WO2009114983A1 - 长循环前缀帧结构下行专用导频与物理资源块的映射方法 - Google Patents

长循环前缀帧结构下行专用导频与物理资源块的映射方法 Download PDF

Info

Publication number
WO2009114983A1
WO2009114983A1 PCT/CN2008/073714 CN2008073714W WO2009114983A1 WO 2009114983 A1 WO2009114983 A1 WO 2009114983A1 CN 2008073714 W CN2008073714 W CN 2008073714W WO 2009114983 A1 WO2009114983 A1 WO 2009114983A1
Authority
WO
WIPO (PCT)
Prior art keywords
downlink dedicated
mapped
time domain
mapping
subcarriers
Prior art date
Application number
PCT/CN2008/073714
Other languages
English (en)
French (fr)
Inventor
姜静
郁光辉
于辉
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to JP2010533423A priority Critical patent/JP5208219B2/ja
Priority to EP20080873412 priority patent/EP2164181A4/en
Priority to KR1020107002013A priority patent/KR101140044B1/ko
Priority to US12/671,389 priority patent/US8391233B2/en
Publication of WO2009114983A1 publication Critical patent/WO2009114983A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/2605Symbol extensions, e.g. Zero Tail, Unique Word [UW]
    • H04L27/2607Cyclic extensions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/068Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission using space frequency diversity

Definitions

  • the present invention relates to the field of wireless communication technologies, and specifically relates to a long-term evolution (Long Term Evolution, LTE for short), a long cyclic prefix (EXTend Cyclic Prefix, referred to as: Extend CP) frame structure downlink dedicated pilot and physical resource block mapping method.
  • LTE Long Term Evolution
  • EXTend Cyclic Prefix referred to as: Extend CP
  • the common pilot is inserted according to the six to eight antenna ports, then the pilot overhead will be very large, and the real channel information estimated by the uplink/downlink is also different, and the weighting feedback of the beamforming is still needed. Information can be used to estimate real channel information.
  • the present invention provides a long cyclic prefix frame structure downlink dedicated pilot for the problem that the base station does not acquire all channel information and the feedback overhead of the beamforming weight when the base station uses beamforming of more than 4 antennas.
  • the mapping method with the physical resource block can support beamforming with less overhead and better performance.
  • a long cyclic prefix frame structure downlink dedicated pilot and physical resource block mapping method is applied to a long term evolution system, and includes the following steps:
  • the other downlink dedicated pilots are processed according to the time domain interval, the frequency domain interval and the predetermined rule mapping; the time domain interval is 2 or 3 orthogonal frequency division multiplexing symbols, and the frequency domain interval is 2 subcarriers in the same time domain.
  • the predetermined rule is: the physical resource block maps 12 subcarriers in the frequency domain, and maps four downlink dedicated pilots in each channel in the same time domain, and each dedicated pilot is separated by two subcarriers.
  • the downlink dedicated pilot is only sent one way in the physical resource block.
  • time domain corresponding position of the specific location is a fifth orthogonal frequency division multiplexing symbol
  • frequency domain corresponding position is the same subcarrier as the first column common pilot of the physical resource block.
  • the physical resource block includes 12 subcarriers in the frequency domain and 12 orthogonal frequency division multiplexing symbols in the time domain.
  • the mapping method is specifically:
  • mapping the first downlink dedicated pilot in the time domain to the 5th orthogonal frequency division multiplexing symbol mapping in the frequency domain to the Ath subcarrier; mapping the second downlink dedicated pilot in the time domain to the 5th Orthogonal frequency division multiplexing symbols are mapped to the A + 3 subcarriers in the frequency domain; the third downlink dedicated pilot is mapped in the time domain to the 5th orthogonal frequency division multiplexing symbol, and mapped to the frequency domain in the frequency domain A+6 subcarriers; mapping the fourth downlink dedicated pilot in the time domain to the 5th orthogonal frequency division multiplexing symbol, and mapping in the frequency domain to the A+9th subcarrier;
  • mapping the fifth downlink dedicated pilot in the time domain to the 8th orthogonal frequency division multiplexing symbol mapping in the frequency domain to the Bth subcarrier; mapping the sixth downlink dedicated pilot in the time domain to the 8th Orthogonal frequency division multiplexing symbols are mapped to the B+3 subcarriers in the frequency domain; the seventh downlink dedicated pilot is mapped in the time domain to the 8th orthogonal frequency division multiplexing symbol, and mapped in the frequency domain B + 6 subcarriers; mapping the eighth downlink dedicated pilot in the time domain to the eighth orthogonal frequency division multiplexing symbol, and mapping in the frequency domain to the B+9th subcarrier;
  • the downlink dedicated pilot in the physical resource block is multiple, and the time domain corresponding position of each downlink dedicated pilot mapped to the specific location of the physical resource block is located in the fifth orthogonal frequency of the physical resource block.
  • the frequency division corresponding positions of the specific locations of the downlink dedicated pilots mapped to the physical resource blocks are shifted from each other.
  • the physical resource block includes 12 subcarriers in the frequency domain and 12 orthogonal frequency division multiplexing symbols in the time domain.
  • the mapping method is specifically:
  • the mapping method divides one downlink dedicated pilots into four groups, and each group includes four downlink dedicated pilots located in the same orthogonal frequency division multiplexing symbol;
  • the first set of downlink dedicated pilots are mapped in the time domain to the fifth orthogonal frequency division multiplexing symbol;
  • the second set of downlink dedicated pilots are mapped in the time domain to the eighth orthogonal frequency division multiplexing.
  • the third group of downlink dedicated pilots are mapped in the time domain to the 11th or 12th orthogonal frequency division multiplexing symbols;
  • the first downlink dedicated pilot of each of the four downlink dedicated pilots is mapped to the first, second or third subcarriers in the frequency domain, and the second to fourth downlink dedicated pilots are sequentially mapped in the frequency domain. Interval 2 subcarriers.
  • the physical resource block includes 12 subcarriers in the frequency domain and 12 orthogonal frequency division multiplexing symbols in the time domain.
  • the mapping method is specifically:
  • the mapping method divides one downlink dedicated pilots into four groups, and each group includes four downlink dedicated pilots located in the same orthogonal frequency division multiplexing symbol;
  • the first set of downlink dedicated pilots are mapped in the time domain to the fifth orthogonal frequency division multiplexing symbol;
  • the second set of downlink dedicated pilots are mapped in the time domain to the ninth orthogonal frequency division multiplexing.
  • the third group of downlink dedicated pilots are mapped in the time domain to the twelfth orthogonal frequency division multiplexing symbol;
  • the first downlink dedicated pilot of each of the four downlink dedicated pilots is mapped to the first, second or third subcarriers in the frequency domain, and the second to fourth downlink dedicated pilots are sequentially mapped in the frequency domain. Interval 2 subcarriers.
  • first, second, third, and fourth downlink dedicated pilots are mapped to the fifth OFDM symbol in the time domain, and sequentially mapped to the first, fourth, seventh, and ten subcarriers in the frequency domain;
  • the 5th, 6th, 7th, and 8th downlink dedicated pilots are mapped to the 8th OFDM symbol in the time domain, and sequentially mapped to the 1st, 4th, 7th, and 10th subcarriers in the frequency domain, or sequentially mapped to the first in the frequency domain.
  • 3, 6, 9, 12 subcarriers; 9th, 10th, 11th, 12th downlink dedicated pilots are mapped to the 11th or 12th OFDM symbols in the time domain, and sequentially mapped to the 1st, 4th, and 7th in the frequency domain, 10 subcarriers.
  • the first, second, third, and fourth downlink dedicated pilots are mapped to the fifth OFDM symbol in the time domain, and are sequentially mapped to the first, fourth, seventh, and ten subcarriers in the frequency domain;
  • the 5th, 6th, 7th, and 8th downlink dedicated pilots are mapped to the 8th OFDM symbol in the time domain, and are mapped to the 2nd, 5th, 8th, and 11th subcarriers in the frequency domain;
  • the 9, 10, 11, and 12 downlink dedicated pilots are mapped to the 11th or 12th OFDM symbols in the time domain, and sequentially mapped to the 3rd, 6th, 9th, and 12th subcarriers in the frequency domain.
  • first, second, third, and fourth downlink dedicated pilots are mapped to the fifth OFDM symbol in the time domain, and sequentially mapped to the first, fourth, seventh, and ten subcarriers in the frequency domain;
  • the 5th, 6th, 7th, and 8th downlink dedicated pilots are mapped to the 9th OFDM symbol in the time domain, and are mapped to the 3rd, 6th, 9th, and 12th subcarriers in the frequency domain;
  • the 9, 10, 11, and 12 downlink dedicated pilots are mapped to the 12th OFDM symbol in the time domain, and sequentially mapped to the 1st, 4th, 7th, and 10th subcarriers in the frequency domain.
  • the present invention can achieve the following beneficial effects:
  • the channel information obtained by the dedicated pilot includes the real channel information and the processing weight of the beamforming, so that the UE does not need to specifically acquire the beamforming transmission weight, thereby avoiding the feedback overhead of the beamforming weight;
  • FIG. 1 is a schematic diagram of a physical resource block in a frame structure of a long cyclic prefix, which is defined in 3GPP TR 36.211, using the first two common pilots; in the figure: a common pilot transmitted by antenna port 0; Common pilot; indicates the common pilot transmitted by antenna port 2; Indicates the common pilot transmitted by antenna port 3; indicates the resource element,
  • FIG. 2 is according to the present invention
  • Figure 3 is a schematic view of an example 1 of the method shown in Figure 2
  • FIG. 4 is a schematic diagram of an example 2 of the method shown in FIG. 2.
  • FIG. 5 is a schematic illustration of Example 3 of the method illustrated in Figure 2
  • Figure 6 is a schematic illustration of an example four of the method illustrated in Figure 2
  • Figure 7 is a schematic illustration of Example 5 of the method illustrated in Figure 2
  • FIG. 8 is a schematic diagram of an example 6 of the method shown in FIG. 2. In FIG. 3 to FIG. 8, a downlink dedicated pilot is indicated;
  • the base station uses beamforming of more than 4 antennas, the common pilot cannot acquire all channel information, and there is a problem of feedback overhead of beamforming weights.
  • the beamforming downlink dedicated pilot is weighted by multiple antennas, not only multiple transmit antennas can be combined into one antenna port by multi-antenna weighting processing, that is, channel information of all transmit antennas can be estimated by one downlink dedicated pilot.
  • the downlink dedicated pilot can estimate the channel information after multi-antenna weighting processing, so using the downlink dedicated pilot is a solution with low overhead and good performance.
  • the invention clarifies the position of the pilot symbol in the physical resource block, that is, which positions of the long cyclic prefix frame structure of the downlink dedicated pilot in the LTE system are transmitted, and the time domain interval and the frequency domain interval of the transmission are set.
  • the RB Resource Block, RB for short
  • the RB includes 12 subcarriers in the frequency domain and 12 OFDM symbols in the time domain.
  • mapping method of the downlink dedicated pilot and the physical resource block of the Normal Cyclic Prefix (normal CP) frame structure is defined in the 52nd meeting of the LTE standard, and based on this, the overhead of the present invention is proposed with reference to the conclusion of the conference.
  • Small, high performance long cyclic prefix frame structure mapping method for downlink dedicated pilot and physical resource blocks A method for mapping frequency and physical resource blocks, when beamforming a downlink dedicated pilot, inserting four common pilots for detecting an omnidirectional control channel, and mapping the four common pilots to a minimum physical resource block, such as Figure 1 shows.
  • the common pilot and resource elements transmitted by antenna ports 0 ⁇ 3 are shown in Figure 1.
  • FIG. 2 is a method for mapping a downlink dedicated pilot and a physical resource block of a long cyclic prefix frame structure according to the present invention, where the method includes the following steps:
  • Step S202 The frequency domain interval setting process is performed, and the downlink frequency dedicated interval mapped to the same time domain is set to 2 subcarriers;
  • Step S204 The time domain interval setting process is configured to set the time domain interval to 2 or 3 OFDM symbols for the downlink dedicated pilots mapped to different time domains.
  • Step S206 Initial mapping processing, mapping the first downlink dedicated pilot to a specific location of the physical resource block, where the specific location is also referred to as an initial location, where the initial location is represented by A and D, where A is the initial location of the frequency domain , D is the time domain initial position;
  • Step S208 According to the initial position, the frequency domain interval and the time domain interval of the first downlink dedicated pilot And the predetermined rule performs mapping processing of other downlink dedicated pilots of the path.
  • the foregoing predetermined rule is: the physical resource block maps 12 subcarriers in the frequency domain, and maps four downlink dedicated pilots in the same time domain, and each dedicated pilot is separated by two subcarriers. When there are multiple channels for the downlink dedicated pilot, each channel can be processed according to this method.
  • Step S202 Frequency domain interval setting processing (or referred to as frequency domain density setting processing); the present invention determines that in one RB, each beam forming downlink dedicated pilot is separated by two subcarriers in the frequency domain; when multiple RBs are sent together When the frequency domain density of the dedicated pilot is kept evenly distributed, the two subcarriers are always spaced.
  • the density of the dedicated pilot symbols inserted in the frequency domain is determined by the coherence bandwidth. Therefore, to avoid distortion of the channel estimate, the minimum pilot density is determined by the Nyquist's theorem. Since the frame structure of the long CP is specifically for a scene with large coverage, the frequency fading of the channel is more obvious in this scenario, and the frequency domain interval for further pilot is as shown in equation (1):
  • Equation 1 4*2 r max 4*2*15 ⁇ Hz*3700m Equation (1)
  • ⁇ / is the subcarrier spacing
  • T max is the maximum delay of the channel. This parameter refers to 3GPP TR 25.996. Therefore, the dedicated pilot design of the frequency domain interval 2 subcarriers can fully meet the requirements of channel estimation.
  • Step S204 Time domain interval setting processing (or called time domain density setting processing); the density of the pilot symbols inserted in the time domain is determined by the coherence time. To avoid distortion of the channel estimation, the minimum pilot density is determined by Nyquist. The special sample theorem is decided. In order to further improve the performance of the channel estimation, in the present invention, the number of pilot symbols twice as large as the theorem is used, and the time domain interval of the pilot is as shown in equation (2):
  • is the maximum Doppler shift
  • the downlink dedicated pilot is separated by two to three OFDM symbols, which can meet the channel estimation requirements at high speed.
  • the dedicated pilots are distributed very uniformly in the time domain and the frequency domain, and the quality of the channel estimation can be ensured.
  • Step S206 initial mapping processing
  • D is set to the time domain initial position, and A is set to be the same as the position on the subcarrier where the first common pilot on each OFDM symbol of the smallest physical resource block is located, that is, A is The first column of the common pilot of the resource block is located on the same subcarrier.
  • the design of the dedicated pilot in the time domain is more reasonable than the previously proposed other dedicated pilot mapping methods, and the performance is better under the same pilot overhead.
  • the first line of beamforming downlink dedicated pilot starts from the first subcarrier in the frequency domain, the dedicated pilot and the common pilot have the same starting position in the frequency domain, and the beamforming weight is estimated by the uplink or downlink common pilot. After the channel is obtained, the pilot used for the adjacent position will recover the channel information more accurately.
  • the time domain starting position of the downlink dedicated pilot is the fifth OFDM symbol, which can ensure that the dedicated pilot is evenly distributed within the physical resource block, thereby achieving better channel estimation performance.
  • Step S208 in this step, four downlink dedicated pilots are mapped in the same time domain.
  • the frequency domain location of the dedicated pilot is the same as the frequency domain location of the common pilot; this is beneficial to improve the performance of channel estimation interpolation, and ensures the consistency of channel information extraction and application location in the beamforming process, and reduces the cumulative error.
  • the mapping method when the downlink dedicated pilot is one way (corresponding to a single beam) includes:
  • the time domain corresponding position of the initial position is a fifth orthogonal frequency division multiplexing OFDM symbol whose frequency domain position is set to be the same subcarrier as the first column common pilot of the physical resource block.
  • the physical resource block includes 12 subcarriers, that is, 1st to 12th subcarriers in the frequency domain, and includes 12 orthogonal frequency division multiplexing symbols, that is, 1st to 12th orthogonal frequency division multiplexing symbols in the time domain.
  • the mapping method divides one 12 downlink dedicated pilots into four groups, each group including four downlink dedicated pilots located in the same orthogonal frequency division multiplexing symbol.
  • the first set of downlink dedicated pilots are mapped in the time domain to the fifth orthogonal frequency division multiplexing symbol; the second set of downlink dedicated pilots are mapped in the time domain to the eighth orthogonal frequency division multiplexing.
  • the third group of downlink dedicated pilots are mapped in the time domain to the 11th or 12th orthogonal frequency division multiplexing symbols; or, the first group of downlink dedicated pilots are mapped in the time domain to the 5th orthogonal frequency division Multiplexing symbols; the second set of downlink dedicated pilots are mapped in the time domain to the ninth orthogonal frequency division multiplexing symbol, and the third group of downlink dedicated pilots are mapped in the time domain to the twelfth orthogonal frequency division multiplexing. symbol.
  • the first downlink dedicated pilot of each of the four downlink dedicated pilots is mapped to the first, second or third subcarriers in the frequency domain, and the second to fourth downlink dedicated pilots are sequentially mapped in the frequency domain. Interval 2 subcarriers.
  • mapping the ninth downlink dedicated pilot in the time domain to the 11th or 12th orthogonal frequency division multiplexing symbol, mapping in the frequency domain to the Cth subcarrier; mapping the tenth downlink dedicated pilot in the time domain to the first 11 or 12 orthogonal frequency division multiplexing OFDM symbols, mapped to the C+3th subcarrier in the frequency domain; mapping the eleventh downlink dedicated pilot in the time domain to the 11th or 12th orthogonal frequency division multiplexing OFDM symbols Mapping in the frequency domain to the C + 6 subcarriers; mapping the eighth downlink dedicated pilot in the time domain to the 11th or 12th orthogonal frequency division multiplexing OFDM symbols, and mapping in the frequency domain to the C+9th subcarriers Carrier, C l, 2 or 3.
  • A, B and C can take values in the range of 1 ⁇ 3 respectively.
  • the fifth, sixth, seventh and eight downlink dedicated pilots may be mapped in the time domain to the ninth orthogonal frequency division multiplexing symbol, and the frequency domain mapping is the same as described above.
  • the ninth, tenth, eleventh and twelve downlink dedicated pilots are mapped in the time domain to the twelfth orthogonal frequency division multiplexing symbol, and the frequency domain mapping is the same as the above.
  • the above-mentioned downlink dedicated pilot should be used in a way that avoids the setting of the common pilot.
  • the downlink dedicated pilot is multipath (generally no more than 3 channels), corresponding to multiple beams: the time domain corresponding positions of the initial positions of the respective channels are the same, located in the 5th orthogonal frequency division multiplexing symbol, only frequency
  • the corresponding position of the domain is staggered (the frequency domain position of the first path initial position may be set to be the same subcarrier as the common pilot of the first column of the physical resource block, and the other paths are staggered).
  • Example 1 the method of the present invention is further illustrated by the following examples: Example 1:
  • downlink dedicated pilots are mapped in the time domain to the 5th, 8th, and 11th OFDM symbols, respectively.
  • step S208 the operation of performing mapping processing of other downlink dedicated pilots in step S208 is specifically as follows:
  • mapping the second downlink dedicated pilot in the time domain to the 5th OFDM symbol, and mapping in the frequency domain to the A+3 4 subcarriers;
  • mapping the third downlink dedicated pilot in the time domain to the 5th OFDM symbol, and mapping in the frequency domain to the A+6 7 subcarriers;
  • mapping the sixth downlink dedicated pilot in the time domain to the 8th OFDM symbol, and mapping in the frequency domain to the B+3 6 subcarriers;
  • mapping the eighth downlink dedicated pilot in the time domain to the 8th OFDM symbol, and mapping in the frequency domain to the B+9 12 subcarriers;
  • mapping the ninth downlink dedicated pilot in the time domain to the eleventh OFDM symbol, and mapping in the frequency domain to the C l subcarriers;
  • downlink dedicated pilots are mapped in the time domain to the 5th, 8th, and 12th OFDM symbols, respectively.
  • step S208 the operation of performing mapping processing of other downlink dedicated pilots in step S208 is specifically as follows:
  • mapping the second downlink dedicated pilot in the time domain to the 5th OFDM symbol, and mapping in the frequency domain to the A+3 4 subcarriers;
  • mapping the third downlink dedicated pilot in the time domain to the 5th OFDM symbol, and mapping in the frequency domain to the A+6 7 subcarriers;
  • mapping the eighth downlink dedicated pilot in the time domain to the 8th OFDM symbol, and mapping in the frequency domain to the A+9 10 subcarriers;
  • mapping the ninth downlink dedicated pilot in the time domain to the twelfth OFDM symbol, and mapping in the frequency domain to the A l subcarrier;
  • mapping the tenth downlink dedicated pilot in the time domain to the twelfth OFDM symbol, and mapping in the frequency domain to the A+3 4 subcarriers;
  • downlink dedicated pilots are mapped in the time domain to the 5th, 9th, and 12th OFDM symbols, respectively.
  • step S208 the operation of performing mapping processing of other downlink dedicated pilots in step S208 is specifically as follows:
  • mapping the second downlink dedicated pilot in the time domain to the 5th OFDM symbol, and mapping in the frequency domain to the A+3 4 subcarriers;
  • mapping the fifth downlink dedicated pilot in the time domain to the ninth OFDM symbol, and mapping in the frequency domain to the B 3 subcarriers;
  • mapping the sixth downlink dedicated pilot in the time domain to the ninth OFDM symbol, and mapping in the frequency domain to the B+3 6 subcarriers;
  • mapping the eighth downlink dedicated pilot in the time domain to the ninth OFDM symbol, and mapping in the frequency domain to the B+9 12 subcarriers;
  • mapping the ninth downlink dedicated pilot in the time domain to the twelfth OFDM symbol, and mapping in the frequency domain to the C l subcarriers;
  • downlink dedicated pilots are mapped in the time domain to the 5th, 8th, and 12th OFDM symbols, respectively.
  • step S208 the operation of performing mapping processing of other downlink dedicated pilots in step S208 is specifically as follows:
  • mapping the second downlink dedicated pilot in the time domain to the 5th OFDM symbol, and mapping in the frequency domain to the A+3 4 subcarriers;
  • mapping the third downlink dedicated pilot in the time domain to the 5th OFDM symbol, mapping in the frequency domain to A+6 7 subcarriers;
  • mapping the fourth downlink dedicated pilot in the time domain to the 5th OFDM symbol, and mapping in the frequency domain to the A+9 10 subcarriers;
  • mapping the fifth downlink dedicated pilot in the time domain to the 8th OFDM symbol, and mapping in the frequency domain to the B 3 subcarriers;
  • mapping the sixth downlink dedicated pilot in the time domain to the 8th OFDM symbol, and mapping in the frequency domain to the B+3 6 subcarriers;
  • mapping the eighth downlink dedicated pilot in the time domain to the 8th OFDM symbol, and mapping in the frequency domain to the B+9 12 subcarriers;
  • mapping the ninth downlink dedicated pilot in the time domain to the twelfth OFDM symbol, and mapping in the frequency domain to the C l subcarriers;
  • downlink dedicated pilots are mapped in the time domain to the 5th, 8th, and 11th OFDM symbols, respectively.
  • step S208 the operation of performing mapping processing of other downlink dedicated pilots in step S208 is specifically as follows:
  • mapping the fourth downlink dedicated pilot in the time domain to the 5th OFDM symbol, and mapping in the frequency domain to the A+9 10 subcarriers;
  • mapping the fifth downlink dedicated pilot in the time domain to the 8th OFDM symbol, and mapping in the frequency domain to the B 2 subcarriers;
  • mapping the sixth downlink dedicated pilot in the time domain to the 8th OFDM symbol, and mapping in the frequency domain to the B+3 5 subcarriers;
  • mapping the seventh downlink dedicated pilot in the time domain to the 8th OFDM symbol, and mapping in the frequency domain to the B + 6 8 subcarriers;
  • mapping the eighth downlink dedicated pilot in the time domain to the 8th OFDM symbol, and mapping in the frequency domain to the B+9 11 subcarriers;
  • mapping the ninth downlink dedicated pilot in the time domain to the eleventh OFDM symbol, and mapping in the frequency domain to the C 3 subcarriers;
  • downlink dedicated pilots are mapped in the time domain to the 5th, 8th, and 11th OFDM symbols, respectively.
  • step S208 the operation of performing mapping processing of other downlink dedicated pilots in step S208 is specifically as follows:
  • mapping the third downlink dedicated pilot in the time domain to the 5th OFDM symbol, and mapping in the frequency domain to the A+6 7 subcarriers;
  • mapping the fourth downlink dedicated pilot in the time domain to the 5th OFDM symbol, and mapping in the frequency domain to the A+9 10 subcarriers;
  • mapping the sixth downlink dedicated pilot in the time domain to the 8th OFDM symbol, and mapping in the frequency domain to the B+3 4 subcarriers;
  • mapping the eighth downlink dedicated pilot in the time domain to the 8th OFDM symbol, and mapping in the frequency domain to the B+9 10 subcarriers;
  • mapping the ninth downlink dedicated pilot in the time domain to the eleventh OFDM symbol, and mapping in the frequency domain to the C l subcarriers;
  • the present invention by setting the frequency domain interval and the time domain interval in advance, and determining the position of the first downlink dedicated pilot (frequency domain start position and time domain start position), and According to a predetermined rule, the position of the pilot symbol in the physical resource block can be determined.
  • the downlink dedicated pilot structure in the present invention supports single stream beamforming with an arbitrary number of antennas and antenna spacing.
  • the downlink dedicated pilot is differentiated according to the beam, and is related to the single in the embodiment of the present invention.
  • the beamforming of the beam therefore, the dedicated pilot structure provided by the embodiment of the present invention includes a dedicated pilot.
  • the multi-beam case can be extended according to the corresponding pilot density, for example, two beams. Use two dedicated pilots, and so on.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

长循环前缀帧结构下行专用导频与物理资源块的映射方法
技术领域
本发明涉及无线通讯技术领域, 具体涉及一种长期演进系统(Long term evolution,简称 LTE )中的长循环前缀( Extend Cyclic Prefix,简称: Extend CP ) 帧结构下行专用导频与物理资源块的映射方法。
背景技术
在 LTE ( Long term evolution, 长期演进系统)标准的现有版本 3GPP ( 3rd Generation partnership project, 第三代移动通讯伙伴计划) TR 36.211中, 规 定了支持单流的波束形成技术, 传统的波束形成往往釆用 6根以上的发射天 线, 但是, LTE标准现有版本中只定义了四路公共导频, 实际中仅仅釆用四 路公共导频, 每根天线端口的信道信息都由所对应的公共导频提取, 因此, 无法获取每根天线的真实信道信息。
如果增加公共导频的数量,按照六〜八根天线端口插入公共导频, 那么导 频开销将会非常大, 而且上 /下行估计出的真实信道信息也有差异, 仍然需要 波束形成的权值反馈信息才能估计出真实的信道信息。
发明内容
本发明针对基站端釆用大于 4根天线的波束形成时, 从公共导频无法获 取全部信道信息以及存在波束形成权值的反馈开销的问题, 提供了一种长循 环前缀帧结构下行专用导频与物理资源块的映射方法, 能够以较小的开销和 较优的性能来支持波束形成。
为解决上述技术问题, 本发明的一种长循环前缀帧结构下行专用导频与 物理资源块的映射方法, 应用于长期演进系统中, 包括如下步骤:
将每路第一个下行专用导频映射到物理资源块具体位置;
按时域间隔、 频域间隔和预定规则映射处理该路其他下行专用导频; 时 域间隔是 2个或 3个正交频分复用符号, 频域间隔是相同时域 2个子载波。 进一步地, 预定规则是: 物理资源块在频域映射 12个子载波, 在同一时 域映射每路四个下行专用导频, 每个专用导频相隔两个子载波。
进一步地, 在物理资源块中下行专用导频只发送一路。
进一步地, 具体位置的时域对应位置是第 5个正交频分复用符号, 其频 域对应位置是与物理资源块的第一列公共导频的相同子载波。
进一步地, 物理资源块在频域包含 12个子载波, 在时域包含 12个正交 频分复用符号, 该映射方法具体是:
将第一个下行专用导频在时域映射到第 5个正交频分复用符号, 在频域 映射到第 A个子载波; 将第二个下行专用导频在时域映射到第 5个正交频分 复用符号,在频域映射到第 A + 3个子载波;将第三个下行专用导频在时域映 射到第 5个正交频分复用符号, 在频域映射到第 A+6个子载波; 将第四个下 行专用导频在时域映射到第 5个正交频分复用符号, 在频域映射到第 A+9个 子载波;
将第五个下行专用导频在时域映射到第 8个正交频分复用符号, 在频域 映射到第 B个子载波; 将第六个下行专用导频在时域映射到第 8个正交频分 复用符号, 在频域映射到第 B+3个子载波; 将第七个下行专用导频在时域映 射到第 8个正交频分复用符号,在频域映射到第 B + 6个子载波; 将第八个下 行专用导频在时域映射到第 8个正交频分复用符号, 在频域映射到第 B+9个 子载波;
将第九个下行专用导频在时域映射到第 12个正交频分复用符号,在频域 映射到第 C个子载波;将第十个下行专用导频在时域映射到第 12个正交频分 复用符号, 在频域映射到第 C+3个子载波; 将第十一个下行专用导频在时域 映射到第 12个正交频分复用符号, 在频域映射到第 C + 6个子载波; 将第八 个下行专用导频在时域映射到第 12 个正交频分复用符号, 在频域映射到第 C+9个子载波。
其中, B, C=l或 2或 3。
进一步地, 物理资源块中下行专用导频是多路, 每路下行专用导频映射 到物理资源块的具体位置的时域对应位置都位于物理资源块的第 5个正交频 分复用符号, 而各路下行专用导频映射到物理资源块的具体位置的频域对应 位置相互错开。
进一步地, 物理资源块在频域包含 12个子载波, 在时域包含 12个正交 频分复用符号, 该映射方法具体是:
该映射方法将一路 12个下行专用导频分为 4组,每组包括位于同一正交 频分复用符号的 4个下行专用导频;
在时频,第一组的下行专用导频在时域映射到第 5个正交频分复用符号; 第二组的下行专用导频在时域映射到第 8个正交频分复用符号, 第三组的下 行专用导频在时域映射到第 11或 12个正交频分复用符号;
在频域, 各组 4个下行专用导频中的第 1个下行专用导频在频域映射到 第 1,2或 3个子载波, 第 2~4个下行专用导频在频域映射时依次间隔 2个子 载波。
进一步地, 物理资源块在频域包含 12个子载波, 在时域包含 12个正交 频分复用符号, 该映射方法具体是:
该映射方法将一路 12个下行专用导频分为 4组,每组包括位于同一正交 频分复用符号的 4个下行专用导频;
在时频,第一组的下行专用导频在时域映射到第 5个正交频分复用符号; 第二组的下行专用导频在时域映射到第 9个正交频分复用符号, 第三组的下 行专用导频在时域映射到第 12个正交频分复用符号;
在频域, 各组 4个下行专用导频中的第 1个下行专用导频在频域映射到 第 1,2或 3个子载波, 第 2~4个下行专用导频在频域映射时依次间隔 2个子 载波。
进一步地,第 1,2,3,4个下行专用导频在时域均映射到第 5个 OFDM符号, 在频域依次映射到第 1,4,7,10个子载波;
第 5,6,7,8个下行专用导频在时域均映射到第 8个 OFDM符号,在频域依 次映射到第 1,4,7,10个子载波, 或者在频域依次映射到第 3,6,9,12个子载波; 第 9,10,11,12个下行专用导频在时域均映射到第 11或 12个 OFDM符号, 在频域依次映射到第 1,4,7,10个子载波。 进一步地,第 1,2,3,4个下行专用导频在时域均映射到第 5个 OFDM符号, 在频域依次映射到第 1,4,7,10个子载波;
第 5,6,7,8个下行专用导频在时域均映射到第 8个 OFDM符号,在频域依 次映射到第 2,5,8,11个子载波;
第 9,10,11,12个下行专用导频在时域均映射到第 11或 12个 OFDM符号, 在频域依次映射到第 3,6,9,12个子载波。
进一步地,第 1,2,3,4个下行专用导频在时域均映射到第 5个 OFDM符号, 在频域依次映射到第 1,4,7,10个子载波;
第 5,6,7,8个下行专用导频在时域均映射到第 9个 OFDM符号,在频域依 次映射到第 3,6,9,12个子载波;
第 9,10,11,12个下行专用导频在时域均映射到第 12个 OFDM符号,在频 域依次映射到第 1,4,7,10个子载波。
综上所述, 本发明可实现以下有益效果:
( 1 )通过明确导频符号在物理资源块中的位置, 解决了在基站端釆用大 于 4根天线的波束形成时, 现有 LTE标准的版本中公共导频无法获取全部信 道信息的问题;
( 2 )通过使专用导频获取的信道信息包含真实的信道信息和波束形成的 处理权值, 使得 UE无需再专门获取波束形成发射权值, 从而避免了波束形 成权值的反馈开销;
( 3 )此外, 专用导频在时域的起始位置设计较以前提出的专用导频映射 方法更为合理, 在相同导频开销的情况下, 性能更优;
( 4 )由于专用导频在频域的起始位置紧邻公共导频, 便于保证信道信息 提取和应用位置的一致性, 减小累计误差;
( 5 )由于专用导频在时域和频域分布非常均勾, 因此确保信道估计的质 量。 附图概述 下面结合附图和具体实施例进一步对本发明进行详细说明。
图 1是 3GPP TR 36.211中规定的在长循环前缀的帧结构中, 釆用前两路 公共导频的物理资源块示意图; 图中: 表示天线端口 0发送的公共导频; 表示天线端口 1发送的公共导频; 表示天线端口 2发送的公共导频;
Figure imgf000007_0001
表示天线端口 3发送的公共导频; 表示资源元素,
图 2是根据本发
的流程图;
图 3是图 2所示的方法的示例一的示意图
图 4是图 2所示的方法的示例二的示意图
图 5是图 2所示的方法的示例三的示意图
图 6是图 2所示的方法的示例四的示意图
图 7是图 2所示的方法的示例五的示意图
图 8是图 2所示的方法的示例六的示意图 图 3〜图 8中, 表示下行专用导频; 表示资源元素'
本发明的较佳实施方式
在现有 LTE标准的版本中, 在基站端釆用大于 4根天线的波束形成时, 公共导频无法获取全部信道信息,以及存在波束形成权值的反馈开销的问题。 考虑到波束形成下行专用导频经过多天线的加权处理, 不仅可以将多根发射 天线通过多天线的加权处理合成一个天线端口, 即通过一路下行专用导频即 可估计出所有发射天线的信道信息, 而且下行专用导频可以估计出经过多天 线加权处理的信道信息, 因此釆用下行专用导频是一个开销小, 性能好的解 决方案。 本发明通过明确导频符号在物理资源块中的位置, 即定义了下行专用导 频在 LTE系统中的长循环前缀帧结构的哪些位置上发送, 其发送的时域间隔 和频域间隔如何, 为下行专用导频在 LTE系统中工作提供了基础, 使得现有 LTE版本在使用根据本发明实施例的专用导频设计时, 能够以较小的开销, 同时以较优的性能来支持波束形成。上述长循环前缀帧结构是指 RB( Resource Block, 简称 RB )在频域上包含 12个子载波,在时域包含 12个 OFDM符号。
另外, LTE 标准第 52 次会议中定义了正常循环前缀(Normal Cyclic Prefix , 简称 normal CP ) 帧结构的下行专用导频和物理资源块的映射方法, 基于此, 参照此会议结论提出本发明的开销小、 性能优的长循环前缀帧结构 下行专用导频和物理资源块的映射方法。 频与物理资源块的映射方法, 釆用波束形成下行专用导频时, 插入四路公共 导频, 用于全向控制信道的检测, 四路公共导频和最小的物理资源块的映射 关系如图 1所示。 图 1中示出了天线端口 0~3分别传输的公共导频及资源元 素。
以下结合附图对本发明的优选实施方式进行说明, 应当理解, 此处所描 述的优选实施例仅用于说明和解释本发明, 并不用于限定本发明:
图 2所示为本发明长循环前缀帧结构下行专用导频与物理资源块的映射 方法, 该方法包括以下步骤:
步骤 S202: 频域间隔设置处理, 对于映射到同一时域的下行专用导频, 将其频域间隔设置为 2个子载波;
步骤 S204: 时域间隔设置处理, 对于映射到不同时域的下行专用导频, 将其时域间隔设置为 2个或 3个 OFDM符号;
步骤 S206: 初始映射处理, 将第一个下行专用导频映射到物理资源块具 体位置, 该具体位置又称为初始位置, 其中, 初始位置用 A和 D表示, 其中, A为频域初始位置, D为时域初始位置;
步骤 S208: 根据第一个下行专用导频的初始位置、 频域间隔和时域间隔 以及预定规则进行该路其他下行专用导频的映射处理。
上述预定规则是: 所述物理资源块在频域映射 12个子载波, 在同一时域 映射每路四个下行专用导频, 每个专用导频相隔两个子载波。 下行专用导频 有多路时, 每路均可按该方法处理。
以下详细描述上述各个步骤的处理:
步骤 S202: 频域间隔设置处理(或者称为频域密度设置处理) ; 本发明确定在一个 RB 中, 每个波束形成下行专用导频在频域间隔两个 子载波; 当多个 RB—起发送时, 专用导频的频域密度保持均勾分布, 始终 间隔两个子载波。
专用导频符号在频域所插的密度由相干带宽所决定, 因此为避免信道估 计的失真, 导频密度的最低限由奈奎斯特釆样定理决定。 由于长 CP 的帧结 构专门针对大覆盖的场景, 在该场景下信道的频选衰落更加明显, 为进一步 导频的频域间隔 如式( 1 )所示:
Sf =—— 1-—— = 1- -2.5 个
1 4*2 rmax 4*2*15^Hz*3700m 式(1 ) 在式 1中, Δ/为子载波间隔, Tmax为信道的最大时延, 该参数参考 3GPP TR25.996。 因此, 频域间隔 2子载波的专用导频设计完全可以满足信道估计 的要求。
步骤 S204: 时域间隔设置处理(或者称为时域密度设置处理) ; 导频符号在时域所插的密度由相干时间决定, 为避免信道估计的失真, 导频密度的最低限由奈奎斯特釆样定理决定。 为了进一步提高信道估计的性 能,本发明中使用釆样定理两倍的导频符号数,则导频的时域间隔 如式(2) 所示:
2*2f r 2*2*648Hz*l/14 在式(2 ) 中, Λ为最大多普勒频移, LTE规定 UE 的最大移动速度为 350km/h, 在此, /d=648Hz。 7}为一个 OFDM符号的时间。 下行专用导频间 隔两 ~三个 OFDM符号, 可以高速下满足信道估计的要求。
通过上述的时域间隔和频域间隔的设置处理, 使得专用导频在时域和频 域分布非常均匀, 可以确保信道估计的质量。
步骤 S206: 初始映射处理;
在该步骤中, 将 D设置为时域初始位置, 将 A设置为: 与最小物理资源 块每个 OFDM符号上第一个公共导频所处的子载波上的位置相同, 即, A为 与资源块的第一列公共导频位于相同子载波。
优选地, A=l , D=5, 即, 将第一个下行专用导频在频域的映射起始位置 为第一个子载波, 在时域映射的位置为第五个 OFDM符号。 该专用导频在时 域的起始位置设计较先前提出的其它专用导频映射方法更为合理, 在相同导 频开销的情况下, 性能更优。
( 1 )频域起始位置。
第一行波束形成下行专用导频在频域从第一个子载波开始, 专用导频和 公共导频在频域上的起始位置相同, 波束形成权值由上行或下行公共导频估 计真实信道后获得, 再用于相邻位置的导频将会更准确地恢复信道信息。
( 2 ) 时域起始位置。 下行专用导频的时域起始位置为第五个 OFDM符 号, 可以保证专用导频在物理资源块内均布, 实现更好的信道估计性能。
步骤 S208, 在该步骤中, 在同一时域映射四个下行专用导频。
专用导频的频域位置和公共导频的频域位置相同; 这样有利于提高信道 估计插值的性能, 而且波束形成过程中保证信道信息提取和应用位置的一致 性, 减小累计误差。
(一)按照上述方法, 所述下行专用导频是一路(对应于单波束) 时的 映射方法包括:
初始位置的时域对应位置是第 5个正交频分复用 OFDM符号, 其频域位 置设置为与物理资源块的第一列公共导频的相同子载波。 所述物理资源块在频域包含 12个子载波即第 1~12个子载波, 在时域包 含 12个正交频分复用符号即第 1~12个正交频分复用符号。
该映射方法将一路 12个下行专用导频分为 4组,每组包括位于同一正交 频分复用符号的 4个下行专用导频。
在时频,第一组的下行专用导频在时域映射到第 5个正交频分复用符号; 第二组的下行专用导频在时域映射到第 8个正交频分复用符号, 第三组的下 行专用导频在时域映射到第 11或 12个正交频分复用符号; 或者, 第一组的 下行专用导频在时域映射到第 5个正交频分复用符号; 第二组的下行专用导 频在时域映射到第 9个正交频分复用符号, 第三组的下行专用导频在时域映 射到第 12个正交频分复用符号。
在频域, 各组 4个下行专用导频中的第 1个下行专用导频在频域映射到 第 1,2或 3个子载波, 第 2~4个下行专用导频在频域映射时依次间隔 2个子 载波。
具体可表述为:
将第一个下行专用导频在时域映射到第 5个正交频分复用符号, 在频域 映射到第 A个子载波; 将第二个下行专用导频在时域映射到第 5个正交频分 复用 OFDM符号, 在频域映射到第 A + 3个子载波; 将第三个下行专用导频 在时域映射到第 5个正交频分复用 OFDM符号,在频域映射到第 A+6个子载 波; 将第四个下行专用导频在时域映射到第 5个正交频分复用 OFDM符号, 在频域映射到第 A+9个子载波, A=l,2或 3;
将第五个下行专用导频在时域映射到第 8个正交频分复用符号, 在频域 映射到第 B个子载波; 将第六个下行专用导频在时域映射到第 8个正交频分 复用 OFDM符号,在频域映射到第 B+3个子载波; 将第七个下行专用导频在 时域映射到第 8个正交频分复用 OFDM符号, 在频域映射到第 B + 6个子载 波; 将第八个下行专用导频在时域映射到第 8个正交频分复用 OFDM符号, 在频域映射到第 B+9个子载波, B=l,2或 3;
将第九个下行专用导频在时域映射到第 11或 12个正交频分复用符号, 在频域映射到第 C个子载波; 将第十个下行专用导频在时域映射到第 11或 12个正交频分复用 OFDM符号, 在频域映射到第 C+3个子载波; 将第十一 个下行专用导频在时域映射到第 11或 12个正交频分复用 OFDM符号, 在频 域映射到第 C + 6个子载波; 将第八个下行专用导频在时域映射到第 11或 12 个正交频分复用 OFDM符号, 在频域映射到第 C+9个子载波, C=l,2或 3。
A, B和 C可以分别在 1~3的范围内取值。
另外, 还可将第五、 六、 七和八个下行专用导频在时域映射到第 9个正 交频分复用符号, 频域映射与上述方式相同。 相应地, 将第九、 十、 十一和 十二个下行专用导频在时域映射到第 12个正交频分复用符号,频域映射与上 述方式目同。
以上下行专用导频在应用时应釆用可以避开公共导频的设置方式。
(二)所述下行专用导频是多路(一般不超过 3路) , 对应于多波束: 各路初始位置的时域对应位置相同, 位于第 5个正交频分复用符号, 仅 仅频域对应位置错开 (可将第一路初始位置的频域位置设置为与物理资源块 的第一列公共导频的相同子载波, 其他各路与之错开) 。
根据以上步骤和设计原则, 下面通过实施例进一步说明本发明的方法: 示例一:
如图 3所示, 由于 A=l , D=5, 在本发明示例中, 分别将下行专用导频 在时域映射到第 5个、 第 8个和第 11个 OFDM符号。
基于上述内容,在步骤 S208中进行其他下行专用导频的映射处理的操作 具体为:
将第二个下行专用导频在时域映射到第 5个 OFDM符号, 在频域映射到 第 A+3=4个子载波;
将第三个下行专用导频在时域映射到第 5个 OFDM符号, 在频域映射到 第 A+6=7个子载波;
将第四个下行专用导频在时域映射到第 5个 OFDM符号, 在频域映射到 第 A+9=10个子载波; 将第五个下行专用导频在时域映射到第 8个 OFDM符号, 在频域映射到 第 B=3个子载波;
将第六个下行专用导频在时域映射到第 8个 OFDM符号, 在频域映射到 第 B+3=6个子载波;
将第七个下行专用导频在时域映射到第 8个 OFDM符号, 在频域映射到 第 B + 6=9个子载波;
将第八个下行专用导频在时域映射到第 8个 OFDM符号, 在频域映射到 第 B+9 = 12个子载波;
将第九个下行专用导频在时域映射到第 11个 OFDM符号, 在频域映射 到第 C=l个子载波;
将第十个下行专用导频在时域映射到第 11个 OFDM符号, 在频域映射 到第 C+3=4个子载波;
将第十一个下行专用导频在时域映射到第 11个 OFDM符号, 在频域映 射到第 C+6=7个子载波;
将第十二个下行专用导频在时域映射到第 11个 OFDM符号, 在频域映 射到第 C+9=10个子载波。
示例二:
如图 4所示, 由于 A=l , B=5, 在本发明示例中, 分别将下行专用导频 在时域映射到第 5个、 第 8个、 第 12个 OFDM符号。
基于上述内容,在步骤 S208中进行其他下行专用导频的映射处理的操作 具体为:
将第二个下行专用导频在时域映射到第 5个 OFDM符号, 在频域映射到 第 A+3=4个子载波;
将第三个下行专用导频在时域映射到第 5个 OFDM符号, 在频域映射到 第 A+6=7个子载波;
将第四个下行专用导频在时域映射到第 5个 OFDM符号, 在频域映射到 第 A+9=10个子载波;
将第五个下行专用导频在时域映射到第 8个 OFDM符号, 在频域映射到 第 A=1个子载波; 将第六个下行专用导频在时域映射到第 8个 OFDM符号, 在频域映射到 第 A+3=4个子载波;
将第七个下行专用导频在时域映射到第 8个 OFDM符号, 在频域映射到 第 A + 6=7个子载波;
将第八个下行专用导频在时域映射到第 8个 OFDM符号, 在频域映射到 第 A+9 = 10个子载波;
将第九个下行专用导频在时域映射到第 12个 OFDM符号, 在频域映射 到第 A=l个子载波;
将第十个下行专用导频在时域映射到第 12个 OFDM符号, 在频域映射 到第 A+3=4个子载波;
将第十一个下行专用导频在时域映射到第 12个 OFDM符号, 在频域映 射到第 A+6=7个子载波;
将第十二个下行专用导频在时域映射到第 12个 OFDM符号, 在频域映 射到第 A+9=10个子载波。
示例三:
如图 5所示, 由于 A=l , D=5, 在本发明示例中, 分别将下行专用导频 在时域映射到第 5个、 第 9个、 第 12个 OFDM符号。
基于上述内容,在步骤 S208中进行其他下行专用导频的映射处理的操作 具体为:
将第二个下行专用导频在时域映射到第 5个 OFDM符号, 在频域映射到 第 A+3=4个子载波;
将第三个下行专用导频在时域映射到第 5个 OFDM符号, 在频域映射到 第 A+6=7个子载波; 将第四个下行专用导频在时域映射到第 5个 OFDM符号, 在频域映射到 第 A+9=10个子载波;
将第五个下行专用导频在时域映射到第 9个 OFDM符号, 在频域映射到 第 B=3个子载波;
将第六个下行专用导频在时域映射到第 9个 OFDM符号, 在频域映射到 第 B+3=6个子载波;
将第七个下行专用导频在时域映射到第 9个 OFDM符号, 在频域映射到 第 B + 6=9个子载波;
将第八个下行专用导频在时域映射到第 9个 OFDM符号, 在频域映射到 第 B+9 = 12个子载波;
将第九个下行专用导频在时域映射到第 12个 OFDM符号, 在频域映射 到第 C=l个子载波;
将第十个下行专用导频在时域映射到第 12个 OFDM符号, 在频域映射 到第 C+3=4个子载波;
将第十一个下行专用导频在时域映射到第 12个 OFDM符号, 在频域映 射到第 C+6=7个子载波;
将第十二个下行专用导频在时域映射到第 12个 OFDM符号, 在频域映 射到第 C+9=10个子载波。
示例四:
如图 6所示, 由于 A=l , D=5, 在本发明示例中, 分别将下行专用导频 在时域映射到第 5个、 第 8个、 第 12个 OFDM符号。
基于上述内容,在步骤 S208中进行其他下行专用导频的映射处理的操作 具体为:
将第二个下行专用导频在时域映射到第 5个 OFDM符号, 在频域映射到 第 A+3=4个子载波;
将第三个下行专用导频在时域映射到第 5个 OFDM符号, 在频域映射到 第 A+6=7个子载波;
将第四个下行专用导频在时域映射到第 5个 OFDM符号, 在频域映射到 第 A+9=10个子载波;
将第五个下行专用导频在时域映射到第 8个 OFDM符号, 在频域映射到 第 B=3个子载波;
将第六个下行专用导频在时域映射到第 8个 OFDM符号, 在频域映射到 第 B+3=6个子载波;
将第七个下行专用导频在时域映射到第 8个 OFDM符号, 在频域映射到 第 B + 6=9个子载波;
将第八个下行专用导频在时域映射到第 8个 OFDM符号, 在频域映射到 第 B+9 = 12个子载波;
将第九个下行专用导频在时域映射到第 12个 OFDM符号, 在频域映射 到第 C=l个子载波;
将第十个下行专用导频在时域映射到第 12个 OFDM符号, 在频域映射 到第 C+3=4个子载波;
将第十一个下行专用导频在时域映射到第 12个 OFDM符号, 在频域映 射到第 C+6=7个子载波;
将第十二个下行专用导频在时域映射到第 12个 OFDM符号, 在频域映 射到第 C+9=10个子载波。
示例五:
如图 7所示, 由于 A=l , D=5, 在本发明示例中, 分别将下行专用导频 在时域映射到第 5个、 第 8个、 第 11个 OFDM符号。
基于上述内容,在步骤 S208中进行其他下行专用导频的映射处理的操作 具体为:
将第二个下行专用导频在时域映射到第 5个 OFDM符号, 在频域映射到 第 A+3=4个子载波; 将第三个下行专用导频在时域映射到第 5个 OFDM符号, 在频域映射到 第 A+6=7个子载波;
将第四个下行专用导频在时域映射到第 5个 OFDM符号, 在频域映射到 第 A+9=10个子载波;
将第五个下行专用导频在时域映射到第 8个 OFDM符号, 在频域映射到 第 B=2个子载波;
将第六个下行专用导频在时域映射到第 8个 OFDM符号, 在频域映射到 第 B+3=5个子载波;
将第七个下行专用导频在时域映射到第 8个 OFDM符号, 在频域映射到 第 B + 6=8个子载波;
将第八个下行专用导频在时域映射到第 8个 OFDM符号, 在频域映射到 第 B+9 = 11个子载波;
将第九个下行专用导频在时域映射到第 11个 OFDM符号, 在频域映射 到第 C=3个子载波;
将第十个下行专用导频在时域映射到第 11个 OFDM符号, 在频域映射 到第 C+3=6个子载波;
将第十一个下行专用导频在时域映射到第 11个 OFDM符号, 在频域映 射到第 C+6=9个子载波;
将第十二个下行专用导频在时域映射到第 11个 OFDM符号, 在频域映 射到第 C+9=12个子载波。
示例六:
如图 8所示, 由于 A=l , D=5, 在本发明示例中, 分别将下行专用导频 在时域映射到第 5个、 第 8个、 第 11个 OFDM符号。
基于上述内容,在步骤 S208中进行其他下行专用导频的映射处理的操作 具体为:
将第二个下行专用导频在时域映射到第 5个 OFDM符号, 在频域映射到 第 A+3=4个子载波;
将第三个下行专用导频在时域映射到第 5个 OFDM符号, 在频域映射到 第 A+6=7个子载波;
将第四个下行专用导频在时域映射到第 5个 OFDM符号, 在频域映射到 第 A+9=10个子载波;
将第五个下行专用导频在时域映射到第 8个 OFDM符号, 在频域映射到 第 B=l个子载波;
将第六个下行专用导频在时域映射到第 8个 OFDM符号, 在频域映射到 第 B+3=4个子载波;
将第七个下行专用导频在时域映射到第 8个 OFDM符号, 在频域映射到 第 B + 6=7个子载波;
将第八个下行专用导频在时域映射到第 8个 OFDM符号, 在频域映射到 第 B+9 = 10个子载波;
将第九个下行专用导频在时域映射到第 11个 OFDM符号, 在频域映射 到第 C=l个子载波;
将第十个下行专用导频在时域映射到第 11个 OFDM符号, 在频域映射 到第 C+3=4个子载波;
将第十一个下行专用导频在时域映射到第 11个 OFDM符号, 在频域映 射到第 C+6=7个子载波;
将第十二个下行专用导频在时域映射到第 11个 OFDM符号, 在频域映 射到第 C+9=10个子载波。
从上面的描述可以看出, 在本发明中, 通过预先设置频域间隔和时域间 隔, 并确定第一个下行专用导频的位置 (频域起始位置和时域起始位置) , 并根据预定规则, 就可以确定导频符号在物理资源块中的位置。
本发明中的下行专用导频结构支持任意天线数量和天线间距的单流波束 形成。 下行专用导频是根据波束进行区分的, 在本发明实施例中涉及的是单 波束的波束形成, 因此本发明的实施例提供的专用导频结构包含一路专用导 频, 对于本领域技术人员来说, 可以根据相应的导频密度推广到多波束的情 况, 例如, 两个波束釆用两路专用导频, 以此类推。
以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本 领域的技术人员来说, 本发明可以有各种更改和变化。 凡在本发明的精神和 原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的保护 范围之内。

Claims

权 利 要 求 书
1、 一种长循环前缀帧结构下行专用导频与物理资源块的映射方法,应用 于长期演进系统中, 其特征在于, 包括如下步骤: 将每路第一个下行专用导频映射到物理资源块具体位置;
按时域间隔、 频域间隔和预定规则映射处理该路其他下行专用导频; 所 述时域间隔是 2个或 3个正交频分复用符号, 所述频域间隔是相同时域 2个 子载波。
2、 根据权利要求 1所述映射方法, 其特征在于, 所述预定规则是: 所述 物理资源块在频域映射 12 个子载波, 在同一时域映射每路四个下行专用导 频, 每个专用导频相隔两个子载波。
3、 根据权利要求 1或 2所述映射方法,其特征在于,在所述物理资源块 中所述下行专用导频只发送一路。
4、 根据权利要求 3所述映射方法,其特征在于, 所述具体位置的时域对 应位置是第 5个正交频分复用符号, 其频域对应位置是与物理资源块的第一 列公共导频的相同子载波。
5、 根据权利要求 3所述的映射方法,其特征在于, 所述物理资源块在频 域包含 12个子载波, 在时域包含 12个正交频分复用符号, 该映射方法具体 疋:
将第一个下行专用导频在时域映射到第 5个正交频分复用符号, 在频域 映射到第 A个子载波; 将第二个下行专用导频在时域映射到第 5个正交频分 复用符号,在频域映射到第 A + 3个子载波;将第三个下行专用导频在时域映 射到第 5个正交频分复用符号, 在频域映射到第 A+6个子载波; 将第四个下 行专用导频在时域映射到第 5个正交频分复用符号, 在频域映射到第 A+9个 子载波;
将第五个下行专用导频在时域映射到第 8个正交频分复用符号, 在频域 映射到第 B个子载波; 将第六个下行专用导频在时域映射到第 8个正交频分 复用符号, 在频域映射到第 B+3个子载波; 将第七个下行专用导频在时域映 射到第 8个正交频分复用符号,在频域映射到第 B + 6个子载波; 将第八个下 行专用导频在时域映射到第 8个正交频分复用符号, 在频域映射到第 B+9个 子载波;
将第九个下行专用导频在时域映射到第 12个正交频分复用符号,在频域 映射到第 C个子载波;将第十个下行专用导频在时域映射到第 12个正交频分 复用符号, 在频域映射到第 C+3个子载波; 将第十一个下行专用导频在时域 映射到第 12个正交频分复用符号, 在频域映射到第 C + 6个子载波; 将第八 个下行专用导频在时域映射到第 12 个正交频分复用符号, 在频域映射到第 C+9个子载波。
其中, B, C=l或 2或 3。
6、 根据权利要求 1或 2所述映射方法,其特征在于, 所述物理资源块 中所述下行专用导频是多路, 每路下行专用导频映射到所述物理资源块的所 述具体位置的时域对应位置都位于所述物理资源块的第 5个正交频分复用符 号, 而各路下行专用导频映射到所述物理资源块的具体位置的频域对应位置 相互错开。
7、 根据权利要求 3所述映射方法,其特征在于, 所述物理资源块在频 域包含 12个子载波, 在时域包含 12个正交频分复用符号, 该映射方法具体 疋:
该映射方法将一路 12个下行专用导频分为 4组,每组包括位于同一正交 频分复用符号的 4个下行专用导频;
在时频,第一组的下行专用导频在时域映射到第 5个正交频分复用符号; 第二组的下行专用导频在时域映射到第 8个正交频分复用符号, 第三组的下 行专用导频在时域映射到第 11或 12个正交频分复用符号;
在频域, 各组 4个下行专用导频中的第 1个下行专用导频在频域映射到 第 1,2或 3个子载波, 第 2~4个下行专用导频在频域映射时依次间隔 2个子 载波。
8、 根据权利要求 3所述的映射方法,其特征在于, 所述物理资源块在频 域包含 12个子载波, 在时域包含 12个正交频分复用符号, 该映射方法具体 疋: 该映射方法将一路 12个下行专用导频分为 4组,每组包括位于同一正交 频分复用符号的 4个下行专用导频;
在时频,第一组的下行专用导频在时域映射到第 5个正交频分复用符号; 第二组的下行专用导频在时域映射到第 9个正交频分复用符号, 第三组的下 行专用导频在时域映射到第 12个正交频分复用符号;
在频域, 各组 4个下行专用导频中的第 1个下行专用导频在频域映射到 第 1,2或 3个子载波, 第 2~4个下行专用导频在频域映射时依次间隔 2个子 载波。 9、 根据权利要求 7所述的映射方法, 其特征在于: 第 1,2,3,4个下行专用导频在时域均映射到第 5个 OFDM符号,在频域依 次映射到第 1,4,7,10个子载波;
第 5,6,7,8个下行专用导频在时域均映射到第 8个 OFDM符号,在频域依 次映射到第 1,4,7,10个子载波, 或者在频域依次映射到第 3,6,
9,12个子载波; 第 9,10,11,12个下行专用导频在时域均映射到第 11或 12个 OFDM符号, 在频域依次映射到第 1,4,7,10个子载波。
10、 根据权利要求 7所述的映射方法, 其特征在于:
第 1,2,3,4个下行专用导频在时域均映射到第 5个 OFDM符号,在频域依 次映射到第 1,4,7,10个子载波;
第 5,6,7,8个下行专用导频在时域均映射到第 8个 OFDM符号,在频域依 次映射到第 2,5,8,11个子载波;
第 9,10,11,12个下行专用导频在时域均映射到第 11或 12个 OFDM符号, 在频域依次映射到第 3,6,9,12个子载波。
11、 根据权利要求 8所述的映射方法, 其特征在于:
第 1,2,3,4个下行专用导频在时域均映射到第 5个 OFDM符号,在频域依 次映射到第 1,4,7,10个子载波; 第 5,6,7,8个下行专用导频在时域均映射到第 9个 OFDM符号,在频域依 次映射到第 3,6,9,12个子载波;
第 9,10,11,12个下行专用导频在时域均映射到第 12个 OFDM符号,在频 域依次映射到第 1,4,7,10个子载波。
PCT/CN2008/073714 2008-03-20 2008-12-25 长循环前缀帧结构下行专用导频与物理资源块的映射方法 WO2009114983A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2010533423A JP5208219B2 (ja) 2008-03-20 2008-12-25 エクステンド・サイクリックプレフィックス・フレーム構造のダウンリンク個別パイロットと物理リソースブロックとのマッピング方法
EP20080873412 EP2164181A4 (en) 2008-03-20 2008-12-25 METHOD FOR CORRESPONDING DEDICATED PILOT FREQUENCIES OF EXTENDED CYCLIC PREFIX FRAME STRUCTURE DOWNLINK TO PHYSICAL RESOURCE BLOCKS
KR1020107002013A KR101140044B1 (ko) 2008-03-20 2008-12-25 확장 순환 프리픽스 프레임 구조 다운링크 개별 파일럿과 물리 리소스 블록의 맵핑 방법
US12/671,389 US8391233B2 (en) 2008-03-20 2008-12-25 Method for mapping downlink dedicated pilots to resource elements in extended cyclic prefix frame structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200810085767A CN101350801B (zh) 2008-03-20 2008-03-20 长循环前缀帧结构下行专用导频与物理资源块的映射方法
CN200810085767.3 2008-03-20

Publications (1)

Publication Number Publication Date
WO2009114983A1 true WO2009114983A1 (zh) 2009-09-24

Family

ID=40269381

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2008/073714 WO2009114983A1 (zh) 2008-03-20 2008-12-25 长循环前缀帧结构下行专用导频与物理资源块的映射方法

Country Status (6)

Country Link
US (1) US8391233B2 (zh)
EP (1) EP2164181A4 (zh)
JP (1) JP5208219B2 (zh)
KR (1) KR101140044B1 (zh)
CN (1) CN101350801B (zh)
WO (1) WO2009114983A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010045777A (ja) * 2008-08-08 2010-02-25 Motorola Inc 複数アンテナに対する共通参照シンボルのマッピングおよび信号送信
CN111200486A (zh) * 2018-11-19 2020-05-26 华为技术有限公司 无线通信的方法和装置

Families Citing this family (90)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2272281B1 (en) * 2008-03-13 2015-02-25 IDTP Holdings, Inc. Neighbour cell quality measurement in a telecommunications system
CN101815047B (zh) * 2009-02-25 2013-12-04 中兴通讯股份有限公司 解调导频和物理资源块的映射方法和装置
CN101834820A (zh) * 2009-03-09 2010-09-15 中兴通讯股份有限公司 解调导频的资源映射方法
CA2755574C (en) * 2009-03-16 2017-09-12 Rockstar Bidco, LP Transmission using common and dedicated pilots
CN101510868A (zh) * 2009-03-17 2009-08-19 中兴通讯股份有限公司 参考信号和物理资源块的映射方法
CN105791200A (zh) * 2009-03-17 2016-07-20 中兴通讯股份有限公司 参考信号和物理资源块的映射方法
CN101841817B (zh) * 2009-03-20 2013-09-11 中兴通讯股份有限公司 一种信道测量导频的配置方法
US11218194B2 (en) 2009-03-23 2022-01-04 Lg Electronics Inc. Method and apparatus for transmitting reference signal in multi-antenna system
WO2010110588A2 (ko) 2009-03-23 2010-09-30 엘지전자주식회사 다중안테나 시스템에서 참조신호 전송방법 및 장치
CN101867949B (zh) * 2009-04-20 2015-05-20 中兴通讯股份有限公司 信道测量导频与物理资源块的映射方法
CN101594335B (zh) * 2009-06-19 2017-02-08 中兴通讯股份有限公司 参考信号和物理资源块的映射方法
US9049157B1 (en) 2009-08-16 2015-06-02 Compass Electro-Optical Systems Ltd Method and device for improving scalability of longest prefix match
CN102014096B (zh) * 2009-09-04 2014-06-11 中兴通讯股份有限公司 解调导频的映射装置及方法
CN102055517A (zh) * 2009-11-02 2011-05-11 中兴通讯股份有限公司 一种导频的映射方法及所采用的基站
CN101719888B (zh) * 2009-11-10 2013-03-20 中兴通讯股份有限公司 高级长期演进系统中参考信号序列的映射系统及方法
CN102118868B (zh) * 2009-12-31 2015-10-21 中兴通讯股份有限公司 多点协作传输中协作测量集合内小区资源映射方法及系统
US11943089B2 (en) 2010-05-28 2024-03-26 Cohere Technologies, Inc. Modulation and equalization in an orthonormal time-shifting communications system
US8976851B2 (en) 2011-05-26 2015-03-10 Cohere Technologies, Inc. Modulation and equalization in an orthonormal time-frequency shifting communications system
US9130638B2 (en) 2011-05-26 2015-09-08 Cohere Technologies, Inc. Modulation and equalization in an orthonormal time-frequency shifting communications system
US9071286B2 (en) 2011-05-26 2015-06-30 Cohere Technologies, Inc. Modulation and equalization in an orthonormal time-frequency shifting communications system
US10681568B1 (en) 2010-05-28 2020-06-09 Cohere Technologies, Inc. Methods of data channel characterization and uses thereof
US9071285B2 (en) 2011-05-26 2015-06-30 Cohere Technologies, Inc. Modulation and equalization in an orthonormal time-frequency shifting communications system
US9444514B2 (en) 2010-05-28 2016-09-13 Cohere Technologies, Inc. OTFS methods of data channel characterization and uses thereof
US10667148B1 (en) 2010-05-28 2020-05-26 Cohere Technologies, Inc. Methods of operating and implementing wireless communications systems
EP2578036A2 (en) * 2010-06-01 2013-04-10 ZTE Corporation Methods and systems for csi-rs resource allocation in lte-advance systems
CN102271109B (zh) * 2010-06-07 2015-08-12 中兴通讯股份有限公司 一种解调参考符号的映射方法及系统
US9252991B2 (en) * 2010-08-10 2016-02-02 Marvell World Trade Ltd. Sub-band feedback for beamforming on downlink multiple user MIMO configurations
US9031141B2 (en) 2011-05-26 2015-05-12 Cohere Technologies, Inc. Modulation and equalization in an orthonormal time-frequency shifting communications system
AU2012287609B2 (en) * 2011-07-28 2017-02-23 Samsung Electronics Co., Ltd. Apparatus and method for beamforming in wireless communication system
CN103248599B (zh) * 2012-02-06 2015-11-11 京信通信系统(中国)有限公司 一种物理下行共享信道的物理资源映射方法和装置
US10090972B2 (en) 2012-06-25 2018-10-02 Cohere Technologies, Inc. System and method for two-dimensional equalization in an orthogonal time frequency space communication system
US10003487B2 (en) 2013-03-15 2018-06-19 Cohere Technologies, Inc. Symplectic orthogonal time frequency space modulation system
US10469215B2 (en) 2012-06-25 2019-11-05 Cohere Technologies, Inc. Orthogonal time frequency space modulation system for the Internet of Things
US9929783B2 (en) 2012-06-25 2018-03-27 Cohere Technologies, Inc. Orthogonal time frequency space modulation system
US10411843B2 (en) 2012-06-25 2019-09-10 Cohere Technologies, Inc. Orthogonal time frequency space communication system compatible with OFDM
US9912507B2 (en) 2012-06-25 2018-03-06 Cohere Technologies, Inc. Orthogonal time frequency space communication system compatible with OFDM
US9967758B2 (en) 2012-06-25 2018-05-08 Cohere Technologies, Inc. Multiple access in an orthogonal time frequency space communication system
US9888431B2 (en) * 2013-01-14 2018-02-06 Lg Electronics Inc. Method for detecting small cell on basis of discovery signal
CN104639486B (zh) * 2013-11-12 2018-04-10 华为技术有限公司 传输方法及装置
CN105491665B (zh) 2014-09-15 2019-07-23 中兴通讯股份有限公司 导频配置方法及装置
US10158394B2 (en) 2015-05-11 2018-12-18 Cohere Technologies, Inc. Systems and methods for symplectic orthogonal time frequency shifting modulation and transmission of data
US10090973B2 (en) 2015-05-11 2018-10-02 Cohere Technologies, Inc. Multiple access in an orthogonal time frequency space communication system
US10574317B2 (en) 2015-06-18 2020-02-25 Cohere Technologies, Inc. System and method for providing wireless communication services using configurable broadband infrastructure shared among multiple network operators
US9866363B2 (en) 2015-06-18 2018-01-09 Cohere Technologies, Inc. System and method for coordinated management of network access points
CN112532558A (zh) 2015-06-27 2021-03-19 凝聚技术股份有限公司 与ofdm兼容的正交时频空间通信系统
US10892547B2 (en) 2015-07-07 2021-01-12 Cohere Technologies, Inc. Inconspicuous multi-directional antenna system configured for multiple polarization modes
US10693581B2 (en) 2015-07-12 2020-06-23 Cohere Technologies, Inc. Orthogonal time frequency space modulation over a plurality of narrow band subcarriers
WO2017044501A1 (en) 2015-09-07 2017-03-16 Cohere Technologies Multiple access using orthogonal time frequency space modulation
WO2017049303A1 (en) * 2015-09-17 2017-03-23 Cohere Technologies, Inc. Compatible use of orthogonal time frequency space modulation within an lte communication system
CN108781160B (zh) 2015-11-18 2022-04-29 凝聚技术公司 正交时间频率空间调制技术
WO2017100666A1 (en) 2015-12-09 2017-06-15 Cohere Technologies Pilot packing using complex orthogonal functions
EP3420641A4 (en) 2016-02-25 2019-12-11 Cohere Technologies, Inc. REFERENCE SIGNAL PACKAGING FOR WIRELESS COMMUNICATIONS
US10693692B2 (en) 2016-03-23 2020-06-23 Cohere Technologies, Inc. Receiver-side processing of orthogonal time frequency space modulated signals
WO2017173160A1 (en) 2016-03-31 2017-10-05 Cohere Technologies Channel acquisition using orthogonal time frequency space modulated pilot signal
US9667307B1 (en) 2016-03-31 2017-05-30 Cohere Technologies Wireless telecommunications system for high-mobility applications
EP3437279B1 (en) 2016-04-01 2021-03-03 Cohere Technologies, Inc. Iterative two dimensional equalization of orthogonal time frequency space modulated signals
KR102250054B1 (ko) 2016-04-01 2021-05-07 코히어 테크널러지스, 아이엔씨. Otfs 통신 시스템에서의 tomlinson-harashima 프리코딩
WO2017201467A1 (en) 2016-05-20 2017-11-23 Cohere Technologies Iterative channel estimation and equalization with superimposed reference signals
WO2018031952A1 (en) 2016-08-12 2018-02-15 Cohere Technologies Iterative multi-level equalization and decoding
WO2018032016A1 (en) 2016-08-12 2018-02-15 Cohere Technologies Localized equalization for channels with intercarrier interference
WO2018031938A1 (en) 2016-08-12 2018-02-15 Cohere Technologies Multi-user multiplexing of orthogonal time frequency space signals
WO2018064587A1 (en) 2016-09-29 2018-04-05 Cohere Technologies Transport block segmentation for multi-level codes
WO2018064605A1 (en) 2016-09-30 2018-04-05 Cohere Technologies Uplink user resource allocation for orthogonal time frequency space modulation
CN107994936B (zh) * 2016-10-27 2021-03-16 中国移动通信有限公司研究院 下行波束处理方法及装置
EP3549200B1 (en) 2016-12-05 2022-06-29 Cohere Technologies, Inc. Fixed wireless access using orthogonal time frequency space modulation
EP3566379A4 (en) 2017-01-09 2020-09-09 Cohere Technologies, Inc. PILOT ENCRYPTION FOR CHANNEL ESTIMATION
WO2018140837A1 (en) 2017-01-27 2018-08-02 Cohere Technologies Variable beamwidth multiband antenna
CN108631902B (zh) * 2017-03-24 2024-06-11 中兴通讯股份有限公司 一种配置方法及装置
US10568143B2 (en) 2017-03-28 2020-02-18 Cohere Technologies, Inc. Windowed sequence for random access method and apparatus
US11817987B2 (en) 2017-04-11 2023-11-14 Cohere Technologies, Inc. Digital communication using dispersed orthogonal time frequency space modulated signals
US11147087B2 (en) 2017-04-21 2021-10-12 Cohere Technologies, Inc. Communication techniques using quasi-static properties of wireless channels
WO2018200567A1 (en) 2017-04-24 2018-11-01 Cohere Technologies Multibeam antenna designs and operation
WO2018200577A1 (en) 2017-04-24 2018-11-01 Cohere Technologies Digital communication using lattice division multiplexing
KR102612426B1 (ko) 2017-07-12 2023-12-12 코히어 테크놀로지스, 아이엔씨. Zak 변환에 기초한 데이터 변조 기법
WO2019032605A1 (en) 2017-08-11 2019-02-14 Cohere Technologies RADIATION TRACING TECHNIQUE FOR WIRELESS CHANNEL MEASUREMENTS
CN109391448B (zh) 2017-08-11 2021-10-01 华为技术有限公司 一种信息传输方法及装置
CN109039978B (zh) 2017-08-11 2020-03-20 华为技术有限公司 基于序列的信号处理方法、通信设备及通信系统
US11324008B2 (en) 2017-08-14 2022-05-03 Cohere Technologies, Inc. Transmission resource allocation by splitting physical resource blocks
WO2019051093A1 (en) 2017-09-06 2019-03-14 Cohere Technologies REDUCTION OF TRELLIS IN TIME, FREQUENCY AND ORTHOGONAL SPATIAL MODULATION
WO2019051427A1 (en) 2017-09-11 2019-03-14 Cohere Technologies, Inc. WIRELESS LOCAL NETWORKS USING ORTHOGONAL TIME-FREQUENCY SPACE MODULATION
CN111095883B (zh) 2017-09-15 2023-04-07 凝聚技术公司 在正交时频空间信号接收器中实现同步
EP3685470A4 (en) 2017-09-20 2021-06-23 Cohere Technologies, Inc. LOW COST ELECTROMAGNETIC POWER SUPPLY
US11152957B2 (en) 2017-09-29 2021-10-19 Cohere Technologies, Inc. Forward error correction using non-binary low density parity check codes
EP4362344A3 (en) 2017-11-01 2024-07-31 Cohere Technologies, Inc. Precoding in wireless systems using orthogonal time frequency space multiplexing
WO2019113046A1 (en) 2017-12-04 2019-06-13 Cohere Technologies, Inc. Implementation of orthogonal time frequency space modulation for wireless communications
EP3750252A4 (en) 2018-02-08 2021-08-11 Cohere Technologies, Inc. CHANNEL ESTIMATE ASPECTS FOR ORTHOGONAL TIME-FREQUENCY SPATIAL MODULATION FOR WIRELESS COMMUNICATIONS
EP3763050A4 (en) 2018-03-08 2021-11-24 Cohere Technologies, Inc. PLANNING MULTI-USER MIMO TRANSMISSIONS IN FIXED WIRELESS COMMUNICATION SYSTEMS
US11329848B2 (en) 2018-06-13 2022-05-10 Cohere Technologies, Inc. Reciprocal calibration for channel estimation based on second-order statistics
US11522600B1 (en) 2018-08-01 2022-12-06 Cohere Technologies, Inc. Airborne RF-head system
JP7029361B2 (ja) * 2018-08-09 2022-03-03 Kddi株式会社 移動通信システム、端末装置、基地局装置、通信方法及びコンピュータプログラム

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1889554A (zh) * 2005-06-27 2007-01-03 华为技术有限公司 导频传送方法
CN101227232A (zh) * 2008-02-01 2008-07-23 中兴通讯股份有限公司 下行导频初始位置的映射方法和装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100918730B1 (ko) * 2003-10-27 2009-09-24 삼성전자주식회사 직교 주파수 분할 다중 방식을 사용하는 통신 시스템에서기지국 구분을 위한 파일럿 패턴 세트 송수신 장치 및 방법
US7457231B2 (en) 2004-05-04 2008-11-25 Qualcomm Incorporated Staggered pilot transmission for channel estimation and time tracking
ATE443962T1 (de) 2004-05-18 2009-10-15 Qualcomm Inc Umsetzer von schlitz zu verschachtelung und verschachtelung zu schlitz für ein ofdm-system
US8009551B2 (en) 2004-12-22 2011-08-30 Qualcomm Incorporated Initial pilot frequency selection
US20070041457A1 (en) * 2005-08-22 2007-02-22 Tamer Kadous Method and apparatus for providing antenna diversity in a wireless communication system
KR100767312B1 (ko) * 2005-09-05 2007-10-17 한국전자통신연구원 셀룰러 시스템의 하향 링크 신호 생성 장치와 셀 탐색 방법및 장치
JP4743910B2 (ja) 2006-07-06 2011-08-10 シャープ株式会社 無線通信システム、移動局装置およびランダムアクセス方法
MY146649A (en) * 2006-11-01 2012-09-14 Qualcomm Inc Method and apparatus for cell search in an orthogonal wireless communication system
KR101351020B1 (ko) * 2007-01-04 2014-01-16 엘지전자 주식회사 이동 통신 시스템에서의 제어 신호 다중화 방법
KR101498060B1 (ko) * 2008-02-19 2015-03-03 엘지전자 주식회사 Ofdm(a) 시스템에서의 상향링크 전송 방법

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1889554A (zh) * 2005-06-27 2007-01-03 华为技术有限公司 导频传送方法
CN101227232A (zh) * 2008-02-01 2008-07-23 中兴通讯股份有限公司 下行导频初始位置的映射方法和装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010045777A (ja) * 2008-08-08 2010-02-25 Motorola Inc 複数アンテナに対する共通参照シンボルのマッピングおよび信号送信
CN111200486A (zh) * 2018-11-19 2020-05-26 华为技术有限公司 无线通信的方法和装置
CN111200486B (zh) * 2018-11-19 2021-08-27 华为技术有限公司 无线通信的方法和装置

Also Published As

Publication number Publication date
EP2164181A1 (en) 2010-03-17
KR20100038212A (ko) 2010-04-13
US8391233B2 (en) 2013-03-05
CN101350801B (zh) 2012-10-10
JP2011504028A (ja) 2011-01-27
KR101140044B1 (ko) 2012-05-02
JP5208219B2 (ja) 2013-06-12
CN101350801A (zh) 2009-01-21
EP2164181A4 (en) 2014-01-15
US20100142476A1 (en) 2010-06-10

Similar Documents

Publication Publication Date Title
WO2009114983A1 (zh) 长循环前缀帧结构下行专用导频与物理资源块的映射方法
WO2018199074A1 (ja) 基地局装置、端末装置、通信方法、および、集積回路
WO2018199162A1 (ja) 基地局装置、端末装置、通信方法、および、集積回路
US9413581B2 (en) System and method for synchronization for OFDMA transmission
CN104012015B (zh) 无线通信系统中发送专用参考信号的控制信道发送方法及设备
US8432994B2 (en) Method for determining demodulation reference signal in the uplink, UE and uplink system
US8340199B2 (en) 8-transmit antenna reference signal design for downlink communications in a wireless system
KR101818584B1 (ko) 전용 기준 신호를 위한 공통 제어 채널 자원 할당 방법 및 장치
EP3210354B1 (en) Wlan designs for supporting an outdoor propagation channel
CN106817194B (zh) 参考信号发送方法、接收方法和设备
JP6254019B2 (ja) 無線基地局、ユーザ端末、無線通信方法及び無線通信システム
KR20190049694A (ko) 단일 반송파 주파수 도메인 다중 액세스(sc-fdma) 및 ofdma에 의한 유연한 기준 신호 송신을 위한 방법
CN101958865B (zh) 解调参考信号的生成方法及装置
JP2013502134A5 (zh)
US8953533B2 (en) Wireless communication system, base station, server, wireless communication method, and program
US9509473B2 (en) Method and device for sending and receiving a reference signal
CN107154907A (zh) 基于滤波的信号发送、接收方法及相应的发射机与接收机
JP2018196029A (ja) 送信装置、受信装置、方法及び記録媒体
US20120008615A1 (en) Wireless communication system, base station, terminal, wireless communication method, and program
CN101815047A (zh) 解调导频和物理资源块的映射方法和装置
CN101616118B (zh) 下行专用导频和物理资源块的映射方法
CN101534265A (zh) 下行专用导频和物理资源块的映射方法
WO2009089649A1 (fr) Procédé de mappage pour pilote dédié à la formation de faisceau et bloc de ressource physique
CN107370557B (zh) 一种信息处理方法、基站、终端和系统
KR20100035565A (ko) 다중안테나를 갖는 무선 통신 시스템에서 레퍼런스 신호를 상향 전송하는 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08873412

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20107002013

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2010533423

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12671389

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2008873412

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE