WO2009113585A1 - 電気化学素子用膜、電気化学素子用電極及び電池 - Google Patents

電気化学素子用膜、電気化学素子用電極及び電池 Download PDF

Info

Publication number
WO2009113585A1
WO2009113585A1 PCT/JP2009/054683 JP2009054683W WO2009113585A1 WO 2009113585 A1 WO2009113585 A1 WO 2009113585A1 JP 2009054683 W JP2009054683 W JP 2009054683W WO 2009113585 A1 WO2009113585 A1 WO 2009113585A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
polyimide
electrode
electrochemical element
polyamic acid
Prior art date
Application number
PCT/JP2009/054683
Other languages
English (en)
French (fr)
Inventor
西出 宏之
研一 小柳津
源成 崔
彰彦 八手又
Original Assignee
学校法人 早稲田大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人 早稲田大学 filed Critical 学校法人 早稲田大学
Priority to JP2010502855A priority Critical patent/JPWO2009113585A1/ja
Publication of WO2009113585A1 publication Critical patent/WO2009113585A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • H01M4/602Polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/102Primary casings, jackets or wrappings of a single cell or a single battery characterised by their shape or physical structure
    • H01M50/109Primary casings, jackets or wrappings of a single cell or a single battery characterised by their shape or physical structure of button or coin shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/116Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material
    • H01M50/117Inorganic material
    • H01M50/119Metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a film for an electrochemical element, an electrode for an electrochemical element, and a battery using a polyimide having redox activity.
  • Polyimide is the highest in terms of heat resistance as an engineering plastic and is widely used in all industrial fields. To date, many types of polyimide have been developed and commercialized.
  • a typical method for synthesizing polyimide is a two-step synthesis method (diamine method via polyamic acid) in which a ring-opening polyaddition-dehydration cyclization reaction of diamine and tetracarboxylic dianhydride is performed.
  • the reaction in the first stage proceeds by stirring the two monomers in an amide solvent such as dimethylacetamide at room temperature, and a high molecular weight polyamic acid is easily generated.
  • polyimides are insoluble and infusible, they are molded into a film or the like in the form of a polyamic acid that is a soluble precursor, and then heated to around 250 ° C. to form a thermal imide by a dehydration cyclization reaction corresponding to the second stage. And converting to polyimide.
  • Polyimide is in demand as an interlayer insulating film and protective film for integrated circuits and mounting substrates as an insulating film for electronic materials due to its high heat resistance and lower dielectric constant than ceramics.
  • Various photosensitive polyimides have been reported for the purpose of drawing polyimide films.
  • the formation of charge transfer complexes based on the strong electron accepting property of the imide skeleton has been investigated, and it has been studied as a material exhibiting photoconductivity.
  • optical materials based on a large third-order nonlinear susceptibility, and separation membrane materials based on heat resistance and solvent resistance are being studied.
  • polyimide is generally accepted as an insulating material, no oxidation-reduction reaction has been investigated, and there are no examples of investigation as a charge storage material.
  • phthalimide exhibits electrochemically reversible oxidation-reduction with an anion radical which is a one-electron reductant. That is, when phthalimide is represented by Im, the redox reaction represented by the following formula (1) occurs at a base potential in the vicinity of ⁇ 1 to ⁇ 1.5 V vs Ag / AgCl, and the chemical stability is high with Im ⁇ . It is clear from the ESR spectrum and the like.
  • an object of the present invention is to provide a film for an electrochemical device using a novel polyimide film exhibiting an electrochemically reversible oxidation-reduction reaction.
  • the film for an electrochemical element of the present invention is characterized in that the surface roughness is made of polyamide having an RMS value of 10 ⁇ m or more.
  • polyimide is characterized by dehydrating and cyclizing polyamic acid.
  • the polyimide is obtained by dehydrating and cyclizing the polyamic acid after dispersing a conductivity-imparting agent in the polyamic acid.
  • the polyimide is formed by dehydrating and cyclizing the polyamic acid after forming a film by dispersing a conductivity-imparting agent in the polyamic acid.
  • the conductivity-imparting agent is any one of carbon black, carbon fiber, acetylene black, carbon nanotube, and fullerene.
  • the polyamic acid is obtained by ring-opening polyaddition of tetracarboxylic dianhydride and diamine.
  • the tetracarboxylic dianhydride is any of 4,4′-oxydiphthalic anhydride, pyromellitic anhydride, benzophenonetetracarboxylic dianhydride, and biphenyltetracarboxylic dianhydride, To do.
  • the diamine is any one of 1,4-phenylenediamine, 1,3-phenylenediamine, 4,4′-oxydianiline, 4,4′-methylenedianiline, ethylenediamine, and propylenediamine.
  • the electrode for an electrochemical device of the present invention comprises a current collector having electronic conductivity and a polyimide adhered to at least one surface of the current collector, and the polyimide is a film for an electrochemical device of the present invention.
  • the battery of the present invention is characterized in that the negative electrode is the electrode for an electrochemical element of the present invention.
  • a novel electrochemical element film using a polyimide film exhibiting an electrochemically reversible oxidation-reduction reaction can be provided.
  • Example 1 It is the schematic which shows the whole battery structure in one Example of the battery of this invention.
  • the electrode produced in Example 1 it is a graph showing the measurement result of the electrical potential difference with a reference electrode at the time of changing the amount of charging / discharging.
  • the electrode produced in Example 2 it is a graph showing the measurement result of the electrical potential difference with a reference electrode at the time of changing the amount of charging / discharging.
  • the battery produced in Example 3 it is a graph showing the measurement result of the voltage at the time of changing charge / discharge amount.
  • 6 is a SEM image of a polyimide film surface in Example 4.
  • the film for an electrochemical element of the present invention is made of polyimide having a surface roughness of RMS value of 10 ⁇ m or more.
  • the RMS value is a mean square root of surface roughness (Root Mean Square) and can be measured by an atomic force microscope (AFM), a scanning tunneling microscope (STM), or the like.
  • AFM atomic force microscope
  • STM scanning tunneling microscope
  • the film for electrochemical elements of this invention has a function which can take in / out an electric charge only with a polyimide. That is, the film for an electrochemical element of the present invention has redox activity and exhibits an electrochemically reversible oxidation-reduction reaction without adding an additive such as a conductivity-imparting agent. This is due to the fact that the surface area of the polyimide is increased by setting the surface roughness of the polyimide to an RMS value of 10 ⁇ m or more. By increasing the surface area of the polyimide, the performance of the electrochemical device film can be improved. In order to increase the surface roughness of the polyimide, for example, the surface of the polyimide may be scraped with a sandpaper or the like.
  • the polyimide used for the film for an electrochemical element of the present invention can be easily obtained by a method of converting polyamic acid to polyimide by dehydration cyclization, that is, thermal imidization.
  • the polyamic acid those synthesized by various methods can be used.
  • the polyamic acid can be obtained by ring-opening polyaddition of tetracarboxylic dianhydride and diamine.
  • 4,4'-oxydiphthalic anhydride, pyromellitic anhydride, benzophenonetetracarboxylic dianhydride, biphenyltetracarboxylic dianhydride and the like are preferably used as the tetracarboxylic dianhydride.
  • 1,4-phenylenediamine, 1,3-phenylenediamine, 4,4′-oxydianiline, 4,4′-methylenedianiline, ethylenediamine, propylenediamine, and the like are preferably used.
  • the film for an electrochemical element of the present invention uses a polyimide imparted with redox activity by increasing the surface area, and further, in order to increase the surface area of the polyimide, a conductive agent may be dispersed in the polyimide.
  • a polyimide in which the conductivity-imparting agent is dispersed can be obtained by dispersing the conductivity-imparting agent in the polyamic acid and then dehydrating and cyclizing the polyamic acid.
  • a polyimide in which the conductivity-imparting agent is dispersed may be obtained by forming a film by dispersing the conductivity-imparting agent in the polyamic acid and then dehydrating and cyclizing the polyamic acid.
  • the conductivity-imparting agent is not limited to a specific one as long as it has affinity for polyamic acid and can be easily dispersed in polyamic acid, but carbon black, carbon fiber, acetylene black, carbon nanotube, fullerene Etc. are preferably used.
  • the polyimide constituting the electrochemical device film of the present invention is represented by the general formula of Chemical Formula 2 or Chemical Formula 3.
  • R1 to R3 are aromatic groups such as 1,4-phenylene groups and 1,3-phenylene groups, and aliphatic chains such as alkylene groups and alkyl ethers.
  • the polymer skeleton may be cross-linked at R1 to R3.
  • the use of a crosslinked structure is preferable because it prevents elution into a solvent when used as an electrode and has high durability. However, if it does not elute only by swelling in a solvent, it has a crosslinked structure. It does not have to be.
  • the imide group may contain in the bridge
  • the imide group phthalimide, pyromellitic imide, and the like are preferable because they exhibit electrochemically reversible redox characteristics.
  • the electrode for an electrochemical element of the present invention is formed by adhering a polyimide film made of the polyimide of the present invention to at least one surface of a current collector having electrical conductivity.
  • the electrode substrate as a current collector in contact with the polyimide is not limited to a specific one, but is a metal substrate such as platinum, gold, iron, stainless steel, or glassy carbon, pyrolytic graphite, carbon felt.
  • a transparent substrate such as a carbon substrate such as ITO vapor-deposited glass or ITO-coated polyethylene terephthalate can be used.
  • the polyimide electrode may be a composite electrode in which the material of the electrode substrate described above is dispersed in the polyimide film of the present invention.
  • the battery of the present invention uses the negative electrode as the electrode for an electrochemical element of the present invention. That is, the battery of the present invention includes a polyimide film constituting the electrode for an electrochemical element of the present invention as an electrode active material.
  • the film for an electrochemical device of the present invention serves as a charge storage material that is a material having the ability to store charges.
  • a battery is formed by sandwiching an electrolyte between the positive electrode and the negative electrode.
  • the active material constituting the electrode paired with the electrochemical device electrode of the present invention is not limited to a specific material, but the negative electrode is the electrochemical device electrode of the present invention and the positive electrode is 2, 2, 6
  • a battery having particularly excellent characteristics is formed by using an electrode having a radical polymer having a, 6-tetramethylpiperidine-1-oxyl (TEMPO) group in the side chain as an electrode active material.
  • TEMPO 6-tetramethylpiperidine-1-oxyl
  • the battery of the present invention operates as a negative electrode of a chargeable / dischargeable secondary battery. That is, an output voltage corresponding to the difference between the oxidation-reduction potential of the electrode active material used on the positive electrode side and the oxidation-reduction potential of Equation (1) on the negative electrode side is generated.
  • the imide is generally ⁇ 1 to ⁇ 1.5 V vs. Since it is oxidized and reduced at a base potential of Ag / AgCl or lower, an organic secondary battery having a large output voltage can be configured by combining with an appropriate positive electrode active material.
  • a radical polymer electrode having a TEMPO group is +0.5 V vs. Since oxidation / reduction can be performed at a noble potential of Ag / AgCl or higher, if a battery is configured by sandwiching an electrolyte solution or an electrolyte membrane with an electrode for an electrochemical element made of polyimide as a negative electrode and a radical polymer electrode as a positive electrode, the voltage is around 2V.
  • a novel organic secondary battery that can be repeatedly charged and discharged by voltage, and can be charged and discharged at high speed because both the radical polymer and polyimide have large electrode reaction rate constants. Can be configured.
  • reference numeral 1 denotes a pair of aluminum casings constituting the outer shell of the battery.
  • the aluminum casing 1 there are an insulating packing 2, a negative electrode current collector 3, a negative electrode 4, and a separator 5.
  • the positive electrode 6 and the positive electrode current collector 7 are accommodated in this order.
  • the electrode for an electrochemical element of the present invention is used for the negative electrode 4.
  • the obtained polyimide electrode was immersed in an electrolytic solution, and the electrolytic solution was infiltrated into voids in the electrode.
  • As the electrolytic solution a 0.1 mol / l tetrabutylammonium perchlorate acetonitrile solution was used.
  • a half-cell was prepared using a platinum electrode as the counter electrode and an Ag / AgCl electrode as the reference electrode.
  • the half-cell produced as described above was charged at a constant current of 200 ⁇ A until the voltage became ⁇ 1.8 V, and then discharged at 200 ⁇ A.
  • the voltage became substantially constant for about 100 seconds around ⁇ 1.4 V, and then dropped rapidly.
  • the polyimide electrode of this example was operating as a charge storage material.
  • charging was performed again, and charging and discharging were repeated 100 times in the range of -0.8 to -1.8 V.
  • the obtained polyimide electrode was immersed in an electrolytic solution, and the electrolytic solution was infiltrated into voids in the electrode.
  • As the electrolytic solution a 0.1 mol / l tetrabutylammonium perchlorate acetonitrile solution was used.
  • a half-cell was prepared using a platinum electrode as the counter electrode and an Ag / AgCl electrode as the reference electrode.
  • the half-cell produced as described above was charged at a constant current of 200 ⁇ A until the voltage became ⁇ 1.8 V, and then discharged at 200 ⁇ A. As a result, as shown in FIG. 3, the voltage became almost constant for 60 seconds around ⁇ 1.4 V, and then dropped rapidly. Thus, it was confirmed that the polyimide electrode of this example was operating as a charge storage material. When the voltage dropped to -0.8V, charging was performed again, and charging / discharging was repeated 10 times in the range of -0.8 to -1.8V.
  • a substrate on which an ITO layer (150 nm) was previously formed on a glass substrate was placed on a spin coater.
  • a 5 wt% solution of polyamic acid dissolved in N, N-dimethylacetamide was spin-coated for 10 seconds at a rotation speed of 1000 rotations / second, and then for 60 seconds at 6000 rotations / second, and then 150 ° C., 180 ° C., 200 ° C.
  • a polymer thin film was obtained by heating stepwise at 20 ° C. and 220 ° C. for 20 minutes and at 250 ° C. for 30 minutes, respectively. Scraping over 30 seconds by the reciprocating motion at a speed of 1 cm / s while applying a uniform pressure of 100 g / cm 2 by using a sandpaper of # 240 the thin film to obtain a film having an increased surface roughness.
  • An electrochromic cell using a polythiophene layer as a working electrode and a polyimide layer as a counter electrode was produced. Between the electrodes, 0.5 mm silicon rubber was used as a spacer, and an electrolyte solution in which poly (ethylene glycol), KPF 6 , and propylene carbonate were mixed at a weight ratio of 5: 20: 100 was injected.
  • a substrate on which an ITO layer (150 nm) was previously formed on a glass substrate was placed on a spin coater.
  • a 5 wt% solution of polyamic acid dissolved in N, N-dimethylacetamide was spin coated at 1000 rpm for 10 seconds, followed by 6000 rpm for 60 seconds, then 150 ° C., 180 ° C., 200 ° C.
  • a polymer thin film was obtained by heating stepwise at 20 ° C. and 220 ° C. for 20 minutes and at 250 ° C. for 30 minutes, respectively. The thin film was scraped with sandpaper to obtain a film with increased surface roughness.
  • the substrate on which the ITO / polyimide structure was formed as described above was placed on the substrate holder in the chamber of the vacuum evaporator.
  • a filament wound with Al was attached to the electrode in the chamber.
  • reducing the pressure in the chamber at a vacuum degree of 1 ⁇ 3 ⁇ 10? 5 Pa range, deposition rate 5 ⁇ 7 ⁇ / sec, was deposited with aluminum as a cathode.
  • the inside of the chamber was returned to atmospheric pressure, and the substrate was taken out.
  • a memory element having an ITO / polyimide / Al structure was fabricated on a glass substrate.
  • the electrical conductivity changed rapidly at a predetermined threshold voltage. The behavior was observed repeatedly and stably. In the state holding force test, the ON and OFF states were stably held several hundred times or more.
  • FIG. 5 shows an SEM image of the surface of the polyimide film in which the surface roughness is increased by the above method and becomes redox active.
  • the surface roughness parameter worked as an effective redox active layer when the roughness factor was 10 ⁇ m or more in RMS value.

Abstract

電気化学的に可逆な酸化還元反応を示す新規のポリイミド膜を用いた電気化学素子用膜を提供する。表面粗さがRMS値で10μm以上のポリアミドからなる。ポリイミドは、ポリアミド酸を脱水環化させてなるものである。ポリイミドは、ポリアミド酸に導電付与剤を分散させた後にポリアミド酸を脱水環化させてなるもの、又は、ポリイミドは、ポリアミド酸に導電付与剤を分散させて膜を形成した後にポリアミド酸を脱水環化させてなるものであってもよい。

Description

電気化学素子用膜、電気化学素子用電極及び電池
 本発明は、レドックス活性を有するポリイミドを用いた電気化学素子用膜、電気化学素子用電極及び電池に関する。
 ポリイミドは、エンジニアリングプラスチックとして耐熱性の点で最高位にあり、あらゆる産業分野で広く使用されている。現在までに、多種類のポリイミドが開発、商品化されている。
 ポリイミドの代表的合成法は、ジアミンとテトラカルボン酸二無水物の開環重付加-脱水環化反応させる二段合成法(ポリアミド酸を経由するジアミン法)である。第一段階の反応は、二種のモノマーをジメチルアセトアミドなどのアミド系溶媒中、室温下で攪拌することによって進行し、容易に高分子量のポリアミド酸が生成する。
 ポリイミドの多くは不溶不融性であるため、可溶性前駆体であるポリアミド酸の状態でフィルムなどに成型加工し、その後250℃付近に加熱して第二段階に相当する脱水環化反応により熱イミド化させ、ポリイミドに転化する方法が採られている。
 ポリイミドは、高い耐熱性、セラミックスより低い誘電率により電子材料用絶縁膜として集積回路や実装基板の層間絶縁膜や保護膜としての需要がある。ポリイミド膜の描画を目的として、さまざまな感光性ポリイミドが報告されている。また、イミド骨格の強い電子受容性に基づく電荷移動錯体の形成が調べられ、光導電性を示す材料として研究されている。その他、大きな3次非線形感受率に基づく光学材料、耐熱性と耐溶剤性に基づく分離膜材料として検討されている。しかし、ポリイミドは、絶縁材料として一般に受け入れられているため、酸化還元反応が調べられたことはなく、電化貯蔵材料としての検討例も皆無である。
 フタルイミドは、1電子還元体であるアニオンラジカルとの間で電気化学的に可逆な酸化還元を示すことが知られている。すなわち、フタルイミドをImで表すと、以下の式(1)で表されるレドックス反応が-1~-1.5V vs Ag/AgCl付近の卑な電位で起こり、Im・が高い化学的安定度を示すことが、ESRスペクトルなどから明らかになっている。
Figure JPOXMLDOC01-appb-C000001
 フタルイミドを高分子化すると、ポリマー分子の中で式(1)の反応が多数生起すると考えられ、ポリマーを薄膜の形態にすることによって、不均一系酸化剤や酸化還元触媒として利用できると期待される。しかし、ポリイミドは絶縁体であるため、電子の授受を伴う用途には不向きとされ、このような検討は全くなされていなかった。
先行技術文献
特開2000-40527号公報
 そこで、本発明は、電気化学的に可逆な酸化還元反応を示す新規のポリイミド膜を用いた電気化学素子用膜を提供することを目的とする。
 本発明の電気化学素子用膜は、表面粗さがRMS値で10μm以上のポリアミドからなることを特徴とする。
 また、前記ポリイミドが、ポリアミド酸を脱水環化させてなるものであることを特徴とする。
 また、前記ポリイミドが、ポリアミド酸に導電付与剤を分散させた後に前記ポリアミド酸を脱水環化させてなるものであることを特徴とする。
 また、前記ポリイミドが、ポリアミド酸に導電付与剤を分散させて膜を形成した後に前記ポリアミド酸を脱水環化させてなるものであることを特徴とする。
 また、前記導電付与剤が、カーボンブラック、カーボンファイバー、アセチレンブラック、カーボンナノチューブ、フラーレンのいずれかであることを特徴とする。
 また、前記ポリアミド酸が、テトラカルボン酸二無水物とジアミンの開環重付加により得られたものであることを特徴とする。
 また、前記テトラカルボン酸二無水物が、4,4’-オキシジフタル酸無水物、無水ピロメリット酸、ベンゾフェノンテトラカルボン酸二無水物、ビフェニルテトラカルボン酸二無水物のいずれかであることを特徴とする。
 また、前記ジアミンが、1,4-フェニレンジアミン、1,3-フェニレンジアミン、4,4’-オキシジアニリン、4,4’-メチレンジアニリン、エチレンジアミン、プロピレンジアミンのいずれかであることを特徴とする。
 本発明の電気化学素子用電極は、電子伝導性を有する集電体と、前記集電体の少なくとも片面に密着したポリイミドとからなり、前記ポリイミドが本発明の電気化学素子用膜であることを特徴とする。
 本発明の電池は、負極電極が本発明の電気化学素子用電極であることを特徴とする。
 本発明の電気化学素子用膜によれば、電気化学的に可逆な酸化還元反応を示すポリイミド膜を用いた新規の電気化学素子用膜を提供することができる。
本発明の電池の一実施例における電池の全体構成を示す概略図である。 実施例1で作製した電極において、充放電量を変化させた場合の基準電極との電位差の測定結果を表すグラフである。 実施例2で作製した電極において、充放電量を変化させた場合の基準電極との電位差の測定結果を表すグラフである。 実施例3で作製した電池において、充放電量を変化させた場合の電圧の測定結果を表すグラフである。 実施例4におけるポリイミド膜表面のSEM像である。
 以下、本発明の電気化学素子用膜について、詳細に説明する。
 本発明の電気化学素子用膜は、表面粗さがRMS値で10μm以上のポリイミドからなる。
 ここで、RMS値とは、表面粗さの平均二乗根(Root Mean Square)のことであり、原子間力顕微鏡(AFM)、走査型トンネル顕微鏡(STM)などにより測定することができる。
 そして、本発明の電気化学素子用膜は、ポリイミドのみで電荷を出し入れできる機能を有する。すなわち、本発明の電気化学素子用膜は、導電性付与剤等の添加物を添加しなくとも、レドックス活性を有し、電気化学的に可逆な酸化還元反応を示す。これは、ポリイミドの表面粗さをRMS値で10μm以上として、ポリイミドの表面積を大きくしたことに起因している。ポリイミドの表面積を大きくすることにより、電気化学素子用膜の性能を向上させることができる。ポリイミドの表面粗さを大きくするには、例えば、ポリイミドの表面を紙やすりなどで削ればよい。
 本発明の電気化学素子用膜に用いられるポリイミドは、ポリアミド酸を脱水環化、すなわち、熱イミド化によりポリイミドに転化する方法により、容易に得ることができる。
 ここで、ポリアミド酸は、種々の方法により合成されたものを用いることができるが、例えば、テトラカルボン酸二無水物とジアミンの開環重付加により得ることができる。この場合、テトラカルボン酸二無水物としては、4,4’-オキシジフタル酸無水物、無水ピロメリット酸、ベンゾフェノンテトラカルボン酸二無水物、ビフェニルテトラカルボン酸二無水物などが好適に用いられる。また、ジアミンとしては、1,4-フェニレンジアミン、1,3-フェニレンジアミン、4,4’-オキシジアニリン、4,4’-メチレンジアニリン、エチレンジアミン、プロピレンジアミンなどが好適に用いられる。
 本発明の電気化学素子用膜は、表面積を大きくすることによりレドックス活性を付与したポリイミドを用いるものであるが、さらに、ポリイミドの表面積を大きくするために、ポリイミドに導電付与剤を分散させてもよい。この場合、ポリアミド酸に導電付与剤を分散させた後にポリアミド酸を脱水環化させることにより、導電付与剤を分散させたポリイミドを得ることができる。或いは、ポリアミド酸に導電付与剤を分散させて膜を形成した後に、ポリアミド酸を脱水環化させることにより、導電付与剤を分散させたポリイミドを得てもよい。
 ここで、導電付与剤としては、ポリアミド酸への親和性を有し、ポリアミド酸に分散しやすいものであれば特定のものに限定されないが、カーボンブラック、カーボンファイバー、アセチレンブラック、カーボンナノチューブ、フラーレンなどが好適に用いられる。
 本発明の電気化学素子用膜を構成するポリイミドは、化2又は化3の一般式で表される。
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
 ここで、R1~R3は1,4-フェニレン基、1,3-フェニレン基などの芳香族基や、アルキレン基又はアルキルエーテルなどの脂肪族鎖である。また、ポリマー骨格はR1~R3の部分で架橋していてもよい。なお、架橋構造を含む方が、電極として用いる場合の溶媒中への溶出が抑えられ、耐久性が高いことから好適であるが、溶媒中で膨潤するのみで溶出しなければ、架橋構造を有さなくてもよい。また、架橋構造を導入する場合、架橋ユニットにイミド基が含有されていてもよい。イミド基としては、電気化学的に可逆なレドックス特性を示すことから、フタルイミドやピロメリットイミドなどが好適である。
 また、本発明の電気化学素子用電極は、本発明のポリイミドからなるポリイミド膜を電気伝導性を有する集電体の少なくとも片面に密着して形成してなるものである。このポリイミドが接する集電体としての電極基板としては、特定のものに限定されるものではないが、白金、金、鉄、ステンレス鋼などの金属基板、或いは、グラッシーカーボン、パイロリティックグラファイト、カーボンフェルトなどの炭素基板、或いは、ITO蒸着ガラスやITO被覆ポリエチレンテレフタレートなどの透明電極を用いることができる。また、このポリイミド電極は、本発明のポリイミド膜中に、上記の電極基板の材料を粒子の形態にしたものを分散させた複合電極であってもよい。
 本発明の電池は、負極電極を本発明の電気化学素子用電極としたものである。すなわち、本発明の電池は、本発明の電気化学素子用電極を構成するポリイミド膜を電極活物質として備えたものである。本発明の電気化学素子用膜は、電荷を貯蔵する能力を有する材料である電荷貯蔵材料として働く。正極と負極の間に電解質を挟んで電池が構成される。本発明の電気化学素子用電極と対になる電極を構成する活物質は特定のものに限定されるものではないが、負極を本発明の電気化学素子用電極とし、正極を2,2,6,6-テトラメチルピペリジン-1-オキシル(TEMPO)基を側鎖に有するラジカルポリマーを電極活物質として備えた電極とすることにより、特に優れた特性を有する電池が構成される。
 ここで、前述のとおり、イミドの酸化還元反応は、式(1)のように一段階で可逆性高く進行する。したがって、本発明の電池は、充放電可能な二次電池の負極として作動する。すなわち、正極側に用いる電極活物質の酸化還元電位と、負極側の式(1)の酸化還元電位の差に対応する出力電圧が発生する。イミドが一般に-1~-1.5V vs.Ag/AgCl以下の卑な電位で酸化還元することから、適当な正極活物質と組み合わせることにより、出力電圧の大きい有機二次電池を構成できる。例えば、TEMPO基を有するラジカルポリマー電極は、+0.5V vs.Ag/AgCl以上の貴な電位で酸化還元し得るため、ポリイミドからなる電気化学素子用電極を負極とし、ラジカルポリマー電極を正極として電解質溶液又は電解質膜を挟んで電池を構成すれば、2V付近の電圧で繰り返し充放電可能、ラジカルポリマーとポリイミド共に電極反応の速度定数が大きいため高速充放電も可能、有機物だけからなる透明性、可撓性、環境適合性を併せ持つ、新規な有機二次電池を構成することができる。
 つぎに、図1に基づいて、本発明の電池の一実施例について説明する。
 電池の全体を示す図1において、1は、電池の外殻を構成する一対のアルミ外装であり、このアルミ外装1の中には、絶縁パッキン2、負極集電体3、負極4、セパレータ5、正極6、正極集電体7が順に収納されている。負極4には、本発明の電気化学素子用電極が用いられている。
 なお、本発明は上記実施例に限定されるものではなく、種々の変形実施が可能である。以下の具体的実施例により、本発明をさらに詳細に説明する。
 [ポリイミド電極の作製(1)]
 アルゴン雰囲気下、30mlナスフラスコに4,4’-オキシジフタル酸無水物310.20mg(0.001mol、1eq)、N,N-ジメチルアセトアミド2ml(0.5M)、1,4-フェニレンジアミン108.15mg(0.001mol、1eq)を加え、室温下で18時間反応させた。反応終了後、アセトンに沈殿させて精製し、白色固体として化4に示す重合体(1)411.8mg(98.4%)を得た。
Figure JPOXMLDOC01-appb-C000004
 つぎに、NMP0.1g、重合体(1)5.47mg、炭素粉末85mgを混合し、これにNMP0.1gに溶解させたポリテトラフルオロエチレン樹脂バインダ10mgを加え、メノウ乳鉢を用い混練した。10分ほど混合して得られた混合体をアルミ箔、ITO基板などに塗布した。これを、150℃、180℃、200℃、220℃で各20分、250℃で30分と段階的に加熱してイミド化し電気化学素子用電極としてのポリイミド電極を得た。重合体(1)をイミド化した構造を化5に示す。
Figure JPOXMLDOC01-appb-C000005
 得られたポリイミド電極を電解液に浸して、電極中の空隙に電解液を染み込ませた。電解液としては、0.1mol/lの過塩素酸テトラブチルアンモニウムのアセトニトリル溶液を用いた。そして、対極には白金電極を、参照極にはAg/AgCl電極を用いて、半電池を作成した。
 以上のように作成した半電池を、200μAの定電流で、電圧が-1.8Vになるまで充電、その後、200μAで放電を行った。その結果、図2に示すように、電圧は-1.4V付近で100秒ほぼ一定となり、その後急速に低下した。これにより、本実施例のポリイミド電極は、電荷貯蔵材料として動作していることを確認した。電圧が-0.8Vまで低下したところで再び充電を行い、さらに-0.8~-1.8Vの範囲で充放電を100回繰り返した。
 [ポリイミド電極の作製(2)]
 アルゴン雰囲気下、30mlナスフラスコに4,4’-オキシジフタル酸無水物310.20mg(0.001mol、1eq)、N,N-ジメチルアセトアミド2ml(0.5M)、エチレンジアミン74.12mg(0.001mol、1eq)を加え、室温下で18時間反応させた。反応終了後、アセトンに沈殿させて精製し、白色固体として化6に示す重合体(2)382.7mg(99.6%)を得た。
Figure JPOXMLDOC01-appb-C000006
 つぎに、NMP0.1g、重合体(2)5.54mg、炭素粉末85mgを混合し、これにNMP0.1gに溶解させたポリテトラフルオロエチレン樹脂バインダ10mgを加え、メノウ乳鉢を用い混練した。10分ほど混合して得られた混合体をアルミ箔、ITO基板などに塗布した。これを、150℃、180℃、200℃、220℃で各20分、250℃で30分と段階的に加熱してポリイミド電極を得た。重合体(2)をイミド化した構造を化7に示す。
Figure JPOXMLDOC01-appb-C000007
 得られたポリイミド電極を電解液に浸して、電極中の空隙に電解液を染み込ませた。電解液としては、0.1mol/lの過塩素酸テトラブチルアンモニウムのアセトニトリル溶液を用いた。そして、対極には白金電極を、参照極にはAg/AgCl電極を用いて、半電池を作成した。
 以上のように作成した半電池を、200μAの定電流で、電圧が-1.8Vになるまで充電、その後、200μAで放電を行った。その結果、図3に示すように、電圧は-1.4V付近で60秒ほぼ一定となり、その後急速に低下した。これにより、本実施例のポリイミド電極は、電荷貯蔵材料として動作していることを確認した。電圧が-0.8Vまで低下したところで再び充電を行い、さらに-0.8~-1.8Vの範囲で充放電を10回繰り返した。
 [電池の作成]
 2,2,6,6-テトラメチルピペリジン-1-オキシル置換ポリメタクリレート(PTMA)と実施例1で作成したポリイミド電極を、それぞれ、正極、負極に用いて、0.1M過塩素酸テトラブチルアンモニウムアセトニトリル溶液を電解液とした二次電池を試作した。測定したCVではカソード側-2.1Vに安定な酸化還元波を示した。この二次電池を用いてカットオフ電圧-1.8~-2.5Vで充放電曲線を測定したところ、図4に示すように、CVの酸化還元電位に対応する-2.1Vに電位平坦部が現われ、放電容量は21mAh/g(理論容量の15%)となり、二次電池としての定量的な動作が確認された。
 [エレクトロクロミズムの検討]
 ガラス基板上にITO層(150nm)が予め形成されている基板をスピンコーターに設置した。N,N-ジメチルアセトアミドにポリアミド酸を溶かした5wt%溶液を、回転数1000回転/秒にて10秒、続けて6000回転/秒にて60秒スピンコートした後、150℃、180℃、200℃、220℃で各20分、250℃で30分と段階的に加熱してイミド化し重合体の薄膜を得た。上記の薄膜を240番の紙やすりを用いて100g/cmの均一な圧力を加えながら1cm/sの速度で往復運動により30秒間かけて削り、表面粗さを増加させた膜を得た。
 0.1mol/Lのテトラブチルアンモニウムヘキサフルオロリン酸のアセトニトリル溶液中に3-ヘキシルチオフェン 1.24gを混合した。上記溶液中にITO/ガラス基板を浸し、一定電流を30分間流した。得られたポリチオフェン膜を洗浄し室温大気下で乾燥させた。
 ポリチオフェン層を作用極に、ポリイミド層を対極に用いたエレクトロクロミックセルを作製した。電極間に0.5mmのシリコンゴムをスペーサーとし、その内部にポリ(エチレングリコール)、KPF、炭酸プロピレンを重量比5:20:100の割合で混合した電解質溶液を注入した。
 上記ECセルに一定電流を流すクロノポテンショメトリー測定では、群青色から赤色へ色調変化し、電流の極性を反転させると再び群青色を呈した。電圧を切った後も数時間にわたって着・消色状態が安定に維持され、色調変化に関するメモリ特性として観測された。
 [乾式メモリ素子特性に関する検討]
 ガラス基板上にITO層(150nm)が予め形成されている基板をスピンコーターに設置した。N,N-ジメチルアセトアミドにポリアミド酸を溶かした5wt%溶液を、回転数1000回転/秒にて10秒、つづけて6000回転/秒にて60秒スピンコートした後、150℃、180℃、200℃、220℃で各20分、250℃で30分と段階的に加熱してイミド化し重合体の薄膜を得た。上記の薄膜を紙やすりで削り、表面粗さを増加させた膜を得た。
 上述のようにITO/ポリイミド構造が形成された基板を真空蒸着器のチャンバ内の基板ホルダに設置した。チャンバ内の電極に、Alを巻き付けたフィラメントを取り付けた。つぎに、チャンバ内を減圧し、真空度1~3×10?5Paの範囲にて、蒸着速度5~7Å/秒、陰極となるアルミニウムを蒸着させた。蒸着終了後、チャンバ内を大気圧に戻し、基板を取り出した。以上のようにして、ガラス基板上に、ITO/ポリイミド/Alの構造を有するメモリ素子が作製された。
 作製したメモリ素子に陽極層と陰極層の間に電圧を印加・掃引すると、所定の閾値電圧において電気伝導率が急激に変化した。挙動は繰り返し安定に観測された。状態保持力テストでは、ONおよびOFF状態を数百回以上安定に保持した。
 上記の方法で表面粗さが増加しレドックス活性となったポリイミド膜表面のSEM像を図5に示す。
 表面粗さのパラメータは、ラフネスファクターがRMS値で10μm以上のとき、有効なレドックス活性層として働いた。

Claims (10)

  1. 表面粗さがRMS値で10μm以上のポリイミドからなることを特徴とする電気化学素子用膜。
  2. 前記ポリイミドが、ポリアミド酸を脱水環化させてなるものであることを特徴とする請求項1に記載の電気化学素子用膜。
  3. 前記ポリイミドが、ポリアミド酸に導電付与剤を分散させた後に前記ポリアミド酸を脱水環化させてなるものであることを特徴とする請求項1に記載の電気化学素子用膜。
  4. 前記ポリイミドが、ポリアミド酸に導電付与剤を分散させて膜を形成した後に前記ポリアミド酸を脱水環化させてなるものであることを特徴とする請求項1に記載の電気化学素子用膜。
  5. 前記導電付与剤が、カーボンブラック、カーボンファイバー、アセチレンブラック、カーボンナノチューブ、フラーレンのいずれかであることを特徴とする請求項3又は4に記載の電気化学素子用膜。
  6. 前記ポリアミド酸が、テトラカルボン酸二無水物とジアミンの開環重付加により得られたものであることを特徴とする請求項2~5のいずれかに記載の電気化学素子用膜。
  7. 前記テトラカルボン酸二無水物が、4,4’-オキシジフタル酸無水物、無水ピロメリット酸、ベンゾフェノンテトラカルボン酸二無水物、ビフェニルテトラカルボン酸二無水物のいずれかであることを特徴とする請求項6に記載の電気化学素子用膜。
  8. 前記ジアミンが、1,4-フェニレンジアミン、1,3-フェニレンジアミン、4,4’-オキシジアニリン、4,4’-メチレンジアニリン、エチレンジアミン、プロピレンジアミンのいずれかであることを特徴とする請求項6に記載の電気化学素子用膜。
  9. 電子伝導性を有する集電体と、前記集電体の少なくとも片面に密着したポリイミドとからなり、前記ポリイミドが請求項1~8のいずれかに記載の電気化学素子用膜であることを特徴とする電気化学素子用電極。
  10. 負極電極が請求項9に記載の電気化学素子用電極であることを特徴とする電池。
PCT/JP2009/054683 2008-03-11 2009-03-11 電気化学素子用膜、電気化学素子用電極及び電池 WO2009113585A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010502855A JPWO2009113585A1 (ja) 2008-03-11 2009-03-11 電気化学素子用膜、電気化学素子用電極及び電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-060911 2008-03-11
JP2008060911 2008-03-11

Publications (1)

Publication Number Publication Date
WO2009113585A1 true WO2009113585A1 (ja) 2009-09-17

Family

ID=41065246

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/054683 WO2009113585A1 (ja) 2008-03-11 2009-03-11 電気化学素子用膜、電気化学素子用電極及び電池

Country Status (2)

Country Link
JP (1) JPWO2009113585A1 (ja)
WO (1) WO2009113585A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011040308A1 (ja) * 2009-09-30 2011-04-07 宇部興産株式会社 電極用バインダー樹脂組成物、電極合剤ペースト、及び電極
JP2011086480A (ja) * 2009-10-15 2011-04-28 Toray Ind Inc リチウムイオン電池電極用バインダー、それを用いたリチウムイオン電池電極用ペーストおよびリチウムイオン電池電極の製造方法
WO2012057302A1 (ja) * 2010-10-28 2012-05-03 株式会社カネカ 導電性ポリイミドフィルムの製造方法
JP2014078416A (ja) * 2012-10-11 2014-05-01 Ube Ind Ltd 電極用バインダー樹脂組成物、電極合剤ペースト、及び電極
WO2015003725A1 (en) 2013-07-09 2015-01-15 Friedrich-Schiller-Universität Jena Electroactive polymers, manufacturing process thereof, electrode and use thereof
WO2017047778A1 (ja) * 2015-09-17 2017-03-23 日本電気株式会社 樹脂組成物
CN108976793A (zh) * 2018-08-07 2018-12-11 江苏亚宝绝缘材料股份有限公司 一种预警微裂纹的透明聚酰亚胺薄膜及其制备方法
JP2022525751A (ja) * 2019-03-14 2022-05-19 エボニック オペレーションズ ゲーエムベーハー 成形された有機電荷蓄積装置の製造方法
WO2022153357A1 (ja) * 2021-01-12 2022-07-21 日本電信電話株式会社 リチウム二次電池とその製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001345103A (ja) * 2000-03-29 2001-12-14 Toyo Tanso Kk 二次電池用負極材及びそれを用いたリチウムイオン二次電池及び二次電池用負極材の製造方法
JP2006324179A (ja) * 2005-05-20 2006-11-30 Matsushita Electric Ind Co Ltd 電極およびそれを用いた電気化学素子
JP2007257862A (ja) * 2006-03-20 2007-10-04 Nissan Motor Co Ltd 二次電池用電極および二次電池

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001345103A (ja) * 2000-03-29 2001-12-14 Toyo Tanso Kk 二次電池用負極材及びそれを用いたリチウムイオン二次電池及び二次電池用負極材の製造方法
JP2006324179A (ja) * 2005-05-20 2006-11-30 Matsushita Electric Ind Co Ltd 電極およびそれを用いた電気化学素子
JP2007257862A (ja) * 2006-03-20 2007-10-04 Nissan Motor Co Ltd 二次電池用電極および二次電池

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011040308A1 (ja) * 2009-09-30 2011-04-07 宇部興産株式会社 電極用バインダー樹脂組成物、電極合剤ペースト、及び電極
US9418772B2 (en) 2009-09-30 2016-08-16 Ube Industries, Ltd. Binder resin composition for electrode, electrode mixture paste, and electrode
JP2011086480A (ja) * 2009-10-15 2011-04-28 Toray Ind Inc リチウムイオン電池電極用バインダー、それを用いたリチウムイオン電池電極用ペーストおよびリチウムイオン電池電極の製造方法
CN103180390A (zh) * 2010-10-28 2013-06-26 株式会社钟化 导电性聚酰亚胺膜的制造方法
WO2012057302A1 (ja) * 2010-10-28 2012-05-03 株式会社カネカ 導電性ポリイミドフィルムの製造方法
JP2014078416A (ja) * 2012-10-11 2014-05-01 Ube Ind Ltd 電極用バインダー樹脂組成物、電極合剤ペースト、及び電極
WO2015003725A1 (en) 2013-07-09 2015-01-15 Friedrich-Schiller-Universität Jena Electroactive polymers, manufacturing process thereof, electrode and use thereof
US10103384B2 (en) 2013-07-09 2018-10-16 Evonik Degussa Gmbh Electroactive polymers, manufacturing process thereof, electrode and use thereof
WO2017047778A1 (ja) * 2015-09-17 2017-03-23 日本電気株式会社 樹脂組成物
US11404694B2 (en) 2015-09-17 2022-08-02 Nec Corporation Resin composition
CN108976793A (zh) * 2018-08-07 2018-12-11 江苏亚宝绝缘材料股份有限公司 一种预警微裂纹的透明聚酰亚胺薄膜及其制备方法
WO2020029392A1 (zh) * 2018-08-07 2020-02-13 江苏亚宝绝缘材料股份有限公司 一种预警微裂纹的透明聚酰亚胺薄膜及其制备方法
JP2022525751A (ja) * 2019-03-14 2022-05-19 エボニック オペレーションズ ゲーエムベーハー 成形された有機電荷蓄積装置の製造方法
WO2022153357A1 (ja) * 2021-01-12 2022-07-21 日本電信電話株式会社 リチウム二次電池とその製造方法

Also Published As

Publication number Publication date
JPWO2009113585A1 (ja) 2011-07-21

Similar Documents

Publication Publication Date Title
WO2009113585A1 (ja) 電気化学素子用膜、電気化学素子用電極及び電池
Syed et al. Polyaniline—A novel polymeric material
Oubaha et al. Carbonyl‐based π‐conjugated materials: from synthesis to applications in lithium‐ion batteries
Oka et al. Poly (vinyldibenzothiophenesulfone): its redox capability at very negative potential toward an all‐organic rechargeable device with high‐energy density
Ryu et al. Polyaniline doped with dimethyl sulfate as a nucleophilic dopant and its electrochemical properties as an electrode in a lithium secondary battery and a redox supercapacitor
Li et al. Electrochemical energy storage in poly (dithieno [3, 2-b: 2′, 3′-d] pyrrole) bearing pendant nitroxide radicals
Cao et al. Polymer electrode materials for high‐performance lithium/sodium‐ion batteries: A review
Tong et al. Conductive polyacrylic acid-polyaniline as a multifunctional binder for stable organic quinone electrodes of lithium-ion batteries
Neoh et al. Structure and degradation behavior of polypyrrole doped with sulfonate anions of different sizes subjected to undoping− redoping cycles
EP1095090B1 (en) Polymer gel electrode
Bobade Polythiophene composites: a review of selected applications
Jung et al. Polyimide containing tricarbonyl moiety as an active cathode for rechargeable Li-ion batteries
EP0924782B1 (en) Electrode materials for use in batteries, and electrodes and batteries using same
Taskin et al. Interconnected conductive gel binder for high capacity silicon anode for Li-ion batteries
Palaniappan et al. High‐temperature oxidation of aniline to highly ordered polyaniline–sulfate salt with a nanofiber morphology and its use as electrode materials in symmetric supercapacitors
JP2012511261A (ja) 本質的に導電性のポリマー
Yeasmin et al. Paper based pencil drawn multilayer graphene-polyaniline nanofiber electrodes for all-solid-state symmetric supercapacitors with enhanced cyclic stabilities
Rohan et al. Enhancement of the high-rate performance of an organic radical thin-film battery by decreasing the grafting density of polymer brushes
Vengadesan et al. One-step fabrication of poly (aniline-co-2, 5 dimethoxyaniline) nanohybrid coated graphitic sheet electrode for efficient energy application
Gendensuren et al. Incorporation of aniline tetramer into alginate-grafted-polyacrylamide as polymeric binder for high-capacity silicon/graphite anodes
Hua et al. Water-soluble conducting poly (ethylene oxide)-grafted polydiphenylamine synthesis through a “graft onto” process
Li et al. Scalable Synthesis and Multi‐Electron Transfer of Aniline/Fluorene Copolymer for Solution‐Processable Battery Cathodes
Weiss et al. The synthesis and characterization of polyaniline/polysaccharide conducting composites
JP2001240742A (ja) ポリアニリン類およびその製造方法
Radhakrishnan et al. Performance of phosphoric acid doped polyaniline as electrode material for aqueous redox supercapacitor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09719174

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2010502855

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09719174

Country of ref document: EP

Kind code of ref document: A1