JP2010085571A - Method of manufacturing electrode for electrochemical display element, and electrochemical display element - Google Patents

Method of manufacturing electrode for electrochemical display element, and electrochemical display element Download PDF

Info

Publication number
JP2010085571A
JP2010085571A JP2008252757A JP2008252757A JP2010085571A JP 2010085571 A JP2010085571 A JP 2010085571A JP 2008252757 A JP2008252757 A JP 2008252757A JP 2008252757 A JP2008252757 A JP 2008252757A JP 2010085571 A JP2010085571 A JP 2010085571A
Authority
JP
Japan
Prior art keywords
group
electrode
display element
sch
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008252757A
Other languages
Japanese (ja)
Inventor
Takeshi Hakii
健 波木井
Takahito Chiba
隆人 千葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2008252757A priority Critical patent/JP2010085571A/en
Publication of JP2010085571A publication Critical patent/JP2010085571A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrochemical display element which has a simple member configuration and can be driven with a low voltage and is superior in drive stability. <P>SOLUTION: In a method of manufacturing an electrode for a metal melting and deposition type electrochemical display element, an auxiliary compound which can be oxidized and reduced in a pressure condition of 0.01 to 0.5 MPa is fixed to a porous electrode comprising a metal oxide to manufacture the display element. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、新規な電気化学的な表示素子に関するものであり、特に電気化学表示素子用電極の製造方法およびそれを用いた電気化学表示素子に関するものである。   The present invention relates to a novel electrochemical display element, and more particularly to a method for producing an electrode for an electrochemical display element and an electrochemical display element using the same.

近年、パーソナルコンピューターの動作速度の向上、ネットワークインフラの普及、データストレージの大容量化と低価格化に伴い、従来紙への印刷物で提供されたドキュメントや画像等の情報を、より簡便な電子情報として入手、電子情報を閲覧する機会が益々増大している。   In recent years, with the increase in the operating speed of personal computers, the spread of network infrastructure, the increase in capacity and price of data storage, information such as documents and images provided on printed paper on paper has become easier to use electronic information. Opportunities to obtain and browse electronic information are increasing more and more.

この様な電子情報の閲覧手段として、従来の液晶ディスプレイやCRT、また近年では、有機ELディスプレイ等の発光型が主として用いられているが、特に、電子情報がドキュメント情報の場合、比較的長時間にわたってこの閲覧手段を注視する必要があり、これらの行為は必ずしも人間に優しい手段とは言い難く、一般に発光型のディスプレイの欠点として、フリッカーで目が疲労する、持ち運びに不便、読む姿勢が制限され、静止画面に視線を合わせる必要が生じる、長時間読むと消費電力が嵩む等が知られている。   As a means for browsing such electronic information, a conventional liquid crystal display or CRT, and in recent years, a light emitting type such as an organic EL display is mainly used. In particular, when the electronic information is document information, it is relatively long time. It is necessary to pay close attention to this browsing means, and these actions are not necessarily human-friendly means. Generally, as a disadvantage of the light-emitting display, eyes flicker due to flickering, inconvenient to carry, reading posture is limited It is known that it is necessary to adjust the line of sight to a still screen, and that power consumption increases when read for a long time.

これらの欠点を補う表示手段として、外光を利用し、像保持の為に電力を消費しない、いわゆる「メモリー性」を有する反射型ディスプレイが知られているが、下記の理由で十分な性能を有しているとは言い難い。   As a display means to compensate for these drawbacks, a reflection type display using so-called "memory" that uses external light and does not consume power for image retention is known. However, it has sufficient performance for the following reasons. It is hard to say that it has.

すなわち、反射型液晶等の偏光板を用いる方式は、反射率が約40%と低いため白表示に難があり、また構成部材の作製に用いる製法の多くは簡便とは言い難い。また、ポリマー分散型液晶は高い電圧を必要とし、また有機物同士の屈折率差を利用しているため、得られる画像のコントラストが十分でない。また、ポリマーネットワーク型液晶は電圧高いことと、メモリー性を向上させるために複雑なTFT回路が必要である等の課題を抱えている。また、電気泳動法による表示素子は、10V以上の高い電圧が必要となり、電気泳動性粒子凝集による耐久性に懸念がある。   That is, the method using a polarizing plate such as a reflective liquid crystal has a low reflectance of about 40%, which makes it difficult to display white, and it is difficult to say that many of the manufacturing methods used to manufacture the constituent members are simple. In addition, the polymer dispersed liquid crystal requires a high voltage and utilizes the difference in refractive index between organic substances, so that the resulting image has insufficient contrast. In addition, the polymer network type liquid crystal has problems such as a high voltage and a complicated TFT circuit required to improve the memory performance. In addition, a display element based on electrophoresis requires a high voltage of 10 V or more, and there is a concern about durability due to electrophoretic particle aggregation.

これら上述の各方式の欠点を解消する表示方式として、金属または金属塩の溶解析出を利用するエレクトロデポジション方式(以下、ED方式と略す)が知られている。ED方式は、3V以下の低電圧で駆動が可能で、簡便なセル構成、黒と白のコントラストや黒品質に優れる等の利点があり、様々な方法が開示されている(例えば、特許文献1〜3参照。)。   As a display method for eliminating the drawbacks of each of the above-described methods, an electrodeposition method (hereinafter, abbreviated as ED method) using dissolution precipitation of metal or metal salt is known. The ED method can be driven at a low voltage of 3 V or less, has advantages such as a simple cell configuration, excellent black-white contrast and black quality, and various methods have been disclosed (for example, Patent Document 1). -3)).

本発明者は、上記各特許文献に開示されている技術を詳細に検討した結果、従来技術では、繰返し駆動させたときの反射率の安定性に課題があることが判明し、これを解決する手段としては、特許文献4に記載されているような電解質にレドックス緩衝剤としてフェロセン類化合物を添加する方法が挙げられるが、近年のユーザーの要求仕様の高まりを満たすには、更なる改良が必要であることが判明した。
米国特許第4,240,716号明細書 特許第3428603号公報 特開2003−241227号公報 特表2007−508587号公報
As a result of examining the techniques disclosed in each of the above patent documents in detail, the present inventor has found that there is a problem in the stability of the reflectance when it is repeatedly driven, and solves this problem. As a means, there is a method of adding a ferrocene compound as a redox buffer to the electrolyte as described in Patent Document 4, but further improvement is necessary to meet the recent increase in user requirements. It turned out to be.
U.S. Pat. No. 4,240,716 Japanese Patent No. 3428603 JP 2003-241227 A Special table 2007-508587 gazette

本発明は、上記課題に鑑みなされたものであり、その目的は、簡便な部材構成、低電圧で駆動可能で、駆動安定性に優れた電気化学表示素子を提供することにある。   The present invention has been made in view of the above problems, and an object thereof is to provide an electrochemical display element that has a simple member configuration, can be driven at a low voltage, and has excellent driving stability.

本発明の上記目的は、以下の構成により達成される。   The above object of the present invention is achieved by the following configurations.

1.金属酸化物から成る多孔質電極に0.01MPa以上0.5MPa以下の範囲の加圧条件下で、酸化還元されうる補助化合物を固定化して作製することを特徴とする金属溶解析出型の電気化学表示素子用電極の製造方法。   1. Electrolysis of metal dissolution precipitation type characterized by immobilizing an auxiliary compound that can be oxidized and reduced on a porous electrode made of metal oxide under a pressure condition in a range of 0.01 MPa to 0.5 MPa. Manufacturing method of electrode for display element.

2.前記補助化合物を固定化する時の加熱温度が100℃以上200℃以下の範囲にあることを特徴とする前記1に記載の電気化学表示素子用電極の製造方法。   2. 2. The method for producing an electrode for an electrochemical display element as described in 1 above, wherein the heating temperature for immobilizing the auxiliary compound is in the range of 100 ° C. or more and 200 ° C. or less.

3.前記1または2に記載の電気化学表示素子用電極の製造方法により形成された電極を用いた電気化学表示素子であって、前記多孔質電極が金属酸化物の微粒子から形成されており、かつ該金属酸化物の平均一次粒径が5nm以上30nm以下であることを特徴とする電気化学表示素子。   3. An electrochemical display element using an electrode formed by the method for producing an electrode for an electrochemical display element according to 1 or 2, wherein the porous electrode is formed of fine particles of metal oxide, and An electrochemical display element, wherein the average primary particle size of the metal oxide is 5 nm or more and 30 nm or less.

4.前記補助化合物がフェロセン誘導体であることを特徴とする前記3に記載の電気化学表示素子。   4). 4. The electrochemical display device as described in 3 above, wherein the auxiliary compound is a ferrocene derivative.

5.前記補助化合物がNオキシル誘導体であることを特徴とする前記3に記載の電気化学表示素子。   5. 4. The electrochemical display element as described in 3 above, wherein the auxiliary compound is an N oxyl derivative.

6.前記補助化合物が−Si(OR)基(Rは、アルキル基を表す。)を有していることを特徴とする前記4または5に記載の電気化学表示素子。 6). 6. The electrochemical display device as described in 4 or 5 above, wherein the auxiliary compound has a —Si (OR) 3 group (R represents an alkyl group).

7.前記金属酸化物が酸化インジウムまたは二酸化チタンから成ることを特徴とする前記4〜6のいずれか1項に記載の電気化学表示素子。   7). 7. The electrochemical display element according to any one of 4 to 6, wherein the metal oxide is made of indium oxide or titanium dioxide.

本発明により、簡便な部材構成、低電圧で駆動可能で、駆動安定性に優れた電気化学表示素子を提供することができた。   According to the present invention, it is possible to provide an electrochemical display element that has a simple member configuration, can be driven at a low voltage, and has excellent driving stability.

本発明の電気化学表示素子(以下、単に表示素子とも言う。)に用いる金属酸化物から成る多孔質電極の作製において、0.01MPa以上0.5MPa以下の範囲の加圧条件下で、更に好ましくは、100℃以上200℃以下の範囲で加温条件下で、酸化還元されうる補助化合物を固定化して作製することにより、低電圧で駆動可能で、駆動安定性に優れた表示素子を提供することができた。   In the production of a porous electrode made of a metal oxide used for the electrochemical display element (hereinafter also simply referred to as a display element) of the present invention, it is more preferable under pressure conditions in the range of 0.01 MPa to 0.5 MPa. Provides a display element that can be driven at a low voltage and has excellent driving stability by immobilizing an auxiliary compound that can be oxidized and reduced under heating conditions in the range of 100 ° C. to 200 ° C. I was able to.

以下、本発明の詳細について説明する。   Details of the present invention will be described below.

〔表示素子の基本構成〕
本発明の表示素子においては、表示部には、対応する1つの対向電極が設けられている。表示部に近い対向電極の1つである電極1にはITO電極等の透明電極、他方の電極2には0.01MPa以上0.5MPa以下の範囲の加圧条件下で酸化還元されうる補助化合物が固定化された金属酸化物から成る多孔質電極が設けられている。電極1と電極2との間に、金属塩化合物を含有した電解質を有し、対向電極間に正負両極性の電圧を印加することにより、白表示と黒表示を可逆的に切り替えることができる。
[Basic structure of display element]
In the display element of the present invention, the display portion is provided with one corresponding counter electrode. The electrode 1 which is one of the counter electrodes close to the display unit is a transparent electrode such as an ITO electrode, and the other electrode 2 is an auxiliary compound which can be oxidized and reduced under pressure conditions in the range of 0.01 MPa to 0.5 MPa. There is provided a porous electrode made of a metal oxide on which is immobilized. A white display and a black display can be reversibly switched by having an electrolyte containing a metal salt compound between the electrode 1 and the electrode 2 and applying a voltage of both positive and negative polarities between the counter electrodes.

酸化還元されうる補助化合物を加圧条件下で固定化する方法は、多孔質電極の内部まで酸化還元されうる補助化合物が浸透し、かつ多孔質電極を形成する金属酸化物の表面が活性することにより、酸化還元されうる補助化合物を非加圧条件下で固定化する方法に比べて、多孔質電極への酸化還元されうる補助化合物の導入量が増加させることができ、駆動安定性を向上させることができる。   The method of immobilizing an auxiliary compound that can be oxidized / reduced under pressure is such that the auxiliary compound that can be oxidized / reduced penetrates into the porous electrode and the surface of the metal oxide that forms the porous electrode is activated. As a result, the amount of the auxiliary compound that can be oxidized / reduced to the porous electrode can be increased and the driving stability can be improved compared to the method of fixing the auxiliary compound that can be oxidized / reduced under non-pressurized conditions. be able to.

〔加圧条件〕
本発明の電極は金属酸化物から成る多孔質電極に0.01MPa以上0.5MPa以下の範囲の加圧条件下で、酸化還元されうる補助化合物を固定化して作製することを特徴し、オートクレーブ等の密閉反応容器内に酸化還元されうる補助化合物を溶かした溶液と金属酸化物から成る多孔質電極を入れて、密閉条件で密閉反応容器を加熱することによって、加圧条件を制御することができる。本発明の加圧条件にするための温度は100℃以上200℃以下が好ましい。加圧条件が低すぎると酸化還元されうる補助化合物を溶かした溶液の多孔質内部への浸透が不十分になり、加圧条件が高すぎると多孔質電極自体が脆弱になる。また、加熱温度が低すぎると多孔質電極を形成する金属酸化物の活性化が不十分になり、加熱温度が高すぎると酸化還元されうる補助化合物の分解が起こり始める。
[Pressure condition]
The electrode of the present invention is produced by immobilizing an auxiliary compound that can be oxidized and reduced on a porous electrode made of a metal oxide under a pressure condition of 0.01 MPa or more and 0.5 MPa or less, such as an autoclave. The pressure condition can be controlled by placing a porous electrode composed of a metal oxide and a solution in which an auxiliary compound capable of oxidation / reduction is dissolved in the closed reaction vessel and heating the closed reaction vessel under the closed condition. . The temperature for achieving the pressurizing condition of the present invention is preferably 100 ° C. or higher and 200 ° C. or lower. If the pressure condition is too low, the penetration of the solution in which the auxiliary compound capable of oxidation / reduction is dissolved becomes insufficient, and if the pressure condition is too high, the porous electrode itself becomes brittle. If the heating temperature is too low, activation of the metal oxide forming the porous electrode becomes insufficient, and if the heating temperature is too high, decomposition of the auxiliary compound that can be oxidized and reduced starts to occur.

〔多孔質電極〕
本発明に係る多孔質電極とは、層中にナノメートルサイズの孔が無数に存在し、多孔質化構造内を電解質中に含まれるイオン種が移動可能な状態のことを言う。
(Porous electrode)
The porous electrode according to the present invention refers to a state in which an infinite number of nanometer-sized pores exist in a layer and ionic species contained in the electrolyte can move within the porous structure.

このような多孔質電極の形成方法としては、多孔質電極を構成する微粒子を含んだ分散物をインクジェット法、スクリーン印刷法、ブレード塗布法などで層状に形成した後に、所定の温度で加熱、乾燥、焼成することよって多孔質化する方法や、スパッタ法、CVD法、大気圧プラズマ法などで電極層を構成した後に、陽極酸化、光電気化学エッチングすることによって多孔質化する方法などが挙げられる。また、ゾルゲル法や、Adv.Mater.2006,18,2980−2983に記載された方法でも、形成することができる。   As a method for forming such a porous electrode, a dispersion containing fine particles constituting the porous electrode is formed into a layer by an inkjet method, a screen printing method, a blade coating method, etc., and then heated and dried at a predetermined temperature. , A method of making it porous by firing, a method of making it porous by anodizing or photoelectrochemical etching after forming an electrode layer by a sputtering method, a CVD method, an atmospheric pressure plasma method, or the like. . Also, the sol-gel method, Adv. Mater. It can also be formed by the method described in 2006, 18, 2980-2983.

多孔質電極を構成する微粒子の主成分は、ITO、SnO、TiO、ZnO等の金属酸化物から選択することができ、好ましくは、ITO、TiOから選択されることである。 The main component of the fine particles constituting the porous electrode can be selected from metal oxides such as ITO, SnO 2 , TiO 2 and ZnO, and preferably selected from ITO and TiO 2 .

本発明の多孔質電極を構成する金属酸化物は、平均粒子径が5nm〜30μm程度の微粒子を用いることが好ましい。微粒子の形状は不定形、針状、球形など任意の形状のものを用いることができる。   The metal oxide constituting the porous electrode of the present invention preferably uses fine particles having an average particle diameter of about 5 nm to 30 μm. As the shape of the fine particles, those having an arbitrary shape such as an indefinite shape, a needle shape, and a spherical shape can be used.

多孔質電極の膜厚は、0.1〜10μmの範囲であることが好ましく、より好ましくは0.25〜2μmの範囲である。   The film thickness of the porous electrode is preferably in the range of 0.1 to 10 μm, more preferably in the range of 0.25 to 2 μm.

〔酸化還元されうる補助化合物〕
本発明の表示素子に於いては、金属塩化合物の酸化還元反応を促進するために、酸化還元されうる補助化合物(以下、プロモーターと記す)を多孔質電極上に固定化して用いることを特徴とする。プロモーターは酸化還元反応の結果として、可視領域(400〜700nm)の光学濃度が変化しないものでも良いし、変化するものであっても良い。
[Auxiliary compounds that can be redox]
In the display device of the present invention, in order to promote the oxidation-reduction reaction of the metal salt compound, an auxiliary compound that can be oxidized and reduced (hereinafter referred to as a promoter) is used by being immobilized on a porous electrode. To do. The promoter may be one that does not change the optical density in the visible region (400 to 700 nm) or may change as a result of the oxidation-reduction reaction.

例えば、表示電極側で金属酸化物の還元(或いは酸化)で発色させる場合、対向電極側でプロモーターの酸化(或いは還元)反応を利用する事によって、低い駆動電圧で高い発色濃度を得る事が可能と成る。このようにプロモーターを対極反応物質として利用する場合、金属酸化物とは逆の酸化還元活性を有するプロモーターを、対向電極上に固定化して用いる事が好ましい。プロモーターを対極物質として用いる場合、プロモーターは酸化還元反応の結果として可視領域(400〜700nm)の光学濃度が変化しないものが好ましい。但し、本発明の好ましい態様に於いて記載したように、表示素子中に白色散乱物を用いて、プロモーターによる発色を遮蔽するような態様の場合、可視領域(400〜700nm)の光学濃度が変化するプロモーターを用いても良い。このような構成の態様は、プロモーターの選択が容易と成り好ましい。   For example, when color is generated by reduction (or oxidation) of a metal oxide on the display electrode side, a high color density can be obtained with a low driving voltage by using an oxidation (or reduction) reaction of a promoter on the counter electrode side. It becomes. Thus, when a promoter is used as a counter electrode reactant, it is preferable to use a promoter having a redox activity opposite to that of the metal oxide, immobilized on the counter electrode. When a promoter is used as a counter electrode material, it is preferable that the promoter does not change the optical density in the visible region (400 to 700 nm) as a result of the redox reaction. However, as described in the preferred embodiment of the present invention, the optical density in the visible region (400 to 700 nm) changes in the case of using a white scatterer in the display element to shield the color development by the promoter. A promoter may be used. Such a configuration is preferable because it facilitates selection of a promoter.

本発明に用いる事が出来る好ましいプロモーターとしては、例えば以下のような化合物が挙げられる。
1)TEMPO等に代表されるN−オキシル誘導体、N−ヒドロキシフタルイミド誘導体、ヒドロキサム酸誘導体等、N−O結合を有する化合物。
2)ガルビノキシル等、0−位に嵩高い置換基を導入したアリロキシ遊離基を有する化合物。
3)フェロセン等、メタロセン誘導体。
4)ベンジル(ジフェニルエタンジオン)誘導体。
5)テトラゾリウム塩/ホルマザン誘導体。
6)フェナジン、フェノチアジン、フェノキサジン、アクリジン等のアジン系化合物。
7)ビオロゲン等ピリジニウム化合物。
Examples of preferred promoters that can be used in the present invention include the following compounds.
1) Compounds having an N—O bond, such as N-oxyl derivatives such as TEMPO, N-hydroxyphthalimide derivatives, and hydroxamic acid derivatives.
2) A compound having an allyloxy free radical having a bulky substituent introduced at the 0-position, such as galvinoxyl.
3) Metallocene derivatives such as ferrocene.
4) A benzyl (diphenylethanedione) derivative.
5) Tetrazolium salt / formazan derivative.
6) Azine compounds such as phenazine, phenothiazine, phenoxazine, and acridine.
7) Pyridinium compounds such as viologen.

その他、ベンゾキノン誘導体、ベルダジル等ヒドラジル遊離基化合物、チアジル遊離基化合物、ヒドラゾン誘導体、フェニレンジアミン誘導体、トリアリルアミン誘導体、テトラチアフルバレン誘導体、テトラシアノキノジメタン誘導体、チアントレン誘導体等もプロモーターとして用いる事ができる。   In addition, hydrazyl free radical compounds such as benzoquinone derivatives, verdazil, thiazyl free radical compounds, hydrazone derivatives, phenylenediamine derivatives, triallylamine derivatives, tetrathiafulvalene derivatives, tetracyanoquinodimethane derivatives, thianthrene derivatives, etc. can also be used as promoters. .

本発明の表示素子に於いては、上記1)から7)の範疇のプロモーターが好ましく、特に1)が好ましい。   In the display element of the present invention, promoters in the categories 1) to 7) are preferable, and 1) is particularly preferable.

以下1)の範疇の化合物について詳細に説明する。   Hereinafter, compounds in the category 1) will be described in detail.

N−オキシル(ニトロキシドラジカルとも呼ばれる)とは、ヒドロキシルアミンの酸素−水素結合がラジカル的に開裂して生じた酸素中心ラジカルである。ニトロキシドラジカルは、下記スキームに示すように2つの可逆的な酸化還元対を有する事が知られている。ニトロキシドラジカルは1電子酸化によりオキソアンモニウムカチオンとなり、これが還元されてラジカルを再生する。またニトロキシドラジカルは1電子還元によりアミノキシアニオンとなり、これが酸化されてラジカルを再生する。従って、ニトロキシドラジカルはp型の対極反応物質、若しくはn型対極反応物質として機能する事が出来る。   N-oxyl (also called nitroxide radical) is an oxygen-centered radical generated by radically cleaving the oxygen-hydrogen bond of hydroxylamine. The nitroxide radical is known to have two reversible redox pairs as shown in the following scheme. The nitroxide radical becomes an oxoammonium cation by one-electron oxidation, which is reduced to regenerate the radical. The nitroxide radical is converted into an aminoxy anion by one-electron reduction, which is oxidized to regenerate the radical. Therefore, the nitroxide radical can function as a p-type counter electrode reactant or an n-type counter electrode reactant.

Figure 2010085571
Figure 2010085571

N−オキシル誘導体を電極表面上に固定化する方法は、N−オキシル誘導体に電極表面と化学吸着または物理吸着する基を導入する方法やN−オキシル誘導体をポリマー化して電極表面上に薄膜を形成する方法などが挙げられる。尚、N−オキシル誘導体はN−オキシルラジカルの状態で添加しても良く、またN−ヒドロキシ化合物の状態、更にはオキソアンモニウムカチオンの状態で添加しても良い。   The N-oxyl derivative is immobilized on the electrode surface by introducing a group that chemically or physically adsorbs with the electrode surface into the N-oxyl derivative or by polymerizing the N-oxyl derivative to form a thin film on the electrode surface. The method of doing is mentioned. The N-oxyl derivative may be added in the form of an N-oxyl radical, or may be added in the form of an N-hydroxy compound, and further in the form of an oxoammonium cation.

N−オキシル誘導体としては、TEMPO(2,2,6,6−テトラメチルピペリジニル−N−オキシル)を初め、各種置換基の置換した誘導体が市販されている。また公知の文献に従って、ポリマーを含め、各種誘導体を容易に合成する事が出来る。   As N-oxyl derivatives, derivatives substituted with various substituents such as TEMPO (2,2,6,6-tetramethylpiperidinyl-N-oxyl) are commercially available. In addition, various derivatives including polymers can be easily synthesized according to known literature.

一般にニトロキシドラジカルのα位炭素に水素が置換している場合、容易にヒドロキシアミンとニトロンへ不均化してしまう事が知られている。このためTEMPOのN−オキシル基α位の4つのメチル基は、安定ラジカルとして存在する上での必須の構造と言えるが、逆にこれら4つのメチル基の立体障害によって、反応性が落ちる場合がある。これら活性低下を引き起こさない点で、アザアダマンタンN−オキシル誘導体、或いはアザビシクロN−オキシル誘導体が好ましい。   In general, when hydrogen is substituted on the α-position carbon of the nitroxide radical, it is known that it easily disproportionates to hydroxyamine and nitrone. For this reason, the four methyl groups at the N-oxyl group α-position of TEMPO can be said to be indispensable structures for existing as stable radicals, but conversely, the reactivity may decrease due to steric hindrance of these four methyl groups. is there. Azaadamantane N-oxyl derivatives or azabicyclo N-oxyl derivatives are preferred in that they do not cause a decrease in activity.

次に、N−ヒドロキシフタルイミド誘導体、ヒドロキサム酸誘導体等について説明する。下記スキームに示すように、N−ヒドロキシフタルイミド(NHPI)の電極酸化により生じたフタルイミドN−オキシル(PINO)は、2級アルコールを酸化してケトンを生成する。この例から分かるように、NHPI/PINOの酸化還元対は、本発明の表示素子に於いても、対極反応物質として機能する事が理解されよう。またNHPI同様、ヒドロキサム酸誘導体、トリヒドロキシイミノシアヌル酸(THICA)も、プロモーターとして用いる事が出来る。   Next, N-hydroxyphthalimide derivatives, hydroxamic acid derivatives and the like will be described. As shown in the following scheme, phthalimide N-oxyl (PINO) generated by electrode oxidation of N-hydroxyphthalimide (NHPI) oxidizes a secondary alcohol to produce a ketone. As can be seen from this example, it is understood that the redox couple of NHPI / PINO functions as a counter electrode reactant even in the display element of the present invention. As with NHPI, hydroxamic acid derivatives and trihydroxyimino cyanuric acid (THICA) can also be used as promoters.

これらの化合物を用いて、本発明の表示素子を作製する場合、N−OHの状態で添加する事が好ましい。N−OHの状態で表示素子を作製した後、表示素子を駆動させて酸化をする事でラジカルが生成する。   When the display element of the present invention is produced using these compounds, it is preferably added in the state of N—OH. After producing a display element in the state of N—OH, radicals are generated by driving the display element to oxidize.

Figure 2010085571
Figure 2010085571

上記1)の範疇で示されるプロモーターは、下記一般式(M1)で表す事が出来、下記一般式(M2)から(M5)で表されるプロモーターが好ましい。特に一般式(M6)で示される、多環式N−オキシル誘導体が好ましい。   The promoter represented by the category of 1) can be represented by the following general formula (M1), and promoters represented by the following general formulas (M2) to (M5) are preferable. In particular, a polycyclic N-oxyl derivative represented by the general formula (M6) is preferable.

尚、一般式(M1)から(M5)表されるプロモーターは各種市販されており、容易に入手する事が出来る。また公知の文献に従って、各種誘導体を容易に合成する事が出来る。一般式(M6)で示されるプロモーターは、J.Am.Chem.Soc.,128,8412(2006)及びTetrahedron Letters 49(2008)48−52を参考として合成する事が出来る。   Various promoters represented by the general formulas (M1) to (M5) are commercially available and can be easily obtained. In addition, various derivatives can be easily synthesized according to known literature. The promoter represented by the general formula (M6) is J.P. Am. Chem. Soc. , 128, 8412 (2006) and Tetrahedron Letters 49 (2008) 48-52.

またこれらをポリマー化したプロモーターは、例えば特開2004−227946号公報、同2004−228008号公報、同2006−73240号公報、同2007−35375号公報、同2007−70384号公報、同2007−184227号公報、同2007−298713号公報等を参考にして合成する事が出来る。   Further, promoters obtained by polymerizing these are, for example, JP-A Nos. 2004-227946, 2004-228008, 2006-73240, 2007-35375, 2007-70384, and 2007-184227. Can be synthesized with reference to Japanese Patent Publication No. 2007-298713.

Figure 2010085571
Figure 2010085571

式中、Rm11及びRm12は各々独立に置換基を有しても良い脂肪族炭化水素基、芳香族炭化水素基、複素環基若しくは>C=O,>C=S,>C=N−Rm13を介して窒素原子と結合する基を表す。Rm13は水素原子、若しくは置換基を有しても良い脂肪族炭化水素基、芳香族炭化水素基または複素環基を表す。また、Rm11及びRm12は互いに連結して、環状構造を形成しても良い。 In the formula, Rm 11 and Rm 12 are each independently an optionally substituted aliphatic hydrocarbon group, aromatic hydrocarbon group, heterocyclic group, or>C═O,>C═S,> C═N. A group bonded to a nitrogen atom via —Rm 13 ; Rm 13 represents a hydrogen atom or an aliphatic hydrocarbon group, an aromatic hydrocarbon group or a heterocyclic group which may have a substituent. Rm 11 and Rm 12 may be connected to each other to form a cyclic structure.

前記一般式(M1)において、Rm11及びRm12は各々独立に置換基を有しても良い脂肪族炭化水素基、芳香族炭化水素基、複素環基若しくは>C=O,>C=S,>C=N−Rm13を介して窒素原子と結合する基を表す。Rm13は水素原子、若しくは置換基を有しても良い脂肪族炭化水素基、芳香族炭化水素基または複素環基を表す。また、Rm11及びRm12は互いに連結して、環状構造を形成しても良い。 In the general formula (M1), Rm 11 and Rm 12 are each independently an optionally substituted aliphatic hydrocarbon group, aromatic hydrocarbon group, heterocyclic group, or>C═O,> C═S. ,> C═N—Rm represents a group bonded to a nitrogen atom via 13 . Rm13 represents a hydrogen atom or an aliphatic hydrocarbon group, an aromatic hydrocarbon group or a heterocyclic group which may have a substituent. Rm 11 and Rm 12 may be connected to each other to form a cyclic structure.

脂肪族炭化水素基には、鎖状及び環状のものが包含され、鎖状のものには直鎖状のもの及び分岐状のものが包含される。このような脂肪族炭化水素基には、メチル、エチル、ビニル、プロピル、イソプロピル、プロペニル、ブチル、iso−ブチル、tert−ブチル、ペンチル、イソペンチル、ネオペンチル、ヘキシル、iso−ヘキシル、シクロヘキシル、シクロヘキセニル、オクチル、iso−オクチル、シクロオクチル、2,3−ジメチル−2−ブチル等が挙げられる。   The aliphatic hydrocarbon group includes chain and cyclic groups, and the chain group includes linear and branched groups. Such aliphatic hydrocarbon groups include methyl, ethyl, vinyl, propyl, isopropyl, propenyl, butyl, iso-butyl, tert-butyl, pentyl, isopentyl, neopentyl, hexyl, iso-hexyl, cyclohexyl, cyclohexenyl, Examples include octyl, iso-octyl, cyclooctyl, 2,3-dimethyl-2-butyl and the like.

芳香族炭化水素基としては、フェニル基、ナフチル基等が挙げられ、複素環基としては、ピリジル基、チアゾリル基、オキサゾリル基、イミダゾリル基、フリル基、ピロリル基、ピラジニル基、ピリミジニル基、ピリダジニル基、セレナゾリル基、スルホラニル基、ピペリジニル基、ピラゾリル基、テトラゾリル基、モルフォリノ基等が挙げられる。   Examples of the aromatic hydrocarbon group include a phenyl group and a naphthyl group. Examples of the heterocyclic group include a pyridyl group, a thiazolyl group, an oxazolyl group, an imidazolyl group, a furyl group, a pyrrolyl group, a pyrazinyl group, a pyrimidinyl group, and a pyridazinyl group. , Serenazolyl group, sulfolanyl group, piperidinyl group, pyrazolyl group, tetrazolyl group, morpholino group and the like.

これら置換基は更に置換基を有していても良い。それらの置換基には、特に制限は無く例えば、アルキル基(例えば、メチル基、エチル基、プロピル基、イソプロピル基、tert−ブチル基、ペンチル基、ヘキシル基、オクチル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基等)、シクロアルキル基(例えば、シクロプロピル基、シクロペンチル基、シクロヘキシル基等)、アルケニル基(例えば、ビニル基、アリル基、ブテニル基、オクテニル基等)、シクロアルケニル基(例えば、2−シクロペンテン−1−イル基、2−シクロヘキセン−1−イル基等)、アルキニル基(例えば、プロパルギル基、エチニル基、トリメチルシリルエチニル基等)、アリール基(例えば、フェニル基、ナフチル基、p−トリル基、m−クロロフェニル基、o−ヘキサデカノイルアミノフェニル基等)、複素環基(例えば、ピリジル基、チアゾリル基、オキサゾリル基、イミダゾリル基、フリル基、ピロリル基、ピラジニル基、ピリミジニル基、ピリダジニル基、セレナゾリル基、スルホラニル基、ピペリジニル基、ピラゾリル基、テトラゾリル基、モルフォリノ基等)、複素環オキシ基(例えば、1−フェニルテトラゾール−5−オキシ基、2−テトラヒドロピラニルオキシ基、ピリジルオキシ基、チアゾリルオキシ基、オキサゾリルオキシ基、イミダゾリルオキシ基等)、ハロゲン原子(例えば、塩素原子、臭素原子、ヨウ素原子、フッ素原子等)、アルコキシ基(例えば、メトキシ基、エトキシ基、プロピルオキシ基、tert−ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、オクチルオキシ基、ドデシルオキシ基等)、シクロアルコキシ基(例えば、シクロペンチルオキシ基、シクロヘキシルオキシ基等)、アリールオキシ基(例えば、フェノキシ基、2−ナフチルオキシ基、2−メチルフェノキシ基、4−tert−ブチルフェノキシ基、3−ニトロフェノキシ基、2−テトラデカノイルアミノフェノキシ基等)、アルキルチオ基(例えば、メチルチオ基、エチルチオ基、プロピルチオ基、ペンチルチオ基、ヘキシルチオ基、オクチルチオ基、ドデシルチオ基等)、シクロアルキルチオ基(例えば、シクロペンチルチオ基、シクロヘキシルチオ基等)、アリールチオ基(例えば、フェニルチオ基、1−ナフチルチオ基等)、複素環チオ基(例えば、ピリジルチオ基、チアゾリルチオ基、オキサゾリルチオ基、イミダゾリルチオ基、フリルチオ基、ピロリルチオ基等)、アルコキシカルボニル基(例えば、メトキシカルボニル基、エトキシカルボニル基、ブトキシカルボニル基、オクチルオキシカルボニル基、ドデシルオキシカルボニル基等)、アリールオキシカルボニル基(例えば、フェニルオキシカルボニル基、ナフチルオキシカルボニル基等)、スルファモイル基(例えば、アミノスルホニル基、メチルアミノスルホニル基、ジメチルアミノスルホニル基、ブチルアミノスルホニル基、ヘキシルアミノスルホニル基、シクロヘキシルアミノスルホニル基、オクチルアミノスルホニル基、ドデシルアミノスルホニル基、フェニルアミノスルホニル基、ナフチルアミノスルホニル基、2−ピリジルアミノスルホニル基、モルフォリノスルホニル基、ピロリジノスルホニル基等)、ウレイド基(例えば、メチルウレイド基、エチルウレイド基、ペンチルウレイド基、シクロヘキシルウレイド基、オクチルウレイド基、ドデシルウレイド基、フェニルウレイド基、ナフチルウレイド基、2−ピリジルアミノウレイド基等)、アシル基(例えば、アセチル基、エチルカルボニル基、プロピルカルボニル基、ペンチルカルボニル基、シクロヘキシルカルボニル基、オクチルカルボニル基、2−エチルヘキシルカルボニル基、ドデシルカルボニル基、フェニルカルボニル基、ナフチルカルボニル基、ピリジルカルボニル基等)、アシルオキシ基(例えば、ホルミルオキシ基、アセチルオキシ基、ピバロイルオキシ基、ステアロイルオキシ基、ベンゾイルオキシ基、p−メトキシフェニルカルボニルオキシ基、エチルカルボニルオキシ基、ブチルカルボニルオキシ基、オクチルカルボニルオキシ基、ドデシルカルボニルオキシ基、フェニルカルボニルオキシ基等)、アシルアミノ基(例えば、アセチルアミノ基、ベンゾイルアミノ基、ホルミルアミノ基、ピバロイルアミノ基、ラウロイルアミノ基、3,4,5−トリ−n−オクチルオキシフェニルカルボニルアミノ基等)、カルバモイル基(例えば、アミノカルボニル基、メチルアミノカルボニル基、ジメチルアミノカルボニル基、プロピルアミノカルボニル基、ペンチルアミノカルボニル基、シクロヘキシルアミノカルボニル基、オクチルアミノカルボニル基、2−エチルヘキシルアミノカルボニル基、ドデシルアミノカルボニル基、フェニルアミノカルボニル基、ナフチルアミノカルボニル基、2−ピリジルアミノカルボニル基、モルフォリノカルボニル基、ピペラジノカルボニル基等)、アルカンスルフィニル基またはアリールスルフィニル基(例えば、メタンスルフィニル基、エタンスルフィニル基、ブタンスルフィニル基、シクロヘキサンスルフィニル基、2−エチルヘキサンスルフィニル基、ドデカンスルフィニル基、フェニルスルフィニル基、ナフチルスルフィニル基、2−ピリジルスルフィニル基等)、アルカンスルホニル基またはアリールスルホニル基(例えば、メタンスルホニル基、エタンスルホニル基、ブタンスルホニル基、シクロヘキサンスルホニル基、2−エチルヘキサンスルホニル基、ドデカンスルホニル基、フェニルスルホニル基、ナフチルスルホニル基、2−ピリジルスルホニル基等)、アミノ基(例えば、アミノ基、メチルアミノ基、エチルアミノ基、ジメチルアミノ基、ブチルアミノ基、シクロペンチルアミノ基、2−エチルヘキシルアミノ基、ドデシルアミノ基、アニリノ基、N−メチルアニリノ基、ジフェニルアミノ基、ナフチルアミノ基、2−ピリジルアミノ基等)、シリルオキシ基(例えば、トリメチルシリルオキシ基、tert−ブチルジメチルシリルオキシ基等)、アミノカルボニルオキシ基(例えば、N,N−ジメチルカルバモイルオキシ基、N,N−ジエチルカルバモイルオキシ基、モルホリノカルボニルオキシ基、N,N−ジ−n−オクチルアミノカルボニルオキシ基、N−n−オクチルカルバモイルオキシ基等)、アルコキシカルボニルオキシ基(例えば、メトキシカルボニルオキシ基、エトキシカルボニルオキシ基、tert−ブトキシカルボニルオキシ基、n−オクチルカルボニルオキシ基等)、アリールオキシカルボニルオキシ基(例えば、フェノキシカルボニルオキシ基、p−メトキシフェノキシカルボニルオキシ基、p−n−ヘキサデシルオキシフェノキシカルボニルオキシ基等)、アルコキシカルボニルアミノ基(例えば、メトキシカルボニルアミノ基、エトキシカルボニルアミノ基、tert−ブトキシカルボニルアミノ基、n−オクタデシルオキシカルボニルアミノ基、N−メチル−メトキシカルボニルアミノ基等)、アリールオキシカルボニルアミノ基(例えば、フェノキシカルボニルアミノ基、p−クロロフェノキシカルボニルアミノ基、m−n−オクチルオキシフェノキシカルボニルアミノ基等)、スルファモイルアミノ基(例えば、スルファモイルアミノ基、N,N−ジメチルアミノスルホニルアミノ基、N−n−オクチルアミノスルホニルアミノ基等)、メルカプト基、アリールアゾ基(例えば、フェニルアゾ基、ナフチルアゾ基、p−クロロフェニルアゾ基等)、複素環アゾ基(例えば、ピリジルアゾ基、チアゾリルアゾ基、オキサゾリルアゾ基、イミダゾリルアゾ基、フリルアゾ基、ピロリルアゾ基、5−エチルチオ−1,3,4−チアジアゾール−2−イルアゾ基等)、イミノ基(例えば、N−スクシンイミド−1−イル基、N−フタルイミド−1−イル基等)、ホスフィノ基(例えば、ジメチルホスフィノ基、ジフェニルホスフィノ基、メチルフェノキシホスフィノ基等)、ホスフィニル基(例えば、ホスフィニル基、ジオクチルオキシホスフィニル基、ジエトキシホスフィニル基等)、ホスフィニルオキシ基(例えば、ジフェノキシホスフィニルオキシ基、ジオクチルオキシホスフィニルオキシ基等)、ホスフィニルアミノ基(例えば、ジメトキシホスフィニルアミノ基、ジメチルアミノホスフィニルアミノ基等)、シリル基(例えば、トリメチルシリル基、tert−ブチルジメチルシリル基、フェニルジメチルシリル基等)、シアノ基、ニトロ基、ヒドロキシル基、スルホ基、カルボキシル基等が挙げられる。   These substituents may further have a substituent. These substituents are not particularly limited, and examples thereof include alkyl groups (for example, methyl group, ethyl group, propyl group, isopropyl group, tert-butyl group, pentyl group, hexyl group, octyl group, dodecyl group, tridecyl group, Tetradecyl group, pentadecyl group etc.), cycloalkyl group (eg cyclopropyl group, cyclopentyl group, cyclohexyl group etc.), alkenyl group (eg vinyl group, allyl group, butenyl group, octenyl group etc.), cycloalkenyl group (eg , 2-cyclopenten-1-yl group, 2-cyclohexen-1-yl group, etc.), alkynyl group (eg, propargyl group, ethynyl group, trimethylsilylethynyl group, etc.), aryl group (eg, phenyl group, naphthyl group, p) -Tolyl group, m-chlorophenyl group, o-hexadecanoylamino Phenyl group, etc.), heterocyclic group (for example, pyridyl group, thiazolyl group, oxazolyl group, imidazolyl group, furyl group, pyrrolyl group, pyrazinyl group, pyrimidinyl group, pyridazinyl group, selenazolyl group, sulfolanyl group, piperidinyl group, pyrazolyl group, Tetrazolyl group, morpholino group, etc.), heterocyclic oxy group (for example, 1-phenyltetrazol-5-oxy group, 2-tetrahydropyranyloxy group, pyridyloxy group, thiazolyloxy group, oxazolyloxy group, imidazolyloxy group, etc.) ), Halogen atoms (for example, chlorine atom, bromine atom, iodine atom, fluorine atom, etc.), alkoxy groups (for example, methoxy group, ethoxy group, propyloxy group, tert-butoxy group, pentyloxy group, hexyloxy group, octyl) Oxy group, dodecyloxy Group), cycloalkoxy group (for example, cyclopentyloxy group, cyclohexyloxy group, etc.), aryloxy group (for example, phenoxy group, 2-naphthyloxy group, 2-methylphenoxy group, 4-tert-butylphenoxy group, 3 -Nitrophenoxy group, 2-tetradecanoylaminophenoxy group, etc.), alkylthio group (for example, methylthio group, ethylthio group, propylthio group, pentylthio group, hexylthio group, octylthio group, dodecylthio group, etc.), cycloalkylthio group (for example, Cyclopentylthio group, cyclohexylthio group, etc.), arylthio group (for example, phenylthio group, 1-naphthylthio group, etc.), heterocyclic thio group (for example, pyridylthio group, thiazolylthio group, oxazolylthio group, imidazolylthio group, furylthio group, pinyl) Rorylthio group, etc.), alkoxycarbonyl group (eg, methoxycarbonyl group, ethoxycarbonyl group, butoxycarbonyl group, octyloxycarbonyl group, dodecyloxycarbonyl group, etc.), aryloxycarbonyl group (eg, phenyloxycarbonyl group, naphthyloxycarbonyl) Group), sulfamoyl group (for example, aminosulfonyl group, methylaminosulfonyl group, dimethylaminosulfonyl group, butylaminosulfonyl group, hexylaminosulfonyl group, cyclohexylaminosulfonyl group, octylaminosulfonyl group, dodecylaminosulfonyl group, phenylamino) Sulfonyl group, naphthylaminosulfonyl group, 2-pyridylaminosulfonyl group, morpholinosulfonyl group, pyrrolidinosulfonyl group, etc.), ureido (For example, methylureido group, ethylureido group, pentylureido group, cyclohexylureido group, octylureido group, dodecylureido group, phenylureido group, naphthylureido group, 2-pyridylaminoureido group, etc.), acyl group (for example, acetyl group Ethylcarbonyl group, propylcarbonyl group, pentylcarbonyl group, cyclohexylcarbonyl group, octylcarbonyl group, 2-ethylhexylcarbonyl group, dodecylcarbonyl group, phenylcarbonyl group, naphthylcarbonyl group, pyridylcarbonyl group, etc.), acyloxy group (for example, Formyloxy, acetyloxy, pivaloyloxy, stearoyloxy, benzoyloxy, p-methoxyphenylcarbonyloxy, ethylcarbonyloxy, Rucarbonyloxy group, octylcarbonyloxy group, dodecylcarbonyloxy group, phenylcarbonyloxy group, etc.), acylamino group (for example, acetylamino group, benzoylamino group, formylamino group, pivaloylamino group, lauroylamino group, 3, 4, 5-tri-n-octyloxyphenylcarbonylamino group), carbamoyl group (for example, aminocarbonyl group, methylaminocarbonyl group, dimethylaminocarbonyl group, propylaminocarbonyl group, pentylaminocarbonyl group, cyclohexylaminocarbonyl group, octyl) Aminocarbonyl group, 2-ethylhexylaminocarbonyl group, dodecylaminocarbonyl group, phenylaminocarbonyl group, naphthylaminocarbonyl group, 2-pyridylaminocarbonyl group , Morpholinocarbonyl group, piperazinocarbonyl group, etc.), alkanesulfinyl group or arylsulfinyl group (for example, methanesulfinyl group, ethanesulfinyl group, butanesulfinyl group, cyclohexanesulfinyl group, 2-ethylhexanesulfinyl group, dodecanesulfinyl group) , Phenylsulfinyl group, naphthylsulfinyl group, 2-pyridylsulfinyl group, etc.), alkanesulfonyl group or arylsulfonyl group (for example, methanesulfonyl group, ethanesulfonyl group, butanesulfonyl group, cyclohexanesulfonyl group, 2-ethylhexanesulfonyl group, Dodecanesulfonyl group, phenylsulfonyl group, naphthylsulfonyl group, 2-pyridylsulfonyl group, etc.), amino group (for example, amino group, methylamino group, Tilamino group, dimethylamino group, butylamino group, cyclopentylamino group, 2-ethylhexylamino group, dodecylamino group, anilino group, N-methylanilino group, diphenylamino group, naphthylamino group, 2-pyridylamino group), silyloxy group (Eg, trimethylsilyloxy group, tert-butyldimethylsilyloxy group, etc.), aminocarbonyloxy group (eg, N, N-dimethylcarbamoyloxy group, N, N-diethylcarbamoyloxy group, morpholinocarbonyloxy group, N, N -Di-n-octylaminocarbonyloxy group, Nn-octylcarbamoyloxy group, etc.), alkoxycarbonyloxy group (for example, methoxycarbonyloxy group, ethoxycarbonyloxy group, tert-butoxycarbonyl) Oxy group, n-octylcarbonyloxy group, etc.), aryloxycarbonyloxy group (for example, phenoxycarbonyloxy group, p-methoxyphenoxycarbonyloxy group, pn-hexadecyloxyphenoxycarbonyloxy group, etc.), alkoxycarbonylamino Groups (for example, methoxycarbonylamino group, ethoxycarbonylamino group, tert-butoxycarbonylamino group, n-octadecyloxycarbonylamino group, N-methyl-methoxycarbonylamino group, etc.), aryloxycarbonylamino groups (for example, phenoxycarbonyl) Amino group, p-chlorophenoxycarbonylamino group, mn-octyloxyphenoxycarbonylamino group, etc.), sulfamoylamino group (for example, sulfamoylamino group, N, N -Dimethylaminosulfonylamino group, Nn-octylaminosulfonylamino group, etc.), mercapto group, arylazo group (eg, phenylazo group, naphthylazo group, p-chlorophenylazo group, etc.), heterocyclic azo group (eg, pyridylazo group) , Thiazolylazo group, oxazolylazo group, imidazolylazo group, furylazo group, pyrrolylazo group, 5-ethylthio-1,3,4-thiadiazol-2-ylazo group, etc., imino group (for example, N-succinimido-1-yl group, N-phthalimido-1-yl group, etc.), phosphino group (for example, dimethylphosphino group, diphenylphosphino group, methylphenoxyphosphino group, etc.), phosphinyl group (for example, phosphinyl group, dioctyloxyphosphinyl group, di) Ethoxyphosphinyl group, etc.), phosphine Nyloxy group (for example, diphenoxyphosphinyloxy group, dioctyloxyphosphinyloxy group, etc.), phosphinylamino group (for example, dimethoxyphosphinylamino group, dimethylaminophosphinylamino group, etc.), silyl group (For example, trimethylsilyl group, tert-butyldimethylsilyl group, phenyldimethylsilyl group, etc.), cyano group, nitro group, hydroxyl group, sulfo group, carboxyl group and the like can be mentioned.

一般式(M1)で表される化合物は、これら置換基で連結された二量体、三量体等の多量体であっても良く、また重合体で有ってもよい。   The compound represented by the general formula (M1) may be a multimer such as a dimer or trimer linked by these substituents, or may be a polymer.

Figure 2010085571
Figure 2010085571

式中、Rm21、Rm22、Rm23、Rm24は各々独立に水素原子若しくは置換基を有しても良い脂肪族炭化水素基、芳香族炭化水素基、または複素環基を表す。またRm21からRm24及びZ1を構成する原子は互いに連結して、環状構造を形成しても良く、Zは更に置換基を有していても良い。 In the formula, Rm 21 , Rm 22 , Rm 23 , and Rm 24 each independently represent an aliphatic hydrocarbon group, an aromatic hydrocarbon group, or a heterocyclic group that may have a hydrogen atom or a substituent. The atoms constituting Rm 21 to Rm 24 and Z1 may be connected to each other to form a cyclic structure, and Z 1 may further have a substituent.

前記一般式(M2)において、Rm21、Rm22、Rm23、Rm24は各々独立に水素原子若しくは置換基を有しても良い脂肪族炭化水素基、芳香族炭化水素基、または複素環基を表す。これら脂肪族炭化水素基、芳香族炭化水素基、複素環基については、前記一般式(M1)におけるそれぞれと同義である。 In the general formula (M2), Rm 21 , Rm 22 , Rm 23 and Rm 24 are each independently an aliphatic hydrocarbon group, an aromatic hydrocarbon group or a heterocyclic group which may have a hydrogen atom or a substituent. Represents. These aliphatic hydrocarbon group, aromatic hydrocarbon group, and heterocyclic group have the same meanings as those in formula (M1).

は環状構造を形成するのに必要な原子群を表し、5員環若しくは6員環を形成するのが好ましい。Zは更に置換基を有していても良く、それらの置換基としては、前記一般式(M1)で例示したのと同様の置換基が挙げられる。また、Rm21〜Rm24及びZを構成する原子は互いに連結して、環状構造を形成しても良く、例えば、窒素原子と共にアザノルボルネン構造、アザアダマンタン構造等の多環式構造を取っても良い。 Z 1 represents an atomic group necessary for forming a cyclic structure, and preferably forms a 5-membered ring or a 6-membered ring. Z 1 may further have a substituent, and examples of the substituent include the same substituents as exemplified in the general formula (M1). The atoms constituting Rm 21 to Rm 24 and Z 1 may be linked to each other to form a cyclic structure. For example, together with the nitrogen atom, a polycyclic structure such as an azanorbornene structure or an azaadamantane structure is taken. Also good.

一般式(M2)で表される化合物の環構造としては、ピペリジン環、若しくはピロリジン環、アザアダマンタン環が好ましい。   The ring structure of the compound represented by the general formula (M2) is preferably a piperidine ring, a pyrrolidine ring, or an azaadamantane ring.

Figure 2010085571
Figure 2010085571

式中Rm31は直接、若しくは酸素原子、窒素原子、硫黄原子を介してカルボニル炭素原子に置換する、置換基を有してもよい脂肪族炭化水素基、芳香族炭化水素基、または複素環基を表し、Rm32は置換基を有しても良い脂肪族炭化水素基、芳香族炭化水素基、または複素環基を表す。またRm31及びRm32は互いに連結して、環状構造を形成しても良い。 In the formula, Rm 31 is an aliphatic hydrocarbon group, an aromatic hydrocarbon group, or a heterocyclic group which may have a substituent, which is substituted directly or through an oxygen atom, a nitrogen atom, or a sulfur atom with a carbonyl carbon atom. Rm 32 represents an aliphatic hydrocarbon group, an aromatic hydrocarbon group, or a heterocyclic group which may have a substituent. Rm 31 and Rm 32 may be connected to each other to form a ring structure.

本発明においては、本発明に係るN−オキシル誘導体が、前記一般式(M3)で表される化合物であることが好ましい態様の1つである。   In the present invention, it is one of the preferred embodiments that the N-oxyl derivative according to the present invention is a compound represented by the general formula (M3).

前記一般式(M3)において、Rm31は直接、若しくは酸素原子、窒素原子、硫黄原子を介してカルボニル炭素原子に置換する、置換基を有してもよい脂肪族炭化水素基、芳香族炭化水素基、または複素環基を表し、Rm32は置換基を有しても良い脂肪族炭化水素基、芳香族炭化水素基、または複素環基を表す。これら脂肪族炭化水素基、芳香族炭化水素基、複素環基については、一般式(M1)におけるそれぞれと同義である。また、
Rm31及びRm32は互いに連結して、環状構造を形成してもよい。一般式(M3)において、Rm32は芳香族炭化水素基が好ましく、特に置換基を有しても良いフェニル基が好ましい。フェニル基上の置換基としては、シアノ基、アルコキシカルボニル基、トリフルオロメチル基等の電子吸引性基が好ましい。Rm31としては、カルボニル炭素原子に直接結合したフェニル基若しくは脂肪族炭化水素基が好ましく、特に、分岐アルキル基及びシクロアルキル基が好ましい。
In the general formula (M3), Rm 31 may be substituted with a carbonyl carbon atom directly or through an oxygen atom, a nitrogen atom, or a sulfur atom, and may have an aliphatic hydrocarbon group or aromatic hydrocarbon which may have a substituent. Rm 32 represents an aliphatic hydrocarbon group, an aromatic hydrocarbon group, or a heterocyclic group which may have a substituent. These aliphatic hydrocarbon group, aromatic hydrocarbon group, and heterocyclic group have the same meanings as those in formula (M1). Also,
Rm 31 and Rm 32 may be connected to each other to form a cyclic structure. In the general formula (M3), Rm 32 is preferably an aromatic hydrocarbon group, particularly preferably a phenyl group which may have a substituent. The substituent on the phenyl group is preferably an electron-withdrawing group such as a cyano group, an alkoxycarbonyl group, or a trifluoromethyl group. Rm 31 is preferably a phenyl group or an aliphatic hydrocarbon group directly bonded to a carbonyl carbon atom, particularly preferably a branched alkyl group or a cycloalkyl group.

尚、一般式(M3)で表される化合物はN−OHの状態で添加し、表示素子を作製するのが好ましい。   In addition, it is preferable to add the compound represented by general formula (M3) in the state of N-OH to produce a display element.

Figure 2010085571
Figure 2010085571

式中、Zは環状構造を形成するのに必要な原子群を表し、更に置換基を有していても良い。 In the formula, Z 2 represents an atomic group necessary for forming a cyclic structure, and may further have a substituent.

本発明においては、本発明に係るN−オキシル誘導体が、前記一般式(M4)で表される化合物であることが好ましい態様の1つである。   In this invention, it is one of the preferable aspects that the N-oxyl derivative which concerns on this invention is a compound represented by the said general formula (M4).

前記一般式(M4)において、Zは環状構造を形成するのに必要な原子群を表し、5員環若しくは6員環を形成するのが好ましい。Zは更に置換基を有していても良く、それらの置換基としては、一般式(M1)で例示した置換基が挙げられる。また、Zは縮合環で有っても良い。 In the general formula (M4), Z 2 represents an atomic group necessary for forming a cyclic structure, and preferably forms a 5-membered ring or a 6-membered ring. Z 2 may further have a substituent, and examples of the substituent include the substituents exemplified in Formula (M1). Z 2 may be a condensed ring.

尚、一般式(M4)で表される化合物はN−OHの状態で添加し、表示素子を作製するのが好ましい。   Note that the compound represented by the general formula (M4) is preferably added in the state of N—OH to produce a display element.

Figure 2010085571
Figure 2010085571

式中Rm51からRm55は各々独立に置換基を有しても良い脂肪族炭化水素基、芳香族炭化水素基、複素環基を表す。 In the formula, Rm 51 to Rm 55 each independently represents an aliphatic hydrocarbon group, an aromatic hydrocarbon group or a heterocyclic group which may have a substituent.

本発明においては、本発明に係るN−オキシル誘導体が、前記一般式(M5)で表される化合物であることが好ましい態様の1つである。   In this invention, it is one of the preferable aspects that the N-oxyl derivative which concerns on this invention is a compound represented by the said general formula (M5).

前記一般式(M5)において、Rm51からRm55は各々独立に置換基を有しても良い脂肪族炭化水素基、芳香族炭化水素基、または複素環基を表す。これら脂肪族炭化水素基、芳香族炭化水素基、複素環基については、一般式(M1)におけるそれぞれと同義である。 In the general formula (M5), Rm 51 to Rm 55 each independently represents an aliphatic hydrocarbon group, an aromatic hydrocarbon group, or a heterocyclic group which may have a substituent. These aliphatic hydrocarbon group, aromatic hydrocarbon group, and heterocyclic group have the same meanings as those in formula (M1).

一般式(M5)において、Rm51は芳香族炭化水素基が好ましく、特に置換基を有しても良いフェニル基が好ましい。フェニル基上の置換基としてはシアノ基、アルコキシカルボニル基、トリフルオロメチル基等の電子吸引性基が好ましい。Rm52からRm55としては、炭素数1〜6のアルキル基が好ましく、メチル基が特に好ましい。 In the general formula (M5), Rm 51 is preferably an aromatic hydrocarbon group, particularly preferably a phenyl group which may have a substituent. The substituent on the phenyl group is preferably an electron-withdrawing group such as a cyano group, an alkoxycarbonyl group, or a trifluoromethyl group. As Rm 52 to Rm 55 , an alkyl group having 1 to 6 carbon atoms is preferable, and a methyl group is particularly preferable.

Figure 2010085571
Figure 2010085571

式中Rm61及びRm62は各々独立に水素原子若しくは置換基を有しても良い脂肪族炭化水素基を表し、Z、Z及びZは環状構造を形成するのに必要な原子群を表し、nは0または1を表す。 In the formula, Rm 61 and Rm 62 each independently represent a hydrogen atom or an aliphatic hydrocarbon group which may have a substituent, and Z 3 , Z 4 and Z 5 are atomic groups necessary for forming a cyclic structure. N represents 0 or 1.

一般式(M6)に於いて、Rm61及びRm62は各々独立に水素原子若しくは置換基を有しても良い脂肪族炭化水素基を表す。Rm61及びRm62としては水素原子若しくは、炭素数4以下の直鎖アルキル基が好ましく、Rm61及びRm62の少なくとも一方が水素原子であることが好ましい。 In the general formula (M6), Rm 61 and Rm 62 each independently represent a hydrogen atom or an aliphatic hydrocarbon group which may have a substituent. Rm 61 and Rm 62 are preferably a hydrogen atom or a linear alkyl group having 4 or less carbon atoms, and at least one of Rm 61 and Rm 62 is preferably a hydrogen atom.

、Z及びZは環状構造を形成するのに必要な原子群(例えば炭素、窒素、酸素、イオウ等)を表し、各々5員環若しくは6員環を形成するのが好ましい。Z、Z及びZは更に置換基を有していても良い。 Z 3 , Z 4 and Z 5 each represent an atomic group necessary for forming a cyclic structure (for example, carbon, nitrogen, oxygen, sulfur, etc.), and each preferably forms a 5-membered ring or a 6-membered ring. Z 3 , Z 4 and Z 5 may further have a substituent.

nは0または1を表すが、n=0の時、一般式(6)はビシクロ化合物を表し、n=1の場合トリシクロ化合物を表す。   n represents 0 or 1, but when n = 0, the general formula (6) represents a bicyclo compound, and when n = 1, a tricyclo compound.

一般式(M6)で表される化合物としては、n=1が好ましく、特にアザアダマンタン誘導体が好ましい。   As the compound represented by the general formula (M6), n = 1 is preferable, and an azaadamantane derivative is particularly preferable.

以下に、本発明で用いる事の出来るプロモーターの具体例を示すが、これらに限定されるものでは無い。   Specific examples of promoters that can be used in the present invention are shown below, but are not limited thereto.

Figure 2010085571
Figure 2010085571

Figure 2010085571
Figure 2010085571

Figure 2010085571
Figure 2010085571

Figure 2010085571
Figure 2010085571

Figure 2010085571
Figure 2010085571

Figure 2010085571
Figure 2010085571

〔金属塩化合物〕
本発明に係る金属塩化合物とは、少なくとも1方の電極上において、駆動操作で、溶解・析出を行うことができる金属種を含む塩であれば、如何なる化合物であってもよく、EC化合物として用いることもできる。好ましい金属種は、銀、ビスマス、銅、ニッケル、鉄、クロム、亜鉛等であり、特に好ましいのは銀、ビスマスである。
[Metal salt compounds]
The metal salt compound according to the present invention may be any compound as long as it contains a metal species that can be dissolved and precipitated by driving operation on at least one of the electrodes. It can also be used. Preferred metal species are silver, bismuth, copper, nickel, iron, chromium, zinc and the like, and particularly preferred are silver and bismuth.

〔銀塩化合物〕
本発明に係る銀塩化合物とは、銀または、銀を化学構造中に含む化合物、例えば、酸化銀、硫化銀、金属銀、銀コロイド粒子、ハロゲン化銀、銀錯体化合物、銀イオン等の化合物の総称であり、固体状態や液体への可溶化状態や気体状態等の相の状態種、中性、アニオン性、カチオン性等の荷電状態種は、特に問わない。
[Silver salt compound]
The silver salt compound according to the present invention is silver or a compound containing silver in the chemical structure, such as silver oxide, silver sulfide, metallic silver, silver colloidal particles, silver halide, silver complex compound, silver ion and the like. There are no particular restrictions on the phase state species such as the solid state, the solubilized state in liquid, and the gas state, and the charged state species such as neutral, anionic, and cationic.

本発明の表示素子においては、ヨウ化銀、塩化銀、臭化銀、酸化銀、硫化銀、クエン酸銀、酢酸銀、ベヘン酸銀、p−トルエンスルホン酸銀、トリフルオロメタンスルホン酸銀、メルカプト類との銀塩、イミノジ酢酸類との銀錯体、等の公知の銀塩化合物を用いることができる。これらの中でハロゲンやカルボン酸や銀との配位性を有する窒素原子を有しない化合物を銀塩として用いるのが好ましく、例えば、p−トルエンスルホン酸銀が好ましい。   In the display element of the present invention, silver iodide, silver chloride, silver bromide, silver oxide, silver sulfide, silver citrate, silver acetate, silver behenate, silver p-toluenesulfonate, silver trifluoromethanesulfonate, mercapto A known silver salt compound such as a silver salt with an acid or a silver complex with iminodiacetic acid can be used. Among these, it is preferable to use, as a silver salt, a compound that does not have a nitrogen atom having coordination properties with halogen, carboxylic acid, or silver, and for example, silver p-toluenesulfonate is preferable.

本発明に係る電解質に含まれる金属イオン濃度は、0.2モル/kg≦[Metal]≦2.0モル/kgが好ましい。金属イオン濃度が0.2モル/kg以上であれば、十分な濃度の銀溶液となり所望の駆動速度を得ることができ、2モル/kg以下であれば析出を防止し、低温保存時での電解質液の安定性が向上する。   The metal ion concentration contained in the electrolyte according to the present invention is preferably 0.2 mol / kg ≦ [Metal] ≦ 2.0 mol / kg. If the metal ion concentration is 0.2 mol / kg or more, a silver solution having a sufficient concentration can be obtained, and a desired driving speed can be obtained. If the metal ion concentration is 2 mol / kg or less, precipitation is prevented, and storage at low temperature is possible. The stability of the electrolyte solution is improved.

〔ハロゲンイオン、金属イオン濃度比〕
本発明の表示素子においては、電解質に含まれるハロゲンイオンまたはハロゲン原子のモル濃度を[X](モル/kg)とし、前記電解質に含まれる銀または銀を化学構造中に含む化合物の銀の総モル濃度を[Metal](モル/kg)としたとき、下式(1)で規定する条件を満たすことが好ましい。
[Halogen ion, metal ion concentration ratio]
In the display element of the present invention, the molar concentration of halogen ions or halogen atoms contained in the electrolyte is [X] (mol / kg), and silver contained in the electrolyte or the total silver of the compound containing silver in the chemical structure. When the molar concentration is [Metal] (mol / kg), it is preferable to satisfy the condition defined by the following formula (1).

式(1):0≦[X]/[Metal]≦0.1
本発明でいうハロゲン原子とは、ヨウ素原子、塩素原子、臭素原子、フッ素原子のことをいう。[X]/[Metal]が0.1よりも大きい場合は、金属の酸化還元反応時に、X→Xが生じ、Xは析出した金属と容易にクロス酸化して析出した金属を溶解させ、メモリー性を低下させる要因の1つになるので、ハロゲン原子のモル濃度は金属銀のモル濃度に対してできるだけ低い方が好ましい。本発明においては、0≦[X]/[Metal]≦0.001がより好ましい。ハロゲンイオンを添加する場合、ハロゲン種については、メモリー性向上の観点から、各ハロゲン種モル濃度総和が[I]<[Br]<[Cl]<[F]であることが好ましい。
Formula (1): 0 ≦ [X] / [Metal] ≦ 0.1
The halogen atom as used in the field of this invention means an iodine atom, a chlorine atom, a bromine atom, and a fluorine atom. When [X] / [Metal] is greater than 0.1, X → X 2 is generated during the oxidation-reduction reaction of the metal, and X 2 easily cross-oxidizes with the deposited metal to dissolve the deposited metal. Therefore, the molar concentration of halogen atoms is preferably as low as possible relative to the molar concentration of metallic silver. In the present invention, 0 ≦ [X] / [Metal] ≦ 0.001 is more preferable. In the case of adding halogen ions, the halogen species preferably have a total molar concentration of [I] <[Br] <[Cl] <[F] from the viewpoint of improving memory properties.

〔銀塩溶剤〕
本発明に於いては金属塩(特に銀塩)の溶解析出を促進するために、銀塩溶剤を用いることができる。銀塩溶剤とは、電解質中で銀を可溶化できる化合物であればいかなる化合物であってもよい。例えば、銀と配位結合を生じさせたり、銀と弱い供給結合を生じさせたりするような、銀と相互作用を示す化学構造種を含む化合物等と共存させて、銀または銀を含む化合物を可溶化物に変換する手段を用いるのが一般的である。前記化学種として、ハロゲン原子、メルカプト基、カルボキシル基、イミノ基等が知られているが、本発明においては、チオエーテル基を含有する化合物及びメルカプトアゾール類は、銀溶剤として有用に作用しかつ、共存化合物への影響が少なく溶媒への溶解度が高い特徴がある。
[Silver salt solvent]
In the present invention, a silver salt solvent can be used to promote dissolution and precipitation of metal salts (particularly silver salts). The silver salt solvent may be any compound that can solubilize silver in the electrolyte. For example, silver or a compound containing silver coexisting with a compound containing a chemical structural species that interacts with silver, such as a coordinate bond with silver or a weak supply bond with silver. It is common to use a means for converting to a solubilizate. As the chemical species, a halogen atom, a mercapto group, a carboxyl group, an imino group, and the like are known. It is characterized by low influence on coexisting compounds and high solubility in solvents.

特に下記一般式(G−1)または一般式(G−2)で表される化合物の少なくとも1種を含有する事が好ましい。   In particular, it is preferable to contain at least one compound represented by the following general formula (G-1) or general formula (G-2).

〔一般式(G−1)または一般式(G−2)で表される化合物〕
一般式(G−1)Rg11−S−Rg12
式中Rg11、Rg12は各々置換または無置換の炭化水素基を表す。また、これらの炭化水素基では、1個以上の窒素原子、酸素原子、リン原子、硫黄原子、ハロゲン原子を含んでも良く、Rg11とRg12が互いに連結し、環状構造を取っても良い。
[Compound represented by General Formula (G-1) or General Formula (G-2)]
Formula (G-1) Rg 11 -S -Rg 12
In the formula, Rg 11 and Rg 12 each represent a substituted or unsubstituted hydrocarbon group. These hydrocarbon groups may contain one or more nitrogen atoms, oxygen atoms, phosphorus atoms, sulfur atoms, and halogen atoms, and Rg 11 and Rg 12 may be linked to each other to form a cyclic structure.

Figure 2010085571
Figure 2010085571

式中、Mは水素原子、金属原子または4級アンモニウムを表す。Zは含窒素複素環を構成するのに必要な原子群表す。nは0〜5の整数を表し、Rg21は置換基を表し、nが2以上の場合、それぞれのRg21は同じであってもよく、異なってもよく、お互いに連結して縮合環を形成してもよい。 In the formula, M represents a hydrogen atom, a metal atom or quaternary ammonium. Z represents an atomic group necessary for constituting a nitrogen-containing heterocyclic ring. n represents an integer of 0 to 5, Rg 21 represents a substituent, and when n is 2 or more, each Rg 21 may be the same or different, and may be connected to each other to form a condensed ring. It may be formed.

前記一般式(G−1)において、Rg11、Rg12は各々置換または無置換の炭化水素基を表し、これらには芳香族の直鎖基または分岐基が含まれる。また、これらの炭化水素基では、1個以上の窒素原子、酸素原子、リン原子、硫黄原子を含んでも良く、Rg11とRg12が互いに連結し、環状構造を取っても良い。ただし、S原子を含む環を形成する場合には、芳香族基をとることはない。 In the general formula (G-1), Rg 11 and Rg 12 each represent a substituted or unsubstituted hydrocarbon group, which includes an aromatic straight chain group or a branched group. Further, these hydrocarbon groups may contain one or more nitrogen atoms, oxygen atoms, phosphorus atoms, and sulfur atoms, and Rg 11 and Rg 12 may be connected to each other to take a cyclic structure. However, when a ring containing an S atom is formed, an aromatic group is not taken.

炭化水素基に置換可能な基としては、例えば、アミノ基、グアニジノ基、4級アンモニウム基、ヒドロキシル基、ハロゲン化合物、カルボン酸基、カルボキシレート基、アミド基、スルフィン酸基、スルホン酸基、スルフェート基、ホスホン酸基、ホスフェート基、ニトロ基、シアノ基等を挙げることができる。   Examples of groups that can be substituted for the hydrocarbon group include amino groups, guanidino groups, quaternary ammonium groups, hydroxyl groups, halogen compounds, carboxylic acid groups, carboxylate groups, amide groups, sulfinic acid groups, sulfonic acid groups, and sulfates. Groups, phosphonic acid groups, phosphate groups, nitro groups, cyano groups and the like.

以下、本発明に係る一般式(G−1)で表される化合物の具体例を示すが、本発明ではこれら例示する化合物にのみ限定されるものではない。   Hereinafter, although the specific example of a compound represented by general formula (G-1) which concerns on this invention is shown, in this invention, it is not limited only to these illustrated compounds.

G1−1:CHSCHCHOH
G1−2:HOCHCHSCHCHOH
G1−3:HOCHCHSCHCHSCHCHOH
G1−4:HOCHCHSCHCHSCHCHSCHCHOH
G1−5:HOCHCHSCHCHOCHCHOCHCHSCHCHOH
G1−6:HOCHCHOCHCHSCHCHSCHCHOCHCHOH
G1−7:HCSCHCHCOOH
G1−8:HOOCCHSCHCOOH
G1−9:HOOCCHCHSCHCHCOOH
G1−10:HOOCCHSCHCHSCHCOOH
G1−11:HOOCCHSCHCHSCHCHSCHCHSCHCOOH
G1−12:HOOCCHCHSCHCHSCHCH(OH)CHSCHCHSCHCHCOOH
G1−13:HOOCCHCHSCHCHSCHCH(OH)CH(OH)CHSCHCHSCHCHCOOH
G1−14:HCSCHCHCHNH
G1−15:HNCHCHSCHCHNH
G1−16:HNCHCHSCHCHSCHCHNH
G1−17:HCSCHCHCH(NH)COOH
G1−18:HNCHCHOCHCHSCHCHSCHCHOCHCHNH
G1−19:HNCHCHSCHCHOCHCHOCHCHSCHCHNH
G1−20:HNCHCHSCHCHSCHCHSCHCHSCHCHNH
G1−21:HOOC(NH)CHCHCHSCHCHSCHCHCH(NH)COOH
G1−22:HOOC(NH)CHCHSCHCHOCHCHOCHCHSCHCH(NH)COOH
G1−23:HOOC(NH)CHCHOCHCHSCHCHSCHCHOCHCH(NH)COOH
G1−24:HN(O=)CCHSCHCHOCHCHOCHCHSCHC(=O)NH
G1−25:HN(O=)CCHSCHCHSCHC(=O)NH
G1−26:HNHN(O=)CCHSCHCHSCHC(=O)NHNH
G1−27:HC(O=)NHCHCHSCHCHSCHCHNHC(=O)CH
G1−28:HNOSCHCHSCHCHSCHCHSONH
G1−29:NaOSCHCHCHSCHCHSCHCHCHSONa
G1−30:HCSONHCHCHSCHCHSCHCHNHSOCH
G1−31:HN(NH)CSCHCHSC(NH)NH・2HBr
G1−32:HN(NH)CSCHCHOCHCHOCHCHSC(NH)NH・2HCl
G1−33:HN(NH)CNHCHCHSCHCHSCHCHNHC(NH)NH・2HBr
G1−34:〔(CHNCHCHSCHCHSCHCHN(CH2+・2Cl
G1-1: CH 3 SCH 2 CH 2 OH
G1-2: HOCH 2 CH 2 SCH 2 CH 2 OH
G1-3: HOCH 2 CH 2 SCH 2 CH 2 SCH 2 CH 2 OH
G1-4: HOCH 2 CH 2 SCH 2 CH 2 SCH 2 CH 2 SCH 2 CH 2 OH
G1-5: HOCH 2 CH 2 SCH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 SCH 2 CH 2 OH
G1-6: HOCH 2 CH 2 OCH 2 CH 2 SCH 2 CH 2 SCH 2 CH 2 OCH 2 CH 2 OH
G1-7: H 3 CSCH 2 CH 2 COOH
G1-8: HOOCCH 2 SCH 2 COOH
G1-9: HOOCCH 2 CH 2 SCH 2 CH 2 COOH
G1-10: HOOCCH 2 SCH 2 CH 2 SCH 2 COOH
G1-11: HOOCCH 2 SCH 2 CH 2 SCH 2 CH 2 SCH 2 CH 2 SCH 2 COOH
G1-12: HOOCCH 2 CH 2 SCH 2 CH 2 SCH 2 CH (OH) CH 2 SCH 2 CH 2 SCH 2 CH 2 COOH
G1-13: HOOCCH 2 CH 2 SCH 2 CH 2 SCH 2 CH (OH) CH (OH) CH 2 SCH 2 CH 2 SCH 2 CH 2 COOH
G1-14: H 3 CSCH 2 CH 2 CH 2 NH 2
G1-15: H 2 NCH 2 CH 2 SCH 2 CH 2 NH 2
G1-16: H 2 NCH 2 CH 2 SCH 2 CH 2 SCH 2 CH 2 NH 2
G1-17: H 3 CSCH 2 CH 2 CH (NH 2) COOH
G1-18: H 2 NCH 2 CH 2 OCH 2 CH 2 SCH 2 CH 2 SCH 2 CH 2 OCH 2 CH 2 NH 2
G1-19: H 2 NCH 2 CH 2 SCH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 SCH 2 CH 2 NH 2
G1-20: H 2 NCH 2 CH 2 SCH 2 CH 2 SCH 2 CH 2 SCH 2 CH 2 SCH 2 CH 2 NH 2
G1-21: HOOC (NH 2 ) CHCH 2 CH 2 SCH 2 CH 2 SCH 2 CH 2 CH (NH 2 ) COOH
G1-22: HOOC (NH 2 ) CHCH 2 SCH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 SCH 2 CH (NH 2 ) COOH
G1-23: HOOC (NH 2 ) CHCH 2 OCH 2 CH 2 SCH 2 CH 2 SCH 2 CH 2 OCH 2 CH (NH 2 ) COOH
G1-24: H 2 N (O = ) CCH 2 SCH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 SCH 2 C (= O) NH 2
G1-25: H 2 N (O = ) CCH 2 SCH 2 CH 2 SCH 2 C (= O) NH 2
G1-26: H 2 NHN (O = ) CCH 2 SCH 2 CH 2 SCH 2 C (= O) NHNH 2
G1-27: H 3 C (O = ) NHCH 2 CH 2 SCH 2 CH 2 SCH 2 CH 2 NHC (= O) CH 3
G1-28: H 2 NO 2 SCH 2 CH 2 SCH 2 CH 2 SCH 2 CH 2 SO 2 NH 2
G1-29: NaO 3 SCH 2 CH 2 CH 2 SCH 2 CH 2 SCH 2 CH 2 CH 2 SO 3 Na
G1-30: H 3 CSO 2 NHCH 2 CH 2 SCH 2 CH 2 SCH 2 CH 2 NHSO 2 CH 3
G1-31: H 2 N (NH) CSCH 2 CH 2 SC (NH) NH 2 .2HBr
G1-32: H 2 N (NH) CSCH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 SC (NH) NH 2 · 2HCl
G1-33: H 2 N (NH) CNHCH 2 CH 2 SCH 2 CH 2 SCH 2 CH 2 NHC (NH) NH 2 · 2HBr
G1-34: [(CH 3 ) 3 NCH 2 CH 2 SCH 2 CH 2 SCH 2 CH 2 N (CH 3 ) 3 ] 2 + · 2Cl

Figure 2010085571
Figure 2010085571

Figure 2010085571
Figure 2010085571

上記例示した各化合物の中でも、本発明の目的効果をいかんなく発揮できる観点から、特に例示化合物G1−2が好ましい。   Among the above-exemplified compounds, Exemplified Compound G1-2 is particularly preferable from the viewpoint that the object and effects of the present invention can be exhibited.

次いで、本発明に係る一般式(G2)で表される化合物について説明する。   Next, the compound represented by formula (G2) according to the present invention will be described.

前記一般式(G2)において、Mは水素原子、金属原子または4級アンモニウムを表す。Zはイミダゾール環類を除く含窒素複素環を表す。nは0〜5の整数を表し、Rg21は置換基を表し、nが2以上の場合、それぞれのRg21は同じであってもよく、異なってもよく、お互いに連結して縮合環を形成してもよい。 In the general formula (G2), M represents a hydrogen atom, a metal atom, or quaternary ammonium. Z represents a nitrogen-containing heterocyclic ring excluding imidazole rings. n represents an integer of 0 to 5, Rg 21 represents a substituent, and when n is 2 or more, each Rg 21 may be the same or different, and may be connected to each other to form a condensed ring. It may be formed.

一般式(G2)のMで表される金属原子としては、例えば、Li、Na、K、Mg、Ca、Zn、Ag等が挙げられ、4級アンモニウムとしては、例えば、NH、N(CH、N(C、N(CH1225、N(CH1633、N(CHCH等が挙げられる。 Examples of the metal atom represented by M in the general formula (G2) include Li, Na, K, Mg, Ca, Zn, and Ag. Examples of the quaternary ammonium include NH 4 , N (CH 3 ) 4 , N (C 4 H 9 ) 4 , N (CH 3 ) 3 C 12 H 25 , N (CH 3 ) 3 C 16 H 33 , N (CH 3 ) 3 CH 2 C 6 H 5 and the like It is done.

一般式(G2)のZを構成成分とする含窒素複素環としては、例えば、テトラゾール環、トリアゾール環、イミダゾール環、オキサジアゾール環、チアジアゾール環、インドール環、オキサゾール環、ベンゾオキサゾール環、ベンズイミダゾール環、ベンゾチアゾール環、ベンゾセレナゾール環、ナフトオキサゾール環等が挙げられる。   Examples of the nitrogen-containing heterocycle having Z as a constituent in general formula (G2) include, for example, a tetrazole ring, a triazole ring, an imidazole ring, an oxadiazole ring, a thiadiazole ring, an indole ring, an oxazole ring, a benzoxazole ring, and a benzimidazole Ring, benzothiazole ring, benzoselenazole ring, naphthoxazole ring and the like.

一般式(G2)のRg21で表される置換基としては、特に制限は無いが、例えば下記の様な置換基が挙げられる。 The substituents represented by Rg 21 of the general formula (G2), not particularly limited, but include for example substituents such as the following.

水素原子、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子等)、アルキル基(例えば、メチル、エチル、プロピル、i−プロピル、ブチル、t−ブチル、ペンチル、シクロペンチル、ヘキシル、シクロヘキシル、オクチル、ドデシル、ヒドロキシエチル、メトキシエチル、トリフルオロメチル、ベンジル等)、アリール基(例えば、フェニル、ナフチル等)、アルキルカルボンアミド基(例えば、アセチルアミノ、プロピオニルアミノ、ブチロイルアミノ等)、アリールカルボンアミド基(例えば、ベンゾイルアミノ等)、アルキルスルホンアミド基(例えば、メタンスルホニルアミノ基、エタンスルホニルアミノ基等)、アリールスルホンアミド基(例えば、ベンゼンスルホニルアミノ基、トルエンスルホニルアミノ基等)、アルコキシ基、アリールオキシ基(例えば、フェノキシ等)、アルキルチオ基(例えば、メチルチオ、エチルチオ、ブチルチオ等)、アリールチオ基(例えば、フェニルチオ基、トリルチオ基等)、アルキルカルバモイル基(例えばメチルカルバモイル、ジメチルカルバモイル、エチルカルバモイル、ジエチルカルバモイル、ジブチルカルバモイル、ピペリジルカルバモイル、モルホリルカルバモイル等)、アリールカルバモイル基(例えば、フェニルカルバモイル、メチルフェニルカルバモイル、エチルフェニルカルバモイル、ベンジルフェニルカルバモイル等)、カルバモイル基、アルキルスルファモイル基(例えば、メチルスルファモイル、ジメチルスルファモイル、エチルスルファモイル、ジエチルスルファモイル、ジブチルスルファモイル、ピペリジルスルファモイル、モルホリルスルファモイル等)、アリールスルファモイル基(例えば、フェニルスルファモイル、メチルフェニルスルファモイル、エチルフェニルスルファモイル、ベンジルフェニルスルファモイル等)、スルファモイル基、シアノ基、アルキルスルホニル基(例えば、メタンスルホニル基、エタンスルホニル基等)、アリールスルホニル基(例えば、フェニルスルホニル、4−クロロフェニルスルホニル、p−トルエンスルホニル等)、アルコキシカルボニル基(例えば、メトキシカルボニル、エトキシカルボニル、ブトキシカルボニル等)、アリールオキシカルボニル基(例えばフェノキシカルボニル等)、アルキルカルボニル基(例えば、アセチル、プロピオニル、ブチロイル等)、アリールカルボニル基(例えば、ベンゾイル基、アルキルベンゾイル基等)、アシルオキシ基(例えば、アセチルオキシ、プロピオニルオキシ、ブチロイルオキシ等)、カルボキシル基、カルボニル基、スルホニル基、アミノ基、ヒドロキシ基または複素環基(例えば、オキサゾール環、チアゾール環、トリアゾール環、セレナゾール環、テトラゾール環、オキサジアゾール環、チアジアゾール環、チアジン環、トリアジン環、ベンズオキサゾール環、ベンズチアゾール環、インドレニン環、ベンズセレナゾール環、ナフトチアゾール環、トリアザインドリジン環、ジアザインドリジン環、テトラアザインドリジン環基等)を挙げられる。これらの置換基はさらに置換基を有するものを含む。   Hydrogen atom, halogen atom (eg, fluorine atom, chlorine atom, bromine atom, iodine atom), alkyl group (eg, methyl, ethyl, propyl, i-propyl, butyl, t-butyl, pentyl, cyclopentyl, hexyl, cyclohexyl) Octyl, dodecyl, hydroxyethyl, methoxyethyl, trifluoromethyl, benzyl, etc.), aryl groups (eg, phenyl, naphthyl, etc.), alkylcarbonamide groups (eg, acetylamino, propionylamino, butyroylamino, etc.), aryl Carboxamide groups (eg, benzoylamino), alkylsulfonamide groups (eg, methanesulfonylamino group, ethanesulfonylamino group, etc.), arylsulfonamide groups (eg, benzenesulfonylamino group, toluenesulfonylamino) Group), alkoxy group, aryloxy group (for example, phenoxy), alkylthio group (for example, methylthio, ethylthio, butylthio, etc.), arylthio group (for example, phenylthio group, tolylthio group, etc.), alkylcarbamoyl group (for example, methylcarbamoyl group) Dimethylcarbamoyl, ethylcarbamoyl, diethylcarbamoyl, dibutylcarbamoyl, piperidylcarbamoyl, morpholylcarbamoyl, etc.), arylcarbamoyl groups (eg, phenylcarbamoyl, methylphenylcarbamoyl, ethylphenylcarbamoyl, benzylphenylcarbamoyl, etc.), carbamoyl groups, alkylsulfurates Famoyl groups (eg methylsulfamoyl, dimethylsulfamoyl, ethylsulfamoyl, diethylsulfamoyl, dibu Sulfamoyl, piperidylsulfamoyl, morpholylsulfamoyl, etc.), arylsulfamoyl groups (eg, phenylsulfamoyl, methylphenylsulfamoyl, ethylphenylsulfamoyl, benzylphenylsulfamoyl, etc.), sulfamoyl groups , A cyano group, an alkylsulfonyl group (eg, methanesulfonyl group, ethanesulfonyl group, etc.), an arylsulfonyl group (eg, phenylsulfonyl, 4-chlorophenylsulfonyl, p-toluenesulfonyl, etc.), an alkoxycarbonyl group (eg, methoxycarbonyl, Ethoxycarbonyl, butoxycarbonyl etc.), aryloxycarbonyl group (eg phenoxycarbonyl etc.), alkylcarbonyl group (eg acetyl, propionyl, butyroyl etc.), a A reelcarbonyl group (for example, benzoyl group, alkylbenzoyl group, etc.), an acyloxy group (for example, acetyloxy, propionyloxy, butyroyloxy, etc.), a carboxyl group, a carbonyl group, a sulfonyl group, an amino group, a hydroxy group, or a heterocyclic group (for example, , Oxazole ring, thiazole ring, triazole ring, selenazole ring, tetrazole ring, oxadiazole ring, thiadiazole ring, thiazine ring, triazine ring, benzoxazole ring, benzthiazole ring, indolenine ring, benzselenazole ring, naphthothiazole ring , Triazaindolizine ring, diazaindolizine ring, tetraazaindolizine ring group, etc.). These substituents further include those having a substituent.

次に、一般式(G2)で表される化合物の好ましい具体例を示すが、本発明はこれらの化合物に限定されるものではない。   Next, although the preferable specific example of a compound represented by general formula (G2) is shown, this invention is not limited to these compounds.

Figure 2010085571
Figure 2010085571

Figure 2010085571
Figure 2010085571

上記例示した各化合物の中でも、特に例示化合物G2−12、G2−19、G2−20が好ましい。   Among the compounds exemplified above, the exemplified compounds G2-12, G2-19, and G2-20 are particularly preferable.

〔電解質溶媒〕
溶媒としては、一般に電気化学セルや電池に用いられ、本発明で用いられるエレクトロクロミック化合物を初め、電気化学的な酸化還元反応により可逆的に溶解析出する金属塩化合物、プロモーター等各種添加剤を溶解できる溶媒であればいずれも使用することができる。
[Electrolyte solvent]
Solvents are generally used in electrochemical cells and batteries, and dissolve various additives such as electrochromic compounds used in the present invention, metal salt compounds that are reversibly dissolved and precipitated by electrochemical redox reactions, and promoters. Any solvent can be used.

具体的には、無水酢酸、メタノール、エタノール、テトラヒドロフラン、エチレンカーボネート、エチルメチルカーボネート、ジエチルカーボネート、ジメチルカーボネート、ブチレンカーボネート、プロピレンカーボネート、ニトロメタン、アセトニトリル、アセチルアセトン、N−メチルホルムアミド、N,N−ジメチルホルムアミド、ジメチルスルホキシド、ヘキサメチルホスホアミド、ジメトキシエタン、ジエトキシフラン、γ−ブチロラクトン、γ−バレロラクトン、スルホラン、プロピオニトリル、ブチロニトリル、グルタロニトリル、アジポニトリル、メトキシアセトニトリル、N−メチルアセトアミド、N,N−ジメチルアセトアミド、N−メチルプロピオンアミド、メチルピロリジノン、2−(N−メチル)−2−ピロリジノン、ジメチルスルホキシド、ジオキソラン、トリメチルホスフェート、トリエチルホスフェート、トリプロピルホスフェート、エチルジメチルホスフェート、トリブチルホスフェート、トリペンチルホスフェート、トリへキシルホスフェート、トリヘプチルホスフェート、トリオクチルホスフェート、トリノニルホスフェート、トリデシルホスフェート、トリス(トリフフロロメチル)ホスフェート、トリス(ペンタフロロエチル)ホスフェート、トリフェニルホスフェート、トリクレジルホスフェート、2−エチルヘキシルホスフェート、テトラメチル尿素、1,3−ジメチル−2−イミダゾリジノン、ヘキサメチルホスホルトリアミド、4−メチル−2−ペンタノン、ジオクチルフタレート、ジオクチルセバケート、及びエチレングリコール、ジエチレングリコール、トリエチレングリコールモノブチルエーテル等のポリエチレングリコール類などが使用可能である。   Specifically, acetic anhydride, methanol, ethanol, tetrahydrofuran, ethylene carbonate, ethyl methyl carbonate, diethyl carbonate, dimethyl carbonate, butylene carbonate, propylene carbonate, nitromethane, acetonitrile, acetylacetone, N-methylformamide, N, N-dimethylformamide , Dimethyl sulfoxide, hexamethylphosphoamide, dimethoxyethane, diethoxyfuran, γ-butyrolactone, γ-valerolactone, sulfolane, propionitrile, butyronitrile, glutaronitrile, adiponitrile, methoxyacetonitrile, N-methylacetamide, N, N -Dimethylacetamide, N-methylpropionamide, methylpyrrolidinone, 2- (N-methyl) -2-pyrrolidi Non, dimethyl sulfoxide, dioxolane, trimethyl phosphate, triethyl phosphate, tripropyl phosphate, ethyl dimethyl phosphate, tributyl phosphate, tripentyl phosphate, trihexyl phosphate, triheptyl phosphate, trioctyl phosphate, trinonyl phosphate, tridecyl phosphate, tris (Trifluoromethyl) phosphate, tris (pentafluoroethyl) phosphate, triphenyl phosphate, tricresyl phosphate, 2-ethylhexyl phosphate, tetramethylurea, 1,3-dimethyl-2-imidazolidinone, hexamethylphosphotriamide 4-methyl-2-pentanone, dioctyl phthalate, dioctyl sebacate, and ethylene glycol Lumpur, diethylene glycol, polyethylene glycols such as triethylene glycol monobutyl ether and the like can be used.

さらに、常温溶融塩も溶媒として使用可能である。前記常温溶融塩とは、溶媒成分が含まれないイオン対のみからなる常温において溶融している(即ち液状の)イオン対からなる塩であり、通常、融点が20℃以下であり、20℃を越える温度で液状であるイオン対からなる塩を示す。常温溶融塩はその1種を単独で使用することができ、また2種以上を混合しても使用することもできる。   Furthermore, room temperature molten salts can also be used as solvents. The room temperature molten salt is a salt composed of ion pairs that are melted at room temperature (that is, in a liquid state) consisting only of ion pairs that do not contain a solvent component, and usually has a melting point of 20 ° C. or lower, A salt consisting of an ion pair that is liquid at a temperature above. The room temperature molten salt can be used alone or in combination of two or more.

本発明に用いる電解質溶媒としては、非プロトン性極性溶媒が好ましく、特にプロピレンカーボネート、エチレンカーボネート、ジメチルスルホキシド、ジメトキシエタン、アセトニトリル、γ−ブチロラクトン、スルホラン、ジオキソラン、ジメチルホルムアミド、ジメトキシエタン、テトラヒドロフラン、アジポニトリル、メトキシアセトニトリル、ジメチルアセトアミド、メチルピロリジノン、ジメチルスルホキシド、ジオキソラン、スルホラン、トリメチルホスフェート、トリエチルホスフェートが好ましい。溶媒はその1種を単独で使用しても良いし、また2種以上を混合して使用しても良い。   The electrolyte solvent used in the present invention is preferably an aprotic polar solvent, particularly propylene carbonate, ethylene carbonate, dimethyl sulfoxide, dimethoxyethane, acetonitrile, γ-butyrolactone, sulfolane, dioxolane, dimethylformamide, dimethoxyethane, tetrahydrofuran, adiponitrile, Methoxyacetonitrile, dimethylacetamide, methylpyrrolidinone, dimethyl sulfoxide, dioxolane, sulfolane, trimethyl phosphate and triethyl phosphate are preferred. The solvent may be used alone or in combination of two or more.

本発明において、特に好ましく用いられる溶媒は下記一般式(S1),(S2)で表される化合物である。   In the present invention, particularly preferably used solvents are compounds represented by the following general formulas (S1) and (S2).

〔一般式(S1)、(S2)で表される化合物〕
本発明の表示素子においては、電解質が、下記一般式(S1)または(S2)で表される化合物を含有することが好ましい。
[Compounds Represented by General Formulas (S1) and (S2)]
In the display element of the present invention, the electrolyte preferably contains a compound represented by the following general formula (S1) or (S2).

Figure 2010085571
Figure 2010085571

式中Lは酸素原子またはアルキレン基を表し、Rs11からRs14は各々水素原子、アルキル基、アルケニル基、アリール基、シクロアルキル基、アルコキシアルキル基またはアルコキシ基を表す。 In the formula, L represents an oxygen atom or an alkylene group, and Rs 11 to Rs 14 each represents a hydrogen atom, an alkyl group, an alkenyl group, an aryl group, a cycloalkyl group, an alkoxyalkyl group or an alkoxy group.

Figure 2010085571
Figure 2010085571

式中Rs21,Rs22は各々アルキル基、アルケニル基、アリール基、シクロアルキル基、アルコキシアルキル基またはアルコキシ基を表す。 In the formula, Rs 21 and Rs 22 each represents an alkyl group, an alkenyl group, an aryl group, a cycloalkyl group, an alkoxyalkyl group or an alkoxy group.

はじめに、一般式(S1)で表される化合物の詳細について説明する。   First, the detail of the compound represented by general formula (S1) is demonstrated.

前記一般式(S1)において、Lは酸素原子またはCHを表し、Rs11からRs14は各々水素原子、アルキル基、アルケニル基、アリール基、シクロアルキル基、アルコキシアルキル基またはアルコキシ基を表し、これらの置換基は更に任意の置換基で置換されていても良い。 In the general formula (S1), L represents an oxygen atom or CH 2 , and Rs 11 to Rs 14 each represents a hydrogen atom, an alkyl group, an alkenyl group, an aryl group, a cycloalkyl group, an alkoxyalkyl group, or an alkoxy group, These substituents may be further substituted with an arbitrary substituent.

アルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、tert−ブチル基、ペンチル基、ヘキシル基、オクチル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基等、アリール基としては、例えば、フェニル基、ナフチル基等、シクロアルキル基としては、例えば、シクロペンチル基、シクロヘキシル基等、アルコキシアルキル基として、例えば、β−メトキシエチル基、γ−メトキシプロピル基等、アルコキシ基としては、例えば、メトキシ基、エトキシ基、プロピルオキシ基、ペンチルオキシ基、ヘキシルオキシ基、オクチルオキシ基、ドデシルオキシ基等を挙げることができる。   Examples of alkyl groups include methyl, ethyl, propyl, isopropyl, tert-butyl, pentyl, hexyl, octyl, dodecyl, tridecyl, tetradecyl, pentadecyl, and the like as aryl groups. Examples of the cycloalkyl group such as phenyl group, naphthyl group and the like include, for example, a cyclopentyl group, cyclohexyl group and the like, an alkoxyalkyl group, for example, a β-methoxyethyl group, a γ-methoxypropyl group and the like, as an alkoxy group, Examples thereof include a methoxy group, an ethoxy group, a propyloxy group, a pentyloxy group, a hexyloxy group, an octyloxy group, and a dodecyloxy group.

以下、一般式(S1)で表される化合物の具体例を示すが、本発明ではこれら例示する化合物にのみ限定されるものではない。   Hereinafter, although the specific example of a compound represented by general formula (S1) is shown, in this invention, it is not limited only to these illustrated compounds.

Figure 2010085571
Figure 2010085571

次いで、本発明に係る一般式(S2)で表される化合物の詳細について説明する。   Next, details of the compound represented by formula (S2) according to the present invention will be described.

前記一般式(S2)において、Rs21,Rs22は各々水素原子、アルキル基、アルケニル基、アリール基、シクロアルキル基、アルコキシアルキル基またはアルコキシ基を表す。 In the general formula (S2), Rs 21 and Rs 22 each represent a hydrogen atom, an alkyl group, an alkenyl group, an aryl group, a cycloalkyl group, an alkoxyalkyl group, or an alkoxy group.

アルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、tert−ブチル基、ペンチル基、ヘキシル基、オクチル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基等、アリール基としては、例えば、フェニル基、ナフチル基等、シクロアルキル基としては、例えば、シクロペンチル基、シクロヘキシル基等、アルコキシアルキル基として、例えば、β−メトキシエチル基、γ−メトキシプロピル基等、アルコキシ基としては、例えば、メトキシ基、エトキシ基、プロピルオキシ基、ペンチルオキシ基、ヘキシルオキシ基、オクチルオキシ基、ドデシルオキシ基等を挙げることができる。   Examples of alkyl groups include methyl, ethyl, propyl, isopropyl, tert-butyl, pentyl, hexyl, octyl, dodecyl, tridecyl, tetradecyl, pentadecyl, and the like as aryl groups. Examples of the cycloalkyl group such as phenyl group, naphthyl group and the like include, for example, a cyclopentyl group, cyclohexyl group and the like, an alkoxyalkyl group, for example, a β-methoxyethyl group, a γ-methoxypropyl group and the like, as an alkoxy group, Examples thereof include a methoxy group, an ethoxy group, a propyloxy group, a pentyloxy group, a hexyloxy group, an octyloxy group, and a dodecyloxy group.

以下、一般式(S2)で表される化合物の具体例を示すが、本発明ではこれら例示する化合物にのみ限定されるものではない。   Hereinafter, although the specific example of a compound represented by general formula (S2) is shown, in this invention, it is not limited only to these illustrated compounds.

Figure 2010085571
Figure 2010085571

上記例示した一般式(S1)及び一般式(S2)で表される化合物の中でも、特に、例示化合物(S1−1)、(S1−2)、(S2−3)が好ましい。   Of the compounds represented by the general formulas (S1) and (S2) exemplified above, the exemplary compounds (S1-1), (S1-2), and (S2-3) are particularly preferable.

本発明に係る一般式(S1)、(S2)で表される化合物は電解質溶媒の1種であるが、本発明の表示素子においては、本発明の目的効果を損なわない範囲でさらに別の溶媒を併せて用いることができる。具体的には、テトラメチル尿素、スルホラン、ジメチルスルホキシド、1,3−ジメチル−2−イミダゾリジノン、2−(N−メチル)−2−ピロリジノン、ヘキサメチルホスホルトリアミド、N−メチルプロピオンアミド、N,N−ジメチルアセトアミド、N−メチルアセトアミド、N,Nジメチルホルムアミド、N−メチルホルムアミド、ブチロニトリル、プロピオニトリル、アセトニトリル、アセチルアセトン、4−メチル−2−ペンタノン、2−ブタノール、1−ブタノール、2−プロパノール、1−プロパノール、エタノール、メタノール、無水酢酸、酢酸エチル、プロピオン酸エチル、ジメトキシエタン、ジエトキシフラン、テトラヒドロフラン、エチレングリコール、ジエチレングリコール、トリエチレングリコールモノブチルエーテル、水等が挙げられる。これらの溶媒の内、凝固点が−20℃以下、かつ沸点が120℃以上の溶媒を少なくとも1種含むことが好ましい。   The compounds represented by the general formulas (S1) and (S2) according to the present invention are one type of electrolyte solvent. However, in the display element of the present invention, another solvent is used as long as the object effects of the present invention are not impaired. Can be used together. Specifically, tetramethylurea, sulfolane, dimethyl sulfoxide, 1,3-dimethyl-2-imidazolidinone, 2- (N-methyl) -2-pyrrolidinone, hexamethylphosphortriamide, N-methylpropionamide, N, N-dimethylacetamide, N-methylacetamide, N, N dimethylformamide, N-methylformamide, butyronitrile, propionitrile, acetonitrile, acetylacetone, 4-methyl-2-pentanone, 2-butanol, 1-butanol, 2 -Propanol, 1-propanol, ethanol, methanol, acetic anhydride, ethyl acetate, ethyl propionate, dimethoxyethane, diethoxyfuran, tetrahydrofuran, ethylene glycol, diethylene glycol, triethylene glycol monobuty Ether, water and the like. Among these solvents, it is preferable to include at least one solvent having a freezing point of −20 ° C. or lower and a boiling point of 120 ° C. or higher.

さらに本発明で用いることのできる溶媒としては、J.A.Riddick,W.B.Bunger,T.K.Sakano,“Organic Solvents”,4th ed.,John Wiley & Sons(1986)、Y.Marcus,“Ion Solvation”,John Wiley & Sons(1985)、C.Reichardt,“Solvents and Solvent Effects in Chemistry”,2nd ed.,VCH(1988)、G.J.Janz,R.P.T.Tomkins,“Nonaqueous Electorlytes Handbook”,Vol.1,Academic Press(1972)に記載の化合物を挙げることができる。   Furthermore, as a solvent which can be used in the present invention, J.P. A. Riddick, W.M. B. Bunger, T.A. K. Sakano, “Organic Solvents”, 4th ed. , John Wiley & Sons (1986). Marcus, “Ion Solvation”, John Wiley & Sons (1985), C.I. Reichardt, “Solvents and Solvent Effects in Chemistry”, 2nd ed. VCH (1988), G .; J. et al. Janz, R.A. P. T.A. Tomkins, “Nonqueous Electronics Handbook”, Vol. 1, Academic Press (1972).

本発明において、電解質溶媒は単一種であっても、溶媒の混合物であってもよいが、エチレンカーボネートを含む混合溶媒が好ましい。エチレンカーボネートの添加量は、全電解質溶媒質量の10質量%以上、90質量%以下が好ましい。特に好ましい電解質溶媒は、プロピレンカーボネート/エチレンカーボネートの質量比が7/3〜3/7の混合溶媒である。プロピレンカーボネート比が7/3より大きいとイオン伝導性が劣り応答速度が低下し、3/7より小さいと低温時に電解質が析出しやすくなる。   In the present invention, the electrolyte solvent may be a single type or a mixture of solvents, but a mixed solvent containing ethylene carbonate is preferred. The addition amount of ethylene carbonate is preferably 10% by mass or more and 90% by mass or less of the total electrolyte solvent mass. A particularly preferable electrolyte solvent is a mixed solvent having a mass ratio of propylene carbonate / ethylene carbonate of 7/3 to 3/7. When the propylene carbonate ratio is larger than 7/3, the ionic conductivity is inferior and the response speed is lowered. When the propylene carbonate ratio is smaller than 3/7, the electrolyte tends to be deposited at a low temperature.

〔白色散乱物〕
本発明においては、表示コントラスト及び白表示反射率をより高める観点から多孔質白色散乱層を有することができる。
[White scattered matter]
In the present invention, a porous white scattering layer can be provided from the viewpoint of further enhancing display contrast and white display reflectance.

本発明に適用可能な多孔質白色散乱層は、電解質溶媒に実質的に溶解しない水系高分子と白色顔料との水混和物を塗布乾燥して形成することができる。   The porous white scattering layer applicable to the present invention can be formed by applying and drying an aqueous mixture of an aqueous polymer and a white pigment that is substantially insoluble in the electrolyte solvent.

本発明でいう電解質溶媒に実質的に溶解しないとは、−20℃から120℃の温度において、電解質溶媒1kgあたりの溶解量が0g以上、10g以下である状態と定義し、質量測定法、液体クロマトグラムやガスクロマトグラムによる成分定量法等の公知の方法により溶解量を求めることができる。   In the present invention, “substantially insoluble in an electrolyte solvent” is defined as a state in which the dissolved amount per kg of electrolyte solvent is 0 g or more and 10 g or less at a temperature of −20 ° C. to 120 ° C. The amount of dissolution can be determined by a known method such as a component determination method using a chromatogram or a gas chromatogram.

本発明において、電解質溶媒に実質的に溶解しない水系高分子としては、水溶性高分子、水系溶媒に分散した高分子を挙げることができる。   In the present invention, examples of the water-based polymer that does not substantially dissolve in the electrolyte solvent include a water-soluble polymer and a polymer dispersed in the water-based solvent.

水溶性化合物としては、ゼラチン、ゼラチン誘導体等の蛋白質またはセルロース誘導体、澱粉、アラビアゴム、デキストラン、プルラン、カラギーナン等の多糖類のような天然化合物や、ポリビニールアルコール、ポリエチレングリコール、ポリビニルピロリドン、アクリルアミド重合体やそれらの誘導体等の合成高分子化合物が挙げられる。ゼラチン誘導体としては、アセチル化ゼラチン、フタル化ゼラチン、ポリビニルアルコール誘導体としては、末端アルキル基変性ポリビニルアルコール、末端メルカプト基変性ポリビニルアルコール、セルロース誘導体としては、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、カルボキシメチルセルロース等が挙げられる。更に、リサーチ・ディスクロージャー及び特開昭64−13546号の(71)頁〜(75)頁に記載されたもの、また、米国特許第4,960,681号、特開昭62−245260号等に記載の高吸水性ポリマー、すなわち−COOMまたは−SOM(Mは水素原子またはアルカリ金属)を有するビニルモノマーの単独重合体またはこのビニルモノマー同士もしくは他のビニルモノマー(例えばメタクリル酸ナトリウム、メタクリル酸アンモニウム、アクリル酸カリウム等)との共重合体も使用される。これらのバインダーは2種以上組み合わせて用いることもできる。 Examples of water-soluble compounds include proteins such as gelatin and gelatin derivatives, cellulose derivatives, natural compounds such as starch, gum arabic, dextran, pullulan, and carrageenan, and other natural compounds such as polyvinyl alcohol, polyethylene glycol, polyvinyl pyrrolidone, and acrylamide. Synthetic polymer compounds such as coalescence and derivatives thereof may be mentioned. As gelatin derivatives, acetylated gelatin, phthalated gelatin, polyvinyl alcohol derivatives as terminal alkyl group-modified polyvinyl alcohol, terminal mercapto group-modified polyvinyl alcohol, and cellulose derivatives include hydroxyethyl cellulose, hydroxypropyl cellulose, carboxymethyl cellulose and the like. It is done. Furthermore, Research Disclosure and those described in pages (71) to (75) of JP-A No. 64-13546, US Pat. No. 4,960,681, JP-A No. 62-245260, etc. superabsorbent polymers described, namely -COOM or -SO 3 M (M is a hydrogen atom or an alkali metal) homopolymer or a vinyl monomer together or with other vinyl monomers (e.g., sodium methacrylate in the vinyl monomer having a methacrylic acid Copolymers with ammonium, potassium acrylate, etc.) are also used. Two or more of these binders can be used in combination.

本発明においては、ポリビニルアルコール、ポリエチレングリコール、ポリビニルピロリドン系化合物を好ましく用いることができる。   In the present invention, polyvinyl alcohol, polyethylene glycol, and polyvinylpyrrolidone compounds can be preferably used.

水系溶媒に分散した高分子としては、天然ゴムラテックス、スチレンブタジエンゴム、ブタジエンゴム、ニトリルゴム、クロロプレンゴム、イソプレンゴム等のラテックス類、ポリイソシアネート系、エポキシ系、アクリル系、シリコーン系、ポリウレタン系、尿素系、フェノール系、ホルムアルデヒド系、エポキシ−ポリアミド系、メラミン系、アルキド系樹脂、ビニル系樹脂等を水系溶媒に分散した熱硬化性樹脂を挙げることができる。これらの高分子のうち、特開平10−76621号に記載の水系ポリウレタン樹脂を用いることが好ましい。   Polymers dispersed in aqueous solvents include natural rubber latex, styrene butadiene rubber, butadiene rubber, nitrile rubber, chloroprene rubber, isoprene rubber and other latexes, polyisocyanate, epoxy, acrylic, silicone, polyurethane, Examples thereof include a thermosetting resin in which urea, phenol, formaldehyde, epoxy-polyamide, melamine, alkyd resin, vinyl resin and the like are dispersed in an aqueous solvent. Of these polymers, it is preferable to use an aqueous polyurethane resin described in JP-A-10-76621.

本発明の水系高分子の平均分子量は、重量平均で10,000〜2,000,000の範囲が好ましく、より好ましくは30,000〜500,000の範囲である。   The average molecular weight of the water-based polymer of the present invention is preferably in the range of 10,000 to 2,000,000, more preferably in the range of 30,000 to 500,000 on a weight average basis.

本発明で適用可能な白色顔料としては、例えば、二酸化チタン(アナターゼ型あるいはルチル型)、硫酸バリウム、炭酸カルシウム、酸化アルミニウム、酸化亜鉛、酸化マグネシウムおよび水酸化亜鉛、水酸化マグネシウム、リン酸マグネシウム、リン酸水素マグネシウム、アルカリ土類金属塩、タルク、カオリン、ゼオライト、酸性白土、ガラス、有機化合物としてポリエチレン、ポリスチレン、アクリル樹脂、アイオノマー、エチレン−酢酸ビニル共重合樹脂、ベンゾグアナミン樹脂、尿素−ホルマリン樹脂、メラミン−ホルマリン樹脂、ポリアミド樹脂などが単体または複合混合で、または粒子中に屈折率を変化させるボイドを有する状態で使用されてもよい。   Examples of the white pigment applicable in the present invention include titanium dioxide (anatase type or rutile type), barium sulfate, calcium carbonate, aluminum oxide, zinc oxide, magnesium oxide and zinc hydroxide, magnesium hydroxide, magnesium phosphate, Magnesium hydrogen phosphate, alkaline earth metal salt, talc, kaolin, zeolite, acidic clay, glass, organic compounds such as polyethylene, polystyrene, acrylic resin, ionomer, ethylene-vinyl acetate copolymer resin, benzoguanamine resin, urea-formalin resin, A melamine-formalin resin, a polyamide resin, or the like may be used alone or in combination, or in a state having voids that change the refractive index in the particles.

本発明では、上記白色粒子の中でも、二酸化チタンが好ましく用いられ、特に無機酸化物(Al、AlO(OH)、SiO等)で表面処理した二酸化チタン、これらの表面処理に加えてトリメチロールエタン、トリエタノールアミン酢酸塩、トリメチルシクロシラン等の有機物処理を施した二酸化チタンがより好ましく用いられる。 In the present invention, among the white particles, titanium dioxide is preferably used. In particular, titanium dioxide surface-treated with an inorganic oxide (Al 2 O 3 , AlO (OH), SiO 2, etc.), in addition to these surface treatments. Titanium dioxide that has been treated with an organic substance such as trimethylolethane, triethanolamine acetate, or trimethylcyclosilane is more preferably used.

これらの白色粒子のうち、高温時の着色防止、屈折率に起因する素子の反射率の観点から、酸化チタンまたは酸化亜鉛を用いることがより好ましい。   Of these white particles, it is more preferable to use titanium oxide or zinc oxide from the viewpoint of coloring prevention at high temperature and the reflectance of the element due to the refractive index.

本発明において、水系化合物と白色顔料との水混和物は、公知の分散方法に従って白色顔料が水中分散された形態が好ましい。水系化合物/白色顔料の混合比は、容積比で1〜0.01が好ましく、より好ましくは、0.3〜0.05の範囲である。   In the present invention, the water mixture of the water-based compound and the white pigment is preferably in a form in which the white pigment is dispersed in water according to a known dispersion method. The mixing ratio of the aqueous compound / white pigment is preferably 1 to 0.01, more preferably 0.3 to 0.05 in terms of volume ratio.

多孔質白色散乱層の膜厚は、5〜50μmの範囲であることが好ましく、より好ましくは10〜30μmの範囲である。   The thickness of the porous white scattering layer is preferably in the range of 5 to 50 μm, more preferably in the range of 10 to 30 μm.

アルコール系溶剤としては、メタノール、エタノール、イソプロパノール等の水との溶解性が高い化合物が好ましく用いられ、水/アルコール系溶剤との混合比は、質量比で0.5〜20の範囲が好ましく、より好ましくは2〜10の範囲である。   As the alcohol solvent, a compound having high solubility in water such as methanol, ethanol, isopropanol is preferably used, and the mixing ratio with the water / alcohol solvent is preferably in the range of 0.5 to 20 by mass ratio, More preferably, it is the range of 2-10.

本発明において、水系化合物と白色顔料との水混和物を塗布する媒体は、表示素子の対向電極間の構成要素上であればいずれの位置でもよいが、対向電極の少なくとも1方の電極面上に付与することが好ましい。   In the present invention, the medium for applying the water mixture of the water-based compound and the white pigment may be at any position as long as it is on the component between the counter electrodes of the display element, but on the electrode surface of at least one of the counter electrodes. It is preferable to give to.

媒体への付与の方法としては、例えば、塗布方式、液噴霧方式、気相を介する噴霧方式として、圧電素子の振動を利用して液滴を飛翔させる方式、例えば、ピエゾ方式のインクジェットヘッドや、突沸を利用したサーマルヘッドを用いて液滴を飛翔させるバブルジェット(登録商標)方式のインクジェットヘッド、また空気圧や液圧により液を噴霧するスプレー方式等が挙げられる。   As a method for applying to a medium, for example, a coating method, a liquid spraying method, a spraying method via a gas phase, a method of flying droplets using vibration of a piezoelectric element, for example, a piezoelectric inkjet head, Examples thereof include a bubble jet (registered trademark) type ink jet head that causes droplets to fly using a thermal head that uses bumping, and a spray type that sprays liquid by air pressure or liquid pressure.

塗布方式としては、公知の塗布方式より適宜選択することができる。例えば、エアードクターコーター、ブレードコーター、ロッドコーター、ナイフコーター、スクイズコーター、含浸コーター、リバースローラーコーター、トランスファーローラーコーター、カーテンコーター、ダブルローラーコーター、スライドホッパーコーター、グラビアコーター、キスロールコーター、ビードコーター、キャストコーター、スプレイコーター、カレンダーコーター、押し出しコーター等が挙げられる。   As a coating method, it can select suitably from a well-known coating method. For example, air doctor coater, blade coater, rod coater, knife coater, squeeze coater, impregnation coater, reverse roller coater, transfer roller coater, curtain coater, double roller coater, slide hopper coater, gravure coater, kiss roll coater, bead coater, Examples include cast coaters, spray coaters, calendar coaters, and extrusion coaters.

媒体上に付与した水系化合物と白色顔料との水混和物の乾燥は、水を蒸発できる方法であればいかなる方法であってもよい。例えば、熱源からの加熱、赤外光を用いた加熱法、電磁誘導による加熱法等が挙げられる。また、水蒸発は減圧下で行ってもよい。   Drying of the water mixture of the aqueous compound and the white pigment applied on the medium may be performed by any method as long as water can be evaporated. For example, heating from a heat source, a heating method using infrared light, a heating method using electromagnetic induction, and the like can be given. Further, water evaporation may be performed under reduced pressure.

本発明でいう多孔質とは、前記水系化合物と白色顔料との水混和物を電極上に塗布乾燥して多孔質の白色散乱物を形成した後、該散乱物上に、銀または銀を化学構造中に含む化合物を含有する電解質液を与えた後に対向電極で挟み込み、対向電極間に電位差を与え、銀の溶解析出反応を生じさせることが可能で、イオン種が電極間で移動可能な貫通状態のことを言う。   Porous as used in the present invention refers to the formation of a porous white scattering material by applying a water admixture of the water-based compound and the white pigment onto the electrode and drying it, and then the silver or silver is chemically treated on the scattering material. After supplying an electrolyte solution containing the compound contained in the structure, it can be sandwiched between opposing electrodes, giving a potential difference between the opposing electrodes, causing a silver dissolution precipitation reaction, and penetrating ions that can move between the electrodes Tell the state.

本発明の表示素子では、上記説明した水混和物を塗布乾燥中または乾燥後に、硬化剤により水系化合物の硬化反応を行うことが望ましい。   In the display element of the present invention, it is desirable to carry out a curing reaction of the water-based compound with a curing agent during or after applying and drying the water mixture described above.

本発明で用いられる硬膜剤の例としては、例えば、米国特許第4,678,739号の第41欄、同第4,791,042号、特開昭59−116655号、同62−245261号、同61−18942号、同61−249054号、同61−245153号、特開平4−218044号等に記載の硬膜剤が挙げられる。より具体的には、アルデヒド系硬膜剤(ホルムアルデヒド等)、アジリジン系硬膜剤、エポキシ系硬膜剤、ビニルスルホン系硬膜剤(N,N′−エチレン−ビス(ビニルスルホニルアセタミド)エタン等)、N−メチロール系硬膜剤(ジメチロール尿素等)、ほう酸、メタほう酸あるいは高分子硬膜剤(特開昭62−234157号等に記載の化合物)が挙げられる。水系化合物としてゼラチンを用いる場合は、硬膜剤の中で、ビニルスルホン型硬膜剤やクロロトリアジン型硬膜剤を単独または併用して使用することが好ましい。また、ポリビニルアルコールを用いる場合はホウ酸やメタホウ酸等の含ホウ素化合物の使用が好ましい。   Examples of the hardener used in the present invention include, for example, U.S. Pat. No. 4,678,739, column 41, 4,791,042, JP-A-59-116655, and 62-245261. No. 61-18942, 61-249054, 61-245153, JP-A-4-218044, and the like. More specifically, aldehyde hardeners (formaldehyde, etc.), aziridine hardeners, epoxy hardeners, vinyl sulfone hardeners (N, N'-ethylene-bis (vinylsulfonylacetamide) Ethane, etc.), N-methylol hardeners (dimethylolurea, etc.), boric acid, metaboric acid or polymer hardeners (compounds described in JP-A-62-234157). When gelatin is used as the aqueous compound, it is preferable to use a vinyl sulfone type hardener or a chlorotriazine type hardener alone or in combination. Moreover, when using polyvinyl alcohol, it is preferable to use boron-containing compounds such as boric acid and metaboric acid.

これらの硬膜剤は、水系化合物1g当たり0.001〜1g、好ましくは0.005〜0.5gが用いられる。また、膜強度を上げるため熱処理や、硬化反応時の湿度調整を行うことも可能である。   These hardeners are used in an amount of 0.001 to 1 g, preferably 0.005 to 0.5 g, per 1 g of the aqueous compound. In addition, it is possible to perform heat treatment and humidity adjustment during the curing reaction in order to increase the film strength.

〔電解質〕
本発明でいう「電解質」とは、一般に、水などの溶媒に溶けて溶液がイオン伝導性を示す物質(以下、「狭義の電解質」という。)をいうが、本発明の説明においては、狭義の電解質に電解質、非電解質を問わず他の金属、化合物等を含有させた混合物を電解質(「広義の電解質」)という。
〔Electrolytes〕
The “electrolyte” as used in the present invention generally refers to a substance that dissolves in a solvent such as water and exhibits a ionic conductivity in a solution (hereinafter referred to as “narrowly defined electrolyte”). A mixture containing other metals, compounds, or the like, regardless of whether it is an electrolyte or a non-electrolyte, is called an electrolyte (“broadly defined electrolyte”).

本発明において用いられる電解質としては、電気化学の分野又は電池の分野で通常使用される塩類、酸類、アルカリ類が使用できる。   As the electrolyte used in the present invention, salts, acids and alkalis which are usually used in the field of electrochemistry or the field of batteries can be used.

塩類としては、特に制限はなく、例えば、アルカリ金属塩、アルカリ土類金属塩等の無機イオン塩;4級アンモニウム塩;環状4級アンモニウム塩;4級ホスホニウム塩などが使用できる。   There are no particular limitations on the salts, and for example, inorganic ion salts such as alkali metal salts and alkaline earth metal salts; quaternary ammonium salts; cyclic quaternary ammonium salts; quaternary phosphonium salts and the like can be used.

塩類の具体例としては、ハロゲンイオン、SCN、ClO 、BF 、CFSO 、(CFSO、(CSO、PF 、AsF 、CHCOO、CH(C)SO 、および(CSOから選ばれる対アニオンを有するLi塩、Na塩、あるいはK塩が挙げられる。 Specific examples of the salts include halogen ions, SCN , ClO 4 , BF 4 , CF 3 SO 3 , (CF 3 SO 2 ) 2 N , (C 2 F 5 SO 2 ) 2 N , PF 6 -, AsF 6 -, CH 3 COO -, CH 3 (C 6 H 4) SO 3 -, and (C 2 F 5 SO 2) 3 C - Li salt having a counter anion selected from, Na salt or K salt is mentioned.

またハロゲンイオン、SCN、ClO 、BF 、CFSO 、(CFSO、(CSO、PF 、AsF 、CHCOO、CH(C)SO 、および(CSOから選ばれる対アニオンを有する4級アンモニウム塩、具体的には、(CHNBF、(CNBF、(n−CNBF、(CNBr、(CNClO、(n−CNClO、CH(CNBF、(CH(CNBF、(CHNSOCF、(CNSOCF、(n−CNSOCF、さらには、下記式で表される化合物が挙げられる。 Also, halogen ions, SCN , ClO 4 , BF 4 , CF 3 SO 3 , (CF 3 SO 2 ) 2 N , (C 2 F 5 SO 2 ) 2 N , PF 6 , AsF 6 A quaternary ammonium salt having a counter anion selected from CH 3 COO , CH 3 (C 6 H 4 ) SO 3 , and (C 2 F 5 SO 2 ) 3 C , specifically, (CH 3 ) 4 NBF 4 , (C 2 H 5 ) 4 NBF 4 , (n-C 4 H 9 ) 4 NBF 4 , (C 2 H 5 ) 4 NBr, (C 2 H 5 ) 4 NClO 4 , (n-C) 4 H 9 ) 4 NClO 4 , CH 3 (C 2 H 5 ) 3 NBF 4 , (CH 3 ) 2 (C 2 H 5 ) 2 NBF 4 , (CH 3 ) 4 NSO 3 CF 3 , (C 2 H 5 ) 4 NSO 3 CF 3, ( n-C 4 H 9) 4 NSO 3 CF 3 , and a compound represented by the following formula can be given.

Figure 2010085571
Figure 2010085571

またハロゲンイオン、SCN、ClO 、BF 、CFSO 、(CFSO、(CSO、PF 、AsF 、CHCOO、CH(C)SO 、および(CSOから選ばれる対アニオンを有するホスホニウム塩、具体的には、(CHPBF、(CPBF、(CPBF、(CPBF等が挙げられる。また、これらの混合物も好適に用いることができる。 Also, halogen ions, SCN , ClO 4 , BF 4 , CF 3 SO 3 , (CF 3 SO 2 ) 2 N , (C 2 F 5 SO 2 ) 2 N , PF 6 , AsF 6 , A phosphonium salt having a counter anion selected from CH 3 COO , CH 3 (C 6 H 4 ) SO 3 , and (C 2 F 5 SO 2 ) 3 C , specifically, (CH 3 ) 4 PBF 4, (C 2 H 5 ) 4 PBF 4, (C 3 H 7) 4 PBF 4, include (C 4 H 9) 4 PBF 4 and the like. Moreover, these mixtures can also be used suitably.

本発明の支持電解質としては4級アンモニウム塩が好ましく、特に4級スピロアンモニウム塩が好ましい。また対アニオンとしてはClO 、BF 、CFSO 、(CSO、PF が好ましく、特にBF が好ましい。 The supporting electrolyte of the present invention is preferably a quaternary ammonium salt, particularly preferably a quaternary spiro ammonium salt. The ClO 4 as counter anion -, BF 4 -, CF 3 SO 3 -, (C 2 F 5 SO 2) 2 N -, PF 6 - are preferable, and BF 4 - is preferable.

電解質塩の使用量は任意であるが、一般的には、電解質塩は溶媒中に上限としては20M以下、好ましくは10M以下、さらに好ましくは5M以下存在していることが望ましく、下限としては通常0.01M以上、好ましくは0.05M以上、さらに好ましくは0.1M以上存在していることが望ましい。   The amount of the electrolyte salt used is arbitrary, but in general, the electrolyte salt is desirably present in the solvent as an upper limit of 20 M or less, preferably 10 M or less, more preferably 5 M or less. It is desirable that it be present at 0.01M or more, preferably 0.05M or more, more preferably 0.1M or more.

固体電解質の場合には、電子伝導性やイオン伝導性を示す以下の化合物を電解質中に含むことができる。   In the case of a solid electrolyte, the following compounds showing electron conductivity and ion conductivity can be contained in the electrolyte.

パーフルオロスルフォン酸を含むフッ化ビニル系高分子、ポリチオフェン、ポリアニリン、ポリピロール、トリフェニルアミン類、ポリビニルカルバゾール類、ポリメチルフェニルシラン類、CuS、AgS、CuSe、AgCrSe等のカルコゲニド、CaF、PbF、SrF、LaF、TlSn、CeF等の含F化合物、LiSO、LiSiO、LiPO等のLi塩、ZrO、CaO、Cd、HfO、Y、Nb、WO、Bi、AgBr、AgI、CuCl、CuBr、CuBr、CuI、LiI、LiBr、LiCl、LiAlCl、LiAlF、AgSBr、CNHAg、RbCu1Cl13、RbCuCl10、LiN、LiNI、LiNBr等の化合物が挙げられる。 Vinyl fluoride polymer containing perfluorosulfonic acid, polythiophene, polyaniline, polypyrrole, triphenylamines, polyvinylcarbazoles, polymethylphenylsilanes, Cu 2 S, Ag 2 S, Cu 2 Se, AgCrSe 2, etc. Chalcogenide, CaF 2 , PbF 2 , SrF 2 , LaF 3 , TlSn 2 F 5 , CeF 3 and other F-containing compounds, Li 2 SO 4 , Li 4 SiO 4 , Li 3 PO 4 and other Li salts, ZrO 2 , CaO , Cd 2 O 3 , HfO 2 , Y 2 O 3 , Nb 2 O 5 , WO 3 , Bi 2 O 3 , AgBr, AgI, CuCl, CuBr, CuBr, CuI, LiI, LiBr, LiCl, LiAlCl 4 , LiAlF 4 , AgSBr, C 5 H 5 NHAg 5 I 6 , Rb 4 Cu1 6 I 7 Examples of the compound include Cl 13 , Rb 3 Cu 7 Cl 10 , LiN, Li 5 NI 2 , and Li 6 NBr 3 .

〔電子絶縁層〕
本発明の表示素子においては、電気絶縁層を設けることができる。
(Electronic insulation layer)
In the display element of the present invention, an electrical insulating layer can be provided.

本発明に適用可能な電子絶縁層は、イオン電導性、電子絶縁性を合わせて有する層であればよく、例えば、極性基を有する高分子や塩をフィルム状にした固体電解質膜、電子絶縁性の高い多孔質膜とその空隙に電解質を担持する擬固体電解質膜、空隙を有する高分子多孔質膜、含ケイ素化合物の様な比誘電率が低い無機材料の多孔質体、等が挙げられる。   The electronic insulating layer applicable to the present invention may be a layer having both ionic conductivity and electronic insulating properties. For example, a solid electrolyte membrane in which a polymer or salt having a polar group is formed into a film, electronic insulating properties And a porous solid body having a low relative dielectric constant, such as a silicon-containing compound, and the like.

多孔質膜の形成方法としては、燒結法(融着法)(高分子微粒子や無機粒子をバインダ等を添加して部分的に融着させ粒子間に生じた孔を利用する)、抽出法(溶剤に可溶な有機物又は無機物類と溶剤に溶解しないバインダ等で構成層を形成した後に、溶剤で有機物又は無機物類を溶解させ細孔を得る)、高分子重合体等を加熱や脱気するなどして発泡させる発泡法、良溶媒と貧溶媒を操作して高分子類の混合物を相分離させる相転換法、各種放射線を輻射して細孔を形成させる放射線照射法等の公知の形成方法を用いることができる。具体的には、特開平10−30181号、特開2003−107626号、特公平7−95403号、特許第2635715号、同第2849523号、同第2987474号、同第3066426号、同第3464513号、同第3483644号、同第3535942号、同第3062203号等に記載の電子絶縁層を挙げることができる。   As a method for forming a porous film, a sintering method (fusing method) (using fine pores formed between particles by partially fusing polymer fine particles or inorganic particles by adding a binder, etc.), extraction method ( After forming a constituent layer with a solvent-soluble organic substance or inorganic substance and a binder that does not dissolve in the solvent, the organic substance or inorganic substance is dissolved with the solvent to obtain pores), and the polymer is heated or degassed Known forming methods such as a foaming method in which foaming is performed, a phase change method in which a mixture of polymers is phase-separated by operating a good solvent and a poor solvent, and a radiation irradiation method in which pores are formed by radiating various types of radiation Can be used. Specifically, JP-A-10-30181, JP-A-2003-107626, JP-B-7-95403, JP-A-2635715, JP-A-2894523, JP-A-2987474, JP-A-3066426, and JP-A-3464513. No. 3,483,464, No. 3535942, No. 30622203, and the like.

〔電解質添加の増粘剤〕
本発明の表示素子においては、電解質に増粘剤を使用することができ、例えば、ゼラチン、アラビアゴム、ポリ(ビニルアルコール)、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、セルロースアセテート、セルロースアセテートブチレート、ポリ(ビニルピロリドン)、ポリ(アルキレングリコール)、カゼイン、デンプン、ポリ(アクリル酸)、ポリ(メチルメタクリル酸)、ポリ(塩化ビニル)、ポリ(メタクリル酸)、コポリ(スチレン−無水マレイン酸)、コポリ(スチレン−アクリロニトリル)、コポリ(スチレン−ブタジエン)、ポリ(ビニルアセタール)類(例えば、ポリ(ビニルホルマール)及びポリ(ビニルブチラール))、ポリ(エステル)類、ポリ(ウレタン)類、フェノキシ樹脂、ポリ(塩化ビニリデン)、ポリ(エポキシド)類、ポリ(カーボネート)類、ポリ(ビニルアセテート)、セルロースエステル類、ポリ(アミド)類、疎水性透明バインダとして、ポリビニルブチラール、セルロースアセテート、セルロースアセテートブチレート、ポリエステル、ポリカーボネート、ポリアクリル酸、ポリウレタン等が挙げられる。
[Thickener added with electrolyte]
In the display element of the present invention, a thickener can be used for the electrolyte. For example, gelatin, gum arabic, poly (vinyl alcohol), hydroxyethyl cellulose, hydroxypropyl cellulose, cellulose acetate, cellulose acetate butyrate, poly ( Vinylpyrrolidone), poly (alkylene glycol), casein, starch, poly (acrylic acid), poly (methyl methacrylic acid), poly (vinyl chloride), poly (methacrylic acid), copoly (styrene-maleic anhydride), copoly ( Styrene-acrylonitrile), copoly (styrene-butadiene), poly (vinyl acetal) s (eg, poly (vinyl formal) and poly (vinyl butyral)), poly (esters), poly (urethanes), phenoxy resins, poly (PVC Redene), poly (epoxide) s, poly (carbonates), poly (vinyl acetate), cellulose esters, poly (amides), hydrophobic transparent binders such as polyvinyl butyral, cellulose acetate, cellulose acetate butyrate, polyester, Examples include polycarbonate, polyacrylic acid, polyurethane and the like.

これらの増粘剤は2種以上を併用して用いてもよい。また、特開昭64−13546号公報の71〜75頁に記載の化合物を挙げることができる。これらの中で好ましく用いられる化合物は、各種添加剤との相溶性と白色粒子の分散安定性向上の観点から、ポリビニルアルコール類、ポリビニルピロリドン類、ヒドロキシプロピルセルロース類、ポリアルキレングリコール類である。   These thickeners may be used in combination of two or more. Moreover, the compound as described in pages 71-75 of Unexamined-Japanese-Patent No. 64-13546 can be mentioned. Among these, the compounds preferably used are polyvinyl alcohols, polyvinyl pyrrolidones, hydroxypropyl celluloses, and polyalkylene glycols from the viewpoint of compatibility with various additives and improvement in dispersion stability of white particles.

〔その他の添加剤〕
本発明の表示素子の構成層には、保護層、フィルター層、ハレーション防止層、クロスオーバー光カット層、バッキング層等の補助層を挙げることができ、これらの補助層中には、各種の化学増感剤、貴金属増感剤、感光色素、強色増感剤、カプラー、高沸点溶剤、カブリ防止剤、安定剤、現像抑制剤、漂白促進剤、定着促進剤、混色防止剤、ホルマリンスカベンジャー、色調剤、硬膜剤、界面活性剤、増粘剤、可塑剤、スベリ剤、紫外線吸収剤、イラジエーション防止染料、フィルター光吸収染料、防ばい剤、ポリマーラテックス、重金属、帯電防止剤、マット剤等を、必要に応じて含有させることができる。
[Other additives]
Examples of the constituent layers of the display element of the present invention include auxiliary layers such as a protective layer, a filter layer, an antihalation layer, a crossover light cut layer, and a backing layer. Sensitizer, noble metal sensitizer, photosensitive dye, supersensitizer, coupler, high boiling point solvent, antifoggant, stabilizer, development inhibitor, bleach accelerator, fixing accelerator, color mixing inhibitor, formalin scavenger, Toning agents, hardeners, surfactants, thickeners, plasticizers, slip agents, UV absorbers, anti-irradiation dyes, filter light absorbing dyes, anti-bacterial agents, polymer latex, heavy metals, antistatic agents, matting agents Etc. can be contained as required.

上述したこれらの添加剤は、より詳しくは、リサーチ・ディスクロージャー(以下、RDと略す)第176巻Item/17643(1978年12月)、同184巻Item/18431(1979年8月)、同187巻Item/18716(1979年11月)及び同308巻Item/308119(1989年12月)に記載されている。   These additives mentioned above are more specifically described in Research Disclosure (hereinafter abbreviated as RD), Volume 176 Item / 17643 (December 1978), Volume 184, Item / 18431 (August 1979), 187. Volume Item / 18716 (November 1979) and Volume 308 Item / 308119 (December 1989).

これら三つのリサーチ・ディスクロージャーに示されている化合物種類と記載箇所を以下に掲載した。   The types of compounds and their descriptions shown in these three research disclosures are listed below.

添加剤 RD17643 RD18716 RD308119
頁 分類 頁 分類 頁 分類
化学増感剤 23 III 648右上 96 III
増感色素 23 IV 648〜649 996〜8 IV
減感色素 23 IV 998 IV
染料 25〜26 VIII 649〜650 1003 VIII
現像促進剤 29 XXI 648右上
カブリ抑制剤・安定剤
24 IV 649右上 1006〜7 VI
増白剤 24 V 998 V
硬膜剤 26 X 651左 1004〜5 X
界面活性剤 26〜7 XI 650右 1005〜6 XI
帯電防止剤 27 XII 650右 1006〜7 XIII
可塑剤 27 XII 650右 1006 XII
スベリ剤 27 XII
マット剤 28 XVI 650右 1008〜9 XVI
バインダー 26 XXII 1003〜4 IX
支持体 28 XVII 1009 XVII
〔基板〕
(表示側透明基板)
本発明に用いられる実質的に透明な基板とは、可視光に対する透過率が少なくとも50%以上、より好ましくは80%以上である基板である。このような透明基板としては、ポリエステル(例えば、ポリエチレンテレフタレート、)、ポリイミド、ポリメタクリル酸メチル、ポリスチレン、ポリプロピレン、ポリエチレン、ポリアミド、ナイロン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリカーボネート、ポリエーテルスルホン、シリコン樹脂、ポリアセタール樹脂、フッ素樹脂、セルロース誘導体、ポリオレフィンなどの高分子のフィルムや板状基板、ガラス基板などが好ましく用いられる。
Additive RD17643 RD18716 RD308119
Page Classification Page Classification Page Classification Chemical sensitizer 23 III 648 Upper right 96 III
Sensitizing dye 23 IV 648-649 996-8 IV
Desensitizing dye 23 IV 998 IV
Dye 25-26 VIII 649-650 1003 VIII
Development accelerator 29 XXI 648 Upper right Anti-fogging agent / stabilizer
24 IV 649 Upper right 1006-7 VI
Brightener 24 V 998 V
Hardener 26 X 651 Left 1004-5 X
Surfactant 26-7 XI 650 Right 1005-6 XI
Antistatic agent 27 XII 650 Right 1006-7 XIII
Plasticizer 27 XII 650 Right 1006 XII
Slipper 27 XII
Matting agent 28 XVI 650 Right 1008-9 XVI
Binder 26 XXII 1003-4 IX
Support 28 XVII 1009 XVII
〔substrate〕
(Display side transparent substrate)
The substantially transparent substrate used in the present invention is a substrate having a visible light transmittance of at least 50% or more, more preferably 80% or more. Examples of such transparent substrates include polyester (for example, polyethylene terephthalate), polyimide, polymethyl methacrylate, polystyrene, polypropylene, polyethylene, polyamide, nylon, polyvinyl chloride, polyvinylidene chloride, polycarbonate, polyethersulfone, and silicone resin. Polymer films such as polyacetal resins, fluororesins, cellulose derivatives, polyolefins, plate-like substrates, glass substrates and the like are preferably used.

(対向基板)
対向基板については上記の表示側透明基板に用いられる透明基板に加え、金属基板、セラミック基板等の無機基板など不透明な基板を用いることもできる。
(Opposite substrate)
As the counter substrate, in addition to the transparent substrate used for the display-side transparent substrate, an opaque substrate such as an inorganic substrate such as a metal substrate or a ceramic substrate can be used.

〔電極〕
(表示側透明電極)
透明電極としては、透明で電気を通じるものであれば特に制限はない。例えば、Indium Tin Oxide(ITO:インジウム錫酸化物)、Indium Zinc Oxide(IZO:インジウム亜鉛酸化物)、フッ素ドープ酸化スズ(FTO)、酸化インジウム、酸化亜鉛、白金、金、銀、ロジウム、銅、クロム、炭素、アルミニウム、シリコン、アモルファスシリコン、BSO(Bismuth Silicon Oxide)等が挙げられる。
〔electrode〕
(Display side transparent electrode)
The transparent electrode is not particularly limited as long as it is transparent and conducts electricity. For example, Indium Tin Oxide (ITO: Indium Tin Oxide), Indium Zinc Oxide (IZO: Indium Zinc Oxide), Fluorine Doped Tin Oxide (FTO), Indium Oxide, Zinc Oxide, Platinum, Gold, Silver, Rhodium, Copper, Examples thereof include chromium, carbon, aluminum, silicon, amorphous silicon, and BSO (Bismuth Silicon Oxide).

また、ポリチオフェン、ポリピロール、ポリアニリン、ポリアセチレン、ポリパラフェニレン、ポリセレノフェニレン等、およびそれらの修飾化合物を単独あるいは混合して用いることができる。   In addition, polythiophene, polypyrrole, polyaniline, polyacetylene, polyparaphenylene, polyselenophenylene, etc., and their modifying compounds can be used alone or in combination.

表面抵抗値としては、100Ω/□以下が好ましく、10Ω/□以下がより好ましい。透明電極の厚みは特に制限はないが、0.1〜20μmであるのが一般的である。   The surface resistance value is preferably 100Ω / □ or less, and more preferably 10Ω / □ or less. The thickness of the transparent electrode is not particularly limited, but is generally 0.1 to 20 μm.

(透明多孔質電極)
透明電極として、上記電極層の上にナノ多孔質化構造を有するナノ多孔質電極を設けることができる。このナノ多孔質電極は、表示素子を形成した際に実質的に透明で、エレクトロクロミック材料等の電気活性物質を担持することができる。
(Transparent porous electrode)
As a transparent electrode, a nanoporous electrode having a nanoporous structure can be provided on the electrode layer. The nanoporous electrode is substantially transparent when a display element is formed, and can carry an electroactive substance such as an electrochromic material.

本発明でいうナノ多孔質化構造とは、層中にナノメートルサイズの孔が無数に存在し、ナノ多孔質化構造内を電解質中に含まれるイオン種が移動可能な状態のことを言う。   The nanoporous structure as used in the present invention refers to a state in which an infinite number of nanometer-sized pores exist in a layer and ionic species contained in the electrolyte can move within the nanoporous structure.

このようなナノ多孔質電極の形成方法としては、ナノ多孔質電極を構成する微粒子を含んだ分散物をインクジェット法、スクリーン印刷法、ブレード塗布法などで層状に形成した後に、所定の温度で加熱、乾燥、焼成することよって多孔質化する方法や、スパッタ法、CVD法、大気圧プラズマ法などで電極層を構成した後に、陽極酸化、光電気化学エッチングすることによってナノ多孔質化する方法などが挙げられる。また、ゾルゲル法や、Adv.Mater.2006,18,2980−2983に記載された方法でも、形成することができる。   As a method for forming such a nanoporous electrode, a dispersion containing fine particles constituting the nanoporous electrode is formed in layers by an ink jet method, a screen printing method, a blade coating method, etc., and then heated at a predetermined temperature. A method of making porous by drying, baking, a method of making nanoporous by anodizing or photoelectrochemical etching after forming an electrode layer by sputtering, CVD, atmospheric pressure plasma, etc. Is mentioned. Also, the sol-gel method, Adv. Mater. It can also be formed by the method described in 2006, 18, 2980-2983.

ナノ多孔質電極を構成する微粒子の主成分は、Cu、Al、Pt、Ag、Pd、Au等の金属やITO、SnO、TiO、ZnO等の金属酸化物やカーボンナノチューブ、グラッシーカーボン、ダイヤモンドライクカーボン、窒素含有カーボン等の炭素電極から選択することができ、好ましくは、ITO、SnO、TiO、ZnO等の金属酸化物から選択されることである。 The main components of the fine particles constituting the nanoporous electrode are metals such as Cu, Al, Pt, Ag, Pd and Au, metal oxides such as ITO, SnO 2 , TiO 2 and ZnO, carbon nanotubes, glassy carbon, and diamond. It can be selected from carbon electrodes such as like carbon and nitrogen-containing carbon, and is preferably selected from metal oxides such as ITO, SnO 2 , TiO 2 , and ZnO.

ナノ多孔質電極が透明性を有するためには、平均粒子径が5nm〜10μm程度の微粒子を用いることが好ましい。微粒子の形状は不定形、針状、球形など任意の形状のものを用いることができる。   In order for the nanoporous electrode to have transparency, it is preferable to use fine particles having an average particle diameter of about 5 nm to 10 μm. As the shape of the fine particles, those having an arbitrary shape such as an indefinite shape, a needle shape, and a spherical shape can be used.

ナノ多孔質電極の膜厚は、0.1〜10μmの範囲であることが好ましく、より好ましくは0.25〜5μmの範囲である。   The film thickness of the nanoporous electrode is preferably in the range of 0.1 to 10 μm, more preferably in the range of 0.25 to 5 μm.

(対向電極)
対向電極は、電気を通じるものであれば、特に制限されず用いることができる。
(Counter electrode)
The counter electrode can be used without particular limitation as long as it conducts electricity.

前記透明電極と同じ材料に加え、白金、金、銀、銅、アルミニウム、亜鉛、ニッケル、チタン、ビスマスなどの金属およびそれらの合金、カーボン等、透明性を有しない材料でも好ましく用いることができる。   In addition to the same material as the transparent electrode, metals having no transparency such as platinum, gold, silver, copper, aluminum, zinc, nickel, titanium, bismuth and the like, alloys thereof, carbon and the like can be preferably used.

(多孔質カーボン電極)
吸着担持可能な多孔質炭素電極としては、黒鉛質、難黒鉛化炭素質、易黒鉛化炭素質、複合炭素体や、ホウ素、窒素、りん等を炭素にドープして焼成した炭素化合物、等が挙げられる。炭素粒子の形状としては、メソフェーズ小球体、繊維状黒鉛が挙げられる。メソフェーズ小球体はコールタールピッチなどを350〜500℃で焼成することで得られ、これら小球体をさらに分級して高温焼成で黒鉛化すると良好な多孔質炭素電極が得られる。また、ピッチ系、PAN系、および気相成長繊維から、繊維状黒鉛を得ることができる。
(Porous carbon electrode)
Porous carbon electrodes that can be adsorbed and supported include graphite, non-graphitizable carbon, graphitizable carbon, composite carbon, and carbon compounds obtained by doping carbon with boron, nitrogen, phosphorus, etc. Can be mentioned. Examples of the shape of the carbon particles include mesophase microspheres and fibrous graphite. Mesophase spherules can be obtained by firing coal tar pitch or the like at 350 to 500 ° C., and further classifying these spherules and graphitizing by high-temperature firing can provide a good porous carbon electrode. In addition, fibrous graphite can be obtained from pitch-based, PAN-based, and vapor-grown fibers.

(グリッド電極)
本発明に係る対向電極のうち少なくとも一方の電極に、グリッド電極(補助電極)を付帯させることができる。
(Grid electrode)
A grid electrode (auxiliary electrode) can be attached to at least one of the counter electrodes according to the present invention.

補助電極は、主となる電極部より電気抵抗が低い材料を用いることが好ましい。例えば、白金、金、銀、銅、アルミニウム、亜鉛、ニッケル、チタン、ビスマスなどの金属およびそれらの合金等を好ましく用いることができる。   The auxiliary electrode is preferably made of a material having a lower electrical resistance than the main electrode portion. For example, metals such as platinum, gold, silver, copper, aluminum, zinc, nickel, titanium, and bismuth and alloys thereof can be preferably used.

補助電極は、主となる電極部と基板との間と、主となる電極部の基板と反対側の表面とのいずれに設置することもできる。いずれにしても、補助電極が主となる電極部と電気的に接続していればよい。   The auxiliary electrode can be installed either between the main electrode portion and the substrate, or on the surface of the main electrode portion opposite to the substrate. In any case, it is only necessary that the auxiliary electrode is electrically connected to the main electrode portion.

補助電極の配置パターンには、特に制限はない。直線状、メッシュ状、円形など、求められる性能に応じて適宜形成することが可能である。主となる電極部が複数の部分に分割されている場合には、分割された電極部同士を接続する形で設けてもよい。ただし、主となる電極部が表示側の基板に設けられた透明電極の場合、補助電極は、表示素子の視認性を阻害しない形状と頻度で設けることが求められる。   There are no particular restrictions on the arrangement pattern of the auxiliary electrodes. It can be appropriately formed according to the required performance, such as linear, mesh, or circular. When the main electrode part is divided into a plurality of parts, the divided electrode parts may be connected to each other. However, in the case where the main electrode portion is a transparent electrode provided on the substrate on the display side, the auxiliary electrode is required to be provided with a shape and frequency that do not impair the visibility of the display element.

補助電極を形成する方法としては、公知の方法を用いることができる。例えば、フォトリソグラフィ法でパターニングしたり、印刷法やインクジェット法、電解メッキや無電解メッキ、銀塩感光材料を用いて露光、現像処理したりしてパターン形成する方法でも良い。   As a method of forming the auxiliary electrode, a known method can be used. For example, patterning may be performed by patterning by photolithography, printing, ink jet, electrolytic plating, electroless plating, or exposure and development using a silver salt photosensitive material.

本発明の補助電極パターンのライン幅やライン間隔は、任意の値で構わないが、導電性を高くするためにはライン幅を太くする必要がある。一方、透明電極に補助電極を付帯させる場合には、視認性の観点から、表示素子観察側から見た補助電極の面積被覆率は30%以下が好ましく、さらに好ましくは10%以下である。   Although the line width and line interval of the auxiliary electrode pattern of the present invention may be arbitrary values, it is necessary to increase the line width in order to increase the conductivity. On the other hand, when an auxiliary electrode is attached to the transparent electrode, from the viewpoint of visibility, the area coverage of the auxiliary electrode viewed from the display element observation side is preferably 30% or less, and more preferably 10% or less.

このように透過率と導電性の点から、補助電極のライン幅は1μm以上、100μm以下が好ましく、ライン間隔は50μmから1000μmが好ましい。   Thus, from the viewpoint of transmittance and conductivity, the line width of the auxiliary electrode is preferably 1 μm or more and 100 μm or less, and the line interval is preferably 50 μm to 1000 μm.

(電極製法)
透明電極、金属補助電極を形成するには、公知の方法を用いることができる。例えば、基板上にスパッタリング法等でマスク蒸着するか、全面形成した後に、フォトリソグラフィ法でパターニングしてもよい。
(Electrode manufacturing method)
A known method can be used to form the transparent electrode and the metal auxiliary electrode. For example, mask deposition may be performed on the substrate by sputtering or the like, or patterning may be performed by photolithography after the entire surface is formed.

また、電解メッキや無電解メッキ、印刷法や、インクジェット法によっても電極形成が可能である。   Electrodes can also be formed by electrolytic plating, electroless plating, printing methods, and ink jet methods.

インクジェット方式を用いて基板上にモノマー重合能を有する触媒層を含む電極パターンを形成した後に、該触媒により重合されて重合後に導電性高分子層になりうるモノマー成分を付与して、モノマー成分を重合し、さらに、該導電性高分子層の上に銀等の金属メッキを行うことにより金属電極パターンを形成することもでき、フォトレジストやマスクパターンを使用することがないので、工程を大幅に簡略化できる。   After forming an electrode pattern including a catalyst layer having a monomer polymerization ability on a substrate using an inkjet method, a monomer component that is polymerized by the catalyst and becomes a conductive polymer layer after polymerization is added, It is also possible to form a metal electrode pattern by polymerizing and further performing metal plating such as silver on the conductive polymer layer, and the process is greatly reduced because no photoresist or mask pattern is used. It can be simplified.

電極材料を塗布にて形成する場合は、ディッピング法、スピナー法、スプレー法、ロールコーター法、フレキソ印刷法、スクリーン印刷法等の公知の方法を用いることができる。   When the electrode material is formed by coating, known methods such as a dipping method, a spinner method, a spray method, a roll coater method, a flexographic printing method, and a screen printing method can be used.

インクジェット方式の中でも、下記の静電インクジェットは高粘度の液体を高精度に連続的に印字することが可能であり、本発明の透明電極や金属補助電極の形成に好ましく用いられる。インクの粘度は、好ましくは30mPa・s以上であり、更に好ましくは100mPa・s以上である。   Among the ink jet systems, the following electrostatic ink jet can print a highly viscous liquid continuously with high accuracy, and is preferably used for forming the transparent electrode and the metal auxiliary electrode of the present invention. The viscosity of the ink is preferably 30 mPa · s or more, and more preferably 100 mPa · s or more.

(静電インクジェット)
本発明の表示素子においては、複合電極の透明電極及び金属補助電極の少なくとも1方が、帯電した液体を吐出する内部直径が30μm以下のノズルを有する液体吐出ヘッドと、前記ノズル内に溶液を供給する供給手段と、前記ノズル内の溶液に吐出電圧を印加する吐出電圧印加手段とを備えた液体吐出装置を用いて形成されることが好ましい。
(Electrostatic inkjet)
In the display element of the present invention, at least one of the transparent electrode of the composite electrode and the metal auxiliary electrode has a liquid discharge head having a nozzle with an internal diameter of 30 μm or less for discharging a charged liquid, and supplies a solution into the nozzle. Preferably, it is formed using a liquid discharge apparatus including a supply unit that performs the discharge voltage application unit that applies a discharge voltage to the solution in the nozzle.

さらに前記ノズル内の溶液が当該ノズル先端部から凸状に盛り上がった状態を形成する凸状メニスカス形成手段を設けた吐出装置を用いて形成されることが好ましい。   Furthermore, it is preferable that the solution in the nozzle is formed using a discharge device provided with a convex meniscus forming means for forming a state where the solution rises in a convex shape from the nozzle tip.

また、前記凸状メニスカス形成手段を駆動する駆動電圧の印加及び吐出電圧印加手段による吐出電圧の印加を制御する動作制御手段を備え、この動作制御手段は、前記吐出電圧印加手段による吐出電圧の印加を行わせつつ液滴の吐出に際して前記凸状メニスカス形成手段の駆動電圧の印加を行わせる第一の吐出制御部を有する液体吐出装置を用いることも好ましい。   In addition, an operation control unit that controls application of a drive voltage for driving the convex meniscus forming unit and application of a discharge voltage by the discharge voltage application unit is provided, and the operation control unit applies the discharge voltage by the discharge voltage application unit. It is also preferable to use a liquid ejection apparatus having a first ejection control unit that applies a driving voltage to the convex meniscus forming means when ejecting liquid droplets while performing the above.

また、前記凸状メニスカス形成手段の駆動及び吐出電圧印加手段による電圧印加を制御する動作制御手段を備え、この動作制御手段は、前記凸状メニスカス形成手段による溶液の盛り上げ動作と前記吐出電圧の印加とを同期させて行う第二の吐出制御部を有することを特徴とする液体吐出装置を用いること、前記動作制御手段は、前記溶液の盛り上げ動作及び吐出電圧の印加の後に前記ノズル先端部の液面を内側に引き込ませる動作制御を行う液面安定化制御部を有する液体吐出装置を用いることも好ましい形態である。   In addition, an operation control unit that controls driving of the convex meniscus forming unit and voltage application by the discharge voltage applying unit is provided, and the operation control unit is configured to swell the solution by the convex meniscus forming unit and apply the discharge voltage. And a second discharge control unit that performs synchronization with the liquid discharge device, wherein the operation control means is configured to supply the liquid at the tip of the nozzle after the swell operation of the solution and the application of the discharge voltage. It is also a preferred form to use a liquid ejection apparatus having a liquid level stabilization control unit that performs operation control for drawing the surface inward.

この様な静電インクジェットを用いて電極パターンを作製することにより、オンデマンド性に優れ、廃棄材料が少なく、寸法精度に優れた電極を得ることができ有利である。   By producing an electrode pattern using such an electrostatic inkjet, it is advantageous that an electrode having excellent on-demand characteristics, little waste material, and excellent dimensional accuracy can be obtained.

〔表示素子のその他の構成要素〕
本発明の表示素子には、必要に応じて、シール剤、柱状構造物、スペーサー粒子を用いることができる。
[Other components of the display element]
In the display element of the present invention, a sealant, a columnar structure, and spacer particles can be used as necessary.

シール剤は外に漏れないように封入するためのものであり封止剤とも呼ばれ、エポキシ樹脂、ウレタン系樹脂、アクリル系樹脂、酢酸ビニル系樹脂、エン−チオール系樹脂、シリコン系樹脂、変性ポリマー樹脂等の、熱硬化型、光硬化型、湿気硬化型、嫌気硬化型等の硬化タイプを用いることができる。   Sealing agent is for sealing so that it does not leak outside and is also called sealing agent. Epoxy resin, urethane resin, acrylic resin, vinyl acetate resin, ene-thiol resin, silicon resin, modified resin A curing type such as a polymer resin, such as a thermosetting type, a photocurable type, a moisture curable type, and an anaerobic curable type can be used.

柱状構造物は、基板間の強い自己保持性(強度)を付与し、例えば、格子配列等の所定のパターンに一定の間隔で配列された、円柱状体、四角柱状体、楕円柱状体、台形柱状体等の柱状構造物を挙げることができる。また、所定間隔で配置されたストライプ状のものでもよい。この柱状構造物はランダムな配列ではなく、等間隔な配列、間隔が徐々に変化する配列、所定の配置パターンが一定の周期で繰り返される配列等、基板の間隔を適切に保持でき、且つ、画像表示を妨げないように考慮された配列であることが好ましい。柱状構造物は表示素子の表示領域に占める面積の割合が1〜40%であれば、表示素子として実用上十分な強度が得られる。   The columnar structure provides strong self-holding (strength) between the substrates, for example, a columnar body, a quadrangular columnar body, an elliptical columnar body, a trapezoidal array arranged in a predetermined pattern such as a lattice arrangement. A columnar structure such as a columnar body can be given. Alternatively, stripes arranged at predetermined intervals may be used. This columnar structure is not a random array, but can be properly maintained at intervals of the substrate, such as an evenly spaced array, an array in which the interval gradually changes, and an array in which a predetermined arrangement pattern is repeated at a constant period. The arrangement is preferably considered so as not to disturb the display. If the ratio of the area occupied by the columnar structure in the display area of the display element is 1 to 40%, a practically sufficient strength as a display element can be obtained.

一対の基板間には、該基板間のギャップを均一に保持するためのスペーサーが設けられていてもよい。このスペーサーとしては、樹脂製または無機酸化物製の球体を例示できる。また、表面に熱可塑性の樹脂がコーティングしてある固着スペーサーも好適に用いられる。基板間のギャップを均一に保持するために柱状構造物のみを設けてもよいが、スペーサー及び柱状構造物をいずれも設けてもよいし、柱状構造物に代えて、スペーサーのみをスペース保持部材として使用してもよい。スペーサーの直径は柱状構造物を形成する場合はその高さ以下、好ましくは当該高さに等しい。柱状構造物を形成しない場合はスペーサーの直径がセルギャップの厚みに相当する。   A spacer may be provided between the pair of substrates for uniformly maintaining a gap between the substrates. Examples of the spacer include a sphere made of resin or inorganic oxide. Further, a fixed spacer having a surface coated with a thermoplastic resin is also preferably used. In order to hold the gap between the substrates uniformly, only the columnar structure may be provided, but both the spacer and the columnar structure may be provided, or instead of the columnar structure, only the spacer is used as the space holding member. May be used. The diameter of the spacer is equal to or less than the height of the columnar structure, preferably equal to the height. When the columnar structure is not formed, the diameter of the spacer corresponds to the thickness of the cell gap.

〔表示素子駆動方法〕
本発明の表示素子の駆動操作は、単純マトリックス駆動であっても、アクティブマトリック駆動であってもよい。本発明でいう単純マトリックス駆動とは、複数の正極を含む正極ラインと複数の負極を含む負極ラインとが対向する形で互いのラインが垂直方向に交差した回路に、順次電流を印加する駆動方法のことを言う。単純マトリックス駆動を用いることにより、回路構成や駆動ICを簡略化でき安価に製造できるメリットがある。アクティブマトリックス駆動は、走査線、データライン、電流供給ラインが碁盤目状に形成され、各碁盤目に設けられたTFT回路により駆動させる方式である。画素毎にスイッチングが行えるので、階調やメモリー機能などのメリットがあり、例えば、特開2004−29327号の図5に記載されている回路を用いることができる。
[Display element driving method]
The driving operation of the display element of the present invention may be simple matrix driving or active matrix driving. The simple matrix driving in the present invention is a driving method in which a current is sequentially applied to a circuit in which a positive line including a plurality of positive electrodes and a negative electrode line including a plurality of negative electrodes are opposed to each other in a vertical direction. Say that. By using simple matrix driving, there is an advantage that the circuit configuration and driving IC can be simplified and manufactured at low cost. The active matrix drive is a system in which scanning lines, data lines, and current supply lines are formed in a grid pattern, and are driven by TFT circuits provided in each grid pattern. Since switching can be performed for each pixel, there are merits such as gradation and memory function. For example, a circuit described in FIG. 5 of JP-A-2004-29327 can be used.

〔商品適用〕
本発明の表示素子は、電子書籍分野、IDカード関連分野、公共関連分野、交通関連分野、放送関連分野、決済関連分野、流通物流関連分野等の用いることができる。具体的には、ドア用のキー、学生証、社員証、各種会員カード、コンビニストアー用カード、デパート用カード、自動販売機用カード、ガソリンステーション用カード、地下鉄や鉄道用のカード、バスカード、キャッシュカード、クレジットカード、ハイウェーカード、運転免許証、病院の診察カード、電子カルテ、健康保険証、住民基本台帳、パスポート、電子ブック等が挙げられる。
[Product application]
The display element of the present invention can be used in an electronic book field, an ID card field, a public field, a traffic field, a broadcast field, a payment field, a distribution logistics field, and the like. Specifically, keys for doors, student ID cards, employee ID cards, various membership cards, convenience store cards, department store cards, vending machine cards, gas station cards, subway and railway cards, bus cards, Cash cards, credit cards, highway cards, driver's licenses, hospital examination cards, electronic medical records, health insurance cards, Basic Resident Registers, passports, electronic books, etc.

以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例において「部」あるいは「%」の表示を用いるが、特に断りがない限り「質量部」あるいは「質量%」を表す。   EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto. In addition, although the display of "part" or "%" is used in an Example, unless otherwise indicated, "part by mass" or "mass%" is represented.

実施例1
《表示素子の作製》
〔電解液の作製〕
(電解液1の調製)
化合物S1−4の2.5g中に、p−トルエンスルフォン酸銀0.1gと化合物(G2−12)を0.2g溶解させて、電解液1を得た。
Example 1
<< Production of display element >>
(Preparation of electrolyte)
(Preparation of electrolyte 1)
In 2.5 g of compound S1-4, 0.1 g of silver p-toluenesulfonate and 0.2 g of compound (G2-12) were dissolved to obtain an electrolytic solution 1.

〔電極の作製〕
(電極1の作製)
厚さ1.5mmで2cm×4cmのガラス基板上に、ピッチ145μm、電極幅130μmのITO(Indium Tin Oxide、インジウム錫酸化物)膜を公知の方法に従って形成して、透明電極(電極1)を得た。
[Production of electrodes]
(Production of electrode 1)
An ITO (Indium Tin Oxide) film having a pitch of 145 μm and an electrode width of 130 μm is formed on a glass substrate having a thickness of 1.5 mm and 2 cm × 4 cm according to a known method, and a transparent electrode (electrode 1) is formed. Obtained.

(電極2の作製)
厚さ1.5mmで2cm×4cmのガラス基板上に、ピッチ145μm、電極幅130μmの銀−パラジウム膜を公知の方法に従って形成した。得られた電極上に、下記に記載する二酸化チタン分散物を乾燥後の平均膜厚が20μmになるようにスクリーン印刷し、その後50℃で30分間乾燥して溶媒を蒸発させた後、85℃の雰囲気中で1時間乾燥させて多孔質白色散乱層を形成した電極2を作製した。
(Preparation of electrode 2)
A silver-palladium film having a pitch of 145 μm and an electrode width of 130 μm was formed on a 2 cm × 4 cm glass substrate having a thickness of 1.5 mm according to a known method. On the obtained electrode, the titanium dioxide dispersion described below was screen-printed so that the average film thickness after drying was 20 μm, then dried at 50 ° C. for 30 minutes to evaporate the solvent, and then 85 ° C. The electrode 2 having a porous white scattering layer formed by drying for 1 hour in the atmosphere was prepared.

(電極3の作製)
電極1上に、平均粒径10nmのITO粒子を含有したペースト液を、スクリーン印刷法で塗工した後に、150℃で30分間加熱しペースト液の溶媒を除去し、厚さ1μmのITOの多孔質膜を形成した。得られた電極を化合物M74を1質量%含んだトルエン/エタノール溶液に60℃で30分間浸漬し、化合物M74が固定化された多孔質膜を有する電極を得た。さらに、得られた電極上に、下記に記載する二酸化チタン分散物を乾燥後の平均膜厚が20μmになるようにスクリーン印刷し、その後50℃で30分間乾燥して溶媒を蒸発させた後、85℃の雰囲気中で1時間乾燥させて多孔質白色散乱層を形成した電極3を作製した。
(Preparation of electrode 3)
After applying a paste liquid containing ITO particles having an average particle diameter of 10 nm on the electrode 1 by a screen printing method, the paste liquid was heated at 150 ° C. for 30 minutes to remove the solvent of the paste liquid. A membrane was formed. The obtained electrode was immersed in a toluene / ethanol solution containing 1% by mass of compound M74 at 60 ° C. for 30 minutes to obtain an electrode having a porous membrane on which compound M74 was immobilized. Furthermore, on the obtained electrode, the titanium dioxide dispersion described below was screen-printed so that the average film thickness after drying was 20 μm, and then dried at 50 ° C. for 30 minutes to evaporate the solvent. Electrode 3 having a porous white scattering layer formed by drying in an atmosphere at 85 ° C. for 1 hour was produced.

(電極4の作製)
電極1上に、平均粒径10nmのITO粒子を含有したペースト液を、スクリーン印刷法で塗工した後に、150℃で30分間加熱しペースト液の溶媒を除去し、厚さ1μmのITOの多孔質膜を形成した。得られた電極と化合物M74を1質量%含んだトルエン/エタノール溶液をオートクレーブに入れ、60℃で30分間加熱した後の圧力計で加圧条件が0.005MPaとなっていることを確認した。この時、所望の加圧条件になるようなトルエン/エタノール溶液の量を予め見積もっておいた。圧力計で所望の加圧条件になっていることを確認した後、さらに30分間加熱して電極を取り出し、化合物M74が固定化された多孔質膜を有する電極を得た。さらに、得られた電極上に、下記に記載する二酸化チタン分散物を乾燥後の平均膜厚が20μmになるようにスクリーン印刷し、その後50℃で30分間乾燥して溶媒を蒸発させた後、85℃の雰囲気中で1時間乾燥させて多孔質白色散乱層を形成した電極4を作製した。
(Preparation of electrode 4)
After applying a paste liquid containing ITO particles having an average particle diameter of 10 nm on the electrode 1 by a screen printing method, the paste liquid was heated at 150 ° C. for 30 minutes to remove the solvent of the paste liquid. A membrane was formed. The obtained electrode and a toluene / ethanol solution containing 1% by mass of the compound M74 were put in an autoclave, and the pressure was confirmed to be 0.005 MPa with a pressure gauge after heating at 60 ° C. for 30 minutes. At this time, the amount of the toluene / ethanol solution that would satisfy the desired pressure condition was estimated in advance. After confirming that the desired pressurization conditions were obtained with a pressure gauge, the electrode was taken out by further heating for 30 minutes to obtain an electrode having a porous membrane on which Compound M74 was immobilized. Furthermore, on the obtained electrode, the titanium dioxide dispersion described below was screen-printed so that the average film thickness after drying was 20 μm, and then dried at 50 ° C. for 30 minutes to evaporate the solvent. Electrode 4 having a porous white scattering layer formed by drying in an atmosphere at 85 ° C. for 1 hour was produced.

(電極5の作製)
電極4において、加圧条件が0.01MPaになるようにトルエン/エタノール溶液の量を変更した以外は同様にして、電極5を得た。
(Preparation of electrode 5)
In the electrode 4, the electrode 5 was obtained in the same manner except that the amount of the toluene / ethanol solution was changed so that the pressurizing condition was 0.01 MPa.

(電極6の作製)
電極4において、加圧条件が0.1MPaになるようにトルエン/エタノール溶液の量を変更した以外は同様にして、電極6を得た。
(Preparation of electrode 6)
In the electrode 4, the electrode 6 was obtained in the same manner except that the amount of the toluene / ethanol solution was changed so that the pressurizing condition was 0.1 MPa.

(電極7の作製)
電極4において、加圧条件が0.5MPaになるようにトルエン/エタノール溶液の量を変更した以外は同様にして、電極7を得た。
(Preparation of electrode 7)
In the electrode 4, the electrode 7 was obtained in the same manner except that the amount of the toluene / ethanol solution was changed so that the pressurizing condition was 0.5 MPa.

(電極8の作製)
電極4において、加圧条件が1MPaになるようにトルエン/エタノール溶液の量を変更した以外は同様にして、電極8を得た。
(Preparation of electrode 8)
In the electrode 4, the electrode 8 was obtained in the same manner except that the amount of the toluene / ethanol solution was changed so that the pressurizing condition was 1 MPa.

(電極9の作製)
電極4において、加熱温度100℃で加圧条件が0.1MPaに成るようにトルエン/エタノール溶液の量を変更した以外は同様にして、電極9を得た。
(Preparation of electrode 9)
In the electrode 4, an electrode 9 was obtained in the same manner except that the amount of the toluene / ethanol solution was changed so that the heating condition was 100 ° C. and the pressure condition was 0.1 MPa.

(電極10の作製)
電極4において、加熱温度150℃で加圧条件が0.1MPaに成るようにトルエン/エタノール溶液の量を変更した以外は同様にして、電極10を得た。
(Production of electrode 10)
In the electrode 4, the electrode 10 was obtained in the same manner except that the amount of the toluene / ethanol solution was changed so that the heating condition was 150 ° C. and the pressure condition was 0.1 MPa.

(電極11の作製)
電極4において、加熱温度200℃で加圧条件が0.1MPaに成るようにトルエン/エタノール溶液の量を変更した以外は同様にして、電極11を得た。
(Preparation of electrode 11)
In the electrode 4, the electrode 11 was obtained in the same manner except that the amount of the toluene / ethanol solution was changed so that the heating condition was 200 ° C. and the pressure condition was 0.1 MPa.

(電極12の作製)
電極4において、加熱温度250℃で加圧条件が0.1MPaに成るようにトルエン/エタノール溶液の量を変更した以外は同様にして、電極12を得た。
(Preparation of electrode 12)
An electrode 12 was obtained in the same manner as in the electrode 4, except that the amount of the toluene / ethanol solution was changed so that the heating condition was 250 ° C. and the pressure condition was 0.1 MPa.

(電極13の作製)
電極10において、ITO粒子の平均粒径を5nmに変更した以外は同様にして、電極13を得た。
(Preparation of electrode 13)
In the electrode 10, the electrode 13 was obtained in the same manner except that the average particle diameter of the ITO particles was changed to 5 nm.

(電極14の作製)
電極10において、ITO粒子の平均粒径を3nmに変更した以外は同様にして、電極14を得た。
(Preparation of electrode 14)
In the electrode 10, the electrode 14 was obtained in the same manner except that the average particle diameter of the ITO particles was changed to 3 nm.

(電極15の作製)
電極10において、ITO粒子の平均粒径を20nmに変更した以外は同様にして、電極15を得た。
(Preparation of electrode 15)
An electrode 15 was obtained in the same manner as in the electrode 10 except that the average particle diameter of the ITO particles was changed to 20 nm.

(電極16の作製)
電極10において、ITO粒子の平均粒径を30nmに変更した以外は同様にして、電極16を得た。
(Preparation of electrode 16)
In the electrode 10, an electrode 16 was obtained in the same manner except that the average particle diameter of the ITO particles was changed to 30 nm.

(電極17の作製)
電極10において、ITO粒子の平均粒径を50nmに変更した以外は同様にして、電極17を得た。
(Preparation of electrode 17)
An electrode 17 was obtained in the same manner as in the electrode 10 except that the average particle diameter of the ITO particles was changed to 50 nm.

(電極18の作製)
電極10において、化合物M74を化合物M56に変更した以外は同様にして、電極18を得た。
(Preparation of electrode 18)
An electrode 18 was obtained in the same manner as in the electrode 10 except that the compound M74 was changed to the compound M56.

(電極19の作製)
電極10において、化合物M74を化合物M60に変更した以外は同様にして、電極19を得た。
(Preparation of electrode 19)
An electrode 19 was obtained in the same manner as in the electrode 10 except that the compound M74 was changed to the compound M60.

(電極20の作製)
電極10において、化合物M74を化合物M9に変更した以外は同様にして、電極20を得た。
(Preparation of electrode 20)
An electrode 20 was obtained in the same manner as in the electrode 10 except that the compound M74 was changed to the compound M9.

(電極21の作製)
電極19において、ITO粒子をTiO粒子に変更した以外は同様にして、電極21を得た。
(Preparation of electrode 21)
An electrode 21 was obtained in the same manner as in the electrode 19 except that the ITO particles were changed to TiO 2 particles.

(電極22の作製)
電極19において、ITO粒子をZnO粒子に変更した以外は同様にして、電極22を得た。
(Production of electrode 22)
An electrode 22 was obtained in the same manner as in the electrode 19 except that the ITO particles were changed to ZnO particles.

(二酸化チタン分散物の調製)
水/エタノール混合溶液に、クラレポバールPVA235(クラレ社製、ポリビニルアルコール樹脂)を固形分濃度で2質量%になるように添加し、加熱溶解させた後、石原産業社製の二酸化チタンCR−90を20質量%となるように超音波分散機で分散させて、二酸化チタン分散物を得た。
(Preparation of titanium dioxide dispersion)
Kuraray Poval PVA235 (manufactured by Kuraray Co., Ltd., polyvinyl alcohol resin) was added to the water / ethanol mixed solution so as to have a solid content concentration of 2% by mass, dissolved by heating, and then titanium dioxide CR-90 made by Ishihara Sangyo Co., Ltd. Was dispersed with an ultrasonic disperser so as to be 20% by mass to obtain a titanium dioxide dispersion.

〔表示素子の作製〕
(表示素子1の作製)
電極1の周辺部を、平均粒径40μmのガラス製球形ビーズを体積分率として10%含むオレフィン系封止剤で縁取りした後に、電極1と電極2とを、それぞれストライプ状の電極が直交するように貼り合わせ、さらに加熱押圧して空セルを作製した。該空セルに電解液1を真空注入し、注入口をエポキシ系の紫外線硬化樹脂にて封止し、表示素子1を作製した。
[Production of display element]
(Preparation of display element 1)
After the periphery of the electrode 1 is edged with an olefin-based sealant containing glass spherical beads having an average particle size of 40 μm as a volume fraction of 10%, the striped electrodes are orthogonal to the electrodes 1 and 2 respectively. The cells were bonded together and further heated and pressed to produce an empty cell. The electrolytic solution 1 was vacuum-injected into the empty cell, and the injection port was sealed with an epoxy-based ultraviolet curable resin to produce a display element 1.

(表示素子2〜21の作製)
表1に記載する電極の組み合わせで、表示素子2〜21を作製した。
(Production of display elements 2 to 21)
Display elements 2 to 21 were fabricated with the combinations of electrodes described in Table 1.

《表示素子の評価》
〔繰返し駆動させたときの反射率の安定性の評価(駆動安定性)〕
定電圧電源の両端子に作製した表示素子の両電極を接続し、+1.5Vの電圧を1秒間印加した後に−1.5Vの電圧を0.5秒間印加してグレーを表示させたときの波長550nmでの反射率をコニカミノルタセンシング社製の分光測色計CM−3700dで測定した。同様な駆動条件で合計10回駆動させ、得られた反射率の平均値をRave1とした。さらに1万回繰返し駆動させた後に同様な方法でRave2を求めた。ΔRBK1=|Rave1−Rave2|とし、ΔRBK1を繰返し駆動させたときの反射率の安定性の指標とした。ここでは、ΔRBK1の値が小さいほど、繰返し駆動させたときの反射率の安定性に優れることになる。
<< Evaluation of display element >>
[Evaluation of reflectance stability when driven repeatedly (drive stability)]
When both electrodes of the display element are connected to both terminals of the constant voltage power source, a voltage of +1.5 V is applied for 1 second, and then a voltage of -1.5 V is applied for 0.5 second to display gray The reflectance at a wavelength of 550 nm was measured with a spectrocolorimeter CM-3700d manufactured by Konica Minolta Sensing. Under the same driving conditions, driving was performed 10 times in total, and the average value of the obtained reflectances was defined as R ave1 . Further, after driving repeatedly 10,000 times, R ave2 was obtained by the same method. ΔR BK1 = | R ave1 −R ave2 | was used as an index of stability of reflectance when ΔR BK1 was repeatedly driven. Here, the smaller the value of ΔR BK1, the better the stability of the reflectance when driven repeatedly.

以上により得られた各表示素子の構成及び評価結果を、表1に示す。   Table 1 shows the configurations and evaluation results of the display elements obtained as described above.

Figure 2010085571
Figure 2010085571

本発明の構成とすることにより、繰返し駆動させたときの安定性が非常に優れることが分かる。   It can be seen that the configuration of the present invention is very excellent in stability when driven repeatedly.

Claims (7)

金属酸化物から成る多孔質電極に0.01MPa以上0.5MPa以下の範囲の加圧条件下で、酸化還元されうる補助化合物を固定化して作製することを特徴とする金属溶解析出型の電気化学表示素子用電極の製造方法。 Electrolysis of metal dissolution precipitation type characterized by immobilizing an auxiliary compound that can be oxidized and reduced on a porous electrode made of metal oxide under a pressure condition in a range of 0.01 MPa to 0.5 MPa. Manufacturing method of electrode for display element. 前記補助化合物を固定化する時の加熱温度が100℃以上200℃以下の範囲にあることを特徴とする請求項1に記載の電気化学表示素子用電極の製造方法。 2. The method for producing an electrode for an electrochemical display element according to claim 1, wherein the heating temperature for immobilizing the auxiliary compound is in the range of 100 ° C. or more and 200 ° C. or less. 請求項1または2に記載の電気化学表示素子用電極の製造方法により形成された電極を用いた電気化学表示素子であって、前記多孔質電極が金属酸化物の微粒子から形成されており、かつ該金属酸化物の平均一次粒径が5nm以上30nm以下であることを特徴とする電気化学表示素子。 It is an electrochemical display element using the electrode formed by the manufacturing method of the electrode for electrochemical display elements of Claim 1 or 2, Comprising: The said porous electrode is formed from the fine particle of the metal oxide, and An electrochemical display element, wherein the metal oxide has an average primary particle size of 5 nm to 30 nm. 前記補助化合物がフェロセン誘導体であることを特徴とする請求項3に記載の電気化学表示素子。 The electrochemical display element according to claim 3, wherein the auxiliary compound is a ferrocene derivative. 前記補助化合物がNオキシル誘導体であることを特徴とする請求項3に記載の電気化学表示素子。 The electrochemical display element according to claim 3, wherein the auxiliary compound is an N oxyl derivative. 前記補助化合物が−Si(OR)基(Rは、アルキル基を表す。)を有していることを特徴とする請求項4または5に記載の電気化学表示素子。 The electrochemical display element according to claim 4, wherein the auxiliary compound has a —Si (OR) 3 group (R represents an alkyl group). 前記金属酸化物が酸化インジウムまたは二酸化チタンから成ることを特徴とする請求項4〜6のいずれか1項に記載の電気化学表示素子。 The electrochemical display element according to claim 4, wherein the metal oxide is made of indium oxide or titanium dioxide.
JP2008252757A 2008-09-30 2008-09-30 Method of manufacturing electrode for electrochemical display element, and electrochemical display element Pending JP2010085571A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008252757A JP2010085571A (en) 2008-09-30 2008-09-30 Method of manufacturing electrode for electrochemical display element, and electrochemical display element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008252757A JP2010085571A (en) 2008-09-30 2008-09-30 Method of manufacturing electrode for electrochemical display element, and electrochemical display element

Publications (1)

Publication Number Publication Date
JP2010085571A true JP2010085571A (en) 2010-04-15

Family

ID=42249606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008252757A Pending JP2010085571A (en) 2008-09-30 2008-09-30 Method of manufacturing electrode for electrochemical display element, and electrochemical display element

Country Status (1)

Country Link
JP (1) JP2010085571A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011164256A (en) * 2010-02-08 2011-08-25 Konica Minolta Holdings Inc Electrochemical display element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011164256A (en) * 2010-02-08 2011-08-25 Konica Minolta Holdings Inc Electrochemical display element

Similar Documents

Publication Publication Date Title
JP5472104B2 (en) Display element and manufacturing method thereof
WO2011096298A1 (en) Display element
JP2009300494A (en) Electrode for electrochemical display element and display element
JP2010085570A (en) Electrochemical device and polymeric material
JP2011150054A (en) Display element
JP2010085569A (en) Electrochemical device and polymeric material
JP2010117635A (en) Display element
JP5704161B2 (en) Display element
WO2010058684A1 (en) Display element
JPWO2009013976A1 (en) Display element
JP2010085571A (en) Method of manufacturing electrode for electrochemical display element, and electrochemical display element
JP2010085568A (en) Electrochemical device and polymeric material
JP5177218B2 (en) Display element
JP5532923B2 (en) Display element
JP2011090182A (en) Display element
JP5287849B2 (en) Display element
WO2010010814A1 (en) Display element and method for forming porous layer of display element
JP2010085572A (en) Electrochemical display element
JP5458484B2 (en) Display element
JP5158191B2 (en) Display element
JP2011008081A (en) Display element
JP2009098225A (en) Display element
JP2010020149A (en) Method of manufacturing display element
JP5568990B2 (en) Display element
JP5347516B2 (en) Method for manufacturing electrochemical display element