JP5347516B2 - Method for manufacturing electrochemical display element - Google Patents
Method for manufacturing electrochemical display element Download PDFInfo
- Publication number
- JP5347516B2 JP5347516B2 JP2009004444A JP2009004444A JP5347516B2 JP 5347516 B2 JP5347516 B2 JP 5347516B2 JP 2009004444 A JP2009004444 A JP 2009004444A JP 2009004444 A JP2009004444 A JP 2009004444A JP 5347516 B2 JP5347516 B2 JP 5347516B2
- Authority
- JP
- Japan
- Prior art keywords
- silver
- electrode
- display element
- observation side
- thin film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
Abstract
Description
本発明は、新規な電気化学的表示素子の製造方法に関するものである。 The present invention relates to a method for producing a novel electrochemical display element.
近年、パーソナルコンピューターの動作速度の向上、ネットワークインフラの普及、データストレージの大容量化と低価格化に伴い、従来紙への印刷物で提供されたドキュメントや画像等の情報を、より簡便な電子情報として入手、電子情報を閲覧する機会が益々増大している。 In recent years, with the increase in the operating speed of personal computers, the spread of network infrastructure, the increase in capacity and price of data storage, information such as documents and images provided on printed paper on paper has become easier to use electronic information. Opportunities to obtain and browse electronic information are increasing more and more.
この様な電子情報の閲覧手段として、従来の液晶ディスプレイやCRT、また近年では、有機ELディスプレイ等の発光型が主として用いられているが、特に、電子情報がドキュメント情報の場合、比較的長時間にわたってこの閲覧手段を注視する必要があり、これらの行為は必ずしも人間に優しい手段とは言い難く、一般に発光型のディスプレイの欠点として、フリッカーで目が疲労する、持ち運びに不便、読む姿勢が制限され、静止画面に視線を合わせる必要が生じる、長時間読むと消費電力が嵩む等が知られている。 As a means for browsing such electronic information, a conventional liquid crystal display or CRT, and in recent years, a light emitting type such as an organic EL display is mainly used. In particular, when the electronic information is document information, it is relatively long time. It is necessary to pay close attention to this browsing means, and these actions are not necessarily human-friendly means. Generally, as a drawback of light-emitting displays, eyes flicker due to flickering, inconvenient to carry, reading posture is limited It is known that it is necessary to adjust the line of sight to a still screen, and that power consumption increases when read for a long time.
これらの欠点を補う表示手段として、外光を利用し、像保持の為に電力を消費しない、いわゆる「メモリー性」を有する反射型ディスプレイが知られているが、下記の理由で十分な性能を有しているとは言い難い。 As a display means to compensate for these drawbacks, a reflection type display using so-called "memory" that uses external light and does not consume power for image retention is known. However, it has sufficient performance for the following reasons. It is hard to say that it has.
すなわち、反射型液晶等の偏光板を用いる方式は、反射率が約40%と低いため白表示に難があり、また構成部材の作製に用いる製法の多くは簡便とは言い難い。また、ポリマー分散型液晶は高い電圧を必要とし、また有機物同士の屈折率差を利用しているため、得られる画像のコントラストが十分でない。また、ポリマーネットワーク型液晶は駆動電圧が高いことと、メモリー性を向上させるために複雑なTFT回路が必要である等の課題を抱えている。また、電気泳動法による表示素子は、10V以上の高い電圧が必要となり、電気泳動性粒子凝集による耐久性に懸念がある。 That is, the method using a polarizing plate such as a reflective liquid crystal has a low reflectance of about 40%, which makes it difficult to display white, and it is difficult to say that many of the manufacturing methods used to manufacture the constituent members are simple. In addition, the polymer dispersed liquid crystal requires a high voltage and utilizes the difference in refractive index between organic substances, so that the resulting image has insufficient contrast. In addition, the polymer network type liquid crystal has problems such as a high driving voltage and a complicated TFT circuit required to improve the memory performance. In addition, a display element based on electrophoresis requires a high voltage of 10 V or more, and there is a concern about durability due to electrophoretic particle aggregation.
これら上述の各方式の欠点を解消する表示方式として、金属または金属塩の溶解析出を利用するエレクトロデポジション方式(以下、ED方式と略す)が知られている。ED方式は、3V以下の低電圧で駆動が可能で、簡便なセル構成、黒と白のコントラストや黒品質に優れる等の利点があり、様々な方法が開示されている(例えば、特許文献1〜3参照。)。 As a display method for eliminating the drawbacks of each of the above-described methods, an electrodeposition method (hereinafter, abbreviated as ED method) using dissolution precipitation of metal or metal salt is known. The ED method can be driven at a low voltage of 3 V or less, has advantages such as a simple cell configuration, excellent black-white contrast and black quality, and various methods have been disclosed (for example, Patent Document 1). -3)).
本発明者は、上記各特許文献に開示されている技術を詳細に検討した結果、従来技術では、繰返し駆動させたときの反射率の安定性に課題があることが判明し、これを解決する手段としては、金属溶解析出型の電気化学的表示素子の電解駆動安定性を向上させる技術として、特許文献4のように電解液中にフェロセン等のレドックスバッファーを添加する技術が挙げられる。該技術は非観察側の電極でレドックスバッファーが酸化還元することで駆動安定性を向上させることを意図した技術ではあるが、駆動安定性を向上させるにはレドックスバッファーの添加量を十分に増やす必要があり、その場合、メモリー性の低下や書換速度の低下を伴うことがわかった。
As a result of examining the techniques disclosed in each of the above patent documents in detail, the present inventor has found that there is a problem in the stability of the reflectance when it is repeatedly driven, and solves this problem. As a means for improving the electrolysis driving stability of the metal dissolution precipitation type electrochemical display element, there is a technique of adding a redox buffer such as ferrocene to the electrolytic solution as in
また、特許文献5や特許文献6では非観察側の電極に銀電極若しくは銀粒子を含んだ電極を用いることで、観察側の電極での銀の溶解析出反応の過電圧の変動を抑えて駆動安定性を向上させることが検討されているが、繰返し駆動の回数が少ないときには効果があるものの、繰返し駆動の回数が多くなってくると黒色を表示させるときに非観察側の銀電極自身の溶解反応が起こるため、駆動安定性が低下していく課題があることがわかった。
Further, in
また、別の技術として、特許文献7では対向電極間に電解質を封入した後に電解質を銀めっき液として予め非観察側の電極を銀めっき処理する技術が挙げられるが、電解質を封入した後に非観察側の電極に銀めっき処理する工程で観察側の電極上で電解質の好ましくない酸化反応が起こる結果、電解質の組成が変化することで駆動安定性が不安定になることがわかった。 In addition, as another technique, Patent Document 7 includes a technique in which an electrolyte is sealed between counter electrodes and then the electrode on the non-observation side is silver-plated in advance using the electrolyte as a silver plating solution. As a result of undesirable oxidation reaction of the electrolyte on the observation side electrode in the step of silver plating on the side electrode, it was found that the driving stability becomes unstable due to the change in the composition of the electrolyte.
本発明は、上記課題に鑑みなされたものであり、その目的は、簡便な部材構成、低電圧で駆動可能で、繰返し駆動での特性変化が少ない表示素子を提供することにある。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a display element that has a simple member configuration, can be driven at a low voltage, and has few characteristic changes in repeated driving.
本発明の上記目的は、以下の構成により達成される。 The above object of the present invention is achieved by the following configurations.
1.観察側と非観察側で構成される一対の対向電極間に、少なくとも銀塩化合物を含有する電解液を有する電気化学的表示素子において、該一対の対向電極の少なくとも一方に予め銀薄膜を形成する工程、該対向電極間に電界をかけることにより該銀薄膜を溶解させながら銀薄膜を形成した電極と対向する電極上に析出銀を形成する工程を有することを特徴とする電気化学的表示素子の製造方法。 1. In an electrochemical display element having an electrolytic solution containing at least a silver salt compound between a pair of counter electrodes configured on the observation side and the non-observation side, a silver thin film is formed in advance on at least one of the pair of counter electrodes An electrochemical display element comprising: a step of forming precipitated silver on an electrode opposite to an electrode on which the silver thin film is formed while applying an electric field between the counter electrodes to dissolve the silver thin film Production method.
2.前記1に記載の電気化学的表示素子を製造する方法であって、観察側電極上に予め銀薄膜を形成する工程、該観察側電極と非観察側電極とを対向させる工程、対向する電極間に電解液を充填する工程、観察側電極が貴になるように電極間に電圧を印加して観察側の該銀薄膜を溶解させながら電解液中の銀化合物を還元して非観察側の電極上に析出銀を形成する工程を有することを特徴とする前記1に記載の電気化学的表示素子の製造方法。 2. A method for producing the electrochemical display device according to 1 above, wherein a step of forming a silver thin film on the observation side electrode in advance, a step of making the observation side electrode and the non-observation side electrode face each other, and between the facing electrodes A step of filling the electrode with an electrolyte solution, applying a voltage between the electrodes so that the observation side electrode becomes noble, reducing the silver compound in the electrolyte solution while dissolving the silver thin film on the observation side, and the non-observation side electrode 2. The method for producing an electrochemical display element as described in 1 above, further comprising a step of forming precipitated silver on the top.
3.前記1に記載の電気化学的表示素子を製造する方法であって、非観察側電極上に予め銀薄膜を形成する工程、該非観察側電極と観察側電極とを対向させる工程、対向する電極間に電解液を充填する工程、観察側電極が卑になるように対向電極間に電圧を印加して非観察側の該銀薄膜を溶解させながら観察側の電極上に電解液中の銀化合物を還元して析出銀を形成する工程、観察側の電極が貴になるように一対の電極間に電圧を印加して観察側の該析出銀を溶解させながら電解液中の銀化合物を還元して非観察側の電極上に析出銀を形成する工程を有することを特徴とする前記1に記載の電気化学的表示素子の製造方法。 3. 2. A method for producing the electrochemical display device according to 1 above, wherein a step of forming a silver thin film in advance on the non-observation side electrode, a step of facing the non-observation side electrode and the observation side electrode, and between the facing electrodes A step of filling the electrolyte solution with a silver compound in the electrolyte solution on the observation side electrode while applying a voltage between the counter electrodes so that the observation side electrode becomes base and dissolving the silver thin film on the non-observation side Step of reducing and forming precipitated silver, reducing the silver compound in the electrolytic solution while applying a voltage between a pair of electrodes so that the observation side electrode becomes noble and dissolving the precipitation silver on the observation side 2. The method for producing an electrochemical display element as described in 1 above, further comprising a step of forming precipitated silver on the non-observation side electrode.
4.前記銀薄膜中の銀の純度が99%以上100%以下であることを特徴とする前記1から3のいずれか一項に記載の電気化学的表示素子の製造方法。 4). 4. The method for producing an electrochemical display element according to any one of 1 to 3, wherein the silver purity in the silver thin film is 99% or more and 100% or less.
5.前記銀薄膜がスパッタ法で形成されたことを特徴とする前記1から4のいずれか一項に記載の電気化学的表示素子の製造方法。 5. 5. The method for producing an electrochemical display element according to any one of 1 to 4, wherein the silver thin film is formed by a sputtering method.
6.前記銀薄膜の膜厚が5nm以上50nm以下であることを特徴とする前記1から5のいずれか一項に記載の電気化学的表示素子の製造方法。 6). 6. The method for producing an electrochemical display element according to any one of 1 to 5, wherein the silver thin film has a thickness of 5 nm to 50 nm.
7.前記対向電極間に印加する電圧が0.5V以上1.2V以下であることを特徴とする前記1から6のいずれか一項に記載の電気化学的表示素子の製造方法。 7). The method for producing an electrochemical display element according to any one of 1 to 6, wherein a voltage applied between the counter electrodes is 0.5 V or more and 1.2 V or less.
本発明により、簡便な部材構成、低電圧で駆動可能で、繰返し駆動での特性変化が少ない表示素子を提供することができた。 According to the present invention, it is possible to provide a display element that can be driven with a simple member configuration, a low voltage, and has little characteristic change in repeated driving.
本発明者は、表示素子で画像形成を行う前に、非観察側の電極上に析出銀の層を形成しておくことで、表示素子の駆動安定性を向上させることができることを見いだした。更に、前記析出銀の層は、電解液から析出させることを特徴とし、電解液中の銀塩化合物濃度を安定させるためには、予め対向電極の少なくとも一方に銀薄膜を形成しておき、対向電極間に電圧を印加し、該銀薄膜を酸化溶解すると同時に該銀薄膜を有する電極の対向側の電極に電解液中の銀塩化合物が還元して析出銀を形成させることが効果的であることを見いだしたものである。 The present inventor has found that the drive stability of the display element can be improved by forming a deposited silver layer on the non-observation side electrode before forming an image on the display element. Further, the deposited silver layer is deposited from an electrolytic solution, and in order to stabilize the concentration of the silver salt compound in the electrolytic solution, a silver thin film is formed in advance on at least one of the counter electrodes. It is effective to apply a voltage between the electrodes to oxidize and dissolve the silver thin film, and at the same time, the silver salt compound in the electrolytic solution is reduced to form precipitated silver on the electrode opposite to the electrode having the silver thin film. I found out.
以下、本発明の詳細について説明する。 Details of the present invention will be described below.
〔表示素子の基本構成〕
本発明の表示素子において、表示部には、対応する1対の対向電極が設けられている。
[Basic structure of display element]
In the display element of the present invention, the display portion is provided with a corresponding pair of counter electrodes.
対向電極の1方である、観察側の電極にはITO電極等の透明電極が設けられている。 A transparent electrode such as an ITO electrode is provided on the observation side electrode which is one of the counter electrodes.
本発明における析出銀とは、電解液に含有している銀塩化合物を還元して析出した銀のことを指し、銀ペーストのスクリーン印刷塗布や銀インキのインクジェット等で成膜した銀膜とは異なる。 The precipitated silver in the present invention refers to the silver deposited by reducing the silver salt compound contained in the electrolytic solution, and the silver film formed by screen printing application of silver paste, ink jet of silver ink or the like. Different.
以下に本発明に係る析出銀の形成方法の一例を記載する。 An example of the method for forming precipitated silver according to the present invention will be described below.
本発明の銀薄膜は観察側の電極上に設けても非観察側の電極上に設けても構わない。対向電極間に銀塩化合物を含有した電解液を充填した後に銀薄膜を設けた電極側の電位が貴になるように対向電極間に電圧を印加することで、銀薄膜を溶解させながら銀薄膜を設けた電極と対向する電極側に電解液中の銀塩化合物を還元して析出銀を形成することができる。析出銀が形成した側の電極が観察側の電極の場合、さらに観察側の電極が貴になるように対向電極間に電圧を印加することで、観察側の電極上の析出銀を溶解させながら非観察側の電極側に電解液中の銀塩化合物を還元して析出銀を形成することができる。いずれの場合も、出荷前に電解液の組成を変化させることなく、非観察側の電極上に十分な量の析出銀を形成した表示素子を提供することができる。 The silver thin film of the present invention may be provided on the observation-side electrode or on the non-observation-side electrode. The silver thin film is dissolved while the silver thin film is dissolved by applying a voltage between the counter electrodes so that the potential on the electrode side provided with the silver thin film becomes noble after filling the electrolyte containing the silver salt compound between the counter electrodes Deposited silver can be formed by reducing the silver salt compound in the electrolytic solution on the electrode side opposite to the electrode provided with. When the electrode on the side on which the deposited silver is formed is the electrode on the observation side, by further applying a voltage between the counter electrodes so that the electrode on the observation side becomes noble, while dissolving the deposited silver on the electrode on the observation side Precipitated silver can be formed by reducing the silver salt compound in the electrolyte on the non-observed electrode side. In any case, it is possible to provide a display element in which a sufficient amount of precipitated silver is formed on the non-observation side electrode without changing the composition of the electrolytic solution before shipment.
〔銀薄膜〕
本発明の銀薄膜はスパッタ法、蒸着法、印刷法、インクジェット法などにより形成することができる。但し、本発明の銀薄膜は電解液を用いた析出銀を除く。本発明において、好ましい形成方法はスパッタ法である。本発明の銀薄膜は観察側の電極上に設けても非観察側の電極上に設けてもよいが、出荷前には銀薄膜を実質的に完全に溶解し非観察側電極上に析出銀を形成させておくことを特徴とする。出荷時の表示素子の状態は、観察側の電極上には銀薄膜若しくは析出銀がなく、非観察側の電極上には析出銀が形成されていることを特徴とする。
[Silver thin film]
The silver thin film of the present invention can be formed by sputtering, vapor deposition, printing, ink jet, or the like. However, the silver thin film of the present invention excludes precipitated silver using an electrolytic solution. In the present invention, a preferred forming method is a sputtering method. The silver thin film of the present invention may be provided on the observation side electrode or on the non-observation side electrode. However, before shipping, the silver thin film is substantially completely dissolved and deposited on the non-observation side electrode. It is characterized by forming. The state of the display element at the time of shipment is characterized in that there is no silver thin film or precipitated silver on the observation side electrode, and precipitated silver is formed on the non-observation side electrode.
銀薄膜中の銀の純度は99%以上100%以下であることが好ましい。これは、銀薄膜中の不純物が電極上に残ったり、電解液中に溶出したりすることによる性能変動を避けるためである。 The purity of silver in the silver thin film is preferably 99% or more and 100% or less. This is to avoid performance fluctuations due to impurities in the silver thin film remaining on the electrode or eluting into the electrolyte.
非観察側の電極上の析出銀の量は銀薄膜の膜厚に依存するため、銀薄膜の膜厚は5nm以上50nm以下であることが好ましい。対向電極間に電圧を印加して銀薄膜を溶解するときの印加電圧は、0.6V以上1.2V以下であることが好ましい。これは、印加電圧が低過ぎると銀薄膜を溶解するのに要する時間が長くなり、印加電圧が高過ぎると電解液の成分の望ましくない分解反応が起こることがあるためである。 Since the amount of precipitated silver on the non-observation side electrode depends on the film thickness of the silver thin film, the film thickness of the silver thin film is preferably 5 nm or more and 50 nm or less. The applied voltage when the silver thin film is melted by applying a voltage between the counter electrodes is preferably 0.6 V or more and 1.2 V or less. This is because if the applied voltage is too low, the time required to dissolve the silver thin film becomes long, and if the applied voltage is too high, an undesirable decomposition reaction of the components of the electrolytic solution may occur.
本発明の電気化学的表示素子の製造方法を、図を用いて説明する。 The manufacturing method of the electrochemical display element of this invention is demonstrated using figures.
図1は、観察側電極上に銀薄膜を形成して電気化学的表示素子を形成する方法を示す。 FIG. 1 shows a method of forming an electrochemical display element by forming a silver thin film on an observation side electrode.
図1(a)で、観察側電極2上にスパッタ法により銀薄膜5を形成し、図1(b)で、銀薄膜5を形成した観察側電極2と非観察側電極4を対向させ、図1(c)で、対向する電極間に銀塩化合物を含有する電解液6を充填し、図1(d)で、観察側電極2が+1.2Vとなるように電圧を印加し、観察側に形成されていた銀薄膜5が完全に溶解され、非観察側電極4上に析出銀7が形成され、図1(e)で、最終製品として出荷される。
In FIG. 1A, a silver
一方、図2は、非観察側電極上に銀薄膜を形成して電気化学的表示素子を形成する方法を示す。 On the other hand, FIG. 2 shows a method of forming an electrochemical display element by forming a silver thin film on the non-observation side electrode.
図2(a)は、非観察側電極4上にスパッタ法により銀薄膜5を形成し、図2(b)で、銀薄膜5を形成した非観察側電極4と観察側電極2を対向させ、図2(c)で、対向する電極間に銀塩化合物を含有する電解液6を充填し、図2(d)で、観察側電極2が−1.2Vとなるように電圧を印加し、非観察側に形成されていた銀薄膜5が完全に溶解され、観察側電極2上に析出銀7が形成され、更に、図2(e)で、観察側電極2が+1.2Vとなるように電圧を印加し、観察側に形成されていた析出銀7が完全に溶解され、非観察側電極4上に析出銀8が形成され、図2(f)で、最終製品として出荷される。
2A, a silver
以下、本発明の電気化学的表示素子に用いることができるその他の構成について説明する。 Hereinafter, other configurations that can be used in the electrochemical display element of the present invention will be described.
〔銀塩化合物〕
本発明に係る銀塩化合物とは、銀または、銀を化学構造中に含む化合物、例えば、酸化銀、硫化銀、金属銀、銀コロイド粒子、ハロゲン化銀、銀錯体化合物、銀イオン等の化合物の総称であり、固体状態や液体への可溶化状態や気体状態等の相の状態種、中性、アニオン性、カチオン性等の荷電状態種は、特に問わない。
[Silver salt compound]
The silver salt compound according to the present invention is silver or a compound containing silver in the chemical structure, such as silver oxide, silver sulfide, metallic silver, silver colloidal particles, silver halide, silver complex compound, silver ion and the like. There are no particular restrictions on the phase state species such as the solid state, the solubilized state in liquid, and the gas state, and the charged state species such as neutral, anionic, and cationic.
本発明の表示素子においては、ヨウ化銀、塩化銀、臭化銀、酸化銀、硫化銀、クエン酸銀、酢酸銀、ベヘン酸銀、p−トルエンスルホン酸銀、トリフルオロメタンスルホン酸銀、メルカプト類との銀塩、イミノジ酢酸類との銀錯体、等の公知の銀塩化合物を用いることができる。これらの中でハロゲンやカルボン酸や銀との配位性を有する窒素原子を有しない化合物を銀塩として用いるのが好ましく、例えば、p−トルエンスルホン酸銀が好ましい。 In the display element of the present invention, silver iodide, silver chloride, silver bromide, silver oxide, silver sulfide, silver citrate, silver acetate, silver behenate, silver p-toluenesulfonate, silver trifluoromethanesulfonate, mercapto A known silver salt compound such as a silver salt with an acid or a silver complex with iminodiacetic acid can be used. Among these, it is preferable to use, as a silver salt, a compound that does not have a nitrogen atom having coordination properties with halogen, carboxylic acid, or silver, and for example, silver p-toluenesulfonate is preferable.
本発明に係る電解質に含まれる金属イオン濃度は、0.2モル/kg≦[Metal]≦2.0モル/kgが好ましい。金属イオン濃度が0.2モル/kg以上であれば、十分な濃度の銀溶液となり所望の駆動速度を得ることができ、2モル/kg以下であれば析出を防止し、低温保存時での電解質液の安定性が向上する。 The metal ion concentration contained in the electrolyte according to the present invention is preferably 0.2 mol / kg ≦ [Metal] ≦ 2.0 mol / kg. If the metal ion concentration is 0.2 mol / kg or more, a silver solution with a sufficient concentration can be obtained, and a desired driving speed can be obtained. If the metal ion concentration is 2 mol / kg or less, precipitation is prevented, The stability of the electrolyte solution is improved.
〔ハロゲンイオン、金属イオン濃度比〕
本発明の表示素子においては、電解質に含まれるハロゲンイオンまたはハロゲン原子のモル濃度を[X](モル/kg)とし、前記電解質に含まれる銀または銀を化学構造中に含む化合物の銀の総モル濃度を[Metal](モル/kg)としたとき、下式(1)で規定する条件を満たすことが好ましい。
[Halogen ion, metal ion concentration ratio]
In the display element of the present invention, the molar concentration of halogen ions or halogen atoms contained in the electrolyte is [X] (mol / kg), and silver contained in the electrolyte or the total silver of the compound containing silver in the chemical structure. When the molar concentration is [Metal] (mol / kg), it is preferable to satisfy the condition defined by the following formula (1).
式(1):0≦[X]/[Metal]≦0.1
本発明でいうハロゲン原子とは、ヨウ素原子、塩素原子、臭素原子、フッ素原子のことをいう。[X]/[Metal]が0.1よりも大きい場合は、金属の酸化還元反応時に、X−→X2が生じ、X2は析出した金属と容易にクロス酸化して析出した金属を溶解させ、メモリー性を低下させる要因の1つになるので、ハロゲン原子のモル濃度は金属銀のモル濃度に対してできるだけ低い方が好ましい。本発明においては、0≦[X]/[Metal]≦0.001がより好ましい。ハロゲンイオンを添加する場合、ハロゲン種については、メモリー性向上の観点から、各ハロゲン種モル濃度総和が[I]<[Br]<[Cl]<[F]であることが好ましい。
Formula (1): 0 ≦ [X] / [Metal] ≦ 0.1
The halogen atom as used in the field of this invention means an iodine atom, a chlorine atom, a bromine atom, and a fluorine atom. When [X] / [Metal] is greater than 0.1, X − → X 2 is generated during the oxidation-reduction reaction of the metal, and X 2 easily cross-oxidizes with the deposited metal to dissolve the deposited metal. Therefore, the molar concentration of halogen atoms is preferably as low as possible relative to the molar concentration of metallic silver. In the present invention, 0 ≦ [X] / [Metal] ≦ 0.001 is more preferable. In the case of adding halogen ions, the halogen species preferably have a total molar concentration of [I] <[Br] <[Cl] <[F] from the viewpoint of improving memory properties.
〔一般式(G1)または(G2)で表される化合物〕
本発明に於いては金属塩(特に銀塩)の溶解析出を促進するために、銀塩溶剤を用いることができる。銀塩溶剤とは、電解質中で銀を可溶化できる化合物であればいかなる化合物であってもよい。例えば、銀と配位結合を生じさせたり、銀と弱い供給結合を生じさせるような、銀と相互作用を示す化学構造種を含む化合物等と共存させて、銀または銀を含む化合物を可溶化物に変換する手段を用いるのが一般的である。前記化学種として、ハロゲン原子、メルカプト基、カルボキシル基、イミノ基等が知られているが、本発明においては、チオエーテル基を含有する化合物及びメルカプトアゾール類は、銀溶剤として有用に作用しかつ、共存化合物への影響が少なく溶媒への溶解度が高い特徴がある。
[Compound represented by General Formula (G1) or (G2)]
In the present invention, a silver salt solvent can be used to promote dissolution and precipitation of metal salts (particularly silver salts). The silver salt solvent may be any compound that can solubilize silver in the electrolyte. For example, solubilize silver or a compound containing silver by coexisting with a compound containing a chemical structural species that interacts with silver, such as a coordinate bond with silver or a weak supply bond with silver. It is common to use a means for converting to an object. As the chemical species, halogen atoms, mercapto groups, carboxyl groups, imino groups and the like are known, but in the present invention, compounds containing thioether groups and mercaptoazoles are useful as silver solvents, and It is characterized by low influence on coexisting compounds and high solubility in solvents.
特に下記一般式(G1)または一般式(G2)で表される化合物の少なくとも1種を含有する事が好ましい。 In particular, it is preferable to contain at least one compound represented by the following general formula (G1) or general formula (G2).
〔一般式(G1)または一般式(G2)で表される化合物〕
一般式(G1) Rg11−S−Rg12
〔式中、Rg11、Rg12は各々置換または無置換の炭化水素基を表す。また、これらの炭化水素基では、1個以上の窒素原子、酸素原子、リン原子、硫黄原子、ハロゲン原子を含んでも良く、Rg11とRg12が互いに連結し、環状構造を取っても良い。〕
[Compound represented by General Formula (G1) or General Formula (G2)]
General Formula (G1) Rg 11 -S-Rg 12
[Wherein, Rg 11 and Rg 12 each represent a substituted or unsubstituted hydrocarbon group. These hydrocarbon groups may contain one or more nitrogen atoms, oxygen atoms, phosphorus atoms, sulfur atoms, and halogen atoms, and Rg 11 and Rg 12 may be linked to each other to form a cyclic structure. ]
〔式中、Mは水素原子、金属原子または4級アンモニウムを表す。Zは含窒素複素環を構成するのに必要な原子群表す。nは0〜5の整数を表し、Rg21は置換基を表し、nが2以上の場合、それぞれのRg21は同じであってもよく、異なってもよく、お互いに連結して縮合環を形成してもよい。〕
前記一般式(G1)において、Rg11、Rg12は各々置換または無置換の炭化水素基を表し、これらには芳香族の直鎖基または分岐基が含まれる。また、これらの炭化水素基では、1個以上の窒素原子、酸素原子、リン原子、硫黄原子を含んでも良く、Rg11とRg12が互いに連結し、環状構造を取っても良い。ただし、S原子を含む環を形成する場合には、芳香族基をとることはない。
[Wherein, M represents a hydrogen atom, a metal atom or quaternary ammonium. Z represents an atomic group necessary for constituting a nitrogen-containing heterocyclic ring. n represents an integer of 0 to 5, Rg 21 represents a substituent, and when n is 2 or more, each Rg 21 may be the same or different, and may be connected to each other to form a condensed ring. It may be formed. ]
In the general formula (G1), Rg 11 and Rg 12 each represent a substituted or unsubstituted hydrocarbon group, which includes an aromatic straight chain group or a branched group. Further, these hydrocarbon groups may contain one or more nitrogen atoms, oxygen atoms, phosphorus atoms, and sulfur atoms, and Rg 11 and Rg 12 may be connected to each other to take a cyclic structure. However, when a ring containing an S atom is formed, an aromatic group is not taken.
炭化水素基に置換可能な基としては、例えば、アミノ基、グアニジノ基、4級アンモニウム基、ヒドロキシル基、ハロゲン化合物、カルボン酸基、カルボキシレート基、アミド基、スルフィン酸基、スルホン酸基、スルフェート基、ホスホン酸基、ホスフェート基、ニトロ基、シアノ基等を挙げることができる。 Examples of groups that can be substituted for the hydrocarbon group include amino groups, guanidino groups, quaternary ammonium groups, hydroxyl groups, halogen compounds, carboxylic acid groups, carboxylate groups, amide groups, sulfinic acid groups, sulfonic acid groups, and sulfates. Groups, phosphonic acid groups, phosphate groups, nitro groups, cyano groups and the like.
以下、本発明に係る一般式(G1)で表される化合物の具体例を示すが、本発明ではこれら例示する化合物にのみ限定されるものではない。 Hereinafter, specific examples of the compound represented by the general formula (G1) according to the present invention will be shown, but the present invention is not limited only to these exemplified compounds.
G1−1:CH3SCH2CH2OH
G1−2:HOCH2CH2SCH2CH2OH
G1−3:HOCH2CH2SCH2CH2SCH2CH2OH
G1−4:HOCH2CH2SCH2CH2SCH2CH2SCH2CH2OH
G1−5:HOCH2CH2SCH2CH2OCH2CH2OCH2CH2SCH2CH2OH
G1−6:HOCH2CH2OCH2CH2SCH2CH2SCH2CH2OCH2CH2OH
G1−7:H3CSCH2CH2COOH
G1−8:HOOCCH2SCH2COOH
G1−9:HOOCCH2CH2SCH2CH2COOH
G1−10:HOOCCH2SCH2CH2SCH2COOH
G1−11:HOOCCH2SCH2CH2SCH2CH2SCH2CH2SCH2COOH
G1−12:HOOCCH2CH2SCH2CH2SCH2CH(OH)CH2SCH2CH2SCH2CH2COOH
G1−13:HOOCCH2CH2SCH2CH2SCH2CH(OH)CH(OH)CH2SCH2CH2SCH2CH2COOH
G1−14:H3CSCH2CH2CH2NH2
G1−15:H2NCH2CH2SCH2CH2NH2
G1−16:H2NCH2CH2SCH2CH2SCH2CH2NH2
G1−17:H3CSCH2CH2CH(NH2)COOH
G1−18:H2NCH2CH2OCH2CH2SCH2CH2SCH2CH2OCH2CH2NH2
G1−19:H2NCH2CH2SCH2CH2OCH2CH2OCH2CH2SCH2CH2NH2
G1−20:H2NCH2CH2SCH2CH2SCH2CH2SCH2CH2SCH2CH2NH2
G1−21:HOOC(NH2)CHCH2CH2SCH2CH2SCH2CH2CH(NH2)COOH
G1−22:HOOC(NH2)CHCH2SCH2CH2OCH2CH2OCH2CH2SCH2CH(NH2)COOH
G1−23:HOOC(NH2)CHCH2OCH2CH2SCH2CH2SCH2CH2OCH2CH(NH2)COOH
G1−24:H2N(O=)CCH2SCH2CH2OCH2CH2OCH2CH2SCH2C(=O)NH2
G1−25:H2N(O=)CCH2SCH2CH2SCH2C(=O)NH2
G1−26:H2NHN(O=)CCH2SCH2CH2SCH2C(=O)NHNH2
G1−27:H3C(O=)CNHCH2CH2SCH2CH2SCH2CH2NHC(=O)CH3
G1−28:H2NO2SCH2CH2SCH2CH2SCH2CH2SO2NH2
G1−29:NaO3SCH2CH2CH2SCH2CH2SCH2CH2CH2SO3Na
G1−30:H3CSO2NHCH2CH2SCH2CH2SCH2CH2NHO2SCH3
G1−31:H2N(NH)CSCH2CH2SC(NH)NH2・2HBr
G1−32:H2N(NH)CSCH2CH2OCH2CH2OCH2CH2SC(NH)NH2・2HCl
G1−33:H2N(NH)CNHCH2CH2SCH2CH2SCH2CH2NHC(NH)NH2・2HBr
G1−34:〔(CH3)3NCH2CH2SCH2CH2SCH2CH2N(CH3)3〕2+・2Cl−
G1-1: CH 3 SCH 2 CH 2 OH
G1-2: HOCH 2 CH 2 SCH 2 CH 2 OH
G1-3: HOCH 2 CH 2 SCH 2 CH 2 SCH 2 CH 2 OH
G1-4: HOCH 2 CH 2 SCH 2 CH 2 SCH 2 CH 2 SCH 2 CH 2 OH
G1-5: HOCH 2 CH 2 SCH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 SCH 2 CH 2 OH
G1-6: HOCH 2 CH 2 OCH 2 CH 2 SCH 2 CH 2S CH 2 CH 2 OCH 2 CH 2 OH
G1-7: H 3 CSCH 2 CH 2 COOH
G1-8: HOOCCH 2 SCH 2 COOH
G1-9: HOOCCH 2 CH 2 SCH 2 CH 2 COOH
G1-10: HOOCCH 2 SCH 2 CH 2 SCH 2 COOH
G1-11: HOOCCH 2 SCH 2 CH 2 SCH 2 CH 2 SCH 2 CH 2 SCH 2 COOH
G1-12: HOOCCH 2 CH 2 SCH 2 CH 2 SCH 2 CH (OH) CH 2 SCH 2 CH 2 SCH 2 CH 2 COOH
G1-13: HOOCCH 2 CH 2 SCH 2 CH 2 SCH 2 CH (OH) CH (OH) CH 2 SCH 2 CH 2 SCH 2 CH 2 COOH
G1-14: H 3 CSCH 2 CH 2 CH 2 NH 2
G1-15: H 2 NCH 2 CH 2 SCH 2 CH 2 NH 2
G1-16: H 2 NCH 2 CH 2 SCH 2 CH 2 SCH 2 CH 2 NH 2
G1-17: H 3 CSCH 2 CH 2 CH (NH 2 ) COOH
G1-18: H 2 NCH 2 CH 2 OCH 2 CH 2 SCH 2 CH 2 SCH 2 CH 2 OCH 2 CH 2 NH 2
G1-19: H 2 NCH 2 CH 2 SCH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 SCH 2 CH 2 NH 2
G1-20: H 2 NCH 2 CH 2 SCH 2 CH 2 SCH 2 CH 2 SCH 2 CH 2 SCH 2 CH 2 NH 2
G1-21: HOOC (NH 2 ) CHCH 2 CH 2 SCH 2 CH 2 SCH 2 CH 2 CH (NH 2 ) COOH
G1-22: HOOC (NH 2 ) CHCH 2 SCH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 SCH 2 CH (NH 2 ) COOH
G1-23: HOOC (NH 2 ) CHCH 2 OCH 2 CH 2 SCH 2 CH 2 SCH 2 CH 2 OCH 2 CH (NH 2 ) COOH
G1-24: H 2 N (O = ) CCH 2 SCH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 SCH 2 C (= O) NH 2
G1-25: H 2 N (O = ) CCH 2 SCH 2 CH 2 SCH 2 C (= O) NH 2
G1-26: H 2 NHN (O = ) CCH 2 SCH 2 CH 2 SCH 2 C (= O) NHNH 2
G1-27: H 3 C (O = ) CNHCH 2 CH 2 SCH 2 CH 2 SCH 2 CH 2 NHC (= O) CH 3
G1-28: H 2 NO 2 SCH 2 CH 2 SCH 2 CH 2 SCH 2 CH 2 SO 2 NH 2
G1-29: NaO 3 SCH 2 CH 2 CH 2 SCH 2 CH 2 SCH 2 CH 2 CH 2 SO 3 Na
G1-30: H 3 CSO 2 NHCH 2 CH 2 SCH 2 CH 2 SCH 2 CH 2 NHO 2 SCH 3
G1-31: H 2 N (NH) CSCH 2 CH 2 SC (NH) NH 2 .2HBr
G1-32: H 2 N (NH) CSCH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 SC (NH) NH 2 · 2HCl
G1-33: H 2 N (NH) CNHCH 2 CH 2 SCH 2 CH 2 SCH 2 CH 2 NHC (NH) NH 2 .2HBr
G1-34: [(CH 3 ) 3 NCH 2 CH 2 SCH 2 CH 2 SCH 2 CH 2 N (CH 3 ) 3 ] 2 + · 2Cl −
上記例示した各化合物の中でも、本発明の目的効果をいかんなく発揮できる観点から、特に例示化合物G1−2が好ましい。 Among the above-exemplified compounds, Exemplified Compound G1-2 is particularly preferable from the viewpoint that the object and effects of the present invention can be exhibited.
次いで、本発明に係る一般式(G2)で表される化合物について説明する。 Next, the compound represented by formula (G2) according to the present invention will be described.
前記一般式(G2)において、Mは水素原子、金属原子または4級アンモニウムを表す。Zはイミダゾール環類を除く含窒素複素環を表す。nは0〜5の整数を表し、Rg21は置換基を表し、nが2以上の場合、それぞれのRg21は同じであってもよく、異なってもよく、お互いに連結して縮合環を形成してもよい。 In the general formula (G2), M represents a hydrogen atom, a metal atom, or quaternary ammonium. Z represents a nitrogen-containing heterocyclic ring excluding imidazole rings. n represents an integer of 0 to 5, Rg 21 represents a substituent, and when n is 2 or more, each Rg 21 may be the same or different, and may be connected to each other to form a condensed ring. It may be formed.
一般式(G2)のMで表される金属原子としては、例えば、Li、Na、K、Mg、Ca、Zn、Ag等が挙げられ、4級アンモニウムとしては、例えば、NH4、N(CH3)4、N(C4H9)4、N(CH3)3C12H25、N(CH3)3C16H33、N(CH3)3CH2C6H5等が挙げられる。 Examples of the metal atom represented by M in the general formula (G2) include Li, Na, K, Mg, Ca, Zn, and Ag. Examples of the quaternary ammonium include NH 4 , N (CH 3 ) 4 , N (C 4 H 9 ) 4 , N (CH 3 ) 3 C 12 H 25 , N (CH 3 ) 3 C 16 H 33 , N (CH 3 ) 3 CH 2 C 6 H 5 and the like It is done.
一般式(G2)のZを構成成分とする含窒素複素環としては、例えば、テトラゾール環、トリアゾール環、イミダゾール環、オキサジアゾール環、チアジアゾール環、インドール環、オキサゾール環、ベンゾオキサゾール環、ベンズイミダゾール環、ベンゾチアゾール環、ベンゾセレナゾール環、ナフトオキサゾール環等が挙げられる。 Examples of the nitrogen-containing heterocycle having Z as a constituent in the general formula (G2) include, for example, a tetrazole ring, a triazole ring, an imidazole ring, an oxadiazole ring, a thiadiazole ring, an indole ring, an oxazole ring, a benzoxazole ring, and a benzimidazole. Ring, benzothiazole ring, benzoselenazole ring, naphthoxazole ring and the like.
一般式(G2)のRg21で表される置換基としては、特に制限は無いが、例えば下記の様な置換基が挙げられる。 The substituents represented by Rg 21 of the general formula (G2), not particularly limited, but include for example substituents such as the following.
水素原子、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子等)、アルキル基(例えば、メチル、エチル、プロピル、i−プロピル、ブチル、t−ブチル、ペンチル、シクロペンチル、ヘキシル、シクロヘキシル、オクチル、ドデシル、ヒドロキシエチル、メトキシエチル、トリフルオロメチル、ベンジル等)、アリール基(例えば、フェニル、ナフチル等)、アルキルカルボンアミド基(例えば、アセチルアミノ、プロピオニルアミノ、ブチロイルアミノ等)、アリールカルボンアミド基(例えば、ベンゾイルアミノ等)、アルキルスルホンアミド基(例えば、メタンスルホニルアミノ基、エタンスルホニルアミノ基等)、アリールスルホンアミド基(例えば、ベンゼンスルホニルアミノ基、トルエンスルホニルアミノ基等)、アルコキシ基、アリールオキシ基(例えば、フェノキシ等)、アルキルチオ基(例えば、メチルチオ、エチルチオ、ブチルチオ等)、アリールチオ基(例えば、フェニルチオ基、トリルチオ基等)、アルキルカルバモイル基(例えばメチルカルバモイル、ジメチルカルバモイル、エチルカルバモイル、ジエチルカルバモイル、ジブチルカルバモイル、ピペリジルカルバモイル、モルホリルカルバモイル等)、アリールカルバモイル基(例えば、フェニルカルバモイル、メチルフェニルカルバモイル、エチルフェニルカルバモイル、ベンジルフェニルカルバモイル等)、カルバモイル基、アルキルスルファモイル基(例えば、メチルスルファモイル、ジメチルスルファモイル、エチルスルファモイル、ジエチルスルファモイル、ジブチルスルファモイル、ピペリジルスルファモイル、モルホリルスルファモイル等)、アリールスルファモイル基(例えば、フェニルスルファモイル、メチルフェニルスルファモイル、エチルフェニルスルファモイル、ベンジルフェニルスルファモイル等)、スルファモイル基、シアノ基、アルキルスルホニル基(例えば、メタンスルホニル基、エタンスルホニル基等)、アリールスルホニル基(例えば、フェニルスルホニル、4−クロロフェニルスルホニル、p−トルエンスルホニル等)、アルコキシカルボニル基(例えば、メトキシカルボニル、エトキシカルボニル、ブトキシカルボニル等)、アリールオキシカルボニル基(例えばフェノキシカルボニル等)、アルキルカルボニル基(例えば、アセチル、プロピオニル、ブチロイル等)、アリールカルボニル基(例えば、ベンゾイル基、アルキルベンゾイル基等)、アシルオキシ基(例えば、アセチルオキシ、プロピオニルオキシ、ブチロイルオキシ等)、カルボキシル基、カルボニル基、スルホニル基、アミノ基、ヒドロキシ基または複素環基(例えば、オキサゾール環、チアゾール環、トリアゾール環、セレナゾール環、テトラゾール環、オキサジアゾール環、チアジアゾール環、チアジン環、トリアジン環、ベンズオキサゾール環、ベンズチアゾール環、インドレニン環、ベンズセレナゾール環、ナフトチアゾール環、トリアザインドリジン環、ジアザインドリジン環、テトラアザインドリジン環基等)を挙げられる。これらの置換基はさらに置換基を有するものを含む。 Hydrogen atom, halogen atom (eg, fluorine atom, chlorine atom, bromine atom, iodine atom), alkyl group (eg, methyl, ethyl, propyl, i-propyl, butyl, t-butyl, pentyl, cyclopentyl, hexyl, cyclohexyl) Octyl, dodecyl, hydroxyethyl, methoxyethyl, trifluoromethyl, benzyl, etc.), aryl groups (eg, phenyl, naphthyl, etc.), alkylcarbonamide groups (eg, acetylamino, propionylamino, butyroylamino, etc.), aryl Carboxamide groups (eg, benzoylamino), alkylsulfonamide groups (eg, methanesulfonylamino group, ethanesulfonylamino group, etc.), arylsulfonamide groups (eg, benzenesulfonylamino group, toluenesulfonylamino) Group), alkoxy group, aryloxy group (for example, phenoxy), alkylthio group (for example, methylthio, ethylthio, butylthio, etc.), arylthio group (for example, phenylthio group, tolylthio group, etc.), alkylcarbamoyl group (for example, methylcarbamoyl group) Dimethylcarbamoyl, ethylcarbamoyl, diethylcarbamoyl, dibutylcarbamoyl, piperidylcarbamoyl, morpholylcarbamoyl, etc.), arylcarbamoyl groups (eg, phenylcarbamoyl, methylphenylcarbamoyl, ethylphenylcarbamoyl, benzylphenylcarbamoyl, etc.), carbamoyl groups, alkylsulfurates Famoyl groups (eg methylsulfamoyl, dimethylsulfamoyl, ethylsulfamoyl, diethylsulfamoyl, dibu Sulfamoyl, piperidylsulfamoyl, morpholylsulfamoyl, etc.), arylsulfamoyl groups (eg, phenylsulfamoyl, methylphenylsulfamoyl, ethylphenylsulfamoyl, benzylphenylsulfamoyl, etc.), sulfamoyl groups , Cyano group, alkylsulfonyl group (for example, methanesulfonyl group, ethanesulfonyl group, etc.), arylsulfonyl group (for example, phenylsulfonyl, 4-chlorophenylsulfonyl, p-toluenesulfonyl, etc.), alkoxycarbonyl group (for example, methoxycarbonyl, Ethoxycarbonyl, butoxycarbonyl etc.), aryloxycarbonyl group (eg phenoxycarbonyl etc.), alkylcarbonyl group (eg acetyl, propionyl, butyroyl etc.), a A reelcarbonyl group (for example, benzoyl group, alkylbenzoyl group, etc.), an acyloxy group (for example, acetyloxy, propionyloxy, butyroyloxy, etc.), a carboxyl group, a carbonyl group, a sulfonyl group, an amino group, a hydroxy group, or a heterocyclic group (for example, , Oxazole ring, thiazole ring, triazole ring, selenazole ring, tetrazole ring, oxadiazole ring, thiadiazole ring, thiazine ring, triazine ring, benzoxazole ring, benzthiazole ring, indolenine ring, benzselenazole ring, naphthothiazole ring , Triazaindolizine ring, diazaindolizine ring, tetraazaindolizine ring group, etc.). These substituents further include those having a substituent.
次に、一般式(G2)で表される化合物の好ましい具体例を示すが、本発明はこれらの化合物に限定されるものではない。 Next, although the preferable specific example of a compound represented by general formula (G2) is shown, this invention is not limited to these compounds.
上記例示した各化合物の中でも、本発明の目的効果をいかんなく発揮できる観点から、特に例示化合物G2−12、G2−18が好ましい。 Among the above-exemplified compounds, Exemplified Compounds G2-12 and G2-18 are particularly preferable from the viewpoint that the object and effects of the present invention can be exhibited.
〔溶媒〕
溶媒としては、一般に電気化学セルや電池に用いられ、本発明で用いられるエレクトロクロミック化合物を初め、電気化学的な酸化還元反応により可逆的に溶解析出する金属塩化合物、プロモーター等各種添加剤を溶解できる溶媒であればいずれも使用することができる。
〔solvent〕
Solvents are generally used in electrochemical cells and batteries, and dissolve various additives such as electrochromic compounds used in the present invention, metal salt compounds that are reversibly dissolved and precipitated by electrochemical redox reactions, and promoters. Any solvent can be used.
具体的には、無水酢酸、メタノール、エタノール、テトラヒドロフラン、エチレンカーボネート、エチルメチルカーボネート、ジエチルカーボネート、ジメチルカーボネート、ブチレンカーボネート、プロピレンカーボネート、ニトロメタン、アセトニトリル、アセチルアセトン、N−メチルホルムアミド、N,N−ジメチルホルムアミド、ジメチルスルホキシド、ヘキサメチルホスホアミド、ジメトキシエタン、ジエトキシフラン、γ−ブチロラクトン、γ−バレロラクトン、スルホラン、プロピオニトリル、ブチロニトリル、グルタロニトリル、アジポニトリル、メトキシアセトニトリル、N−メチルアセトアミド、N,N−ジメチルアセトアミド、N−メチルプロピオンアミド、メチルピロリジノン、2−(N−メチル)−2−ピロリジノン、ジメチルスルホキシド、ジオキソラン、トリメチルホスフェート、トリエチルホスフェート、トリプロピルホスフェート、エチルジメチルホスフェート、トリブチルホスフェート、トリペンチルホスフェート、トリヘキシルホスフェート、トリヘプチルホスフェート、トリオクチルホスフェート、トリノニルホスフェート、トリデシルホスフェート、トリス(トリフフロロメチル)ホスフェート、トリス(ペンタフロロエチル)ホスフェート、トリフェニルホスフェート、トリクレジルホスフェート、2−エチルヘキシルホスフェート、テトラメチル尿素、1,3−ジメチル−2−イミダゾリジノン、ヘキサメチルホスホルトリアミド、4−メチル−2−ペンタノン、ジオクチルフタレート、ジオクチルセバケート、及びエチレングリコール、ジエチレングリコール、トリエチレングリコールモノブチルエーテル等のポリエチレングリコール類などが使用可能である。 Specifically, acetic anhydride, methanol, ethanol, tetrahydrofuran, ethylene carbonate, ethyl methyl carbonate, diethyl carbonate, dimethyl carbonate, butylene carbonate, propylene carbonate, nitromethane, acetonitrile, acetylacetone, N-methylformamide, N, N-dimethylformamide , Dimethyl sulfoxide, hexamethylphosphoamide, dimethoxyethane, diethoxyfuran, γ-butyrolactone, γ-valerolactone, sulfolane, propionitrile, butyronitrile, glutaronitrile, adiponitrile, methoxyacetonitrile, N-methylacetamide, N, N -Dimethylacetamide, N-methylpropionamide, methylpyrrolidinone, 2- (N-methyl) -2-pyrrolidi Non, dimethyl sulfoxide, dioxolane, trimethyl phosphate, triethyl phosphate, tripropyl phosphate, ethyl dimethyl phosphate, tributyl phosphate, tripentyl phosphate, trihexyl phosphate, triheptyl phosphate, trioctyl phosphate, trinonyl phosphate, tridecyl phosphate, tris ( Trifluoromethyl) phosphate, tris (pentafluoroethyl) phosphate, triphenyl phosphate, tricresyl phosphate, 2-ethylhexyl phosphate, tetramethylurea, 1,3-dimethyl-2-imidazolidinone, hexamethylphosphotriamide, 4-methyl-2-pentanone, dioctyl phthalate, dioctyl sebacate, and ethylene glycol Lumpur, diethylene glycol, polyethylene glycols such as triethylene glycol monobutyl ether and the like can be used.
さらに、常温溶融塩も溶媒として使用可能である。前記常温溶融塩とは、溶媒成分が含まれないイオン対のみからなる常温において溶融している(即ち液状の)イオン対からなる塩であり、通常、融点が20℃以下であり、20℃を越える温度で液状であるイオン対からなる塩を示す。常温溶融塩はその1種を単独で使用することができ、また2種以上を混合しても使用することもできる。 Furthermore, room temperature molten salts can also be used as solvents. The room temperature molten salt is a salt composed of ion pairs that are melted at room temperature (that is, in a liquid state) consisting only of ion pairs that do not contain a solvent component, and usually has a melting point of 20 ° C. or lower, A salt consisting of an ion pair that is liquid at a temperature above. The room temperature molten salt can be used alone or in combination of two or more.
本発明に用いる溶媒としては、非プロトン性極性溶媒が好ましく、特にプロピレンカーボネート、エチレンカーボネート、ジメチルスルホキシド、ジメトキシエタン、アセトニトリル、γ−ブチロラクトン、スルホラン、ジオキソラン、ジメチルホルムアミド、ジメトキシエタン、テトラヒドロフラン、アジポニトリル、メトキシアセトニトリル、ジメチルアセトアミド、メチルピロリジノン、ジメチルスルホキシド、ジオキソラン、スルホラン、トリメチルホスフェート、トリエチルホスフェートが好ましい。溶媒はその1種を単独で使用しても良いし、また2種以上を混合して使用しても良い。 The solvent used in the present invention is preferably an aprotic polar solvent, particularly propylene carbonate, ethylene carbonate, dimethyl sulfoxide, dimethoxyethane, acetonitrile, γ-butyrolactone, sulfolane, dioxolane, dimethylformamide, dimethoxyethane, tetrahydrofuran, adiponitrile, methoxy. Acetonitrile, dimethylacetamide, methyl pyrrolidinone, dimethyl sulfoxide, dioxolane, sulfolane, trimethyl phosphate and triethyl phosphate are preferred. The solvent may be used alone or in combination of two or more.
本発明において、特に好ましく用いられる溶媒は下記一般式(S1),(S2)で表される化合物である。 In the present invention, particularly preferably used solvents are compounds represented by the following general formulas (S1) and (S2).
〔一般式(S1)、(S2)で表される化合物〕
本発明の表示素子においては、電解質が、下記一般式(S1)または(S2)で表される化合物を含有することが好ましい。
[Compounds Represented by General Formulas (S1) and (S2)]
In the display element of the present invention, the electrolyte preferably contains a compound represented by the following general formula (S1) or (S2).
式中、Lは酸素原子またはアルキレン基を表し、Rs11からRs14は各々水素原子、アルキル基、アルケニル基、アリール基、シクロアルキル基、アルコキシアルキル基またはアルコキシ基を表す。 In the formula, L represents an oxygen atom or an alkylene group, and Rs 11 to Rs 14 each represents a hydrogen atom, an alkyl group, an alkenyl group, an aryl group, a cycloalkyl group, an alkoxyalkyl group, or an alkoxy group.
式中、Rs21,Rs22は各々アルキル基、アルケニル基、アリール基、シクロアルキル基、アルコキシアルキル基またはアルコキシ基を表す。 In the formula, Rs 21 and Rs 22 each represents an alkyl group, an alkenyl group, an aryl group, a cycloalkyl group, an alkoxyalkyl group, or an alkoxy group.
はじめに、一般式(S1)で表される化合物の詳細について説明する。 First, the detail of the compound represented by general formula (S1) is demonstrated.
前記一般式(S1)において、Lは酸素原子またはCH2を表し、Rs11からRs14は各々水素原子、アルキル基、アルケニル基、アリール基、シクロアルキル基、アルコキシアルキル基またはアルコキシ基を表し、これらの置換基は更に任意の置換基で置換されていても良い。 In the general formula (S1), L represents an oxygen atom or CH 2 , and Rs 11 to Rs 14 each represents a hydrogen atom, an alkyl group, an alkenyl group, an aryl group, a cycloalkyl group, an alkoxyalkyl group, or an alkoxy group, These substituents may be further substituted with an arbitrary substituent.
アルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、tert−ブチル基、ペンチル基、ヘキシル基、オクチル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基等、アリール基としては、例えば、フェニル基、ナフチル基等、シクロアルキル基としては、例えば、シクロペンチル基、シクロヘキシル基等、アルコキシアルキル基として、例えば、β−メトキシエチル基、γ−メトキシプロピル基等、アルコキシ基としては、例えば、メトキシ基、エトキシ基、プロピルオキシ基、ペンチルオキシ基、ヘキシルオキシ基、オクチルオキシ基、ドデシルオキシ基等を挙げることができる。 Examples of alkyl groups include methyl, ethyl, propyl, isopropyl, tert-butyl, pentyl, hexyl, octyl, dodecyl, tridecyl, tetradecyl, pentadecyl, and the like as aryl groups. Examples of the cycloalkyl group such as phenyl group, naphthyl group and the like include, for example, a cyclopentyl group, cyclohexyl group and the like, an alkoxyalkyl group, for example, a β-methoxyethyl group, a γ-methoxypropyl group and the like, as an alkoxy group, Examples thereof include a methoxy group, an ethoxy group, a propyloxy group, a pentyloxy group, a hexyloxy group, an octyloxy group, and a dodecyloxy group.
以下、一般式(S1)で表される化合物の具体例を示すが、本発明ではこれら例示する化合物にのみ限定されるものではない。 Hereinafter, although the specific example of a compound represented by general formula (S1) is shown, in this invention, it is not limited only to these illustrated compounds.
次いで、本発明に係る一般式(S2)で表される化合物の詳細について説明する。 Next, details of the compound represented by formula (S2) according to the present invention will be described.
前記一般式(S2)において、Rs21,Rs22は各々水素原子、アルキル基、アルケニル基、アリール基、シクロアルキル基、アルコキシアルキル基またはアルコキシ基を表す。 In the general formula (S2), Rs 21 and Rs 22 each represent a hydrogen atom, an alkyl group, an alkenyl group, an aryl group, a cycloalkyl group, an alkoxyalkyl group, or an alkoxy group.
アルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、tert−ブチル基、ペンチル基、ヘキシル基、オクチル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基等、アリール基としては、例えば、フェニル基、ナフチル基等、シクロアルキル基としては、例えば、シクロペンチル基、シクロヘキシル基等、アルコキシアルキル基として、例えば、β−メトキシエチル基、γ−メトキシプロピル基等、アルコキシ基としては、例えば、メトキシ基、エトキシ基、プロピルオキシ基、ペンチルオキシ基、ヘキシルオキシ基、オクチルオキシ基、ドデシルオキシ基等を挙げることができる。 Examples of alkyl groups include methyl, ethyl, propyl, isopropyl, tert-butyl, pentyl, hexyl, octyl, dodecyl, tridecyl, tetradecyl, pentadecyl, and the like as aryl groups. Examples of the cycloalkyl group such as phenyl group, naphthyl group and the like include, for example, a cyclopentyl group, cyclohexyl group and the like, an alkoxyalkyl group, for example, a β-methoxyethyl group, a γ-methoxypropyl group and the like, as an alkoxy group, Examples thereof include a methoxy group, an ethoxy group, a propyloxy group, a pentyloxy group, a hexyloxy group, an octyloxy group, and a dodecyloxy group.
以下、一般式(S2)で表される化合物の具体例を示すが、本発明ではこれら例示する化合物にのみ限定されるものではない。 Hereinafter, although the specific example of a compound represented by general formula (S2) is shown, in this invention, it is not limited only to these illustrated compounds.
上記例示した一般式(S1)及び一般式(S2)で表される化合物の中でも、特に、例示化合物(S1−1)、(S1−2)、(S2−3)が好ましい。 Of the compounds represented by the general formulas (S1) and (S2) exemplified above, the exemplary compounds (S1-1), (S1-2), and (S2-3) are particularly preferable.
本発明に係る一般式(S1)、(S2)で表される化合物は電解質溶媒の1種であるが、本発明の表示素子においては、本発明の目的効果を損なわない範囲でさらに別の溶媒を併せて用いることができる。具体的には、テトラメチル尿素、スルホラン、ジメチルスルホキシド、1,3−ジメチル−2−イミダゾリジノン、2−(N−メチル)−2−ピロリジノン、ヘキサメチルホスホルトリアミド、N−メチルプロピオンアミド、N,N−ジメチルアセトアミド、N−メチルアセトアミド、N,Nジメチルホルムアミド、N−メチルホルムアミド、ブチロニトリル、プロピオニトリル、アセトニトリル、アセチルアセトン、4−メチル−2−ペンタノン、2−ブタノール、1−ブタノール、2−プロパノール、1−プロパノール、エタノール、メタノール、無水酢酸、酢酸エチル、プロピオン酸エチル、ジメトキシエタン、ジエトキシフラン、テトラヒドロフラン、エチレングリコール、ジエチレングリコール、トリエチレングリコールモノブチルエーテル、水等が挙げられる。これらの溶媒の内、凝固点が−20℃以下、かつ沸点が120℃以上の溶媒を少なくとも1種含むことが好ましい。 The compounds represented by the general formulas (S1) and (S2) according to the present invention are one type of electrolyte solvent. However, in the display element of the present invention, another solvent is used as long as the object effects of the present invention are not impaired. Can be used together. Specifically, tetramethylurea, sulfolane, dimethyl sulfoxide, 1,3-dimethyl-2-imidazolidinone, 2- (N-methyl) -2-pyrrolidinone, hexamethylphosphortriamide, N-methylpropionamide, N, N-dimethylacetamide, N-methylacetamide, N, N dimethylformamide, N-methylformamide, butyronitrile, propionitrile, acetonitrile, acetylacetone, 4-methyl-2-pentanone, 2-butanol, 1-butanol, 2 -Propanol, 1-propanol, ethanol, methanol, acetic anhydride, ethyl acetate, ethyl propionate, dimethoxyethane, diethoxyfuran, tetrahydrofuran, ethylene glycol, diethylene glycol, triethylene glycol monobuty Ether, water and the like. Among these solvents, it is preferable to include at least one solvent having a freezing point of −20 ° C. or lower and a boiling point of 120 ° C. or higher.
さらに本発明で用いることのできる溶媒としては、J.A.Riddick,W.B.Bunger,T.K.Sakano,“Organic Solvents”,4th ed.,John Wiley & Sons(1986)、Y.Marcus,“Ion Solvation”,John Wiley & Sons(1985)、C.Reichardt,“Solvents and Solvent Effects in Chemistry”,2nd ed.,VCH(1988)、G.J.Janz,R.P.T.Tomkins,“Nonaqueous Electrolytes Handbook”,Vol.1,Academic Press(1972)に記載の化合物を挙げることができる。 Furthermore, as a solvent which can be used in the present invention, J.P. A. Riddick, W.M. B. Bunger, T.A. K. Sakano, “Organic Solvents”, 4th ed. , John Wiley & Sons (1986). Marcus, “Ion Solvation”, John Wiley & Sons (1985), C.I. Reichardt, “Solvents and Solvent Effects in Chemistry”, 2nd ed. VCH (1988), G .; J. et al. Janz, R.A. P. T.A. Tomkins, “Nonqueous Electronics Handbook”, Vol. 1, Academic Press (1972).
本発明において、電解質溶媒は単一種であっても、溶媒の混合物であってもよいが、エチレンカーボネートを含む混合溶媒が好ましい。エチレンカーボネートの添加量は、全電解質溶媒質量の10質量%以上、90質量%以下が好ましい。特に好ましい電解質溶媒は、プロピレンカーボネート/エチレンカーボネートの質量比が7/3〜3/7の混合溶媒である。プロピレンカーボネート比が7/3より大きいとイオン伝導性が劣り応答速度が低下し、3/7より小さいと低温時に電解質が析出しやすくなる。 In the present invention, the electrolyte solvent may be a single type or a mixture of solvents, but a mixed solvent containing ethylene carbonate is preferred. The addition amount of ethylene carbonate is preferably 10% by mass or more and 90% by mass or less of the total electrolyte solvent mass. A particularly preferable electrolyte solvent is a mixed solvent having a mass ratio of propylene carbonate / ethylene carbonate of 7/3 to 3/7. When the propylene carbonate ratio is larger than 7/3, the ionic conductivity is inferior and the response speed is lowered. When the propylene carbonate ratio is smaller than 3/7, the electrolyte tends to be deposited at a low temperature.
〔多孔質白色散乱層〕
本発明においては、表示コントラスト及び白表示反射率をより高める観点から多孔質白色散乱層を有することができる。
(Porous white scattering layer)
In the present invention, a porous white scattering layer can be provided from the viewpoint of further enhancing display contrast and white display reflectance.
本発明に適用可能な多孔質白色散乱層は、電解質溶媒に実質的に溶解しない水系高分子と白色顔料との水混和物を塗布乾燥して形成することができる。 The porous white scattering layer applicable to the present invention can be formed by applying and drying an aqueous mixture of an aqueous polymer and a white pigment that is substantially insoluble in the electrolyte solvent.
本発明でいう電解質溶媒に実質的に溶解しないとは、−20℃から120℃の温度において、電解質溶媒1kgあたりの溶解量が0g以上、10g以下である状態と定義し、質量測定法、液体クロマトグラムやガスクロマトグラムによる成分定量法等の公知の方法により溶解量を求めることができる。 In the present invention, “substantially insoluble in an electrolyte solvent” is defined as a state in which the dissolved amount per kg of electrolyte solvent is 0 g or more and 10 g or less at a temperature of −20 ° C. to 120 ° C. The amount of dissolution can be determined by a known method such as a component determination method using a chromatogram or a gas chromatogram.
本発明において、電解質溶媒に実質的に溶解しない水系高分子としては、水溶性高分子、水系溶媒に分散した高分子を挙げることができる。 In the present invention, examples of the water-based polymer that does not substantially dissolve in the electrolyte solvent include a water-soluble polymer and a polymer dispersed in the water-based solvent.
水溶性高分子化合物としては、ゼラチン、ゼラチン誘導体等の蛋白質またはセルロース誘導体、澱粉、アラビアゴム、デキストラン、プルラン、カラギーナン等の多糖類のような天然化合物や、ポリビニルアルコール、ポリエチレングリコール、ポリビニルピロリドン、アクリルアミド重合体やそれらの誘導体等の合成高分子化合物が挙げられる。ゼラチン誘導体としては、アセチル化ゼラチン、フタル化ゼラチン、ポリビニルアルコール誘導体としては、末端アルキル基変性ポリビニルアルコール、末端メルカプト基変性ポリビニルアルコール、セルロース誘導体としては、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、カルボキシメチルセルロース等が挙げられる。更に、リサーチ・ディスクロージャー及び特開昭64−13546号の(71)頁〜(75)頁に記載されたもの、また、米国特許第4,960,681号、特開昭62−245260号等に記載の高吸水性ポリマー、すなわち−COOMまたは−SO3M(Mは水素原子またはアルカリ金属)を有するビニルモノマーの単独重合体またはこのビニルモノマー同士もしくは他のビニルモノマー(例えばメタクリル酸ナトリウム、メタクリル酸アンモニウム、アクリル酸カリウム等)との共重合体も使用される。これらのバインダーは2種以上組み合わせて用いることもできる。 Examples of water-soluble polymer compounds include proteins such as gelatin and gelatin derivatives or cellulose derivatives, natural compounds such as starch, gum arabic, dextran, pullulan, and carrageenan polysaccharides, polyvinyl alcohol, polyethylene glycol, polyvinyl pyrrolidone, and acrylamide. Examples thereof include synthetic polymer compounds such as polymers and derivatives thereof. Examples of gelatin derivatives include acetylated gelatin, phthalated gelatin, polyvinyl alcohol derivatives include terminal alkyl group-modified polyvinyl alcohol, terminal mercapto group-modified polyvinyl alcohol, and cellulose derivatives include hydroxyethyl cellulose, hydroxypropyl cellulose, carboxymethyl cellulose, and the like. It is done. Furthermore, Research Disclosure and those described in pages (71) to (75) of JP-A No. 64-13546, US Pat. No. 4,960,681, JP-A No. 62-245260, etc. superabsorbent polymers described, namely -COOM or -SO 3 M (M is a hydrogen atom or an alkali metal) homopolymer or a vinyl monomer together or with other vinyl monomers (e.g., sodium methacrylate in the vinyl monomer having a methacrylic acid Copolymers with ammonium, potassium acrylate, etc.) are also used. Two or more of these binders can be used in combination.
本発明においては、ポリビニルアルコール、ポリエチレングリコール、ポリビニルピロリドン系化合物を好ましく用いることができる。 In the present invention, polyvinyl alcohol, polyethylene glycol, and polyvinylpyrrolidone compounds can be preferably used.
水系溶媒に分散した高分子としては、天然ゴムラテックス、スチレンブタジエンゴム、ブタジエンゴム、ニトリルゴム、クロロプレンゴム、イソプレンゴム等のラテックス類、ポリイソシアネート系、エポキシ系、アクリル系、シリコーン系、ポリウレタン系、尿素系、フェノール系、ホルムアルデヒド系、エポキシ−ポリアミド系、メラミン系、アルキド系樹脂、ビニル系樹脂等を水系溶媒に分散した熱硬化性樹脂を挙げることができる。これらの高分子のうち、特開平10−76621号に記載の水系ポリウレタン樹脂を用いることが好ましい。 Polymers dispersed in an aqueous solvent include natural rubber latex, styrene butadiene rubber, butadiene rubber, nitrile rubber, chloroprene rubber, isoprene rubber and other latexes, polyisocyanate, epoxy, acrylic, silicone, polyurethane, Examples thereof include a thermosetting resin in which urea, phenol, formaldehyde, epoxy-polyamide, melamine, alkyd resin, vinyl resin and the like are dispersed in an aqueous solvent. Of these polymers, it is preferable to use an aqueous polyurethane resin described in JP-A-10-76621.
本発明の水系高分子の平均分子量は、重量平均で10,000〜2,000,000の範囲が好ましく、より好ましくは30,000〜500,000の範囲である。 The average molecular weight of the water-based polymer of the present invention is preferably in the range of 10,000 to 2,000,000, more preferably in the range of 30,000 to 500,000 on a weight average basis.
本発明で適用可能な白色顔料としては、例えば、二酸化チタン(アナターゼ型あるいはルチル型)、硫酸バリウム、炭酸カルシウム、酸化アルミニウム、酸化亜鉛、酸化マグネシウムおよび水酸化亜鉛、水酸化マグネシウム、リン酸マグネシウム、リン酸水素マグネシウム、アルカリ土類金属塩、タルク、カオリン、ゼオライト、酸性白土、ガラス、有機化合物としてポリエチレン、ポリスチレン、アクリル樹脂、アイオノマー、エチレン−酢酸ビニル共重合樹脂、ベンゾグアナミン樹脂、尿素−ホルマリン樹脂、メラミン−ホルマリン樹脂、ポリアミド樹脂などが単体または複合混合で、または粒子中に屈折率を変化させるボイドを有する状態で使用されてもよい。 Examples of the white pigment applicable in the present invention include titanium dioxide (anatase type or rutile type), barium sulfate, calcium carbonate, aluminum oxide, zinc oxide, magnesium oxide and zinc hydroxide, magnesium hydroxide, magnesium phosphate, Magnesium hydrogen phosphate, alkaline earth metal salt, talc, kaolin, zeolite, acidic clay, glass, organic compounds such as polyethylene, polystyrene, acrylic resin, ionomer, ethylene-vinyl acetate copolymer resin, benzoguanamine resin, urea-formalin resin, A melamine-formalin resin, a polyamide resin, or the like may be used alone or in combination, or in a state having voids that change the refractive index in the particles.
本発明では、上記白色粒子の中でも、二酸化チタンが好ましく用いられ、特に無機酸化物(Al2O3、AlO(OH)、SiO2等)で表面処理した二酸化チタン、これらの表面処理に加えてトリメチロールエタン、トリエタノールアミン酢酸塩、トリメチルシクロシラン等の有機物処理を施した二酸化チタンがより好ましく用いられる。 In the present invention, among the white particles, titanium dioxide is preferably used. In particular, titanium dioxide surface-treated with an inorganic oxide (Al 2 O 3 , AlO (OH), SiO 2, etc.), in addition to these surface treatments. Titanium dioxide that has been treated with an organic substance such as trimethylolethane, triethanolamine acetate, or trimethylcyclosilane is more preferably used.
これらの白色粒子のうち、高温時の着色防止、屈折率に起因する素子の反射率の観点から、酸化チタンまたは酸化亜鉛を用いることがより好ましい。 Of these white particles, it is more preferable to use titanium oxide or zinc oxide from the viewpoint of coloring prevention at high temperature and the reflectance of the element due to the refractive index.
本発明において、水系化合物と白色顔料との水混和物は、公知の分散方法に従って白色顔料が水中分散された形態が好ましい。水系化合物/白色顔料の混合比は、容積比で1〜0.01が好ましく、より好ましくは、0.3〜0.05の範囲である。 In the present invention, the water mixture of the water-based compound and the white pigment is preferably in a form in which the white pigment is dispersed in water according to a known dispersion method. The mixing ratio of the aqueous compound / white pigment is preferably 1 to 0.01, more preferably 0.3 to 0.05 in terms of volume ratio.
多孔質白色散乱層の膜厚は、5〜50μmの範囲であることが好ましく、より好ましくは10〜30μmの範囲である。 The thickness of the porous white scattering layer is preferably in the range of 5 to 50 μm, more preferably in the range of 10 to 30 μm.
アルコール系溶剤としては、メタノール、エタノール、イソプロパノール等の水との溶解性が高い化合物が好ましく用いられ、水/アルコール系溶剤との混合比は、質量比で0.5〜20の範囲が好ましく、より好ましくは2〜10の範囲である。 As the alcohol solvent, a compound having high solubility in water such as methanol, ethanol, isopropanol is preferably used, and the mixing ratio with the water / alcohol solvent is preferably in the range of 0.5 to 20 by mass ratio, More preferably, it is the range of 2-10.
本発明において、水系化合物と白色顔料との水混和物を塗布する媒体は、表示素子の対向電極間の構成要素上であればいずれの位置でもよいが、対向電極の少なくとも1方の電極面上に付与することが好ましい。 In the present invention, the medium for applying the water mixture of the water-based compound and the white pigment may be at any position as long as it is on the component between the counter electrodes of the display element, but on the electrode surface of at least one of the counter electrodes. It is preferable to give to.
媒体への付与の方法としては、例えば、塗布方式、液噴霧方式、気相を介する噴霧方式として、圧電素子の振動を利用して液滴を飛翔させる方式、例えば、ピエゾ方式のインクジェットヘッドや、突沸を利用したサーマルヘッドを用いて液滴を飛翔させるバブルジェット(登録商標)方式のインクジェットヘッド、また空気圧や液圧により液を噴霧するスプレー方式等が挙げられる。 As a method for applying to a medium, for example, a coating method, a liquid spraying method, a spraying method via a gas phase, a method of flying droplets using vibration of a piezoelectric element, for example, a piezoelectric inkjet head, Examples thereof include a bubble jet (registered trademark) type ink jet head that causes droplets to fly using a thermal head that uses bumping, and a spray type that sprays liquid by air pressure or liquid pressure.
塗布方式としては、公知の塗布方式より適宜選択することができる。例えば、エアードクターコーター、ブレードコーター、ロッドコーター、ナイフコーター、スクイズコーター、含浸コーター、リバースローラーコーター、トランスファーローラーコーター、カーテンコーター、ダブルローラーコーター、スライドホッパーコーター、グラビアコーター、キスロールコーター、ビードコーター、キャストコーター、スプレイコーター、カレンダーコーター、押し出しコーター等が挙げられる。 As a coating method, it can select suitably from a well-known coating method. For example, air doctor coater, blade coater, rod coater, knife coater, squeeze coater, impregnation coater, reverse roller coater, transfer roller coater, curtain coater, double roller coater, slide hopper coater, gravure coater, kiss roll coater, bead coater, Examples include cast coaters, spray coaters, calendar coaters, and extrusion coaters.
媒体上に付与した水系化合物と白色顔料との水混和物の乾燥は、水を蒸発できる方法であればいかなる方法であってもよい。例えば、熱源からの加熱、赤外光を用いた加熱法、電磁誘導による加熱法等が挙げられる。また、水蒸発は減圧下で行ってもよい。 Drying of the water mixture of the aqueous compound and the white pigment applied on the medium may be performed by any method as long as water can be evaporated. For example, heating from a heat source, a heating method using infrared light, a heating method using electromagnetic induction, and the like can be given. Further, water evaporation may be performed under reduced pressure.
本発明でいう多孔質とは、前記水系化合物と白色顔料との水混和物を電極上に塗布乾燥して多孔質の白色散乱物を形成した後、該散乱物上に、銀または銀を化学構造中に含む化合物を含有する電解質液を与えた後に対向電極で挟み込み、対向電極間に電位差を与え、銀の溶解析出反応を生じさせることが可能で、イオン種が電極間で移動可能な貫通状態のことを言う。 Porous as used in the present invention refers to the formation of a porous white scattering material by applying a water admixture of the water-based compound and the white pigment onto the electrode and drying it, and then the silver or silver is chemically treated on the scattering material. After supplying an electrolyte solution containing the compound contained in the structure, it can be sandwiched between opposing electrodes, giving a potential difference between the opposing electrodes, causing a silver dissolution precipitation reaction, and penetrating ions that can move between the electrodes Tell the state.
本発明の表示素子では、上記説明した水混和物を塗布乾燥中または乾燥後に、硬化剤により水系化合物の硬化反応を行うことが望ましい。 In the display element of the present invention, it is desirable to carry out a curing reaction of the water-based compound with a curing agent during or after applying and drying the water mixture described above.
本発明で用いられる硬膜剤の例としては、例えば、米国特許第4,678,739号の第41欄、同第4,791,042号、特開昭59−116655号、同62−245261号、同61−18942号、同61−249054号、同61−245153号、特開平4−218044号等に記載の硬膜剤が挙げられる。より具体的には、アルデヒド系硬膜剤(ホルムアルデヒド等)、アジリジン系硬膜剤、エポキシ系硬膜剤、ビニルスルホン系硬膜剤(N,N′−エチレン−ビス(ビニルスルホニルアセタミド)エタン等)、N−メチロール系硬膜剤(ジメチロール尿素等)、ほう酸、メタほう酸あるいは高分子硬膜剤(特開昭62−234157号等に記載の化合物)が挙げられる。水系化合物としてゼラチンを用いる場合は、硬膜剤の中で、ビニルスルホン型硬膜剤やクロロトリアジン型硬膜剤を単独または併用して使用することが好ましい。また、ポリビニルアルコールを用いる場合はホウ酸やメタホウ酸等の含ホウ素化合物の使用が好ましい。 Examples of the hardener used in the present invention include, for example, U.S. Pat. No. 4,678,739, column 41, 4,791,042, JP-A-59-116655, and 62-245261. No. 61-18942, 61-249054, 61-245153, JP-A-4-218044, and the like. More specifically, aldehyde hardeners (formaldehyde, etc.), aziridine hardeners, epoxy hardeners, vinyl sulfone hardeners (N, N'-ethylene-bis (vinylsulfonylacetamide) Ethane, etc.), N-methylol hardeners (dimethylolurea, etc.), boric acid, metaboric acid or polymer hardeners (compounds described in JP-A-62-234157). When gelatin is used as the aqueous compound, it is preferable to use a vinyl sulfone type hardener or a chlorotriazine type hardener alone or in combination. Moreover, when using polyvinyl alcohol, it is preferable to use boron-containing compounds such as boric acid and metaboric acid.
これらの硬膜剤は、水系化合物1g当たり0.001〜1g、好ましくは0.005〜0.5gが用いられる。また、膜強度を上げるため熱処理や、硬化反応時の湿度調整を行うことも可能である。 These hardeners are used in an amount of 0.001 to 1 g, preferably 0.005 to 0.5 g, per 1 g of the aqueous compound. In addition, it is possible to perform heat treatment and humidity adjustment during the curing reaction in order to increase the film strength.
〔電解質〕
本発明でいう「電解質」とは、一般に、水などの溶媒に溶けて溶液がイオン伝導性を示す物質(以下、「狭義の電解質」という。)をいうが、本発明の説明においては、狭義の電解質に電解質、非電解質を問わず他の金属、化合物等を含有させた混合物を電解質(「広義の電解質」)という。
〔Electrolytes〕
The “electrolyte” as used in the present invention generally refers to a substance that dissolves in a solvent such as water and exhibits a ionic conductivity in a solution (hereinafter referred to as “narrowly defined electrolyte”). A mixture containing other metals, compounds, or the like, regardless of whether it is an electrolyte or a non-electrolyte, is called an electrolyte (“broadly defined electrolyte”).
本発明において用いられる電解質としては、電気化学の分野又は電池の分野で通常使用される塩類、酸類、アルカリ類が使用できる。 As the electrolyte used in the present invention, salts, acids, and alkalis that are usually used in the field of electrochemistry or the field of batteries can be used.
塩類としては、特に制限はなく、例えば、アルカリ金属塩、アルカリ土類金属塩等の無機イオン塩;4級アンモニウム塩;環状4級アンモニウム塩;4級ホスホニウム塩などが使用できる。 There are no particular limitations on the salts, and for example, inorganic ion salts such as alkali metal salts and alkaline earth metal salts; quaternary ammonium salts; cyclic quaternary ammonium salts; quaternary phosphonium salts and the like can be used.
塩類の具体例としては、ハロゲンイオン、SCN−、ClO4 −、BF4 −、CF3SO3 −、(CF3SO2)2N−、(C2F5SO2)2N−、PF6 −、AsF6 −、CH3COO−、CH3(C6H4)SO3 −、および(C2F5SO2)3C−から選ばれる対アニオンを有するLi塩、Na塩、あるいはK塩が挙げられる。 Specific examples of the salts include halogen ions, SCN − , ClO 4 − , BF 4 − , CF 3 SO 3 − , (CF 3 SO 2 ) 2 N − , (C 2 F 5 SO 2 ) 2 N − , PF 6 -, AsF 6 -, CH 3 COO -, CH 3 (C 6 H 4) SO 3 -, and (C 2 F 5 SO 2) 3 C - Li salt having a counter anion selected from, Na salt or K salt is mentioned.
またハロゲンイオン、SCN−、ClO4 −、BF4 −、CF3SO3 −、(CF3SO2)2N−、(C2F5SO2)2N−、PF6 −、AsF6 −、CH3COO−、CH3(C6H4)SO3 −、および(C2F5SO2)3C−から選ばれる対アニオンを有する4級アンモニウム塩、具体的には、(CH3)4NBF4、(C2H5)4NBF4、(n−C4H9)4NBF4、(C2H5)4NBr、(C2H5)4NClO4、(n−C4H9)4NClO4、CH3(C2H5)3NBF4、(CH3)2(C2H5)2NBF4、(CH3)4NSO3CF3、(C2H5)4NSO3CF3、(n−C4H9)4NSO3CF3、さらには、下記式で表される化合物が挙げられる。 Also, halogen ions, SCN − , ClO 4 − , BF 4 − , CF 3 SO 3 − , (CF 3 SO 2 ) 2 N − , (C 2 F 5 SO 2 ) 2 N − , PF 6 − , AsF 6 − A quaternary ammonium salt having a counter anion selected from CH 3 COO − , CH 3 (C 6 H 4 ) SO 3 − , and (C 2 F 5 SO 2 ) 3 C − , specifically, (CH 3 ) 4 NBF 4 , (C 2 H 5 ) 4 NBF 4 , (n-C 4 H 9 ) 4 NBF 4 , (C 2 H 5 ) 4 NBr, (C 2 H 5 ) 4 NClO 4 , (n-C) 4 H 9 ) 4 NClO 4 , CH 3 (C 2 H 5 ) 3 NBF 4 , (CH 3 ) 2 (C 2 H 5 ) 2 NBF 4 , (CH 3 ) 4 NSO 3 CF 3 , (C 2 H 5 ) 4 NSO 3 CF 3, ( n-C 4 H 9) 4 NSO 3 CF 3 , and a compound represented by the following formula can be given.
〔イオン性液体〕
本発明の表示素子にはイオン性液体を適用することができる。本発明でいうイオン液体とは、常温溶融塩とも言われ、融点が100℃以下の塩である。この塩は同数のカチオンとアニオンから構成されており、分子構造によって融点が室温以下の物質も数多く存在し、これらは溶媒をまったく加えなくても室温で液体状態である。イオン性液体は、強い静電的な相互作用をもっているため蒸気圧がほとんどないことが大きな特徴であり、高温でも蒸発がなく揮発しない。
[Ionic liquid]
An ionic liquid can be applied to the display element of the present invention. The ionic liquid referred to in the present invention is also called a room temperature molten salt, and is a salt having a melting point of 100 ° C. or lower. This salt is composed of the same number of cations and anions, and there are many substances having a melting point below room temperature depending on the molecular structure, and these are in a liquid state at room temperature without adding any solvent. An ionic liquid has a strong characteristic that it has a strong electrostatic interaction and thus has almost no vapor pressure, and does not evaporate even at high temperatures.
本発明に用いるイオン性液体としては、一般的に研究・報告されている物質ならばどのようなものでも構わない。特に有機のイオン性液体は、室温を含む幅広い温度領域で液体を示す分子構造がある。 The ionic liquid used in the present invention may be any substance that is generally studied and reported. In particular, an organic ionic liquid has a molecular structure that exhibits a liquid in a wide temperature range including room temperature.
本発明で好適に用いることができるイオン性液体は、式Q+A−で表され、20〜100℃、好ましくは20〜80℃、より好ましくは20〜60℃、さらに好ましくは20〜40℃、特に20℃で液体として存在する塩のことを指し、粘度(25℃)は、常温で融体である限り特に制限されないが、好ましくは1〜200mPa・sである。さらに、式中Q+で表されるカチオン成分はオニウムカチオンが好ましく、さらに好ましくはアンモニウムカチオン、イミダゾリウムカチオン、ピリジニウムカチオン、スルホニウムカチオン及びホスホニウムカチオンである。 The ionic liquid that can be suitably used in the present invention is represented by the formula Q + A − and is 20 to 100 ° C., preferably 20 to 80 ° C., more preferably 20 to 60 ° C., and still more preferably 20 to 40 ° C. In particular, it refers to a salt that exists as a liquid at 20 ° C., and the viscosity (25 ° C.) is not particularly limited as long as it is a melt at normal temperature, but it is preferably 1 to 200 mPa · s. Further, the cation component represented by Q + in the formula is preferably an onium cation, and more preferably an ammonium cation, an imidazolium cation, a pyridinium cation, a sulfonium cation, and a phosphonium cation.
上述のイオン性液体について具体的に詳述すると、上式中のQ+としては、R1R2R3R4N+、R1R2R3S+、R1R2R3R4P+、R1R2N+=CR3R4、R1R2P+=CR3R4[ここで、R1からR4は、互いに独立して、水素、飽和または不飽和の炭素数1〜12のアルキル基、炭素数3〜8のシクロアルキル基、炭素数6〜10のアリール基または炭素数7〜11のアラルキル基、R5−X−(R6−Y−)n−(式中、R5は炭素数4以下のアルキル基、R6は炭素数4以下のアルキレン基、XおよびYは酸素原子または硫黄原子、nは0〜10の整数を示す)を表し、これらの基は置換基を有していても良い]から成る群から選択されるアンモニウムおよび/またはホスホニウムイオン、R1R2N+=CR3−R7−R3C=N+R1R2、R1R2S+−R7−S+R1R2、R1R2P+=CR3−R7−R3C=P+R1R2(ここで、R1、R2およびR3は、前記で定義したものと同じであり、そしてR7は、炭素数1〜6のアルキレンまたはフェニレン基を表し、これらの基は置換基を有していても良い)から成る群から選択される第四級アンモニウムおよび/またはホスホニウムイオン、さらには下記一般式で表される窒素、硫黄および燐原子から選ばれる原子を1、2または3個含む窒素、硫黄および燐原子含有複素環から誘導されるアンモニウムイオン、スルホニウムイオンまたはホスホニウムイオンなどを挙げることができる。
The above ionic liquid will be specifically described in detail. As Q + in the above formula, R 1 R 2 R 3 R 4 N + , R 1 R 2 R 3 S + , R 1 R 2 R 3 R 4 P + , R 1 R 2 N + = CR 3 R 4 , R 1 R 2 P + = CR 3 R 4 [where R 1 to R 4 are, independently of one another, hydrogen, saturated or unsaturated carbon C 1 -C 12 alkyl group, a cycloalkyl group having 3 to 8 carbon atoms, an aryl group or an aralkyl group having a carbon number of 7-11 having 6 to 10 carbon atoms, R 5 -X- (R 6 -Y- ) n - (Wherein R 5 represents an alkyl group having 4 or less carbon atoms, R 6 represents an alkylene group having 4 or less carbon atoms, X and Y represent an oxygen atom or a sulfur atom, and n represents an integer of 0 to 10). And the group may be substituted] ammonium selected from the group consisting of Phosphonium ion, R 1 R 2 N + = CR 3 -R 7 -R 3 C = N + R 1 R 2, R 1 R 2 S + -R 7 -S + R 1 R 2, R 1 R 2 P + = CR 3 -R 7 -R 3 C = P + R 1 R 2 ( wherein,
式中R1およびR2はこの上で定義した通りであり、Zは、N+、N+=C、S+、P+あるいはP+=Cを含む4〜10員環を構成しうる原子を指し、この構成する原子には置換基を有していても良い。 Wherein R 1 and R 2 are as defined above, and Z is an atom capable of constituting a 4-10 membered ring containing N + , N + = C, S + , P + or P + = C And the constituent atoms may have a substituent.
上述の中でR1からR4の具体的な例はとしては、メチル、エチル、n−プロピル、イソプロピル、n−ブチル、イソブチル、sec−ブチル、tert−ブチル、ペンチル、ヘキシル、ヘプチル、オクチル、ノニル、デシルなどの直鎖又は分枝を有するアルキル基、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、シクロヘプチル、シクロオクチルなどのシクロアルキル基、無置換あるいはハロゲン原子(例えば、F、Cl、Br、I)、水酸基、低級アルコキシ基(例えば、メトキシ、エトキシ、プロポキシ、ブトキシ等の各基)、カルボキシル基、アセチル基、プロパノイル基、チオール基、低級アルキルチオ基(例えば、メチルチオ、エチルチオ、プロピルチオ、ブチルチオ等の各基)、アミノ基、低級アルキルアミノ基、ジ低級アルキルアミノ基などの置換基を1〜3個有するフェニル、ナフチル、トルイル、キシリル等のアリール基、ベンジルなどのアラルキル基などを挙げることができる。また、R5の具体的な例としては、メチル、エチル、n−プロピル、イソプロピル、n−ブチル、イソブチル、sec−ブチル、tert−ブチル基などのアルキル基などが挙げられ、R6としてはメチレン、エチレン、プロピレン、ブチレン基などのアルキレン基などを挙げることができる。さらにR7の具体的な例はとしては、メチレン、エチレン、プロピレン、ブチレンなどのアルキレン基、フェニレンなどのフェニレン基などを挙げることができる。 Specific examples of R 1 to R 4 in the above are methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, pentyl, hexyl, heptyl, octyl, A linear or branched alkyl group such as nonyl and decyl; a cycloalkyl group such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl and cyclooctyl; unsubstituted or halogen atoms (eg, F, Cl, Br, I ), Hydroxyl group, lower alkoxy group (eg, methoxy, ethoxy, propoxy, butoxy, etc.), carboxyl group, acetyl group, propanoyl group, thiol group, lower alkylthio group (eg, methylthio, ethylthio, propylthio, butylthio, etc.) Each group), amino group, lower alkyl Amino group include phenyl having one to three substituents, such as di-lower alkyl amino group, naphthyl, tolyl, aryl group xylyl, and the like aralkyl groups such as benzyl. Further, specific examples of R 5 include methyl, ethyl, n- propyl, isopropyl, n- butyl, isobutyl, sec- butyl, and alkyl group such as tert- butyl group, methylene as R 6 And alkylene groups such as ethylene, propylene and butylene groups. Furthermore, specific examples of R 7 include alkylene groups such as methylene, ethylene, propylene, and butylene, and phenylene groups such as phenylene.
また、式中のA−で表される対アニオンとしては、ヘキサフルオロ燐酸塩、ヘキサフルオロアンチモン酸塩、ヘキサフルオロヒ酸塩、フルオロスルホン酸塩、テトラフルオロホウ酸塩、硝酸塩、アルキルスルホン酸塩、フッ化アルキルスルホン酸塩または水素硫酸塩を表す。 Further, A in the formula - Examples of the counter anion represented by, hexafluorophosphate, hexafluoroantimonate, hexafluoroarsenate, fluorosulfonate salts, tetrafluoroborate, nitrate, alkyl sulfonate Represents a fluorinated alkyl sulfonate or a hydrogen sulfate.
さらに、WO95/18456号、特開平8−259543号、特開2001−243995号、電気化学第65巻11号923頁(1997年)、EP−718288号、J.Electrochem.Soc.,Vol.143,No.10,3099(1996)、Inorg.Chem.1996,35,1168〜1178等に記載されているピリジニウム塩、イミダゾリウム塩、トリアゾリウム塩なども本発明に応じては適時選択して用いることができる。 Furthermore, WO95 / 18456, JP-A-8-259543, JP-A-2001-243959, Electrochemistry 65, 11, 923 (1997), EP-716288, J. Org. Electrochem. Soc. , Vol. 143, no. 10, 3099 (1996), Inorg. Chem. The pyridinium salts, imidazolium salts, triazolium salts and the like described in 1996, 35, 1168 to 1178 can be selected and used in a timely manner according to the present invention.
〔固体電解質、ゲル電解質〕
本発明に係る電解質は、溶媒やイオン性液体から成る溶液状の電解質以外にも、実質的に溶媒を含まない固体電解質や高分子化合物を含有した高粘度な電解質やゲル状の電解質(以下、ゲル電解質)を用いることができる。
[Solid electrolyte, gel electrolyte]
The electrolyte according to the present invention is not only a solution electrolyte composed of a solvent or an ionic liquid, but also a high-viscosity electrolyte or a gel electrolyte (hereinafter, referred to as a solid electrolyte or a polymer compound containing substantially no solvent). Gel electrolyte) can be used.
本発明に適用可能な固体電解質、ゲル電解質としては、例えば、特開2002−341387号公報に記載の固体電解質、特開2002−341387号公報に記載のポリマー固体電解質、特開2004−20928号公報に記載の高分子固体電解質、特開2004−191945号公報に記載の高分子固体電解質、特開2005−338204号公報に記載の固体高分子電解質、特開2006−323022号公報に記載の高分子固体電解質、特開2007−141658号公報に記載の固体電解質、特開2007−163865号公報に記載の固体電解質、ゲル電解質等を挙げることができる。 Examples of the solid electrolyte and gel electrolyte applicable to the present invention include a solid electrolyte described in JP-A No. 2002-341387, a polymer solid electrolyte described in JP-A No. 2002-341387, and JP-A No. 2004-20928. A solid polymer electrolyte described in JP-A No. 2004-191945, a solid polymer electrolyte described in JP-A No. 2005-338204, and a polymer described in JP-A No. 2006-323022 Examples thereof include solid electrolytes, solid electrolytes described in JP-A No. 2007-141658, solid electrolytes described in JP-A No. 2007-163865, and gel electrolytes.
〔電子絶縁層〕
本発明の表示素子においては、電子絶縁層を設けることができる。
(Electronic insulation layer)
In the display element of the present invention, an electronic insulating layer can be provided.
本発明に適用可能な電子絶縁層は、イオン電導性、電子絶縁性を合わせて有する層であればよく、例えば、極性基を有する高分子や塩をフィルム状にした固体電解質膜、電子絶縁性の高い多孔質膜とその空隙に電解質を担持する擬固体電解質膜、空隙を有する高分子多孔質膜、含ケイ素化合物の様な比誘電率が低い無機材料の多孔質体、等が挙げられる。 The electronic insulating layer applicable to the present invention may be a layer having both ionic conductivity and electronic insulating properties. For example, a solid electrolyte membrane in which a polymer or salt having a polar group is formed into a film, electronic insulating properties And a porous solid body having a low relative dielectric constant, such as a silicon-containing compound, and the like.
多孔質膜の形成方法としては、燒結法(融着法)(高分子微粒子や無機粒子をバインダ等を添加して部分的に融着させ粒子間に生じた孔を利用する)、抽出法(溶剤に可溶な有機物又は無機物類と溶剤に溶解しないバインダ等で構成層を形成した後に、溶剤で有機物又は無機物類を溶解させ細孔を得る)、高分子重合体等を加熱や脱気するなどして発泡させる発泡法、良溶媒と貧溶媒を操作して高分子類の混合物を相分離させる相転換法、各種放射線を輻射して細孔を形成させる放射線照射法等の公知の形成方法を用いることができる。具体的には、特開平10−30181号、特開2003−107626号、特公平7−95403号、特許第2635715号、同第2849523号、同第2987474号、同第3066426号、同第3464513号、同第3483644号、同第3535942号、同第3062203号等に記載の電子絶縁層を挙げることができる。 As a method for forming a porous film, a sintering method (fusing method) (using fine pores formed between particles by partially fusing polymer fine particles or inorganic particles by adding a binder, etc.), extraction method ( After forming a constituent layer with a solvent-soluble organic substance or inorganic substance and a binder that does not dissolve in the solvent, the organic substance or inorganic substance is dissolved with the solvent to obtain pores), and the polymer is heated or degassed Known forming methods such as a foaming method in which foaming is performed, a phase change method in which a mixture of polymers is phase-separated by operating a good solvent and a poor solvent, and a radiation irradiation method in which pores are formed by radiating various types of radiation Can be used. Specifically, JP-A-10-30181, JP-A-2003-107626, JP-B-7-95403, JP-A-2635715, JP-A-2894523, JP-A-2987474, JP-A-3066426, and JP-A-3464513. No. 3,483,464, No. 3535942, No. 30622203, and the like.
〔電解質添加の増粘剤〕
本発明の表示素子においては、電解質に増粘剤を使用することができ、例えば、ゼラチン、アラビアゴム、ポリ(ビニルアルコール)、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、セルロースアセテート、セルロースアセテートブチレート、ポリ(ビニルピロリドン)、ポリ(アルキレングリコール)、カゼイン、デンプン、ポリ(アクリル酸)、ポリ(メチルメタクリル酸)、ポリ(塩化ビニル)、ポリ(メタクリル酸)、コポリ(スチレン−無水マレイン酸)、コポリ(スチレン−アクリロニトリル)、コポリ(スチレン−ブタジエン)、ポリ(ビニルアセタール)類(例えば、ポリ(ビニルホルマール)及びポリ(ビニルブチラール))、ポリ(エステル)類、ポリ(ウレタン)類、フェノキシ樹脂、ポリ(塩化ビニリデン)、ポリ(エポキシド)類、ポリ(カーボネート)類、ポリ(ビニルアセテート)、セルロースエステル類、ポリ(アミド)類、疎水性透明バインダとして、ポリビニルブチラール、セルロースアセテート、セルロースアセテートブチレート、ポリエステル、ポリカーボネート、ポリアクリル酸、ポリウレタン等が挙げられる。
[Thickener added with electrolyte]
In the display element of the present invention, a thickener can be used for the electrolyte. For example, gelatin, gum arabic, poly (vinyl alcohol), hydroxyethyl cellulose, hydroxypropyl cellulose, cellulose acetate, cellulose acetate butyrate, poly ( Vinylpyrrolidone), poly (alkylene glycol), casein, starch, poly (acrylic acid), poly (methyl methacrylic acid), poly (vinyl chloride), poly (methacrylic acid), copoly (styrene-maleic anhydride), copoly ( Styrene-acrylonitrile), copoly (styrene-butadiene), poly (vinyl acetal) s (eg, poly (vinyl formal) and poly (vinyl butyral)), poly (esters), poly (urethanes), phenoxy resins, poly (PVC Redene), poly (epoxide) s, poly (carbonates), poly (vinyl acetate), cellulose esters, poly (amides), hydrophobic transparent binders such as polyvinyl butyral, cellulose acetate, cellulose acetate butyrate, polyester, Examples include polycarbonate, polyacrylic acid, polyurethane and the like.
これらの増粘剤は2種以上を併用して用いてもよい。また、特開昭64−13546号公報の71〜75頁に記載の化合物を挙げることができる。これらの中で好ましく用いられる化合物は、各種添加剤との相溶性と白色粒子の分散安定性向上の観点から、ポリビニルアルコール類、ポリビニルピロリドン類、ヒドロキシプロピルセルロース類、ポリアルキレングリコール類である。 These thickeners may be used in combination of two or more. Moreover, the compound as described in pages 71-75 of Unexamined-Japanese-Patent No. 64-13546 can be mentioned. Among these, the compounds preferably used are polyvinyl alcohols, polyvinyl pyrrolidones, hydroxypropyl celluloses, and polyalkylene glycols from the viewpoint of compatibility with various additives and improvement in dispersion stability of white particles.
〔その他の添加剤〕
本発明の表示素子の構成層には、保護層、フィルター層、ハレーション防止層、クロスオーバー光カット層、バッキング層等の補助層を挙げることができ、これらの補助層中には、各種の化学増感剤、貴金属増感剤、感光色素、強色増感剤、カプラー、高沸点溶剤、カブリ防止剤、安定剤、現像抑制剤、漂白促進剤、定着促進剤、混色防止剤、ホルマリンスカベンジャー、色調剤、硬膜剤、界面活性剤、増粘剤、可塑剤、スベリ剤、紫外線吸収剤、イラジエーション防止染料、フィルター光吸収染料、防ばい剤、ポリマーラテックス、重金属、帯電防止剤、マット剤等を、必要に応じて含有させることができる。
[Other additives]
Examples of the constituent layers of the display element of the present invention include auxiliary layers such as a protective layer, a filter layer, an antihalation layer, a crossover light cut layer, and a backing layer. Sensitizer, noble metal sensitizer, photosensitive dye, supersensitizer, coupler, high boiling point solvent, antifoggant, stabilizer, development inhibitor, bleach accelerator, fixing accelerator, color mixing inhibitor, formalin scavenger, Toning agents, hardeners, surfactants, thickeners, plasticizers, slip agents, UV absorbers, anti-irradiation dyes, filter light absorbing dyes, anti-bacterial agents, polymer latex, heavy metals, antistatic agents, matting agents Etc. can be contained as required.
上述したこれらの添加剤は、より詳しくは、リサーチ・ディスクロージャー(以下、RDと略す)第176巻Item/17643(1978年12月)、同184巻Item/18431(1979年8月)、同187巻Item/18716(1979年11月)及び同308巻Item/308119(1989年12月)に記載されている。 These additives mentioned above are more specifically described in Research Disclosure (hereinafter abbreviated as RD), Volume 176 Item / 17643 (December 1978), Volume 184, Item / 18431 (August 1979), 187. Volume Item / 18716 (November 1979) and Volume 308 Item / 308119 (December 1989).
これら三つのリサーチ・ディスクロージャーに示されている化合物種類と記載箇所を以下に掲載した。 The types of compounds and their descriptions shown in these three research disclosures are listed below.
添加剤 RD17643 RD18716 RD308119
頁 分類 頁 分類 頁 分類
化学増感剤 23 III 648右上 96 III
増感色素 23 IV 648〜649 996〜8 IV
減感色素 23 IV 998 IV
染料 25〜26 VIII 649〜650 1003 VIII
現像促進剤 29 XXI 648右上
カブリ抑制剤・安定剤
24 IV 649右上 1006〜7 VI
増白剤 24 V 998 V
硬膜剤 26 X 651左 1004〜5 X
界面活性剤 26〜7 XI 650右 1005〜6 XI
帯電防止剤 27 XII 650右 1006〜7 XIII
可塑剤 27 XII 650右 1006 XII
スベリ剤 27 XII
マット剤 28 XVI 650右 1008〜9 XVI
バインダー 26 XXII 1003〜4 IX
支持体 28 XVII 1009 XVII
〔基板〕
本発明で用いることのできる基板としては、透明基板であることが好ましく、このような透明基板としては、ポリエステル(例えば、ポリエチレンテレフタレート等)、ポリイミド、ポリメタクリル酸メチル、ポリスチレン、ポリプロピレン、ポリエチレン、ポリアミド、ナイロン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリカーボネート、ポリエーテルスルフォン、シリコン樹脂、ポリアセタール樹脂、フッ素樹脂、セルロース誘導体、ポリオレフィンなどの高分子のフィルムや板状基板、ガラス基板などが好ましく用いられる。本発明に用いられる透明な基板とは、可視光に対する透過率が少なくとも50%以上の基板をいう。
Additive RD17643 RD18716 RD308119
Page Classification Page Classification Page Classification Chemical sensitizer 23 III 648 Upper right 96 III
Sensitizing dye 23 IV 648-649 996-8 IV
Desensitizing dye 23 IV 998 IV
Dye 25-26 VIII 649-650 1003 VIII
Development accelerator 29 XXI 648 Upper right Anti-fogging agent / stabilizer
24 IV 649 Upper right 1006-7 VI
Brightener 24 V 998 V
Hardener 26 X 651 Left 1004-5 X
Surfactant 26-7 XI 650 Right 1005-6 XI
Antistatic agent 27 XII 650 Right 1006-7 XIII
Plasticizer 27 XII 650 Right 1006 XII
Slipper 27 XII
Matting agent 28 XVI 650 Right 1008-9 XVI
Binder 26 XXII 1003-4 IX
Support 28 XVII 1009 XVII
〔substrate〕
The substrate that can be used in the present invention is preferably a transparent substrate. Examples of such a transparent substrate include polyester (for example, polyethylene terephthalate), polyimide, polymethyl methacrylate, polystyrene, polypropylene, polyethylene, and polyamide. Nylon, polyvinyl chloride, polyvinylidene chloride, polycarbonate, polyether sulfone, silicon resin, polyacetal resin, fluororesin, cellulose derivative, polyolefin and other polymer films, plate substrates, glass substrates, and the like are preferably used. The transparent substrate used in the present invention refers to a substrate having a transmittance for visible light of at least 50%.
また、対向基板としては、例えば、金属基板、セラミック基板等の無機基板など不透明な基板を用いることもできる。 Further, as the counter substrate, for example, an opaque substrate such as an inorganic substrate such as a metal substrate or a ceramic substrate can be used.
〔電極〕
本発明の表示素子においては、対向電極として下記の各種電極を用いることができる。
〔electrode〕
In the display element of the present invention, the following various electrodes can be used as the counter electrode.
(表示側透明電極)
対向電極のうち、表示側には位置する電極としては、透明電極であることが好ましい。
(Display side transparent electrode)
Of the counter electrodes, the electrode positioned on the display side is preferably a transparent electrode.
透明電極としては、透明で電気を通じるものであれば特に制限はない。例えば、Indium Tin Oxide(ITO:インジウム錫酸化物)、Indium Zinc Oxide(IZO:インジウム亜鉛酸化物)、フッ素ドープ酸化スズ(FTO)、酸化インジウム、酸化亜鉛、白金、金、銀、ロジウム、銅、クロム、炭素、アルミニウム、シリコン、アモルファスシリコン、BSO(Bismuth Silicon Oxide)等が挙げられる。 The transparent electrode is not particularly limited as long as it is transparent and conducts electricity. For example, Indium Tin Oxide (ITO: Indium Tin Oxide), Indium Zinc Oxide (IZO: Indium Zinc Oxide), Fluorine Doped Tin Oxide (FTO), Indium Oxide, Zinc Oxide, Platinum, Gold, Silver, Rhodium, Copper, Examples thereof include chromium, carbon, aluminum, silicon, amorphous silicon, and BSO (Bismuth Silicon Oxide).
また、ポリチオフェン、ポリピロール、ポリアニリン、ポリアセチレン、ポリパラフェニレン、ポリセレノフェニレン等、およびそれらの修飾化合物を単独あるいは混合して用いることができる。 In addition, polythiophene, polypyrrole, polyaniline, polyacetylene, polyparaphenylene, polyselenophenylene, etc., and their modifying compounds can be used alone or in combination.
表面抵抗値としては、100Ω/□以下が好ましく、10Ω/□以下がより好ましい。透明電極の厚みは特に制限はないが、0.1〜20μmであるのが一般的である。 The surface resistance value is preferably 100Ω / □ or less, and more preferably 10Ω / □ or less. The thickness of the transparent electrode is not particularly limited, but is generally 0.1 to 20 μm.
(透明多孔質電極)
透明電極の一つの態様として、上記透明電極上にナノ多孔質化構造を有するナノ多孔質電極を設けることができる。このナノ多孔質電極は、表示素子を形成した際に実質的に透明で、エレクトロクロミック色素等の電気活性物質を担持することができる。
(Transparent porous electrode)
As one embodiment of the transparent electrode, a nanoporous electrode having a nanoporous structure can be provided on the transparent electrode. This nanoporous electrode is substantially transparent when a display element is formed, and can carry an electroactive substance such as an electrochromic dye.
本発明でいうナノ多孔質化構造とは、層中にナノメートルサイズの孔が無数に存在し、ナノ多孔質化構造内を電解質中に含まれるイオン種が移動可能な状態のことを言う。 The nanoporous structure as used in the present invention refers to a state in which an infinite number of nanometer-sized pores exist in a layer and ionic species contained in the electrolyte can move within the nanoporous structure.
このようなナノ多孔質電極の形成方法としては、ナノ多孔質電極を構成する微粒子を含んだ分散物をインクジェット法、スクリーン印刷法、ブレード塗布法などで層状に形成した後に、所定の温度で加熱、乾燥、焼成することよって多孔質化する方法や、スパッタ法、CVD法、大気圧プラズマ法などで電極層を構成した後に、陽極酸化、光電気化学エッチングすることによってナノ多孔質化する方法などが挙げられる。また、ゾルゲル法や、Adv.Mater.2006,18,2980−2983に記載された方法でも、形成することができる。 As a method for forming such a nanoporous electrode, a dispersion containing fine particles constituting the nanoporous electrode is formed in layers by an ink jet method, a screen printing method, a blade coating method, etc., and then heated at a predetermined temperature. A method of making porous by drying, baking, a method of making nanoporous by anodizing or photoelectrochemical etching after forming an electrode layer by sputtering, CVD, atmospheric pressure plasma, etc. Is mentioned. Also, the sol-gel method, Adv. Mater. It can also be formed by the method described in 2006, 18, 2980-2983.
ナノ多孔質電極を構成する微粒子の主成分は、Cu、Al、Pt、Ag、Pd、Au等の金属やITO、SnO2、TiO2、ZnO等の金属酸化物やカーボンナノチューブ、グラッシーカーボン、ダイヤモンドライクカーボン、窒素含有カーボン等の炭素電極から選択することができ、好ましくは、ITO、SnO2、TiO2、ZnO等の金属酸化物から選択されることである。 The main components of the fine particles constituting the nanoporous electrode are metals such as Cu, Al, Pt, Ag, Pd and Au, metal oxides such as ITO, SnO 2 , TiO 2 and ZnO, carbon nanotubes, glassy carbon, and diamond. It can be selected from carbon electrodes such as like carbon and nitrogen-containing carbon, and is preferably selected from metal oxides such as ITO, SnO 2 , TiO 2 , and ZnO.
ナノ多孔質電極が透明性を有するためには、平均粒子径が5nm〜10μm程度の微粒子を用いることが好ましい。微粒子の形状は不定形、針状、球形など任意の形状のものを用いることができる。 In order for the nanoporous electrode to have transparency, it is preferable to use fine particles having an average particle diameter of about 5 nm to 10 μm. As the shape of the fine particles, those having an arbitrary shape such as an indefinite shape, a needle shape, and a spherical shape can be used.
ナノ多孔質電極の膜厚は、0.1〜10μmの範囲であることが好ましく、より好ましくは0.25〜5μmの範囲である。 The film thickness of the nanoporous electrode is preferably in the range of 0.1 to 10 μm, more preferably in the range of 0.25 to 5 μm.
(グリッド電極:補助電極)
本発明に係る対向電極のうち少なくとも一方の電極に、補助電極を付帯させることができる。
(Grid electrode: auxiliary electrode)
An auxiliary electrode can be attached to at least one of the counter electrodes according to the present invention.
補助電極は、主となる電極部より電気抵抗が低い材料を用いることが好ましい。例えば、白金、金、銀、銅、アルミニウム、亜鉛、ニッケル、チタン、ビスマスなどの金属およびそれらの合金等を好ましく用いることができる。 The auxiliary electrode is preferably made of a material having a lower electrical resistance than the main electrode portion. For example, metals such as platinum, gold, silver, copper, aluminum, zinc, nickel, titanium, and bismuth and alloys thereof can be preferably used.
補助電極は、主となる電極部と基板との間と、主となる電極部の基板と反対側の表面とのいずれに設置することもできる。いずれにしても、補助電極が主となる電極部と電気的に接続していればよい。 The auxiliary electrode can be installed either between the main electrode portion and the substrate, or on the surface of the main electrode portion opposite to the substrate. In any case, it is only necessary that the auxiliary electrode is electrically connected to the main electrode portion.
補助電極の配置パターンには、特に制限はない。直線状、メッシュ状、円形など、求められる性能に応じて適宜形成することが可能である。主となる電極部が複数の部分に分割されている場合には、分割された電極部同士を接続する形で設けてもよい。ただし、主となる電極部が表示側の基板に設けられた透明電極の場合、補助電極は、表示素子の視認性を阻害しない形状と頻度で設けることが求められる。 There are no particular restrictions on the arrangement pattern of the auxiliary electrodes. It can be appropriately formed according to the required performance, such as linear, mesh, or circular. When the main electrode part is divided into a plurality of parts, the divided electrode parts may be connected to each other. However, in the case where the main electrode portion is a transparent electrode provided on the substrate on the display side, the auxiliary electrode is required to be provided with a shape and frequency that do not impair the visibility of the display element.
補助電極を形成する方法としては、公知の方法を用いることができる。例えば、フォトリソグラフィ法でパターニングしたり、印刷法やインクジェット法、電解メッキや無電解メッキ、銀塩感光材料を用いて露光、現像処理してパターン形成する方法でも良い。 As a method of forming the auxiliary electrode, a known method can be used. For example, patterning may be performed by photolithography, printing, ink-jet printing, electrolytic plating, electroless plating, or exposure and development using a silver salt photosensitive material to form a pattern.
補助電極パターンのライン幅やライン間隔は、任意の値で構わないが、導電性を高くするためにはライン幅を太くする必要がある。一方、透明電極に補助電極を付帯させる場合には、視認性の観点から、表示素子観察側から見た補助電極の面積被覆率は30%以下が好ましく、さらに好ましくは10%以下である。 The line width and line spacing of the auxiliary electrode pattern may be arbitrary values, but the line width needs to be increased in order to increase the conductivity. On the other hand, when an auxiliary electrode is attached to the transparent electrode, from the viewpoint of visibility, the area coverage of the auxiliary electrode viewed from the display element observation side is preferably 30% or less, and more preferably 10% or less.
このように透過率と導電性の点から、補助電極のライン幅は1μm以上、100μm以下が好ましく、ライン間隔は50μmから1000μmが好ましい。 Thus, from the viewpoint of transmittance and conductivity, the line width of the auxiliary electrode is preferably 1 μm or more and 100 μm or less, and the line interval is preferably 50 μm to 1000 μm.
(電極の形成方法)
透明電極、金属補助電極を形成するには、公知の方法を用いることができる。例えば、基板上にスパッタリング法等でマスク蒸着する方法や、全面形成した後に、フォトリソグラフィ法でパターニングする方法等が挙げられる。
(Method of forming electrode)
A known method can be used to form the transparent electrode and the metal auxiliary electrode. For example, a method of depositing a mask on a substrate by a sputtering method or the like, a method of patterning by a photolithography method after forming the entire surface, and the like can be given.
また、電解メッキや無電解メッキ、印刷法や、インクジェット法によっても電極形成が可能である。 Electrodes can also be formed by electrolytic plating, electroless plating, printing methods, and ink jet methods.
インクジェット方式を用いて基板上にモノマー重合能を有する触媒層を含む電極パターンを形成した後に、該触媒により重合されて重合後に導電性高分子層になりうるモノマー成分を付与して、モノマー成分を重合し、さらに、該導電性高分子層の上に銀等の金属メッキを行うことにより金属電極パターンを形成することもでき、フォトレジストやマスクパターンを使用することがないので、工程を大幅に簡略化できる。 After forming an electrode pattern including a catalyst layer having a monomer polymerization ability on a substrate using an inkjet method, a monomer component that is polymerized by the catalyst and becomes a conductive polymer layer after polymerization is added, It is also possible to form a metal electrode pattern by polymerizing and further performing metal plating such as silver on the conductive polymer layer, and the process is greatly reduced because no photoresist or mask pattern is used. It can be simplified.
電極材料を塗布方式で形成する場合には、例えば、ディッピング法、スピナー法、スプレー法、ロールコーター法、フレキソ印刷法、スクリーン印刷法等の公知の方法を用いることができる。 When the electrode material is formed by a coating method, for example, a known method such as a dipping method, a spinner method, a spray method, a roll coater method, a flexographic printing method, a screen printing method, or the like can be used.
インクジェット方式の中でも、下記の静電インクジェット方式は高粘度の液体を高精度に連続的に印字することが可能であり、本発明の透明電極や金属補助電極の形成に好ましく用いられる。インクの粘度は、好ましくは30mPa・s以上であり、更に好ましくは100mPa・s以上である。 Among the ink jet methods, the following electrostatic ink jet method is capable of continuously printing a highly viscous liquid with high accuracy and is preferably used for forming the transparent electrode and the metal auxiliary electrode of the present invention. The viscosity of the ink is preferably 30 mPa · s or more, and more preferably 100 mPa · s or more.
〈静電インクジェット方式〉
本発明の表示素子においては、複合電極の透明電極及び金属補助電極の少なくとも1方が、帯電した液体を吐出する内部直径が30μm以下のノズルを有する液体吐出ヘッドと、前記ノズル内に溶液を供給する供給手段と、前記ノズル内の溶液に吐出電圧を印加する吐出電圧印加手段とを備えた液体吐出装置を用いて形成されることが好ましい態様の1つである。さらにノズル内の溶液がノズル先端部から凸状に盛り上がった状態を形成する凸状メニスカス形成手段を設けた吐出装置を用いて形成されることが好ましい。
<Electrostatic inkjet method>
In the display element of the present invention, at least one of the transparent electrode of the composite electrode and the metal auxiliary electrode has a liquid discharge head having a nozzle with an internal diameter of 30 μm or less for discharging a charged liquid, and supplies a solution into the nozzle. It is one of the preferable embodiments that the liquid discharge device is provided with a supply unit that performs the discharge and a discharge voltage application unit that applies a discharge voltage to the solution in the nozzle. Further, it is preferable that the solution in the nozzle is formed by using a discharge device provided with a convex meniscus forming means for forming a state where the solution rises from the nozzle tip.
また、凸状メニスカス形成手段を駆動する駆動電圧の印加及び吐出電圧印加手段による吐出電圧の印加を制御する動作制御手段を備え、この動作制御手段は、前記吐出電圧印加手段による吐出電圧の印加を行わせつつ液滴の吐出に際して、凸状メニスカス形成手段の駆動電圧の印加を行わせる第一の吐出制御部を有する液体吐出装置を用いることも好ましい。 In addition, it comprises operation control means for controlling application of drive voltage for driving the convex meniscus forming means and application of discharge voltage by the discharge voltage application means, and this operation control means applies application of the discharge voltage by the discharge voltage application means. It is also preferable to use a liquid ejection apparatus having a first ejection control unit that applies a driving voltage to the convex meniscus forming means when ejecting liquid droplets.
また、凸状メニスカス形成手段の駆動及び吐出電圧印加手段による電圧印加を制御する動作制御手段を備え、この動作制御手段は、前記凸状メニスカス形成手段による溶液の盛り上げ動作と前記吐出電圧の印加とを同期させて行う第二の吐出制御部を有することを特徴とする液体吐出装置を用いること、前記動作制御手段は、前記溶液の盛り上げ動作及び吐出電圧の印加の後に前記ノズル先端部の液面を内側に引き込ませる動作制御を行う液面安定化制御部を有する液体吐出装置を用いることも好ましい形態である。 In addition, an operation control unit that controls driving of the convex meniscus forming unit and voltage application by the discharge voltage applying unit is provided, and the operation control unit includes an operation for raising the solution by the convex meniscus forming unit, and application of the discharge voltage. A liquid discharge device having a second discharge control unit that synchronizes the liquid, and the operation control means includes a liquid level at the tip of the nozzle after the swell operation of the solution and the application of the discharge voltage. It is also a preferred form to use a liquid ejection apparatus having a liquid level stabilization control unit that performs operation control for drawing in the inside.
この様な静電インクジェットを用いて電極パターンを作製することにより、オンデマンド性に優れ、廃棄材料が少なく、寸法精度に優れた電極を得ることができ有利である。 By producing an electrode pattern using such an electrostatic inkjet, it is advantageous that an electrode having excellent on-demand characteristics, little waste material, and excellent dimensional accuracy can be obtained.
〔表示素子のその他の構成要素〕
本発明の表示素子には、必要に応じて、シール剤、柱状構造物、スペーサー粒子を用いることができる。
[Other components of the display element]
In the display element of the present invention, a sealant, a columnar structure, and spacer particles can be used as necessary.
シール剤は外に漏れないように封入するためのものであり封止剤とも呼ばれ、エポキシ樹脂、ウレタン系樹脂、アクリル系樹脂、酢酸ビニル系樹脂、エン−チオール系樹脂、シリコン系樹脂、変性ポリマー樹脂等の、熱硬化型、光硬化型、湿気硬化型、嫌気硬化型等の硬化タイプを用いることができる。 Sealing agent is for sealing so that it does not leak outside and is also called sealing agent. Epoxy resin, urethane resin, acrylic resin, vinyl acetate resin, ene-thiol resin, silicon resin, modified resin A curing type such as a polymer resin, such as a thermosetting type, a photocurable type, a moisture curable type, and an anaerobic curable type can be used.
柱状構造物は、基板間の強い自己保持性(強度)を付与し、例えば、格子配列等の所定のパターンに一定の間隔で配列された、円柱状体、四角柱状体、楕円柱状体、台形柱状体等の柱状構造物を挙げることができる。また、所定間隔で配置されたストライプ状のものでもよい。この柱状構造物はランダムな配列ではなく、等間隔な配列、間隔が徐々に変化する配列、所定の配置パターンが一定の周期で繰り返される配列等、基板の間隔を適切に保持でき、且つ、画像表示を妨げないように考慮された配列であることが好ましい。柱状構造物は表示素子の表示領域に占める面積の割合が1〜40%であれば、表示素子として実用上十分な強度が得られる。 The columnar structure provides strong self-holding (strength) between the substrates, for example, a columnar body, a quadrangular columnar body, an elliptical columnar body, a trapezoidal array arranged in a predetermined pattern such as a lattice arrangement. A columnar structure such as a columnar body can be given. Alternatively, stripes arranged at predetermined intervals may be used. This columnar structure is not a random array, but can be properly maintained at intervals of the substrate, such as an evenly spaced array, an array in which the interval gradually changes, and an array in which a predetermined arrangement pattern is repeated at a constant period. The arrangement is preferably considered so as not to disturb the display. If the ratio of the area occupied by the columnar structure in the display area of the display element is 1 to 40%, a practically sufficient strength as a display element can be obtained.
一対の基板間には、該基板間のギャップを均一に保持するためのスペーサーが設けられていてもよい。このスペーサーとしては、樹脂製または無機酸化物製の球体を例示できる。また、表面に熱可塑性の樹脂がコーティングしてある固着スペーサーも好適に用いられる。基板間のギャップを均一に保持するために柱状構造物のみを設けてもよいが、スペーサー及び柱状構造物をいずれも設けてもよいし、柱状構造物に代えて、スペーサーのみをスペース保持部材として使用してもよい。スペーサーの直径は柱状構造物を形成する場合はその高さ以下、好ましくは当該高さに等しい。柱状構造物を形成しない場合はスペーサーの直径がセルギャップの厚みに相当する。 A spacer may be provided between the pair of substrates for uniformly maintaining a gap between the substrates. Examples of the spacer include a sphere made of resin or inorganic oxide. Further, a fixed spacer having a surface coated with a thermoplastic resin is also preferably used. In order to hold the gap between the substrates uniformly, only the columnar structure may be provided, but both the spacer and the columnar structure may be provided, or instead of the columnar structure, only the spacer is used as the space holding member. May be used. The diameter of the spacer is equal to or less than the height of the columnar structure, preferably equal to the height. When the columnar structure is not formed, the diameter of the spacer corresponds to the thickness of the cell gap.
〔表示素子駆動方法〕
本発明の表示素子の駆動操作は、単純マトリックス駆動であっても、アクティブマトリック駆動であってもよい。本発明でいう単純マトリックス駆動とは、複数の正極を含む正極ラインと複数の負極を含む負極ラインとが対向する形で互いのラインが垂直方向に交差した回路に、順次電流を印加する駆動方法のことを言う。単純マトリックス駆動を用いることにより、回路構成や駆動ICを簡略化でき安価に製造できるメリットがある。アクティブマトリックス駆動は、走査線、データライン、電流供給ラインが碁盤目状に形成され、各碁盤目に設けられたTFT回路により駆動させる方式である。画素毎にスイッチングが行えるので、階調やメモリー機能などのメリットがあり、例えば、特開2004−29327号の図5に記載されている回路を用いることができる。
[Display element driving method]
The driving operation of the display element of the present invention may be simple matrix driving or active matrix driving. The simple matrix driving in the present invention is a driving method in which a current is sequentially applied to a circuit in which a positive line including a plurality of positive electrodes and a negative electrode line including a plurality of negative electrodes are opposed to each other in a vertical direction. Say that. By using simple matrix driving, there is an advantage that the circuit configuration and driving IC can be simplified and manufactured at low cost. The active matrix drive is a system in which scanning lines, data lines, and current supply lines are formed in a grid pattern, and are driven by TFT circuits provided in each grid pattern. Since switching can be performed for each pixel, there are merits such as gradation and memory function. For example, a circuit described in FIG. 5 of JP-A-2004-29327 can be used.
〔商品適用〕
本発明の表示素子は、電子書籍分野、IDカード関連分野、公共関連分野、交通関連分野、放送関連分野、決済関連分野、流通物流関連分野等の用いることができる。具体的には、ドア用のキー、学生証、社員証、各種会員カード、コンビニストアー用カード、デパート用カード、自動販売機用カード、ガソリンステーション用カード、地下鉄や鉄道用のカード、バスカード、キャッシュカード、クレジットカード、ハイウェイカード、運転免許証、病院の診察カード、電子カルテ、健康保険証、住民基本台帳、パスポート、電子ブック等が挙げられる。
[Product application]
The display element of the present invention can be used in an electronic book field, an ID card field, a public field, a traffic field, a broadcast field, a payment field, a distribution logistics field, and the like. Specifically, keys for doors, student ID cards, employee ID cards, various membership cards, convenience store cards, department store cards, vending machine cards, gas station cards, subway and railway cards, bus cards, Cash cards, credit cards, highway cards, driver's licenses, hospital examination cards, electronic medical records, health insurance cards, Basic Resident Registers, passports, electronic books, etc.
以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例において「部」あるいは「%」の表示を用いるが、特に断りがない限り「質量部」あるいは「質量%」を表す。 EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto. In addition, although the display of "part" or "%" is used in an Example, unless otherwise indicated, "part by mass" or "mass%" is represented.
実施例1
《表示素子の作製》
〔電解液の作製〕
(電解液1−1の調製)
化合物(S1−4)の2.5g中に、p−トルエンスルフォン酸銀0.1gと化合物(G2−12)を0.2gとビス(トリフルオロメチルスルホニル)イミドリチウム0.025gとを溶解させて、電解液1−1を得た。
Example 1
<< Production of display element >>
(Preparation of electrolyte)
(Preparation of electrolyte 1-1)
In 2.5 g of the compound (S1-4), 0.1 g of silver p-toluenesulfonate, 0.2 g of the compound (G2-12) and 0.025 g of bis (trifluoromethylsulfonyl) imide lithium are dissolved. Thus, an electrolytic solution 1-1 was obtained.
〔電極の作製〕
(電極1−1の作製)
厚さ1.5mmで2cm×4cmのガラス基板上に、ITO(Indium Tin Oxide、インジウム錫酸化物)膜を公知の方法に従って形成して、透明電極(電極1−1)を得た。
[Production of electrodes]
(Preparation of electrode 1-1)
An ITO (Indium Tin Oxide, Indium Tin Oxide) film was formed on a glass substrate having a thickness of 1.5 mm and 2 cm × 4 cm according to a known method to obtain a transparent electrode (electrode 1-1).
(電極1−2の作製)
厚さ1.5mmで2cm×4cmのガラス/クロム電極上に、金薄膜を公知の方法に従って形成して、電極1−2を得た。
(Preparation of electrode 1-2)
A gold thin film was formed on a 2 cm × 4 cm glass / chromium electrode having a thickness of 1.5 mm according to a known method to obtain an electrode 1-2.
(電極1−3の作製)
電極1−1上にスパッタ法で銀純度99.5%、膜厚20nmになるように銀薄膜を成膜して電極1−3を作製した。
(Preparation of electrode 1-3)
A silver thin film was formed on electrode 1-1 so as to have a silver purity of 99.5% and a film thickness of 20 nm by sputtering to produce electrode 1-3.
(電極1−4の作製)
電極1−1上にスパッタ法で銀純度99.5%、膜厚5nmになるように銀薄膜を成膜して電極1−4を作製した。
(Preparation of electrode 1-4)
A silver thin film was formed on the electrode 1-1 so as to have a silver purity of 99.5% and a film thickness of 5 nm by sputtering to produce an electrode 1-4.
(電極1−5の作製)
電極1−1上にスパッタ法で銀純度99.5%、膜厚3nmになるように銀薄膜を成膜して電極1−5を作製した。
(Preparation of electrode 1-5)
A silver thin film was formed on the electrode 1-1 so as to have a silver purity of 99.5% and a film thickness of 3 nm by sputtering to produce an electrode 1-5.
(電極1−6の作製)
電極1−1上にスパッタ法で銀純度99.5%、膜厚50nmになるように銀薄膜を成膜して電極1−6を作製した。
(Preparation of electrode 1-6)
A silver thin film was formed on the electrode 1-1 so as to have a silver purity of 99.5% and a film thickness of 50 nm by a sputtering method to prepare an electrode 1-6.
(電極1−7の作製)
電極1−1上にスパッタ法で銀純度99.5%、膜厚60nmになるように銀薄膜を成膜して電極1−7を作製した。
(Preparation of electrode 1-7)
A silver thin film was formed on the electrode 1-1 so as to have a silver purity of 99.5% and a film thickness of 60 nm by sputtering to produce an electrode 1-7.
(電極1−8の作製)
電極1−1上にスパッタ法で銀純度99.0%、膜厚20nmになるように銀薄膜を成膜して電極1−8を作製した。
(Preparation of electrode 1-8)
A silver thin film was formed on the electrode 1-1 so as to have a silver purity of 99.0% and a film thickness of 20 nm by sputtering to produce an electrode 1-8.
(電極1−9の作製)
電極1−1上にスパッタ法で銀純度98.0%、膜厚20nmになるように銀薄膜を成膜して電極1−9を作製した。
(Preparation of electrode 1-9)
A silver thin film was formed on the electrode 1-1 so as to have a silver purity of 98.0% and a film thickness of 20 nm by sputtering to produce an electrode 1-9.
(二酸化チタン分散物の調製)
水/エタノール混合溶液に、クラレポバールPVA235(クラレ社製、ポリビニルアルコール樹脂)を固形分濃度で2質量%になるように添加し、加熱溶解させた後、石原産業社製の二酸化チタンCR−90を20質量%となるように超音波分散機で分散させて、二酸化チタン分散物を得た。
(Preparation of titanium dioxide dispersion)
Kuraray Poval PVA235 (manufactured by Kuraray Co., Ltd., polyvinyl alcohol resin) was added to the water / ethanol mixed solution so as to have a solid content concentration of 2% by mass, dissolved by heating, and then titanium dioxide CR-90 made by Ishihara Sangyo Co., Ltd. Was dispersed with an ultrasonic disperser so as to be 20% by mass to obtain a titanium dioxide dispersion.
〔表示素子の作製〕
(表示素子1−1の作製)
電極1−2上に前述の二酸化チタン分散物を乾燥後の平均膜厚が20μmになるようにスクリーン印刷し、その後50℃で30分間乾燥して溶媒を蒸発させた後、85℃の雰囲気中で1時間乾燥させて多孔質白色散乱層を形成した電極1−2aを作製した。電極1−2aの中心近傍の2cm×2cmの部分を、平均粒径40μmのガラス製球形ビーズを体積分率として10%含むオレフィン系封止剤で縁取りした後に、電極1−2aと電極1−1とが直交するように貼り合わせ、さらに加熱押圧し、注入口の切り欠き部を有する空セルを作製した。該空セルに電解液1−1を真空注入し、注入口をエポキシ系の紫外線硬化樹脂にて封止し、表示素子1−1を作製した。
[Production of display element]
(Preparation of display element 1-1)
On the electrode 1-2, the above-mentioned titanium dioxide dispersion was screen-printed so that the average film thickness after drying was 20 μm, then dried at 50 ° C. for 30 minutes to evaporate the solvent, and then in an atmosphere at 85 ° C. The electrode 1-2a which dried for 1 hour and formed the porous white scattering layer was produced. After the 2 cm × 2 cm portion in the vicinity of the center of the electrode 1-2a is trimmed with an olefin-based sealant containing 10% glass spherical beads having an average particle diameter of 40 μm as a volume fraction, the electrode 1-2a and the electrode 1- 1 were bonded so as to be orthogonal to 1 and further heated and pressed to prepare an empty cell having a notch portion of the inlet. The electrolytic solution 1-1 was vacuum-injected into the empty cell, and the injection port was sealed with an epoxy-based ultraviolet curable resin to produce a display element 1-1.
(表示素子1−2の作製)
電極1−2を電極1−1に変更した以外は表示素子1−1と同様にして、表示素子1−2を作製した。
(Preparation of display element 1-2)
A display element 1-2 was produced in the same manner as the display element 1-1 except that the electrode 1-2 was changed to the electrode 1-1.
(表示素子1−3の作製)
表示素子1−1の観察側の電極(多孔質白色散乱層が形成されていない方の電極)が+1.2Vとなるように対向電極間に電圧を5秒間印加して、非観察側の電極(多孔質白色散乱層が形成されている方の電極)に析出銀を形成して、表示素子1−3を作製した。
(Preparation of display element 1-3)
A voltage is applied for 5 seconds between the counter electrodes so that the observation side electrode (the electrode on which the porous white scattering layer is not formed) of the display element 1-1 is +1.2 V, and the non-observation side electrode Precipitated silver was formed on (the electrode on which the porous white scattering layer was formed) to produce a display element 1-3.
(表示素子1−4の作製)
電極1−2を電極1−3に変更した以外は表示素子1−1と同様にして、表示素子1−4を作製した。
(Preparation of display element 1-4)
A display element 1-4 was produced in the same manner as the display element 1-1 except that the electrode 1-2 was changed to the electrode 1-3.
(表示素子1−5の作製)
電極1−1を電極1−3に、電極1−2を電極1−1に変更した以外は表示素子1−1と同様にして、表示素子1−5を作製した。
(Preparation of display element 1-5)
Display element 1-5 was produced in the same manner as display element 1-1 except that electrode 1-1 was changed to electrode 1-3 and electrode 1-2 was changed to electrode 1-1.
(表示素子1−6の作製)
表示素子1−5の観察側の電極(多孔質白色散乱層が形成されていない方の電極)が+1.2Vとなるように対向電極間の電圧を設定して、観察側の銀薄膜を目視で完全に溶解するまで印加を続けた。このとき、非観察側の電極(多孔質白色散乱層が形成されている方の電極)に析出銀が形成されていることを確認して、得られた表示素子を1−6とした。
(Preparation of display element 1-6)
The voltage between the counter electrodes is set so that the observation side electrode (the electrode on which the porous white scattering layer is not formed) of the display element 1-5 becomes +1.2 V, and the observation-side silver thin film is visually observed. The application was continued until completely dissolved. At this time, it was confirmed that precipitated silver was formed on the non-observation side electrode (the electrode on which the porous white scattering layer was formed), and the obtained display element was designated 1-6.
(表示素子1−7〜1−15の作製)
観察側の電極と非観察側の電極と銀薄膜を溶解するときの電圧を表1に示す組合せに変更した以外は表示素子1−6と同様にして、表示素子1−7〜1−15を作製した。
(Preparation of display elements 1-7 to 1-15)
Display elements 1-7 to 1-15 are the same as display element 1-6 except that the voltage at the time of melting the observation side electrode, the non-observation side electrode, and the silver thin film is changed to the combination shown in Table 1. Produced.
《表示素子の評価》
〔繰返し駆動させたときの反射率の安定性の評価〕
定電圧電源の両端子に作製した表示素子の両電極を接続し、+1.5Vの電圧を1秒間印加した後に−1.5Vの電圧を0.5秒間印加してグレーを表示させたときの波長550nmでの反射率をコニカミノルタセンシング社製の分光測色計CM−3700dで測定した。同様な駆動条件で合計10回駆動させ、得られた反射率の平均値をRave1とした。さらに1万回繰返し駆動させた後に同様な方法でRave2を求めた。ΔRBK1=|Rave1−Rave2|とし、ΔRBK1を繰返し駆動させたときの反射率の安定性の指標とした。ここでは、ΔRBK1の値が小さいほど、繰返し駆動させたときの反射率の安定性に優れることになる。
<< Evaluation of display element >>
[Evaluation of reflectance stability when driven repeatedly]
When both electrodes of the display element are connected to both terminals of the constant voltage power source, a voltage of +1.5 V is applied for 1 second, and then a voltage of -1.5 V is applied for 0.5 second to display gray The reflectance at a wavelength of 550 nm was measured with a spectrocolorimeter CM-3700d manufactured by Konica Minolta Sensing. Under the same driving conditions, driving was performed 10 times in total, and the average value of the obtained reflectances was defined as R ave1 . Further, after driving repeatedly 10,000 times, R ave2 was obtained by the same method. ΔR BK1 = | R ave1 −R ave2 | was used as an index of stability of reflectance when ΔR BK1 was repeatedly driven. Here, the smaller the value of ΔR BK1, the better the stability of the reflectance when driven repeatedly.
表1に記載の結果より明らかな様に、本発明の構成を満たす表示素子は、比較例に対し、繰返し駆動させたときの反射率の安定性が改善されているのがわかる。 As is apparent from the results shown in Table 1, it can be seen that the display element satisfying the configuration of the present invention has improved reflectance stability when it is repeatedly driven as compared with the comparative example.
実施例2
《表示素子の作製》
〔電解液の作製〕
(電解液2−1の調製)
化合物(S1−4)の2.5g中に、p−トルエンスルフォン酸銀0.1gと化合物(G2−12)を0.2gとビス(トリフルオロメチルスルホニル)イミドリチウム0.025gとを溶解させて、電解液2−1を得た。
Example 2
<< Production of display element >>
(Preparation of electrolyte)
(Preparation of electrolyte 2-1)
In 2.5 g of the compound (S1-4), 0.1 g of silver p-toluenesulfonate, 0.2 g of the compound (G2-12) and 0.025 g of bis (trifluoromethylsulfonyl) imide lithium are dissolved. Thus, an electrolytic solution 2-1 was obtained.
〔電極の作製〕
(電極2−1の作製)
厚さ1.5mmで2cm×4cmのガラス基板上に、ITO(Indium Tin Oxide、インジウム錫酸化物)膜を公知の方法に従って形成して、透明電極(電極2−1)を得た。
[Production of electrodes]
(Preparation of electrode 2-1)
An ITO (Indium Tin Oxide) film was formed on a 2 cm × 4 cm glass substrate having a thickness of 1.5 mm according to a known method to obtain a transparent electrode (electrode 2-1).
(電極2−2の作製)
厚さ1.5mmで2cm×4cmのガラス/クロム電極上に、金薄膜を公知の方法に従って形成して、電極2−2を得た。
(Preparation of electrode 2-2)
A gold thin film was formed on a 2 cm × 4 cm glass / chromium electrode having a thickness of 1.5 mm according to a known method to obtain an electrode 2-2.
(電極2−3の作製)
電極2−1上にスパッタ法で銀純度99.5%、膜厚20nmになるように銀薄膜を成膜して電極2−3を作製した。
(Preparation of electrode 2-3)
A silver thin film was formed on the electrode 2-1 by sputtering so as to have a silver purity of 99.5% and a film thickness of 20 nm to prepare an electrode 2-3.
(電極2−4の作製)
電極2−1上にスパッタ法で銀純度99.5%、膜厚5nmになるように銀薄膜を成膜して電極2−4を作製した。
(Preparation of electrode 2-4)
A silver thin film was formed on the electrode 2-1 by sputtering to form a silver thin film having a silver purity of 99.5% and a film thickness of 5 nm to produce an electrode 2-4.
(電極2−5の作製)
電極2−1上にスパッタ法で銀純度99.5%、膜厚3nmになるように銀薄膜を成膜して電極2−5を作製した。
(Preparation of electrode 2-5)
A silver thin film was formed on the electrode 2-1 by sputtering so that the silver purity was 99.5% and the film thickness was 3 nm, and an electrode 2-5 was produced.
(電極2−6の作製)
電極2−1上にスパッタ法で銀純度99.5%、膜厚50nmになるように銀薄膜を成膜して電極2−6を作製した。
(Preparation of electrode 2-6)
A silver thin film was formed on the electrode 2-1 by sputtering so that the silver purity was 99.5% and the film thickness was 50 nm, and an electrode 2-6 was produced.
(電極2−7の作製)
電極2−1上にスパッタ法で銀純度99.5%、膜厚60nmになるように銀薄膜を成膜して電極2−7を作製した。
(Preparation of electrode 2-7)
A silver thin film was formed on the electrode 2-1 by sputtering so that the silver purity was 99.5% and the film thickness was 60 nm, whereby an electrode 2-7 was produced.
(電極2−8の作製)
電極2−1上にスパッタ法で銀純度99.0%、膜厚20nmになるように銀薄膜を成膜して電極2−8を作製した。
(Preparation of electrode 2-8)
A silver thin film was formed on the electrode 2-1 by sputtering so that the silver purity was 99.0% and the film thickness was 20 nm, and an electrode 2-8 was produced.
(電極2−9の作製)
電極2−1上にスパッタ法で銀純度98.0%、膜厚20nmになるように銀薄膜を成膜して電極2−9を作製した。
(Preparation of electrode 2-9)
A silver thin film was formed on the electrode 2-1 by sputtering so that the silver purity was 98.0% and the film thickness was 20 nm, and an electrode 2-9 was produced.
(二酸化チタン分散物の調製)
水/エタノール混合溶液に、クラレポバールPVA235(クラレ社製、ポリビニルアルコール樹脂)を固形分濃度で2質量%になるように添加し、加熱溶解させた後、石原産業社製の二酸化チタンCR−90を20質量%となるように超音波分散機で分散させて、二酸化チタン分散物を得た。
(Preparation of titanium dioxide dispersion)
Kuraray Poval PVA235 (manufactured by Kuraray Co., Ltd., polyvinyl alcohol resin) was added to the water / ethanol mixed solution so as to have a solid content concentration of 2% by mass, dissolved by heating, and then titanium dioxide CR-90 made by Ishihara Sangyo Co., Ltd. Was dispersed with an ultrasonic disperser so as to be 20% by mass to obtain a titanium dioxide dispersion.
〔表示素子の作製〕
(表示素子2−1の作製)
電極2−2上に前述の二酸化チタン分散物を乾燥後の平均膜厚が20μmになるようにスクリーン印刷し、その後50℃で30分間乾燥して溶媒を蒸発させた後、85℃の雰囲気中で1時間乾燥させて多孔質白色散乱層を形成した電極2−2a。電極2−2aの周辺部を、平均粒径40μmのガラス製球形ビーズを体積分率として10%含むオレフィン系封止剤で縁取りした後に、電極2−2aと電極2−1とが直交するように貼り合わせ、さらに加熱押圧して空セルを作製した。該空セルに電解液2−1を真空注入し、注入口をエポキシ系の紫外線硬化樹脂にて封止し、表示素子2−1を作製した。
[Production of display element]
(Preparation of display element 2-1)
On the electrode 2-2, the above titanium dioxide dispersion was screen-printed so that the average film thickness after drying was 20 μm, then dried at 50 ° C. for 30 minutes to evaporate the solvent, and then in an atmosphere at 85 ° C. The electrode 2-2a was dried for 1 hour to form a porous white scattering layer. After rimming the periphery of the electrode 2-2a with an olefin-based sealant containing glass spherical beads having an average particle diameter of 40 μm as a volume fraction of 10%, the electrode 2-2a and the electrode 2-1 are orthogonal to each other. And then heated and pressed to produce an empty cell. The electrolytic solution 2-1 was vacuum-injected into the empty cell, and the injection port was sealed with an epoxy-based ultraviolet curable resin to produce a display element 2-1.
(表示素子2−2の作製)
電極2−2を電極2−1に変更した以外は表示素子2−1と同様にして、表示素子2−2を作製した。
(Preparation of display element 2-2)
A display element 2-2 was produced in the same manner as the display element 2-1, except that the electrode 2-2 was changed to the electrode 2-1.
(表示素子2−3の作製)
表示素子2−1の観察側の電極(多孔質白色散乱層が形成されていない方の電極)が+1.2Vとなるように対向電極間に電圧を5秒間印加して、非観察側の電極(多孔質白色散乱層が形成されている方の電極)に析出銀を形成して、表示素子2−3を作製した。
(Preparation of display element 2-3)
A voltage is applied for 5 seconds between the counter electrodes so that the observation side electrode of the display element 2-1 (the electrode on which the porous white scattering layer is not formed) is +1.2 V, and the non-observation side electrode Precipitated silver was formed on (the electrode on which the porous white scattering layer was formed) to produce a display element 2-3.
(表示素子2−4の作製)
電極2−2を電極2−3に変更した以外は表示素子2−1と同様にして、表示素子2−4を作製した。
(Preparation of display element 2-4)
A display element 2-4 was produced in the same manner as the display element 2-1, except that the electrode 2-2 was changed to the electrode 2-3.
(表示素子2−5の作製)
電極2−1を電極2−3に、電極2−2を電極2−1に変更した以外は表示素子2−1と同様にして、表示素子2−5を作製した。
(Preparation of display element 2-5)
A display element 2-5 was produced in the same manner as the display element 2-1, except that the electrode 2-1 was changed to the electrode 2-3 and the electrode 2-2 was changed to the electrode 2-1.
(表示素子2−6の作製)
表示素子2−4の観察側の電極(多孔質白色散乱層が形成されていない方の電極)が−1.2Vとなるように対向電極間の電圧を設定して、非観察側の銀薄膜を目視で完全に溶解するまで印加を続けた。このとき、観察側の電極(多孔質白色散乱層が形成されている方の電極)に析出銀が形成されていることを確認した。次に、観察側の電極が+1.2Vとなるように対向電極間の電圧を設定して、観察側の析出銀を目視で完全に溶解するまで印加を続けた。このとき、非観察側の電極に析出銀が形成されていることを確認して、得られた表示素子を2−6をとした。
(Preparation of display element 2-6)
The non-observation side silver thin film is set by setting the voltage between the counter electrodes so that the observation side electrode (the electrode on which the porous white scattering layer is not formed) of the display element 2-4 is -1.2V. The application was continued until it was completely dissolved visually. At this time, it was confirmed that precipitated silver was formed on the observation-side electrode (the electrode on which the porous white scattering layer was formed). Next, the voltage between the counter electrodes was set so that the observation side electrode was +1.2 V, and the application was continued until the observation-side precipitated silver was completely dissolved visually. At this time, it was confirmed that deposited silver was formed on the non-observation side electrode, and the obtained display element was designated 2-6.
(表示素子2−7〜2−15の作製)
観察側の電極と非観察側の電極と銀薄膜を溶解するときの電圧を表2に示す組合せに変更した以外は表示素子2−6と同様にして、表示素子2−7〜2−15を作製した。
(Preparation of display elements 2-7 to 2-15)
The display elements 2-7 to 2-15 are the same as the display element 2-6 except that the voltage at the time of melting the observation side electrode, the non-observation side electrode, and the silver thin film is changed to the combination shown in Table 2. Produced.
《表示素子の評価》
〔繰返し駆動させたときの反射率の安定性の評価〕
定電圧電源の両端子に作製した表示素子の両電極を接続し、+1.5Vの電圧を1秒間印加した後に−1.5Vの電圧を0.5秒間印加してグレーを表示させたときの波長550nmでの反射率をコニカミノルタセンシング社製の分光測色計CM−3700dで測定した。同様な駆動条件で合計10回駆動させ、得られた反射率の平均値をRave1とした。さらに1万回繰返し駆動させた後に同様な方法でRave2を求めた。ΔRBK1=|Rave1−Rave2|とし、ΔRBK1を繰返し駆動させたときの反射率の安定性の指標とした。ここでは、ΔRBK1の値が小さいほど、繰返し駆動させたときの反射率の安定性に優れることになる。
<< Evaluation of display element >>
[Evaluation of reflectance stability when driven repeatedly]
When both electrodes of the display element are connected to both terminals of the constant voltage power source, a voltage of +1.5 V is applied for 1 second, and then a voltage of -1.5 V is applied for 0.5 second to display gray The reflectance at a wavelength of 550 nm was measured with a spectrocolorimeter CM-3700d manufactured by Konica Minolta Sensing. Under the same driving conditions, driving was performed 10 times in total, and the average value of the obtained reflectances was defined as R ave1 . Further, after driving repeatedly 10,000 times, R ave2 was obtained by the same method. ΔR BK1 = | R ave1 −R ave2 | was used as an index of stability of reflectance when ΔR BK1 was repeatedly driven. Here, the smaller the value of ΔR BK1, the better the stability of the reflectance when driven repeatedly.
表2に記載の結果より明らかな様に、本発明の構成を満たす表示素子は、比較例に対し、繰返し駆動させたときの反射率の安定性が改善されているのがわかる。 As is apparent from the results shown in Table 2, it can be seen that the display element satisfying the configuration of the present invention has improved reflectance stability when it is repeatedly driven as compared with the comparative example.
1 観察側ガラス基板
2 観察側電極
3 非観察側ガラス基板
4 非観察側電極
5 銀薄膜
6 電解液
7,8 析出銀
DESCRIPTION OF
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009004444A JP5347516B2 (en) | 2009-01-13 | 2009-01-13 | Method for manufacturing electrochemical display element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009004444A JP5347516B2 (en) | 2009-01-13 | 2009-01-13 | Method for manufacturing electrochemical display element |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010164613A JP2010164613A (en) | 2010-07-29 |
JP5347516B2 true JP5347516B2 (en) | 2013-11-20 |
Family
ID=42580853
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009004444A Expired - Fee Related JP5347516B2 (en) | 2009-01-13 | 2009-01-13 | Method for manufacturing electrochemical display element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5347516B2 (en) |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3815516B2 (en) * | 1996-10-02 | 2006-08-30 | ソニー株式会社 | Optical device and method of using the same |
JP2005189384A (en) * | 2003-12-25 | 2005-07-14 | Sony Corp | Electrochemical light controlling device and its driving method |
JP2007086188A (en) * | 2005-09-20 | 2007-04-05 | Fuji Xerox Co Ltd | Display method and display device |
-
2009
- 2009-01-13 JP JP2009004444A patent/JP5347516B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2010164613A (en) | 2010-07-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20100097684A1 (en) | Display element | |
US8437067B2 (en) | Electrochemical display element | |
JP5131278B2 (en) | Display element | |
JP2010243632A (en) | Method of driving display element and display element | |
JP2010117635A (en) | Display element | |
JP5353894B2 (en) | Display element | |
JP5347516B2 (en) | Method for manufacturing electrochemical display element | |
JP2010164683A (en) | Display element | |
JP2010256436A (en) | Electrochemical display element | |
JP5488600B2 (en) | Display element | |
JP2010139541A (en) | Display element | |
JP2010117409A (en) | Display element | |
JP2009288409A (en) | Display element | |
JP2011017837A (en) | Display element | |
JP2010164861A (en) | Display element | |
JP2010197809A (en) | Method for driving display element | |
JP2010217692A (en) | Display element | |
JP2010237242A (en) | Display element | |
JP2010164804A (en) | Display element and method for manufacturing display element | |
JP2010197673A (en) | Display element | |
JP2010256603A (en) | Display element | |
JP2010054566A (en) | Electrolytic composition and display element | |
JPWO2009150947A1 (en) | Display element | |
JP2010134226A (en) | Display element | |
JP2010190945A (en) | Display element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110705 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20120201 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130321 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130723 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130805 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |