JP6358352B1 - Microbial power generation apparatus and microbial power generation method - Google Patents

Microbial power generation apparatus and microbial power generation method Download PDF

Info

Publication number
JP6358352B1
JP6358352B1 JP2017059220A JP2017059220A JP6358352B1 JP 6358352 B1 JP6358352 B1 JP 6358352B1 JP 2017059220 A JP2017059220 A JP 2017059220A JP 2017059220 A JP2017059220 A JP 2017059220A JP 6358352 B1 JP6358352 B1 JP 6358352B1
Authority
JP
Japan
Prior art keywords
power generation
negative electrode
ion
electrode chamber
permeable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017059220A
Other languages
Japanese (ja)
Other versions
JP2018163751A (en
Inventor
和也 小松
和也 小松
裕昭 狩山
裕昭 狩山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2017059220A priority Critical patent/JP6358352B1/en
Priority to PCT/JP2017/033291 priority patent/WO2018173327A1/en
Priority to TW106132900A priority patent/TW201836200A/en
Application granted granted Critical
Publication of JP6358352B1 publication Critical patent/JP6358352B1/en
Publication of JP2018163751A publication Critical patent/JP2018163751A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

【課題】イオン透過性非導電性膜の透気度が適切であり、安定して高い発電量が得られる微生物発電装置を提供する。【解決手段】負極6を有し、微生物及び電子供与体を含む液を保持する負極室4と、該負極室4に対しイオン透過性非導電性膜2を介して隔てられており、該イオン透過性非導電性膜2に接するエアーカソードを有する正極室3とを備えた微生物発電装置において、前記イオン透過性非導電性膜2がガーレー値1,000sec/100mL以上の親水性非導電性膜であることを特徴とする微生物発電装置。【選択図】図1Provided is a microbial power generation apparatus in which an air permeability of an ion-permeable non-conductive membrane is appropriate and a stable high power generation amount can be obtained. A negative electrode chamber (4) having a negative electrode (6) and holding a liquid containing microorganisms and an electron donor is separated from the negative electrode chamber (4) via an ion-permeable nonconductive film (2). A microbial power generation apparatus including a positive electrode chamber 3 having an air cathode in contact with a permeable nonconductive film 2, wherein the ion permeable nonconductive film 2 has a Gurley value of 1,000 sec / 100 mL or more. A microbial power generation apparatus characterized by [Selection] Figure 1

Description

本発明は、微生物の代謝反応を利用する発電装置に関する。本発明は特に、有機物を微生物に酸化分解させる際に得られる還元力を電気エネルギーとして取り出す微生物発電装置に関する。   The present invention relates to a power generation device that utilizes a metabolic reaction of a microorganism. In particular, the present invention relates to a microbial power generation apparatus that extracts, as electric energy, a reducing power obtained when an organic substance is oxidatively decomposed into microorganisms.

微生物を用いた発電装置として、特許文献1には、正極室と負極室とを区画する電解質膜に接するように、正極板として多孔質体を設置し、正極室に空気を流通させ、多孔質体の空隙中で空気と液とを接触させるものが記載されている。なお、以下、このように正極室内に空気等の酸素含有ガスを流通させ、酸素を電子受容体として利用する正極を「エアーカソード」と称す場合がある。   As a power generation device using microorganisms, Patent Document 1 discloses that a porous body is installed as a positive electrode plate so as to be in contact with an electrolyte membrane partitioning a positive electrode chamber and a negative electrode chamber, and air is circulated through the positive electrode chamber. It describes what makes air and liquid contact in the voids of the body. In the following, a positive electrode that circulates an oxygen-containing gas such as air in the positive electrode chamber and uses oxygen as an electron acceptor may be referred to as an “air cathode”.

エアーカソードを用いる微生物発電装置であれば、カソード液が不要で、また、正極室に単に酸素含有ガスを流通させるのみで良く、カソード液中への曝気の必要がないといった利点がある。   A microbial power generation apparatus using an air cathode has the advantage that no catholyte is required, and only an oxygen-containing gas needs to be circulated in the positive electrode chamber, and there is no need for aeration into the catholyte.

特許文献2には、正極室と負極室を区隔するイオン透過性膜として、非導電性物質よりなる紙、織布、不織布、ハニカム成形体、または格子状成形体を用いた微生物発電装置が記載されている。このようなイオン透過性膜は、イオン交換膜に比べて安価である。   Patent Document 2 discloses a microbial power generation apparatus that uses paper, woven fabric, non-woven fabric, honeycomb formed body, or lattice-shaped formed body made of a non-conductive material as an ion permeable film that separates a positive electrode chamber and a negative electrode chamber. Have been described. Such an ion permeable membrane is less expensive than an ion exchange membrane.

特開2004−342412号公報Japanese Patent Application Laid-Open No. 2004-342412 特開2009−231229号公報JP 2009-231229 A

エアーカソードを用いた微生物発電装置で、正極室と負極室を区隔するイオン透過性膜に数種類の紙、織布、不織布など用いた装置を作成して運転したところ、高い発電量が得られるものと得られないものがあった。検討の結果、イオン透過性膜の透気性が発電性能に影響していることが分かった。高い発電量を得るにはイオン透過性の高い膜が好ましいが、一般にイオン透過性の高い膜は空気を透過しやすい傾向にある。イオン透過性が高くても空気が透過しやすい膜では、カソードからアノードに透過する空気(酸素)量が多くなり、アノードで好気反応による有機物分解が起きてしまい、発電効率が低下する。言い換えると、発電微生物は嫌気性条件下で有機物を酸化できるが、酸素があると増殖できずに他の好気性微生物が繁殖してしまうため発電効率が下がり、最悪の場合は隔膜やアノードにスライムが発生・付着してしまう懸念がある。ここで、殺菌剤を使用すると好気性微生物は除去されるものの発電微生物も影響を受ける上に、隔膜や電極触媒が劣化して性能が下がってしまうので殺菌剤を使用することは望ましくない。   A microbial power generation device using an air cathode creates and operates a device that uses several types of paper, woven fabric, non-woven fabric, etc., in an ion-permeable membrane that separates the positive electrode chamber and the negative electrode chamber. Some things were not available. As a result of investigation, it was found that the air permeability of the ion permeable membrane has an influence on the power generation performance. A membrane having a high ion permeability is preferable for obtaining a high power generation amount, but a membrane having a high ion permeability generally tends to transmit air. In a membrane that has high ion permeability and easily allows air to permeate, the amount of air (oxygen) that permeates from the cathode to the anode increases, and organic matter decomposition occurs due to an aerobic reaction at the anode, thereby reducing power generation efficiency. In other words, power generation microorganisms can oxidize organic matter under anaerobic conditions, but if oxygen is present, they cannot grow and other aerobic microorganisms propagate, leading to a decrease in power generation efficiency. There is a concern that will occur and adhere. Here, when the bactericide is used, the aerobic microorganisms are removed, but the power generation microorganisms are also affected. Further, the diaphragm and the electrode catalyst are deteriorated and the performance is lowered, so that it is not desirable to use the bactericide.

本発明は、イオン透過性非導電性膜の透気度が適切であり、安定して高い発電量が得られる微生物発電装置を提供することを目的とする。   An object of the present invention is to provide a microbial power generation apparatus in which the air permeability of an ion-permeable non-conductive film is appropriate and a high power generation amount can be stably obtained.

本発明の微生物発電装置は、負極を有し、微生物及び電子供与体を含む液を保持する負極室と、該負極室に対しイオン透過性非導電性膜を介して隔てられており、該イオン透過性非導電性膜に接するエアーカソードを有する正極室とを備えた微生物発電装置において、前記イオン透過性非導電性膜がガーレー値1,000sec/100mL以上の親水性非導電性膜であることを特徴とする。   The microbial power generation device of the present invention has a negative electrode and holds a negative electrode chamber holding a liquid containing microorganisms and an electron donor, and is separated from the negative electrode chamber via an ion-permeable non-conductive film. In the microorganism power generation apparatus including a positive electrode chamber having an air cathode in contact with the permeable nonconductive film, the ion permeable nonconductive film is a hydrophilic nonconductive film having a Gurley value of 1,000 sec / 100 mL or more. It is characterized by.

本発明の一態様では、前記イオン透過性非導電性膜は、非導電性物質よりなる紙、織布、又は不織布である。   In one aspect of the present invention, the ion-permeable non-conductive film is paper, woven fabric, or non-woven fabric made of a non-conductive substance.

ガーレー値が低い、すなわち、空気が透過しやすいイオン透過性非導電性膜を備えた微生物発電装置では、カソードからアノードに透過する空気(酸素)量が多く、アノードで好気反応による有機物分解が起きてしまい、発電効率が低下する。一方、ガーレー値が高い、すなわち、空気が透過しにくいイオン透過性非導電性膜を備えた微生物発電装置では、アノードで好気反応が起こりにくく、発電反応効率を向上させることができる。   Microbial power generation devices with low Gurley values, that is, with ion-permeable non-conductive membranes that allow air to easily permeate, have a large amount of air (oxygen) permeating from the cathode to the anode, and organic matter decomposition by an aerobic reaction occurs at the anode. It happens and power generation efficiency decreases. On the other hand, in a microbial power generation apparatus having an ion-permeable non-conductive film that has a high Gurley value, that is, it is difficult for air to permeate, an aerobic reaction hardly occurs at the anode, and the power generation reaction efficiency can be improved.

本発明の微生物発電装置では、ガーレー値が1,000sec/100mL以上のイオン透過性膜を用いており、発電効率が高い。   In the microbial power generation device of the present invention, an ion permeable membrane having a Gurley value of 1,000 sec / 100 mL or more is used, and the power generation efficiency is high.

本発明の一実施形態に係る微生物発電装置の断面模式図である。It is a cross-sectional schematic diagram of the microbial power generation device which concerns on one Embodiment of this invention.

以下、図1を参照して本発明の微生物発電装置の実施の形態を詳細に説明する。図1は本発明の微生物発電装置の概略的な構成を示す模式的断面図である。   Hereinafter, an embodiment of the microbial power generation apparatus of the present invention will be described in detail with reference to FIG. FIG. 1 is a schematic cross-sectional view showing a schematic configuration of a microbial power generation apparatus of the present invention.

この微生物発電装置にあっては、槽体1内がイオン透過性非導電性膜2によって正極室3と負極室4とに区画されている。正極室3内には、イオン透過性非導電性膜2に接するように正極5が配置されている。   In this microbial power generation device, the inside of the tank body 1 is partitioned into a positive electrode chamber 3 and a negative electrode chamber 4 by an ion-permeable non-conductive film 2. A positive electrode 5 is disposed in the positive electrode chamber 3 so as to be in contact with the ion-permeable nonconductive film 2.

負極室4内には、導電性多孔質材料よりなる負極6が配置されている。この負極6は、ガーレー値1,000sec/100mL以上、好ましくは1,000〜6,000sec/100mLのイオン透過性非導電性膜2に、直に、又は1〜2層程度の微生物の膜を介して接しており、イオン透過性非導電性膜2がカチオン交換膜であれば、負極6からイオン透過性非導電性膜2にプロトン(H)が受け渡し可能となっている。 A negative electrode 6 made of a conductive porous material is disposed in the negative electrode chamber 4. The negative electrode 6 has a microbial film of about 1 to 2 layers on the ion-permeable non-conductive film 2 having a Gurley value of 1,000 sec / 100 mL or more, preferably 1,000 to 6,000 sec / 100 mL. If the ion-permeable non-conductive membrane 2 is a cation exchange membrane, protons (H + ) can be transferred from the negative electrode 6 to the ion-permeable non-conductive membrane 2.

正極室3内は、空室であり、ガス流入口7から酸素含有ガス(本実施の形態においては、空気)が導入され、ガス流出口8から排出配管25を経て排ガスが流出する。   The inside of the positive electrode chamber 3 is an empty chamber, oxygen-containing gas (air in the present embodiment) is introduced from the gas inlet 7, and the exhaust gas flows out from the gas outlet 8 through the discharge pipe 25.

多孔質材料よりなる負極6に微生物が担持されている。負極室4には流入口4aから負極溶液Lを導入し、流出口4bから廃液を排出させる。なお、負極室4内は嫌気性とされる。   Microorganisms are supported on the negative electrode 6 made of a porous material. The negative electrode solution 4 is introduced into the negative electrode chamber 4 from the inlet 4a, and the waste liquid is discharged from the outlet 4b. The inside of the negative electrode chamber 4 is anaerobic.

負極室4内の負極溶液Lは循環往口9、循環配管10、循環用ポンプ11及び循環戻口12を介して循環される。この循環配管10には、負極室4から流出してきた液のpHを測定するpH計14が設けられると共に、水酸化ナトリウム水溶液などのアルカリ添加用配管13が接続され、負極溶液LのpHが7〜9となるように、必要に応じてアルカリが添加される。   The negative electrode solution L in the negative electrode chamber 4 is circulated through a circulation outlet 9, a circulation pipe 10, a circulation pump 11 and a circulation return port 12. The circulation pipe 10 is provided with a pH meter 14 for measuring the pH of the liquid flowing out from the negative electrode chamber 4, and connected with an alkali addition pipe 13 such as an aqueous sodium hydroxide solution, so that the pH of the negative electrode solution L is 7 An alkali is added as needed so that it may become ~ 9.

正極室3内で生じた凝縮水は、図示しない凝縮水流出口から排水される。   The condensed water generated in the positive electrode chamber 3 is drained from a condensed water outlet not shown.

正極5と負極6との間に生じた起電力により、端子20,22を介して外部抵抗21に電流が流れる。   Due to the electromotive force generated between the positive electrode 5 and the negative electrode 6, a current flows through the external resistor 21 via the terminals 20 and 22.

正極室3に、酸素と炭酸ガスと水蒸気とを含む好気性生物処理排ガスを通気すると共に、必要に応じポンプ11を作動させて負極溶液Lを循環させることにより、負極室4内では、
(有機物)+HO→CO+H+e
なる反応が進行する。この電子eが負極6、端子22、外部抵抗21、端子20を経て正極5へ流れる。
In the negative electrode chamber 4, the aerobic biological treatment exhaust gas containing oxygen, carbon dioxide gas, and water vapor is passed through the positive electrode chamber 3, and the negative electrode solution L is circulated by operating the pump 11 as necessary.
(Organic) + H 2 O → CO 2 + H + + e
The reaction proceeds. The electrons e flow to the positive electrode 5 through the negative electrode 6, the terminal 22, the external resistor 21, and the terminal 20.

上記反応で生じたプロトンHは、イオン透過性非導電性膜2を通って正極5に移動する。正極5では、
+4H+4e→2H
なる反応が進行する。
Proton H + generated by the above reaction moves to the positive electrode 5 through the ion-permeable non-conductive membrane 2. In the positive electrode 5,
O 2 + 4H + + 4e → 2H 2 O
The reaction proceeds.

負極室4では、微生物による水の分解反応によりCOが生成することにより、pHが低下しようとする。そこで、pH計14の検出pHが好ましくは7〜9となるようにアルカリが負極溶液Lに添加される。このアルカリは、負極室6に直接に添加されてもよいが、循環水に添加することにより、負極室6内の全域を部分的な偏りなしにpH7〜9に保つことができる。 In the negative electrode chamber 4, the pH tends to decrease due to the generation of CO 2 by the decomposition reaction of water by microorganisms. Therefore, alkali is added to the negative electrode solution L so that the detected pH of the pH meter 14 is preferably 7-9. This alkali may be added directly to the negative electrode chamber 6, but by adding to the circulating water, the entire area in the negative electrode chamber 6 can be maintained at pH 7 to 9 without partial bias.

ガーレー値1,000sec/100mL以上のイオン透過性非導電性膜2として、好ましくは紙、織布、又は不織布を用いる。ガーレー値は、JIS P8117:2009によって測定される。ガーレー値は、膜の厚さ方向の空気の通り抜け難さを示し、紙などの透気度を表す試験方法として広く使われている。一定の圧力をかけたときに一定体積(100mL)の空気が透過するのに要した時間(sec)で表され、数値が小さい方が通り抜け易く、数値が大きい方が通り抜け難いことを意味する。すなわち、その数値が小さい方が膜の厚さ方向の連通性がよいことを意味し、その数値が大きい方が膜の厚さ方向の連通性が悪いことを意味する。連通性とは、厚さ方向の孔のつながり度合いである。   As the ion permeable non-conductive film 2 having a Gurley value of 1,000 sec / 100 mL or more, paper, woven fabric, or non-woven fabric is preferably used. The Gurley value is measured according to JIS P8117: 2009. The Gurley value indicates the difficulty of air passage in the thickness direction of the film, and is widely used as a test method for representing the air permeability of paper and the like. It is represented by the time (sec) required for permeation of a constant volume (100 mL) of air when a certain pressure is applied. A smaller value means that it is easier to pass through, and a larger value means that it is more difficult to pass. That is, a smaller value means better communication in the thickness direction of the film, and a larger value means poor communication in the thickness direction of the film. Communication is the degree of connection of holes in the thickness direction.

ガーレー値が低い、すなわち、空気が透過しやすいイオン透過性膜では、カソードからアノードに透過する空気(酸素)量が多く、アノードで好気反応による有機物分解が起きてしまい、発電効率が低下する。一方、ガーレー値が高い、すなわち、空気が透過しにくいイオン透過性膜では、アノードで好気反応が起こりにくく、発電反応効率を向上させることができる。   An ion-permeable membrane that has a low Gurley value, that is, air can easily pass therethrough, has a large amount of air (oxygen) permeating from the cathode to the anode, and organic matter decomposition occurs due to an aerobic reaction at the anode, resulting in reduced power generation efficiency. . On the other hand, an ion-permeable membrane having a high Gurley value, that is, an air-permeable membrane that hardly permeates air, hardly causes an aerobic reaction at the anode, and can improve power generation reaction efficiency.

なお、イオン透過性膜は、負極室に保持される微生物及び電子供与体を含む液と接しており、液中のイオンを効率よくエアカソードに透過させるため、親水性(水に濡れやすい、水滴をつくらない、はじかない)を有することが望ましい。例えば、ポリオレフィン、ガラス、シリカなどの水の接触角90°以下の物質でつくられた紙、織布又は不織布や、上記物質で表面加工された膜(紙、織布又は不織布)が好ましい。   The ion-permeable membrane is in contact with a liquid containing microorganisms and an electron donor held in the negative electrode chamber, and is hydrophilic (easy to wet with water, water droplets) in order to efficiently transmit ions in the liquid to the air cathode. It is desirable to have For example, paper, woven fabric, or non-woven fabric made of a material having a water contact angle of 90 ° or less, such as polyolefin, glass, or silica, or a film (paper, woven fabric, or non-woven fabric) surface-treated with the above material is preferable.

紙、織布、不織布を構成する非導電性材料としては、具体的には、ポリエチレン、ポリプロピレン、ポリカーボネイト、ポリエーテルサルホン(PES)、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、ポリビニルアルコール(PVA)、セルロース、酢酸セルロース等が好適である。プロトンを透過させ易くするために、イオン透過性非導電性膜は厚さが10μm〜1000μm特に25〜100μm程度の薄いものが好ましい。   Specific examples of non-conductive materials constituting paper, woven fabric, and non-woven fabric include polyethylene, polypropylene, polycarbonate, polyethersulfone (PES), polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), Polyvinyl alcohol (PVA), cellulose, cellulose acetate and the like are suitable. In order to facilitate the permeation of protons, the ion-permeable non-conductive membrane is preferably as thin as 10 μm to 1000 μm, particularly about 25 to 100 μm.

次に、この微生物発電装置の微生物、負極溶液などのほか、負極及び正極の好適な材料等について説明する。   Next, in addition to the microorganisms and the negative electrode solution of the microbial power generation apparatus, suitable materials for the negative electrode and the positive electrode will be described.

負極溶液L中に含有させることで電気エネルギーを産生させる微生物は、電子供与体としての機能を有するものであれば特に制限されない。例えば、Saccharomyces、Hansenula、Candida、Micrococcus、Staphylococcus、Streptococcus、Leuconostoa、Lactobacillus、Corynebacterium、Arthrobacter、Bacillus、Clostridium、Neisseria、Escherichia、Enterobacter、Serratia、Achromobacter、Alcaligenes、Flavobacterium、Acetobacter、Moraxella、Nitrosomonas、Nitorobacter、Thiobacillus、Gluconobacter、Pseudomonas、Xanthomonas、Vibrio、Comamonas及びProteus(Proteus
vulgaris)の各属に属する細菌、糸状菌、酵母などを挙げることができる。このような微生物を含む汚泥として下水等の有機物含有水を処理する生物処理槽から得られる活性汚泥、下水の最初沈澱池からの流出水に含まれる微生物、嫌気性消化汚泥等を植種として負極室に供給し、微生物を負極に保持させることができる。発電効率を高くするためには、負極室内に保持される微生物量は高濃度であることが好ましく、例えば微生物濃度は1〜50g/Lであることが好ましい。
Microorganisms that produce electrical energy by being contained in the negative electrode solution L are not particularly limited as long as they have a function as an electron donor. For example, Saccharomyces, Hansenula, Candida, Micrococcus, Staphylococcus, Streptococcus, Leuconostoa, Lactobacillus, Corynebacterium, Arthrobacter, Bacillus, Clostridium, Neisseria, Escherichia, Enterobacter, Serratia, Aigenes Gluconobacter, Pseudomonas, Xanthomonas, Vibrio, Comamonas and Proteus (Proteus
and vulgaris) bacteria, filamentous fungi, yeasts and the like. As a sludge containing such microorganisms, activated sludge obtained from biological treatment tanks that treat organic matter-containing water such as sewage, microorganisms contained in effluent from the first sedimentation basin of sewage, anaerobic digested sludge, etc. The microorganism can be held in the negative electrode by supplying to the chamber. In order to increase the power generation efficiency, the amount of microorganisms retained in the negative electrode chamber is preferably high, and for example, the microorganism concentration is preferably 1 to 50 g / L.

負極溶液Lとしては、微生物又は細胞を保持し、かつ発電に必要な組成を有する溶液が用いられる。例えば、呼吸系の発電を行う場合は、負極側の溶液としては、ブイヨン培地、M9培地、L培地、Malt
Extract、MY培地、硝化菌選択培地などの呼吸系の代謝を行うのに必要なエネルギー源や栄養素などの組成を有する培地が利用できる。また、下水、有機性産業排水、生ごみ等の有機性廃棄物を用いることができる。
As the negative electrode solution L, a solution that holds microorganisms or cells and has a composition necessary for power generation is used. For example, when generating electricity in the respiratory system, the negative electrode side solution is bouillon medium, M9 medium, L medium, Malt.
A medium having a composition such as an energy source and nutrients necessary for carrying out respiratory metabolism such as Extract, MY medium, and nitrifying bacteria selection medium can be used. In addition, organic waste such as sewage, organic industrial wastewater, and garbage can be used.

負極溶液L中には、微生物又は細胞からの電子の引き抜きをより容易とするために電子メディエーターを含有させてもよい。この電子メディエーターとしては、例えば、チオニン、ジメチルジスルホン化チオニン、ニューメチレンブルー、トルイジンブルー−O等のチオニン骨格を有する化合物、2−ヒドロキシ−1,4−ナフトキノン等の2−ヒドロキシ−1,4−ナフトキノン骨格を有する化合物、ブリリアントクレジルブルー、ガロシアニン、レソルフィン、アリザリンブリリアントブルー、フェノチアジノン、フェナジンエソスルフェート、サフラニン−O、ジクロロフェノールインドフェノール、フェロセン、ベンゾキノン、フタロシアニン、あるいはベンジルビオローゲン及びこれらの誘導体などを挙げることができる。   The negative electrode solution L may contain an electron mediator in order to make it easier to extract electrons from microorganisms or cells. Examples of the electron mediator include compounds having a thionin skeleton such as thionine, dimethyldisulfonated thionine, new methylene blue, toluidine blue-O, and 2-hydroxy-1,4-naphthoquinone such as 2-hydroxy-1,4-naphthoquinone. Examples include compounds having a skeleton, brilliant cresyl blue, galocyanine, resorufin, alizarin brilliant blue, phenothiazinone, phenazine esosulphate, safranin-O, dichlorophenolindophenol, ferrocene, benzoquinone, phthalocyanine, or benzyl viologen and their derivatives. be able to.

さらに、微生物の発電機能を増大させるような材料、例えばビタミンCのような抗酸化剤や、微生物中の特定の電子伝達系や物質伝達系のみを働かせる機能増大材料を溶解すると、さらに効率よく電力を得ることができるので好ましい。   Furthermore, if materials that increase the power generation function of microorganisms, such as antioxidants such as vitamin C, or materials that increase the function of only specific electron transfer systems or substance transfer systems in microorganisms, are dissolved, power can be more efficiently generated. Is preferable.

負極溶液Lは、必要に応じ、リン酸バッファを含有していてもよい。   The negative electrode solution L may contain a phosphate buffer as necessary.

負極溶液Lは有機物を含むものである。この有機物としては、微生物によって分解されるものであれば特に制限はなく、例えば水溶性の有機物、水中に分散する有機物微粒子などが用いられる。負極溶液は、下水、食品工場排水などの有機性廃水であってもよい。負極溶液L中の有機物濃度は、発電効率を高くするために100〜10000mg/L程度の高濃度であることが好ましい。   The negative electrode solution L contains an organic substance. The organic substance is not particularly limited as long as it can be decomposed by microorganisms. For example, water-soluble organic substances, organic fine particles dispersed in water, and the like are used. The negative electrode solution may be organic wastewater such as sewage and food factory effluent. The organic substance concentration in the negative electrode solution L is preferably a high concentration of about 100 to 10000 mg / L in order to increase the power generation efficiency.

正極室に流通させるガスとしては、空気が好ましいが、酸素を含んでいればよく、これに限定されない。   The gas to be circulated in the positive electrode chamber is preferably air, but is not limited to this as long as it contains oxygen.

負極は、多くの微生物を保持できるよう、表面積が大きく空隙が多く形成され通水性を有する多孔体が好ましい。具体的には、少なくとも表面が粗とされた導電性物質のシートや導電性物質をフェルト状その他の多孔性シートにした多孔性導電体(例えばグラファイトフェルト、発泡チタン、発泡ステンレス等)が挙げられる。   The negative electrode is preferably a porous body having a large surface area and a large number of voids and water permeability so that a large number of microorganisms can be retained. Specific examples include a conductive material sheet having a roughened surface and a porous conductor (for example, graphite felt, expanded titanium, expanded stainless steel, etc.) in which the conductive material is made into a felt-like porous sheet. .

このような多孔質の負極を直接に又は微生物層を介してイオン透過性非導電性膜に当接させた場合、電子メディエータを用いることなく、微生物反応で生じた電子が負極に渡るようになり、電子メディエータを不要とすることができる。   When such a porous negative electrode is brought into contact with an ion-permeable non-conductive membrane directly or through a microbial layer, electrons generated by a microbial reaction can pass to the negative electrode without using an electron mediator. The electronic mediator can be dispensed with.

複数のシート状導電体を積層して負極としてもよい。この場合、同種の導電体シートを積層してもよく、異なる種類の導電体シート同士(例えばグラファイトフェルトと粗面を有するグラファイトシート)を積層してもよい。   A plurality of sheet-like conductors may be laminated to form a negative electrode. In this case, the same kind of conductor sheets may be laminated, or different kinds of conductor sheets (for example, a graphite sheet having a rough surface and a graphite felt) may be laminated.

負極は全体の厚さが3mm以上40mm以下、特に5〜20mm程度であることが好ましい。積層シートによって負極を構成した場合、シート同士の合わせ面(積層面)に沿って液が流れるように、積層面を液の流入口と流出口とを結ぶ方向に配向させるのが好ましい。   The negative electrode preferably has a total thickness of 3 mm to 40 mm, particularly about 5 to 20 mm. When a negative electrode is constituted by a laminated sheet, it is preferable to orient the laminated surface in a direction connecting the liquid inlet and outlet so that the liquid flows along a mating surface (laminated surface) between the sheets.

正極は、導電性基材と、該導電性基材に担持された酸素還元触媒とを有することが好ましい。   The positive electrode preferably has a conductive substrate and an oxygen reduction catalyst supported on the conductive substrate.

導電性基材としては、導電性が高く、耐食性が高く、厚みが薄くても十分な導電性と耐食性、更には導電性基材としての機械的強度を有するものであれば良く、特に制限はないが、グラファイトペーパー、グラファイトフェルト、グラファイトクロス、ステンレスメッシュ、チタンメッシュ等を用いることができ、これらのうち、特に耐久性と加工のしやすさ等の点から、グラファイトペーパー、グラファイトフェルト、グラファイトクロス等のグラファイト系基材が好ましく、とりわけグラファイトペーパーが好ましい。なお、これらのグラファイト系基材はポリテトラフルオロエチレン(PTFE)等のフッ素樹脂によって疎水化されたものであっても良い。   As the conductive base material, any material may be used as long as it has high electrical conductivity, high corrosion resistance, sufficient electrical conductivity and corrosion resistance even when the thickness is small, and further has mechanical strength as the conductive base material. However, graphite paper, graphite felt, graphite cloth, stainless mesh, titanium mesh, etc. can be used. Of these, graphite paper, graphite felt, graphite cloth, etc., particularly in terms of durability and ease of processing. A graphite-based substrate such as graphite is preferable, and graphite paper is particularly preferable. These graphite base materials may be those made hydrophobic by a fluororesin such as polytetrafluoroethylene (PTFE).

正極の導電性基材の厚さは、厚過ぎると酸素の透過が悪くなり、薄過ぎると、基材に必要な強度等の要求特性を満たすことができないことから、20〜3000μm程度であることが好ましい。   The thickness of the conductive base material of the positive electrode is about 20 to 3000 μm because oxygen permeation is poor when it is too thick, and when it is too thin, the required properties such as strength required for the base material cannot be satisfied. Is preferred.

酸素還元触媒としては、白金等の貴金属のほか、安価で且つ触媒活性が良好であるところから、二酸化マンガン等の金属酸化物が好適であり、その担持量は、0.01〜2.0mg/cm程度とすることが好ましい。 As the oxygen reduction catalyst, in addition to noble metals such as platinum, metal oxides such as manganese dioxide are preferred because they are inexpensive and have good catalytic activity, and the supported amount is 0.01 to 2.0 mg / it is preferable that the cm 2.

以下、実施例及び比較例について説明する。   Hereinafter, examples and comparative examples will be described.

以下の実施例及び比較例では、次の構造を有する微生物発電装置を用い、イオン透過性膜として互いに異なるものを用いた。   In the following examples and comparative examples, microbial power generation devices having the following structures were used, and different ion permeable membranes were used.

<微生物発電装置の構造>
7cm×25cm×2cm(厚さ)の負極室に、厚さ1cmのグラファイトフェルトを2枚重ねて充填して負極を形成した。この負極に対して、イオン透過性非導電性膜を介して正極室を形成した。正極室は7cm×25cm×0.5cm(厚さ)であり、PTFEで撥水処理した厚さ160μmのカーボンペーパー(東レ株式会社製)に、田中貴金属社製Pt触媒(Pt担持カーボンブラック,Pt含有量50重量%)を5重量%ナフィオン(登録商標)溶液(デュポン社製)に分散させた液を、付着量が0.4mg/cmとなるように塗布し、50℃で乾燥させて得られたものを正極として、上記膜と密着させた。負極のグラファイトフェルトと正極のカーボンペーパーには、ステンレス線を導電性ペーストで接着して電気引出し線とし、2Ωの抵抗で接続した。
<Structure of microbial power generation device>
A negative electrode was formed by stacking and filling two 1 cm thick graphite felts into a 7 cm × 25 cm × 2 cm (thickness) negative electrode chamber. A positive electrode chamber was formed on the negative electrode through an ion-permeable non-conductive film. The positive electrode chamber has a size of 7 cm × 25 cm × 0.5 cm (thickness), and is made of Pt catalyst (Pt-supported carbon black, Pt made by Tanaka Kikinzoku Co., Ltd.) on carbon paper (manufactured by Toray Industries, Inc.) having a thickness of 160 μm that has been subjected to water repellent treatment with PTFE. A solution in which a content of 50% by weight) is dispersed in a 5% by weight Nafion (registered trademark) solution (manufactured by DuPont) is applied so that the adhesion amount is 0.4 mg / cm 2 and dried at 50 ° C. The obtained product was used as a positive electrode and adhered to the film. A stainless steel wire was bonded to the negative electrode graphite felt and the positive electrode carbon paper with a conductive paste to form an electrical lead wire and connected with a resistance of 2Ω.

負極室には、pHを7.5に維持し、酢酸1,000mg/Lとリン酸及びアンモニアを含む負極溶液を通液した。この負極溶液は予め、別水槽で35℃に加温してから負極室へ10mL/minで通液することにより、負極室の温度を35℃に加温した。なお、負極溶液の通液に先立って、他の微生物発電装置の流出液を植菌として通液した。正極室には、常温の空気を0.5L/minの流量で通気した。   Through the negative electrode chamber, the pH was maintained at 7.5, and a negative electrode solution containing 1,000 mg / L of acetic acid, phosphoric acid and ammonia was passed. This negative electrode solution was previously heated to 35 ° C. in a separate water tank, and then passed through the negative electrode chamber at 10 mL / min, whereby the temperature of the negative electrode chamber was heated to 35 ° C. Prior to passing the negative electrode solution, the effluent of another microbial power generation device was passed as an inoculum. Room temperature air was vented to the positive electrode chamber at a flow rate of 0.5 L / min.

イオン透過性非導電性膜として、以下のようにガーレー値が80sec/100mL(比較例1)、600sec/100mL(比較例2)、1200sec/100mL(実施例1)又は4500sec/100mL(実施例2)のポリオレフィン(ポリプロピレン)製不織布(厚さ30〜40μm)を用いた4系列をそれぞれ1ヶ月間運転した。結果は次の通りであった。   As an ion-permeable non-conductive film, the Gurley value is 80 sec / 100 mL (Comparative Example 1), 600 sec / 100 mL (Comparative Example 2), 1200 sec / 100 mL (Example 1), or 4500 sec / 100 mL (Example 2) as follows. 4 series using polyolefin (polypropylene) non-woven fabric (thickness 30 to 40 μm) was operated for 1 month each. The results were as follows.

[比較例1](ガーレー値80sec/100mL)
負極溶液の通液開始直後から発電量の上昇が見られず、1ヶ月の間、負極室1mあたりの発電量は0.2〜0.5W(0.2〜0.5W/m)で推移した。
[Comparative Example 1] (Gurley value 80 sec / 100 mL)
No increase in power generation was observed immediately after the start of the flow of the negative electrode solution, and the power generation per 1 m 3 of the negative electrode chamber was 0.2 to 0.5 W (0.2 to 0.5 W / m 3 ) for one month. It changed in.

[比較例2](ガーレー値600sec/100mL)
負極溶液の通液開始から発電量は上昇したが、5日後に30W/mに達したのをピークに低下し、10日後以降は10W/m前後で推移した。
[Comparative Example 2] (Gurley value 600 sec / 100 mL)
Although the amount of power generation increased from the start of the flow of the negative electrode solution, it reached a peak when it reached 30 W / m 3 after 5 days, and remained at around 10 W / m 3 after 10 days.

[実施例1](ガーレー値1,200sec/100mL)
負極溶液の通液開始から発電量は上昇し、5日後に200W/mに達した後、約2週間に渡り、170〜210W/mで推移し、1ヶ月後も150W/mを維持していた。
[Example 1] (Gurley value 1,200 sec / 100 mL)
Power generation from liquid passing the start of the anode solution is raised, after reaching a 200 W / m 3 after 5 days, for about 2 weeks, remained 170~210W / m 3, a 1 month later be 150 W / m 3 Was maintained.

[実施例2](ガーレー値4,500sec/100mL)
負極溶液の通液開始から発電量は上昇し、7日後に180W/mに達した後、1ヶ月後まで160〜180W/mで安定して推移した。
[Example 2] (Gurley value 4,500 sec / 100 mL)
Power generation from liquid passing the start of the anode solution is raised, after reaching a 180 W / m 3 after 7 days, were stable and remained until after one month 160~180W / m 3.

以上のことから、ガーレー値1,000sec/100mL以上の不織布を用いることにより、高い発電量が長期間にわたり安定して維持されることが認められた。   From the above, it was confirmed that a high power generation amount was stably maintained over a long period of time by using a nonwoven fabric having a Gurley value of 1,000 sec / 100 mL or more.

1 槽体
2 イオン透過性非導電性膜
3 正極室
4 負極室
5 正極
6 負極
DESCRIPTION OF SYMBOLS 1 Tank 2 Ion permeable nonelectroconductive film | membrane 3 Positive electrode chamber 4 Negative electrode chamber 5 Positive electrode 6 Negative electrode

Claims (2)

負極を有し、微生物及び電子供与体を含む液を保持する負極室と、該負極室に対しイオン透過性非導電性膜を介して隔てられており、該イオン透過性非導電性膜に接するエアーカソードを有する正極室とを備えた微生物発電装置において、前記イオン透過性非導電性膜がガーレー値1,000sec/100mL以上の親水性非導電性膜であり、前記イオン透過性非導電性膜は、非導電性物質よりなる紙、織布、又は不織布であることを特徴とする微生物発電装置。 A negative electrode chamber having a negative electrode and holding a liquid containing a microorganism and an electron donor is separated from the negative electrode chamber via an ion-permeable non-conductive film, and is in contact with the ion-permeable non-conductive film in a microorganism power generator and a positive electrode chamber having an air cathode, wherein the ion-permeable non-conductive membrane Gurley value 1,000 sec / 100 mL or more hydrophilic non-conductive film der is, the ion-permeable non-conductive The microorganism power generation apparatus , wherein the membrane is paper, woven fabric, or nonwoven fabric made of a non-conductive substance . 請求項1の微生物発電装置を用いる微生物発電方法であって、前記ガーレー値1,000sec/100mL以上のイオン透過性非導電性膜によって正極室から負極室への酸素透過を抑制することを特徴とする微生物発電方法。A microbial power generation method using the microbial power generation apparatus according to claim 1, wherein oxygen permeation from a positive electrode chamber to a negative electrode chamber is suppressed by the ion-permeable non-conductive film having a Gurley value of 1,000 sec / 100 mL or more. Microbial power generation method.
JP2017059220A 2017-03-24 2017-03-24 Microbial power generation apparatus and microbial power generation method Active JP6358352B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017059220A JP6358352B1 (en) 2017-03-24 2017-03-24 Microbial power generation apparatus and microbial power generation method
PCT/JP2017/033291 WO2018173327A1 (en) 2017-03-24 2017-09-14 Microbial power generation device
TW106132900A TW201836200A (en) 2017-03-24 2017-09-26 Microbial power generation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017059220A JP6358352B1 (en) 2017-03-24 2017-03-24 Microbial power generation apparatus and microbial power generation method

Publications (2)

Publication Number Publication Date
JP6358352B1 true JP6358352B1 (en) 2018-07-18
JP2018163751A JP2018163751A (en) 2018-10-18

Family

ID=62904957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017059220A Active JP6358352B1 (en) 2017-03-24 2017-03-24 Microbial power generation apparatus and microbial power generation method

Country Status (3)

Country Link
JP (1) JP6358352B1 (en)
TW (1) TW201836200A (en)
WO (1) WO2018173327A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020110179A1 (en) * 2018-11-26 2020-06-04 W.L. Gore & Associates, Co., Ltd. Catalyst device for lead-acid battery, and lead-acid battery
CN112259770B (en) * 2020-10-21 2022-03-22 贵州梅岭电源有限公司 Anti-degradation enhanced proton exchange membrane and preparation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010044145A1 (en) * 2008-10-15 2010-04-22 鹿島建設株式会社 Microbial fuel cell and membrane cassette for microbial fuel cells
JP2011202186A (en) * 2011-07-15 2011-10-13 Nitto Denko Corp Method for producing polymer gel electrolyte
JP2014143006A (en) * 2013-01-22 2014-08-07 Daicel Corp Composite sheet containing cellulose and solid electrolyte film
WO2015122125A1 (en) * 2014-02-13 2015-08-20 パナソニック株式会社 Microbial fuel cell, microbial fuel cell system, and method for using microbial fuel cell
JP2016015286A (en) * 2014-07-03 2016-01-28 日東電工株式会社 Separation membrane for liquid fuel cell and membrane-electrode assembly including the same
WO2016063455A1 (en) * 2014-10-20 2016-04-28 パナソニック株式会社 Electrode, fuel cell and water treatment device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016002227A1 (en) * 2014-07-03 2016-01-07 日東電工株式会社 Liquid fuel cell partitioning membrane and membrane-electrode-assembly provided with same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010044145A1 (en) * 2008-10-15 2010-04-22 鹿島建設株式会社 Microbial fuel cell and membrane cassette for microbial fuel cells
JP2011202186A (en) * 2011-07-15 2011-10-13 Nitto Denko Corp Method for producing polymer gel electrolyte
JP2014143006A (en) * 2013-01-22 2014-08-07 Daicel Corp Composite sheet containing cellulose and solid electrolyte film
WO2015122125A1 (en) * 2014-02-13 2015-08-20 パナソニック株式会社 Microbial fuel cell, microbial fuel cell system, and method for using microbial fuel cell
JP2016015286A (en) * 2014-07-03 2016-01-28 日東電工株式会社 Separation membrane for liquid fuel cell and membrane-electrode assembly including the same
WO2016063455A1 (en) * 2014-10-20 2016-04-28 パナソニック株式会社 Electrode, fuel cell and water treatment device

Also Published As

Publication number Publication date
WO2018173327A1 (en) 2018-09-27
TW201836200A (en) 2018-10-01
JP2018163751A (en) 2018-10-18

Similar Documents

Publication Publication Date Title
JP5298589B2 (en) Microbial power generator
JP5428328B2 (en) Microbial power generation method and microbial power generation apparatus
JP5407156B2 (en) Microbial power generation method and microbial power generation apparatus
JP5526505B2 (en) Microbial power generator
JP2011065875A (en) Microorganism power generation device
JP2010033824A (en) Microorganism electric generation device
JP6252702B1 (en) Microbial power generation method and apparatus
WO2019181281A1 (en) Microbial power generation device and method for operating same
JP6358352B1 (en) Microbial power generation apparatus and microbial power generation method
JP2009295488A (en) Microbiological power generation device and positive electrode for microbiological power generation device
JP5359725B2 (en) Microbial power generation method and microbial power generation apparatus
WO2010071059A1 (en) Microbial electricity-generating method and microbial electric generator
JP5287149B2 (en) Microbial power generation method and microbial power generation apparatus
WO2019171833A1 (en) Microbial power-generation device and method
JP2011065822A (en) Microorganism power generation device and method of manufacturing the same
JP2010102953A (en) Microbiological power generation device and positive electrode for the microbiological power generation device
JP5369700B2 (en) Microbial power generation method and microbial power generation apparatus
WO2019181280A1 (en) Microbial power generation device using antimicrobial agent, and method for operating microbial power generation device
JP2019160459A (en) Operation method of microorganism power generation device
JP5338588B2 (en) Microbial power generation method and apparatus
JP2010009772A (en) Biogenerator, and method of manufacturing method thereof

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180522

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180604

R150 Certificate of patent or registration of utility model

Ref document number: 6358352

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150