyes flicker due to flickering, inconvenient to carry, reading attitude However, it is necessary to adjust the line of sight to the still screen, and problems such as increased power consumption when read for a long time are known.

これらの欠点を補う表示手段として、外光を利用し、像保持の為に電力を消費しない電力を消費しない、いわゆるメモリー性を有する反射型ディスプレイが知られているが、下記の理由で十分な性能を有しているとは言い難い。   As a display means to compensate for these drawbacks, a reflective display having a so-called memory property that uses outside light and does not consume power for image retention is known. However, it is sufficient for the following reasons. It is hard to say that it has performance.

例えば、反射型液晶等の偏光板を用いる方式は、反射率が約40%と低く白表示に難があり、また構成部材の作製に用いる製法の多くは簡便とは言い難い。また、ポリマー分散型液晶は高い電圧を必要とし、また有機物同士の屈折率差を利用しているため、得られる画像のコントラストが十分でない。また、ポリマーネットワーク型液晶は電圧高いことと、メモリー性を向上させるために複雑なTFT回路が必要である等の課題を抱えている。また、電気泳動法による表示素子は、10V以上の高い電圧が必要となり、電気泳動性粒子凝集による耐久性に懸念がある。これらの方法で、カラー表示を行う方法として、カラーフィルターを用いる方法が知られている。原理的に、カラーフィルターの着色のため明るい白表示が得られない。   For example, a method using a polarizing plate such as a reflective liquid crystal has a low reflectance of about 40% and is difficult to display white, and many of the manufacturing methods used for producing the constituent members are not easy. In addition, the polymer dispersed liquid crystal requires a high voltage and utilizes the difference in refractive index between organic substances, so that the resulting image has insufficient contrast. In addition, the polymer network type liquid crystal has problems such as a high voltage and a complicated TFT circuit required to improve the memory performance. In addition, a display element based on electrophoresis requires a high voltage of 10 V or more, and there is a concern about durability due to electrophoretic particle aggregation. As a method for performing color display using these methods, a method using a color filter is known. In principle, a bright white display cannot be obtained due to the coloring of the color filter.

また、低電圧で駆動可能な多色表示が可能な方式として、エレクトロクロミック表示素子(以下、EC方式と略す)やEC方式と金属または金属塩の溶解析出を利用するエレクトロデポジション方式(以下、ED方式と略す)の組み合わせなどの電気化学方式が知られている。これらの方式は簡易な素子構成で形成でき、3V以下の低電圧で駆動できるという利点がある。ED方式は、黒と白のコントラストや黒品質に優れる等の利点があり、様々な方法が開示されており、この様なエレクトロクロミック材料の一例として、ビスターピリジンと種々の金属を用いた高分子材料を用いたエレクトロクロミック素子が知られている(例えば、特許文献1参照。)。このような配位高分子材料は、表示素子の繰り返し耐久性が実用化レベルには到達していないという問題点があった。   In addition, as a method capable of multi-color display that can be driven at a low voltage, an electrochromic display element (hereinafter abbreviated as EC method), an EC method, and an electrodeposition method (hereinafter referred to as “electrodeposition method”) using dissolution of metal or metal salt An electrochemical method such as a combination of the ED method) is known. These systems have an advantage that they can be formed with a simple element configuration and can be driven at a low voltage of 3 V or less. The ED method has advantages such as excellent black and white contrast and black quality, and various methods have been disclosed. As an example of such an electrochromic material, a polymer using bisterpyridine and various metals is disclosed. An electrochromic element using a material is known (for example, see Patent Document 1). Such a coordination polymer material has a problem that the repeated durability of the display element does not reach a practical level.

また、3つの金属原子と同時に相互作用することのできる配位子を用いた配位高分子材料も知られている(例えば、非特許文献1参照。)。しかしながら、該非特許文献1においては、電気化学デバイス、特にエレクトロクロミック表示素子としての利用は、全く想定されていない。
特表2007−112957号公報 Langmuir、2007、12179−12184
A coordination polymer material using a ligand capable of interacting simultaneously with three metal atoms is also known (see, for example, Non-Patent Document 1). However, in Non-Patent Document 1, use as an electrochemical device, in particular, an electrochromic display element is not assumed at all.
Special table 2007-112957 Langmuir, 2007, 12179-12184.

本発明は、上記課題に鑑みなされたものであり、その目的は、コントラスト保持率及び繰返し耐久性の高いエレクトロクロミック表示を行う電気化学デバイスとそれに用いる金属錯体を含む高分子材料を提供することにある。   The present invention has been made in view of the above problems, and an object of the present invention is to provide an electrochemical device that performs electrochromic display with high contrast retention ratio and high durability, and a polymer material including a metal complex used therein. is there.

本発明の上記目的は、以下の構成により達成される。   The above object of the present invention is achieved by the following configurations.

1.対向電極間に、金属原子と、2つ以上の該金属原子と結合可能な配位子とを含有する高分子材料を有する電気化学デバイスであって、該配位子の少なくとも1つが、3つ以上の金属原子と結合可能な配位子Aであることを特徴とする電気化学デバイス。   1. An electrochemical device having a polymer material containing a metal atom and a ligand capable of binding to two or more metal atoms between opposing electrodes, wherein at least one of the ligands is 3 An electrochemical device characterized by being a ligand A capable of binding to the above metal atom.

2.前記配位子の少なくとの1種は、分子内に−SH、−COOH、−P=O(OH)、−OP=O(OH)及び−Si(OR)(Rは、アルキル基を表す)から選ばれる少なくとも1つの基を有することを特徴とする前記1に記載の電気化学デバイス。 2. At least one of the ligands includes —SH, —COOH, —P═O (OH) 2 , —OP═O (OH) 2, and —Si (OR) 3 (R is alkyl 2. The electrochemical device according to 1 above, which has at least one group selected from

3.前記配位子の少なくとの1種は、金属と結合した際に負電荷を有することを特徴とする前記1または2に記載の電気化学デバイス。   3. 3. The electrochemical device according to 1 or 2 above, wherein at least one of the ligands has a negative charge when bonded to a metal.

4.前記配位子の少なくとの1種は、構造中に金属錯体を有することを特徴とする前記1〜3のいずれか1項に記載の電気化学デバイス。   4). 4. The electrochemical device according to any one of 1 to 3, wherein at least one of the ligands has a metal complex in its structure.

5.前記配位子の少なくとの1種は、5員複素環単環を有することを特徴とする前記1〜4のいずれか1項に記載の電気化学デバイス。   5. 5. The electrochemical device according to any one of 1 to 4, wherein at least one of the ligands has a 5-membered heterocyclic monocycle.

6.前記配位子の少なくとの1種は、下記一般式(1)で表される化合物であることを特徴とする前記1〜5のいずれか1項に記載の電気化学デバイス。   6). 6. The electrochemical device according to any one of 1 to 5, wherein at least one of the ligands is a compound represented by the following general formula (1).

Figure 2010085570
Figure 2010085570

〔式中、Aは窒素、酸素、硫黄、リンまたは炭素原子であり、環の構成要素の一部であって他の構成要素と一緒になって5員環または6員環を形成する。Wは置換基あるいは配位座を含む連結基を表し、pは1〜4の整数であって、pが2以上の場合、Wはそれぞれ異なっていても良い。Dは配位原子あるいは配位原子団を表し、LはAを含む環とDとの連結基を表し、mは0〜4の整数であって、nは1〜4の整数である。但し、p、mおよびnは環が5員環である場合にはp+m+n≦4、環が6員環である場合にはp+m+n≦5の関係を満たす。〕
7.金属原子と、2つ以上の該金属原子と結合可能な配位子とを含有する高分子材料であって、該配位子の少なくとも1つが、3つ以上の金属原子と結合可能な配位子Aであることを特徴とする高分子材料。
[Wherein A is a nitrogen, oxygen, sulfur, phosphorus or carbon atom and is part of a ring component and together with other components forms a 5-membered or 6-membered ring. W represents a substituent or a linking group containing a coordination site, p is an integer of 1 to 4, and when p is 2 or more, W may be different from each other. D represents a coordination atom or a coordination atom group, L represents a linking group between a ring containing A and D, m is an integer of 0 to 4, and n is an integer of 1 to 4. However, p, m, and n satisfy the relationship of p + m + n ≦ 4 when the ring is a 5-membered ring and p + m + n ≦ 5 when the ring is a 6-membered ring. ]
7). A polymer material containing a metal atom and two or more ligands capable of binding to the metal atom, wherein at least one of the ligands can bind to three or more metal atoms A polymer material characterized by being a child A.

8.前記配位子の少なくとの1種は、分子内に−SH、−COOH、−P=O(OH)、−OP=O(OH)及び−Si(OR)(Rは、アルキル基を表す)から選ばれる少なくとも1つの基を有することを特徴とする前記7に記載の高分子材料。 8). At least one of the ligands includes —SH, —COOH, —P═O (OH) 2 , —OP═O (OH) 2, and —Si (OR) 3 (R is alkyl 8. The polymer material as described in 7 above, wherein the polymer material has at least one group selected from

9.前記配位子の少なくとの1種は、金属と結合した際に負電荷を有することを特徴とする前記7または8に記載の高分子材料。   9. 9. The polymer material as described in 7 or 8 above, wherein at least one of the ligands has a negative charge when bonded to a metal.

10.前記配位子の少なくとの1種は、構造中に金属錯体を有することを特徴とする前記7〜9のいずれか1項に記載の高分子材料。   10. 10. The polymer material according to any one of 7 to 9, wherein at least one of the ligands has a metal complex in its structure.

11.前記配位子の少なくとの1種は、5員複素環単環を有することを特徴とする前記7〜10のいずれか1項に記載の高分子材料。   11. 11. The polymer material according to any one of 7 to 10, wherein at least one of the ligands has a 5-membered heterocyclic monocycle.

12.前記配位子の少なくとの1種は、下記一般式(1)で表される化合物であることを特徴とする前記7〜11のいずれか1項に記載の高分子材料。   12 The polymer material according to any one of 7 to 11, wherein at least one of the ligands is a compound represented by the following general formula (1).

Figure 2010085570
Figure 2010085570

〔式中、Aは窒素、酸素、硫黄、リンまたは炭素原子であり、環の構成要素の一部であって他の構成要素と一緒になって5員環または6員環を形成する。Wは置換基あるいは配位座を含む連結基を表し、pは1〜4の整数であって、pが2以上の場合、Wはそれぞれ異なっていても良い。Dは配位原子あるいは配位原子団を表し、LはAを含む環とDとの連結基を表し、mは0〜4の整数であって、nは1〜4の整数である。但し、p、mおよびnは環が5員環である場合にはp+m+n≦4、環が6員環である場合にはp+m+n≦5の関係を満たす。〕 [Wherein A is a nitrogen, oxygen, sulfur, phosphorus or carbon atom and is part of a ring component and together with other components forms a 5-membered or 6-membered ring. W represents a substituent or a linking group containing a coordination site, p is an integer of 1 to 4, and when p is 2 or more, W may be different from each other. D represents a coordination atom or a coordination atom group, L represents a linking group between a ring containing A and D, m is an integer of 0 to 4, and n is an integer of 1 to 4. However, p, m, and n satisfy the relationship of p + m + n ≦ 4 when the ring is a 5-membered ring and p + m + n ≦ 5 when the ring is a 6-membered ring. ]

本発明により、コントラスト保持率及び繰返し耐久性の高いエレクトロクロミック表示を行う電気化学デバイスとそれに用いる金属錯体を含む高分子材料を提供することができた。   According to the present invention, it is possible to provide an electrochemical device that performs electrochromic display with high contrast retention and high durability and a polymer material including a metal complex used therefor.

以下、本発明を実施するための最良の形態について詳細に説明する。   Hereinafter, the best mode for carrying out the present invention will be described in detail.

本発明者は、上記課題に鑑み鋭意検討を行った結果、対向電極間に、金属原子と、2つ以上の該金属原子と結合可能な配位子とを含有する高分子材料を有する電気化学デバイスであって、該配位子の少なくとも1つが、3つ以上の金属原子と結合可能な配位子Aであることを特徴とする電気化学デバイスにより、繰り返し耐久性の高い電気化学デバイスを実現できることを見出し、本発明に至った。   As a result of intensive studies in view of the above problems, the inventor of the present invention has an electrochemical having a polymer material containing a metal atom and a ligand capable of binding to two or more metal atoms between counter electrodes. An electrochemical device characterized in that it is a ligand A that can bind to three or more metal atoms, and at least one of the ligands is a highly durable electrochemical device. As a result, the present inventors have found that it can be achieved.

以下、本発明の詳細について説明する。   Details of the present invention will be described below.

本発明の電気化学デバイスとは、電子ペーパー装置や電界効果トランジスタ、基板部品配線、液晶表示装置など電流駆動あるいは電圧駆動を行う電気化学デバイスを表し、より具体的には、エレクトロクロミック型の電子ペーパー表示装置等の表示素子を示す。   The electrochemical device of the present invention refers to an electrochemical device that performs current drive or voltage drive, such as an electronic paper device, a field effect transistor, a substrate component wiring, and a liquid crystal display device, and more specifically, an electrochromic electronic paper. A display element such as a display device is shown.

《高分子材料》
本発明の高分子材料は、少なくとも一種の金属原子と、少なくとも一種の2つ以上の金属原子と結合可能な配位子を含み、該配位子の少なくとも1つが、3つ以上の金属原子と結合可能な配位子Aであることを特徴とする。
《Polymer material》
The polymer material of the present invention includes at least one metal atom and a ligand capable of binding to at least one two or more metal atoms, and at least one of the ligands includes three or more metal atoms. It is a ligand A capable of binding.

本発明に係る金属原子は、各配位子と結合生成可能であれば、特に限定されないが、好ましくは周期表第1族から第14族に含まれる金属元素であって、また第4周期から第6周期上の金属元素であることが好ましく、コスト等の点から第4周期または第5周期の金属元素であることがより好ましい。これら金属元素の中でも、具体的にはMn、Fe、Co、Ni、Cu、Zn、Ru、Osであることが好ましく、より好ましくはMn、Fe、Co、Ruであって、更にはMn、Fe、Ruから選択されることがより好ましい。また金属原子の種類は一種類であっても二種類以上を用いても良く、多色表示のためには二種類以上の金属原子を用いることが好ましい。   The metal atom according to the present invention is not particularly limited as long as it can form a bond with each ligand, but is preferably a metal element included in Groups 1 to 14 of the periodic table, and from the 4th period. It is preferably a metal element in the sixth period, and more preferably a metal element in the fourth period or the fifth period from the viewpoint of cost or the like. Among these metal elements, specifically, Mn, Fe, Co, Ni, Cu, Zn, Ru, and Os are preferable, and Mn, Fe, Co, and Ru are more preferable. More preferably, Ru is selected. The type of metal atom may be one type or two or more types, and it is preferable to use two or more types of metal atoms for multicolor display.

本発明に係る金属原子と結合可能な配位子は、2つ以上の金属原子と結合を生成することが可能である配位子であって、かつ配位子の少なくとも1つが、3つ以上の金属原子と結合可能な配位子Aであることを特徴とする。このような配位子を用いた場合、配位子−金属−配位子−・・・−金属−配位子あるいは金属−配位子−金属−・・・−配位子−金属のように金属と配位子の結合生成により金属錯体化合物の高分子化が可能であり、本発明の高分子材料はこのような金属と配位子の組み合わせにより生成される金属錯体高分子材料を表す。   The ligand capable of binding to a metal atom according to the present invention is a ligand capable of forming a bond with two or more metal atoms, and at least one of the ligands is three or more. It is characterized by being a ligand A capable of binding to the metal atom. When such a ligand is used, such as ligand-metal-ligand -...- metal-ligand or metal-ligand-metal -...- ligand-metal It is possible to polymerize a metal complex compound by forming a bond between a metal and a ligand, and the polymer material of the present invention represents a metal complex polymer material produced by such a combination of a metal and a ligand. .

本発明において配位座とは、1つの金属に対していくつの配位原子で結合するかを表し、例えば、トリス(2,2′−ビピリジン)ルテニウム錯体の場合、2,2′−ビピリジンの配位座は2座であり、ニッケルサレン錯体の場合、サレンの配位座は4座である。   In the present invention, the coordination position represents how many coordination atoms are bonded to one metal. For example, in the case of a tris (2,2′-bipyridine) ruthenium complex, The coordination position is bidentate. In the case of a nickel-salen complex, the coordination position of salen is tetradentate.

本発明における配位子は、配位座が2座以上であり、加えて、3つ以上の金属原子と結合可能な配位子Aを含むことを特徴とする。一般に、配位座が多いほど金属錯体の安定性は増すが、錯体分子の自由度が減少するため、4座以下の配位座であることが好ましい。   The ligand according to the present invention is characterized in that the coordination site is bidentate or more, and additionally includes a ligand A capable of binding to three or more metal atoms. In general, as the number of coordination sites increases, the stability of the metal complex increases. However, since the degree of freedom of the complex molecule decreases, a coordination site of 4 or less is preferable.

本発明の高分子材料において、更に好ましい態様としては、一種の3座以上の配位座を有する配位子と少なくとも一種の前記配位子とは異なる構造を有する3座以上の配位子を含むことである。このように異なる構造を有する複数の配位子を組み合わせて用いることで、複数の金属種を用いた場合にも金属種ごとを選択的に結合させることが可能になり、エレクトロクロミックを利用した吸収スペクトル変化を効率的、選択的に行うことが可能である。また、一種の配位子に基板への吸着能を持たせることで、本発明の高分子材料を基板上へ固定化することも可能である。また、配位座が2つの配位子のみを用いた場合、高分子材料は二次元的な広がりを有するが、配位座が2つの配位子と3つの配位子を組み合わせて用いることで、3次元的な構造を導入することが可能となり、水系溶剤あるいは有機溶剤に対して合成した高分子材料の溶解性を調整することが可能である。   In the polymer material of the present invention, as a more preferable embodiment, a ligand having a tridentate or higher coordination site and a tridentate or higher ligand having a structure different from the at least one ligand are provided. Is to include. By using a combination of multiple ligands having different structures in this way, even when multiple metal species are used, it is possible to selectively bind each metal species, and absorption using electrochromic It is possible to change the spectrum efficiently and selectively. In addition, it is possible to immobilize the polymer material of the present invention on a substrate by giving a kind of ligand an adsorption ability to the substrate. In addition, when only ligands with two coordination sites are used, the polymer material has a two-dimensional extent, but a combination of two ligands and three ligands must be used. Thus, a three-dimensional structure can be introduced, and the solubility of the polymer material synthesized in the aqueous solvent or organic solvent can be adjusted.

本発明において、複数種の配位子を混合する場合、基板などへの固定化の面では少なくとも一種の配位子が吸着基を含むことが好ましく、高分子材料の溶解性を調整する目的では配位座を3つあるいは3つ以上有する配位子を含むことが好ましく、吸着基を有する配位子と配位座が3つ以上の配位子および2座配位子を組み合わせて用いることがより好ましい。   In the present invention, when plural kinds of ligands are mixed, it is preferable that at least one kind of ligand contains an adsorbing group in terms of immobilization on a substrate or the like, and for the purpose of adjusting the solubility of the polymer material. It is preferable to include a ligand having three or more coordination sites, and a combination of a ligand having an adsorbing group, a ligand having three or more coordination sites, and a bidentate ligand. Is more preferable.

本発明の高分子材料を形成する配位子において、配位原子および配位原子団は任意に選択することが可能である。代表的な配位原子としては窒素原子、酸素原子、硫黄原子、りん原子が挙げられ、配位原子団としてはピリジン環、キノリン環、ピラゾール環、トリアゾール環、ピラゾロン環、チアジゾール環、ベンゾイミダゾール環などの複素環、カルボキシル基、水酸基、アルコキシ基、メルカプト基、イミノ基、アミノ基、エーテル、スルフィド(チオエーテル)、ホスフィンなどが挙げられる。本発明の高分子材料を形成する配位子において、配位子は金属と結合した際に、中性であっても良いし、負電荷を有していても良いが、負電荷を有することがより好ましい。配位子が負電荷を有する場合、配位原子および配位原子団が負電荷を有しても良いし、配位原子および配位原子団を除いた構造中に負電荷を有していても良い。後者の場合、配位子の構造中にスルホン酸基、カルボキシル基、リン酸基を有することが好ましい。また金属との結合を強めるためには少なくとも一種の配位原子および配位原子団が負電荷を有することが好ましい。また更に本発明の高分子材料を形成する少なくとも一種の配位子は5員複素環単環を含むことが好ましい。また同様に本発明の高分子材料を形成する配位子において、少なくとも一種の配位子はピロール、インドール、イソインドール、ピラゾール、インダゾール、イミダゾール、トリアゾール、ベンゾトリアゾール、オキサゾール、ベンゾオキサゾール、チアゾール、ベンゾチアゾールのいずれかあるいは複数を配位原子団として含むことが好ましい。このような5員複素環を有する配位子を用いることで、高分子材料の安定性を向上させることが可能であり、またエレクトロクロミック素子に用いた場合には作動電圧を変化させることが可能となる。   In the ligand forming the polymer material of the present invention, the coordination atom and the coordination atom group can be arbitrarily selected. Typical coordination atoms include nitrogen atom, oxygen atom, sulfur atom, and phosphorus atom, and coordination atom groups include pyridine ring, quinoline ring, pyrazole ring, triazole ring, pyrazolone ring, thiadizole ring, and benzimidazole ring. And a heterocyclic group such as a carboxyl group, a hydroxyl group, an alkoxy group, a mercapto group, an imino group, an amino group, an ether, a sulfide (thioether), and a phosphine. In the ligand forming the polymer material of the present invention, the ligand may be neutral or may have a negative charge when bonded to a metal, but may have a negative charge. Is more preferable. When the ligand has a negative charge, the coordination atom and the coordination group may have a negative charge, or the structure excluding the coordination atom and the coordination group has a negative charge. Also good. In the latter case, the ligand structure preferably has a sulfonic acid group, a carboxyl group, or a phosphoric acid group. In order to strengthen the bond with the metal, it is preferable that at least one coordination atom and coordination group have a negative charge. Furthermore, it is preferable that at least one ligand forming the polymer material of the present invention contains a 5-membered heterocyclic monocycle. Similarly, in the ligand forming the polymer material of the present invention, at least one ligand is pyrrole, indole, isoindole, pyrazole, indazole, imidazole, triazole, benzotriazole, oxazole, benzoxazole, thiazole, benzoate. It is preferable that any one or more of thiazoles are contained as a coordination atom group. By using such a ligand having a 5-membered heterocyclic ring, it is possible to improve the stability of the polymer material, and it is possible to change the operating voltage when used in an electrochromic device. It becomes.

本発明の高分子材料を形成する配位子において、少なくとも一種の配位子は分子内に−SH、−COOH、−P−O(OH)、−OP=O(OH)及び−Si(OR)(Rは、アルキル基を表す)から選ばれる少なくとも一つの基を有することが好ましい。このような基は、吸着基として働き、前述のように基板上へ本発明の高分子材料を固定化することができる。また、本発明の高分子材料の溶解性を調整することも可能である。 In the ligand forming the polymer material of the present invention, at least one kind of ligand is —SH, —COOH, —P—O (OH) 2 , —OP═O (OH) 2 and —Si in the molecule. It is preferable to have at least one group selected from (OR) 3 (R represents an alkyl group). Such a group acts as an adsorbing group and can immobilize the polymer material of the present invention on the substrate as described above. It is also possible to adjust the solubility of the polymer material of the present invention.

また、本発明の高分子材料は、種々の配位子と金属との組み合わせにより生じる電荷を中和するためにカウンターイオン(対イオン)を有していても良い。このようなカウンターイオンとしては、特に限定されないが、ハロゲンイオン、硝酸イオン、硫酸イオン、酢酸イオン、過塩素酸イオン、トルエンスルホン酸イオン、メタンスルホン酸イオン、トリフルオロメタンスルホン酸イオン、テトラフルオロホウ酸イオン、テトラフェニルホウ酸イオン、ヘキサフルオロりん酸イオン、チオシアン酸イオンなどのほか、(CFSO、(CSO、および(CSOなどのイミド塩類も好適に使用することができる。また、本発明の高分子材料においては、これらカウンターイオンを複数同時に用いることもでき、種々のカウンターイオンの調整によって高分子材料の水あるいは有機溶媒に対する溶解性を調整することができる。 Moreover, the polymer material of the present invention may have a counter ion (counter ion) in order to neutralize charges generated by a combination of various ligands and metals. Such counter ions are not particularly limited, but halogen ions, nitrate ions, sulfate ions, acetate ions, perchlorate ions, toluenesulfonate ions, methanesulfonate ions, trifluoromethanesulfonate ions, tetrafluoroborate acids. In addition to ions, tetraphenylborate ions, hexafluorophosphate ions, thiocyanate ions, etc., (CF 3 SO 2 ) 2 N , (C 2 F 5 SO 2 ) 2 N , and (C 2 F 5 SO 2) 3 C - imide salts such can also be suitably used. In the polymer material of the present invention, a plurality of these counter ions can be used simultaneously, and the solubility of the polymer material in water or an organic solvent can be adjusted by adjusting various counter ions.

本発明の高分子材料を形成する配位子において、構造内に金属錯体を形成可能な配位子もしくは金属錯体を含有した配位子を混合して用いることも同様に好ましい。このような構造内に含まれる金属錯体の構造としては、具体的にはサレンなどの多座キレート錯体、ポルフィリン、フタロシアニンなどの環状錯体およびフェロセン、チタノセンなどの有機金属錯体などが挙げられ、より好ましくは有機金属錯体であって、フェロセンであることが更に好ましい。このような配位子を用いることで、本発明の高分子材料における電荷移動速度を調整することが可能であり、また電子源、正孔源として用いることもできるため好ましい。また更には本発明の高分子材料の耐熱性向上にも効果を示すため好ましい。   In the ligand forming the polymer material of the present invention, it is also preferable to use a mixture of a ligand capable of forming a metal complex or a ligand containing a metal complex in the structure. Specific examples of the structure of the metal complex contained in such a structure include polydentate chelate complexes such as salen, cyclic complexes such as porphyrin and phthalocyanine, and organometallic complexes such as ferrocene and titanocene, and the like. Is an organometallic complex, more preferably ferrocene. Use of such a ligand is preferable because the charge transfer rate in the polymer material of the present invention can be adjusted, and it can also be used as an electron source and a hole source. Furthermore, it is preferable because the polymer material of the present invention is effective in improving the heat resistance.

本発明の高分子材料を形成する配位子の1つの好ましい態様は、下記一般式(1)で表される構造を有することである。   One preferable aspect of the ligand forming the polymer material of the present invention is to have a structure represented by the following general formula (1).

Figure 2010085570
Figure 2010085570

式中、Aは窒素原子、酸素原子、硫黄原子、リン原子または炭素原子を表し、他の構成要素とともに5員環あるいは6員環を形成し、また金属原子と結合を生成する。この時形成される環は芳香族環であっても非芳香族環であっても良いが、好ましくは芳香族環であることであって、さらには複素芳香族環であるがより好ましい。 In the formula, A represents a nitrogen atom, an oxygen atom, a sulfur atom, a phosphorus atom or a carbon atom, forms a 5-membered ring or a 6-membered ring with other components, and forms a bond with a metal atom. The ring formed at this time may be an aromatic ring or a non-aromatic ring, but is preferably an aromatic ring, and more preferably a heteroaromatic ring.

Wは、置換基あるいは配位座を含む連結基を表す。置換基として具体的にはアルキル基(例えば、メチル基、エチル基、プロピル基、イソプロピル基、tert−ブチル基、ペンチル基、ヘキシル基、オクチル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基等)、シクロアルキル基(例えば、シクロプロピル基、シクロペンチル基、シクロヘキシル基等)、アルケニル基(例えば、ビニル基、アリル基、ブテニル基、オクテニル基等)、シクロアルケニル基(例えば、2−シクロペンテン−1−イル基、2−シクロヘキセン−1−イル基等)、アルキニル基(例えば、プロパルギル基、エチニル基、トリメチルシリルエチニル基等)、アリール基(例えば、フェニル基、ナフチル基、p−トリル基、m−クロロフェニル基、o−ヘキサデカノイルアミノフェニル基等)、複素環基(例えば、ピリジル基、チアゾリル基、オキサゾリル基、イミダゾリル基、フリル基、ピロリル基、ピラジニル基、ピリミジニル基、ピリダジニル基、セレナゾリル基、スルホラニル基、ピペリジニル基、ピラゾリル基、テトラゾリル基、モルフォリノ基等)、複素環オキシ基(例えば、1−フェニルテトラゾール−5−オキシ基、2−テトラヒドロピラニルオキシ基、ピリジルオキシ基、チアゾリルオキシ基、オキサゾリルオキシ基、イミダゾリルオキシ基等)、ハロゲン原子(例えば、塩素原子、臭素原子、ヨウ素原子、フッ素原子等)、アルコキシ基(例えば、メトキシ基、エトキシ基、プロピルオキシ基、tert−ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、オクチルオキシ基、ドデシルオキシ基等)、シクロアルコキシ基(例えば、シクロペンチルオキシ基、シクロヘキシルオキシ基等)、アリールオキシ基(例えば、フェノキシ基、2−ナフチルオキシ基、2−メチルフェノキシ基、4−tert−ブチルフェノキシ基、3−ニトロフェノキシ基、2−テトラデカノイルアミノフェノキシ基等)、アルキルチオ基(例えば、メチルチオ基、エチルチオ基、プロピルチオ基、ペンチルチオ基、ヘキシルチオ基、オクチルチオ基、ドデシルチオ基等)、シクロアルキルチオ基(例えば、シクロペンチルチオ基、シクロヘキシルチオ基等)、アリールチオ基(例えば、フェニルチオ基、1−ナフチルチオ基等)、複素環チオ基(例えば、ピリジルチオ基、チアゾリルチオ基、オキサゾリルチオ基、イミダゾリルチオ基、フリルチオ基、ピロリルチオ基等)、アルコキシカルボニル基(例えば、メトキシカルボニル基、エトキシカルボニル基、ブトキシカルボニル基、オクチルオキシカルボニル基、ドデシルオキシカルボニル基等)、アリールオキシカルボニル基(例えば、フェニルオキシカルボニル基、ナフチルオキシカルボニル基等)、スルファモイル基(例えば、アミノスルホニル基、メチルアミノスルホニル基、ジメチルアミノスルホニル基、ブチルアミノスルホニル基、ヘキシルアミノスルホニル基、シクロヘキシルアミノスルホニル基、オクチルアミノスルホニル基、ドデシルアミノスルホニル基、フェニルアミノスルホニル基、ナフチルアミノスルホニル基、2−ピリジルアミノスルホニル基、モルフォリノスルホニル基、ピロリジノスルホニル基等)、ウレイド基(例えば、メチルウレイド基、エチルウレイド基、ペンチルウレイド基、シクロヘキシルウレイド基、オクチルウレイド基、ドデシルウレイド基、フェニルウレイド基、ナフチルウレイド基、2−ピリジルアミノウレイド基等)、アシル基(例えば、アセチル基、エチルカルボニル基、プロピルカルボニル基、ペンチルカルボニル基、シクロヘキシルカルボニル基、オクチルカルボニル基、2−エチルヘキシルカルボニル基、ドデシルカルボニル基、フェニルカルボニル基、ナフチルカルボニル基、ピリジルカルボニル基等)、アシルオキシ基(例えば、ホルミルオキシ基、アセチルオキシ基、ピバロイルオキシ基、ステアロイルオキシ基、ベンゾイルオキシ基、p−メトキシフェニルカルボニルオキシ基、エチルカルボニルオキシ基、ブチルカルボニルオキシ基、オクチルカルボニルオキシ基、ドデシルカルボニルオキシ基、フェニルカルボニルオキシ基等)、アシルアミノ基(例えば、アセチルアミノ基、ベンゾイルアミノ基、ホルミルアミノ基、ピバロイルアミノ基、ラウロイルアミノ基、3,4,5−トリ−n−オクチルオキシフェニルカルボニルアミノ基等)、カルバモイル基(例えば、アミノカルボニル基、メチルアミノカルボニル基、ジメチルアミノカルボニル基、プロピルアミノカルボニル基、ペンチルアミノカルボニル基、シクロヘキシルアミノカルボニル基、オクチルアミノカルボニル基、2−エチルヘキシルアミノカルボニル基、ドデシルアミノカルボニル基、フェニルアミノカルボニル基、ナフチルアミノカルボニル基、2−ピリジルアミノカルボニル基、モルフォリノカルボニル基、ピペラジノカルボニル基等)、アルカンスルフィニル基またはアリールスルフィニル基(例えば、メタンスルフィニル基、エタンスルフィニル基、ブタンスルフィニル基、シクロヘキサンスルフィニル基、2−エチルヘキサンスルフィニル基、ドデカンスルフィニル基、フェニルスルフィニル基、ナフチルスルフィニル基、2−ピリジルスルフィニル基等)、アルカンスルホニル基またはアリールスルホニル基(例えば、メタンスルホニル基、エタンスルホニル基、ブタンスルホニル基、シクロヘキサンスルホニル基、2−エチルヘキサンスルホニル基、ドデカンスルホニル基、フェニルスルホニル基、ナフチルスルホニル基、2−ピリジルスルホニル基等)、アミノ基(例えば、アミノ基、メチルアミノ基、エチルアミノ基、ジメチルアミノ基、ブチルアミノ基、シクロペンチルアミノ基、2−エチルヘキシルアミノ基、ドデシルアミノ基、アニリノ基、N−メチルアニリノ基、ジフェニルアミノ基、ナフチルアミノ基、2−ピリジルアミノ基等)、シリルオキシ基(例えば、トリメチルシリルオキシ基、tert−ブチルジメチルシリルオキシ基等)、アミノカルボニルオキシ基(例えば、N,N−ジメチルカルバモイルオキシ基、N,N−ジエチルカルバモイルオキシ基、モルホリノカルボニルオキシ基、N,N−ジ−n−オクチルアミノカルボニルオキシ基、N−n−オクチルカルバモイルオキシ基等)、アルコキシカルボニルオキシ基(例えば、メトキシカルボニルオキシ基、エトキシカルボニルオキシ基、tert−ブトキシカルボニルオキシ基、n−オクチルカルボニルオキシ基等)、アリールオキシカルボニルオキシ基(例えば、フェノキシカルボニルオキシ基、p−メトキシフェノキシカルボニルオキシ基、p−n−ヘキサデシルオキシフェノキシカルボニルオキシ基等)、アルコキシカルボニルアミノ基(例えば、メトキシカルボニルアミノ基、エトキシカルボニルアミノ基、tert−ブトキシカルボニルアミノ基、n−オクタデシルオキシカルボニルアミノ基、N−メチル−メトキシカルボニルアミノ基等)、アリールオキシカルボニルアミノ基(例えば、フェノキシカルボニルアミノ基、p−クロロフェノキシカルボニルアミノ基、m−n−オクチルオキシフェノキシカルボニルアミノ基等)、スルファモイルアミノ基(例えば、スルファモイルアミノ基、N,N−ジメチルアミノスルホニルアミノ基、N−n−オクチルアミノスルホニルアミノ基等)、メルカプト基、アリールアゾ基(例えば、フェニルアゾ基、ナフチルアゾ基、p−クロロフェニルアゾ基等)、複素環アゾ基(例えば、ピリジルアゾ基、チアゾリルアゾ基、オキサゾリルアゾ基、イミダゾリルアゾ基、フリルアゾ基、ピロリルアゾ基、5−エチルチオ−1,3,4−チアジアゾール−2−イルアゾ基等)、イミノ基(例えば、N−スクシンイミド−1−イル基、N−フタルイミド−1−イル基等)、ホスフィノ基(例えば、ジメチルホスフィノ基、ジフェニルホスフィノ基、メチルフェノキシホスフィノ基等)、ホスフィニル基(例えば、ホスフィニル基、ジオクチルオキシホスフィニル基、ジエトキシホスフィニル基等)、ホスフィニルオキシ基(例えば、ジフェノキシホスフィニルオキシ基、ジオクチルオキシホスフィニルオキシ基等)、ホスフィニルアミノ基(例えば、ジメトキシホスフィニルアミノ基、ジメチルアミノホスフィニルアミノ基等)、シリル基(例えば、トリメチルシリル基、tert−ブチルジメチルシリル基、フェニルジメチルシリル基等)、シアノ基、ニトロ基、ヒドロキシル基、スルホ基、カルボキシル基等が挙げられる。pは1〜4の整数であって、pが2以上の場合、置換基あるいは配位座を含む連結基であるWは、それぞれ異なっていても良いし、同一であっても良い。   W represents a linking group containing a substituent or a coordination site. Specific examples of the substituent include alkyl groups (for example, methyl group, ethyl group, propyl group, isopropyl group, tert-butyl group, pentyl group, hexyl group, octyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, etc. ), A cycloalkyl group (for example, cyclopropyl group, cyclopentyl group, cyclohexyl group, etc.), an alkenyl group (for example, vinyl group, allyl group, butenyl group, octenyl group, etc.), cycloalkenyl group (for example, 2-cyclopentene-1 -Yl group, 2-cyclohexen-1-yl group, etc.), alkynyl group (eg, propargyl group, ethynyl group, trimethylsilylethynyl group, etc.), aryl group (eg, phenyl group, naphthyl group, p-tolyl group, m- Chlorophenyl group, o-hexadecanoylaminophenyl group, etc.), compound A cyclic group (for example, pyridyl group, thiazolyl group, oxazolyl group, imidazolyl group, furyl group, pyrrolyl group, pyrazinyl group, pyrimidinyl group, pyridazinyl group, selenazolyl group, sulfolanyl group, piperidinyl group, pyrazolyl group, tetrazolyl group, morpholino group, etc. ), A heterocyclic oxy group (for example, 1-phenyltetrazol-5-oxy group, 2-tetrahydropyranyloxy group, pyridyloxy group, thiazolyloxy group, oxazolyloxy group, imidazolyloxy group, etc.), halogen atom (for example, , Chlorine atom, bromine atom, iodine atom, fluorine atom, etc.), alkoxy group (for example, methoxy group, ethoxy group, propyloxy group, tert-butoxy group, pentyloxy group, hexyloxy group, octyloxy group, dodecyloxy group) Etc.), cycloal Xy group (for example, cyclopentyloxy group, cyclohexyloxy group, etc.), aryloxy group (for example, phenoxy group, 2-naphthyloxy group, 2-methylphenoxy group, 4-tert-butylphenoxy group, 3-nitrophenoxy group, 2-tetradecanoylaminophenoxy group, etc.), alkylthio group (eg, methylthio group, ethylthio group, propylthio group, pentylthio group, hexylthio group, octylthio group, dodecylthio group, etc.), cycloalkylthio group (eg, cyclopentylthio group, cyclohexyl) Thio group etc.), arylthio group (eg phenylthio group, 1-naphthylthio group etc.), heterocyclic thio group (eg pyridylthio group, thiazolylthio group, oxazolylthio group, imidazolylthio group, furylthio group, pyrrolylthio group etc.), a Lucoxycarbonyl group (for example, methoxycarbonyl group, ethoxycarbonyl group, butoxycarbonyl group, octyloxycarbonyl group, dodecyloxycarbonyl group, etc.), aryloxycarbonyl group (for example, phenyloxycarbonyl group, naphthyloxycarbonyl group, etc.), Sulfamoyl group (for example, aminosulfonyl group, methylaminosulfonyl group, dimethylaminosulfonyl group, butylaminosulfonyl group, hexylaminosulfonyl group, cyclohexylaminosulfonyl group, octylaminosulfonyl group, dodecylaminosulfonyl group, phenylaminosulfonyl group, naphthyl) Aminosulfonyl group, 2-pyridylaminosulfonyl group, morpholinosulfonyl group, pyrrolidinosulfonyl group, etc.), ureido group (for example, methyl group) Id group, ethylureido group, pentylureido group, cyclohexylureido group, octylureido group, dodecylureido group, phenylureido group, naphthylureido group, 2-pyridylaminoureido group, etc.), acyl group (for example, acetyl group, ethylcarbonyl group) Propylcarbonyl group, pentylcarbonyl group, cyclohexylcarbonyl group, octylcarbonyl group, 2-ethylhexylcarbonyl group, dodecylcarbonyl group, phenylcarbonyl group, naphthylcarbonyl group, pyridylcarbonyl group, etc.), acyloxy group (for example, formyloxy group, Acetyloxy group, pivaloyloxy group, stearoyloxy group, benzoyloxy group, p-methoxyphenylcarbonyloxy group, ethylcarbonyloxy group, butylcarbonyloxy Octylcarbonyloxy group, dodecylcarbonyloxy group, phenylcarbonyloxy group, etc.), acylamino group (for example, acetylamino group, benzoylamino group, formylamino group, pivaloylamino group, lauroylamino group, 3,4,5-tri-) n-octyloxyphenylcarbonylamino group, etc.), carbamoyl group (for example, aminocarbonyl group, methylaminocarbonyl group, dimethylaminocarbonyl group, propylaminocarbonyl group, pentylaminocarbonyl group, cyclohexylaminocarbonyl group, octylaminocarbonyl group, 2-ethylhexylaminocarbonyl group, dodecylaminocarbonyl group, phenylaminocarbonyl group, naphthylaminocarbonyl group, 2-pyridylaminocarbonyl group, morpholinocarbo Nyl group, piperazinocarbonyl group, etc.), alkanesulfinyl group or arylsulfinyl group (for example, methanesulfinyl group, ethanesulfinyl group, butanesulfinyl group, cyclohexanesulfinyl group, 2-ethylhexanesulfinyl group, dodecanesulfinyl group, phenylsulfinyl group) Group, naphthylsulfinyl group, 2-pyridylsulfinyl group, etc.), alkanesulfonyl group or arylsulfonyl group (for example, methanesulfonyl group, ethanesulfonyl group, butanesulfonyl group, cyclohexanesulfonyl group, 2-ethylhexanesulfonyl group, dodecanesulfonyl group) , Phenylsulfonyl group, naphthylsulfonyl group, 2-pyridylsulfonyl group, etc.), amino group (for example, amino group, methylamino group, ethylamino group, dimethyl group) Ruamino group, butylamino group, cyclopentylamino group, 2-ethylhexylamino group, dodecylamino group, anilino group, N-methylanilino group, diphenylamino group, naphthylamino group, 2-pyridylamino group, etc.), silyloxy group (for example, trimethylsilyl) Oxy group, tert-butyldimethylsilyloxy group, etc.), aminocarbonyloxy group (for example, N, N-dimethylcarbamoyloxy group, N, N-diethylcarbamoyloxy group, morpholinocarbonyloxy group, N, N-di-n) -Octylaminocarbonyloxy group, Nn-octylcarbamoyloxy group, etc.), alkoxycarbonyloxy group (for example, methoxycarbonyloxy group, ethoxycarbonyloxy group, tert-butoxycarbonyloxy group, n-octyl group) Carbonyloxy group etc.), aryloxycarbonyloxy group (eg phenoxycarbonyloxy group, p-methoxyphenoxycarbonyloxy group, pn-hexadecyloxyphenoxycarbonyloxy group etc.), alkoxycarbonylamino group (eg methoxycarbonyl) Amino group, ethoxycarbonylamino group, tert-butoxycarbonylamino group, n-octadecyloxycarbonylamino group, N-methyl-methoxycarbonylamino group, etc.), aryloxycarbonylamino group (for example, phenoxycarbonylamino group, p-chloro) Phenoxycarbonylamino group, mn-octyloxyphenoxycarbonylamino group, etc.), sulfamoylamino group (for example, sulfamoylamino group, N, N-dimethylaminosulfuric group) Phonylamino group, Nn-octylaminosulfonylamino group, etc.), mercapto group, arylazo group (eg, phenylazo group, naphthylazo group, p-chlorophenylazo group, etc.), heterocyclic azo group (eg, pyridylazo group, thiazolylazo group, Oxazolylazo group, imidazolylazo group, furylazo group, pyrrolylazo group, 5-ethylthio-1,3,4-thiadiazol-2-ylazo group, etc.), imino group (for example, N-succinimido-1-yl group, N-phthalimide- 1-yl group), phosphino group (for example, dimethylphosphino group, diphenylphosphino group, methylphenoxyphosphino group, etc.), phosphinyl group (for example, phosphinyl group, dioctyloxyphosphinyl group, diethoxyphosphinyl group) Group), phosphinyloxy group (for example, , Diphenoxyphosphinyloxy group, dioctyloxyphosphinyloxy group, etc.), phosphinylamino group (eg, dimethoxyphosphinylamino group, dimethylaminophosphinylamino group, etc.), silyl group (eg, trimethylsilyl) Group, tert-butyldimethylsilyl group, phenyldimethylsilyl group, etc.), cyano group, nitro group, hydroxyl group, sulfo group, carboxyl group and the like. p is an integer of 1 to 4, and when p is 2 or more, W, which is a linking group containing a substituent or a coordination site, may be different or the same.

Dは配位原子あるいは配位原子団を表し、代表的な配位原子としては窒素原子、酸素原子、硫黄原子、りん原子が挙げられ、配位原子団としてはピリジン環、キノリン環、ピラゾール環、トリアゾール環、ピラゾロン環、チアジゾール環、ベンゾイミダゾール環などの複素環、カルボキシル基、水酸基、アルコキシ基、メルカプト基、イミノ基、アミノ基、エーテル、スルフィド(チオエーテル)、ホスフィンなどが挙げられる。   D represents a coordination atom or a coordination atom group, and typical coordination atoms include a nitrogen atom, an oxygen atom, a sulfur atom, and a phosphorus atom. Examples of the coordination atom group include a pyridine ring, a quinoline ring, and a pyrazole ring. And heterocyclic rings such as triazole ring, pyrazolone ring, thiadizole ring and benzimidazole ring, carboxyl group, hydroxyl group, alkoxy group, mercapto group, imino group, amino group, ether, sulfide (thioether), phosphine and the like.

LはAを含む環とDの連結基を表し、連結基として働くものであれば自由に選択することができ、また任意の位置に置換基を有していても良いし、一部をヘテロ原子で置換されていても良い。連結基として好ましくは炭化水素連結基であり、より好ましくは、直鎖、分岐あるいは環状のアルキルレン基、アリーレン基であり、更に好ましくは直鎖のアルキルレン基であって、メチレン基であることが更に好ましい。   L represents a ring containing A and a linking group of D and can be freely selected as long as it functions as a linking group, and may have a substituent at any position, and a part of It may be substituted with an atom. The linking group is preferably a hydrocarbon linking group, more preferably a linear, branched or cyclic alkylene group or arylene group, still more preferably a linear alkylene group, and a methylene group. Is more preferable.

mは0〜4の整数であって、nは1〜4の整数である。但し、p、mおよびnは環が5員環である場合にはp+m+n≦4、環が6員環である場合にはp+m+n≦5の関係を満たす。   m is an integer of 0 to 4, and n is an integer of 1 to 4. However, p, m, and n satisfy the relationship of p + m + n ≦ 4 when the ring is a 5-membered ring and p + m + n ≦ 5 when the ring is a 6-membered ring.

以下に、本発明の高分子材料の形成に用いられる配位子の具体例を例示するが、本発明はこれらに限定されない。   Although the specific example of the ligand used for formation of the polymeric material of this invention is illustrated below, this invention is not limited to these.

はじめに、本発明に係る3つ以上の金属原子と結合可能な配位子Aの具体例である例示化合物(1)〜(12)を以下に示す。   First, exemplary compounds (1) to (12), which are specific examples of the ligand A capable of binding to three or more metal atoms according to the present invention, are shown below.

Figure 2010085570
Figure 2010085570

Figure 2010085570
Figure 2010085570

Figure 2010085570
Figure 2010085570

次いで、本発明に係る3つ以上の金属原子と結合可能な配位子Aと併用可能なその他の2つ以上の金属原子と結合可能な配位子の具体例である例示化合物(13)〜(69)を以下に示す。   Next, exemplary compounds (13) to (13) are specific examples of ligands that can be combined with other two or more metal atoms that can be used in combination with the ligand A that can be combined with three or more metal atoms according to the present invention. (69) is shown below.

Figure 2010085570
Figure 2010085570

Figure 2010085570
Figure 2010085570

Figure 2010085570
Figure 2010085570

Figure 2010085570
Figure 2010085570

Figure 2010085570
Figure 2010085570

Figure 2010085570
Figure 2010085570

Figure 2010085570
Figure 2010085570

Figure 2010085570
Figure 2010085570

Figure 2010085570
Figure 2010085570

Figure 2010085570
Figure 2010085570

Figure 2010085570
Figure 2010085570

Figure 2010085570
Figure 2010085570

Figure 2010085570
Figure 2010085570

本発明に係る上記配位子は、Dalton Trans.,2003、2069−2079やChem.Lett.,1999、1129−1130、および鈴木カップリング、Stillカップリングなど公知の方法を用いて合成できる。   The ligands according to the present invention are disclosed in Dalton Trans. 2003, 2069-2079 and Chem. Lett. 1999, 1129-1130, and well-known methods such as Suzuki coupling and Still coupling.

また、本発明の高分子材料は、上記配位子および金属塩を溶媒中あるいは無溶媒下で混合することによって合成できる。具体的には、配位子と金属塩とを酢酸等の水系溶媒またはメタノール、エタノール、ジメチルホルムアミド等の有機溶媒中、室温あるいは加熱することで得られる。これら反応条件は、選択される配位子、金属塩および溶媒によって異なるが、当業者であれば容易に条件を想到できる。ポリマー形成後、得られた混合物を更に加熱してもよく、加熱によって溶媒を蒸発させ、粉体にしたり薄膜にしたりすることも可能である。このときの配位子、金属のモル比は、用いる配位子の種類によって任意に選択することが可能であるが、より好ましくは配位子:金属=1:1〜1:3(モル比)であり、より好ましくは1:1〜1:1.5、さらに好ましくは1:1〜1:1.2である。   The polymer material of the present invention can be synthesized by mixing the ligand and metal salt in a solvent or without a solvent. Specifically, the ligand and the metal salt can be obtained by heating at room temperature or in an aqueous solvent such as acetic acid or an organic solvent such as methanol, ethanol or dimethylformamide. These reaction conditions vary depending on the selected ligand, metal salt and solvent, but those skilled in the art can easily conceive the conditions. After the formation of the polymer, the resulting mixture may be further heated, and the solvent can be evaporated by heating to form a powder or a thin film. The molar ratio of the ligand and metal at this time can be arbitrarily selected depending on the type of ligand used, but more preferably, ligand: metal = 1: 1 to 1: 3 (molar ratio). More preferably 1: 1 to 1: 1.5, and still more preferably 1: 1 to 1: 1.2.

更には、本発明の高分子材料は、電解質中に含有されていても、電極表面上に固定化されていてもよい。電極表面上に固定化する方法は、本発明の高分子材料を形成する配位子に電極表面と化学吸着または物理吸着する基を導入する方法や単純に本発明の高分子材料を含有する溶液を塗布、乾燥して電極表面上に薄膜を形成する方法などが挙げられる。   Furthermore, the polymer material of the present invention may be contained in the electrolyte or may be immobilized on the electrode surface. The method of immobilizing on the electrode surface is a method of introducing a group that chemically or physically adsorbs with the electrode surface into the ligand that forms the polymer material of the present invention, or simply a solution containing the polymer material of the present invention. And a method of forming a thin film on the electrode surface by coating and drying.

また、本発明の高分子材料は、本発明の電気化学デバイスに含有されている限り、その使用法、効能については限定されない。詳細については下記に説明するが、好ましくはエレクトロクロミック化合物、メディエーター化合物として用いられることが好ましく、より好ましくはメディエーター化合物として用いられることであって、メディエーター化合物としても対極反応物質として用いられることが最も好ましい。   In addition, as long as the polymer material of the present invention is contained in the electrochemical device of the present invention, its usage and efficacy are not limited. Although details will be described below, it is preferably used as an electrochromic compound or a mediator compound, more preferably used as a mediator compound, and most preferably used as a counter electrode reactant as a mediator compound. preferable.

《電気化学デバイス》
次いで、本発明のエレクトロクロミック方式の電気化学デバイスの各構成要素について説明する。
《Electrochemical device》
Next, each component of the electrochromic electrochemical device of the present invention will be described.

〔電気化学デバイスの基本的な構成〕
本発明の電気化学デバイスにおいては、表示部には、透明基板上に一つの対向電極が設けられている。表示部に近い対向電極の一つである電極1にはITO電極等の透明電極、他方の非表示側の電極2には導電性電極が設けられている。電極1と電極2とで構成される対向電極間には、電解質、電気化学的な酸化還元反応により可逆的に変色する化合物を含有する。対向電極間に正負両極性の電圧を印加することにより電気化学的な酸化還元反応により可逆的に変色する化合物の酸化・還元による着色・消色反応により、白及び各種着色状態を可逆的に切り替えることができる。
[Basic configuration of electrochemical device]
In the electrochemical device of the present invention, the counter unit is provided with one counter electrode on the transparent substrate. A transparent electrode such as an ITO electrode is provided on the electrode 1 which is one of the counter electrodes close to the display portion, and a conductive electrode is provided on the other non-display side electrode 2. A counter electrode composed of the electrode 1 and the electrode 2 contains an electrolyte and a compound that changes color reversibly by an electrochemical redox reaction. Reversibly switch between white and various colored states by coloring and decoloring reactions by oxidation / reduction of compounds that reversibly discolor by electrochemical oxidation-reduction reactions by applying positive and negative polarities across the counter electrode. be able to.

〔基板〕
(表示側の透明基板)
本発明に用いられる透明基板とは、可視光に対する透過率が少なくとも50%以上、より好ましくは80%以上である基板である。このような透明基板としては、例えば、ポリエステル(例えば、ポリエチレンテレフタレート、)、ポリイミド、ポリメタクリル酸メチル、ポリスチレン、ポリプロピレン、ポリエチレン、ポリアミド、ナイロン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリカーボネート、ポリエーテルスルホン、シリコン樹脂、ポリアセタール樹脂、フッ素樹脂、セルロース誘導体、ポリオレフィンなどの高分子のフィルムや板状基板、ガラス基板などが好ましく用いられる。
〔substrate〕
(Display side transparent substrate)
The transparent substrate used in the present invention is a substrate having a visible light transmittance of at least 50% or more, more preferably 80% or more. Examples of such a transparent substrate include polyester (for example, polyethylene terephthalate), polyimide, polymethyl methacrylate, polystyrene, polypropylene, polyethylene, polyamide, nylon, polyvinyl chloride, polyvinylidene chloride, polycarbonate, polyethersulfone, Silicone resin, polyacetal resin, fluororesin, cellulose derivative, polymer film such as polyolefin, plate-like substrate, glass substrate and the like are preferably used.

(非表示側の対向基板)
対向基板については、上記の表示側透明基板に用いられる透明基板に加え、金属基板、セラミック基板等の無機基板など不透明な基板を用いることもできる。
(Non-display side counter substrate)
As the counter substrate, an opaque substrate such as an inorganic substrate such as a metal substrate or a ceramic substrate can be used in addition to the transparent substrate used for the display-side transparent substrate.

〔電極構成〕
(表示側透明電極)
透明電極としては、透明で電気を通じるものであれば特に制限はない。例えば、Indium Tin Oxide(ITO:インジウム錫酸化物)、Indium Zinc Oxide(IZO:インジウム亜鉛酸化物)、フッ素ドープ酸化スズ(FTO)、酸化インジウム、酸化亜鉛、白金、金、銀、ロジウム、銅、クロム、炭素、アルミニウム、シリコン、アモルファスシリコン、BSO(Bismuth Silicon Oxide)等が挙げられる。
(Electrode configuration)
(Display side transparent electrode)
The transparent electrode is not particularly limited as long as it is transparent and conducts electricity. For example, Indium Tin Oxide (ITO: Indium Tin Oxide), Indium Zinc Oxide (IZO: Indium Zinc Oxide), Fluorine Doped Tin Oxide (FTO), Indium Oxide, Zinc Oxide, Platinum, Gold, Silver, Rhodium, Copper, Examples thereof include chromium, carbon, aluminum, silicon, amorphous silicon, and BSO (Bismuth Silicon Oxide).

また、ポリチオフェン、ポリピロール、ポリアニリン、ポリアセチレン、ポリパラフェニレン、ポリセレノフェニレン等、およびそれらの修飾化合物を単独あるいは混合して用いることができる。   In addition, polythiophene, polypyrrole, polyaniline, polyacetylene, polyparaphenylene, polyselenophenylene, etc., and their modifying compounds can be used alone or in combination.

表面抵抗値としては、100Ω/□以下が好ましく、10Ω/□以下がより好ましい。   The surface resistance value is preferably 100Ω / □ or less, and more preferably 10Ω / □ or less.

透明電極の厚みは特に制限はないが、0.1〜20μmであるのが一般的である。   The thickness of the transparent electrode is not particularly limited, but is generally 0.1 to 20 μm.

(透明多孔質電極)
透明電極の一つとして、上記透明電極層の上にナノ多孔質化構造を有するナノ多孔質電極を設けることができる。このナノ多孔質電極は、電気化学デバイスを形成した際に実質的に透明で、エレクトロクロミック材料等の電気活性物質を担持することができる。
(Transparent porous electrode)
As one of the transparent electrodes, a nanoporous electrode having a nanoporous structure can be provided on the transparent electrode layer. The nanoporous electrode is substantially transparent when an electrochemical device is formed, and can carry an electroactive substance such as an electrochromic material.

本発明でいうナノ多孔質化構造とは、層中にナノメートルサイズの孔が無数に存在し、ナノ多孔質化構造内を電解質中に含まれるイオン種が移動可能な状態のことを言う。   The nanoporous structure as used in the present invention refers to a state in which an infinite number of nanometer-sized pores exist in a layer and ionic species contained in the electrolyte can move within the nanoporous structure.

このようなナノ多孔質電極の形成方法としては、ナノ多孔質電極を構成する微粒子を含んだ分散物をインクジェット法、スクリーン印刷法、ブレード塗布法などで層状に形成した後に、所定の温度で加熱、乾燥、焼成することよって多孔質化する方法や、スパッタ法、CVD法、大気圧プラズマ法などで電極層を構成した後に、陽極酸化、光電気化学エッチングすることによってナノ多孔質化する方法などが挙げられる。また、ゾルゲル法や、Adv.Mater.2006,18,2980−2983に記載された方法でも、形成することができる。   As a method for forming such a nanoporous electrode, a dispersion containing fine particles constituting the nanoporous electrode is formed in layers by an ink jet method, a screen printing method, a blade coating method, etc., and then heated at a predetermined temperature. A method of making porous by drying, baking, a method of making nanoporous by anodizing or photoelectrochemical etching after forming an electrode layer by sputtering, CVD, atmospheric pressure plasma, etc. Is mentioned. Also, the sol-gel method, Adv. Mater. It can also be formed by the method described in 2006, 18, 2980-2983.

ナノ多孔質電極を構成する微粒子の主成分は、Cu、Al、Pt、Ag、Pd、Au等の金属やITO、SnO、TiO、ZnO等の金属酸化物やカーボンナノチューブ、グラッシーカーボン、ダイヤモンドライクカーボン、窒素含有カーボン等の炭素電極から選択することができ、好ましくは、ITO、SnO、TiO、ZnO等の金属酸化物から選択されることである。 The main components of the fine particles constituting the nanoporous electrode are metals such as Cu, Al, Pt, Ag, Pd and Au, metal oxides such as ITO, SnO 2 , TiO 2 and ZnO, carbon nanotubes, glassy carbon, and diamond. It can be selected from carbon electrodes such as like carbon and nitrogen-containing carbon, and is preferably selected from metal oxides such as ITO, SnO 2 , TiO 2 , and ZnO.

ナノ多孔質電極が透明性を有するためには、平均粒子径が5nm〜10μm程度の微粒子を用いることが好ましい。微粒子の形状は不定形、針状、球形など任意の形状のものを用いることができる。   In order for the nanoporous electrode to have transparency, it is preferable to use fine particles having an average particle diameter of about 5 nm to 10 μm. As the shape of the fine particles, those having an arbitrary shape such as an indefinite shape, a needle shape, and a spherical shape can be used.

ナノ多孔質電極の膜厚は、0.1〜10μmの範囲であることが好ましく、より好ましくは0.25〜5μmの範囲である。   The film thickness of the nanoporous electrode is preferably in the range of 0.1 to 10 μm, more preferably in the range of 0.25 to 5 μm.

(対向電極)
対向電極は、電気を通じるものであれば、特に制限されず用いることができる。
(Counter electrode)
The counter electrode can be used without particular limitation as long as it conducts electricity.

前記透明電極と同じ材料に加え、白金、金、銀、銅、アルミニウム、亜鉛、ニッケル、チタン、ビスマスなどの金属およびそれらの合金、カーボン等、透明性を有しない材料でも好ましく用いることができる。   In addition to the same material as the transparent electrode, metals having no transparency such as platinum, gold, silver, copper, aluminum, zinc, nickel, titanium, bismuth and the like, alloys thereof, carbon and the like can be preferably used.

(多孔質カーボン電極)
吸着担持可能な多孔質カーボン電極としては、黒鉛質、難黒鉛化炭素質、易黒鉛化炭素質、複合炭素体や、ホウ素、窒素、りん等を炭素にドープして焼成した炭素化合物、等が挙げられる。炭素粒子の形状としては、メソフェーズ小球体、繊維状黒鉛が挙げられる。メソフェーズ小球体はコールタールピッチなどを350〜500℃で焼成することで得られ、これら小球体をさらに分級して高温焼成で黒鉛化すると良好な多孔質炭素電極が得られる。また、ピッチ系、PAN系、および気相成長繊維から、繊維状黒鉛を得ることができる。
(Porous carbon electrode)
Porous carbon electrodes that can be adsorbed and supported include graphite, non-graphitizable carbonaceous, graphitizable carbonaceous, composite carbon bodies, carbon compounds obtained by doping carbon with boron, nitrogen, phosphorus, and the like, and the like. Can be mentioned. Examples of the shape of the carbon particles include mesophase microspheres and fibrous graphite. Mesophase spherules can be obtained by firing coal tar pitch or the like at 350 to 500 ° C., and further classifying these spherules and graphitizing by high-temperature firing can provide a good porous carbon electrode. In addition, fibrous graphite can be obtained from pitch-based, PAN-based, and vapor-grown fibers.

(グリッド電極)
本発明に係る対向電極のうち少なくとも一方の電極として、グリッド電極(補助電極)を付帯させることができる。
(Grid electrode)
A grid electrode (auxiliary electrode) can be attached as at least one of the counter electrodes according to the present invention.

補助電極は、主となる電極部より電気抵抗が低い材料を用いることが好ましい。例えば、白金、金、銀、銅、アルミニウム、亜鉛、ニッケル、チタン、ビスマスなどの金属およびそれらの合金等を好ましく用いることができる。   The auxiliary electrode is preferably made of a material having a lower electrical resistance than the main electrode portion. For example, metals such as platinum, gold, silver, copper, aluminum, zinc, nickel, titanium, and bismuth and alloys thereof can be preferably used.

補助電極は、主となる電極部と基板との間と、主となる電極部の基板と反対側の表面とのいずれに設置することもできる。いずれにしても、補助電極が主となる電極部と電気的に接続していればよい。   The auxiliary electrode can be installed either between the main electrode portion and the substrate, or on the surface of the main electrode portion opposite to the substrate. In any case, it is only necessary that the auxiliary electrode is electrically connected to the main electrode portion.

補助電極の配置パターンには、特に制限はない。直線状、メッシュ状、円形など、求められる性能に応じて適宜形成することが可能である。主となる電極部が複数の部分に分割されている場合には、分割された電極部同士を接続する形で設けてもよい。ただし、主となる電極部が表示側の基板に設けられた透明電極の場合、補助電極は、電気化学デバイスの視認性を阻害しない形状と頻度で設けることが求められる。   There are no particular restrictions on the arrangement pattern of the auxiliary electrodes. It can be appropriately formed according to the required performance, such as linear, mesh, or circular. When the main electrode part is divided into a plurality of parts, the divided electrode parts may be connected to each other. However, in the case where the main electrode portion is a transparent electrode provided on the substrate on the display side, the auxiliary electrode is required to be provided with a shape and frequency that do not impair the visibility of the electrochemical device.

補助電極を形成する方法としては、公知の方法を用いることができる。例えば、フォトリソグラフィ法でパターニングしたり、印刷法やインクジェット法、電解メッキや無電解メッキ、銀塩感光材料を用いて露光、現像処理したりしてパターン形成する方法でも良い。   As a method of forming the auxiliary electrode, a known method can be used. For example, patterning may be performed by patterning by photolithography, printing, ink jet, electrolytic plating, electroless plating, or exposure and development using a silver salt photosensitive material.

本発明において、補助電極パターンのライン幅やライン間隔は、任意の値で構わないが、導電性を高くするためにはライン幅を太くする必要がある。一方、透明電極に補助電極を付帯させる場合には、視認性の観点から、電気化学デバイス観察側から見た補助電極の面積被覆率は30%以下が好ましく、さらに好ましくは10%以下である。   In the present invention, the line width and the line interval of the auxiliary electrode pattern may be arbitrary values, but the line width needs to be increased in order to increase the conductivity. On the other hand, when the auxiliary electrode is attached to the transparent electrode, from the viewpoint of visibility, the area coverage of the auxiliary electrode viewed from the electrochemical device observation side is preferably 30% or less, and more preferably 10% or less.

このように、透過率と導電性の点から、補助電極のライン幅は1μm以上、100μm以下が好ましく、ライン間隔は50μmから1000μmが好ましい。   Thus, from the viewpoint of transmittance and conductivity, the line width of the auxiliary electrode is preferably 1 μm or more and 100 μm or less, and the line interval is preferably 50 μm to 1000 μm.

(電極の形成方法)
上記説明した透明電極、金属補助電極を形成する方法としては、公知の方法を用いることができる。例えば、基板上にスパッタリング法等でマスク蒸着するか、全面形成した後に、フォトリソグラフィ法でパターニングしてもよい。
(Method of forming electrode)
As a method for forming the transparent electrode and the metal auxiliary electrode described above, a known method can be used. For example, mask deposition may be performed on the substrate by sputtering or the like, or patterning may be performed by photolithography after the entire surface is formed.

また、電解メッキや無電解メッキ、印刷法や、インクジェット法によっても電極形成が可能である。   Electrodes can also be formed by electrolytic plating, electroless plating, printing methods, and ink jet methods.

インクジェット方式を用いて基板上にモノマー重合能を有する触媒層を含む電極パターンを形成した後に、該触媒により重合されて重合後に導電性高分子層になりうるモノマー成分を付与して、モノマー成分を重合し、さらに、該導電性高分子層の上に銀等の金属メッキを行うことにより金属電極パターンを形成することもでき、フォトレジストやマスクパターンを使用することがないので、工程を大幅に簡略化できる。   After forming an electrode pattern including a catalyst layer having a monomer polymerization ability on a substrate using an inkjet method, a monomer component that is polymerized by the catalyst and becomes a conductive polymer layer after polymerization is added, It is also possible to form a metal electrode pattern by polymerizing and further performing metal plating such as silver on the conductive polymer layer, and the process is greatly reduced because no photoresist or mask pattern is used. It can be simplified.

電極材料を塗布にて形成する場合は、ディッピング法、スピナー法、スプレー法、ロールコーター法、フレキソ印刷法、スクリーン印刷法等の公知の方法を用いることができる。   When the electrode material is formed by coating, known methods such as a dipping method, a spinner method, a spray method, a roll coater method, a flexographic printing method, and a screen printing method can be used.

インクジェット方式の中でも、下記の静電インクジェット方式は、高粘度の液体を高精度に連続的に印字することが可能であり、透明電極や金属補助電極の形成に好ましく用いられる。インクの粘度は、好ましくは30mPa・s以上であり、更に好ましくは100mPa・s以上である。   Among the ink jet methods, the following electrostatic ink jet method is capable of continuously printing a highly viscous liquid with high accuracy and is preferably used for forming a transparent electrode or a metal auxiliary electrode. The viscosity of the ink is preferably 30 mPa · s or more, and more preferably 100 mPa · s or more.

〈静電インクジェット方式〉
本発明の電気化学デバイスにおいては、複合電極の透明電極及び金属補助電極の少なくとも1方が、帯電した液体を吐出する内部直径が30μm以下のノズルを有する液体吐出ヘッドと、前記ノズル内に溶液を供給する供給手段と、前記ノズル内の溶液に吐出電圧を印加する吐出電圧印加手段とを備えた液体吐出装置を用いて形成されることができる。
<Electrostatic inkjet method>
In the electrochemical device of the present invention, at least one of the transparent electrode of the composite electrode and the metal auxiliary electrode has a liquid discharge head having a nozzle with an internal diameter of 30 μm or less for discharging a charged liquid, and a solution in the nozzle. It can be formed using a liquid ejecting apparatus comprising a supplying means for supplying and an ejection voltage applying means for applying an ejection voltage to the solution in the nozzle.

さらに前記ノズル内の溶液が当該ノズル先端部から凸状に盛り上がった状態を形成する凸状メニスカス形成手段を設けた吐出装置を用いて形成することができる。   Furthermore, it can form using the discharge apparatus provided with the convex-shaped meniscus formation means which forms the state which the solution in the said nozzle raised in the convex shape from the said nozzle front-end | tip part.

また、前記凸状メニスカス形成手段を駆動する駆動電圧の印加及び吐出電圧印加手段による吐出電圧の印加を制御する動作制御手段を備え、この動作制御手段は、前記吐出電圧印加手段による吐出電圧の印加を行わせつつ液滴の吐出に際して前記凸状メニスカス形成手段の駆動電圧の印加を行わせる第一の吐出制御部を有する液体吐出装置を用いることもできる。   In addition, an operation control unit that controls application of a drive voltage for driving the convex meniscus forming unit and application of a discharge voltage by the discharge voltage application unit is provided, and the operation control unit applies the discharge voltage by the discharge voltage application unit. It is also possible to use a liquid ejection apparatus having a first ejection control unit that applies a driving voltage to the convex meniscus forming means when ejecting droplets while performing droplets.

また、前記凸状メニスカス形成手段の駆動及び吐出電圧印加手段による電圧印加を制御する動作制御手段を備え、この動作制御手段は、前記凸状メニスカス形成手段による溶液の盛り上げ動作と前記吐出電圧の印加とを同期させて行う第二の吐出制御部を有することを特徴とする液体吐出装置を用いること、前記動作制御手段は、前記溶液の盛り上げ動作及び吐出電圧の印加の後に前記ノズル先端部の液面を内側に引き込ませる動作制御を行う液面安定化制御部を有する液体吐出装置を用いることも好ましい形態である。   In addition, an operation control unit that controls driving of the convex meniscus forming unit and voltage application by the discharge voltage applying unit is provided, and the operation control unit is configured to swell the solution by the convex meniscus forming unit and apply the discharge voltage. And a second discharge control unit that performs synchronization with the liquid discharge device, wherein the operation control means is configured to supply the liquid at the tip of the nozzle after the swell operation of the solution and the application of the discharge voltage. It is also a preferred form to use a liquid ejection apparatus having a liquid level stabilization control unit that performs operation control for drawing the surface inward.

この様な静電インクジェットを用いて電極パターンを作製することにより、オンデマンド性に優れ、廃棄材料が少なく、寸法精度に優れた電極を得ることができ有利である。   By producing an electrode pattern using such an electrostatic inkjet, it is advantageous that an electrode having excellent on-demand characteristics, little waste material, and excellent dimensional accuracy can be obtained.

〔TFTへの適用〕
本発明の高分子材料は、TFTに適用することができる。TFTは、液晶ディスプレイ等で用いられている公知の半導体製造技術で使用されている材料を適宜選択して用いることができ、さらに特開平10−125924号、同10−135481号、同10−190001号、特開2000−307172等に記載されている有機化合物から成る有機TFTを用いてもよい。
[Application to TFT]
The polymer material of the present invention can be applied to a TFT. The TFT can be appropriately selected from materials used in known semiconductor manufacturing techniques used in liquid crystal displays and the like, and further disclosed in JP-A-10-125924, 10-135481, and 10-190001. No., Japanese Patent Application Laid-Open No. 2000-307172, etc., an organic TFT made of an organic compound may be used.

画素ごとに形成されたTFTは、図示しない配線によって選択され、対応する透明画素電極を制御する。TFTは画素間のクロストークを防止するのに極めて有効である。TFTは例えば透明画素電極の一角を占めるように形成されるが、透明画素電極がTFTと積層方向で重なる構造であってもよい。TFTには、具体的には、ゲート線とデータ線が接続され、各ゲート線に各TFTのゲート電極が接続され、データ線には各TFTのソース・ドレインの一方が接続され、そのソース・ドレインの他方は透明画素電極に電気的に接続される。なお、TFT以外の駆動素子は液晶ディスプレイ等の平面型電気化学デバイスに用いられているマトリックス駆動回路で、透明基板上に形成できるものであれば他の材料でもよい。   The TFT formed for each pixel is selected by a wiring (not shown) and controls the corresponding transparent pixel electrode. TFTs are extremely effective in preventing crosstalk between pixels. The TFT is formed so as to occupy one corner of the transparent pixel electrode, for example, but the transparent pixel electrode may overlap the TFT in the stacking direction. Specifically, the gate line and the data line are connected to the TFT, the gate electrode of each TFT is connected to each gate line, and one of the source and drain of each TFT is connected to the data line. The other drain is electrically connected to the transparent pixel electrode. The driving elements other than TFTs may be other materials as long as they can be formed on a transparent substrate by a matrix driving circuit used in a planar electrochemical device such as a liquid crystal display.

図1は、本発明の高分子材料が適用可能な電気化学デバイスであるTFTの一例を示すブロック図である。   FIG. 1 is a block diagram showing an example of a TFT which is an electrochemical device to which the polymer material of the present invention can be applied.

各画素に対応する透明画素電極12と、これに対応するTFT13とがマトリックス状に配されており、容量の対向電極側が共通電極となる。TFT13のゲート電極にはゲート線(走査線配線)140が接続され、TFT13のソース、ドレインの他方はデータ線(信号線配線)150に接続されている。TFT13のソース、ドレインの他方は透明画素電極12に接続される。ゲート線140はゲート線駆動回路120に接続され、データ線150はデータ線駆動回路100、110に接続されている。ゲート線駆動回路120とデータ線駆動回路110、110とは信号制御部130に接続されている。   Transparent pixel electrodes 12 corresponding to the respective pixels and TFTs 13 corresponding thereto are arranged in a matrix, and the counter electrode side of the capacitor serves as a common electrode. A gate line (scanning line wiring) 140 is connected to the gate electrode of the TFT 13, and the other of the source and drain of the TFT 13 is connected to a data line (signal line wiring) 150. The other of the source and drain of the TFT 13 is connected to the transparent pixel electrode 12. The gate line 140 is connected to the gate line driving circuit 120, and the data line 150 is connected to the data line driving circuits 100 and 110. The gate line driving circuit 120 and the data line driving circuits 110 and 110 are connected to the signal control unit 130.

〔電解質〕
本発明の電気化学デバイスにおいては、対向電極間に、電解質を含有する。
〔Electrolytes〕
In the electrochemical device of the present invention, an electrolyte is contained between the counter electrodes.

本発明でいう「電解質」とは、一般に、水などの溶媒に溶けて溶液がイオン伝導性を示す物質(以下、「狭義の電解質」という。)をいうが、本発明の説明においては、狭義の電解質に電解質、非電解質を問わず他の金属、化合物等を含有させた混合物を電解質(「広義の電解質」)という。   The “electrolyte” as used in the present invention generally refers to a substance that dissolves in a solvent such as water and exhibits a ionic conductivity in a solution (hereinafter referred to as “narrowly defined electrolyte”). A mixture containing other metals, compounds, or the like, regardless of whether it is an electrolyte or a non-electrolyte, is called an electrolyte (“broadly defined electrolyte”).

(電解質溶媒)
電解質溶媒としては、一般に電気化学セルや電池に用いられ、本発明で用いられるエレクトロクロミック化合物を初め、電気化学的な酸化還元反応により可逆的に溶解析出する金属塩化合物、プロモーター等各種添加剤を溶解できる溶媒であればいずれも使用することができる。
(Electrolyte solvent)
As an electrolyte solvent, it is generally used for electrochemical cells and batteries, and includes various additives such as electrochromic compounds used in the present invention, metal salt compounds that reversibly dissolve and precipitate by an electrochemical redox reaction, promoters, and the like. Any solvent that can be dissolved can be used.

具体的には、無水酢酸、メタノール、エタノール、テトラヒドロフラン、プロピレンカーボネート、ニトロメタン、アセトニトリル、ジメチルホルムアミド、ジメチルスルホキシド、ヘキサメチルホスホアミド、エチレンカーボネート、ジメトキシエタン、γ−ブチロラクトン、γ−バレロラクトン、スルホラン、ジメトキシエタン、プロピオンニトリル、グルタロニトリル、アジポニトリル、メトキシアセトニトリル、ジメチルアセトアミド、メチルピロリジノン、ジメチルスルホキシド、ジオキソラン、スルホラン、リン酸トリメチル、リン酸トリエチル、リン酸トリプロピル、リン酸エチルジメチル、リン酸トリブチル、リン酸トリペンチルリン酸トリへキシル、リン酸トリヘプチル、リン酸トリオクチル、リン酸トリノニル、リン酸トリデシル、リン酸トリス(トリフフロロメチル)、リン酸トリス(ペンタフロロエチル)、リン酸トリフェニルポリエチレングリコール、及びポリエチレングリコール等が使用可能である。特に本発明に係る有機溶媒としては、電解質を形成した後、揮発を起こさず電解質に留まることができる沸点が120〜300℃の範囲にある有機溶媒であることが好ましく、例えば、プロピレンカーボネート、エチレンカーボネート、エチルメチルカーボネート、ジエチルカーボネート、ジメチルカーボネート、ブチレンカーボネート、γ−ブチルラクトン、テトラメチル尿素、スルホラン、ジメチルスルホキシド、1,3−ジメチル−2−イミダゾリジノン、2−(N−メチル)−2−ピロリジノン、ヘキサメチルホスホルトリアミド、N−メチルプロピオンアミド、N,N−ジメチルアセトアミド、N−メチルアセトアミド、N,N−ジメチルホルムアミド、N−メチルホルムアミド、ブチロニトリル、プロピオニトリル、アセチルアセトン、4−メチル−2−ペンタノン、無水酢酸、ジメトキシエタン、ジエトキシフラン、テトラヒドロフラン、エチレングリコール、ジエチレングリコール、トリエチレングリコールモノブチルエーテル、トリクレジルホスフェート、2−エチルヘキシルホスフェート、ジオクチルフタレート、ジオクチルセバケート等を挙げることができる。   Specifically, acetic anhydride, methanol, ethanol, tetrahydrofuran, propylene carbonate, nitromethane, acetonitrile, dimethylformamide, dimethyl sulfoxide, hexamethylphosphoamide, ethylene carbonate, dimethoxyethane, γ-butyrolactone, γ-valerolactone, sulfolane, dimethoxy Ethane, propiononitrile, glutaronitrile, adiponitrile, methoxyacetonitrile, dimethylacetamide, methylpyrrolidinone, dimethyl sulfoxide, dioxolane, sulfolane, trimethyl phosphate, triethyl phosphate, tripropyl phosphate, ethyldimethyl phosphate, tributyl phosphate, phosphorus Tripentyl phosphate trihexyl phosphate, triheptyl phosphate, trioctyl phosphate, trinonyl phosphate, phosphate Ridecyl, tris phosphate (trifluoromethyl), tris phosphate (pentafluoroethyl), triphenyl polyethylene glycol phosphate, polyethylene glycol, and the like can be used. In particular, the organic solvent according to the present invention is preferably an organic solvent having a boiling point in the range of 120 to 300 ° C. that can remain in the electrolyte without causing volatilization after the electrolyte is formed. For example, propylene carbonate, ethylene Carbonate, ethyl methyl carbonate, diethyl carbonate, dimethyl carbonate, butylene carbonate, γ-butyl lactone, tetramethyl urea, sulfolane, dimethyl sulfoxide, 1,3-dimethyl-2-imidazolidinone, 2- (N-methyl) -2 -Pyrrolidinone, hexamethylphosphortriamide, N-methylpropionamide, N, N-dimethylacetamide, N-methylacetamide, N, N-dimethylformamide, N-methylformamide, butyronitrile, propionitrile, acetyla , 4-methyl-2-pentanone, acetic anhydride, dimethoxyethane, diethoxyfuran, tetrahydrofuran, ethylene glycol, diethylene glycol, triethylene glycol monobutyl ether, tricresyl phosphate, 2-ethylhexyl phosphate, dioctyl phthalate, dioctyl sebacate, etc. Can be mentioned.

上記有機溶媒の中でも、プロピレンカーボネート、エチレンカーボネート、エチルメチルカーボネート、ジエチルカーボネート、ジメチルカーボネート、ブチレンカーボネート、γ−ブチルラクトン等のカルボン酸エステル系化合物を用いることが好ましい。   Among the above organic solvents, it is preferable to use carboxylic acid ester compounds such as propylene carbonate, ethylene carbonate, ethyl methyl carbonate, diethyl carbonate, dimethyl carbonate, butylene carbonate, and γ-butyl lactone.

さらに、常温溶融塩も溶媒として使用可能である。前記常温溶融塩とは、溶媒成分が含まれないイオン対のみからなる常温において溶融している(即ち、液状の)イオン対からなる塩であり、通常、融点が20℃以下であり、20℃を越える温度で液状であるイオン対からなる塩を示す。常温溶融塩はその1種を単独で使用することができ、また2種以上を混合しても使用することもできる。   Furthermore, room temperature molten salts can also be used as solvents. The room temperature molten salt is a salt composed of ion pairs that are melted at room temperature (that is, in a liquid state) consisting only of ion pairs that do not contain a solvent component, and usually has a melting point of 20 ° C. or lower, and 20 ° C. The salt which consists of an ion pair which is liquid at the temperature over is shown. The room temperature molten salt can be used alone or in combination of two or more.

これら電解質用溶媒は、その1種を単独で使用しても良いし、また2種以上を混合して使用しても良い。   One of these electrolyte solvents may be used alone, or a mixture of two or more may be used.

〈一般式(S1)、(S2)で表される化合物〉
本発明の電気化学デバイスにおいては、電解質が、下記一般式(S1)または(S2)で表される化合物を含有することが好ましい。
<Compounds Represented by General Formulas (S1) and (S2)>
In the electrochemical device of the present invention, the electrolyte preferably contains a compound represented by the following general formula (S1) or (S2).

Figure 2010085570
Figure 2010085570

上記一般式(S1)において、Lは酸素原子またはアルキレン基を表し、Rs11〜Rs14は各々水素原子、アルキル基、アルケニル基、アリール基、シクロアルキル基、アルコキシアルキル基またはアルコキシ基を表す。 In the general formula (S1), L represents an oxygen atom or an alkylene group, and Rs 11 to Rs 14 each represent a hydrogen atom, an alkyl group, an alkenyl group, an aryl group, a cycloalkyl group, an alkoxyalkyl group, or an alkoxy group.

Figure 2010085570
Figure 2010085570

上記一般式(S2)において、Rs21、Rs22は、各々アルキル基、アルケニル基、アリール基、シクロアルキル基、アルコキシアルキル基またはアルコキシ基を表す。 In the general formula (S2), Rs 21 and Rs 22 each represents an alkyl group, an alkenyl group, an aryl group, a cycloalkyl group, an alkoxyalkyl group, or an alkoxy group.

はじめに、一般式(S1)で表される化合物の詳細について説明する。   First, the detail of the compound represented by general formula (S1) is demonstrated.

前記一般式(S1)において、Lは酸素原子またはアルキレン基を表し、Rs11〜Rs14は各々水素原子、アルキル基、アルケニル基、アリール基、シクロアルキル基、アルコキシアルキル基またはアルコキシ基を表し、これらの置換基は更に任意の置換基で置換されていても良い。 In the general formula (S1), L represents an oxygen atom or an alkylene group, and Rs 11 to Rs 14 each represents a hydrogen atom, an alkyl group, an alkenyl group, an aryl group, a cycloalkyl group, an alkoxyalkyl group, or an alkoxy group, These substituents may be further substituted with an arbitrary substituent.

アルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、tert−ブチル基、ペンチル基、ヘキシル基、オクチル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基等、アリール基としては、例えば、フェニル基、ナフチル基等、シクロアルキル基としては、例えば、シクロペンチル基、シクロヘキシル基等、アルコキシアルキル基として、例えば、β−メトキシエチル基、γ−メトキシプロピル基等、アルコキシ基としては、例えば、メトキシ基、エトキシ基、プロピルオキシ基、ペンチルオキシ基、ヘキシルオキシ基、オクチルオキシ基、ドデシルオキシ基等を挙げることができる。   Examples of alkyl groups include methyl, ethyl, propyl, isopropyl, tert-butyl, pentyl, hexyl, octyl, dodecyl, tridecyl, tetradecyl, pentadecyl, and the like as aryl groups. Examples of the cycloalkyl group such as phenyl group, naphthyl group and the like include, for example, a cyclopentyl group, cyclohexyl group and the like, an alkoxyalkyl group, for example, a β-methoxyethyl group, a γ-methoxypropyl group and the like, as an alkoxy group, Examples thereof include a methoxy group, an ethoxy group, a propyloxy group, a pentyloxy group, a hexyloxy group, an octyloxy group, and a dodecyloxy group.

以下、一般式(S1)で表される化合物の具体例を示すが、本発明ではこれら例示する化合物にのみ限定されるものではない。   Hereinafter, although the specific example of a compound represented by general formula (S1) is shown, in this invention, it is not limited only to these illustrated compounds.

Figure 2010085570
Figure 2010085570

次いで、一般式(S2)で表される化合物の詳細について説明する。   Subsequently, the detail of the compound represented by general formula (S2) is demonstrated.

前記一般式(S2)において、Rs21、Rs22は各々アルキル基、アルケニル基、アリール基、シクロアルキル基、アルコキシアルキル基またはアルコキシ基を表す。 In the general formula (S2), Rs 21 and Rs 22 each represents an alkyl group, an alkenyl group, an aryl group, a cycloalkyl group, an alkoxyalkyl group, or an alkoxy group.

アルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、tert−ブチル基、ペンチル基、ヘキシル基、オクチル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基等、アリール基としては、例えば、フェニル基、ナフチル基等、シクロアルキル基としては、例えば、シクロペンチル基、シクロヘキシル基等、アルコキシアルキル基として、例えば、β−メトキシエチル基、γ−メトキシプロピル基等、アルコキシ基としては、例えば、メトキシ基、エトキシ基、プロピルオキシ基、ペンチルオキシ基、ヘキシルオキシ基、オクチルオキシ基、ドデシルオキシ基等を挙げることができる。   Examples of alkyl groups include methyl, ethyl, propyl, isopropyl, tert-butyl, pentyl, hexyl, octyl, dodecyl, tridecyl, tetradecyl, pentadecyl, and the like as aryl groups. Examples of the cycloalkyl group such as phenyl group, naphthyl group and the like include, for example, a cyclopentyl group, cyclohexyl group and the like, an alkoxyalkyl group, for example, a β-methoxyethyl group, a γ-methoxypropyl group and the like, as an alkoxy group, Examples thereof include a methoxy group, an ethoxy group, a propyloxy group, a pentyloxy group, a hexyloxy group, an octyloxy group, and a dodecyloxy group.

以下、一般式(S2)で表される化合物の具体例を示すが、本発明ではこれら例示する化合物にのみ限定されるものではない。   Hereinafter, although the specific example of a compound represented by general formula (S2) is shown, in this invention, it is not limited only to these illustrated compounds.

Figure 2010085570
Figure 2010085570

上記例示した一般式(S1)及び一般式(S2)で表される化合物の中でも、特に、例示化合物(S1−1)、(S1−2)、(S2−3)が好ましい。   Of the compounds represented by the general formulas (S1) and (S2) exemplified above, the exemplary compounds (S1-1), (S1-2), and (S2-3) are particularly preferable.

さらに本発明で用いることのできる溶媒としては、J.A.Riddick,W.B.Bunger,T.K.Sakano,“Organic Solvents”,4th ed.,John Wiley & Sons(1986)、Y.Marcus,“Ion Solvation”,John Wiley & Sons(1985)、C.Reichardt,“Solvents and Solvent Effects in Chemistry”,2nd ed.,VCH(1988)、G.J.Janz,R.P.T.Tomkins,“Nonaqueous Electorlytes Handbook”,Vol.1,Academic Press(1972)に記載の化合物を挙げることができる。   Furthermore, as a solvent which can be used in the present invention, J.P. A. Riddick, W.M. B. Bunger, T.A. K. Sakano, “Organic Solvents”, 4th ed. , John Wiley & Sons (1986). Marcus, “Ion Solvation”, John Wiley & Sons (1985), C.I. Reichardt, “Solvents and Solvent Effects in Chemistry”, 2nd ed. VCH (1988), G .; J. et al. Janz, R.A. P. T.A. Tomkins, “Nonqueous Electronics Handbook”, Vol. 1, Academic Press (1972).

(支持電解質)
本発明の電気化学デバイスにおいて用いることができる支持電解質としては、電気化学の分野又は電池の分野で通常使用される塩類、酸類、アルカリ類が使用できる。
(Supporting electrolyte)
As the supporting electrolyte that can be used in the electrochemical device of the present invention, salts, acids, and alkalis that are usually used in the electrochemical field or battery field can be used.

塩類としては、特に制限はなく、例えば、アルカリ金属塩、アルカリ土類金属塩等の無機イオン塩;4級アンモニウム塩;環状4級アンモニウム塩;4級ホスホニウム塩などが使用できる。   There are no particular limitations on the salts, and for example, inorganic ion salts such as alkali metal salts and alkaline earth metal salts; quaternary ammonium salts; cyclic quaternary ammonium salts; quaternary phosphonium salts and the like can be used.

塩類の具体例としては、ハロゲンイオン、SCN、ClO 、BF 、CFSO 、(CFSO、(CSO、PF 、AsF 、CHCOO、CH(C)SO 、および(CSOから選ばれる対アニオンを有するLi塩、Na塩、あるいはK塩が挙げられる。 Specific examples of the salts include halogen ions, SCN , ClO 4 , BF 4 , CF 3 SO 3 , (CF 3 SO 2 ) 2 N , (C 2 F 5 SO 2 ) 2 N , PF 6 -, AsF 6 -, CH 3 COO -, CH 3 (C 6 H 4) SO 3 -, and (C 2 F 5 SO 2) 3 C - Li salt having a counter anion selected from, Na salt or K salt is mentioned.

また、ハロゲンイオン、SCN、ClO 、BF 、CFSO 、(CFSO、(CSO、PF 、AsF 、CHCOO、CH(C)SO 、および(CSOから選ばれる対アニオンを有する4級アンモニウム塩、具体的には、(CHNBF、(CNBF、(n−CNBF、(CNBr、(CNClO、(n−CNClO、CH(CNBF、(CH(CNBF、(CHNSOCF、(CNSOCF、(n−CNSOCF
更には、
Further, halogen ions, SCN , ClO 4 , BF 4 , CF 3 SO 3 , (CF 3 SO 2 ) 2 N , (C 2 F 5 SO 2 ) 2 N , PF 6 , AsF 6 -, CH 3 COO -, CH 3 (C 6 H 4) SO 3 -, and (C 2 F 5 SO 2) 3 C - 4 quaternary ammonium salt having a counter anion selected from, specifically, (CH 3 ) 4 NBF 4 , (C 2 H 5 ) 4 NBF 4 , (n-C 4 H 9 ) 4 NBF 4 , (C 2 H 5 ) 4 NBr, (C 2 H 5 ) 4 NClO 4 , (n- C 4 H 9 ) 4 NClO 4 , CH 3 (C 2 H 5 ) 3 NBF 4 , (CH 3 ) 2 (C 2 H 5 ) 2 NBF 4 , (CH 3 ) 4 NSO 3 CF 3 , (C 2 H 5) 4 NSO 3 CF 3, (n-C 4 H 9 4 NSO 3 CF 3,
Furthermore,

Figure 2010085570
Figure 2010085570

等が挙げられる。 Etc.

また、ハロゲンイオン、SCN、ClO 、BF 、CFSO 、(CFSO、(CSO、PF 、AsF 、CHCOO、CH(C)SO 、および(CSOから選ばれる対アニオンを有するホスホニウム塩、具体的には、(CHPBF、(CPBF、(CPBF、(CPBF等が挙げられる。また、これらの混合物も好適に用いることができる。 Further, halogen ions, SCN , ClO 4 , BF 4 , CF 3 SO 3 , (CF 3 SO 2 ) 2 N , (C 2 F 5 SO 2 ) 2 N , PF 6 , AsF 6 -, CH 3 COO -, CH 3 (C 6 H 4) SO 3 -, and (C 2 F 5 SO 2) 3 C - phosphonium salt having a counter anion selected from, specifically, (CH 3) 4 PBF 4 , (C 2 H 5 ) 4 PBF 4 , (C 3 H 7 ) 4 PBF 4 , (C 4 H 9 ) 4 PBF 4 and the like. Moreover, these mixtures can also be used suitably.

本発明の支持電解質としては環状4級アンモニウム塩が好ましく、特に4級スピロアンモニウム塩が好ましい。また対アニオンとしてはClO 、BF 、CFSO 、(CSO、PF が好ましく、特にBF が好ましい。 As the supporting electrolyte of the present invention, a cyclic quaternary ammonium salt is preferable, and a quaternary spiro ammonium salt is particularly preferable. The ClO 4 as counter anion -, BF 4 -, CF 3 SO 3 -, (C 2 F 5 SO 2) 2 N -, PF 6 - are preferable, and BF 4 - is preferable.

電解質塩の使用量は任意であるが、一般的には、電解質塩は溶媒中に上限としては20mol/L以下、好ましくは10mol/L以下、さらに好ましくは5mol/L以下存在していることが望ましく、下限としては通常0.01mol/L以上、好ましくは0.05mol/L以上、さらに好ましくは0.1mol/L以上存在していることが望ましい。   The amount of the electrolyte salt used is arbitrary, but generally, the electrolyte salt is present in the solvent as an upper limit of 20 mol / L or less, preferably 10 mol / L or less, more preferably 5 mol / L or less. Desirably, the lower limit is usually 0.01 mol / L or more, preferably 0.05 mol / L or more, more preferably 0.1 mol / L or more.

固体電解質の場合には、電子伝導性やイオン伝導性を示す以下の化合物を、電解質中に含むことができる。   In the case of a solid electrolyte, the following compounds exhibiting electronic conductivity and ionic conductivity can be contained in the electrolyte.

パーフルオロスルホン酸を含むフッ化ビニル系高分子、ポリチオフェン、ポリアニリン、ポリピロール、トリフェニルアミン類、ポリビニルカルバゾール類、ポリメチルフェニルシラン類、CuS、AgS、CuSe、AgCrSeR等のカルコゲニド、CaF、PbF、SrF、LaF、TlSn、CeF等の含F化合物、LiSO、LiSiO、LiPO等のLi塩、ZrO、CaO、Cd、HfO、Y、Nb、WO、Bi、AgBr、AgI、CuCl、CuBr、CuBr、CuI、LiI、LiBr、LiCl、LiAlCl、LiAlF、AgSBr、CNHAg、RbCu16Cl13、RbCuCl10、LiN、LiNI、LiNBr等の化合物が挙げられる。 Vinyl fluoride-based polymers containing perfluorosulfonic acid, polythiophene, polyaniline, polypyrrole, triphenylamines, polyvinylcarbazoles, polymethylphenylsilanes, Cu 2 S, Ag 2 S, Cu 2 Se, AgCrSeR 2, etc. Chalcogenide, CaF 2 , PbF 2 , SrF 2 , LaF 3 , TlSn 2 F 5 , CeF 3 and other F-containing compounds, Li 2 SO 4 , Li 4 SiO 4 , Li 3 PO 4 and other Li salts, ZrO 2 , CaO , Cd 2 O 3 , HfO 2 , Y 2 O 3 , Nb 2 O 5 , WO 3 , Bi 2 O 3 , AgBr, AgI, CuCl, CuBr, CuBr, CuI, LiI, LiBr, LiCl, LiAlCl 4 , LiAlF 4 , AgSBr, C 5 H 5 NHAg 5 I 6, Rb 4 Cu 16 I 7 Examples of the compound include Cl 13 , Rb 3 Cu 7 Cl 10 , LiN, Li 5 NI 2 , and Li 6 NBr 3 .

(イオン性液体)
本発明でいうイオン液体とは、常温溶融塩とも言われ、融点が100℃以下の塩である。この塩は同数のカチオンとアニオンから構成されており、分子構造によって融点が室温以下の物質も数多く存在し、これらは溶媒をまったく加えなくても室温で液体状態である。イオン性液体は、強い静電的な相互作用をもっているため蒸気圧がほとんどないことが大きな特徴であり、高温でも蒸発がなく揮発しない。
(Ionic liquid)
The ionic liquid referred to in the present invention is also called a room temperature molten salt, and is a salt having a melting point of 100 ° C. or lower. This salt is composed of the same number of cations and anions, and there are many substances having a melting point below room temperature depending on the molecular structure, and these are in a liquid state at room temperature without adding any solvent. An ionic liquid has a strong characteristic that it has a strong electrostatic interaction and thus has almost no vapor pressure, and does not evaporate even at high temperatures.

本発明に用いるイオン性液体としては、一般的に研究・報告されている物質ならばどのようなものでも構わない。特に有機のイオン性液体は、室温を含む幅広い温度領域で液体を示す分子構造がある。   The ionic liquid used in the present invention may be any substance that is generally studied and reported. In particular, an organic ionic liquid has a molecular structure that exhibits a liquid in a wide temperature range including room temperature.

本発明で好適に用いることができるイオン性液体は、式Qで表され、20〜100℃、好ましくは20〜80℃、より好ましくは20〜60℃、さらに好ましくは20〜40℃、特に20℃で液体として存在する塩のことを指し、粘度(25℃)は、常温で融体である限り特に制限されないが、好ましくは1〜200mPa・sである。さらに、式中Q+で表されるカチオン成分はオニウムカチオンが好ましく、さらに好ましくはアンモニウムカチオン、イミダゾリウムカチオン、ピリジニウムカチオン、スルホニウムカチオン及びホスホニウムカチオンである。 The ionic liquid that can be suitably used in the present invention is represented by the formula Q + A and is 20 to 100 ° C., preferably 20 to 80 ° C., more preferably 20 to 60 ° C., and still more preferably 20 to 40 ° C. In particular, it refers to a salt that exists as a liquid at 20 ° C., and the viscosity (25 ° C.) is not particularly limited as long as it is a melt at normal temperature, but it is preferably 1 to 200 mPa · s. Further, the cation component represented by Q + in the formula is preferably an onium cation, and more preferably an ammonium cation, an imidazolium cation, a pyridinium cation, a sulfonium cation, and a phosphonium cation.

上述のイオン性液体について具体的に詳述すると、上式中のQとしては、R、R、R、R=CR、R=CR[ここで、RからRは、互いに独立して、水素、飽和または不飽和の炭素数1〜12のアルキル基、炭素数3〜8のシクロアルキル基、炭素数6〜10のアリール基または炭素数7〜11のアラルキル基、R−X−(R−Y−)−(式中、Rは炭素数4以下のアルキル基、Rは炭素数4以下のアルキレン基、XおよびYは酸素原子または硫黄原子、nは0〜10の整数を示す)を表し、これらの基は置換基を有していても良い]から成る群から選択されるアンモニウムおよび/またはホスホニウムイオン、R=CR−R−RC=N、R−R−S、R=CR−R−RC=P(ここで、R、RおよびRは、前記で定義したものと同じであり、そしてRは、炭素数1〜6のアルキレンまたはフェニレン基を表し、これらの基は置換基を有していても良い)から成る群から選択される第四級アンモニウムおよび/またはホスホニウムイオン、さらには下記一般式で表される窒素、硫黄および燐原子から選ばれる原子を1、2または3個含む窒素、硫黄および燐原子含有複素環から誘導されるアンモニウムイオン、スルホニウムイオンまたはホスホニウムイオンなどを挙げることができる。 The above ionic liquid will be specifically described in detail. As Q + in the above formula, R 1 R 2 R 3 R 4 N + , R 1 R 2 R 3 S + , R 1 R 2 R 3 R 4 P + , R 1 R 2 N + = CR 3 R 4 , R 1 R 2 P + = CR 3 R 4 [where R 1 to R 4 are, independently of one another, hydrogen, saturated or unsaturated carbon C 1 -C 12 alkyl group, a cycloalkyl group having 3 to 8 carbon atoms, an aryl group or an aralkyl group having a carbon number of 7-11 having 6 to 10 carbon atoms, R 5 -X- (R 6 -Y- ) n - (Wherein R 5 represents an alkyl group having 4 or less carbon atoms, R 6 represents an alkylene group having 4 or less carbon atoms, X and Y represent an oxygen atom or a sulfur atom, and n represents an integer of 0 to 10). And the group may be substituted] ammonium and / or selected from the group consisting of Phosphonium ion, R 1 R 2 N + = CR 3 -R 7 -R 3 C = N + R 1 R 2, R 1 R 2 S + -R 7 -S + R 1 R 2, R 1 R 2 P + = CR 3 -R 7 -R 3 C = P + R 1 R 2 ( wherein, R 1, R 2 and R 3 are the same as defined above, and R 7 is 1 to carbon atoms A quaternary ammonium and / or phosphonium ion selected from the group consisting of 6 alkylene or phenylene groups, which may have a substituent, and nitrogen represented by the following general formula: Examples thereof include nitrogen ions containing 1, 2 or 3 atoms selected from sulfur and phosphorus atoms, ammonium ions derived from sulfur and phosphorus atom-containing heterocycles, sulfonium ions, phosphonium ions, and the like.

Figure 2010085570
Figure 2010085570

式中RおよびRはこの上で定義した通りであり、Zは、N、N=C、S、PあるいはP=Cを含む4〜10員環を構成しうる原子を指し、この構成する原子には置換基を有していても良い。 Wherein R 1 and R 2 are as defined above, and Z is an atom capable of constituting a 4-10 membered ring containing N + , N + = C, S + , P + or P + = C And the constituent atoms may have a substituent.

上述の中でRからRの具体的な例はとしては、メチル、エチル、n−プロピル、イソプロピル、n−ブチル、イソブチル、sec−ブチル、tert−ブチル、ペンチル、ヘキシル、ヘプチル、オクチル、ノニル、デシルなどの直鎖又は分枝を有するアルキル基、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、シクロヘプチル、シクロオクチルなどのシクロアルキル基、無置換あるいはハロゲン原子(例えば、F、Cl、Br、I)、水酸基、低級アルコキシ基(例えば、メトキシ、エトキシ、プロポキシ、ブトキシ等の各基)、カルボキシル基、アセチル基、プロパノイル基、チオール基、低級アルキルチオ基(例えば、メチルチオ、エチルチオ、プロピルチオ、ブチルチオ等の各基)、アミノ基、低級アルキルアミノ基、ジ低級アルキルアミノ基などの置換基を1〜3個有するフェニル、ナフチル、トルイル、キシリル等のアリール基、ベンジルなどのアラルキル基などを挙げることができる。また、Rの具体的な例としては、メチル、エチル、n−プロピル、イソプロピル、n−ブチル、イソブチル、sec−ブチル、tert−ブチル基などのアルキル基などが挙げられ、Rとしてはメチレン、エチレン、プロピレン、ブチレン基などのアルキレン基などを挙げることができる。さらにRの具体的な例はとしては、メチレン、エチレン、プロピレン、ブチレンなどのアルキレン基、フェニレンなどのフェニレン基などを挙げることができる。 Specific examples of R 1 to R 4 in the above are methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, pentyl, hexyl, heptyl, octyl, A linear or branched alkyl group such as nonyl and decyl; a cycloalkyl group such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl and cyclooctyl; unsubstituted or halogen atoms (eg, F, Cl, Br, I ), Hydroxyl group, lower alkoxy group (eg, methoxy, ethoxy, propoxy, butoxy, etc.), carboxyl group, acetyl group, propanoyl group, thiol group, lower alkylthio group (eg, methylthio, ethylthio, propylthio, butylthio, etc.) Each group), amino group, lower alkyl Amino group include phenyl having one to three substituents, such as di-lower alkyl amino group, naphthyl, tolyl, aryl group xylyl, and the like aralkyl groups such as benzyl. Further, specific examples of R 5 include methyl, ethyl, n- propyl, isopropyl, n- butyl, isobutyl, sec- butyl, and alkyl group such as tert- butyl group, methylene as R 6 And alkylene groups such as ethylene, propylene and butylene groups. Furthermore, specific examples of R 7 include alkylene groups such as methylene, ethylene, propylene, and butylene, and phenylene groups such as phenylene.

また、式中のAで表される対アニオンとしては、ヘキサフルオロ燐酸塩、ヘキサフルオロアンチモン酸塩、ヘキサフルオロヒ酸塩、フルオロスルホン酸塩、テトラフルオロホウ酸塩、硝酸塩、アルキルスルホン酸塩、フッ化アルキルスルホン酸塩または水素硫酸塩を表す。 Further, A in the formula - Examples of the counter anion represented by, hexafluorophosphate, hexafluoroantimonate, hexafluoroarsenate, fluorosulfonate salts, tetrafluoroborate, nitrate, alkyl sulfonate Represents a fluorinated alkyl sulfonate or a hydrogen sulfate.

さらに、WO95/18456号、特開平8−259543号、特開2001−243995号、電気化学第65巻11号923頁(1997年)、EP−718288号、J.Electrochem.Soc.,Vol.143,No.10,3099(1996)、Inorg.Chem.1996,35,1168〜1178等に記載されているピリジニウム塩、イミダゾリウム塩、トリアゾリウム塩なども本発明に応じては適時選択して用いることができる。   Furthermore, WO95 / 18456, JP-A-8-259543, JP-A-2001-243959, Electrochemistry 65, 11, 923 (1997), EP-716288, J. Org. Electrochem. Soc. , Vol. 143, no. 10, 3099 (1996), Inorg. Chem. The pyridinium salts, imidazolium salts, triazolium salts and the like described in 1996, 35, 1168 to 1178 can be selected and used in a timely manner according to the present invention.

(固体電解質)
本発明においては、電解液に種々の材料を添加した固体電解質を用いることもできる。
(Solid electrolyte)
In the present invention, a solid electrolyte obtained by adding various materials to the electrolytic solution can also be used.

一般に固体電解質としてマトリクスポリマーを添加した真性固体電解質やとは化学架橋剤やゲル化剤を添加したゲル電解質などが知られている。   In general, an intrinsic solid electrolyte to which a matrix polymer is added as a solid electrolyte and a gel electrolyte to which a chemical crosslinking agent and a gelling agent are added are known.

このようなマトリクスポリマーとして具体的には、ポリスルホン、ポリエーテルスルホン、ポリエーテルエーテルスルホン、ポリアリールエーテルスルホン、ポリフェニレンオキシド、ポリフェニレンスルフィド、ポリフェニレンスルホキシド、ポリパラフェニレン、ポリアリーレン、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリエーテルケトンケトン、ポリベンゾオキサゾール、ポリベンゾチアゾール、ポリベンゾイミダゾール、ポリイミド、ポリアミド、ポリアミドイミド、ポリメチルメタクリレート、ポリフッ化ビニリデン、ポリ塩化ビニリデン、ポリカーボネート、ポリアクリロニトリルなどが挙げられ、これらを主鎖構造として有している樹脂であっても分岐構造として有している樹脂があってもよい。   Specific examples of such a matrix polymer include polysulfone, polyether sulfone, polyether ether sulfone, polyaryl ether sulfone, polyphenylene oxide, polyphenylene sulfide, polyphenylene sulfoxide, polyparaphenylene, polyarylene, polyether ketone, and polyether ether. Examples include ketones, polyether ketone ketones, polybenzoxazoles, polybenzothiazoles, polybenzimidazoles, polyimides, polyamides, polyamideimides, polymethyl methacrylates, polyvinylidene fluoride, polyvinylidene chlorides, polycarbonates, and polyacrylonitriles. There may be a resin having a chain structure or a resin having a branched structure.

高分子固体電解質層はマトリックスポリマーとの他に支持電解質を溶解して形成され、その電解質としては、リチウム塩、例えばLiCl、LiBr、LiI、LiBF、LiClO、LiPF、LiCFSO等や、カリウム塩、例えば、KCl、KI、KBr等や、ナトリウム塩、例えば、NaCl、NaI、NaBr、或いはテトラアルキルアンモニウム塩、例えば、ほうフッ化テトラエチルアンモニウム、過塩素酸テトラエチルアンモニウム、ほうフッ化テトラブチルアンモニウム、過塩素酸テトラブチルアンモニウム、テトラブチルアンモニウムハライド等を挙げることができる。上述の4級アンモニウム塩のアルキル鎖長は同じであっても異なっていてもよく、必要に応じて1種のみでもよいし、2種以上組み合わせて用いてもよい。 The polymer solid electrolyte layer is formed by dissolving the supporting electrolyte in addition to the matrix polymer, and examples of the electrolyte include lithium salts such as LiCl, LiBr, LiI, LiBF 4 , LiClO 4 , LiPF 6 , LiCF 3 SO 3, and the like. And potassium salts such as KCl, KI, KBr, etc., sodium salts such as NaCl, NaI, NaBr, or tetraalkylammonium salts such as tetraethylammonium perfluoride, tetraethylammonium perchlorate, tetrafluoroborate Examples thereof include butylammonium, tetrabutylammonium perchlorate, and tetrabutylammonium halide. The alkyl chain lengths of the quaternary ammonium salts described above may be the same or different, and only one kind may be used as necessary, or two or more kinds may be used in combination.

高分子固体電解質層を形成する際には、可塑剤を加えることもできる。好ましい可塑剤としては、マトリクスポリマーが親水性の場合には、水、エチルアルコール、イソプロピルアルコールおよびこれらの混合物等が好ましく、疎水性の場合にはプロピレンカーボネート、ジメチルカーボネート、エチレンカーボネート、γ−ブチロラクトン、アセトニトリル、スルホラン、ジメトキシエタン、エチルアルコール、イソプロピルアルコール、ジメチルホルムアミド、ジメチルスルホキシド、ジメチルアセトアミド、n−メチルピロリドンおよびこれらの混合物が好ましい。さらに架橋剤として、重合性ポリアルキレンオキサイドを添加、架橋させることで、ポリマー固体電解質の膜強度を向上させ、また、室温でのイオン伝導性を向上させることができるため、有効である。   When forming the polymer solid electrolyte layer, a plasticizer may be added. As a preferable plasticizer, when the matrix polymer is hydrophilic, water, ethyl alcohol, isopropyl alcohol and a mixture thereof are preferable. When the matrix polymer is hydrophobic, propylene carbonate, dimethyl carbonate, ethylene carbonate, γ-butyrolactone, Acetonitrile, sulfolane, dimethoxyethane, ethyl alcohol, isopropyl alcohol, dimethylformamide, dimethyl sulfoxide, dimethylacetamide, n-methylpyrrolidone and mixtures thereof are preferred. Furthermore, addition of a polymerizable polyalkylene oxide as a cross-linking agent is effective because it can improve the film strength of the polymer solid electrolyte and improve the ion conductivity at room temperature.

また、支持電解質としてゲル状電解質を用いることもできる。電解質が非水系の場合、特開平11−185836号公報の段落番号〔0057〕〜〔0059〕に記載のオイルゲル化剤などを用いことができる。   Moreover, a gel electrolyte can also be used as the supporting electrolyte. When the electrolyte is non-aqueous, oil gelling agents described in paragraphs [0057] to [0059] of JP-A No. 11-185836 can be used.

本発明において、電解質には、上記電解質溶媒及び支持電解質以外に、下記の様な化合物を添加しても良い。   In the present invention, the following compounds may be added to the electrolyte in addition to the electrolyte solvent and the supporting electrolyte.

(金属塩化合物)
本発明における金属塩化合物とは、対向電極上の少なくとも1方の電極上で、該対向電極の駆動操作で、溶解・析出を行うことができる金属種を含む塩であれば、如何なる化合物であってもよい。好ましい金属種は、銀、ビスマス、銅、ニッケル、鉄、クロム、亜鉛等であり、特に好ましいのは銀、ビスマスである。
(Metal salt compound)
The metal salt compound in the present invention is any compound as long as it contains a metal species that can be dissolved and precipitated by driving the counter electrode on at least one electrode on the counter electrode. May be. Preferred metal species are silver, bismuth, copper, nickel, iron, chromium, zinc and the like, and particularly preferred are silver and bismuth.

〈銀塩化合物〉
本発明に係る銀塩化合物とは、銀または、銀を化学構造中に含む化合物、例えば、酸化銀、硫化銀、金属銀、銀コロイド粒子、ハロゲン化銀、銀錯体化合物、銀イオン等の化合物の総称であり、固体状態や液体への可溶化状態や気体状態等の相の状態種、中性、アニオン性、カチオン性等の荷電状態種は、特に問わない。
<Silver salt compound>
The silver salt compound according to the present invention is silver or a compound containing silver in the chemical structure, such as silver oxide, silver sulfide, metallic silver, silver colloidal particles, silver halide, silver complex compound, silver ion and the like. There are no particular restrictions on the phase state species such as the solid state, the solubilized state in liquid, and the gas state, and the charged state species such as neutral, anionic, and cationic.

本発明の電気化学デバイスにおいては、ヨウ化銀、塩化銀、臭化銀、酸化銀、硫化銀、クエン酸銀、酢酸銀、ベヘン酸銀、p−トルエンスルホン酸銀、トリフルオロメタンスルホン酸銀、メルカプト類との銀塩、イミノジ酢酸類との銀錯体、等の公知の銀塩化合物を用いることができる。これらの中でハロゲンやカルボン酸や銀との配位性を有する窒素原子を有しない化合物を銀塩として用いるのが好ましく、例えば、p−トルエンスルホン酸銀が好ましい。   In the electrochemical device of the present invention, silver iodide, silver chloride, silver bromide, silver oxide, silver sulfide, silver citrate, silver acetate, silver behenate, silver p-toluenesulfonate, silver trifluoromethanesulfonate, Known silver salt compounds such as silver salts with mercaptos and silver complexes with iminodiacetic acids can be used. Among these, it is preferable to use, as a silver salt, a compound that does not have a nitrogen atom having coordination properties with halogen, carboxylic acid, or silver, and for example, silver p-toluenesulfonate is preferable.

本発明に係る電解質に含まれる金属イオン濃度は、0.2モル/kg≦[Metal]≦2.0モル/kgが好ましい。金属イオン濃度が0.2モル/kg以上であれば、十分な濃度の銀溶液となり所望の駆動速度を得ることができ、2モル/kg以下であれば析出を防止し、低温保存時での電解質液の安定性が向上する。   The metal ion concentration contained in the electrolyte according to the present invention is preferably 0.2 mol / kg ≦ [Metal] ≦ 2.0 mol / kg. If the metal ion concentration is 0.2 mol / kg or more, a silver solution having a sufficient concentration can be obtained, and a desired driving speed can be obtained. If the metal ion concentration is 2 mol / kg or less, precipitation is prevented, and storage at low temperature is possible. The stability of the electrolyte solution is improved.

〈ハロゲンイオン、金属イオン濃度比〉
本発明の電気化学デバイスにおいては、電解質に含まれるハロゲンイオンまたはハロゲン原子のモル濃度を[X](モル/kg)とし、前記電解質に含まれる銀または銀を化学構造中に含む化合物の銀の総モル濃度を[Metal](モル/kg)としたとき、下式(1)で規定する条件を満たすことが好ましい。
<Halogen ion, metal ion concentration ratio>
In the electrochemical device of the present invention, the molar concentration of halogen ions or halogen atoms contained in the electrolyte is [X] (mol / kg), and the silver or silver contained in the electrolyte is contained in the chemical structure. When the total molar concentration is [Metal] (mol / kg), it is preferable to satisfy the condition defined by the following formula (1).

式(1):0≦[X]/[Metal]≦0.1
本発明でいうハロゲン原子とは、ヨウ素原子、塩素原子、臭素原子、フッ素原子のことをいう。[X]/[Metal]が0.1よりも大きい場合は、金属の酸化還元反応時に、X→Xが生じ、Xは析出した金属と容易にクロス酸化して析出した金属を溶解させ、メモリー性を低下させる要因の1つになるので、ハロゲン原子のモル濃度は金属銀のモル濃度に対してできるだけ低い方が好ましい。本発明においては、0≦[X]/[Metal]≦0.001がより好ましい。ハロゲンイオンを添加する場合、ハロゲン種については、メモリー性向上の観点から、各ハロゲン種モル濃度総和が[I]<[Br]<[Cl]<[F]であることが好ましい。
Formula (1): 0 ≦ [X] / [Metal] ≦ 0.1
The halogen atom as used in the field of this invention means an iodine atom, a chlorine atom, a bromine atom, and a fluorine atom. When [X] / [Metal] is greater than 0.1, X → X 2 is generated during the oxidation-reduction reaction of the metal, and X 2 easily cross-oxidizes with the deposited metal to dissolve the deposited metal. Therefore, the molar concentration of halogen atoms is preferably as low as possible relative to the molar concentration of metallic silver. In the present invention, 0 ≦ [X] / [Metal] ≦ 0.001 is more preferable. In the case of adding halogen ions, the halogen species preferably have a total molar concentration of [I] <[Br] <[Cl] <[F] from the viewpoint of improving memory properties.

〈銀塩溶剤〉
本発明においては、金属塩(特に銀塩)の溶解析出を促進するために、銀塩溶剤を用いることができる。銀塩溶剤とは、電解質中で銀を可溶化できる化合物であればいかなる化合物であってもよい。例えば、銀と配位結合を生じさせたり、銀と弱い供給結合を生じさせたりするような、銀と相互作用を示す化学構造種を含む化合物等と共存させて、銀または銀を含む化合物を可溶化物に変換する手段を用いるのが一般的である。前記化学種として、ハロゲン原子、メルカプト基、カルボキシル基、イミノ基等が知られているが、本発明においては、チオエーテル基を含有する化合物及びメルカプトアゾール類は、銀溶剤として有用に作用しかつ、共存化合物への影響が少なく溶媒への溶解度が高い特徴がある。
<Silver salt solvent>
In the present invention, a silver salt solvent can be used to promote dissolution and precipitation of metal salts (particularly silver salts). The silver salt solvent may be any compound that can solubilize silver in the electrolyte. For example, silver or a compound containing silver coexisting with a compound containing a chemical structural species that interacts with silver, such as a coordinate bond with silver or a weak supply bond with silver. It is common to use a means for converting to a solubilizate. As the chemical species, a halogen atom, a mercapto group, a carboxyl group, an imino group, and the like are known. It is characterized by low influence on coexisting compounds and high solubility in solvents.

〈一般式(G−1)または一般式(G−2)で表される化合物〉
本発明の電気化学デバイスにおいては、電解質が、下記一般式(G−1)または一般式(G−2)で表される化合物の少なくとも1種を含有することが好ましい。一般式(G−1)及び(G−2)で表される化合物は、本発明において銀の溶解析出を生じさせるため、電解質中での銀の可溶化を促進する化合物である。
<Compound Represented by General Formula (G-1) or General Formula (G-2)>
In the electrochemical device of the present invention, the electrolyte preferably contains at least one compound represented by the following general formula (G-1) or general formula (G-2). The compounds represented by the general formulas (G-1) and (G-2) are compounds that promote the solubilization of silver in the electrolyte in order to cause dissolution and precipitation of silver in the present invention.

一般式(G−1)
Rg11−S−Rg12
上記一般式(G−1)において、Rg11、Rg12は各々置換または無置換の炭化水素基を表す。また、これらの炭化水素基では、1個以上の窒素原子、酸素原子、リン原子、硫黄原子、ハロゲン原子を含んでも良く、Rg11とRg12が互いに連結し、環状構造を取っても良い。
General formula (G-1)
Rg 11 -S-Rg 12
In the general formula (G-1), Rg 11 and Rg 12 each represent a substituted or unsubstituted hydrocarbon group. These hydrocarbon groups may contain one or more nitrogen atoms, oxygen atoms, phosphorus atoms, sulfur atoms, and halogen atoms, and Rg 11 and Rg 12 may be linked to each other to form a cyclic structure.

Figure 2010085570
Figure 2010085570

上記一般式(G−2)において、Mは水素原子、金属原子または4級アンモニウムを表す。Zは含窒素複素環を構成するのに必要な原子群表す。nは0〜5の整数を表し、Rg21は置換基を表し、nが2以上の場合、それぞれのRg21は同じであってもよく、異なってもよく、お互いに連結して縮合環を形成してもよい。 In the above general formula (G-2), M represents a hydrogen atom, a metal atom, or quaternary ammonium. Z represents an atomic group necessary for constituting a nitrogen-containing heterocyclic ring. n represents an integer of 0 to 5, Rg 21 represents a substituent, and when n is 2 or more, each Rg21 may be the same or different, and are connected to each other to form a condensed ring. May be.

前記一般式(G−1)において、Rg11、Rg12は各々置換または無置換の炭化水素基を表すが、これらの炭化水素基では、1個以上の窒素原子、酸素原子、リン原子、硫黄原子を含んでも良く、Rg11とRg12が互いに連結し、環状構造を取っても良い。 In the general formula (G-1), Rg 11 and Rg 12 each represent a substituted or unsubstituted hydrocarbon group. In these hydrocarbon groups, one or more nitrogen atoms, oxygen atoms, phosphorus atoms, sulfur An atom may be included, and Rg 11 and Rg 12 may be connected to each other to take a cyclic structure.

炭化水素基に置換可能な基としては、例えば、アミノ基、グアニジノ基、4級アンモニウム基、ヒドロキシル基、ハロゲン化合物、カルボン酸基、カルボキシレート基、アミド基、スルフィン酸基、スルホン酸基、スルフェート基、ホスホン酸基、ホスフェート基、ニトロ基、シアノ基等を挙げることができる。   Examples of groups that can be substituted for the hydrocarbon group include amino groups, guanidino groups, quaternary ammonium groups, hydroxyl groups, halogen compounds, carboxylic acid groups, carboxylate groups, amide groups, sulfinic acid groups, sulfonic acid groups, and sulfates. Groups, phosphonic acid groups, phosphate groups, nitro groups, cyano groups and the like.

以下、本発明において適用可能な一般式(G−1)で表される化合物の具体例を示すが、本発明ではこれら例示する化合物にのみ限定されるものではない。   Specific examples of the compound represented by General Formula (G-1) that can be applied in the present invention are shown below, but the present invention is not limited to these exemplified compounds.

G1−1:CHSCHCHOH
G1−2:HOCHCHSCHCHOH
G1−3:HOCHCHSCHCHSCHCHOH
G1−4:HOCHCHSCHCHSCHCHSCHCHOH
G1−5:HOCHCHSCHCHOCHCHOCHCHSCHCHOH
G1−6:HOCHCHOCHCHSCHCHSCHCHOCHCHOH
G1−7:HCSCHCHCOOH
G1−8:HOOCCHSCHCOOH
G1−9:HOOCCHCHSCHCHCOOH
G1−10:HOOCCHSCHCHSCHCOOH
G1−11:HOOCCHSCHCHSCHCHSCHCHSCHCOOH
G1−12:HOOCCHCHSCHCHSCHCH(OH)CHSCHCHSCHCHCOOH
G1−13:HOOCCHCHSCHCHSCHCH(OH)CH(OH)CHSCHCHSCHCHCOOH
G1−14:HCSCHCHCHNH
G1−15:HNCHCHSCHCHNH
G1−16:HNCHCHSCHCHSCHCHNH
G1−17:HCSCHCHCH(NH)COOH
G1−18:HNCHCHOCHCHSCHCHSCHCHOCHCHNH
G1−19:HNCHCHSCHCHOCHCHOCHCHSCHCHNH
G1−20:HNCHCHSCHCHSCHCHSCHCHSCHCHNH
G1−21:HOOC(NH)CHCHCHSCHCHSCHCHCH(NH)COOH
G1−22:HOOC(NH)CHCHSCHCHOCHCHOCHCHSCHCH(NH)COOH
G1−23:HOOC(NH)CHCHOCHCHSCHCHSCHCHOCHCH(NH)COOH
G1−24:HN(O=)CCHSCHCHOCHCHOCHCHSCHC(=O)NH
G1−25:HN(O=)CCHSCHCHSCHC(=O)NH
G1−26:HNHN(O=)CCHSCHCHSCHC(=O)NHNH
G1−27:HC(O=)NHCHCHSCHCHSCHCHNHC(=O)CH
G1−28:HNOSCHCHSCHCHSCHCHSONH
G1−29:NaOSCHCHCHSCHCHSCHCHCHSONa
G1−30:HCSONHCHCHSCHCHSCHCHNHSOCH
G1−31:HN(NH)CSCHCHSC(NH)NH・2HBr
G1−32:HN(NH)CSCHCHOCHCHOCHCHSC(NH)NH・2HCl
G1−33:HN(NH)CNHCHCHSCHCHSCHCHNHC(NH)NH・2HBr
G1−34:〔(CHNCHCHSCHCHSCHCHN(CH2+・2Cl
G1-1: CH 3 SCH 2 CH 2 OH
G1-2: HOCH 2 CH 2 SCH 2 CH 2 OH
G1-3: HOCH 2 CH 2 SCH 2 CH 2 SCH 2 CH 2 OH
G1-4: HOCH 2 CH 2 SCH 2 CH 2 SCH 2 CH 2 SCH 2 CH 2 OH
G1-5: HOCH 2 CH 2 SCH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 SCH 2 CH 2 OH
G1-6: HOCH 2 CH 2 OCH 2 CH 2 SCH 2 CH 2 SCH 2 CH 2 OCH 2 CH 2 OH
G1-7: H 3 CSCH 2 CH 2 COOH
G1-8: HOOCCH 2 SCH 2 COOH
G1-9: HOOCCH 2 CH 2 SCH 2 CH 2 COOH
G1-10: HOOCCH 2 SCH 2 CH 2 SCH 2 COOH
G1-11: HOOCCH 2 SCH 2 CH 2 SCH 2 CH 2 SCH 2 CH 2 SCH 2 COOH
G1-12: HOOCCH 2 CH 2 SCH 2 CH 2 SCH 2 CH (OH) CH 2 SCH 2 CH 2 SCH 2 CH 2 COOH
G1-13: HOOCCH 2 CH 2 SCH 2 CH 2 SCH 2 CH (OH) CH (OH) CH 2 SCH 2 CH 2 SCH 2 CH 2 COOH
G1-14: H 3 CSCH 2 CH 2 CH 2 NH 2
G1-15: H 2 NCH 2 CH 2 SCH 2 CH 2 NH 2
G1-16: H 2 NCH 2 CH 2 SCH 2 CH 2 SCH 2 CH 2 NH 2
G1-17: H 3 CSCH 2 CH 2 CH (NH 2) COOH
G1-18: H 2 NCH 2 CH 2 OCH 2 CH 2 SCH 2 CH 2 SCH 2 CH 2 OCH 2 CH 2 NH 2
G1-19: H 2 NCH 2 CH 2 SCH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 SCH 2 CH 2 NH 2
G1-20: H 2 NCH 2 CH 2 SCH 2 CH 2 SCH 2 CH 2 SCH 2 CH 2 SCH 2 CH 2 NH 2
G1-21: HOOC (NH 2 ) CHCH 2 CH 2 SCH 2 CH 2 SCH 2 CH 2 CH (NH 2 ) COOH
G1-22: HOOC (NH 2 ) CHCH 2 SCH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 SCH 2 CH (NH 2 ) COOH
G1-23: HOOC (NH 2 ) CHCH 2 OCH 2 CH 2 SCH 2 CH 2 SCH 2 CH 2 OCH 2 CH (NH 2 ) COOH
G1-24: H 2 N (O = ) CCH 2 SCH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 SCH 2 C (= O) NH 2
G1-25: H 2 N (O = ) CCH 2 SCH 2 CH 2 SCH 2 C (= O) NH 2
G1-26: H 2 NHN (O = ) CCH 2 SCH 2 CH 2 SCH 2 C (= O) NHNH 2
G1-27: H 3 C (O = ) NHCH 2 CH 2 SCH 2 CH 2 SCH 2 CH 2 NHC (= O) CH 3
G1-28: H 2 NO 2 SCH 2 CH 2 SCH 2 CH 2 SCH 2 CH 2 SO 2 NH 2
G1-29: NaO 3 SCH 2 CH 2 CH 2 SCH 2 CH 2 SCH 2 CH 2 CH 2 SO 3 Na
G1-30: H 3 CSO 2 NHCH 2 CH 2 SCH 2 CH 2 SCH 2 CH 2 NH 2 SOCH 3
G1-31: H 2 N (NH) CSCH 2 CH 2 SC (NH) NH 2 .2HBr
G1-32: H 2 N (NH) CSCH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 SC (NH) NH 2 · 2HCl
G1-33: H 2 N (NH) CNHCH 2 CH 2 SCH 2 CH 2 SCH 2 CH 2 NHC (NH) NH 2 · 2HBr
G1-34: [(CH 3 ) 3 NCH 2 CH 2 SCH 2 CH 2 SCH 2 CH 2 N (CH 3 ) 3 ] 2 + · 2Cl

Figure 2010085570
Figure 2010085570

Figure 2010085570
Figure 2010085570

上記例示した各化合物の中でも、本発明の目的効果をいかんなく発揮できる観点から、特に、例示化合物G1−2が好ましい。   Among the above-exemplified compounds, Exemplified Compound G1-2 is particularly preferable from the viewpoint that the objective effect of the present invention can be exhibited.

次いで、本発明に係る一般式(G2)で表される化合物について説明する。   Next, the compound represented by formula (G2) according to the present invention will be described.

前記一般式(G2)において、Mは水素原子、金属原子または4級アンモニウムを表す。Zは含窒素複素環を構成するのに必要な原子群表す。nは0〜5の整数を表し、Rg21は置換基を表し、nが2以上の場合、それぞれのRg21は同じであってもよく、異なってもよく、お互いに連結して縮合環を形成してもよい。 In the general formula (G2), M represents a hydrogen atom, a metal atom, or quaternary ammonium. Z represents an atomic group necessary for constituting a nitrogen-containing heterocyclic ring. n represents an integer of 0 to 5, Rg 21 represents a substituent, and when n is 2 or more, each Rg 21 may be the same or different, and may be connected to each other to form a condensed ring. It may be formed.

一般式(G2)において、Mで表される金属原子としては、例えば、Li、Na、K、Mg、Ca、Zn、Ag等が挙げられ、4級アンモニウムとしては、例えば、NH、N(CH、N(C、N(CH1225、N(CH1633、N(CHCH等が挙げられる。 In the general formula (G2), examples of the metal atom represented by M include Li, Na, K, Mg, Ca, Zn, Ag, and the like. Examples of the quaternary ammonium include NH 4 , N ( CH 3 ) 4 , N (C 4 H 9 ) 4 , N (CH 3 ) 3 C 12 H 25 , N (CH 3 ) 3 C 16 H 33 , N (CH 3 ) 3 CH 2 C 6 H 5 etc. Can be mentioned.

一般式(G2)のZを構成成分とする含窒素複素環としては、例えば、テトラゾール環、トリアゾール環、イミダゾール環、オキサジアゾール環、チアジアゾール環、インドール環、オキサゾール環、ベンゾオキサゾール環、ベンズイミダゾール環、ベンゾチアゾール環、ベンゾセレナゾール環、ナフトオキサゾール環等が挙げられる。   Examples of the nitrogen-containing heterocycle having Z as a constituent in general formula (G2) include, for example, a tetrazole ring, a triazole ring, an imidazole ring, an oxadiazole ring, a thiadiazole ring, an indole ring, an oxazole ring, a benzoxazole ring, and a benzimidazole Ring, benzothiazole ring, benzoselenazole ring, naphthoxazole ring and the like.

一般式(G2)において、Rg21で表される置換基としては、特に制限は無いが、例えば下記の様な置換基が挙げられる。 In the general formula (G2), the substituent represented by Rg 21 is not particularly limited, and examples thereof include the following substituents.

ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子等)アルキル基(例えば、メチル、エチル、プロピル、i−プロピル、ブチル、t−ブチル、ペンチル、シクロペンチル、ヘキシル、シクロヘキシル、オクチル、ドデシル、ヒドロキシエチル、メトキシエチル、トリフルオロメチル、ベンジル等)、アリール基(例えば、フェニル、ナフチル等)、アルキルカルボンアミド基(例えば、アセチルアミノ、プロピオニルアミノ、ブチロイルアミノ等)、アリールカルボンアミド基(例えば、ベンゾイルアミノ等)、アルキルスルホンアミド基(例えば、メタンスルホニルアミノ基、エタンスルホニルアミノ基等)、アリールスルホンアミド基(例えば、ベンゼンスルホニルアミノ基、トルエンスルホニルアミノ基等)、アリールオキシ基(例えば、フェノキシ等)、アルキルチオ基(例えば、メチルチオ、エチルチオ、ブチルチオ等)、アリールチオ基(例えば、フェニルチオ基、トリルチオ基等)、アルキルカルバモイル基(例えばメチルカルバモイル、ジメチルカルバモイル、エチルカルバモイル、ジエチルカルバモイル、ジブチルカルバモイル、ピペリジルカルバモイル、モルホリルカルバモイル等)、アリールカルバモイル基(例えば、フェニルカルバモイル、メチルフェニルカルバモイル、エチルフェニルカルバモイル、ベンジルフェニルカルバモイル等)、アルキルスルファモイル基(例えば、メチルスルファモイル、ジメチルスルファモイル、エチルスルファモイル、ジエチルスルファモイル、ジブチルスルファモイル、ピペリジルスルファモイル、モルホリルスルファモイル等)、アリールスルファモイル基(例えば、フェニルスルファモイル、メチルフェニルスルファモイル、エチルフェニルスルファモイル、ベンジルフェニルスルファモイル等)、アルキルスルホニル基(例えば、メタンスルホニル基、エタンスルホニル基等)、アリールスルホニル基(例えば、フェニルスルホニル、4−クロロフェニルスルホニル、p−トルエンスルホニル等)アルコキシカルボニル基(例えば、メトキシカルボニル、エトキシカルボニル、ブトキシカルボニル等)、アリールオキシカルボニル基(例えばフェノキシカルボニル等)、アルキルカルボニル基(例えば、アセチル、プロピオニル、ブチロイル等)、アリールカルボニル基(例えば、ベンゾイル基、アルキルベンゾイル基等)、アシルオキシ基(例えば、アセチルオキシ、プロピオニルオキシ、ブチロイルオキシ等)、複素環基(例えば、オキサゾール環、チアゾール環、トリアゾール環、セレナゾール環、テトラゾール環、オキサジアゾール環、チアジアゾール環、チアジン環、トリアジン環、ベンズオキサゾール環、ベンズチアゾール環、インドレニン環、ベンズセレナゾール環、ナフトチアゾール環、トリアザインドリジン環、ジアザインドリジン環、テトラアザインドリジン環基等)が挙げられる。これらの置換基はさらに置換基を有するものを含む。   Halogen atom (eg, fluorine atom, chlorine atom, bromine atom, iodine atom) Alkyl group (eg, methyl, ethyl, propyl, i-propyl, butyl, t-butyl, pentyl, cyclopentyl, hexyl, cyclohexyl, octyl, dodecyl) , Hydroxyethyl, methoxyethyl, trifluoromethyl, benzyl, etc.), aryl groups (eg, phenyl, naphthyl, etc.), alkylcarbonamide groups (eg, acetylamino, propionylamino, butyroylamino, etc.), arylcarbonamide groups ( For example, benzoylamino etc.), alkylsulfonamide groups (eg methanesulfonylamino group, ethanesulfonylamino group etc.), arylsulfonamide groups (eg benzenesulfonylamino group, toluenesulfonylamino group etc.), Alkyloxy group (eg, phenoxy), alkylthio group (eg, methylthio, ethylthio, butylthio, etc.), arylthio group (eg, phenylthio group, tolylthio group, etc.), alkylcarbamoyl group (eg, methylcarbamoyl, dimethylcarbamoyl, ethylcarbamoyl, diethyl) Carbamoyl, dibutylcarbamoyl, piperidylcarbamoyl, morpholylcarbamoyl, etc.), arylcarbamoyl groups (eg, phenylcarbamoyl, methylphenylcarbamoyl, ethylphenylcarbamoyl, benzylphenylcarbamoyl, etc.), alkylsulfamoyl groups (eg, methylsulfamoyl, Dimethylsulfamoyl, ethylsulfamoyl, diethylsulfamoyl, dibutylsulfamoyl, piperidylsulfamoy , Morpholylsulfamoyl, etc.), arylsulfamoyl groups (eg, phenylsulfamoyl, methylphenylsulfamoyl, ethylphenylsulfamoyl, benzylphenylsulfamoyl, etc.), alkylsulfonyl groups (eg, methanesulfonyl) Group, ethanesulfonyl group, etc.), arylsulfonyl group (for example, phenylsulfonyl, 4-chlorophenylsulfonyl, p-toluenesulfonyl, etc.) alkoxycarbonyl group (for example, methoxycarbonyl, ethoxycarbonyl, butoxycarbonyl, etc.), aryloxycarbonyl group ( For example, phenoxycarbonyl etc.), alkylcarbonyl groups (eg acetyl, propionyl, butyroyl etc.), arylcarbonyl groups (eg benzoyl group, alkylbenzoyl groups etc.), acyl Ruoxy group (for example, acetyloxy, propionyloxy, butyroyloxy, etc.), heterocyclic group (for example, oxazole ring, thiazole ring, triazole ring, selenazole ring, tetrazole ring, oxadiazole ring, thiadiazole ring, thiazine ring, triazine ring, Benzoxazole ring, benzthiazole ring, indolenine ring, benzselenazole ring, naphthothiazole ring, triazaindolizine ring, diazaindolizine ring, tetraazaindolizine ring group). These substituents further include those having a substituent.

次に、一般式(G2)で表される化合物の好ましい具体例を示すが、本発明はこれらの化合物に限定されるものではない。   Next, although the preferable specific example of a compound represented by general formula (G2) is shown, this invention is not limited to these compounds.

Figure 2010085570
Figure 2010085570

Figure 2010085570
Figure 2010085570

上記例示した各化合物の中でも、本発明の目的効果をいかんなく発揮できる観点から、特に、例示化合物G2−12、G2−18が好ましい。   Among the above-exemplified compounds, Exemplified Compounds G2-12 and G2-18 are particularly preferable from the viewpoint that the object and effects of the present invention can be exhibited.

(電解質添加の増粘剤)
本発明の電気化学デバイスにおいては、電解質に増粘剤を使用することができ、例えば、ゼラチン、アラビアゴム、ポリ(ビニルアルコール)、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、セルロースアセテート、セルロースアセテートブチレート、ポリ(ビニルピロリドン)、ポリ(アルキレングリコール)、カゼイン、デンプン、ポリ(アクリル酸)、ポリ(メチルメタクリル酸)、ポリ(塩化ビニル)、ポリ(メタクリル酸)、コポリ(スチレン−無水マレイン酸)、コポリ(スチレン−アクリロニトリル)、コポリ(スチレン−ブタジエン)、ポリ(ビニルアセタール)類(例えば、ポリ(ビニルホルマール)及びポリ(ビニルブチラール))、ポリ(エステル)類、ポリ(ウレタン)類、フェノキシ樹脂、ポリ(塩化ビニリデン)、ポリ(エポキシド)類、ポリ(カーボネート)類、ポリ(ビニルアセテート)、セルロースエステル類、ポリ(アミド)類、ポリビニルブチラール、ブチラール樹脂等が挙げられる。
(Thickener added with electrolyte)
In the electrochemical device of the present invention, a thickener can be used for the electrolyte. For example, gelatin, gum arabic, poly (vinyl alcohol), hydroxyethyl cellulose, hydroxypropyl cellulose, cellulose acetate, cellulose acetate butyrate, poly (Vinyl pyrrolidone), poly (alkylene glycol), casein, starch, poly (acrylic acid), poly (methyl methacrylic acid), poly (vinyl chloride), poly (methacrylic acid), copoly (styrene-maleic anhydride), copoly (Styrene-acrylonitrile), copoly (styrene-butadiene), poly (vinyl acetal) s (eg, poly (vinyl formal) and poly (vinyl butyral)), poly (esters), poly (urethanes), phenoxy resins, Poly Vinylidene chloride), poly (epoxides), poly (carbonates), poly (vinyl acetate), cellulose esters, poly (amides), polyvinyl butyral, butyral resins and the like.

これらの増粘剤は2種以上を併用して用いてもよい。また、特開昭64−13546号公報の71〜75頁に記載の化合物を挙げることができる。これらの中で好ましく用いられる化合物は、各種添加剤との相溶性と白色粒子の分散安定性向上の観点から、ポリビニルアルコール類、ポリビニルピロリドン類、ヒドロキシプロピルセルロース類、ポリアルキレングリコール類である。   These thickeners may be used in combination of two or more. Moreover, the compound as described in pages 71-75 of Unexamined-Japanese-Patent No. 64-13546 can be mentioned. Among these, the compounds preferably used are polyvinyl alcohols, polyvinyl pyrrolidones, hydroxypropyl celluloses, and polyalkylene glycols from the viewpoint of compatibility with various additives and improvement in dispersion stability of white particles.

〔エレクトロクロミック化合物〕
本発明に係る電解質液には、エレクトロクロミック特性を有するエレクトロクロミック化合物を使用することができる。
[Electrochromic compound]
An electrochromic compound having electrochromic characteristics can be used for the electrolyte solution according to the present invention.

本発明に係るエレクトロクロミック化合物(EC化合物)としては、電気化学的な酸化反応及び還元反応の少なくとも一方により発色又は消色する作用を示す限り特に制限はなく、目的に応じて適宜選択することができる。EC化合物としては、酸化タングステン、酸化イリジウム、酸化ニッケル、酸化コバルト、酸化バナジウム、酸化モリブデン、酸化チタン、酸化インジウム、酸化クロム、酸化マンガン、プルシアンブルー、窒化インジウム、窒化錫、窒化塩化ジルコニウム等の無機化合物に加え、有機金属錯体、導電性高分子化合物及び有機色素が知られている。   The electrochromic compound (EC compound) according to the present invention is not particularly limited as long as it exhibits an action of coloring or decoloring by at least one of an electrochemical oxidation reaction and a reduction reaction, and may be appropriately selected according to the purpose. it can. EC compounds include inorganic oxides such as tungsten oxide, iridium oxide, nickel oxide, cobalt oxide, vanadium oxide, molybdenum oxide, titanium oxide, indium oxide, chromium oxide, manganese oxide, Prussian blue, indium nitride, tin nitride, zirconium nitride chloride, etc. In addition to compounds, organometallic complexes, conductive polymer compounds, and organic dyes are known.

エレクトロクロミック特性を示す有機金属錯体としては、例えば、金属−ビピリジル錯体、金属フェナントロリン錯体、金属−フタロシアニン錯体、希土類ジフタロシアニン錯体、フェロセン系色素などが挙げられる。   Examples of the organometallic complex exhibiting electrochromic properties include metal-bipyridyl complexes, metal phenanthroline complexes, metal-phthalocyanine complexes, rare earth diphthalocyanine complexes, and ferrocene dyes.

エレクトロクロミック特性を示す導電性高分子化合物としては、例えば、ポリピロール、ポリチオフェン、ポリイソチアナフテン、ポリアニリン、ポリフェニレンジアミン、ポリベンジジン、ポリアミノフェノール、ポリビニルカルバゾール、ポリカルバゾール及びこれらの誘導体などが挙げられる。   Examples of the conductive polymer compound exhibiting electrochromic properties include polypyrrole, polythiophene, polyisothianaphthene, polyaniline, polyphenylenediamine, polybenzidine, polyaminophenol, polyvinylcarbazole, polycarbazole, and derivatives thereof.

また、例えば、特開2007−112957号に記載されているような、ビスターピリジン誘導体と金属イオンから成る高分子材料もエレクトロクロミック特性を示す。   For example, a polymer material composed of a bisterpyridine derivative and a metal ion as described in JP-A-2007-112957 also exhibits electrochromic properties.

エレクトロクロミック特性を示す有機色素としては、ビオロゲン等ピリジニウム系化合物、フェノチアジン等アジン系色素、スチリル系色素、アントラキノン系色素、ピラゾリン系色素、フルオラン系色素、ドナー/アクセプター型化合物類(例えば、テトラシアノキノジメタン、テトラチアフルバレン)等が挙げられる。その他、酸化還元指示薬、pH指示薬として知られている化合物を用いることもできる。   Examples of organic dyes that exhibit electrochromic properties include pyridinium compounds such as viologen, azine dyes such as phenothiazine, styryl dyes, anthraquinone dyes, pyrazoline dyes, fluorane dyes, donor / acceptor compounds (for example, tetracyanoquino compounds) Dimethane, tetrathiafulvalene) and the like. In addition, compounds known as redox indicators and pH indicators can also be used.

(色調によるEC化合物の分類)
本発明に係るEC化合物は、色調変化の点で分類すると、下記3つのクラスに分けられる。
(Classification of EC compounds by color tone)
The EC compounds according to the present invention are classified into the following three classes when classified in terms of color change.

クラス1:酸化還元によりある特定の色から別の色に変化するEC化合物。   Class 1: EC compounds that change from one specific color to another by redox.

クラス2:酸化状態で実質無色であり、還元状態である特定の着色状態を示すEC化合物。   Class 2: EC compounds that are substantially colorless in the oxidized state and exhibit a specific colored state that is the reduced state.

クラス3:還元状態で実質無色であり、酸化状態である特定の着色状態を示すEC化合物。   Class 3: EC compounds that are substantially colorless in the reduced state and exhibit a particular colored state that is the oxidized state.

本発明の電気化学デバイスにおいては、目的及び用途により上記クラス1からクラス3のEC化合物を適宜選択することができる。   In the electrochemical device of the present invention, the class 1 to class 3 EC compounds can be appropriately selected depending on the purpose and application.

〈クラス1のEC化合物〉
クラス1のEC化合物は、酸化還元によりある特定の色から別の色に変化するEC化合物であり、その取り得る酸化状態において、二色以上の表示が可能な化合物である。
<Class 1 EC compounds>
Class 1 EC compounds are EC compounds that change from a specific color to another color by oxidation-reduction, and are compounds capable of displaying two or more colors in their possible oxidation states.

クラス1に分類される化合物としては、例えば、Vは酸化状態から還元状態へ変化することで橙色から緑色に変化し、同様にRhは黄色から暗緑色に変化する。 As a compound classified into class 1, for example, V 2 O 5 changes from an orange state to a green color by changing from an oxidation state to a reduction state, and similarly Rh 2 O 3 changes from a yellow color to a dark green color.

有機金属錯体の多くはクラス1に分類され、ルテニウム(II)ビピリジン錯体、例えばトリス(5,5′−ジカルボキシルエチル−2,2′−ビピリジン)ルテニウム錯体は+2〜−4価の間で、順にオレンジ色から、紫、青、緑青色、褐色、赤錆色、赤へと変化する。希土類ジフタロシアニン類の多くも、このようなマルチカラー特性を示す。例えばルテチウムジフタロシアニンの場合、酸化に従い順次、紫色から青、緑、赤橙色へと変化する。   Many of the organometallic complexes are classified as class 1, and ruthenium (II) bipyridine complexes, such as tris (5,5'-dicarboxylethyl-2,2'-bipyridine) ruthenium complexes, are between +2 and -4 valences, The color changes from orange to purple, blue, green blue, brown, red rust and red. Many of the rare earth diphthalocyanines also exhibit such multicolor characteristics. For example, in the case of lutetium diphthalocyanine, the color gradually changes from purple to blue, green, and red-orange according to oxidation.

また、導電性ポリマーもその多くは、クラス1に分類される。例えば、ポリチオフェンは酸化状態から還元状態へ変化することで青から赤へと変化し、ポリピロールは褐色から黄色へと変化する。また、ポリアニリン等では、マルチカラー特性を示し酸化状態の紺色から順に青色、緑色、淡黄色へと変化する。   Many of the conductive polymers are also classified as class 1. For example, polythiophene changes from blue to red by changing from an oxidized state to a reduced state, and polypyrrole changes from brown to yellow. In addition, polyaniline or the like exhibits multicolor characteristics and changes from an amber color in an oxidation state to blue, green, and light yellow in order.

クラス1に分類されるEC化合物は、単一の化合物で、多色表示が可能であると言うメリットを有するが、反面実質無色と言える状態を作れないと言う欠点を有する。   EC compounds classified as class 1 have a merit that multicolor display is possible with a single compound, but on the other hand, they have a drawback that a state that can be said to be substantially colorless cannot be made.

〈クラス2のEC化合物〉
クラス2のEC化合物は、酸化状態で無色乃至は極淡色であり、還元状態である特定の着色状態を示す化合物である。
<Class 2 EC compounds>
Class 2 EC compounds are compounds that are colorless or extremely light in an oxidized state and exhibit a specific colored state that is a reduced state.

クラス2に分類される無機化合物としては、下記化合物が挙げられ、各々還元状態でカッコ内に示した色を示す。WO(青)、MnO(青)、Nb(青)、TiO(青)等。 Examples of the inorganic compounds classified as class 2 include the following compounds, each of which shows the color shown in parentheses in the reduced state. WO 3 (blue), MnO 3 (blue), Nb 2 O 5 (blue), TiO 2 (blue) and the like.

クラス2に分類される有機金属錯体としては、例えば、トリス(バソフェナントロリン)鉄(II)錯体が挙げられ、還元状態で赤色を示す。   As an organometallic complex classified into class 2, for example, a tris (vasophenanthroline) iron (II) complex can be mentioned, which shows red in a reduced state.

クラス2に分類される有機色素としては、特開昭62−71934号、特開2006−71765号等に記載されている化合物、例えば、テレフタル酸ジメチル(赤)、4,4′−ビフェニルカルボン酸ジエチル(黄色)、1,4−ジアセチルベンゼン(シアン)、あるいは特開平1−230026号、特表2000−504764号等に記載されているテトラゾリウム塩化合物等が挙げられる。   Examples of organic dyes classified as class 2 include compounds described in JP-A Nos. 62-71934 and 2006-71765, such as dimethyl terephthalate (red), 4,4'-biphenylcarboxylic acid. Examples thereof include diethyl (yellow), 1,4-diacetylbenzene (cyan), and tetrazolium salt compounds described in JP-A-1-230026, JP-T 2000-504964, and the like.

クラス2に分類される色素として、最も代表的な化合物はビオロゲン等ピリジニウム系化合物で有る。ビオロゲン系化合物は表示が鮮明であること、置換基を変えることなどにより色のバリエーションを持たせることが可能であることなどの長所を有しているため、有機色素の中では最も盛んに研究されている。発色は、還元で生じた有機ラジカルに基く。   The most typical compounds classified as class 2 are pyridinium compounds such as viologen. Viologen compounds have the advantages of vivid display and the ability to have color variations by changing substituents. Therefore, they are the most actively studied among organic dyes. ing. Color development is based on organic radicals generated by reduction.

ビオロゲン等ピリジニウム系化合物としては、例えば、特表2000−506629号を初めとして下記特許に記載されている化合物が挙げられる。   Examples of pyridinium-based compounds such as viologen include compounds described in the following patents, starting with JP 2000-506629 A.

特開平5−70455号、特開平5−170738号、特開2000−235198号、特開2001−114769号、特開2001−172293号、特開2001−181292号、特開2001−181293号、特表2001−510590号、特開2004−101729号、特開2006−154683号、特表2006−519222号、特開2007−31708号、2007−171781号、2007−219271号、2007−219272号、特開2007−279659号、特開2007−279570号、特開2007−279571号、特開2007−279572号等。   JP-A-5-70455, JP-A-5-170738, JP-A-2000-235198, JP-A-2001-114769, JP-A-2001-172293, JP-A-2001-181292, JP-A-2001-181293, Table 2001-510590, JP-A-2004-101729, JP-A-2006-154683, JP-T-2006-519222, JP-A-2007-31708, 2007-171817, 2007-219271, 2007-219272, JP-T JP 2007-279659, JP 2007-279570, JP 2007-279571, JP 2007-279572, and the like.

以下に、本発明に用いることができるビオロゲン等のピリジニウム化合物を例示するが、これらに限定されるものでは無い。   Examples of pyridinium compounds such as viologen that can be used in the present invention are shown below, but are not limited thereto.

Figure 2010085570
Figure 2010085570

Figure 2010085570
Figure 2010085570

〈クラス3のEC化合物〉
クラス3のEC化合物は、還元状態で無色乃至は極淡色であり、酸化状態である特定の着色状態を示す化合物である。
<Class 3 EC compounds>
Class 3 EC compounds are compounds that are colorless or extremely pale in the reduced state and exhibit a specific colored state that is an oxidized state.

クラス3に分類される無機化合物としては、例えば、酸化イリジウム(暗青色)、プルシアンブルー(青)等が挙げられる(各々酸化状態でカッコ内に示した色を呈する)。   Examples of inorganic compounds classified as class 3 include iridium oxide (dark blue), Prussian blue (blue), and the like (each exhibiting the color shown in parentheses in the oxidized state).

クラス3に分類される導電性ポリマーとしては、例は少ないが、例えば、特開平6−263846号に記載のフェニルエーテル系化合物が挙げられる。   There are few examples of conductive polymers classified into class 3, but examples include phenyl ether compounds described in JP-A-6-263846.

クラス3に分類される色素としては多数の色素が知られているが、スチリル系色素、フェナジン、フェノチアジン、フェノキサジン、アクリジン等のアジン系色素、イミダゾール、オキサゾール、チアゾール等のアゾール系色素等が好ましい。   Many dyes are known as class 3 dyes, styryl dyes, azine dyes such as phenazine, phenothiazine, phenoxazine, and acridine, azole dyes such as imidazole, oxazole, and thiazole are preferable. .

以下に、本発明に用いることができるスチリル系色素、及びアジン系色素、アゾール系色素を例示するが、これらに限定されるものでは無い。   Examples of styryl dyes, azine dyes, and azole dyes that can be used in the present invention are shown below, but are not limited thereto.

Figure 2010085570
Figure 2010085570

Figure 2010085570
Figure 2010085570

本発明の好ましい態様においては、前記EC色素と共に電気化学的な酸化還元反応により可逆的に溶解析出する金属塩を併用し、黒表示、白表示及び黒以外の着色表示の3色以上の多色表示を行う。この場合、該金属塩が還元されて黒表示を行う為、EC色素としては酸化により発色するクラス3のEC化合物が好ましく、特に、発色の多様性、低駆動電圧、メモリー性等の点でアゾール系色素が好ましい。   In a preferred embodiment of the present invention, a metal salt that reversibly dissolves and precipitates by an electrochemical redox reaction is used in combination with the EC dye, and a multicolor of three or more colors of black display, white display, and non-black color display. Display. In this case, since the metal salt is reduced to give a black display, the EC dye is preferably a class 3 EC compound that develops color by oxidation, and in particular, azoles in terms of color development diversity, low driving voltage, memory properties, and the like. System dyes are preferred.

〔一般式(L)で表される化合物〕
本発明において、最も好ましい色素は、下記一般式(L)で表される化合物である。
[Compound represented by formula (L)]
In the present invention, the most preferred dye is a compound represented by the following general formula (L).

以下、本発明に係る前記一般式(L)で表されるエレクトロクロミック化合物について説明する。   Hereinafter, the electrochromic compound represented by the general formula (L) according to the present invention will be described.

Figure 2010085570
Figure 2010085570

上記一般式(L)において、Rlは置換もしくは無置換のアリール基を表し、Rl、Rlは各々水素原子または置換基を表す。Xは>N−Rl、酸素原子または硫黄原子を表し、Rlは水素原子、または置換基を表す。 In the general formula (L), Rl 1 represents a substituted or unsubstituted aryl group, and Rl 2 and Rl 3 each represent a hydrogen atom or a substituent. X represents> N—Rl 4 , an oxygen atom or a sulfur atom, and Rl 4 represents a hydrogen atom or a substituent.

Rlが置換基を有するアリール基を表す場合、置換基としては特に制限は無く、例えば以下のような置換基が挙げられる。 When Rl 1 represents an aryl group having a substituent, the substituent is not particularly limited, and examples thereof include the following substituents.

アルキル基(例えば、メチル基、エチル基、プロピル基、イソプロピル基、tert−ブチル基、ペンチル基、ヘキシル基等)、シクロアルキル基(例えば、シクロヘキシル基、シクロペンチル基等)、アルケニル基、シクロアルケニル基、アルキニル基(例えば、プロパルギル基等)、グリシジル基、アクリレート基、メタクリレート基、芳香族基(例えば、フェニル基、ナフチル基、アントラセニル基等)、複素環基(例えば、ピリジル基、チアゾリル基、オキサゾリル基、イミダゾリル基、フリル基、ピロリル基、ピラジニル基、ピリミジニル基、ピリダジニル基、セレナゾリル基、スリホラニル基、ピペリジニル基、ピラゾリル基、テトラゾリル基等)、アルコキシ基(例えば、メトキシ基、エトキシ基、プロピルオキシ基、ペンチルオキシ基、シクロペンチルオキシ基、ヘキシルオキシ基、シクロヘキシルオキシ基等)、アリールオキシ基(例えば、フェノキシ基等)、アルコキシカルボニル基(例えば、メチルオキシカルボニル基、エチルオキシカルボニル基、ブチルオキシカルボニル基等)、アリールオキシカルボニル基(例えば、フェニルオキシカルボニル基等)、スルホンアミド基(例えば、メタンスルホンアミド基、エタンスルホンアミド基、ブタンスルホンアミド基、ヘキサンスルホンアミド基、シクロヘキサンスルホンアミド基、ベンゼンスルホンアミド基等)、スルファモイル基(例えば、アミノスルホニル基、メチルアミノスルホニル基、ジメチルアミノスルホニル基、ブチルアミノスルホニル基、ヘキシルアミノスルホニル基、シクロヘキシルアミノスルホニル基、フェニルアミノスルホニル基、2−ピリジルアミノスルホニル基等)、ウレタン基(例えば、メチルウレイド基、エチルウレイド基、ペンチルウレイド基、シクロヘキシルウレイド基、フェニルウレイド基、2−ピリジルウレイド基等)、アシル基(例えば、アセチル基、プロピオニル基、ブタノイル基、ヘキサノイル基、シクロヘキサノイル基、ベンゾイル基、ピリジノイル基等)、カルバモイル基(例えば、アミノカルボニル基、メチルアミノカルボニル基、ジメチルアミノカルボニル基、プロピルアミノカルボニル基、ペンチルアミノカルボニル基、シクロヘキシルアミノカルボニル基、フェニルアミノカルボニル基、2−ピリジルアミノカルボニル基等)、アシルアミノ基(例えば、アセチルアミノ基、ベンゾイルアミノ基、メチルウレイド基等)、スルホニル基(例えば、メチルスルホニル基、エチルスルホニル基、ブチルスルホニル基、シクロヘキシルスルホニル基、フェニルスルホニル基、2−ピリジルスルホニル基等)、アミノ基(例えば、アミノ基、エチルアミノ基、ジメチルアミノ基、ブチルアミノ基、シクロペンチルアミノ基、アニリノ基、2−ピリジルアミノ基等)、ハロゲン原子(例えば、塩素原子、臭素原子、沃素原子等)、シアノ基、ニトロ基、スルホ基、カルボキシル基、ヒドロキシル基、ホスホノ基(例えば、ホスホノエチル基、ホスホノプロピル基、ホスホノオキシエチル基)等を挙げることができる。また、これらの基はさらにこれらの基で置換されていてもよい。   Alkyl groups (eg, methyl, ethyl, propyl, isopropyl, tert-butyl, pentyl, hexyl, etc.), cycloalkyl groups (eg, cyclohexyl, cyclopentyl, etc.), alkenyl groups, cycloalkenyl groups , Alkynyl groups (for example, propargyl group), glycidyl groups, acrylate groups, methacrylate groups, aromatic groups (for example, phenyl group, naphthyl group, anthracenyl group, etc.), heterocyclic groups (for example, pyridyl group, thiazolyl group, oxazolyl group) Group, imidazolyl group, furyl group, pyrrolyl group, pyrazinyl group, pyrimidinyl group, pyridazinyl group, selenazolyl group, sriphoranyl group, piperidinyl group, pyrazolyl group, tetrazolyl group, etc.), alkoxy group (for example, methoxy group, ethoxy group, propyloxy) Group, pliers Oxy group, cyclopentyloxy group, hexyloxy group, cyclohexyloxy group, etc.), aryloxy group (eg, phenoxy group, etc.), alkoxycarbonyl group (eg, methyloxycarbonyl group, ethyloxycarbonyl group, butyloxycarbonyl group, etc.) , Aryloxycarbonyl group (for example, phenyloxycarbonyl group), sulfonamide group (for example, methanesulfonamide group, ethanesulfonamide group, butanesulfonamide group, hexanesulfonamide group, cyclohexanesulfonamide group, benzenesulfonamide group ), Sulfamoyl group (for example, aminosulfonyl group, methylaminosulfonyl group, dimethylaminosulfonyl group, butylaminosulfonyl group, hexylaminosulfonyl group, cyclohexylamino) Sulfonyl group, phenylaminosulfonyl group, 2-pyridylaminosulfonyl group, etc.), urethane group (for example, methylureido group, ethylureido group, pentylureido group, cyclohexylureido group, phenylureido group, 2-pyridylureido group, etc.), acyl Groups (eg, acetyl, propionyl, butanoyl, hexanoyl, cyclohexanoyl, benzoyl, pyridinoyl, etc.), carbamoyl groups (eg, aminocarbonyl, methylaminocarbonyl, dimethylaminocarbonyl, propylamino) Carbonyl group, pentylaminocarbonyl group, cyclohexylaminocarbonyl group, phenylaminocarbonyl group, 2-pyridylaminocarbonyl group, etc.), acylamino group (for example, acetylamino group, benzoyla) Mino group, methylureido group etc.), sulfonyl group (eg methylsulfonyl group, ethylsulfonyl group, butylsulfonyl group, cyclohexylsulfonyl group, phenylsulfonyl group, 2-pyridylsulfonyl group etc.), amino group (eg amino group, Ethylamino group, dimethylamino group, butylamino group, cyclopentylamino group, anilino group, 2-pyridylamino group, etc.), halogen atom (eg chlorine atom, bromine atom, iodine atom etc.), cyano group, nitro group, sulfo group Carboxyl group, hydroxyl group, phosphono group (for example, phosphonoethyl group, phosphonopropyl group, phosphonooxyethyl group) and the like. Further, these groups may be further substituted with these groups.

Rlとしては、置換もしくは無置換のフェニル基が好ましく、更に好ましくは置換もしくは無置換の2−ヒドロキシフェニル基または4−ヒドロキシフェニル基である。 Rl 1 is preferably a substituted or unsubstituted phenyl group, more preferably a substituted or unsubstituted 2-hydroxyphenyl group or 4-hydroxyphenyl group.

R1、Rlで表される置換基としては特に制限は無く、前記Rlのアリール基上への置換基として例示した置換基等が挙げられる。好ましくはRl、Rlは置換基を有しても良い、アルキル基、シクロアルキル基、芳香族基、複素環基である。Rl、Rlは互いに連結して、環構造を形成しても良いRl、Rlの組み合わせとしては、双方共に置換基を有しても良いフェニル基、複素環基である場合、若しくは何れか一方が置換基を有しても良いフェニル基、複素環基であり、他方が置換基を有しても良いアルキル基の組み合わせである。 The substituent represented by R1 2 or Rl 3 is not particularly limited, and examples thereof include the substituents exemplified as the substituent on the aryl group of Rl 1 . Rl 2 and Rl 3 are preferably an alkyl group, a cycloalkyl group, an aromatic group, or a heterocyclic group, which may have a substituent. Rl 2 and Rl 3 may be linked to each other to form a ring structure. The combination of Rl 2 and Rl 3 may be a phenyl group or a heterocyclic group, both of which may have a substituent, or Either one is a phenyl group or a heterocyclic group which may have a substituent, and the other is a combination of an alkyl group which may have a substituent.

Xとして好ましくは>N−Rlである。Rlとして好ましくは、水素原子、アルキル基、芳香族基、複素環基、アシル基であり、より好ましくは水素原子、炭素数1〜10のアルキル基、炭素数5〜10のアリール基、アシル基である。 X is preferably a> N-Rl 4. Rl 4 is preferably a hydrogen atom, an alkyl group, an aromatic group, a heterocyclic group or an acyl group, more preferably a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, an aryl group having 5 to 10 carbon atoms, or acyl. It is a group.

本発明の電気化学デバイスにおいては、上記一般式(L)で表される化合物が、電極表面と化学吸着または物理吸着する吸着性基を有していることが好ましい。本発明でいう化学吸着とは、電極表面との化学結合による比較的強い吸着状態であり、本発明でいう物理吸着とは、電極表面と吸着物質との間に働くファンデルワールス力による比較的弱い吸着状態である。   In the electrochemical device of the present invention, the compound represented by the general formula (L) preferably has an adsorptive group that is chemically or physically adsorbed on the electrode surface. The chemical adsorption referred to in the present invention is a relatively strong adsorption state due to a chemical bond with the electrode surface, and the physical adsorption referred to in the present invention is a relatively strong van der Waals force acting between the electrode surface and the adsorbed substance. It is weakly adsorbed.

本発明において、吸着性基としては化学吸着性の基である方が好ましく、化学吸着する吸着性基としては、−COOH、−P=O(OH)、−OP=O(OH)及び−Si(OR)(Rは、アルキル基を表す)が好ましい。 In the present invention, the adsorptive group is preferably a chemisorbable group, and as the adsorptive group to be chemisorbed, —COOH, —P═O (OH) 2 , —OP═O (OH) 2 and -Si (OR) 3 (R represents an alkyl group) is preferable.

一般式(L)で表されるアゾール色素の中でも、特に下記一般式(L2)で表されるイミダゾール系色素が特に好ましい。   Among the azole dyes represented by the general formula (L), an imidazole dye represented by the following general formula (L2) is particularly preferable.

Figure 2010085570
Figure 2010085570

上記一般式(L2)において、Rl21、Rl22は脂肪族基、脂肪族オキシ基、アシルアミノ基、カルバモイル基、アシル基、スルホンアミド基、スルファモイル基を表し、R123は芳香族基または芳香族複素環基を表し、Rl24は水素原子、脂肪族基、芳香族基、芳香族複素環基を表し、RL25は水素原子、脂肪族基、芳香族基、アシル基を表す。 In the general formula (L2), Rl 21 and Rl 22 represent an aliphatic group, an aliphatic oxy group, an acylamino group, a carbamoyl group, an acyl group, a sulfonamide group, and a sulfamoyl group, and R1 23 represents an aromatic group or an aromatic group. R1 24 represents a hydrogen atom, an aliphatic group, an aromatic group or an aromatic heterocyclic group, and RL 25 represents a hydrogen atom, an aliphatic group, an aromatic group or an acyl group.

これらRl21からRl25で表される基は、更に任意の置換基で置換されていても良い。ただし、Rl21からRl25で表される基の少なくとも1つは、その部分構造として−COOH、−P=O(OH)、−OP=O(OH)及び−Si(OR)(Rは、アルキル基を表す)を有する。 These groups represented by Rl 21 to Rl 25 may be further substituted with an arbitrary substituent. However, at least one of the groups represented by Rl 21 to Rl 25 has, as its partial structure, —COOH, —P═O (OH) 2 , —OP═O (OH) 2 and —Si (OR) 3 ( R represents an alkyl group.

一般式(L2)において、Rl21、Rl22で表される基としては、アルキル基(特に分岐アルキル基)、シクロアルキル基、アルキルオキシ基、シクロアルキルオキシ基が好ましい。Rl23としては置換若しくは無置換のフェニル基、5員もしくは6員環複素環基(例えばチエニル基、フリル基、ピロリル基、ピリジル基等)が好ましい。Rl24としては置換若しくは無置換の、フェニル基、5員もしくは6員環複素環基、アルキル基が好ましい。Rl25としては、特に、水素原子またはアリール基が好ましい。 In the general formula (L2), the group represented by Rl 21 or Rl 22 is preferably an alkyl group (particularly a branched alkyl group), a cycloalkyl group, an alkyloxy group, or a cycloalkyloxy group. Rl 23 is preferably a substituted or unsubstituted phenyl group, a 5-membered or 6-membered heterocyclic group (for example, thienyl group, furyl group, pyrrolyl group, pyridyl group, etc.). Rl 24 is preferably a substituted or unsubstituted phenyl group, a 5-membered or 6-membered heterocyclic group, or an alkyl group. Rl 25 is particularly preferably a hydrogen atom or an aryl group.

また、一般式(L2)で表される化合物を電極上に固定する際、これらRl21〜Rl25で示される基の少なくともひとつに、部分構造として、−P=O(OH)、−Si(OR)(Rは、アルキル基を表す)を有することが好ましく、特に、Rl23若しくはRl24で示される基の部分構造として−Si(OR)(Rは、アルキル基を表す)を有することが好ましい。 In addition, when the compound represented by the general formula (L2) is fixed on the electrode, at least one of the groups represented by Rl 21 to Rl 25 includes —P═O (OH) 2 , —Si as a partial structure. It is preferable to have (OR) 3 (R represents an alkyl group), and in particular, —Si (OR) 3 (R represents an alkyl group) as a partial structure of the group represented by Rl 23 or Rl 24. It is preferable to have.

以下、一般式(L2)で表されるEC色素の具体的化合物例、及び一般式(L2)には該当しないが、一般式(L)に含まれるEC色素の具体例を示すが、本発明はこれら例示する化合物にのみ限定されるものではない。   Specific examples of the EC dye represented by the general formula (L2) and specific examples of the EC dye included in the general formula (L) are shown below, although they do not correspond to the general formula (L2). Is not limited to these exemplified compounds.

Figure 2010085570
Figure 2010085570

Figure 2010085570
Figure 2010085570

Figure 2010085570
Figure 2010085570

Figure 2010085570
Figure 2010085570

Figure 2010085570
Figure 2010085570

Figure 2010085570
Figure 2010085570

Figure 2010085570
Figure 2010085570

Figure 2010085570
Figure 2010085570

Figure 2010085570
Figure 2010085570

Figure 2010085570
Figure 2010085570

Figure 2010085570
Figure 2010085570

これらエレクトロクロミック化合物は、電極、特に閲覧側(表示側)の電極に固定化させることが好ましい。閲覧側電極に固定化されることにより、閲覧濃度の向上を得ることができる。   These electrochromic compounds are preferably immobilized on electrodes, particularly on the viewing side (display side). By fixing to the viewing side electrode, the viewing density can be improved.

〔プロモーター〕
本発明の電気化学デバイスにおいては、電気化学的な酸化還元反応により可逆的に変色する化合物の電気化学反応を促進するために、酸化還元されうる補助化合物(以下、プロモーターと記す)を添加することが好ましい。プロモーターは酸化還元反応の結果として、可視領域(400〜700nm)の光学濃度が変化しないものでもよいし、変化するもの、即ち前記電気化学的な酸化還元反応により可逆的に変色する化合物であってもよく、電極上に固定化されていてもよく、電解質液中に添加されていてもよい。これらプロモーターは例えば、対極反応物質としての利用あるいは、酸化還元メディエーターとしての利用が考えられる。
〔promoter〕
In the electrochemical device of the present invention, an auxiliary compound (hereinafter referred to as a promoter) that can be oxidized / reduced is added in order to promote the electrochemical reaction of the compound that is reversibly discolored by the electrochemical oxidation-reduction reaction. Is preferred. The promoter may be one that does not change the optical density in the visible region (400 to 700 nm) as a result of the oxidation-reduction reaction, or one that changes, that is, a compound that reversibly discolors due to the electrochemical oxidation-reduction reaction. Alternatively, it may be immobilized on the electrode, or may be added to the electrolyte solution. These promoters can be used, for example, as counter electrode reactants or as redox mediators.

例えば、表示電極側で電気化学的な酸化還元反応により可逆的に変色する化合物を酸化(あるいは還元)発色させる場合、対向電極側でプロモーターの還元(あるいは酸化)反応を利用することによって、低い駆動電圧で高い発色濃度を得ることが可能となる。このようにプロモーターを対極反応物質として利用する場合、電気化学的な酸化還元反応により可逆的に変色する化合物とは逆の酸化還元活性を有するプロモーターを、対向電極上に固定化して用いることが好ましい。プロモーターを対極物質として用いる場合、プロモーターは酸化還元反応の結果として可視領域(400〜700nm)の光学濃度が変化しないものが好ましい。ただし、本発明の好ましい態様において記載したように、電気化学デバイス中に白色散乱物を用いて、プロモーターによる発色を遮蔽するような態様の場合、可視領域(400〜700nm)の光学濃度が変化するプロモーター、即ち電気化学的な酸化還元反応により可逆的に変色する化合物を用いてもよい。このような構成の態様は、プロモーターの選択が容易となり好ましい。また別の態様として、表示電極側の電気化学的な酸化還元反応により可逆的に変色する化合物と同色の発色を示すプロモーターを用いることは、好ましい態様の一つである。   For example, when a compound that reversibly changes color due to an electrochemical redox reaction on the display electrode side is oxidized (or reduced), a low drive is achieved by utilizing the reduction (or oxidation) reaction of the promoter on the counter electrode side. It is possible to obtain a high color density with voltage. Thus, when a promoter is used as a counter electrode reactant, it is preferable to use a promoter having a redox activity opposite to that of a compound reversibly discolored by an electrochemical redox reaction, immobilized on a counter electrode. . When a promoter is used as a counter electrode material, it is preferable that the promoter does not change the optical density in the visible region (400 to 700 nm) as a result of the redox reaction. However, as described in the preferred embodiment of the present invention, the optical density in the visible region (400 to 700 nm) changes in the embodiment in which white scatterers are used in the electrochemical device to block the color development by the promoter. A promoter, that is, a compound that changes color reversibly by an electrochemical redox reaction may be used. Such a configuration is preferable because it facilitates selection of a promoter. As another embodiment, it is one of preferred embodiments to use a promoter that exhibits the same color as a compound that reversibly changes color by an electrochemical redox reaction on the display electrode side.

一方、酸化還元メディエーターは有機電解合成の分野等で一般に用いられている材料である。有機化合物はそれぞれ固有の酸化電位に加えて、電解法や電解条件にも依存する酸化過電圧を有しており、陽極電位がこれらを合せた酸化電位より高いときに、実際上酸化反応が起こる。陽極電位に実験上の限界があることから、直接法で全ての基質を酸化することは不可能である。高い酸化電位を有する基質を酸化する場合、基質から陽極への電子移動は起こらない。この反応系に低電位で陽極に対して電子移動(酸化)が起こるようなメディエーターを共存させると、まずはメディエーターが酸化され、酸化されたメディエーターによって基質が酸化されて生成物が得られる。この反応系の利点は、基質の酸化電位よりも低い陽極電位で基質を酸化することが可能であることと、酸化されたメディエーターは、基質を酸化してもとのメディエーターに戻るため、理論的には触媒量として作用することである。また低電位での酸化が可能となるため、基質や生成物の分解等も抑えられる。   On the other hand, the redox mediator is a material generally used in the field of organic electrolytic synthesis. Each organic compound has an oxidation overvoltage that depends on the electrolysis method and electrolysis conditions, in addition to its own oxidation potential, and when the anode potential is higher than the combined oxidation potential, an oxidation reaction actually occurs. Due to experimental limitations on the anodic potential, it is not possible to oxidize all substrates by direct methods. When a substrate having a high oxidation potential is oxidized, no electron transfer from the substrate to the anode occurs. When a mediator that causes electron transfer (oxidation) to the anode at a low potential coexists in this reaction system, the mediator is first oxidized, and the substrate is oxidized by the oxidized mediator to obtain a product. The advantage of this reaction system is that it is possible to oxidize the substrate at an anodic potential lower than the oxidation potential of the substrate, and that the oxidized mediator returns to the original mediator when the substrate is oxidized. It acts as a catalytic amount. Further, since oxidation at a low potential is possible, decomposition of the substrate and product can be suppressed.

本発明において、例えば前記基質として酸化発色する電気化学的な酸化還元反応により可逆的に変色する化合物を用いる場合、触媒量の酸化メディエーターを共存させることにより、低い駆動電圧で電気化学デバイスを駆動することが可能となり、電気化学デバイスの耐久性が高まる。また表示の切り替え速度の向上、高い発色効率が得られる等の利点がある。同様に、還元メディエーターと、還元発色する電気化学的な酸化還元反応により可逆的に変色する化合物の組み合わせでも、上記効果が得られる。   In the present invention, for example, when a compound that reversibly changes color by an electrochemical redox reaction that oxidizes and develops as the substrate, the electrochemical device is driven at a low driving voltage by coexisting a catalytic amount of an oxidation mediator. This increases the durability of the electrochemical device. In addition, there are advantages such as an improvement in display switching speed and high coloring efficiency. Similarly, the above effect can be obtained by a combination of a reducing mediator and a compound that reversibly discolors by an electrochemical redox reaction that produces a reduction color.

本発明の電気化学デバイスにおいては、有機電解合成の分野で示されているように、単一のメディエーターを用いてもよいし、複数のメディエーターを組み合わせて用いてもよい。本発明においてプロモーターをメディエーターとして用いる場合、電気化学的な酸化還元反応により可逆的に変色する化合物を表示電極上に固定化し、その近傍にプロモーターを局在化させて用いることが好ましい。   In the electrochemical device of the present invention, as shown in the field of organic electrosynthesis, a single mediator may be used, or a plurality of mediators may be used in combination. When a promoter is used as a mediator in the present invention, it is preferable to fix a compound that changes color reversibly by an electrochemical redox reaction on a display electrode and to localize the promoter in the vicinity thereof.

本発明においては、プロモーターを対極反応物質として用いてもよく、またメディエーターとして用いてもよい。また両者の目的で、複数のプロモーターを同時に組み合わせて用いてもよい。   In the present invention, a promoter may be used as a counter electrode reactant or a mediator. For both purposes, a plurality of promoters may be used in combination at the same time.

プロモーターとしては、特に制限はなく、目的に応じて適宜選択することができる。特に対極反応物質として利用する場合には、公知の電気化学的な酸化還元反応により可逆的に変色する化合物を利用することが可能である。また、酸化還元メディエーターとして利用する場合は、電気化学的な酸化還元反応により可逆的に変色する化合物の特性に合わせ、有機合成化学協会誌第43巻第6号(「電気エネルギーを利用する有機合成」特集号)(1985)等に記載されている公知のメディエーターを適宜選択して用いることができる。   There is no restriction | limiting in particular as a promoter, According to the objective, it can select suitably. In particular, when used as a counter electrode reactant, it is possible to use a compound that reversibly discolors by a known electrochemical redox reaction. In addition, when used as a redox mediator, in accordance with the properties of a compound that reversibly changes color by an electrochemical redox reaction, Journal of Synthetic Organic Chemistry, Vol. 43, No. 6 (“Organic synthesis using electric energy”). The known mediators described in “Special Issue” (1985) and the like can be appropriately selected and used.

本発明に用いることができる好ましいプロモーターとしては、例えば、以下のような化合物が挙げられる。   Preferred promoters that can be used in the present invention include, for example, the following compounds.

1)TEMPO(2,2,6,6−テトラメチルピペリジニル−N−オキシル)等に代表されるN−オキシル誘導体、N−ヒドロキシフタルイミド誘導体、ヒドロキサム酸誘導体等、N−O結合を有する化合物、
2)ガルビノキシル等、0−位に嵩高い置換基を導入したアリロキシ遊離基を有する化合物、
3)フェロセン等のメタロセン誘導体、
4)ベンジル(ジフェニルエタンジオン)誘導体、
5)テトラゾリウム塩/ホルマザン誘導体、
6)フェナジン、フェノチアジン、フェノキサジン、アクリジン等のアジン系化合物、
7)ビオロゲン等ピリジニウム化合物、
その他、ベンゾキノン誘導体、ベルダジル等ヒドラジル遊離基化合物、チアジル遊離基化合物、ヒドラゾン誘導体、フェニレンジアミン誘導体、トリアリルアミン誘導体、テトラチアフルバレン誘導体、テトラシアノキノジメタン誘導体、チアントレン誘導体等もプロモーターとして用いることができる。
1) N-oxyl derivatives such as TEMPO (2,2,6,6-tetramethylpiperidinyl-N-oxyl), N-hydroxyphthalimide derivatives, hydroxamic acid derivatives, etc., compounds having an N—O bond ,
2) a compound having an allyloxy free radical having a bulky substituent introduced at the 0-position, such as galvinoxyl;
3) metallocene derivatives such as ferrocene,
4) benzyl (diphenylethanedione) derivative,
5) Tetrazolium salt / formazan derivative,
6) Azine compounds such as phenazine, phenothiazine, phenoxazine, acridine,
7) pyridinium compounds such as viologen,
In addition, hydrazyl free radical compounds such as benzoquinone derivatives, verdazyl, thiazyl free radical compounds, hydrazone derivatives, phenylenediamine derivatives, triallylamine derivatives, tetrathiafulvalene derivatives, tetracyanoquinodimethane derivatives, thianthrene derivatives, etc. can also be used as promoters. .

本発明の電気化学デバイスにおいては、上記1)から7)の範疇のプロモーターが好ましく、特に1)が好ましい。   In the electrochemical device of the present invention, promoters in the categories 1) to 7) are preferable, and 1) is particularly preferable.

以下、1)の範疇の化合物について詳細に説明する。   Hereinafter, compounds in the category 1) will be described in detail.

N−オキシル(ニトロキシドラジカルとも呼ばれる)とは、ヒドロキシルアミンの酸素−水素結合がラジカル的に開裂して生じた酸素中心ラジカルである。ニトロキシドラジカルは、下記スキームに示すように2つの可逆的な酸化還元対を有することが知られている。ニトロキシドラジカルは1電子酸化によりオキソアンモニウムカチオンとなり、これが還元されてラジカルを再生する。またニトロキシドラジカルは1電子還元によりアミノキシアニオンとなり、これが酸化されてラジカルを再生する。従って、ニトロキシドラジカルはp型の対極反応物質、若しくはn型対極反応物質として機能することができる。またオキソアンモニウムカチオンは高い酸化能を有しており、ロイコ色素等の酸化が可能である為、メディエーターとして機能し得る。   N-oxyl (also called nitroxide radical) is an oxygen-centered radical generated by radically cleaving the oxygen-hydrogen bond of hydroxylamine. Nitroxide radicals are known to have two reversible redox pairs as shown in the scheme below. The nitroxide radical becomes an oxoammonium cation by one-electron oxidation, which is reduced to regenerate the radical. The nitroxide radical is converted into an aminoxy anion by one-electron reduction, which is oxidized to regenerate the radical. Therefore, the nitroxide radical can function as a p-type counter electrode reactant or an n-type counter electrode reactant. In addition, oxoammonium cation has a high oxidation ability and can function as a mediator because it can oxidize leuco dyes and the like.

Figure 2010085570
Figure 2010085570

N−オキシル誘導体は、電解質液中に含有されていても、電極表面上に固定化されていてもよい。電極表面上に固定化する方法は、N−オキシル誘導体に電極表面と化学吸着または物理吸着する基を導入する方法やN−オキシル誘導体をポリマー化して電極表面上に薄膜を形成する方法などが挙げられる。尚、N−オキシル誘導体はN−オキシルラジカルの状態で添加しても良く、またN−ヒドロキシ化合物の状態、更にはオキソアンモニウムカチオンの状態で添加しても良い。   The N-oxyl derivative may be contained in the electrolyte solution or may be immobilized on the electrode surface. Examples of the method of immobilizing on the electrode surface include a method of introducing a group that chemically or physically adsorbs with the electrode surface into the N-oxyl derivative, a method of polymerizing the N-oxyl derivative to form a thin film on the electrode surface, and the like. It is done. The N-oxyl derivative may be added in the form of an N-oxyl radical, or may be added in the form of an N-hydroxy compound, and further in the form of an oxoammonium cation.

N−オキシル誘導体としては、TEMPO(2,2,6,6−テトラメチルピペリジニル−N−オキシル)をはじめとして、各種置換基を置換した誘導体が市販されている。また、公知の文献に従って、ポリマーを含め、各種誘導体を容易に合成することができる。   As N-oxyl derivatives, derivatives substituted with various substituents such as TEMPO (2,2,6,6-tetramethylpiperidinyl-N-oxyl) are commercially available. In addition, various derivatives including polymers can be easily synthesized according to known literature.

一般に、ニトロキシドラジカルのα位炭素に水素が置換している場合、容易にヒドロキシアミンとニトロンへ不均化してしまうことが知られている。このため、TEMPOのN−オキシル基α位の4つのメチル基は、安定ラジカルとして存在する上での必須の構造と言えるが、逆にこれら4つのメチル基の立体障害によって、反応性が落ちる場合がある。これら活性低下を引き起こさない点で、アザアダマンタンN−オキシル誘導体、或いはアザビシクロN−オキシル誘導体が好ましい。   In general, it is known that when hydrogen is substituted on the α-position carbon of the nitroxide radical, it is easily disproportionated to hydroxyamine and nitrone. For this reason, the four methyl groups at the N-oxyl group α-position of TEMPO can be said to be indispensable structures when present as stable radicals, but conversely, when the reactivity falls due to the steric hindrance of these four methyl groups. There is. An azaadamantane N-oxyl derivative or an azabicyclo N-oxyl derivative is preferred in that it does not cause a decrease in activity.

次に、N−ヒドロキシフタルイミド誘導体、ヒドロキサム酸誘導体等について説明する。下記スキームに示すように、N−ヒドロキシフタルイミド(NHPI)の電極酸化により生じたフタルイミドN−オキシル(PINO)は、2級アルコールを酸化してケトンを生成する。即ち、NHPIが酸化メディエーターとして機能することが報告されている(Chem.Commun.,1983,479.)。この例から分かるように、NHPI/PINOの酸化還元対は、本発明の電気化学デバイスにおいても、対極反応物質或いはメディエーターとして機能することが理解されよう。またNHPI同様、ヒドロキサム酸誘導体、トリヒドロキシイミノシアヌル酸(THICA)も、プロモーターとして用いることができる。   Next, N-hydroxyphthalimide derivatives, hydroxamic acid derivatives and the like will be described. As shown in the following scheme, phthalimide N-oxyl (PINO) generated by electrode oxidation of N-hydroxyphthalimide (NHPI) oxidizes a secondary alcohol to produce a ketone. That is, it has been reported that NHPI functions as an oxidation mediator (Chem. Commun., 1983, 479.). As can be seen from this example, it is understood that the redox couple of NHPI / PINO also functions as a counter electrode reactant or mediator in the electrochemical device of the present invention. As with NHPI, hydroxamic acid derivatives and trihydroxyimino cyanuric acid (THICA) can also be used as promoters.

これらの化合物を用いて、本発明の電気化学デバイスを作製する場合、N−OHの状態で添加することが好ましい。N−OHの状態で電気化学デバイスを作製した後、電気化学デバイスを駆動させて酸化をすることでラジカルが生成する。   When the electrochemical device of the present invention is produced using these compounds, it is preferably added in the state of N—OH. After producing an electrochemical device in the state of N—OH, radicals are generated by driving the electrochemical device to oxidize.

Figure 2010085570
Figure 2010085570

上記1)の範疇で示されるプロモーターとしては、下記一般式(M1)で表すことができ、下記一般式(M2)〜(M6)で表されるプロモーターが好ましい。特に、一般式(M6)で表される多環式N−オキシル誘導体が好ましい。尚、一般式(M1)〜(M5)で表されるプロモーターは各種市販されており、容易に入手することができる。また公知の文献に従って、各種誘導体を容易に合成することができる。一般式(M6)で示されるプロモーターは、J.Am.Chem.Soc.,128,8412(2006)及びTetrahedron Letters 49 (2008) 48−52を参考として合成することができる。   The promoter shown in the category of 1) can be represented by the following general formula (M1), and promoters represented by the following general formulas (M2) to (M6) are preferable. In particular, a polycyclic N-oxyl derivative represented by the general formula (M6) is preferable. Various promoters represented by the general formulas (M1) to (M5) are commercially available and can be easily obtained. Various derivatives can be easily synthesized according to known literature. The promoter represented by the general formula (M6) is J.P. Am. Chem. Soc. , 128, 8412 (2006) and Tetrahedron Letters 49 (2008) 48-52.

また、これらをポリマー化したプロモーターは、例えば、特開2004−227946号公報、同2004−228008号公報、同2006−73240号公報、同2007−35375号公報、同2007−70384号公報、同2007−184227号公報、同2007−298713号公報等を参考にして合成することができる。   Further, promoters obtained by polymerizing these are disclosed in, for example, JP-A Nos. 2004-227946, 2004-228008, 2006-73240, 2007-35375, 2007-70384, and 2007. -184227, 2007-298713, and the like.

はじめに、一般式(M1)で表される化合物について説明する。   First, the compound represented by general formula (M1) is demonstrated.

Figure 2010085570
Figure 2010085570

上記一般式(M1)において、Rm11及びRm12は各々独立に置換基を有しても良い脂肪族炭化水素基、芳香族炭化水素基、複素環基若しくは>C=O、>C=S、>C=N−Rm13を介して窒素原子と結合する基を表す。Rm13は水素原子、若しくは置換基を有しても良い脂肪族炭化水素基、芳香族炭化水素基または複素環基を表す。また、Rm11及びRm12は互いに連結して、環状構造を形成しても良い。 In the general formula (M1), Rm 11 and Rm 12 are each independently an aliphatic hydrocarbon group, an aromatic hydrocarbon group, a heterocyclic group or>C═O,> C═S, which may have a substituent. ,> C = N—Rm represents a group bonded to a nitrogen atom via 13 . Rm 13 represents a hydrogen atom or an aliphatic hydrocarbon group, an aromatic hydrocarbon group or a heterocyclic group which may have a substituent. Rm 11 and Rm 12 may be connected to each other to form a cyclic structure.

脂肪族炭化水素基には、鎖状及び環状のものが包含され、鎖状のものには直鎖状のもの及び分岐状のものが包含される。このような脂肪族炭化水素基には、メチル、エチル、ビニル、プロピル、イソプロピル、プロペニル、ブチル、iso−ブチル、tert−ブチル、ペンチル、イソペンチル、ネオペンチル、ヘキシル、iso−ヘキシル、シクロヘキシル、シクロヘキセニル、オクチル、iso−オクチル、シクロオクチル、2,3−ジメチル−2−ブチル等の各基が挙げられる。   The aliphatic hydrocarbon group includes chain and cyclic groups, and the chain group includes linear and branched groups. Such aliphatic hydrocarbon groups include methyl, ethyl, vinyl, propyl, isopropyl, propenyl, butyl, iso-butyl, tert-butyl, pentyl, isopentyl, neopentyl, hexyl, iso-hexyl, cyclohexyl, cyclohexenyl, Examples include octyl, iso-octyl, cyclooctyl, 2,3-dimethyl-2-butyl and the like.

芳香族炭化水素基としては、フェニル基、ナフチル基等が挙げられ、複素環基としては、ピリジル基、チアゾリル基、オキサゾリル基、イミダゾリル基、フリル基、ピロリル基、ピラジニル基、ピリミジニル基、ピリダジニル基、セレナゾリル基、スルホラニル基、ピペリジニル基、ピラゾリル基、テトラゾリル基、モルフォリノ基等が挙げられる。   Examples of the aromatic hydrocarbon group include a phenyl group and a naphthyl group. Examples of the heterocyclic group include a pyridyl group, a thiazolyl group, an oxazolyl group, an imidazolyl group, a furyl group, a pyrrolyl group, a pyrazinyl group, a pyrimidinyl group, and a pyridazinyl group. , Serenazolyl group, sulfolanyl group, piperidinyl group, pyrazolyl group, tetrazolyl group, morpholino group and the like.

これら置換基は更に置換基を有していても良い。それらの置換基には、特に制限は無く例えば、アルキル基(例えば、メチル基、エチル基、プロピル基、イソプロピル基、tert−ブチル基、ペンチル基、ヘキシル基、オクチル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基等)、シクロアルキル基(例えば、シクロプロピル基、シクロペンチル基、シクロヘキシル基等)、アルケニル基(例えば、ビニル基、アリル基、ブテニル基、オクテニル基等)、シクロアルケニル基(例えば、2−シクロペンテン−1−イル基、2−シクロヘキセン−1−イル基等)、アルキニル基(例えば、プロパルギル基、エチニル基、トリメチルシリルエチニル基等)、アリール基(例えば、フェニル基、ナフチル基、p−トリル基、m−クロロフェニル基、o−ヘキサデカノイルアミノフェニル基等)、複素環基(例えば、ピリジル基、チアゾリル基、オキサゾリル基、イミダゾリル基、フリル基、ピロリル基、ピラジニル基、ピリミジニル基、ピリダジニル基、セレナゾリル基、スルホラニル基、ピペリジニル基、ピラゾリル基、テトラゾリル基、モルフォリノ基等)、複素環オキシ基(例えば、1−フェニルテトラゾール−5−オキシ基、2−テトラヒドロピラニルオキシ基、ピリジルオキシ基、チアゾリルオキシ基、オキサゾリルオキシ基、イミダゾリルオキシ基等)、ハロゲン原子(例えば、塩素原子、臭素原子、ヨウ素原子、フッ素原子等)、アルコキシ基(例えば、メトキシ基、エトキシ基、プロピルオキシ基、tert−ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、オクチルオキシ基、ドデシルオキシ基等)、シクロアルコキシ基(例えば、シクロペンチルオキシ基、シクロヘキシルオキシ基等)、アリールオキシ基(例えば、フェノキシ基、2−ナフチルオキシ基、2−メチルフェノキシ基、4−tert−ブチルフェノキシ基、3−ニトロフェノキシ基、2−テトラデカノイルアミノフェノキシ基等)、アルキルチオ基(例えば、メチルチオ基、エチルチオ基、プロピルチオ基、ペンチルチオ基、ヘキシルチオ基、オクチルチオ基、ドデシルチオ基等)、シクロアルキルチオ基(例えば、シクロペンチルチオ基、シクロヘキシルチオ基等)、アリールチオ基(例えば、フェニルチオ基、1−ナフチルチオ基等)、複素環チオ基(例えば、ピリジルチオ基、チアゾリルチオ基、オキサゾリルチオ基、イミダゾリルチオ基、フリルチオ基、ピロリルチオ基等)、アルコキシカルボニル基(例えば、メトキシカルボニル基、エトキシカルボニル基、ブトキシカルボニル基、オクチルオキシカルボニル基、ドデシルオキシカルボニル基等)、アリールオキシカルボニル基(例えば、フェニルオキシカルボニル基、ナフチルオキシカルボニル基等)、スルファモイル基(例えば、アミノスルホニル基、メチルアミノスルホニル基、ジメチルアミノスルホニル基、ブチルアミノスルホニル基、ヘキシルアミノスルホニル基、シクロヘキシルアミノスルホニル基、オクチルアミノスルホニル基、ドデシルアミノスルホニル基、フェニルアミノスルホニル基、ナフチルアミノスルホニル基、2−ピリジルアミノスルホニル基、モルフォリノスルホニル基、ピロリジノスルホニル基等)、ウレイド基(例えば、メチルウレイド基、エチルウレイド基、ペンチルウレイド基、シクロヘキシルウレイド基、オクチルウレイド基、ドデシルウレイド基、フェニルウレイド基、ナフチルウレイド基、2−ピリジルアミノウレイド基等)、アシル基(例えば、アセチル基、エチルカルボニル基、プロピルカルボニル基、ペンチルカルボニル基、シクロヘキシルカルボニル基、オクチルカルボニル基、2−エチルヘキシルカルボニル基、ドデシルカルボニル基、フェニルカルボニル基、ナフチルカルボニル基、ピリジルカルボニル基等)、アシルオキシ基(例えば、ホルミルオキシ基、アセチルオキシ基、ピバロイルオキシ基、ステアロイルオキシ基、ベンゾイルオキシ基、p−メトキシフェニルカルボニルオキシ基、エチルカルボニルオキシ基、ブチルカルボニルオキシ基、オクチルカルボニルオキシ基、ドデシルカルボニルオキシ基、フェニルカルボニルオキシ基等)、アシルアミノ基(例えば、アセチルアミノ基、ベンゾイルアミノ基、ホルミルアミノ基、ピバロイルアミノ基、ラウロイルアミノ基、3,4,5−トリ−n−オクチルオキシフェニルカルボニルアミノ基等)、カルバモイル基(例えば、アミノカルボニル基、メチルアミノカルボニル基、ジメチルアミノカルボニル基、プロピルアミノカルボニル基、ペンチルアミノカルボニル基、シクロヘキシルアミノカルボニル基、オクチルアミノカルボニル基、2−エチルヘキシルアミノカルボニル基、ドデシルアミノカルボニル基、フェニルアミノカルボニル基、ナフチルアミノカルボニル基、2−ピリジルアミノカルボニル基、モルフォリノカルボニル基、ピペラジノカルボニル基等)、アルカンスルフィニル基またはアリールスルフィニル基(例えば、メタンスルフィニル基、エタンスルフィニル基、ブタンスルフィニル基、シクロヘキサンスルフィニル基、2−エチルヘキサンスルフィニル基、ドデカンスルフィニル基、フェニルスルフィニル基、ナフチルスルフィニル基、2−ピリジルスルフィニル基等)、アルカンスルホニル基またはアリールスルホニル基(例えば、メタンスルホニル基、エタンスルホニル基、ブタンスルホニル基、シクロヘキサンスルホニル基、2−エチルヘキサンスルホニル基、ドデカンスルホニル基、フェニルスルホニル基、ナフチルスルホニル基、2−ピリジルスルホニル基等)、アミノ基(例えば、アミノ基、メチルアミノ基、エチルアミノ基、ジメチルアミノ基、ブチルアミノ基、シクロペンチルアミノ基、2−エチルヘキシルアミノ基、ドデシルアミノ基、アニリノ基、N−メチルアニリノ基、ジフェニルアミノ基、ナフチルアミノ基、2−ピリジルアミノ基等)、シリルオキシ基(例えば、トリメチルシリルオキシ基、tert−ブチルジメチルシリルオキシ基等)、アミノカルボニルオキシ基(例えば、N,N−ジメチルカルバモイルオキシ基、N,N−ジエチルカルバモイルオキシ基、モルホリノカルボニルオキシ基、N,N−ジ−n−オクチルアミノカルボニルオキシ基、N−n−オクチルカルバモイルオキシ基等)、アルコキシカルボニルオキシ基(例えば、メトキシカルボニルオキシ基、エトキシカルボニルオキシ基、tert−ブトキシカルボニルオキシ基、n−オクチルカルボニルオキシ基等)、アリールオキシカルボニルオキシ基(例えば、フェノキシカルボニルオキシ基、p−メトキシフェノキシカルボニルオキシ基、p−n−ヘキサデシルオキシフェノキシカルボニルオキシ基等)、アルコキシカルボニルアミノ基(例えば、メトキシカルボニルアミノ基、エトキシカルボニルアミノ基、tert−ブトキシカルボニルアミノ基、n−オクタデシルオキシカルボニルアミノ基、N−メチル−メトキシカルボニルアミノ基等)、アリールオキシカルボニルアミノ基(例えば、フェノキシカルボニルアミノ基、p−クロロフェノキシカルボニルアミノ基、m−n−オクチルオキシフェノキシカルボニルアミノ基等)、スルファモイルアミノ基(例えば、スルファモイルアミノ基、N,N−ジメチルアミノスルホニルアミノ基、N−n−オクチルアミノスルホニルアミノ基等)、メルカプト基、アリールアゾ基(例えば、フェニルアゾ基、ナフチルアゾ基、p−クロロフェニルアゾ基等)、複素環アゾ基(例えば、ピリジルアゾ基、チアゾリルアゾ基、オキサゾリルアゾ基、イミダゾリルアゾ基、フリルアゾ基、ピロリルアゾ基、5−エチルチオ−1,3,4−チアジアゾール−2−イルアゾ基等)、イミノ基(例えば、N−スクシンイミド−1−イル基、N−フタルイミド−1−イル基等)、ホスフィノ基(例えば、ジメチルホスフィノ基、ジフェニルホスフィノ基、メチルフェノキシホスフィノ基等)、ホスフィニル基(例えば、ホスフィニル基、ジオクチルオキシホスフィニル基、ジエトキシホスフィニル基等)、ホスフィニルオキシ基(例えば、ジフェノキシホスフィニルオキシ基、ジオクチルオキシホスフィニルオキシ基等)、ホスフィニルアミノ基(例えば、ジメトキシホスフィニルアミノ基、ジメチルアミノホスフィニルアミノ基等)、シリル基(例えば、トリメチルシリル基、tert−ブチルジメチルシリル基、フェニルジメチルシリル基等)、シアノ基、ニトロ基、ヒドロキシル基、スルホ基、カルボキシル基等が挙げられる。   These substituents may further have a substituent. These substituents are not particularly limited, and examples thereof include alkyl groups (for example, methyl group, ethyl group, propyl group, isopropyl group, tert-butyl group, pentyl group, hexyl group, octyl group, dodecyl group, tridecyl group, Tetradecyl group, pentadecyl group etc.), cycloalkyl group (eg cyclopropyl group, cyclopentyl group, cyclohexyl group etc.), alkenyl group (eg vinyl group, allyl group, butenyl group, octenyl group etc.), cycloalkenyl group (eg , 2-cyclopenten-1-yl group, 2-cyclohexen-1-yl group, etc.), alkynyl group (eg, propargyl group, ethynyl group, trimethylsilylethynyl group, etc.), aryl group (eg, phenyl group, naphthyl group, p) -Tolyl group, m-chlorophenyl group, o-hexadecanoylamino Phenyl group, etc.), heterocyclic group (for example, pyridyl group, thiazolyl group, oxazolyl group, imidazolyl group, furyl group, pyrrolyl group, pyrazinyl group, pyrimidinyl group, pyridazinyl group, selenazolyl group, sulfolanyl group, piperidinyl group, pyrazolyl group, Tetrazolyl group, morpholino group, etc.), heterocyclic oxy group (for example, 1-phenyltetrazol-5-oxy group, 2-tetrahydropyranyloxy group, pyridyloxy group, thiazolyloxy group, oxazolyloxy group, imidazolyloxy group, etc.) ), Halogen atoms (for example, chlorine atom, bromine atom, iodine atom, fluorine atom, etc.), alkoxy groups (for example, methoxy group, ethoxy group, propyloxy group, tert-butoxy group, pentyloxy group, hexyloxy group, octyl) Oxy group, dodecyloxy Group), cycloalkoxy group (for example, cyclopentyloxy group, cyclohexyloxy group, etc.), aryloxy group (for example, phenoxy group, 2-naphthyloxy group, 2-methylphenoxy group, 4-tert-butylphenoxy group, 3 -Nitrophenoxy group, 2-tetradecanoylaminophenoxy group, etc.), alkylthio group (for example, methylthio group, ethylthio group, propylthio group, pentylthio group, hexylthio group, octylthio group, dodecylthio group, etc.), cycloalkylthio group (for example, Cyclopentylthio group, cyclohexylthio group, etc.), arylthio group (for example, phenylthio group, 1-naphthylthio group, etc.), heterocyclic thio group (for example, pyridylthio group, thiazolylthio group, oxazolylthio group, imidazolylthio group, furylthio group, pinyl) Rorylthio group, etc.), alkoxycarbonyl group (eg, methoxycarbonyl group, ethoxycarbonyl group, butoxycarbonyl group, octyloxycarbonyl group, dodecyloxycarbonyl group, etc.), aryloxycarbonyl group (eg, phenyloxycarbonyl group, naphthyloxycarbonyl) Group), sulfamoyl group (for example, aminosulfonyl group, methylaminosulfonyl group, dimethylaminosulfonyl group, butylaminosulfonyl group, hexylaminosulfonyl group, cyclohexylaminosulfonyl group, octylaminosulfonyl group, dodecylaminosulfonyl group, phenylamino) Sulfonyl group, naphthylaminosulfonyl group, 2-pyridylaminosulfonyl group, morpholinosulfonyl group, pyrrolidinosulfonyl group, etc.), ureido (For example, methylureido group, ethylureido group, pentylureido group, cyclohexylureido group, octylureido group, dodecylureido group, phenylureido group, naphthylureido group, 2-pyridylaminoureido group, etc.), acyl group (for example, acetyl group Ethylcarbonyl group, propylcarbonyl group, pentylcarbonyl group, cyclohexylcarbonyl group, octylcarbonyl group, 2-ethylhexylcarbonyl group, dodecylcarbonyl group, phenylcarbonyl group, naphthylcarbonyl group, pyridylcarbonyl group, etc.), acyloxy group (for example, Formyloxy, acetyloxy, pivaloyloxy, stearoyloxy, benzoyloxy, p-methoxyphenylcarbonyloxy, ethylcarbonyloxy, Rucarbonyloxy group, octylcarbonyloxy group, dodecylcarbonyloxy group, phenylcarbonyloxy group, etc.), acylamino group (for example, acetylamino group, benzoylamino group, formylamino group, pivaloylamino group, lauroylamino group, 3, 4, 5-tri-n-octyloxyphenylcarbonylamino group), carbamoyl group (for example, aminocarbonyl group, methylaminocarbonyl group, dimethylaminocarbonyl group, propylaminocarbonyl group, pentylaminocarbonyl group, cyclohexylaminocarbonyl group, octyl) Aminocarbonyl group, 2-ethylhexylaminocarbonyl group, dodecylaminocarbonyl group, phenylaminocarbonyl group, naphthylaminocarbonyl group, 2-pyridylaminocarbonyl group , Morpholinocarbonyl group, piperazinocarbonyl group, etc.), alkanesulfinyl group or arylsulfinyl group (for example, methanesulfinyl group, ethanesulfinyl group, butanesulfinyl group, cyclohexanesulfinyl group, 2-ethylhexanesulfinyl group, dodecanesulfinyl group) , Phenylsulfinyl group, naphthylsulfinyl group, 2-pyridylsulfinyl group, etc.), alkanesulfonyl group or arylsulfonyl group (for example, methanesulfonyl group, ethanesulfonyl group, butanesulfonyl group, cyclohexanesulfonyl group, 2-ethylhexanesulfonyl group, Dodecanesulfonyl group, phenylsulfonyl group, naphthylsulfonyl group, 2-pyridylsulfonyl group, etc.), amino group (for example, amino group, methylamino group, Tilamino group, dimethylamino group, butylamino group, cyclopentylamino group, 2-ethylhexylamino group, dodecylamino group, anilino group, N-methylanilino group, diphenylamino group, naphthylamino group, 2-pyridylamino group), silyloxy group (Eg, trimethylsilyloxy group, tert-butyldimethylsilyloxy group, etc.), aminocarbonyloxy group (eg, N, N-dimethylcarbamoyloxy group, N, N-diethylcarbamoyloxy group, morpholinocarbonyloxy group, N, N -Di-n-octylaminocarbonyloxy group, Nn-octylcarbamoyloxy group, etc.), alkoxycarbonyloxy group (for example, methoxycarbonyloxy group, ethoxycarbonyloxy group, tert-butoxycarbonyl) Oxy group, n-octylcarbonyloxy group, etc.), aryloxycarbonyloxy group (for example, phenoxycarbonyloxy group, p-methoxyphenoxycarbonyloxy group, pn-hexadecyloxyphenoxycarbonyloxy group, etc.), alkoxycarbonylamino Groups (for example, methoxycarbonylamino group, ethoxycarbonylamino group, tert-butoxycarbonylamino group, n-octadecyloxycarbonylamino group, N-methyl-methoxycarbonylamino group, etc.), aryloxycarbonylamino groups (for example, phenoxycarbonyl) Amino group, p-chlorophenoxycarbonylamino group, mn-octyloxyphenoxycarbonylamino group, etc.), sulfamoylamino group (for example, sulfamoylamino group, N, N -Dimethylaminosulfonylamino group, Nn-octylaminosulfonylamino group, etc.), mercapto group, arylazo group (eg, phenylazo group, naphthylazo group, p-chlorophenylazo group, etc.), heterocyclic azo group (eg, pyridylazo group) , Thiazolylazo group, oxazolylazo group, imidazolylazo group, furylazo group, pyrrolylazo group, 5-ethylthio-1,3,4-thiadiazol-2-ylazo group, etc., imino group (for example, N-succinimido-1-yl group, N-phthalimido-1-yl group, etc.), phosphino group (for example, dimethylphosphino group, diphenylphosphino group, methylphenoxyphosphino group, etc.), phosphinyl group (for example, phosphinyl group, dioctyloxyphosphinyl group, di) Ethoxyphosphinyl group, etc.), phosphine Nyloxy group (for example, diphenoxyphosphinyloxy group, dioctyloxyphosphinyloxy group, etc.), phosphinylamino group (for example, dimethoxyphosphinylamino group, dimethylaminophosphinylamino group, etc.), silyl group (For example, trimethylsilyl group, tert-butyldimethylsilyl group, phenyldimethylsilyl group, etc.), cyano group, nitro group, hydroxyl group, sulfo group, carboxyl group and the like can be mentioned.

一般式(M1)で表される化合物は、これら置換基で連結された二量体、三量体等の多量体であっても良く、また重合体で有ってもよい。   The compound represented by the general formula (M1) may be a multimer such as a dimer or trimer linked by these substituents, or may be a polymer.

次いで、一般式(M2)で表される化合物について説明する。   Next, the compound represented by formula (M2) will be described.

Figure 2010085570
Figure 2010085570

上記一般式(M2)において、Rm21、Rm22、Rm23、Rm24は、各々独立に水素原子若しくは置換基を有しても良い脂肪族炭化水素基、芳香族炭化水素基、または複素環基を表す。これら脂肪族炭化水素基、芳香族炭化水素基、複素環基については、前記一般式(M1)におけるそれぞれと同義である。 In the general formula (M2), Rm 21 , Rm 22 , Rm 23 , and Rm 24 are each independently an aliphatic hydrocarbon group, an aromatic hydrocarbon group, or a heterocyclic ring that may have a hydrogen atom or a substituent. Represents a group. These aliphatic hydrocarbon group, aromatic hydrocarbon group, and heterocyclic group have the same meanings as those in formula (M1).

は環状構造を形成するのに必要な原子群を表し、5員環若しくは6員環を形成するのが好ましい。Zは更に置換基を有していても良く、それらの置換基としては、前記一般式(M1)で例示したのと同様の置換基が挙げられる。また、Rm21〜Rm24及びZを構成する原子は互いに連結して、環状構造を形成しても良く、例えば、窒素原子と共にアザノルボルネン構造、アザアダマンタン構造等の多環式構造を取っても良い。 Z 1 represents an atomic group necessary for forming a cyclic structure, and preferably forms a 5-membered ring or a 6-membered ring. Z 1 may further have a substituent, and examples of the substituent include the same substituents as exemplified in the general formula (M1). The atoms constituting Rm 21 to Rm 24 and Z 1 may be linked to each other to form a cyclic structure. For example, together with the nitrogen atom, a polycyclic structure such as an azanorbornene structure or an azaadamantane structure is taken. Also good.

一般式(M2)で表される化合物の環構造としては、ピペリジン環、若しくはピロリジン環、アザアダマンタン環が好ましい。   The ring structure of the compound represented by the general formula (M2) is preferably a piperidine ring, a pyrrolidine ring, or an azaadamantane ring.

次いで、一般式(M3)で表される化合物について説明する。   Next, the compound represented by formula (M3) will be described.

Figure 2010085570
Figure 2010085570

本発明においては、本発明に係るN−オキシル誘導体が、一般式(M3)で表される化合物であることが好ましい態様の1つである。   In this invention, it is one of the preferable aspects that the N-oxyl derivative based on this invention is a compound represented by general formula (M3).

上記一般式(M3)において、Rm31は直接、若しくは酸素原子、窒素原子、硫黄原子を介してカルボニル炭素原子に置換する、置換基を有してもよい脂肪族炭化水素基、芳香族炭化水素基、または複素環基を表し、Rm32は置換基を有しても良い脂肪族炭化水素基、芳香族炭化水素基、または複素環基を表す。これら脂肪族炭化水素基、芳香族炭化水素基、複素環基については、一般式(M1)におけるそれぞれと同義である。また、Rm31及びRm32は互いに連結して、環状構造を形成してもよい。 In the general formula (M3), Rm 31 is an aliphatic hydrocarbon group or aromatic hydrocarbon which may be substituted directly or substituted with a carbonyl carbon atom via an oxygen atom, a nitrogen atom or a sulfur atom. Rm 32 represents an aliphatic hydrocarbon group, an aromatic hydrocarbon group, or a heterocyclic group which may have a substituent. These aliphatic hydrocarbon group, aromatic hydrocarbon group, and heterocyclic group have the same meanings as those in formula (M1). Rm 31 and Rm 32 may be connected to each other to form a cyclic structure.

一般式(M3)において、Rm32は芳香族炭化水素基が好ましく、特に置換基を有しても良いフェニル基が好ましい。フェニル基上の置換基としては、シアノ基、アルコキシカルボニル基、トリフルオロメチル基等の電子吸引性基が好ましい。Rm31としては、カルボニル炭素原子に直接結合したフェニル基若しくは脂肪族炭化水素基が好ましく、特に、分岐アルキル基及びシクロアルキル基が好ましい。なお、一般式(M3)で表される化合物はN−OHの状態で添加し、電気化学デバイスを作製するのが好ましい。 In the general formula (M3), Rm 32 is preferably an aromatic hydrocarbon group, particularly preferably a phenyl group which may have a substituent. The substituent on the phenyl group is preferably an electron-withdrawing group such as a cyano group, an alkoxycarbonyl group, or a trifluoromethyl group. Rm 31 is preferably a phenyl group or an aliphatic hydrocarbon group directly bonded to a carbonyl carbon atom, particularly preferably a branched alkyl group or a cycloalkyl group. In addition, it is preferable to add the compound represented by general formula (M3) in the state of N-OH, and produce an electrochemical device.

次いで、一般式(M4)で表される化合物について説明する。   Next, the compound represented by formula (M4) will be described.

Figure 2010085570
Figure 2010085570

本発明においては、本発明に係るN−オキシル誘導体が、上記一般式(M4)で表される化合物であることが好ましい態様の1つである。   In this invention, it is one of the preferable aspects that the N-oxyl derivative which concerns on this invention is a compound represented by the said general formula (M4).

上記一般式(M4)において、Zは環状構造を形成するのに必要な原子群を表し、5員環若しくは6員環を形成するのが好ましい。Zは更に置換基を有していても良く、それらの置換基としては、一般式(M1)で例示した置換基が挙げられる。また、Zは縮合環で有っても良い。なお、一般式(M4)で表される化合物はN−OHの状態で添加し、電気化学デバイスを作製するのが好ましい。 In the above general formula (M4), Z 2 represents an atomic group necessary for forming a cyclic structure, and preferably forms a 5-membered ring or a 6-membered ring. Z 2 may further have a substituent, and examples of the substituent include the substituents exemplified in Formula (M1). Z 2 may be a condensed ring. Note that the compound represented by the general formula (M4) is preferably added in the state of N—OH to produce an electrochemical device.

次いで、一般式(M5)で表される化合物について説明する。   Next, the compound represented by formula (M5) will be described.

Figure 2010085570
Figure 2010085570

本発明においては、本発明に係るN−オキシル誘導体が、前記一般式(M5)で表される化合物であることが好ましい態様の1つである。   In this invention, it is one of the preferable aspects that the N-oxyl derivative which concerns on this invention is a compound represented by the said general formula (M5).

上記一般式(M5)において、Rm51〜Rm55は各々独立に置換基を有しても良い脂肪族炭化水素基、芳香族炭化水素基、または複素環基を表す。これら脂肪族炭化水素基、芳香族炭化水素基、複素環基については、一般式(M1)におけるそれぞれと同義である。 In the general formula (M5), Rm 51 to Rm 55 each independently represents an aliphatic hydrocarbon group, an aromatic hydrocarbon group, or a heterocyclic group which may have a substituent. These aliphatic hydrocarbon group, aromatic hydrocarbon group, and heterocyclic group have the same meanings as those in formula (M1).

一般式(M5)において、Rm51は芳香族炭化水素基が好ましく、特に置換基を有しても良いフェニル基が好ましい。フェニル基上の置換基としてはシアノ基、アルコキシカルボニル基、トリフルオロメチル基等の電子吸引性基が好ましい。Rm52〜Rm55としては、炭素数1〜6のアルキル基が好ましく、メチル基が特に好ましい。 In the general formula (M5), Rm 51 is preferably an aromatic hydrocarbon group, particularly preferably a phenyl group which may have a substituent. The substituent on the phenyl group is preferably an electron-withdrawing group such as a cyano group, an alkoxycarbonyl group, or a trifluoromethyl group. The Rm 52 ~Rm 55, preferably an alkyl group having 1 to 6 carbon atoms, a methyl group is particularly preferred.

次いで、一般式(M6)で表される化合物について説明する。   Next, the compound represented by formula (M6) will be described.

Figure 2010085570
Figure 2010085570

上記一般式(M6)において、Rm61及びRm62は各々独立に水素原子若しくは置換基を有しても良い脂肪族炭化水素基を表す。Rm61及びRm62としては、水素原子若しくは、炭素数4以下の直鎖アルキル基が好ましく、Rm61及びRm62の少なくとも一方が水素原子であることが好ましい。 In the general formula (M6), Rm 61 and Rm 62 each independently represent a hydrogen atom or an aliphatic hydrocarbon group which may have a substituent. Rm 61 and Rm 62 are preferably a hydrogen atom or a linear alkyl group having 4 or less carbon atoms, and at least one of Rm 61 and Rm 62 is preferably a hydrogen atom.

、Z及びZは、各々環状構造を形成するのに必要な原子群(例えば、炭素、窒素、酸素、イオウ等)を表し、各々5員環若しくは6員環を形成するのが好ましい。Z、Z及びZは更に置換基を有していても良い。 Z 3 , Z 4 and Z 5 each represent an atomic group necessary for forming a cyclic structure (for example, carbon, nitrogen, oxygen, sulfur, etc.) and each form a 5-membered ring or a 6-membered ring. preferable. Z 3 , Z 4 and Z 5 may further have a substituent.

nは0または1を表すが、n=0の時、一般式(M6)はビシクロ化合物を表し、n=1の場合は、トリシクロ化合物を表す。   n represents 0 or 1, but when n = 0, the general formula (M6) represents a bicyclo compound, and when n = 1, a tricyclo compound.

一般式(M6)で表される化合物としては、n=1が好ましく、特に、アザアダマンタン誘導体が好ましい。   As the compound represented by the general formula (M6), n = 1 is preferable, and an azaadamantane derivative is particularly preferable.

以下に、本発明で用いることのできるプロモーターの具体例を示すが、これらに限定されるものでは無い。   Specific examples of promoters that can be used in the present invention are shown below, but are not limited thereto.

Figure 2010085570
Figure 2010085570

Figure 2010085570
Figure 2010085570

Figure 2010085570
Figure 2010085570

Figure 2010085570
Figure 2010085570

Figure 2010085570
Figure 2010085570

Figure 2010085570
Figure 2010085570

〔多孔質白色散乱層〕
本発明においては、表示コントラスト及び白表示反射率をより高める観点から多孔質白色散乱層を有することができる。
(Porous white scattering layer)
In the present invention, a porous white scattering layer can be provided from the viewpoint of further enhancing display contrast and white display reflectance.

本発明に適用可能な多孔質白色散乱層は、電解質溶媒に実質的に溶解しない水系高分子と白色顔料との水混和物を塗布乾燥して形成することができる。   The porous white scattering layer applicable to the present invention can be formed by applying and drying an aqueous mixture of an aqueous polymer and a white pigment that is substantially insoluble in the electrolyte solvent.

本発明でいう電解質溶媒に実質的に溶解しないとは、−20℃から120℃の温度において、電解質溶媒1kgあたりの溶解量が0g以上、10g以下である状態と定義し、重量測定法、液体クロマトグラムやガスクロマトグラムによる成分定量法等の公知の方法により溶解量を求めることができる。   In the present invention, “substantially insoluble in an electrolyte solvent” is defined as a state in which the dissolved amount per kg of electrolyte solvent is 0 g or more and 10 g or less at a temperature of −20 ° C. to 120 ° C. The amount of dissolution can be determined by a known method such as a component determination method using a chromatogram or a gas chromatogram.

本発明において、電解質溶媒に実質的に溶解しない水系高分子としては、水溶性高分子、水系溶媒に分散した高分子を挙げることができる。水溶性化合物としては、ゼラチン、ゼラチン誘導体等の蛋白質またはセルロース誘導体、澱粉、アラビアゴム、デキストラン、プルラン、カラギーナン等の多糖類のような天然化合物や、ポリビニルアルコール、ポリエチレングリコール、ポリビニルピロリドン、アクリルアミド重合体やそれらの誘導体等の合成高分子化合物が挙げられる。ゼラチン誘導体としては、アセチル化ゼラチン、フタル化ゼラチン、ポリビニルアルコール誘導体としては、末端アルキル基変性ポリビニルアルコール、末端メルカプト基変性ポリビニルアルコール、セルロース誘導体としては、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、カルボキシメチルセルロース等が挙げられる。更に、リサーチ・ディスクロージャー及び特開昭64−13546号の(71)頁〜(75)頁に記載されたもの、また、米国特許第4,960,681号、特開昭62−245260号等に記載の高吸水性ポリマー、すなわち−COOMまたは−SOM(Mは水素原子またはアルカリ金属)を有するビニルモノマーの単独重合体またはこのビニルモノマー同士もしくは他のビニルモノマー(例えばメタクリル酸ナトリウム、メタクリル酸アンモニウム、アクリル酸カリウム等)との共重合体も使用される。これらのバインダーは2種以上組み合わせて用いることもできる。 In the present invention, examples of the water-based polymer that does not substantially dissolve in the electrolyte solvent include a water-soluble polymer and a polymer dispersed in the water-based solvent. Examples of water-soluble compounds include proteins such as gelatin and gelatin derivatives, or cellulose derivatives, natural compounds such as starch, gum arabic, dextran, pullulan, and carrageenan polysaccharides, polyvinyl alcohol, polyethylene glycol, polyvinyl pyrrolidone, and acrylamide polymers. And synthetic polymer compounds such as derivatives thereof. As gelatin derivatives, acetylated gelatin, phthalated gelatin, polyvinyl alcohol derivatives as terminal alkyl group-modified polyvinyl alcohol, terminal mercapto group-modified polyvinyl alcohol, and cellulose derivatives include hydroxyethyl cellulose, hydroxypropyl cellulose, carboxymethyl cellulose and the like. It is done. Furthermore, Research Disclosure and those described in pages (71) to (75) of JP-A No. 64-13546, US Pat. No. 4,960,681, JP-A No. 62-245260, etc. superabsorbent polymers described, namely -COOM or -SO 3 M (M is a hydrogen atom or an alkali metal) homopolymer or a vinyl monomer together or with other vinyl monomers (e.g., sodium methacrylate in the vinyl monomer having a methacrylic acid Copolymers with ammonium, potassium acrylate, etc.) are also used. Two or more of these binders can be used in combination.

本発明においては、ポリビニルアルコール、ポリエチレングリコール、ポリビニルピロリドン系化合物を好ましく用いることができる。   In the present invention, polyvinyl alcohol, polyethylene glycol, and polyvinylpyrrolidone compounds can be preferably used.

水系溶媒に分散した高分子としては、天然ゴムラテックス、スチレンブタジエンゴム、ブタジエンゴム、ニトリルゴム、クロロプレンゴム、イソプレンゴム等のラテックス類、ポリイソシアネート系、エポキシ系、アクリル系、シリコン系、ポリウレタン系、尿素系、フェノール系、ホルムアルデヒド系、エポキシ−ポリアミド系、メラミン系、アルキド系樹脂、ビニル系樹脂等を水系溶媒に分散した熱硬化性樹脂を挙げることができる。これらの高分子のうち、特開平10−76621号に記載の水系ポリウレタン樹脂を用いることが好ましい。   Polymers dispersed in an aqueous solvent include latexes such as natural rubber latex, styrene butadiene rubber, butadiene rubber, nitrile rubber, chloroprene rubber, isoprene rubber, polyisocyanate, epoxy, acrylic, silicon, polyurethane, Examples thereof include a thermosetting resin in which urea, phenol, formaldehyde, epoxy-polyamide, melamine, alkyd resin, vinyl resin and the like are dispersed in an aqueous solvent. Of these polymers, it is preferable to use an aqueous polyurethane resin described in JP-A-10-76621.

本発明の水系高分子の平均分子量は、重量平均で10,000〜2,000,000の範囲が好ましく、より好ましくは30,000〜500,000の範囲である。   The average molecular weight of the water-based polymer of the present invention is preferably in the range of 10,000 to 2,000,000, more preferably in the range of 30,000 to 500,000 on a weight average basis.

本発明で適用可能な白色顔料としては、例えば、二酸化チタン(アナターゼ型あるいはルチル型)、硫酸バリウム、炭酸カルシウム、酸化アルミニウム、酸化亜鉛、酸化マグネシウムおよび水酸化亜鉛、水酸化マグネシウム、リン酸マグネシウム、リン酸水素マグネシウム、アルカリ土類金属塩、タルク、カオリン、ゼオライト、酸性白土、ガラス、有機化合物としてポリエチレン、ポリスチレン、アクリル樹脂、アイオノマー、エチレン−酢酸ビニル共重合樹脂、ベンゾグアナミン樹脂、尿素−ホルマリン樹脂、メラミン−ホルマリン樹脂、ポリアミド樹脂などが単体または複合混合で、または粒子中に屈折率を変化させるボイドを有する状態で使用されてもよい。   Examples of the white pigment applicable in the present invention include titanium dioxide (anatase type or rutile type), barium sulfate, calcium carbonate, aluminum oxide, zinc oxide, magnesium oxide and zinc hydroxide, magnesium hydroxide, magnesium phosphate, Magnesium hydrogen phosphate, alkaline earth metal salt, talc, kaolin, zeolite, acidic clay, glass, organic compounds such as polyethylene, polystyrene, acrylic resin, ionomer, ethylene-vinyl acetate copolymer resin, benzoguanamine resin, urea-formalin resin, A melamine-formalin resin, a polyamide resin, or the like may be used alone or in combination, or in a state having voids that change the refractive index in the particles.

本発明では、上記白色粒子の中でも、二酸化チタンが好ましく用いられ、特に無機酸化物(Al、AlO(OH)、SiO等)で表面処理した二酸化チタン、これらの表面処理に加えてトリメチロールエタン、トリエタノールアミン酢酸塩、トリメチルシクロシラン等の有機物処理を施した二酸化チタンがより好ましく用いられる。 In the present invention, among the white particles, titanium dioxide is preferably used. In particular, titanium dioxide surface-treated with an inorganic oxide (Al 2 O 3 , AlO (OH), SiO 2, etc.), in addition to these surface treatments. Titanium dioxide that has been treated with an organic substance such as trimethylolethane, triethanolamine acetate, or trimethylcyclosilane is more preferably used.

これらの白色粒子のうち、高温時の着色防止、屈折率に起因する素子の反射率の観点から、酸化チタンまたは酸化亜鉛を用いることがより好ましい。   Of these white particles, it is more preferable to use titanium oxide or zinc oxide from the viewpoint of coloring prevention at high temperature and the reflectance of the element due to the refractive index.

本発明において、水系化合物と白色顔料との水混和物は、公知の分散方法に従って白色顔料が水中分散された形態が好ましい。水系化合物/白色顔料の混合比は、容積比で1〜0.01が好ましく、より好ましくは、0.3〜0.05の範囲である。   In the present invention, the water mixture of the water-based compound and the white pigment is preferably in a form in which the white pigment is dispersed in water according to a known dispersion method. The mixing ratio of the aqueous compound / white pigment is preferably 1 to 0.01, more preferably 0.3 to 0.05 in terms of volume ratio.

多孔質白色散乱層の膜厚は、5〜50μmの範囲であることが好ましく、より好ましくは10〜30μmの範囲である。   The thickness of the porous white scattering layer is preferably in the range of 5 to 50 μm, more preferably in the range of 10 to 30 μm.

アルコール系溶剤としては、メタノール、エタノール、イソプロパノール等の水との溶解性が高い化合物が好ましく用いられ、水/アルコール系溶剤との混合比は、質量比で0.5〜20の範囲が好ましく、より好ましくは2〜10の範囲である。   As the alcohol solvent, a compound having high solubility in water such as methanol, ethanol, isopropanol is preferably used, and the mixing ratio with the water / alcohol solvent is preferably in the range of 0.5 to 20 by mass ratio, More preferably, it is the range of 2-10.

本発明において、水系化合物と白色顔料との水混和物を塗布する媒体は、電気化学デバイスの対向電極間の構成要素上であればいずれの位置でもよいが、対向電極の少なくとも1方の電極面上に付与することが好ましい。   In the present invention, the medium for applying the water mixture of the water-based compound and the white pigment may be at any position as long as it is on a component between the counter electrodes of the electrochemical device, but at least one electrode surface of the counter electrode. It is preferable to apply on top.

媒体への付与の方法としては、例えば、塗布方式、液噴霧方式、気相を介する噴霧方式として、圧電素子の振動を利用して液滴を飛翔させる方式、例えば、ピエゾ方式のインクジェットヘッドや、突沸を利用したサーマルヘッドを用いて液滴を飛翔させるバブルジェット(登録商標)方式のインクジェットヘッド、また空気圧や液圧により液を噴霧するスプレー方式等が挙げられる。   As a method for applying to a medium, for example, a coating method, a liquid spraying method, a spraying method via a gas phase, a method of flying droplets using vibration of a piezoelectric element, for example, a piezoelectric inkjet head, Examples thereof include a bubble jet (registered trademark) type ink jet head that causes droplets to fly using a thermal head that uses bumping, and a spray type that sprays liquid by air pressure or liquid pressure.

塗布方式としては、公知の塗布方式より適宜選択することができる。例えば、エアードクターコーター、ブレードコーター、ロッドコーター、ナイフコーター、スクイズコーター、含浸コーター、リバースローラーコーター、トランスファーローラーコーター、カーテンコーター、ダブルローラーコーター、スライドホッパーコーター、グラビアコーター、キスロールコーター、ビードコーター、キャストコーター、スプレイコーター、カレンダーコーター、押し出しコーター等が挙げられる。   As a coating method, it can select suitably from a well-known coating method. For example, air doctor coater, blade coater, rod coater, knife coater, squeeze coater, impregnation coater, reverse roller coater, transfer roller coater, curtain coater, double roller coater, slide hopper coater, gravure coater, kiss roll coater, bead coater, Examples include cast coaters, spray coaters, calendar coaters, and extrusion coaters.

媒体上に付与した水系化合物と白色顔料との水混和物の乾燥は、水を蒸発できる方法であればいかなる方法であってもよい。例えば、熱源からの加熱、赤外光を用いた加熱法、電磁誘導による加熱法等が挙げられる。また、水蒸発は減圧下で行ってもよい。   Drying of the water mixture of the aqueous compound and the white pigment applied on the medium may be performed by any method as long as water can be evaporated. For example, heating from a heat source, a heating method using infrared light, a heating method using electromagnetic induction, and the like can be given. Further, water evaporation may be performed under reduced pressure.

本発明でいう多孔質とは、前記水系化合物と白色顔料との水混和物を電極上に塗布乾燥して多孔質の白色散乱物を形成した後、該散乱物上に、銀または銀を化学構造中に含む化合物を含有する電解質液を与えた後に対向電極で挟み込み、対向電極間に電位差を与え、銀の溶解析出反応を生じさせることが可能で、イオン種が電極間で移動可能な貫通状態のことを言う。   Porous as used in the present invention refers to the formation of a porous white scattering material by applying a water admixture of the water-based compound and the white pigment onto the electrode and drying it, and then the silver or silver is chemically treated on the scattering material. After supplying an electrolyte solution containing the compound contained in the structure, it can be sandwiched between opposing electrodes, giving a potential difference between the opposing electrodes, causing a silver dissolution precipitation reaction, and penetrating ions that can move between the electrodes Tell the state.

本発明の電気化学デバイスでは、上記説明した水混和物を塗布乾燥中または乾燥後に、硬化剤により水系化合物の硬化反応を行うことが望ましい。   In the electrochemical device of the present invention, it is desirable to carry out a curing reaction of the aqueous compound with a curing agent during or after application and drying of the water mixture described above.

本発明で用いられる硬膜剤の例としては、例えば、米国特許第4,678,739号の第41欄、同第4,791,042号、特開昭59−116655号、同62−245261号、同61−18942号、同61−249054号、同61−245153号、特開平4−218044号等に記載の硬膜剤が挙げられる。より具体的には、アルデヒド系硬膜剤(ホルムアルデヒド等)、アジリジン系硬膜剤、エポキシ系硬膜剤、ビニルスルホン系硬膜剤(N,N′−エチレン−ビス(ビニルスルホニルアセタミド)エタン等)、N−メチロール系硬膜剤(ジメチロール尿素等)、ほう酸、メタほう酸あるいは高分子硬膜剤(特開昭62−234157号等に記載の化合物)が挙げられる。水系化合物としてゼラチンを用いる場合は、硬膜剤の中で、ビニルスルホン型硬膜剤やクロロトリアジン型硬膜剤を単独または併用して使用することが好ましい。また、ポリビニルアルコールを用いる場合はホウ酸やメタホウ酸等の含ホウ素化合物の使用が好ましい。   Examples of the hardener used in the present invention include, for example, U.S. Pat. No. 4,678,739, column 41, 4,791,042, JP-A-59-116655, and 62-245261. No. 61-18942, 61-249054, 61-245153, JP-A-4-218044, and the like. More specifically, aldehyde hardeners (formaldehyde, etc.), aziridine hardeners, epoxy hardeners, vinyl sulfone hardeners (N, N'-ethylene-bis (vinylsulfonylacetamide) Ethane, etc.), N-methylol hardeners (dimethylolurea, etc.), boric acid, metaboric acid or polymer hardeners (compounds described in JP-A-62-234157). When gelatin is used as the aqueous compound, it is preferable to use a vinyl sulfone type hardener or a chlorotriazine type hardener alone or in combination. Moreover, when using polyvinyl alcohol, it is preferable to use boron-containing compounds such as boric acid and metaboric acid.

これらの硬膜剤は、水系化合物1g当たり0.001〜1g、好ましくは0.005〜0.5gが用いられる。また、膜強度を上げるため熱処理や、硬化反応時の湿度調整を行うことも可能である。   These hardeners are used in an amount of 0.001 to 1 g, preferably 0.005 to 0.5 g, per 1 g of the aqueous compound. In addition, it is possible to perform heat treatment and humidity adjustment during the curing reaction in order to increase the film strength.

〔その他の添加剤〕
本発明の電気化学デバイスの製造方法で作製される電気化学デバイスの電解質液には、その他各種性能を向上させる目的で、様々な添加剤を使用することができる。それらは目的に応じて選択され、特に制限されるものではない。
[Other additives]
Various additives can be used for the electrolyte solution of the electrochemical device produced by the method for producing an electrochemical device of the present invention for the purpose of improving various other performances. They are selected according to the purpose and are not particularly limited.

各種の化学増感剤、貴金属増感剤、感光色素、強色増感剤、カプラー、高沸点溶剤、カブリ防止剤、安定剤、現像抑制剤、漂白促進剤、定着促進剤、混色防止剤、ホルマリンスカベンジャー、色調剤、硬膜剤、界面活性剤、増粘剤、可塑剤、スベリ剤、紫外線吸収剤、イラジエーション防止染料、フィルター光吸収染料、防ばい剤、ポリマーラテックス、重金属、帯電防止剤、マット剤等を、必要に応じて含有させることができる。   Various chemical sensitizers, noble metal sensitizers, photosensitive dyes, supersensitizers, couplers, high boiling point solvents, antifoggants, stabilizers, development inhibitors, bleach accelerators, fixing accelerators, color mixing inhibitors, Formalin Scavenger, Toning Agent, Hardener, Surfactant, Thickener, Plasticizer, Slipper, UV Absorber, Irradiation Dye, Filter Light Absorber Dye, Antibacterial Agent, Polymer Latex, Heavy Metal, Antistatic Agent Further, a matting agent and the like can be contained as necessary.

上述したこれらの添加剤は、より詳しくは、リサーチ・ディスクロージャー(以下、RDと略す)第176巻Item/17643(1978年12月)、同184巻Item/18431(1979年8月)、同187巻Item/18716(1979年11月)及び同308巻Item/308119(1989年12月)に記載されている。   These additives mentioned above are more specifically described in Research Disclosure (hereinafter abbreviated as RD), Volume 176 Item / 17643 (December 1978), Volume 184, Item / 18431 (August 1979), 187. Volume Item / 18716 (November 1979) and Volume 308 Item / 308119 (December 1989).

これら三つのリサーチ・ディスクロージャーに示されている化合物種類と記載箇所を以下に掲載した。   The types of compounds and their descriptions shown in these three research disclosures are listed below.

添加剤 RD17643 RD18716 RD308119
頁 分類 頁 分類 頁 分類
化学増感剤 23 III 648右上 96 III
増感色素 23 IV 648〜649 996〜8 IV
減感色素 23 IV 998 IV
染料 25〜26 VIII 649〜650 1003 VIII
現像促進剤 29 XXI 648右上
カブリ抑制剤・安定剤
24 IV 649右上 1006〜7 VI
増白剤 24 V 998 V
硬膜剤 26 X 651左 1004〜5 X
界面活性剤 26〜7 XI 650右 1005〜6 XI
帯電防止剤 27 XII 650右 1006〜7XIII
可塑剤 27 XII 650右 1006 XII
スベリ剤 27 XII
マット剤 28 XVI 650右 1008〜9 XVI
バインダー 26 XXII 1003〜4 IX
支持体 28 XVII 1009 XVII
上記の添加剤は、保護層、フィルター層、ハレーション防止層、クロスオーバー光カット層、バッキング層等の補助層を設け、それら補助層中に含有させることも可能である。
Additive RD17643 RD18716 RD308119
Page Classification Page Classification Page Classification Chemical sensitizer 23 III 648 Upper right 96 III
Sensitizing dye 23 IV 648-649 996-8 IV
Desensitizing dye 23 IV 998 IV
Dye 25-26 VIII 649-650 1003 VIII
Development accelerator 29 XXI 648 Upper right Anti-fogging agent / stabilizer
24 IV 649 Upper right 1006-7 VI
Brightener 24 V 998 V
Hardener 26 X 651 Left 1004-5 X
Surfactant 26-7 XI 650 Right 1005-6 XI
Antistatic agent 27 XII 650 Right 1006-7XIII
Plasticizer 27 XII 650 Right 1006 XII
Slipper 27 XII
Matting agent 28 XVI 650 Right 1008-9 XVI
Binder 26 XXII 1003-4 IX
Support 28 XVII 1009 XVII
The above additives may be provided in auxiliary layers such as a protective layer, a filter layer, an antihalation layer, a crossover light cut layer, and a backing layer, and may be contained in these auxiliary layers.

〔その他の構成要素〕
本発明の電気化学デバイスには、必要に応じて、シール剤、柱状構造物、スペーサー粒子を用いる。
[Other components]
In the electrochemical device of the present invention, a sealant, a columnar structure, and spacer particles are used as necessary.

(シール剤)
シール剤は、外に漏れないように封入するためのものであり封止剤とも呼ばれ、エポキシ樹脂、ウレタン系樹脂、アクリル系樹脂、酢酸ビニル系樹脂、エン−チオール系樹脂、シリコン系樹脂、変性ポリマー樹脂等の、熱硬化型、光硬化型、湿気硬化型、嫌気硬化型等の硬化タイプを用いることができる。
(Sealant)
The sealing agent is for sealing so as not to leak outside, and is also called a sealing agent, and is an epoxy resin, urethane resin, acrylic resin, vinyl acetate resin, ene-thiol resin, silicon resin, Curing types such as a thermosetting type, a photo-curing type, a moisture-curing type, and an anaerobic curing type such as a modified polymer resin can be used.

(柱状構造物)
柱状構造物は、基板間の強い自己保持性(強度)を付与し、例えば、格子配列等の所定のパターンに一定の間隔で配列された、円柱状体、四角柱状体、楕円柱状体、台形柱状体等の柱状構造物を挙げることができる。また、所定間隔で配置されたストライプ状のものでもよい。この柱状構造物はランダムな配列ではなく、等間隔な配列、間隔が徐々に変化する配列、所定の配置パターンが一定の周期で繰り返される配列等、基板の間隔を適切に保持でき、且つ、画像表示を妨げないように考慮された配列であることが好ましい。柱状構造物は電気化学デバイスの表示領域に占める面積の割合が1〜40%であれば、電気化学デバイスとして実用上十分な強度が得られる。
(Columnar structure)
The columnar structure provides strong self-holding (strength) between the substrates, for example, a columnar body, a quadrangular columnar body, an elliptical columnar body, a trapezoidal array arranged in a predetermined pattern such as a lattice arrangement. A columnar structure such as a columnar body can be given. Alternatively, stripes arranged at predetermined intervals may be used. This columnar structure is not a random array, but can be properly maintained at intervals of the substrate, such as an evenly spaced array, an array in which the interval gradually changes, and an array in which a predetermined arrangement pattern is repeated at a constant period. The arrangement is preferably considered so as not to disturb the display. If the ratio of the area occupied by the columnar structure in the display region of the electrochemical device is 1 to 40%, a practically sufficient strength as an electrochemical device can be obtained.

(スペーサー)
一対の基板間には、該基板間のギャップを均一に保持するためのスペーサーが設けられていてもよい。このスペーサーとしては、樹脂製または無機酸化物製の球体を例示できる。また、表面に熱可塑性の樹脂がコーティングしてある固着スペーサーも好適に用いられる。基板間のギャップを均一に保持するために柱状構造物のみを設けてもよいが、スペーサー及び柱状構造物をいずれも設けてもよいし、柱状構造物に代えて、スペーサーのみをスペース保持部材として使用してもよい。スペーサーの直径は柱状構造物を形成する場合はその高さ以下、好ましくは当該高さに等しい。柱状構造物を形成しない場合はスペーサーの直径がセルギャップの厚みに相当する。
(spacer)
A spacer may be provided between the pair of substrates for uniformly maintaining a gap between the substrates. Examples of the spacer include a sphere made of resin or inorganic oxide. Further, a fixed spacer having a surface coated with a thermoplastic resin is also preferably used. In order to hold the gap between the substrates uniformly, only the columnar structure may be provided, but both the spacer and the columnar structure may be provided, or instead of the columnar structure, only the spacer is used as the space holding member. May be used. The diameter of the spacer is equal to or less than the height of the columnar structure, preferably equal to the height. When the columnar structure is not formed, the diameter of the spacer corresponds to the thickness of the cell gap.

〔電解質液の付与法〕
本発明においては、電解質液を付与する方法としては、塗布法、印刷法、ディスペンサ法で、基板上に設けることができる。塗布法としては、押し出し塗布法、ディツプコーティング法、スプレー法、スピンコーティング法などが知られている。印刷法としては、グラビア印刷法、スクリーン印刷法、オフセット印刷法、凸版印刷法、インクジェット法などを用いることができる。
[Method of applying electrolyte solution]
In the present invention, the electrolyte solution can be applied on the substrate by a coating method, a printing method, or a dispenser method. As the coating method, an extrusion coating method, a dip coating method, a spray method, a spin coating method and the like are known. As the printing method, a gravure printing method, a screen printing method, an offset printing method, a relief printing method, an ink jet method, or the like can be used.

(スクリーン印刷)
印刷法の中でも特にスクリーン印刷は、高粘度成分の付与だけでなく、シール剤や前記各種構造物を形成する際にも用いることが可能である。
(Screen printing)
Among the printing methods, screen printing can be used not only for imparting high-viscosity components but also for forming sealing agents and the various structures.

スクリーン印刷法は、所定のパターンが形成されたスクリーンを介し、印刷材料(柱状構造物形成のための組成物、例えば、光硬化性樹脂など)を載せる。そして、スキージを所定の圧力、角度、速度で移動させる。これによって、印刷材料がスクリーンのパターンを介して該基板上に転写される。   In the screen printing method, a printing material (a composition for forming a columnar structure, such as a photocurable resin) is placed through a screen on which a predetermined pattern is formed. Then, the squeegee is moved at a predetermined pressure, angle, and speed. Thereby, the printing material is transferred onto the substrate through the pattern of the screen.

スクリーン印刷法で柱状構造物を形成する場合、樹脂材料は光硬化性樹脂に限られず、例えば、エポキシ樹脂、アクリル樹脂等の熱硬化性樹脂や熱可塑性樹脂も使用できる。熱可塑性樹脂としては、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、ポリ酢酸ビニル樹脂、ポリメタクリル酸エステル樹脂、ポリアクリル酸エステル樹脂、ポリスチレン樹脂、ポリアミド樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、フッ素樹脂、ポリウレタン樹脂、ポリアクリロニトリル樹脂、ポリビニルエーテル樹脂、ポリビニルケトン樹脂、ポリエーテル樹脂、ポリビニルピロリドン樹脂、飽和ポリエステル樹脂、ポリカーボネート樹脂、塩素化ポリエーテル樹脂等が挙げられる。樹脂材料は樹脂を適当な溶剤に溶解する等してペースト状にして用いることが望ましい。   When the columnar structure is formed by the screen printing method, the resin material is not limited to a photocurable resin, and for example, a thermosetting resin such as an epoxy resin or an acrylic resin or a thermoplastic resin can also be used. As thermoplastic resins, polyvinyl chloride resin, polyvinylidene chloride resin, polyvinyl acetate resin, polymethacrylate resin, polyacrylate resin, polystyrene resin, polyamide resin, polyethylene resin, polypropylene resin, fluororesin, polyurethane resin , Polyacrylonitrile resin, polyvinyl ether resin, polyvinyl ketone resin, polyether resin, polyvinyl pyrrolidone resin, saturated polyester resin, polycarbonate resin, chlorinated polyether resin and the like. The resin material is preferably used in the form of a paste by dissolving the resin in an appropriate solvent.

以上のようにして柱状構造物等を基板上に形成した後は、所望によりスペーサーを少なくとも一方の基板上に付与し、一対の基板を電極形成面を対向させて重ね合わせ、空セルを形成する。重ね合わせた一対の基板を両側から加圧しながら加熱することにより、貼り合わせて、表示セルが得られる。   After the columnar structure or the like is formed on the substrate as described above, a spacer is provided on at least one of the substrates as desired, and the pair of substrates are overlapped with the electrode formation surfaces facing each other to form an empty cell. . A pair of stacked substrates is heated while being pressed from both sides, whereby the display cells are obtained.

〔電気化学デバイスの駆動方法〕
本発明の電気化学デバイスにおいては、析出過電圧以上の電圧印加で黒化銀を析出させ、析出過電圧以下の電圧印加で黒化銀の析出を継続させる駆動操作を行なうことが好ましい。この駆動操作を行なうことにより、書き込みエネルギーの低下や、駆動回路負荷の低減や、画面としての書き込み速度を向上させることができる。一般に電気化学分野の電極反応において過電圧が存在することは公知である。例えば、過電圧については「電子移動の化学−電気化学入門」(1996年 朝倉書店刊)の121ページに詳しい解説がある。本発明の電気化学デバイスも電極と電解質中の銀との電極反応と見なすことができるので、銀溶解析出においても過電圧が存在することは容易に理解できる。過電圧の大きさは交換電流密度が支配するので、本発明のように黒化銀が生成した後に析出過電圧以下の電圧印加で黒化銀の析出を継続できるということは、黒化銀表面の方が余分な電気エネルギーが少なく容易に電子注入が行なえると推定される。
[Driving method of electrochemical device]
In the electrochemical device of the present invention, it is preferable to perform a driving operation in which silver black is precipitated by applying a voltage equal to or higher than the precipitation overvoltage and silver black is continuously precipitated by applying a voltage lower than the precipitation overvoltage. By performing this driving operation, the writing energy can be reduced, the driving circuit load can be reduced, and the writing speed as a screen can be improved. It is generally known that overvoltage exists in electrode reactions in the electrochemical field. For example, overvoltage is described in detail on page 121 of “Introduction to Chemistry of Electron Transfer—Introduction to Electrochemistry” (published by Asakura Shoten in 1996). Since the electrochemical device of the present invention can also be regarded as an electrode reaction between the electrode and silver in the electrolyte, it can be easily understood that overvoltage exists even in silver dissolution precipitation. Since the magnitude of the overvoltage is governed by the exchange current density, it is possible to continue silver black precipitation by applying a voltage equal to or lower than the precipitation overvoltage after the formation of silver black as in the present invention. However, it is estimated that electron injection can be easily performed with little extra electric energy.

本発明の電気化学デバイスの駆動操作は、単純マトリックス駆動であっても、アクティブマトリック駆動であってもよい。本発明でいう単純マトリックス駆動とは、複数の正極を含む正極ラインと複数の負極を含む負極ラインとが対向する形で互いのラインが垂直方向に交差した回路に、順次電流を印加する駆動方法のことを言う。単純マトリックス駆動を用いることにより、回路構成や駆動ICを簡略化でき安価に製造できるメリットがある。アクティブマトリックス駆動は、走査線、データライン、電流供給ラインが碁盤目状に形成され、各碁盤目に設けられたTFT回路により駆動させる方式である。画素毎にスイッチングが行えるので、階調やメモリー機能などのメリットがあり、例えば、特開2004−29327号の図5に記載されている回路を用いることができる。   The driving operation of the electrochemical device of the present invention may be simple matrix driving or active matrix driving. The simple matrix driving in the present invention is a driving method in which a current is sequentially applied to a circuit in which a positive line including a plurality of positive electrodes and a negative electrode line including a plurality of negative electrodes are opposed to each other in a vertical direction. Say that. By using simple matrix driving, there is an advantage that the circuit configuration and driving IC can be simplified and manufactured at low cost. The active matrix drive is a system in which scanning lines, data lines, and current supply lines are formed in a grid pattern, and are driven by TFT circuits provided in each grid pattern. Since switching can be performed for each pixel, there are merits such as gradation and memory function. For example, a circuit described in FIG. 5 of JP-A-2004-29327 can be used.

〔商品適用〕
本発明の電気化学デバイスは、電子書籍分野、IDカード関連分野、公共関連分野、交通関連分野、放送関連分野、決済関連分野、流通物流関連分野等の用いることができる。具体的には、ドア用のキー、学生証、社員証、各種会員カード、コンビニストアー用カード、デパート用カード、自動販売機用カード、ガソリンステーション用カード、地下鉄や鉄道用のカード、バスカード、キャッシュカード、クレジットカード、ハイウェーカード、運転免許証、病院の診察カード、電子カルテ、健康保険証、住民基本台帳、パスポート、ワンタイムパスワード、電子ブック、携帯電話のカバー等各種機器の筐体装飾、キーボード表示、電子棚札、電子POP、電子広告等が挙げられる。特に大画面の表示が求められる電子ブック、電子広告、電子POP等の製造に有効である。
[Product application]
The electrochemical device of the present invention can be used in an electronic book field, an ID card related field, a public related field, a transportation related field, a broadcasting related field, a settlement related field, a distribution logistics related field, and the like. Specifically, keys for doors, student ID cards, employee ID cards, various membership cards, convenience store cards, department store cards, vending machine cards, gas station cards, subway and railway cards, bus cards, Case decoration of various equipment such as cash card, credit card, highway card, driver's license, hospital examination card, electronic medical record, health insurance card, basic resident register, passport, one-time password, electronic book, mobile phone cover, etc. Examples include a keyboard display, an electronic shelf label, an electronic POP, and an electronic advertisement. In particular, it is effective for manufacturing electronic books, electronic advertisements, electronic POPs, and the like that require display on a large screen.

以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例において「部」あるいは「%」の表示を用いるが、特に断りがない限り「質量部」あるいは「質量%」を表す。   EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto. In addition, although the display of "part" or "%" is used in an Example, unless otherwise indicated, "part by mass" or "mass%" is represented.

実施例1
《高分子材料の合成》
〔合成例1:本発明の高分子材料1の合成〕
例示配位子(15)の0.62gと、例示配位子(4)の0.56gとを、10mlのメタノールに溶解させ、ここに、塩化鉄(III)0.17gを3mlの水に溶解させた溶液を滴下し、室温で24時間反応させた後、溶媒を減圧して除き、本発明の高分子材料1を得た。
Example 1
《Synthesis of polymer material》
[Synthesis Example 1: Synthesis of Polymer Material 1 of the Present Invention]
0.62 g of the exemplified ligand (15) and 0.56 g of the exemplified ligand (4) are dissolved in 10 ml of methanol, and 0.17 g of iron (III) chloride is dissolved in 3 ml of water. The dissolved solution was dropped and reacted at room temperature for 24 hours, and then the solvent was removed under reduced pressure to obtain the polymer material 1 of the present invention.

〔合成例2:本発明の高分子材料2の合成〕
上記高分子材料1の合成と同様にして得られた溶液に、トリフルオロメタンスルホン酸ナトリウ0.18gを加え、12時間加熱還流した。さらにこの溶液を減圧濃縮した後、溶媒をアセトニトリルとした溶液にトリフルオロメタンスルホン酸銀0.60gを加え、5時間加熱還流し、析出した固体をろ別し、ろ液を蒸発させて、カウンターイオンを塩化物イオンからトリフルオロメタンスルホン酸イオンに置換した本発明の高分子材料2を得た。
[Synthesis Example 2: Synthesis of Polymer Material 2 of the Present Invention]
To a solution obtained in the same manner as in the synthesis of the polymer material 1, 0.18 g of sodium trifluoromethanesulfonate was added and heated to reflux for 12 hours. After concentrating this solution under reduced pressure, 0.60 g of silver trifluoromethanesulfonate was added to a solution containing acetonitrile as a solvent, and the mixture was heated to reflux for 5 hours. The precipitated solid was filtered off, the filtrate was evaporated, Thus, the polymer material 2 of the present invention was obtained by substituting chloromethane sulfonate ions with chloride ions.

〔合成例3:本発明の高分子材料3の合成〕
例示配位子(19)の0.39gと、例示配位子(1)の0.39gと、例示配位子(54)の0.68gとを、10mlのジメチルホルムアミドに溶解させ、これにアセチルアセトナート鉄(III)0.40gを加え、100℃で5時間加熱攪拌して本発明の高分子材料3を合成した。
[Synthesis Example 3: Synthesis of Polymer Material 3 of the Present Invention]
0.39 g of the exemplified ligand (19), 0.39 g of the exemplified ligand (1), and 0.68 g of the exemplified ligand (54) were dissolved in 10 ml of dimethylformamide. 0.40 g of acetylacetonate iron (III) was added, and the mixture was heated and stirred at 100 ° C. for 5 hours to synthesize the polymer material 3 of the present invention.

〔合成例4:本発明の高分子材料4の合成〕
例示配位子(1)の0.38gと、例示配位子(27)の0.57gと、例示配位子(49)の0.22gとを、10mlのジメチルホルムアミドに溶解させ、これに塩化鉄(II)四水和物0.40gを加え、100℃で5時間加熱攪拌し、水を加えて析出物を濾別して、本発明の高分子材料4を合成した。
[Synthesis Example 4: Synthesis of Polymer Material 4 of the Present Invention]
0.38 g of the exemplified ligand (1), 0.57 g of the exemplified ligand (27), and 0.22 g of the exemplified ligand (49) were dissolved in 10 ml of dimethylformamide. 0.40 g of iron (II) chloride tetrahydrate was added, the mixture was heated and stirred at 100 ° C. for 5 hours, water was added, and the precipitate was filtered off to synthesize the polymer material 4 of the present invention.

〔合成例5:比較の高分子材料5の合成〕
特開2007−112957号公報に記載の方法と同様にして、例示配位子(15)を0.62gと、酢酸鉄(II)0.18gを用いて、酢酸イオンをカウンターイオンとして有する比較の高分子材料5を得た。
[Synthesis Example 5: Synthesis of Comparative Polymer Material 5]
Similar to the method described in Japanese Patent Application Laid-Open No. 2007-112957, a comparative example having 0.62 g of exemplified ligand (15) and 0.18 g of iron (II) acetate and having acetate ions as counter ions. A polymer material 5 was obtained.

実施例2
《電極の作製》
(電極1の作製)
厚さ1.5mmで2cm×4cmのガラス基板上に、ピッチ145μm、電極幅130μmのITO(Indium Tin Oxide、インジウム錫酸化物)膜を公知の方法に従って形成し、透明電極である電極1を得た。
Example 2
<Production of electrode>
(Production of electrode 1)
An ITO (Indium Tin Oxide) film having a pitch of 145 μm and an electrode width of 130 μm is formed on a glass substrate having a thickness of 1.5 mm and a size of 2 cm × 4 cm according to a known method, thereby obtaining an electrode 1 that is a transparent electrode. It was.

(電極2の作製)
上記電極1上に、厚み5μmの二酸化チタン(平均粒子径20nmの粒子を10個程度ネッキング済み)膜を形成し、電極2を得た。
(Preparation of electrode 2)
On the electrode 1, a titanium dioxide film having a thickness of 5 μm (about 10 particles having an average particle diameter of 20 nm had been necked) was formed, and an electrode 2 was obtained.

(電極3の作製)
エタノール中に、実施例1で合成した本発明の高分子材料1を3質量%溶解した液を、スピンコート法で電極1上に塗布し、85℃で1分間加熱し、溶媒を蒸発させて、電極1上に高分子膜を形成した電極3を得た。
(Preparation of electrode 3)
A solution in which 3% by mass of the polymer material 1 of the present invention synthesized in Example 1 was dissolved in ethanol was applied onto the electrode 1 by spin coating, heated at 85 ° C. for 1 minute, and the solvent was evaporated. Electrode 3 in which a polymer film was formed on electrode 1 was obtained.

(電極4の作製)
上記電極3の作製において、本発明の高分子材料1を、同量の比較の高分子材料5に変更した以外は同様にして、電極1上に高分子膜を形成した電極4を得た。
(Preparation of electrode 4)
In the production of the electrode 3, an electrode 4 having a polymer film formed on the electrode 1 was obtained in the same manner except that the polymer material 1 of the present invention was changed to a comparative polymer material 5 of the same amount.

(電極5の作製)
上記電極3の作製において、電極1に代えて電極2を用いた以外は同様にして、電極2上に高分子膜を形成した電極5を得た。
(Preparation of electrode 5)
In the production of the electrode 3, an electrode 5 having a polymer film formed on the electrode 2 was obtained in the same manner except that the electrode 2 was used instead of the electrode 1.

(電極6の作製)
エタノール中に、3−アミノプロピルトリメトキシシランを2質量%の濃度で溶解させた溶液に、上記電極2を24時間浸漬させた後、エタノールで洗浄した。次いで、例示配位子(61)を5質量%含有するエタノール溶液を調製し、この溶液に上記電極2を60℃で3時間浸漬し、洗浄、乾燥して電極6を作製した。
(Preparation of electrode 6)
The electrode 2 was immersed in a solution in which 3-aminopropyltrimethoxysilane was dissolved in ethanol at a concentration of 2% by mass for 24 hours, and then washed with ethanol. Next, an ethanol solution containing 5% by mass of the exemplified ligand (61) was prepared, and the electrode 2 was immersed in this solution at 60 ° C. for 3 hours, washed and dried to produce an electrode 6.

(電極7の作製)
メタノール30ml中で、例示配位子(1)を0.19gと、例示配位子(38)を0.42gと、例示配位子(60)を0.20gと、塩化鉄(III)を0.20gとを混合させ、この溶液中に電極6を浸漬して24時間反応した後、エタノールで洗浄、乾燥して、電極6上に修飾基を介した高分子膜を形成し電極7を得た。
(Preparation of electrode 7)
In 30 ml of methanol, 0.19 g of exemplary ligand (1), 0.42 g of exemplary ligand (38), 0.20 g of exemplary ligand (60), and iron (III) chloride 0.20 g was mixed, the electrode 6 was immersed in this solution and reacted for 24 hours, then washed with ethanol and dried to form a polymer film via the modifying group on the electrode 6 to form the electrode 7. Obtained.

(電極8の作製)
メタノール30ml中で、例示配位子(1)を0.19gと、例示配位子(38)を0.42gと、例示配位子(60)を0.20gと、塩化鉄(III)を0.20gとを混合させ、この溶液中に電極2を浸漬して24時間反応した後、エタノールで洗浄、乾燥して、電極2上に修飾基を介した高分子膜を形成し電極8を得た。
(Preparation of electrode 8)
In 30 ml of methanol, 0.19 g of exemplary ligand (1), 0.42 g of exemplary ligand (38), 0.20 g of exemplary ligand (60), and iron (III) chloride 0.20 g was mixed and the electrode 2 was immersed in this solution and reacted for 24 hours, then washed with ethanol and dried to form a polymer film via the modifying group on the electrode 2 to form the electrode 8. Obtained.

《電解液の調製》
(電解液1の調製)
アセトニトリル2.5g中に、過塩素酸テトラブチルアンモニウム0.05gを溶解させて、電解液1を得た。
<< Preparation of electrolyte >>
(Preparation of electrolyte 1)
An electrolytic solution 1 was obtained by dissolving 0.05 g of tetrabutylammonium perchlorate in 2.5 g of acetonitrile.

《表示素子の作製》
(表示素子1−1の作製)
周辺部を、平均粒径が40μmのガラス製球形ビーズ状スペーサーを体積分率として10%含むオレフィン系封止剤で縁取りした電極2の上に、ポリビニルアルコール(平均重合度3500、けん化度87%)を2質量%含むイソプロパノール溶液中に、石原産業社製の二酸化チタンCR−90を20質量%添加し、超音波分散機で分散させた混和液を乾燥後の膜厚が20μmになるように塗布し、その後15℃で30分間乾燥して溶媒を蒸発させた後、45℃の雰囲気中で1時間乾燥させた。得られた二酸化チタン層上に平均粒径が20μmのガラス製球形ビーズ状スペーサーを散布した後に、電極1と電極4を貼り合わせ、加熱押圧して空セルを作製した。該空セルに電解液1を真空注入し、注入口をエポキシ系の紫外線硬化樹脂にて封止し、表示素子1−1を作製した。
<< Production of display element >>
(Preparation of display element 1-1)
On the periphery of the electrode 2 bordered with an olefin-based sealant containing a glass spherical bead spacer having an average particle diameter of 40 μm as a volume fraction of 10%, polyvinyl alcohol (average polymerization degree 3500, saponification degree 87% ) Is added to an isopropanol solution containing 2% by mass of titanium dioxide CR-90 manufactured by Ishihara Sangyo Co., Ltd., and the mixed liquid dispersed with an ultrasonic disperser has a thickness of 20 μm after drying. It was applied, then dried at 15 ° C. for 30 minutes to evaporate the solvent, and then dried in an atmosphere at 45 ° C. for 1 hour. After sprinkling glass spherical bead spacers having an average particle diameter of 20 μm on the obtained titanium dioxide layer, electrodes 1 and 4 were bonded together and heated and pressed to prepare empty cells. The electrolytic solution 1 was vacuum-injected into the empty cell, and the injection port was sealed with an epoxy-based ultraviolet curable resin to produce a display element 1-1.

(表示素子1−2〜1−5の作製)
上記表示素子1−1の作製において、表示側電極の構成を表1に記載した構成に変更した以外は同様にして、表示素子1−2〜1−5を得た。
(Production of display elements 1-2 to 1-5)
Display elements 1-2 to 1-5 were obtained in the same manner as in the manufacture of the display element 1-1 except that the configuration of the display-side electrode was changed to the configuration described in Table 1.

《表示素子の評価》
〔コントラスト保持率の評価〕
未駆動の状態の表示素子の反射率をコニカミノルタセンシング社製の分光測色計CM−3700dで測定して、得られた反射率が極小値を取る波長での反射率の値をRとした。次に、定電圧電源の両端子に作製した表示素子の両電極を接続し、+1.5Vの電圧を3秒間印加した後の反射率を同様にして測定し、Rを求めた波長での反射率をRとした。CR=R/Rとし、CRを表示素子のコントラストの指標とし、+1.5Vの電圧印加の後、0Vの電圧印加と+1.5Vの電圧印加の繰返しを1回駆動とし1回目駆動時のコントラスト指標CRと100回駆動時のコントラスト指標CR100を下記式に従って比較し、各数値を下記に従い5段階評価した。
<< Evaluation of display element >>
[Evaluation of contrast retention]
The reflectance of the display element in an undriven state is measured with a spectrocolorimeter CM-3700d manufactured by Konica Minolta Sensing Co., Ltd., and the reflectance value at a wavelength at which the obtained reflectance takes a minimum value is R 0 . did. Next, both electrodes of the display element fabricated were connected to both terminals of the constant voltage power source, and the reflectance after applying a voltage of +1.5 V for 3 seconds was measured in the same manner, and R 0 was obtained at the wavelength obtained. The reflectivity is R 1 . It was set to 5 . CR = R 1 . 5 / R 0 , CR is used as an index of contrast of the display element, and after applying a voltage of + 1.5V, a repetition of a voltage application of 0V and a voltage application of + 1.5V is driven once and a contrast index at the time of the first driving CR 1 and contrast index CR 100 at the time of driving 100 times were compared according to the following formula, and each numerical value was evaluated according to the following five levels.

コントラスト保持率(%)=CR100/CR×100
◎:コントラスト保持率が80%以上
○:コントラスト保持率が65%以上、80%未満
△:コントラスト保持率が40%以上、65%未満
×:コントラスト変化は確認できるが、コントラスト保持率が40%未満
××:コントラストの変化が目視で観測できない
以上により得られた結果を、表1に表す。
Contrast retention (%) = CR 100 / CR 1 × 100
◎: Contrast retention is 80% or more ○: Contrast retention is 65% or more and less than 80% △: Contrast retention is 40% or more and less than 65% X: Contrast change can be confirmed, but contrast retention is 40% Less than xx: Contrast change cannot be observed visually Table 1 shows the results obtained as described above.

Figure 2010085570
Figure 2010085570

表1に記載の結果より明らかなように、本発明の高分子材料を表示電極に有する表示素子は、コントラスト保持率に優れていることが分かる。   As is clear from the results shown in Table 1, it can be seen that the display element having the polymer material of the present invention in the display electrode is excellent in contrast retention.

実施例3
《電解液の調製》
(電解液2の調製)
ジメチルスルホキシド2.5g中に、p−トルエンスルホン酸銀0.1gと例示化合物(G2−19)0.2gと過塩素酸テトラブチルアンモニウム0.05gを溶解させ、さらにポリビニルピロリドン(Mw10万)を0.3g、平均粒径が200nmの二酸化チタン1.0gを加え、攪拌しながら真空脱気して、電解液2を得た。
Example 3
<< Preparation of electrolyte >>
(Preparation of electrolyte 2)
In 2.5 g of dimethyl sulfoxide, 0.1 g of silver p-toluenesulfonate, 0.2 g of exemplified compound (G2-19) and 0.05 g of tetrabutylammonium perchlorate are dissolved, and polyvinylpyrrolidone (Mw 100,000) is further dissolved. 0.3 g and 1.0 g of titanium dioxide having an average particle diameter of 200 nm were added, and vacuum deaeration was performed with stirring to obtain an electrolytic solution 2.

《表示素子の作製》
(表示素子2−1の作製)
電極1の周辺部を、平均粒径40μmのガラス製球形ビーズを体積分率として10%含むオレフィン系封止剤で縁取りした上に、対向側電極として電極3を、それぞれストライプ状の電極が直交するように貼り合わせ、さらに加熱押圧して空セルを作製した。該空セルに電解液2を真空注入し、注入口をエポキシ系の紫外線硬化樹脂にて封止し、表示素子2−1を作製した。
<< Production of display element >>
(Preparation of display element 2-1)
The periphery of the electrode 1 is bordered with an olefin-based sealant containing glass spherical beads having an average particle diameter of 40 μm as a volume fraction of 10%, and the electrode 3 is used as the opposite electrode, and the striped electrodes are orthogonal to each other. Then, the cells were bonded together and further heated and pressed to produce an empty cell. The electrolytic solution 2 was vacuum-injected into the empty cell, and the injection port was sealed with an epoxy-based ultraviolet curable resin to produce a display element 2-1.

(表示素子2−2〜2−5の作製)
上記表示素子2−1の作製において、対向側電極の構成を表2に記載した構成に変更した以外は同様にして、表示素子2−2〜2−5を得た。
(Preparation of display elements 2-2 to 2-5)
Display elements 2-2 to 2-5 were obtained in the same manner as in the manufacture of the display element 2-1, except that the configuration of the counter electrode was changed to the configuration described in Table 2.

《表示素子の評価》
〔繰返し耐久性の評価〕
未駆動の状態の表示素子の反射率をコニカミノルタセンシング社製の分光測色計CM−3700dで測定して、波長550nmでの反射率の値をRとした。次に、定電圧電源の両端子に作製した表示素子の両電極を接続し、−1.3Vの電圧を3秒間印加した後の反射率を同様にして測定し、波長550nmでの反射率をR−1.3とした。CR=R−1.3/Rとし、CRを表示素子のコントラストの指標とし、上記の−1.3Vの電圧印加の後、+1.3Vの電圧印加の繰返しを1回駆動とし100回駆動毎にコントラスト指標を測定し、1回目のCR指標と比較してCR指標が80%以下となった繰返し駆動回数を求めた。CRの測定は繰返し駆動回数2000回まで測定を行い、CR指標が初期値の80%以下となった駆動回数が多いほど、表示素子としての耐久性が高いことを示す。
<< Evaluation of display element >>
[Evaluation of repeated durability]
The reflectance of the display element in the undriven state was measured with a spectrocolorimeter CM-3700d manufactured by Konica Minolta Sensing Co., Ltd., and the reflectance value at a wavelength of 550 nm was defined as R0 . Next, both electrodes of the display element produced were connected to both terminals of a constant voltage power source, and the reflectance after applying a voltage of -1.3 V for 3 seconds was measured in the same manner, and the reflectance at a wavelength of 550 nm was measured. R- 1.3 . CR = R −1.3 / R 0 , CR is used as an index of contrast of the display element, and after the above-described voltage application of −1.3V, the voltage application of + 1.3V is repeated once and the driving is performed 100 times. The contrast index was measured every time, and the number of times of repeated driving when the CR index was 80% or less compared with the first CR index was obtained. The CR is measured up to 2000 times of repeated driving, and the higher the number of times of driving when the CR index is 80% or less of the initial value, the higher the durability as a display element.

Figure 2010085570
Figure 2010085570

表2に記載の結果より明らかなように、本発明の高分子材料をプロモーター、より詳しくは対極反応物質として対向側電極に用いた表示素子は、高い耐久性を有することが分かる。   As is apparent from the results shown in Table 2, it can be seen that a display element using the polymer material of the present invention as a promoter, more specifically, a counter electrode reactant as a counter electrode has high durability.

実施例4
ポリエチレンテレフタレート基板(厚み200μm)上に、本発明の高分子材料3の10質量%メチルエチルケトン溶液を、バーコーター(No.9、ウェット膜厚20μm)を用いてバーコート法により塗布、製膜した後、120℃の環境で減圧乾燥することにより本発明の高分子材料1薄膜を形成した。次いで、この基板にワニ口クリップを用いて単3乾電池および豆電球と直列になるように配置したところ、豆電球は光を発し、本発明の高分子材料3は、導電性を有することを確認することができた。
Example 4
After a 10% by mass methyl ethyl ketone solution of the polymer material 3 of the present invention is applied on a polyethylene terephthalate substrate (thickness: 200 μm) using a bar coater (No. 9, wet film thickness: 20 μm) and formed into a film. The polymer material 1 thin film of the present invention was formed by drying under reduced pressure in an environment of 120 ° C. Next, using a crocodile clip on this substrate and arranging it in series with AA batteries and miniature bulbs, the miniature bulbs emit light and it is confirmed that the polymer material 3 of the present invention has conductivity. We were able to.

本発明の高分子材料が適用可能な電気化学デバイスであるTFTの一例を示すブロック図である。It is a block diagram which shows an example of TFT which is an electrochemical device which can apply the polymer material of this invention.

符号の説明Explanation of symbols

100、110 データ線駆動回路
120 ゲート線駆動回路
130 信号制御部
140 ゲート線(走査線配線)
150 データ線(信号線配線)
100, 110 Data line driving circuit 120 Gate line driving circuit 130 Signal control unit 140 Gate line (scanning line wiring)
150 Data line (signal line wiring)

Claims (12)

対向電極間に、金属原子と、2つ以上の該金属原子と結合可能な配位子とを含有する高分子材料を有する電気化学デバイスであって、該配位子の少なくとも1つが、3つ以上の金属原子と結合可能な配位子Aであることを特徴とする電気化学デバイス。 An electrochemical device having a polymer material containing a metal atom and a ligand capable of binding to two or more metal atoms between opposing electrodes, wherein at least one of the ligands is 3 An electrochemical device characterized by being a ligand A capable of binding to the above metal atom. 前記配位子の少なくとの1種は、分子内に−SH、−COOH、−P=O(OH)、−OP=O(OH)及び−Si(OR)(Rは、アルキル基を表す)から選ばれる少なくとも1つの基を有することを特徴とする請求項1に記載の電気化学デバイス。 At least one of the ligands includes —SH, —COOH, —P═O (OH) 2 , —OP═O (OH) 2 and —Si (OR) 3 (R is alkyl The electrochemical device according to claim 1, wherein the electrochemical device has at least one group selected from 前記配位子の少なくとの1種は、金属と結合した際に負電荷を有することを特徴とする請求項1または2に記載の電気化学デバイス。 The electrochemical device according to claim 1 or 2, wherein at least one of the ligands has a negative charge when bonded to a metal. 前記配位子の少なくとの1種は、構造中に金属錯体を有することを特徴とする請求項1〜3のいずれか1項に記載の電気化学デバイス。 The electrochemical device according to claim 1, wherein at least one of the ligands has a metal complex in the structure. 前記配位子の少なくとの1種は、5員複素環単環を有することを特徴とする請求項1〜4のいずれか1項に記載の電気化学デバイス。 The electrochemical device according to any one of claims 1 to 4, wherein at least one of the ligands has a 5-membered heterocyclic monocycle. 前記配位子の少なくとの1種は、下記一般式(1)で表される化合物であることを特徴とする請求項1〜5のいずれか1項に記載の電気化学デバイス。
Figure 2010085570
〔式中、Aは窒素、酸素、硫黄、リンまたは炭素原子であり、環の構成要素の一部であって他の構成要素と一緒になって5員環または6員環を形成する。Wは置換基あるいは配位座を含む連結基を表し、pは1〜4の整数であって、pが2以上の場合、Wはそれぞれ異なっていても良い。Dは配位原子あるいは配位原子団を表し、LはAを含む環とDとの連結基を表し、mは0〜4の整数であって、nは1〜4の整数である。但し、p、mおよびnは環が5員環である場合にはp+m+n≦4、環が6員環である場合にはp+m+n≦5の関係を満たす。〕
The electrochemical device according to claim 1, wherein at least one of the ligands is a compound represented by the following general formula (1).
Figure 2010085570
[Wherein A is a nitrogen, oxygen, sulfur, phosphorus or carbon atom and is part of a ring component and together with other components forms a 5-membered or 6-membered ring. W represents a substituent or a linking group containing a coordination site, p is an integer of 1 to 4, and when p is 2 or more, W may be different from each other. D represents a coordination atom or a coordination atom group, L represents a linking group between a ring containing A and D, m is an integer of 0 to 4, and n is an integer of 1 to 4. However, p, m, and n satisfy the relationship of p + m + n ≦ 4 when the ring is a 5-membered ring and p + m + n ≦ 5 when the ring is a 6-membered ring. ]
金属原子と、2つ以上の該金属原子と結合可能な配位子とを含有する高分子材料であって、該配位子の少なくとも1つが、3つ以上の金属原子と結合可能な配位子Aであることを特徴とする高分子材料。 A polymer material containing a metal atom and two or more ligands capable of binding to the metal atom, wherein at least one of the ligands is capable of binding to three or more metal atoms A polymer material characterized by being a child A. 前記配位子の少なくとの1種は、分子内に−SH、−COOH、−P=O(OH)、−OP=O(OH)及び−Si(OR)(Rは、アルキル基を表す)から選ばれる少なくとも1つの基を有することを特徴とする請求項7に記載の高分子材料。 At least one of the ligands includes —SH, —COOH, —P═O (OH) 2 , —OP═O (OH) 2 and —Si (OR) 3 (R is alkyl The polymer material according to claim 7, comprising at least one group selected from: 前記配位子の少なくとの1種は、金属と結合した際に負電荷を有することを特徴とする請求項7または8に記載の高分子材料。 The polymer material according to claim 7 or 8, wherein at least one of the ligands has a negative charge when bonded to a metal. 前記配位子の少なくとの1種は、構造中に金属錯体を有することを特徴とする請求項7〜9のいずれか1項に記載の高分子材料。 The polymer material according to any one of claims 7 to 9, wherein at least one of the ligands has a metal complex in its structure. 前記配位子の少なくとの1種は、5員複素環単環を有することを特徴とする請求項7〜10のいずれか1項に記載の高分子材料。 The polymer material according to any one of claims 7 to 10, wherein at least one of the ligands has a 5-membered heterocyclic monocycle. 前記配位子の少なくとの1種は、下記一般式(1)で表される化合物であることを特徴とする請求項7〜11のいずれか1項に記載の高分子材料。
Figure 2010085570
〔式中、Aは窒素、酸素、硫黄、リンまたは炭素原子であり、環の構成要素の一部であって他の構成要素と一緒になって5員環または6員環を形成する。Wは置換基あるいは配位座を含む連結基を表し、pは1〜4の整数であって、pが2以上の場合、Wはそれぞれ異なっていても良い。Dは配位原子あるいは配位原子団を表し、LはAを含む環とDとの連結基を表し、mは0〜4の整数であって、nは1〜4の整数である。但し、p、mおよびnは環が5員環である場合にはp+m+n≦4、環が6員環である場合にはp+m+n≦5の関係を満たす。〕
12. The polymer material according to claim 7, wherein at least one of the ligands is a compound represented by the following general formula (1).
Figure 2010085570
[Wherein A is a nitrogen, oxygen, sulfur, phosphorus or carbon atom and is part of a ring component and together with other components forms a 5-membered or 6-membered ring. W represents a substituent or a linking group containing a coordination site, p is an integer of 1 to 4, and when p is 2 or more, W may be different from each other. D represents a coordination atom or a coordination atom group, L represents a linking group between a ring containing A and D, m is an integer of 0 to 4, and n is an integer of 1 to 4. However, p, m, and n satisfy the relationship of p + m + n ≦ 4 when the ring is a 5-membered ring and p + m + n ≦ 5 when the ring is a 6-membered ring. ]
JP2008252756A 2008-09-30 2008-09-30 Electrochemical device and polymeric material Pending JP2010085570A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008252756A JP2010085570A (en) 2008-09-30 2008-09-30 Electrochemical device and polymeric material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008252756A JP2010085570A (en) 2008-09-30 2008-09-30 Electrochemical device and polymeric material

Publications (1)

Publication Number Publication Date
JP2010085570A true JP2010085570A (en) 2010-04-15

Family

ID=42249605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008252756A Pending JP2010085570A (en) 2008-09-30 2008-09-30 Electrochemical device and polymeric material

Country Status (1)

Country Link
JP (1) JP2010085570A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015052733A (en) * 2013-09-09 2015-03-19 株式会社リコー Electrochromic material, electrochromic composition, and electrochromic display element
JP2015203812A (en) * 2014-04-15 2015-11-16 国立大学法人 東京大学 Electrochromic sheet and method for manufacturing the same
US11211618B2 (en) 2017-06-16 2021-12-28 Panasonic Intellectual Property Management Co., Ltd. Flow battery that includes liquid containing mediator

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07247344A (en) * 1994-03-14 1995-09-26 Tokyo Inst Of Technol Polyquinone, its production, and material for electrochromic element or for n-type semiconductor device containing the same
JP2000506629A (en) * 1996-03-15 2000-05-30 エコール ポリテクニーク フェデラル ドゥ ローザンヌ Electrochromic or photoelectrochromic devices
JP2004537743A (en) * 2001-06-26 2004-12-16 エヌテラ リミテッド High resolution image display and manufacturing method thereof
WO2008087879A1 (en) * 2007-01-17 2008-07-24 Konica Minolta Holdings, Inc. Display device
WO2008087790A1 (en) * 2007-01-17 2008-07-24 Konica Minolta Holdings, Inc. Display element and method for driving display element
WO2008111321A1 (en) * 2007-03-14 2008-09-18 Konica Minolta Holdings, Inc. Display device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07247344A (en) * 1994-03-14 1995-09-26 Tokyo Inst Of Technol Polyquinone, its production, and material for electrochromic element or for n-type semiconductor device containing the same
JP2000506629A (en) * 1996-03-15 2000-05-30 エコール ポリテクニーク フェデラル ドゥ ローザンヌ Electrochromic or photoelectrochromic devices
JP2004537743A (en) * 2001-06-26 2004-12-16 エヌテラ リミテッド High resolution image display and manufacturing method thereof
WO2008087879A1 (en) * 2007-01-17 2008-07-24 Konica Minolta Holdings, Inc. Display device
WO2008087790A1 (en) * 2007-01-17 2008-07-24 Konica Minolta Holdings, Inc. Display element and method for driving display element
WO2008111321A1 (en) * 2007-03-14 2008-09-18 Konica Minolta Holdings, Inc. Display device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015052733A (en) * 2013-09-09 2015-03-19 株式会社リコー Electrochromic material, electrochromic composition, and electrochromic display element
JP2015203812A (en) * 2014-04-15 2015-11-16 国立大学法人 東京大学 Electrochromic sheet and method for manufacturing the same
US11211618B2 (en) 2017-06-16 2021-12-28 Panasonic Intellectual Property Management Co., Ltd. Flow battery that includes liquid containing mediator

Similar Documents

Publication Publication Date Title
JP4877228B2 (en) Electrochromic display element and full-color electrochromic display element
JP5177219B2 (en) Electrochemical display element
JP5472104B2 (en) Display element and manufacturing method thereof
JP2010085570A (en) Electrochemical device and polymeric material
JP2010085569A (en) Electrochemical device and polymeric material
WO2011096298A1 (en) Display element
JP2011085622A (en) Electrolyte and electrochemical device
JP2009300494A (en) Electrode for electrochemical display element and display element
JP2011150054A (en) Display element
JP2010085568A (en) Electrochemical device and polymeric material
JP2010117635A (en) Display element
JP5177218B2 (en) Display element
JP2011090182A (en) Display element
JP5704161B2 (en) Display element
WO2010058684A1 (en) Display element
JP5532923B2 (en) Display element
JP2011081194A (en) Display element
JP2009163177A (en) Display element
JP5287849B2 (en) Display element
JP2010020149A (en) Method of manufacturing display element
WO2010010814A1 (en) Display element and method for forming porous layer of display element
JP2010072517A (en) Method of manufacturing display element
JP2010085571A (en) Method of manufacturing electrode for electrochemical display element, and electrochemical display element
JP5458484B2 (en) Display element
JP2010072288A (en) Method of manufacturing display element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110317

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130205

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130604