WO2009113479A1 - Microbial power generation method and microbial power generation apparatus - Google Patents

Microbial power generation method and microbial power generation apparatus Download PDF

Info

Publication number
WO2009113479A1
WO2009113479A1 PCT/JP2009/054393 JP2009054393W WO2009113479A1 WO 2009113479 A1 WO2009113479 A1 WO 2009113479A1 JP 2009054393 W JP2009054393 W JP 2009054393W WO 2009113479 A1 WO2009113479 A1 WO 2009113479A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
electrode chamber
power generation
cation
positive electrode
Prior art date
Application number
PCT/JP2009/054393
Other languages
French (fr)
Japanese (ja)
Inventor
深瀬哲朗
織田信博
Original Assignee
栗田工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 栗田工業株式会社 filed Critical 栗田工業株式会社
Publication of WO2009113479A1 publication Critical patent/WO2009113479A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/16Biochemical fuel cells, i.e. cells in which microorganisms function as catalysts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04186Arrangements for control of reactant parameters, e.g. pressure or concentration of liquid-charged or electrolyte-charged reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1009Fuel cells with solid electrolytes with one of the reactants being liquid, solid or liquid-charged
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2455Grouping of fuel cells, e.g. stacking of fuel cells with liquid, solid or electrolyte-charged reactants
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/28Anaerobic digestion processes
    • C02F3/286Anaerobic digestion processes including two or more steps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a power generation method and apparatus utilizing a metabolic reaction of microorganisms.
  • the present invention relates to a microbial power generation method and apparatus for taking out the reducing power obtained when an organic substance is oxidatively decomposed into microorganisms as electric energy.
  • Microbial power generation is a method of generating electricity by taking out electrical energy obtained when microorganisms assimilate organic matter.
  • microorganisms, organic matter assimilated by microorganisms, and an electron transfer medium are allowed to coexist in a negative electrode chamber in which a negative electrode is disposed.
  • the electron mediator enters the microorganism, receives the electrons generated by the microorganisms oxidizing the organic matter, and passes them to the negative electrode.
  • the negative electrode is electrically connected to the positive electrode via an external resistance (load), and the electrons transferred to the negative electrode move to the positive electrode via the external resistance (load) and are transferred to the electron acceptor in contact with the positive electrode.
  • a current flows between the positive electrode and the negative electrode due to such movement of electrons.
  • the positive electrode chamber and the negative electrode chamber are separated by an alkali ion conductor made of a solid electrolyte, the positive electrode chamber and the negative electrode chamber are set to pH 7 with a phosphate buffer (buffer), and air is blown into the positive electrode chamber to generate power. It is described to do.
  • Patent Document 2 a porous body is installed as a positive electrode plate so as to be in contact with an electrolyte membrane that partitions a positive electrode chamber and a negative electrode chamber, air is circulated through the positive electrode chamber, and air and liquid are admitted in the voids of the porous body. It is described to make contact with.
  • JP 2000-133326 A Japanese Patent Laid-Open No. 2004-342412
  • the present invention provides a microbial power generation method and apparatus capable of increasing the efficiency of microbial power generation by maintaining the pH in the negative electrode chamber at 7 to 9 without using a phosphate buffer or reducing the amount of use thereof.
  • the purpose is to provide.
  • a microorganism power generation method includes a negative electrode chamber having a negative electrode and holding a liquid containing a microorganism and an electron donor, and is separated from the negative electrode chamber via a cation permeant.
  • a microbial power generation method for generating power by supplying an oxygen-containing gas to a positive electrode chamber of a microbial power generation device including a positive electrode chamber having a positive electrode in contact with the positive electrode chamber, introducing condensed water taken out from the positive electrode chamber into the negative electrode chamber
  • the pH of the negative electrode chamber is adjusted to 7-9.
  • the microbial power generation method of the second aspect is characterized in that, in the first aspect, the cation permeant is a cation exchange membrane.
  • the microbial power generation device includes a negative electrode chamber having a negative electrode and holding a liquid containing microorganisms and an electron donor, and is separated from the negative electrode chamber via a cation permeant.
  • a microbial power generation apparatus including a positive electrode chamber having a positive electrode in contact therewith, pH adjusting means for adjusting the pH of the negative electrode chamber to 7 to 9 by introducing condensed water taken out from the positive electrode chamber into the negative electrode chamber. It is characterized by having.
  • the microorganism power generation device of the fourth aspect is characterized in that, in the third aspect, the cation permeant is a cation exchange membrane.
  • the present invention pays attention to the fact that the condensed water taken out from the positive electrode chamber is alkaline, and adjusts the pH of the negative electrode chamber to 7 to 9 by supplying this positive chamber condensed water to the negative electrode chamber.
  • the power generation efficiency is kept high.
  • the pH of the negative electrode chamber can be maintained at 7 to 9 without using a phosphate buffer or reducing the amount of addition thereof.
  • FIG. 2 is a schematic cross-sectional view showing a schematic configuration of the microbial power generation method and apparatus of the present invention.
  • the tank body 1 is partitioned into a positive electrode chamber 3 and a negative electrode chamber 4 by a cation permeator 2.
  • a positive electrode 5 made of a conductive porous material is disposed so as to be in contact with the cation permeant 2.
  • a negative electrode 6 made of a conductive porous material is disposed in the negative electrode chamber 4.
  • the negative electrode 6 is in contact with the cation permeant 2 directly or through a membrane of about 1 to 2 layers of microorganisms, and protons (H + ) can be transferred from the negative electrode 6 to the cation permeant 2. .
  • the inside of the positive electrode chamber 3 is an empty chamber, and an oxygen-containing gas such as air is introduced from the gas inlet 7, and the exhaust gas flows out from the gas outlet 8.
  • a negative electrode solution L exists in the negative electrode chamber 4, and this negative electrode solution L is circulated through a circulation outlet 9, a circulation pipe 10, a circulation pump 11 and a circulation return port 12.
  • a cation exchange membrane is suitable as described later, but other materials may be used.
  • Microorganisms are supported on the negative electrode 6 made of a porous material.
  • a negative electrode solution L is introduced into the negative electrode chamber 4 from the inlet 4a, and the waste liquid is discharged from the outlet.
  • the inside of the negative electrode chamber 4 is anaerobic.
  • the condensed water generated in the positive electrode chamber 3 can be introduced into the circulation pipe 10 through the condensed water outlet 13, the condensed water pipe 14, the condensed water tank 15, the pipe 16, and the valve 17. Since the pipe 16 is connected to the suction side of the pump 11, the condensed water in the tank 15 is sucked into the pipe 16 when the valve 17 is opened. However, a pump may be provided in the pipe 16 instead of the valve 17.
  • the tank 15 also has an action of settling and separating insoluble substances.
  • the condensed water in the positive electrode chamber 3 is added to the negative electrode solution L so that the pH of the negative electrode solution L is 7-9.
  • the positive electrode chamber condensed water may be added directly to the negative electrode chamber 6, but by adding to the circulating water, the entire area in the negative electrode chamber 6 can be maintained at a pH of 7 to 9 without partial bias. Since the condensed water may contain oxygen, the condensed water may be deoxygenated by a deoxygenating device such as an activated carbon packed tower and then added to the negative electrode solution.
  • Proton H + generated by the above reaction moves to the positive electrode 5 through the cation permeant 2.
  • O 2 + 4H + + 4e ⁇ ⁇ 2H 2 O The reaction proceeds.
  • This water H 2 O is condensed to produce condensed water.
  • K + , Na + and the like that have permeated through the cation permeant 2 are dissolved, so that the condensed water becomes highly alkaline with a pH of about 9.5 to 12.5.
  • the pH tends to decrease due to the generation of CO 2 by the decomposition reaction of water by microorganisms.
  • the pH of the negative electrode solution L is prevented from becoming lower than 7.
  • FIG. 1 is a schematic cross-sectional view of a microbial power generation apparatus according to another preferred embodiment of the present invention.
  • Two plate-like cation permeators 31, 31 are arranged in parallel with each other in a substantially rectangular parallelepiped tank 30, thereby forming a negative electrode chamber 32 between the cation permeators 31, 31.
  • Two positive electrode chambers 33 and 33 are formed with the negative electrode chamber 32 and the cation permeator 31 therebetween.
  • a negative electrode 34 made of a porous material is disposed in the negative electrode chamber 32 so as to be in contact with each cation permeant 31 directly or through a biofilm of about one to two layers.
  • the negative electrode 34 is preferably pressed lightly (for example, at a pressure of 0.1 kg / cm 2 or less) against the cation permeant.
  • a positive electrode 35 made of a porous material is disposed in contact with the cation permeator 31.
  • This positive electrode 35 is pressed against the cation permeator 31 by being pressed by the packing 36.
  • both may be welded or bonded with an adhesive.
  • an oxygen-containing gas distribution space Between the positive electrode 35 and the side wall of the tank body 30 is an oxygen-containing gas distribution space.
  • the positive electrode 35 and the negative electrode 34 are connected to an external resistor 38 via terminals 37 and 39.
  • the negative electrode solution L is introduced into the negative electrode chamber 32 from the inlet 32a, and the waste liquid flows out from the outlet 32b.
  • the inside of the negative electrode chamber 32 is anaerobic.
  • the negative electrode solution in the negative electrode chamber 32 is circulated through the circulation outlet 41, the circulation pipe 42, the circulation pump 43 and the circulation return port 44.
  • the oxygen-containing gas flows into each positive electrode chamber 33 from the gas inlet 51 and the exhaust gas flows out from the gas outlet 52.
  • the condensed water in the positive electrode chamber 33 is introduced into the condensed water tank 55 through the condensed water outlet 53 and the pipe 54 and stored.
  • the condensed water in the condensed water tank 55 can be supplied to the negative electrode chamber 32 via a pipe 56, a valve 57, a circulation pipe 42, and a pump 43.
  • a pump may be provided in the pipe 56 instead of the valve 57.
  • the pH of the negative electrode solution is detected by a pH meter 60, and the valve 57 is controlled by a controller (not shown) so that this pH becomes 7-9.
  • the oxygen-containing gas is circulated through the positive electrode chamber 33, the negative electrode solution is circulated through the negative electrode chamber 32, and preferably the negative electrode solution is circulated, so that the positive electrode 35 and the negative electrode 34 are circulated.
  • a potential difference is generated in the current, and a current flows through the external resistor 38.
  • the microorganism that produces electric energy by being contained in the negative electrode solution L is not particularly limited as long as it has a function as an electron donor.
  • sludge containing such microorganisms activated sludge obtained from biological treatment tanks that treat organic matter-containing water such as sewage, microorganisms contained in effluent from the first sedimentation basin of sewage, anaerobic digested sludge, etc.
  • the microorganism can be held in the negative electrode by supplying to the chamber.
  • the amount of microorganisms retained in the negative electrode chamber is preferably high, and for example, the microorganism concentration is preferably 1 to 50 g / L.
  • the negative electrode solution L a solution that holds microorganisms or cells and has a composition necessary for power generation is used.
  • the negative electrode side solution includes energy required for metabolism in the respiratory system such as bouillon medium, M9 medium, L medium, Malt Extract, MY medium, and nitrifying bacteria selection medium.
  • a medium having a composition such as a source and nutrients can be used.
  • organic waste such as sewage, organic industrial wastewater, and garbage can be used.
  • the negative electrode solution L may contain an electron mediator in order to make it easier to extract electrons from microorganisms or cells.
  • the electron mediator include compounds having a thionin skeleton such as thionine, dimethyldisulfonated thionine, new methylene blue and toluidine blue-O, and 2-hydroxy-1,4-naphthoquinone such as 2-hydroxy-1,4-naphthoquinone.
  • Examples include compounds having a skeleton, brilliant cresyl blue, garocyanine, resorufin, alizarin brilliant blue, phenothiazinone, phenazine esosulphate, safranin-O, dichlorophenolindophenol, ferrocene, benzoquinone, phthalocyanine, or benzyl viologen and their derivatives. be able to.
  • the negative electrode solution L may contain a phosphate buffer as necessary.
  • the negative electrode solution L contains an organic substance.
  • the organic substance is not particularly limited as long as it can be decomposed by microorganisms. For example, water-soluble organic substances, organic fine particles dispersed in water, and the like are used.
  • the negative electrode solution may be organic wastewater such as sewage and food factory effluent.
  • the organic substance concentration in the negative electrode solution L is preferably as high as about 100 to 10,000 mg / L in order to increase the power generation efficiency.
  • the oxygen-containing gas to be circulated in the positive electrode chamber air is suitable.
  • the exhaust gas from the positive electrode chamber may be deoxygenated as necessary, and then vented to the negative electrode chamber to be used for purging dissolved oxygen from the negative electrode solution L.
  • cation permeator As the cation permeator, almost any cation permeate can be used as long as it is non-conductive and has cation permeability. Inexpensive materials such as water-permeable filter paper, woven fabric, and non-woven fabric, microfiltration membrane, ultrafiltration (UF) membrane, reverse osmosis (RO) membrane, and cation permeable membrane with high proton selectivity are preferably used. For example, Nafion (registered trademark) manufactured by DuPont Co., Ltd., a CMB membrane as a cation exchange membrane manufactured by Astom Co., Ltd., or the like can be used.
  • the cation permeator is preferably thin and strong.
  • the negative electrode is preferably a porous body having a large surface area and a large number of voids and water permeability so that a large number of microorganisms can be retained.
  • Specific examples include a conductive material sheet having a roughened surface and a porous conductor (for example, graphite felt, expanded titanium, expanded stainless steel, etc.) in which the conductive material is made into a felt-like porous sheet. .
  • a plurality of sheet-like conductors may be laminated to form a negative electrode.
  • the same kind of conductor sheets may be laminated, or different kinds of conductor sheets (for example, a graphite sheet having a rough surface and a graphite felt) may be laminated.
  • the total thickness of the negative electrode is preferably 3 mm or more and 40 mm or less, particularly about 5 to 20 mm.
  • a negative electrode is constituted by a laminated sheet, it is preferable to orient the laminated surface in a direction connecting the liquid inlet and outlet so that the liquid flows along a mating surface (laminated surface) between the sheets.
  • a catalyst in which a catalyst is supported on a porous substrate made of a conductive material is preferable.
  • a catalyst in which platinum is supported on a graphite felt is preferable.
  • an inexpensive graphite electrode may be used as it is (that is, without carrying platinum) as a positive electrode.
  • the graphite felt may be a graphite felt hydrophobized with polytetrafluoroethylene (PTFE).
  • the negative electrode chamber may be divided into a plurality of compartments, and the pH of the liquid in the negative electrode compartment may be adjusted after suppressing the pH drop in each compartment by connecting the compartments in series. If the negative electrode chamber is divided, the amount of organic matter decomposition in each of the compartments is reduced, and as a result, the amount of carbon dioxide gas generated is also reduced. Cathode condensed water may be added to the liquid flowing in the negative electrode chamber when it flows from the front-stage compartment to the rear-stage compartment. If it does in this way, the pH of the liquid in which the pH has decreased in the front compartment can be raised and flowed into the rear compartment, and the pH of the liquid in the negative compartment can be easily adjusted to the above range.
  • an alkali adding means for adding an alkali such as NaOH aqueous solution to the negative electrode chamber, which is different from the positive electrode chamber condensed water.
  • This alkali may be added to the negative electrode chamber, may be added to the circulation pipe, may be added to the condensed water tank, or may be added to the negative electrode solution introduced into the negative electrode chamber.
  • FIG. 1 A microbial power generation apparatus shown in FIG. 1 was prepared.
  • the entire volume of the tank body 30 of this power generator is 525 mL, the volume of the negative electrode chamber 32 is 175 mL, and the volume of each positive electrode chamber 33 is 175 mL.
  • Each positive electrode chamber 33 was provided with an air supply port at the top and an air outlet at the bottom.
  • a cation permeable membrane (trade name (registered trademark) “Nafion 112” manufactured by DuPont Co., Ltd.) was disposed as the cation permeable body 31.
  • the negative electrode 34 graphite felt (manufactured by Toyo Carbon Co., Ltd.) having a size of 250 mm ⁇ 70 mm and a thickness of 10 mm was used. Both surfaces of this graphite felt are rough.
  • the negative electrode 34 was filled in the entire negative electrode chamber 32 as shown in the figure, and the negative electrode 34 and the cation permeable membrane 35 were pressed and brought into contact with each other. That is, the liquid supplied to the negative electrode chamber 32 is configured to pass through the porous negative electrode 34, and does not substantially pass through the negative electrode chamber 32 (short path) without passing through the negative electrode 34. Has been.
  • the negative electrode chamber 32 activated sludge collected from a biological treatment tank of a sewage treatment plant was added and cultured as an inoculum, and microorganisms were attached to the surface of the graphite felt constituting the negative electrode.
  • the microorganism concentration in the negative electrode chamber 32 was about 2200 mg / L.
  • Each of the positive electrodes 35 was composed of one platinum-supported graphite felt having a thickness of 3 mm. This graphite felt is hydrophobized by applying a xylene dispersion of PTFE fine particles and then heat-treating at 400 ° C. for baking. 0.5 mg / cm 2 is supported on the surface in contact with the film 31 (liquid side).
  • the spacer 36 was disposed, and the positive electrode 35 was pressed against the cation permeable membrane 31 with a pressure of about 0.1 kg / cm 2 to bring them into close contact.
  • the positive electrode chamber 33 was supplied with air at 1000 mL / min.
  • the negative electrode chamber 32 is supplied with a stock solution containing acetic acid at a concentration of 1,000 mg / L, a phosphate buffer at a concentration of 50 mM, and 300 mg / L of ammonium chloride at an inflow rate of 70 mL / min. Was discharged.
  • the circulation flow rate of the circulation pipe 42 was 10 mL / min.
  • the condensed water in the positive electrode chamber was not added to the circulating liquid, but instead sodium hydroxide having a concentration of 1N was added to the circulating liquid.
  • the relationship between the pH of the liquid in the negative electrode chamber 32 and the amount of power generation was determined by changing the amount of sodium hydroxide added to the circulating liquid. The results are shown in FIG. In the figure, the power generation efficiency is shown as a power generation amount per unit volume of the anode. As shown in FIG. 3, it has been found that when the pH of the effluent from the negative electrode chamber 32 is less than 7, the power generation efficiency is rapidly reduced. Similarly, when the effluent from the negative electrode chamber 32 exceeded pH 9, the power generation efficiency decreased rapidly.
  • Example 1 From the above reference example, it was shown that the pH of the liquid in the negative electrode chamber 11 affects the power generation efficiency. Therefore, as Example 1, as shown in FIG. 1, the condensed water in the positive electrode chamber 33 was added to the circulating liquid so that the pH of the effluent from the negative electrode chamber 32 was maintained at 7.5. At this time, the circulating liquid circulating and flowing into the negative electrode chamber 32 was set to pH 8.2. Other conditions were the same as in Reference Example 1.
  • Example 1 the carbonic acid concentration of the effluent flowing out from the negative electrode chamber 32 was 340 mg / L as inorganic carbonic acid (IC). In addition, an electric power of 120 W / m 3 per unit volume of the negative electrode was obtained.

Abstract

Disclosed is a microbial power generation method that can maintain the pH value within a negative electrode chamber at 7 to 9 to enhance the efficiency of microbial power generation even when phosphate buffer is not used or when the amount of phosphate buffer used is reduced. Also disclosed is a microbial power generation apparatus. Two sheet-like cation-permeable bodies (31, 31) are disposed parallel to each other within a tank (30), whereby a negative electrode chamber (32) is provided between the cation-permeable bodies (31, 31) and two positive electrode chambers (33, 33) are respectively provided across the negative electrode chamber (32) and one of the cation-permeable bodies (31, 31) and across the negative electrode chamber (32) and the other cation-permeable body (31). An oxygen-containing gas is allowed to flow into the positive electrode chamber (33). A negative electrode solution (L) is fed into the negative electrode chamber. Preferably, the negative electrode solution is circulated. A condensate water having a high pH value produced in the positive electrode chamber (33) is added to the negative electrode chamber (32) of which the contents have a pH value being lowered due to a microbial reaction to maintain the pH value within the negative electrode chamber (32) at 7 to 9.

Description

微生物発電方法および微生物発電装置Microbial power generation method and microbial power generation apparatus 発明の分野Field of Invention
 本発明は、微生物の代謝反応を利用する発電方法および装置に関する。本発明は特に、有機物を微生物に酸化分解させる際に得られる還元力を電気エネルギーとして取り出す微生物発電方法およびその装置に関する。 The present invention relates to a power generation method and apparatus utilizing a metabolic reaction of microorganisms. In particular, the present invention relates to a microbial power generation method and apparatus for taking out the reducing power obtained when an organic substance is oxidatively decomposed into microorganisms as electric energy.
発明の背景Background of the Invention
 近年、地球環境に配慮した発電方法へのニーズが高まり、微生物発電の技術開発も進められている。微生物発電は、微生物が有機物を資化する際に得られる電気エネルギーを取り出すことにより発電する方法である。 In recent years, the need for a power generation method that takes the global environment into consideration has increased, and technological development of microbial power generation has been promoted. Microbial power generation is a method of generating electricity by taking out electrical energy obtained when microorganisms assimilate organic matter.
 一般的に、微生物発電では負極が配置された負極室内に、微生物、微生物に資化される有機物、および電子伝達媒体(電子メディエータ)を共存させる。電子メディエータは微生物体内に入り、微生物が有機物を酸化して発生する電子を受け取って負極に渡す。負極は外部抵抗(負荷)を介して正極と電気的に導通しており、負極に渡された電子は外部抵抗(負荷)を介して正極に移動し、正極と接する電子受容体に渡される。このような電子の移動により正極と負極との間に電流が流れる。 Generally, in microbial power generation, microorganisms, organic matter assimilated by microorganisms, and an electron transfer medium (electron mediator) are allowed to coexist in a negative electrode chamber in which a negative electrode is disposed. The electron mediator enters the microorganism, receives the electrons generated by the microorganisms oxidizing the organic matter, and passes them to the negative electrode. The negative electrode is electrically connected to the positive electrode via an external resistance (load), and the electrons transferred to the negative electrode move to the positive electrode via the external resistance (load) and are transferred to the electron acceptor in contact with the positive electrode. A current flows between the positive electrode and the negative electrode due to such movement of electrons.
 微生物発電では、電子メディエータが微生物体から直接、電子を取り出すため、理論上のエネルギー変換効率は高い。しかし、実際のエネルギー変換効率は低く、発電効率の向上が求められている。そこで、発電効率を高めるため、電極の材料や構造、電子メディエータの種類、および微生物種の選択等について様々な検討および開発が行われている(例えば特許文献1、特許文献2)。 In microbial power generation, the electron mediator extracts electrons directly from the microbial body, so the theoretical energy conversion efficiency is high. However, actual energy conversion efficiency is low, and improvement in power generation efficiency is required. Therefore, various studies and developments have been made on electrode materials and structures, types of electron mediators, selection of microbial species, and the like in order to increase power generation efficiency (for example, Patent Documents 1 and 2).
 特許文献1には、正極室と負極室とを固体電解質よりなるアルカリイオン導電体で隔て、正極室内及び負極室内をリン酸緩衝液(バッファ)でpH7とし、正極室内に空気を吹き込んで発電を行うことが記載されている。 In Patent Document 1, the positive electrode chamber and the negative electrode chamber are separated by an alkali ion conductor made of a solid electrolyte, the positive electrode chamber and the negative electrode chamber are set to pH 7 with a phosphate buffer (buffer), and air is blown into the positive electrode chamber to generate power. It is described to do.
 特許文献2には、正極室と負極室とを区画する電解質膜に接するように、正極板として多孔質体を設置し、正極室に空気を流通させ、多孔質体の空隙中で空気と液とを接触させることが記載されている。
特開2000-133326号公報 特開2004-342412号公報
In Patent Document 2, a porous body is installed as a positive electrode plate so as to be in contact with an electrolyte membrane that partitions a positive electrode chamber and a negative electrode chamber, air is circulated through the positive electrode chamber, and air and liquid are admitted in the voids of the porous body. It is described to make contact with.
JP 2000-133326 A Japanese Patent Laid-Open No. 2004-342412
 微生物発電装置を運転すると、負極室内において微生物反応に伴って炭酸ガスが発生し、pHが低下してくる。特許文献1では、負極室に供給される液に高濃度のリン酸バッファを添加することで、負極室内での反応に伴うpH変化を抑制している。しかしながら、本発明者らが検討したところ、発電効率が高くなると負極室でのpH低下が著しくなり、発電効率が低下することが判明した。このため、高い発電効率を得ようとする場合、バッファの添加量が少なければpH変化を抑制しきれず発電効率の低下を招く。一方、バッファによりpHの変化を抑制しようとすると、多量のバッファの添加が必要となり、高コストとなり実用的でない。 When the microbial power generation device is operated, carbon dioxide gas is generated in the negative electrode chamber due to the microbial reaction, and the pH is lowered. In patent document 1, the pH change accompanying reaction in a negative electrode chamber is suppressed by adding a high concentration phosphate buffer to the liquid supplied to a negative electrode chamber. However, as a result of studies by the present inventors, it has been found that when the power generation efficiency is increased, the pH in the negative electrode chamber is significantly lowered, and the power generation efficiency is decreased. For this reason, when it is going to obtain high power generation efficiency, if there is little addition amount of a buffer, pH change cannot be suppressed and it will cause power generation efficiency fall. On the other hand, if an attempt is made to suppress a change in pH with a buffer, a large amount of buffer needs to be added, resulting in high costs and impracticality.
発明の概要Summary of the Invention
 本発明は、リン酸バッファを用いることなく、又はその使用量を少なくしても、負極室内のpHを7~9に維持して微生物発電の効率を高くすることができる微生物発電方法及び装置を提供することを目的とする。 The present invention provides a microbial power generation method and apparatus capable of increasing the efficiency of microbial power generation by maintaining the pH in the negative electrode chamber at 7 to 9 without using a phosphate buffer or reducing the amount of use thereof. The purpose is to provide.
 第1態様の微生物発電方法は、負極を有し、微生物および電子供与体を含む液を保持する負極室と、該負極室に対しカチオン透過体を介して隔てられており、該カチオン透過体に接する正極を備えた正極室とを備えた微生物発電装置の該正極室に酸素含有ガスを供給して発電を行う微生物発電方法において、該正極室から取り出される凝縮水を前記負極室に導入することによって、前記負極室のpHを7~9に調整することを特徴とするものである。 A microorganism power generation method according to a first aspect includes a negative electrode chamber having a negative electrode and holding a liquid containing a microorganism and an electron donor, and is separated from the negative electrode chamber via a cation permeant. In a microbial power generation method for generating power by supplying an oxygen-containing gas to a positive electrode chamber of a microbial power generation device including a positive electrode chamber having a positive electrode in contact with the positive electrode chamber, introducing condensed water taken out from the positive electrode chamber into the negative electrode chamber Thus, the pH of the negative electrode chamber is adjusted to 7-9.
 第2態様の微生物発電方法は、第1態様において、カチオン透過体がカチオン交換膜であることを特徴とするものである。 The microbial power generation method of the second aspect is characterized in that, in the first aspect, the cation permeant is a cation exchange membrane.
 第3態様の微生物発電装置は、負極を有し、微生物および電子供与体を含む液を保持する負極室と、該負極室に対しカチオン透過体を介して隔てられており、該カチオン透過体に接する正極を備えた正極室とを備えた微生物発電装置において、該正極室から取り出される凝縮水を前記負極室に導入することによって、前記負極室のpHを7~9に調整するpH調整手段を備えたことを特徴とするものである。 The microbial power generation device according to the third aspect includes a negative electrode chamber having a negative electrode and holding a liquid containing microorganisms and an electron donor, and is separated from the negative electrode chamber via a cation permeant. In a microbial power generation apparatus including a positive electrode chamber having a positive electrode in contact therewith, pH adjusting means for adjusting the pH of the negative electrode chamber to 7 to 9 by introducing condensed water taken out from the positive electrode chamber into the negative electrode chamber. It is characterized by having.
 第4態様の微生物発電装置は、第3態様において、カチオン透過体がカチオン交換膜であることを特徴とするものである。 The microorganism power generation device of the fourth aspect is characterized in that, in the third aspect, the cation permeant is a cation exchange membrane.
 本発明は、正極室から取り出される凝縮水がアルカリ性であることに着目し、この正極室凝縮水を負極室に供給して負極室のpHを7~9に調整し、これにより、微生物発電の発電効率を高く維持するようにしたものである。本発明によれば、リン酸バッファを用いることなく、又はその添加量を少なくしても、負極室のpHを7~9に維持することができる。 The present invention pays attention to the fact that the condensed water taken out from the positive electrode chamber is alkaline, and adjusts the pH of the negative electrode chamber to 7 to 9 by supplying this positive chamber condensed water to the negative electrode chamber. The power generation efficiency is kept high. According to the present invention, the pH of the negative electrode chamber can be maintained at 7 to 9 without using a phosphate buffer or reducing the amount of addition thereof.
本発明の一実施形態に係る微生物発電装置の断面模式図である。It is a cross-sectional schematic diagram of the microbial power generation device which concerns on one Embodiment of this invention. 本発明の一実施形態に係る微生物発電装置の断面模式図である。It is a cross-sectional schematic diagram of the microbial power generation device which concerns on one Embodiment of this invention. 試験結果を示すグラフである。It is a graph which shows a test result.
発明を実施するための形態BEST MODE FOR CARRYING OUT THE INVENTION
 以下、本発明についてさらに詳細に説明する。 Hereinafter, the present invention will be described in more detail.
 第2図は本発明の微生物発電方法及び装置の概略的な構成を示す模式的断面図である。 FIG. 2 is a schematic cross-sectional view showing a schematic configuration of the microbial power generation method and apparatus of the present invention.
 槽体1内がカチオン透過体2によって正極室3と負極室4とに区画されている。正極室3内にあっては、カチオン透過体2に接するように、導電性多孔質材料よりなる正極5が配置されている。 The tank body 1 is partitioned into a positive electrode chamber 3 and a negative electrode chamber 4 by a cation permeator 2. In the positive electrode chamber 3, a positive electrode 5 made of a conductive porous material is disposed so as to be in contact with the cation permeant 2.
 負極室4内には、導電性多孔質材料よりなる負極6が配置されている。この負極6は、カチオン透過体2に直に、又は1~2層程度の微生物の膜を介して接しており、負極6からカチオン透過体2にプロトン(H)が受け渡し可能となっている。 A negative electrode 6 made of a conductive porous material is disposed in the negative electrode chamber 4. The negative electrode 6 is in contact with the cation permeant 2 directly or through a membrane of about 1 to 2 layers of microorganisms, and protons (H + ) can be transferred from the negative electrode 6 to the cation permeant 2. .
 正極室3内は、空室であり、ガス流入口7から空気などの酸素含有ガスが導入され、ガス流出口8から排ガスが流出する。負極室4内には負極溶液Lが存在しており、この負極溶液Lは循環往口9、循環配管10、循環用ポンプ11及び循環戻口12を介して循環される。 The inside of the positive electrode chamber 3 is an empty chamber, and an oxygen-containing gas such as air is introduced from the gas inlet 7, and the exhaust gas flows out from the gas outlet 8. A negative electrode solution L exists in the negative electrode chamber 4, and this negative electrode solution L is circulated through a circulation outlet 9, a circulation pipe 10, a circulation pump 11 and a circulation return port 12.
 上記のカチオン透過体2としては、後述する通り、カチオン交換膜が好適であるが、その他のものであってもよい。 As the cation permeant 2 described above, a cation exchange membrane is suitable as described later, but other materials may be used.
 多孔質材料よりなる負極6に微生物が担持されている。負極室4には流入口4aから負極溶液Lを導入し、流出口から廃液を排出させる。なお、負極室4内は嫌気性とされる。 Microorganisms are supported on the negative electrode 6 made of a porous material. A negative electrode solution L is introduced into the negative electrode chamber 4 from the inlet 4a, and the waste liquid is discharged from the outlet. The inside of the negative electrode chamber 4 is anaerobic.
 正極室3内で生じた凝縮水が凝縮水流出口13、凝縮水配管14、凝縮水タンク15、配管16、弁17介して循環配管10に導入可能とされている。なお、配管16がポンプ11の吸込側に接続されているため、弁17を開くとタンク15内の凝縮水が配管16に吸引される。ただし、弁17の代わりにポンプを配管16に設けてもよい。タンク15は、不溶性物質を沈降分離させる作用も有する。 The condensed water generated in the positive electrode chamber 3 can be introduced into the circulation pipe 10 through the condensed water outlet 13, the condensed water pipe 14, the condensed water tank 15, the pipe 16, and the valve 17. Since the pipe 16 is connected to the suction side of the pump 11, the condensed water in the tank 15 is sucked into the pipe 16 when the valve 17 is opened. However, a pump may be provided in the pipe 16 instead of the valve 17. The tank 15 also has an action of settling and separating insoluble substances.
 正極5と負極6との間に生じた起電力により、端子20,22を介して外部抵抗21に電流が流れる。 A current flows to the external resistor 21 through the terminals 20 and 22 due to the electromotive force generated between the positive electrode 5 and the negative electrode 6.
 負極溶液LのpHが7~9となるように、正極室3の凝縮水が負極溶液Lに対し添加される。この正極室凝縮水は、負極室6に直接に添加されてもよいが、循環水に添加することにより、負極室6内の全域を部分的な偏りなしにpH7~9に保つことができる。なお、凝縮水は酸素を含む場合があるため、活性炭充填塔のような脱酸素装置によって凝縮水を脱酸素処理した後、負極溶液に添加するようにしてもよい。 The condensed water in the positive electrode chamber 3 is added to the negative electrode solution L so that the pH of the negative electrode solution L is 7-9. The positive electrode chamber condensed water may be added directly to the negative electrode chamber 6, but by adding to the circulating water, the entire area in the negative electrode chamber 6 can be maintained at a pH of 7 to 9 without partial bias. Since the condensed water may contain oxygen, the condensed water may be deoxygenated by a deoxygenating device such as an activated carbon packed tower and then added to the negative electrode solution.
 正極室3に酸素含有ガスを通気すると共に、必要に応じポンプ11を作動させて負極溶液Lを循環させることにより、
         (有機物)+HO→CO+H+e
なる反応が進行する。この電子eが負極6、端子22、外部抵抗21、端子20を経て正極5へ流れる。
By ventilating the oxygen-containing gas into the positive electrode chamber 3 and operating the pump 11 as necessary to circulate the negative electrode solution L,
(Organic) + H 2 O → CO 2 + H + + e
The reaction proceeds. This electron e flows to the positive electrode 5 through the negative electrode 6, the terminal 22, the external resistor 21, and the terminal 20.
 上記反応で生じたプロトンHは、カチオン透過体2を通って正極5に移動する。正極5では、
          O+4H+4e→2H
なる反応が進行する。この水HOが凝縮して凝縮水が生じる。この凝縮水には、カチオン透過体2を透過してきたK,Naなどが溶け込み、これにより凝縮水がpH9.5~12.5程度の高アルカリ性となる。
Proton H + generated by the above reaction moves to the positive electrode 5 through the cation permeant 2. In the positive electrode 5,
O 2 + 4H + + 4e → 2H 2 O
The reaction proceeds. This water H 2 O is condensed to produce condensed water. In this condensed water, K + , Na + and the like that have permeated through the cation permeant 2 are dissolved, so that the condensed water becomes highly alkaline with a pH of about 9.5 to 12.5.
 負極室4では、微生物による水の分解反応によりCOが生成することにより、pHが低下しようとする。前述の通り、正極室5からの高アルカリ性の凝縮水が負極溶液Lに添加されることにより、負極溶液LのpHが7より低くなることが防止される。 In the negative electrode chamber 4, the pH tends to decrease due to the generation of CO 2 by the decomposition reaction of water by microorganisms. As described above, by adding highly alkaline condensed water from the positive electrode chamber 5 to the negative electrode solution L, the pH of the negative electrode solution L is prevented from becoming lower than 7.
 第1図は本発明の別の好ましい形態に係る微生物発電装置の概略的な断面図である。 FIG. 1 is a schematic cross-sectional view of a microbial power generation apparatus according to another preferred embodiment of the present invention.
 略直方体形状の槽体30内に2枚の板状のカチオン透過体31,31が互いに平行に配置されることにより、該カチオン透過体31,31同士の間に負極室32が形成され、該負極室32とそれぞれ該カチオン透過体31を隔てて2個の正極室33,33が形成されている。 Two plate- like cation permeators 31, 31 are arranged in parallel with each other in a substantially rectangular parallelepiped tank 30, thereby forming a negative electrode chamber 32 between the cation permeators 31, 31. Two positive electrode chambers 33 and 33 are formed with the negative electrode chamber 32 and the cation permeator 31 therebetween.
 負極室32内には、各カチオン透過体31と直に、又は1層~2層程度の生物膜を介して接するように、多孔質材料よりなる負極34が配置されている。負極34は、カチオン透過体に対し軽く(例えば0.1kg/cm以下の圧力で)押し付けられるのが好ましい。 A negative electrode 34 made of a porous material is disposed in the negative electrode chamber 32 so as to be in contact with each cation permeant 31 directly or through a biofilm of about one to two layers. The negative electrode 34 is preferably pressed lightly (for example, at a pressure of 0.1 kg / cm 2 or less) against the cation permeant.
 正極室33内には、カチオン透過体31と接して多孔質材料よりなる正極35が配置されている。この正極35は、パッキン36に押圧されてカチオン透過体31に押し付けられている。正極35とカチオン透過体との密着性を高めるために、両者を溶着したり、接着剤で接着してもよい。 In the positive electrode chamber 33, a positive electrode 35 made of a porous material is disposed in contact with the cation permeator 31. This positive electrode 35 is pressed against the cation permeator 31 by being pressed by the packing 36. In order to improve the adhesion between the positive electrode 35 and the cation permeable material, both may be welded or bonded with an adhesive.
 正極35と槽体30の側壁との間は、酸素含有ガスの流通スペースとなっている。 Between the positive electrode 35 and the side wall of the tank body 30 is an oxygen-containing gas distribution space.
 この正極35及び負極34は、端子37,39を介して外部抵抗38に接続されている。 The positive electrode 35 and the negative electrode 34 are connected to an external resistor 38 via terminals 37 and 39.
 負極室32には、流入口32aから負極溶液Lが導入され、流出口32bから廃液が流出する。負極室32内は嫌気性とされる。 The negative electrode solution L is introduced into the negative electrode chamber 32 from the inlet 32a, and the waste liquid flows out from the outlet 32b. The inside of the negative electrode chamber 32 is anaerobic.
 負極室32内の負極溶液は、循環往口41、循環配管42、循環ポンプ43及び循環戻口44を介して循環される。各正極室33には、ガス流入口51から酸素含有ガスが流入し、排ガスがガス流出口52から流出する。 The negative electrode solution in the negative electrode chamber 32 is circulated through the circulation outlet 41, the circulation pipe 42, the circulation pump 43 and the circulation return port 44. The oxygen-containing gas flows into each positive electrode chamber 33 from the gas inlet 51 and the exhaust gas flows out from the gas outlet 52.
 正極室33内の凝縮水は、凝縮水流出口53、配管54を介して凝縮水タンク55に導入され、貯留される。この凝縮水タンク55内の凝縮水は、配管56、弁57、循環配管42、ポンプ43を介して負極室32に供給可能とされている。 The condensed water in the positive electrode chamber 33 is introduced into the condensed water tank 55 through the condensed water outlet 53 and the pipe 54 and stored. The condensed water in the condensed water tank 55 can be supplied to the negative electrode chamber 32 via a pipe 56, a valve 57, a circulation pipe 42, and a pump 43.
 配管56がポンプ43の吸込側に接続されているため、弁57を開くとタンク55内の凝縮水が配管50に吸引される。なお、弁57の代わりにポンプを配管56に設けてもよい。 Since the pipe 56 is connected to the suction side of the pump 43, the condensed water in the tank 55 is sucked into the pipe 50 when the valve 57 is opened. A pump may be provided in the pipe 56 instead of the valve 57.
 負極溶液のpHをpH計60で検出し、このpHが7~9となるように制御器(図示略)によって弁57が制御される。 The pH of the negative electrode solution is detected by a pH meter 60, and the valve 57 is controlled by a controller (not shown) so that this pH becomes 7-9.
 この第1図の微生物発電装置においても、正極室33に酸素含有ガスを流通させ、負極室32に負極溶液を流通させ、好ましくは負極溶液を循環させることにより、正極35と負極34との間に電位差が生じ、外部抵抗38に電流が流れる。 Also in the microbial power generation apparatus of FIG. 1, the oxygen-containing gas is circulated through the positive electrode chamber 33, the negative electrode solution is circulated through the negative electrode chamber 32, and preferably the negative electrode solution is circulated, so that the positive electrode 35 and the negative electrode 34 are circulated. A potential difference is generated in the current, and a current flows through the external resistor 38.
 この発電運転に伴って、正極室33に高pHの凝縮水が生成し、タンク55に貯留される。微生物反応によりpHが低下しようとする負極室32に、正極室33で生じた高pHの凝縮水を該タンク55から添加することにより、負極室32内のpHを7~9に維持する。 With this power generation operation, high pH condensed water is generated in the positive electrode chamber 33 and stored in the tank 55. By adding high pH condensed water generated in the positive electrode chamber 33 from the tank 55 to the negative electrode chamber 32 whose pH is about to be lowered by the microbial reaction, the pH in the negative electrode chamber 32 is maintained at 7-9.
 次に、この微生物発電装置の微生物、負極溶液などのほか、カチオン透過体、負極及び正極の好適な材料等について説明する。 Next, in addition to the microorganisms and the negative electrode solution of the microbial power generation apparatus, suitable materials for the cation permeator, the negative electrode, and the positive electrode will be described.
 負極溶液L中に含有させることで電気エネルギーを産生させる微生物は、電子供与体としての機能を有するものであれば特に制限されない。例えば、Saccharomyces、Hansenula、Candida、Micrococcus、Staphylococcus、Streptococcus、Leuconostoa、Lactobacillus、Corynebacterium、Arthrobacter、Bacillus、Clostridium、Neisseria、Escherichia、Enterobacter、Serratia、Achromobacter、Alcaligenes、Flavobacterium、Acetobacter、Moraxella、Nitrosomonas、Nitorobacter、Thiobacillus、Gluconobacter、Pseudomonas、Xanthomonas、Vibrio、Comamonas及びProteus(Proteus vulgaris)の各属に属する細菌、糸状菌、酵母などを挙げることができる。このような微生物を含む汚泥として下水等の有機物含有水を処理する生物処理槽から得られる活性汚泥、下水の最初沈澱池からの流出水に含まれる微生物、嫌気性消化汚泥等を植種として負極室に供給し、微生物を負極に保持させることができる。発電効率を高くするためには、負極室内に保持される微生物量は高濃度であることが好ましく、例えば微生物濃度は1~50g/Lであることが好ましい。 The microorganism that produces electric energy by being contained in the negative electrode solution L is not particularly limited as long as it has a function as an electron donor. For example, Saccharomyces, Hansenula, Candida, Micrococcus, Staphylococcus, Streptococcus, Leuconostoa, Lactobacillus, Corynebacterium, Arthrobacter, Bacillus, Clostridium, Neisseria, Escherichia, Enterobacter, Serratia, Aigenes Examples include bacteria, filamentous fungi, and yeasts belonging to the genera Gluconobacter, Pseudomonas, Xanthomonas, Vibrio, Comamonas, and Proteus (Proteus vulgaris). As a sludge containing such microorganisms, activated sludge obtained from biological treatment tanks that treat organic matter-containing water such as sewage, microorganisms contained in effluent from the first sedimentation basin of sewage, anaerobic digested sludge, etc. The microorganism can be held in the negative electrode by supplying to the chamber. In order to increase the power generation efficiency, the amount of microorganisms retained in the negative electrode chamber is preferably high, and for example, the microorganism concentration is preferably 1 to 50 g / L.
 負極溶液Lとしては、微生物又は細胞を保持し、かつ発電に必要な組成を有する溶液が用いられる。例えば、呼吸系の発電を行う場合は、負極側の溶液としては、ブイヨン培地、M9培地、L培地、Malt Extract、MY培地、硝化菌選択培地などの呼吸系の代謝を行うのに必要なエネルギー源や栄養素などの組成を有する培地が利用できる。また、下水、有機性産業排水、生ごみ等の有機性廃棄物を用いることができる。 As the negative electrode solution L, a solution that holds microorganisms or cells and has a composition necessary for power generation is used. For example, in the case of generating electricity in the respiratory system, the negative electrode side solution includes energy required for metabolism in the respiratory system such as bouillon medium, M9 medium, L medium, Malt Extract, MY medium, and nitrifying bacteria selection medium. A medium having a composition such as a source and nutrients can be used. In addition, organic waste such as sewage, organic industrial wastewater, and garbage can be used.
 負極溶液L中には、微生物又は細胞からの電子の引き抜きをより容易とするために電子メディエーターを含有させてもよい。この電子メディエーターとしては、例えば、チオニン、ジメチルジスルホン化チオニン、ニューメチレンブルー、トルイジンブルー-O等のチオニン骨格を有する化合物、2-ヒドロキシ-1,4-ナフトキノン等の2-ヒドロキシ-1,4-ナフトキノン骨格を有する化合物、ブリリアントクレジルブルー、ガロシアニン、レソルフィン、アリザリンブリリアントブルー、フェノチアジノン、フェナジンエソスルフェート、サフラニン-O、ジクロロフェノールインドフェノール、フェロセン、ベンゾキノン、フタロシアニン、あるいはベンジルビオローゲン及びこれらの誘導体などを挙げることができる。 The negative electrode solution L may contain an electron mediator in order to make it easier to extract electrons from microorganisms or cells. Examples of the electron mediator include compounds having a thionin skeleton such as thionine, dimethyldisulfonated thionine, new methylene blue and toluidine blue-O, and 2-hydroxy-1,4-naphthoquinone such as 2-hydroxy-1,4-naphthoquinone. Examples include compounds having a skeleton, brilliant cresyl blue, garocyanine, resorufin, alizarin brilliant blue, phenothiazinone, phenazine esosulphate, safranin-O, dichlorophenolindophenol, ferrocene, benzoquinone, phthalocyanine, or benzyl viologen and their derivatives. be able to.
 さらに、微生物の発電機能を増大させるような材料、例えばビタミンCのような抗酸化剤や、微生物中の特定の電子伝達系や物質伝達系のみを働かせる機能増大材料を溶解すると、さらに効率よく電力を得ることができるので好ましい。 Furthermore, if materials that increase the power generation function of microorganisms, such as antioxidants such as vitamin C, or materials that increase the function of only specific electron transfer systems or substance transfer systems in microorganisms, are dissolved, power can be more efficiently generated. Is preferable.
 負極溶液Lは、必要に応じ、リン酸バッファを含有していてもよい。 The negative electrode solution L may contain a phosphate buffer as necessary.
 負極溶液Lは有機物を含むものである。この有機物としては、微生物によって分解されるものであれば特に制限はなく、例えば水溶性の有機物、水中に分散する有機物微粒子などが用いられる。負極溶液は、下水、食品工場排水などの有機性廃水であってもよい。負極溶液L中の有機物濃度は、発電効率を高くするために100~10000mg/L程度の高濃度であることが好ましい。 The negative electrode solution L contains an organic substance. The organic substance is not particularly limited as long as it can be decomposed by microorganisms. For example, water-soluble organic substances, organic fine particles dispersed in water, and the like are used. The negative electrode solution may be organic wastewater such as sewage and food factory effluent. The organic substance concentration in the negative electrode solution L is preferably as high as about 100 to 10,000 mg / L in order to increase the power generation efficiency.
 正極室に流通させる酸素含有ガスとしては、空気が好適である。正極室からの排ガスを、必要に応じ脱酸素処理した後、負極室に通気し、負極溶液Lからの溶存酸素のパージに用いてもよい。 As the oxygen-containing gas to be circulated in the positive electrode chamber, air is suitable. The exhaust gas from the positive electrode chamber may be deoxygenated as necessary, and then vented to the negative electrode chamber to be used for purging dissolved oxygen from the negative electrode solution L.
 カチオン透過体としては、非導電性、かつカチオン透過性を有するものであればほとんどのものが使用できる。安価なものとしては、通水性の良い濾紙や織布、不織布のほか、精密濾過膜、限外濾過(UF)膜、逆浸透(RO)膜、プロトン選択性の高いカチオン透過膜を好適に使用でき、例えばデュポン株式会社製ナフィオン(登録商標)、株式会社アストム製のカチオン交換膜であるCMB膜等が使用できる。カチオン透過体は、薄くて丈夫であることが好ましい。
 負極は、多くの微生物を保持できるよう、表面積が大きく空隙が多く形成され通水性を有する多孔体が好ましい。具体的には、少なくとも表面が粗とされた導電性物質のシートや導電性物質をフェルト状その他の多孔性シートにした多孔性導電体(例えばグラファイトフェルト、発泡チタン、発泡ステンレス等)が挙げられる。
As the cation permeator, almost any cation permeate can be used as long as it is non-conductive and has cation permeability. Inexpensive materials such as water-permeable filter paper, woven fabric, and non-woven fabric, microfiltration membrane, ultrafiltration (UF) membrane, reverse osmosis (RO) membrane, and cation permeable membrane with high proton selectivity are preferably used. For example, Nafion (registered trademark) manufactured by DuPont Co., Ltd., a CMB membrane as a cation exchange membrane manufactured by Astom Co., Ltd., or the like can be used. The cation permeator is preferably thin and strong.
The negative electrode is preferably a porous body having a large surface area and a large number of voids and water permeability so that a large number of microorganisms can be retained. Specific examples include a conductive material sheet having a roughened surface and a porous conductor (for example, graphite felt, expanded titanium, expanded stainless steel, etc.) in which the conductive material is made into a felt-like porous sheet. .
 このような多孔質の負極を直接に又は微生物層を介してカチオン透過体に当接させた場合、電子メディエータを用いることなく、微生物反応で生じた電子が負極に渡るようになり、電子メディエータを不要とすることができる。 When such a porous negative electrode is brought into contact with a cation permeant directly or through a microorganism layer, electrons generated by a microbial reaction can pass to the negative electrode without using an electron mediator, and the electron mediator is It can be unnecessary.
 複数のシート状導電体を積層して負極としてもよい。この場合、同種の導電体シートを積層してもよく、異なる種類の導電体シート同士(例えばグラファイトフェルトと粗面を有するグラファイトシート)を積層してもよい。 A plurality of sheet-like conductors may be laminated to form a negative electrode. In this case, the same kind of conductor sheets may be laminated, or different kinds of conductor sheets (for example, a graphite sheet having a rough surface and a graphite felt) may be laminated.
 負極は全体の厚さが3mm以上40mm以下、特に5~20mm程度であることが好ましい。積層シートによって負極を構成した場合、シート同士の合わせ面(積層面)に沿って液が流れるように、積層面を液の流入口と流出口とを結ぶ方向に配向させるのが好ましい。 The total thickness of the negative electrode is preferably 3 mm or more and 40 mm or less, particularly about 5 to 20 mm. When a negative electrode is constituted by a laminated sheet, it is preferable to orient the laminated surface in a direction connecting the liquid inlet and outlet so that the liquid flows along a mating surface (laminated surface) between the sheets.
 正極としては、導電性材料で構成された多孔質基材に触媒を坦持させたものが好ましく、例えばグラファイトフェルトを基材として白金を坦持させたものが好適である。大きな電力を必要としない場合、安価なグラファイト電極をそのまま(つまり、白金を担持させずに)正極として使用してもよい。また、白金以外の安価な触媒、例えば、コバルト、ニッケル等を使用しても良い。グラファイトフェルトは、ポリテトラフルオロエチレン(PTFE)で疎水化したグラファイトフェルトであってもよい。 As the positive electrode, a catalyst in which a catalyst is supported on a porous substrate made of a conductive material is preferable. For example, a catalyst in which platinum is supported on a graphite felt is preferable. If large electric power is not required, an inexpensive graphite electrode may be used as it is (that is, without carrying platinum) as a positive electrode. Moreover, you may use cheap catalysts other than platinum, for example, cobalt, nickel, etc. The graphite felt may be a graphite felt hydrophobized with polytetrafluoroethylene (PTFE).
 本発明では、負極室を複数の分室に分割し、各分室を直列接続することで各分室でのpH低下を抑制した上で負極室内の液のpHを調整するようにしてもよい。負極室を分割すれば、各分室での有機物分解量が小さくなる結果、炭酸ガスの生成量も小さくなるため、各分室でのpH低下を少なくできる。負極室を流れる液には、前段側の分室から後段側の分室へ流れる際にカソード凝縮水を添加すればよい。このようにすれば、前段側の分室でpHが低下した液のpHを上げて後段側の分室へ流入させることができ、負極室内の液のpHを上記範囲に調整することが容易になる。 In the present invention, the negative electrode chamber may be divided into a plurality of compartments, and the pH of the liquid in the negative electrode compartment may be adjusted after suppressing the pH drop in each compartment by connecting the compartments in series. If the negative electrode chamber is divided, the amount of organic matter decomposition in each of the compartments is reduced, and as a result, the amount of carbon dioxide gas generated is also reduced. Cathode condensed water may be added to the liquid flowing in the negative electrode chamber when it flows from the front-stage compartment to the rear-stage compartment. If it does in this way, the pH of the liquid in which the pH has decreased in the front compartment can be raised and flowed into the rear compartment, and the pH of the liquid in the negative compartment can be easily adjusted to the above range.
 本発明では、正極室凝縮水とは別の、NaOH水溶液などのアルカリを負極室に添加するアルカリ添加手段を設けてもよい。このアルカリは、負極室に添加されてもよく、循環配管に添加されてもよく、凝縮水タンクに添加されてもよく、負極室に導入される負極溶液に添加されてもよい。 In the present invention, there may be provided an alkali adding means for adding an alkali such as NaOH aqueous solution to the negative electrode chamber, which is different from the positive electrode chamber condensed water. This alkali may be added to the negative electrode chamber, may be added to the circulation pipe, may be added to the condensed water tank, or may be added to the negative electrode solution introduced into the negative electrode chamber.
 以下、参考例及び実施例について説明する。 Hereinafter, reference examples and examples will be described.
[参考例1]
 第1図に示す微生物発電装置を作成した。この発電装置の槽体30の全体の容積は525mL、負極室32の容積は175mL、各正極室33の容積は175mLである。各正極室33には上部に空気供給口を設け、下部に空気流出口を設けた。
[Reference Example 1]
A microbial power generation apparatus shown in FIG. 1 was prepared. The entire volume of the tank body 30 of this power generator is 525 mL, the volume of the negative electrode chamber 32 is 175 mL, and the volume of each positive electrode chamber 33 is 175 mL. Each positive electrode chamber 33 was provided with an air supply port at the top and an air outlet at the bottom.
 カチオン透過体31としてカチオン透過膜(デュポン株式会社製 商品名(登録商標)「ナフィオン112」)を配置した。 A cation permeable membrane (trade name (registered trademark) “Nafion 112” manufactured by DuPont Co., Ltd.) was disposed as the cation permeable body 31.
 負極34としては、250mm×70mmで厚さ10mmのグラファイトフェルト(東洋カーボン株式会社製)を使用した。このグラファイトフェルトの両表面は粗面である。なお、負極34は図に示すように負極室32内全体に充填され、負極34とカチオン透過膜35とを押し付けて接触させた。すなわち負極室32に供給された液は多孔性の負極34を透過するように構成されており、負極34内を通らずに負極室32を通過すること(ショートパス)が実質的にないよう構成されている。負極室32には種菌として下水処理場の生物処理槽から採取した活性汚泥を添加して培養し、負極を構成するグラファイトフェルト表面に微生物を付着させた。負極室32内の微生物濃度は約2200mg/Lであった。 As the negative electrode 34, graphite felt (manufactured by Toyo Carbon Co., Ltd.) having a size of 250 mm × 70 mm and a thickness of 10 mm was used. Both surfaces of this graphite felt are rough. The negative electrode 34 was filled in the entire negative electrode chamber 32 as shown in the figure, and the negative electrode 34 and the cation permeable membrane 35 were pressed and brought into contact with each other. That is, the liquid supplied to the negative electrode chamber 32 is configured to pass through the porous negative electrode 34, and does not substantially pass through the negative electrode chamber 32 (short path) without passing through the negative electrode 34. Has been. In the negative electrode chamber 32, activated sludge collected from a biological treatment tank of a sewage treatment plant was added and cultured as an inoculum, and microorganisms were attached to the surface of the graphite felt constituting the negative electrode. The microorganism concentration in the negative electrode chamber 32 was about 2200 mg / L.
 正極35は、それぞれ、厚さ3mmの白金担持グラファイトフェルト1枚で構成した。なお、このグラファイトフェルトはPTFE微粒子のキシレン分散液を塗布した後、400℃で熱処理して焼き付けることによって疎水化し、さらに、活性炭担持白金(シグマ アルドリッチジャパン株式会社製、10%Pt含有)をカチオン透過膜31と接する側の表面(液側)に0.5mg/cm担持させたものである。 Each of the positive electrodes 35 was composed of one platinum-supported graphite felt having a thickness of 3 mm. This graphite felt is hydrophobized by applying a xylene dispersion of PTFE fine particles and then heat-treating at 400 ° C. for baking. 0.5 mg / cm 2 is supported on the surface in contact with the film 31 (liquid side).
 スペーサ36を配置し、正極35を0.1kg/cm程度の圧力でカチオン透過膜31に押しつけ、両者を密着させた。 The spacer 36 was disposed, and the positive electrode 35 was pressed against the cation permeable membrane 31 with a pressure of about 0.1 kg / cm 2 to bring them into close contact.
 正極室33には、空気を1000mL/minにて供給した。負極室32には、1,000mg/Lの濃度の酢酸と、50mMの濃度のリン酸バッファと、塩化アンモニウム300mg/Lとを含む原液を70mL/minの流入量で供給し、同量の廃液を排出させた。 The positive electrode chamber 33 was supplied with air at 1000 mL / min. The negative electrode chamber 32 is supplied with a stock solution containing acetic acid at a concentration of 1,000 mg / L, a phosphate buffer at a concentration of 50 mM, and 300 mg / L of ammonium chloride at an inflow rate of 70 mL / min. Was discharged.
 循環配管42の循環流量は10mL/minとした。 The circulation flow rate of the circulation pipe 42 was 10 mL / min.
 この参考例では、正極室の凝縮水は循環液に添加せず、代わりに濃度1Nの水酸化ナトリウムを循環液に添加した。 In this reference example, the condensed water in the positive electrode chamber was not added to the circulating liquid, but instead sodium hydroxide having a concentration of 1N was added to the circulating liquid.
 循環液に対する水酸化ナトリウムの添加量を変え、負極室32内の液のpHと発電量の関係を求めた。結果を第3図に示す。図中、発電効率はアノードの単位容積あたりの発電量として示す。第3図に示すように、負極室32からの流出液のpHが7を下回ると、発電効率が急激に低下することが判明した。同様に、負極室32からの流出液がpH9を上回る場合も発電効率が急激に低下した。 The relationship between the pH of the liquid in the negative electrode chamber 32 and the amount of power generation was determined by changing the amount of sodium hydroxide added to the circulating liquid. The results are shown in FIG. In the figure, the power generation efficiency is shown as a power generation amount per unit volume of the anode. As shown in FIG. 3, it has been found that when the pH of the effluent from the negative electrode chamber 32 is less than 7, the power generation efficiency is rapidly reduced. Similarly, when the effluent from the negative electrode chamber 32 exceeded pH 9, the power generation efficiency decreased rapidly.
[実施例1]
 上記参考例より、負極室11内の液のpHが発電効率に影響することが示された。そこで、実施例1として、第1図の通り、正極室33の凝縮水を循環液に添加して負極室32からの流出液のpHが7.5を維持するようにした。このとき、負極室32に循環流入させる循環液はpH8.2とした。その他の条件については、参考例1と同様とした。
[Example 1]
From the above reference example, it was shown that the pH of the liquid in the negative electrode chamber 11 affects the power generation efficiency. Therefore, as Example 1, as shown in FIG. 1, the condensed water in the positive electrode chamber 33 was added to the circulating liquid so that the pH of the effluent from the negative electrode chamber 32 was maintained at 7.5. At this time, the circulating liquid circulating and flowing into the negative electrode chamber 32 was set to pH 8.2. Other conditions were the same as in Reference Example 1.
 実施例1では、負極室32から流出した流出液の炭酸濃度は、無機炭酸(IC)として340mg/Lであった。また、負極の単位容積あたり120W/mの電力が得られた。 In Example 1, the carbonic acid concentration of the effluent flowing out from the negative electrode chamber 32 was 340 mg / L as inorganic carbonic acid (IC). In addition, an electric power of 120 W / m 3 per unit volume of the negative electrode was obtained.

Claims (8)

  1.  負極を有し、微生物および電子供与体を含む液を保持する負極室と、
     該負極室に対しカチオン透過体を介して隔てられており、該カチオン透過体に接する正極を備えた正極室と
    を備えた微生物発電装置の該正極室に酸素含有ガスを供給して発電を行う微生物発電方法において、
     該正極室から取り出される凝縮水を前記負極室に導入することによって、前記負極室のpHを7~9に調整することを特徴とする微生物発電方法。
    A negative electrode chamber having a negative electrode and holding a liquid containing microorganisms and an electron donor;
    Electric power is generated by supplying an oxygen-containing gas to the positive electrode chamber of a microbial power generation apparatus that is separated from the negative electrode chamber via a cation permeant and has a positive electrode chamber provided with a positive electrode in contact with the cation permeant. In the microbial power generation method,
    A microbial power generation method comprising adjusting the pH of the negative electrode chamber to 7 to 9 by introducing condensed water taken out from the positive electrode chamber into the negative electrode chamber.
  2.  請求項1において、カチオン透過体がカチオン交換膜であることを特徴とする微生物発電方法。 2. The microbial power generation method according to claim 1, wherein the cation permeant is a cation exchange membrane.
  3.  請求項1において、酸素含有ガスは空気であることを特徴とする微生物発電方法。 2. The microbial power generation method according to claim 1, wherein the oxygen-containing gas is air.
  4.  負極を有し、微生物および電子供与体を含む液を保持する負極室と、
     該負極室に対しカチオン透過体を介して隔てられており、該カチオン透過体に接する正極を備えた正極室と
    を備えた微生物発電装置において、
     該正極室から取り出される凝縮水を前記負極室に導入することによって、前記負極室のpHを7~9に調整するpH調整手段を備えたことを特徴とする微生物発電装置。
    A negative electrode chamber having a negative electrode and holding a liquid containing microorganisms and an electron donor;
    In a microbial power generation apparatus provided with a positive electrode chamber provided with a positive electrode that is separated from the negative electrode chamber via a cation permeant and is in contact with the cation permeant,
    A microbial power generator comprising pH adjusting means for adjusting the pH of the negative electrode chamber to 7 to 9 by introducing condensed water taken out from the positive electrode chamber into the negative electrode chamber.
  5.  請求項3において、カチオン透過体がカチオン交換膜であることを特徴とする微生物発電装置。 4. The microbial power generation device according to claim 3, wherein the cation permeant is a cation exchange membrane.
  6.  請求項4において、負極は通水性を有する多孔体よりなり、該負極が前記カチオン透過体に接触しており、負極室は、液の流入口と流出口を有しており、該流入口から負極室内に供給された液は負極を通過して流出口に至ることを特徴とする微生物発電装置。 5. The negative electrode according to claim 4, wherein the negative electrode is made of a porous material having water permeability, the negative electrode is in contact with the cation permeant, and the negative electrode chamber has a liquid inlet and an outlet. A microbial power generator characterized in that the liquid supplied into the negative electrode chamber passes through the negative electrode and reaches the outlet.
  7.  請求項4ないし6のいずれか1項において、負極室には循環往口と循環戻口とが設けられ、該循環往口と循環戻口とが循環配管及び循環ポンプを介して接続されていることを特徴とする微生物発電装置。 7. The negative electrode chamber according to claim 4, wherein a circulation outlet and a circulation return opening are provided in the negative electrode chamber, and the circulation outlet and the circulation return opening are connected via a circulation pipe and a circulation pump. A microbial power generation apparatus characterized by that.
  8.  請求項7において、前記正極室からの凝縮水が該循環配管に導入されることを特徴とする微生物発電装置。 8. The microbial power generation apparatus according to claim 7, wherein the condensed water from the positive electrode chamber is introduced into the circulation pipe.
PCT/JP2009/054393 2008-03-14 2009-03-09 Microbial power generation method and microbial power generation apparatus WO2009113479A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-066092 2008-03-14
JP2008066092A JP5407156B2 (en) 2008-03-14 2008-03-14 Microbial power generation method and microbial power generation apparatus

Publications (1)

Publication Number Publication Date
WO2009113479A1 true WO2009113479A1 (en) 2009-09-17

Family

ID=41065146

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/054393 WO2009113479A1 (en) 2008-03-14 2009-03-09 Microbial power generation method and microbial power generation apparatus

Country Status (3)

Country Link
JP (1) JP5407156B2 (en)
TW (1) TW200947795A (en)
WO (1) WO2009113479A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006179223A (en) * 2004-12-21 2006-07-06 Ebara Corp Power generation method and apparatus using organic substance
JP2013517129A (en) * 2010-01-14 2013-05-16 ジエイ・クレイグ・ベンター・インステイテユート Modular energy recovery water treatment system
WO2016047060A1 (en) * 2014-09-26 2016-03-31 パナソニックIpマネジメント株式会社 Liquid processing unit and liquid processing device

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2011273506B2 (en) * 2010-06-29 2015-09-17 Vito Nv Gas diffusion electrode, method of producing same, membrane electrode assembly comprising same and method of producing membrane electrode assembly comprising same
CA2858281A1 (en) * 2011-12-22 2013-06-27 Xyleco, Inc. Processing biomass for use in fuel cells
JP5812874B2 (en) * 2012-01-13 2015-11-17 積水化学工業株式会社 Microbial fuel cell system
JP5904491B2 (en) * 2012-03-22 2016-04-13 ユニ・チャーム株式会社 Biofuel cell
US20180366756A1 (en) * 2015-12-18 2018-12-20 Kemira Oyj Microbial fuel cell and its use
JP7218648B2 (en) * 2019-03-27 2023-02-07 栗田工業株式会社 Microbial power generation method and apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000133327A (en) * 1998-10-29 2000-05-12 Canon Inc Power generating method and device using micro-organism
JP2006179223A (en) * 2004-12-21 2006-07-06 Ebara Corp Power generation method and apparatus using organic substance
WO2007037261A1 (en) * 2005-09-28 2007-04-05 Ebara Corporation Biological power plant, and method of treating organic solid contaminant-containing waste, method of treating organic high molecular substance-containing liquid waste and method of treating organic substance-containing liquid waste by using the biological power plant, and apparatus for conducting these methods

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000133327A (en) * 1998-10-29 2000-05-12 Canon Inc Power generating method and device using micro-organism
JP2006179223A (en) * 2004-12-21 2006-07-06 Ebara Corp Power generation method and apparatus using organic substance
WO2007037261A1 (en) * 2005-09-28 2007-04-05 Ebara Corporation Biological power plant, and method of treating organic solid contaminant-containing waste, method of treating organic high molecular substance-containing liquid waste and method of treating organic substance-containing liquid waste by using the biological power plant, and apparatus for conducting these methods

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006179223A (en) * 2004-12-21 2006-07-06 Ebara Corp Power generation method and apparatus using organic substance
JP2013517129A (en) * 2010-01-14 2013-05-16 ジエイ・クレイグ・ベンター・インステイテユート Modular energy recovery water treatment system
WO2016047060A1 (en) * 2014-09-26 2016-03-31 パナソニックIpマネジメント株式会社 Liquid processing unit and liquid processing device
CN106573809A (en) * 2014-09-26 2017-04-19 松下知识产权经营株式会社 Liquid processing unit and liquid processing device
JPWO2016047060A1 (en) * 2014-09-26 2017-06-15 パナソニックIpマネジメント株式会社 Liquid processing unit and liquid processing apparatus
EP3199496A4 (en) * 2014-09-26 2017-08-02 Panasonic Intellectual Property Management Co., Ltd. Liquid processing unit and liquid processing device

Also Published As

Publication number Publication date
TW200947795A (en) 2009-11-16
JP5407156B2 (en) 2014-02-05
JP2009224128A (en) 2009-10-01

Similar Documents

Publication Publication Date Title
JP5298589B2 (en) Microbial power generator
JP5407156B2 (en) Microbial power generation method and microbial power generation apparatus
JP5428328B2 (en) Microbial power generation method and microbial power generation apparatus
JP5526505B2 (en) Microbial power generator
JP2010033824A (en) Microorganism electric generation device
JP2009295488A (en) Microbiological power generation device and positive electrode for microbiological power generation device
WO2019181281A1 (en) Microbial power generation device and method for operating same
WO2010071059A1 (en) Microbial electricity-generating method and microbial electric generator
JP6252702B1 (en) Microbial power generation method and apparatus
JP5359725B2 (en) Microbial power generation method and microbial power generation apparatus
JP6358352B1 (en) Microbial power generation apparatus and microbial power generation method
JP5287149B2 (en) Microbial power generation method and microbial power generation apparatus
JP2011065822A (en) Microorganism power generation device and method of manufacturing the same
JP2009231231A (en) Microbial power generation method, and device
JP2010102953A (en) Microbiological power generation device and positive electrode for the microbiological power generation device
WO2019171833A1 (en) Microbial power-generation device and method
JP5369700B2 (en) Microbial power generation method and microbial power generation apparatus
JP2009231230A (en) Microbial power generation method and device
JP2009238558A (en) Microbiological power generation method and device
JP6652149B2 (en) Microbial power generator using germicide and method of operating microbial power generator
JP5338588B2 (en) Microbial power generation method and apparatus
JP2019160459A (en) Operation method of microorganism power generation device
JP2010009772A (en) Biogenerator, and method of manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09720349

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09720349

Country of ref document: EP

Kind code of ref document: A1