WO2019181280A1 - Microbial power generation device using antimicrobial agent, and method for operating microbial power generation device - Google Patents

Microbial power generation device using antimicrobial agent, and method for operating microbial power generation device Download PDF

Info

Publication number
WO2019181280A1
WO2019181280A1 PCT/JP2019/004987 JP2019004987W WO2019181280A1 WO 2019181280 A1 WO2019181280 A1 WO 2019181280A1 JP 2019004987 W JP2019004987 W JP 2019004987W WO 2019181280 A1 WO2019181280 A1 WO 2019181280A1
Authority
WO
WIPO (PCT)
Prior art keywords
power generation
anode
anode chamber
chamber
cathode
Prior art date
Application number
PCT/JP2019/004987
Other languages
French (fr)
Japanese (ja)
Inventor
和也 小松
Original Assignee
栗田工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 栗田工業株式会社 filed Critical 栗田工業株式会社
Publication of WO2019181280A1 publication Critical patent/WO2019181280A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/16Biochemical fuel cells, i.e. cells in which microorganisms function as catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a power generation apparatus that utilizes a metabolic reaction of microorganisms and a method for operating the microorganism power generation apparatus.
  • the present invention relates to a microbial power generation apparatus that extracts, as electric energy, a reducing power obtained when an organic substance is oxidatively decomposed into microorganisms, and a method for operating the microbial power generation apparatus.
  • Patent Documents 1 and 2 describe a device in which a cathode chamber and an anode chamber are partitioned by an electrolyte membrane.
  • Patent Document 1 describes that by adjusting the pH in the anode chamber to 7 to 9, it is possible to prevent the pH from being lowered due to the generation of carbon dioxide gas accompanying the microbial reaction in the anode chamber and to increase the power generation efficiency. ing.
  • the power generation microorganisms grow on the electrode surface, but if the microorganisms become excessively attached to the electrode surface, the contact efficiency with the substrate and the conductivity of the electrode surface decrease, and the power generation amount is reduced. Decrease. In severe cases, the anode chamber is blocked and the substrate cannot be supplied.
  • An object of the present invention is to provide a microbial power generation apparatus and a microbial power generation method capable of suppressing excessive adhesion of microorganisms in the anode chamber and stably obtaining a high power generation amount for a long period of time.
  • the microbial power generation device of the present invention has an anode chamber having an anode and holding a liquid containing a microorganism and an electron donor, and a cathode chamber separated from the anode chamber by a porous non-conductive film.
  • a sterilizing agent supplying means for supplying the sterilizing agent to the anode chamber is provided. It is characterized by that.
  • the bactericide is hydrogen peroxide, hypochlorous acid or hypochlorite.
  • means for supplying an inert gas to the anode chamber In one aspect of the present invention, there is provided means for supplying an inert gas to the anode chamber.
  • An operation method of a microbial power generation device of the present invention includes an anode chamber having an anode and holding a liquid containing a microorganism and an electron donor, and a cathode chamber separated from the anode chamber via a porous non-conductive film.
  • a disinfectant is intermittently provided in the anode chamber. It is characterized by supplying.
  • a bactericide is supplied to the anode chamber at a frequency of once every 2 hours to 30 days for 1 minute to 1 hour.
  • an inert gas is supplied continuously or intermittently into the anode chamber.
  • the bactericide is preferably supplied intermittently to the anode chamber.
  • excessive adhesion of the power generation microorganisms to the anode surface is suppressed, and a high power generation amount can be stably maintained.
  • methane-producing bacteria may grow in addition to power-generating bacteria, which may reduce power generation efficiency. Bacterial growth is further suppressed, and the power generation efficiency can be kept high.
  • FIG. 1 is a schematic cross-sectional view of a microbial power generation device according to an embodiment of the present invention. It is a schematic sectional drawing of the microbial power generation device concerning another embodiment.
  • FIG. 1 is a schematic cross-sectional view showing a schematic configuration of a microbial power generation apparatus according to an embodiment of the present invention.
  • the tank body 1 is partitioned into a cathode chamber 3 and an anode chamber 4 by a partition material 2 made of a porous non-conductive film.
  • a cathode 5 made of a conductive porous material is disposed so as to be in close contact with the partition material 2.
  • the cathode chamber 3 between the cathode 5 and the wall surface of the tank body 1 is filled with the cathode solution.
  • a diffuser tube 7 is provided in the lower part of the cathode chamber 3 so as to aerate the cathode solution. Oxygen-containing gas such as air is introduced into the aeration tube 7 and aeration exhaust gas flows out from the gas outlet 8 at the upper part of the cathode chamber. Since the cathode solution evaporates or scatters with aeration, the replenishment cathode solution is appropriately supplied from the replenishing port 16 having the valve 15.
  • An anode 6 made of a conductive porous material is disposed in the anode chamber 4.
  • the anode 6 is in close contact with the partition material 2, and protons (H + ) can be transferred from the anode 6 to the partition material 2.
  • Microorganisms are supported on the anode 6 made of this porous material.
  • the anode solution L is introduced into the anode chamber 4 from the inlet 4a, and the waste liquid is discharged from the outlet 4b.
  • the anode chamber 4 is anaerobic.
  • the anode solution L in the anode chamber 4 is circulated through a circulation outlet 9, a circulation pipe 10, a circulation pump 11, and a circulation return 12.
  • the circulation pipe 10 is provided with a pH meter 14 for measuring the pH of the liquid flowing out from the anode chamber 4 and connected with a pH regulator addition pipe 13 such as an alkali or an acid.
  • a piping 19 for adding a bactericide is connected to the circulation piping 10.
  • the sterilizing agent addition pipe 19 may be directly connected to the anode chamber 4. However, the sterilizing agent can be supplied uniformly to the whole anode chamber 4 by adding the sterilizing agent to the circulating water.
  • a diffuser tube 17 is installed in the anode chamber 4, and the inside of the anode chamber 4 is aerated with an inert gas such as nitrogen by opening the valve 17a.
  • a gas outlet 18 having a valve 18 a is provided in the upper part of the anode chamber 4.
  • a disinfectant is preferably added to the anode chamber 4 preferably intermittently. Thereby, excessive adhesion of the power generation microorganisms to the anode surface is suppressed, and a high power generation amount can be stably maintained.
  • methane-producing bacteria may grow in addition to power-generating bacteria, which may reduce power generation efficiency. Bacterial growth is further suppressed, and the power generation efficiency can be kept high.
  • an agent generally used as a slime control agent can be used.
  • hydrogen peroxide, hypochlorous acid or a salt thereof, and the like can be used because of low cost and persistence and little influence on subsequent processing. Bromine acid or a salt thereof is preferred.
  • the frequency of addition of the disinfectant to the anode chamber is once every 2 hours to 30 days, preferably 6 hours to once a week, and the addition time per time is 1 minute to 1 hour, preferably 5 minutes to 30 minutes.
  • the concentration added to the water flowing into the anode chamber depends on the type of the bactericidal agent, but is preferably 10 to 3,000 mg / L, more preferably 100 to 500 mg / L for hydrogen peroxide, hypochlorous acid or hypochlorous acid. In the case of a chlorate, it is preferably 10 to 3,000 mg-effective chlorine / L, more preferably 100 to 500 mg-effective chlorine / L.
  • alkali or acid is added to the anode solution L so that the pH detected by the pH meter 14 is preferably 7-9.
  • the alkali or acid may be added directly to the anode chamber 4, but by adding to the circulating water, the entire area in the anode chamber 4 can be maintained at a pH of 7 to 9 without partial deviation.
  • valves 17 a and 18 a are opened continuously or intermittently, the inside of the anode chamber 4 is aerated by the inert gas from the diffuser tube 7, and the exhaust gas is caused to flow out from the gas outlet 18.
  • a shearing force due to gas is applied to the surface of the anode 6 to increase the effect of suppressing excessive adhesion of the biofilm, and in addition, when oxygen is used as an electron acceptor in the cathode chamber, etc.
  • Nitrogen is suitable as the inert gas, but is not limited thereto.
  • FIG. 2 is a schematic cross-sectional view of a microbial power generation apparatus according to another embodiment of the present invention.
  • Two plate-shaped partition members 31 are arranged in parallel with each other in a substantially rectangular parallelepiped tank body 30, thereby forming an anode chamber 32 between the partition members 31, 31.
  • Two cathode chambers 33 and 33 are formed by separating the partition member 31 from the partition member 32.
  • An anode 34 made of a porous material is disposed in the anode chamber 32 so as to be in close contact with each partition material 31.
  • the anode 34 is lightly pressed against the partition material (for example, at a pressure of 0.1 kg / cm 2 or less).
  • a cathode 35 made of a porous material is disposed in the cathode chamber 33 in contact with the partition material 31.
  • the cathode 35 is pressed by a spacer 36 made of rubber or the like and is pressed lightly (for example, at a pressure of 0.1 kg / cm 2 or less) against the partition material 31 to be in close contact therewith.
  • they may be welded or partially bonded with an adhesive.
  • the cathode 35 and the anode 34 are connected to an external resistor 38 via terminals 37 and 39.
  • the cathode chamber 33 between the cathode 35 and the side wall of the tank body 30 is filled with the cathode solution.
  • a diffuser tube 51 is installed in the lower part of each cathode chamber 33 so that the cathode solution can be aerated.
  • the aerated exhaust gas flows out from the gas outlet 52 at the top of the cathode chamber 33.
  • a replenishing port is provided for each cathode chamber 33 so as to replenish the cathode solution.
  • the anode solution L is introduced from the inlet 32a, and the waste liquid flows out from the outlet 32b.
  • the anode chamber 32 is anaerobic.
  • the anode solution in the anode chamber 32 is circulated through a circulation outlet 41, a circulation pipe 42, a circulation pump 43, and a circulation return port 44.
  • a sterilizing agent adding pipe 61 is connected to the circulating pipe 42.
  • the circulation pipe 42 is provided with a pH meter 47 and an alkali addition pipe 45 is connected thereto.
  • the pH of the anode solution flowing out from the anode chamber 32 is detected by a pH meter 47, and an alkali such as an aqueous sodium hydroxide solution is added so that this pH is preferably 7-9.
  • a diffuser tube 57 is installed in the anode chamber 32, and the inside of the anode chamber 32 is aerated with an inert gas by opening the valve 57a.
  • a gas outlet 58 having a valve 58 a is provided in the upper part of the anode chamber 32.
  • the oxygen-containing gas is supplied to the diffuser pipe 51 to aerate the cathode solution in the cathode chamber 33, and the anode solution is circulated through the anode chamber 32, preferably the anode solution is circulated.
  • a potential difference is generated between the cathode 35 and the anode 34, and a current flows through the external resistor 38.
  • a disinfectant is preferably added intermittently from the pipe 61, the valves 57a and 58a are intermittently opened, the inside of the anode chamber 32 is aerated by the inert gas from the air diffuser 57, and the exhaust gas is discharged from the gas outlet 58. Spill.
  • the aeration tube is disposed in the cathode chambers 3 and 33 and the cathode solution is aerated in the cathode chambers 3 and 33, but the cathode solution in the cathode chamber is introduced into another aeration chamber. It may be aerated.
  • the microorganism that produces electric energy by being contained in the anode solution L is not particularly limited as long as it has a function as an electron donor.
  • yeasts include bacteria, filamentous fungi and yeasts belonging to each genus of Gluconobacter, Pseudomonas, Xanthomonas, Vibrio, Comamonas and Proteus (Proteus vulgaris).
  • the chamber can be fed and microorganisms can be retained on the anode.
  • the amount of microorganisms retained in the anode chamber is preferably high, and for example, the microorganism concentration is preferably 1 to 50 g / L.
  • the anode solution L a solution that holds microorganisms or cells and has a composition necessary for power generation is used.
  • the anode solution may be an energy source necessary for metabolism of the respiratory system such as bouillon medium, M9 medium, L medium, Malt Extract, MY medium, or nitrifying bacteria selection medium.
  • a medium having a composition such as nutrients can be used.
  • organic waste such as sewage, organic industrial wastewater, and garbage can be used.
  • the anode solution L may contain an electron mediator in order to make it easier to extract electrons from microorganisms or cells.
  • the electron mediator include compounds having a thionin skeleton such as thionine, dimethyldisulfonated thionine, new methylene blue and toluidine blue-O, and 2-hydroxy-1,4-naphthoquinone such as 2-hydroxy-1,4-naphthoquinone.
  • Examples include compounds having a skeleton, brilliant cresyl blue, garocyanine, resorufin, alizarin brilliant blue, phenothiazinone, phenazine esosulphate, safranin-O, dichlorophenolindophenol, ferrocene, benzoquinone, phthalocyanine, or benzyl viologen and their derivatives. be able to.
  • the anode solution L may contain a phosphate buffer as necessary.
  • the anode solution L contains an organic substance.
  • the organic substance is not particularly limited as long as it can be decomposed by microorganisms.
  • water-soluble organic substances, organic fine particles dispersed in water, and the like are used.
  • the anodic solution may be an organic effluent such as sewage or food factory effluent.
  • the organic substance concentration in the anode solution L is preferably as high as about 100 to 10,000 mg / L in order to increase the power generation efficiency.
  • the temperature of the anode solution is preferably about 10 to 70 ° C.
  • the cathode solution is preferably neutral or alkaline, for example, pH 6.0 to 9.0, and may contain a buffer in order to keep the pH in such a range.
  • the cathode solution may contain an oxidation-reduction reagent such as potassium ferricyanide, manganese sulfate, manganese chloride, ferric chloride, ferric sulfate as an electron acceptor.
  • an oxidation-reduction reagent such as potassium ferricyanide, manganese sulfate, manganese chloride, ferric chloride, ferric sulfate as an electron acceptor.
  • concentration of the redox reagent in the cathode solution is preferably about 10 to 2,000 mM.
  • the catholyte solution may also contain a chelating agent.
  • a chelating agent By blending a chelating agent, tetravalent manganese can be present in a dissolved state, and the effect of increasing the speed of the reduction reaction can be obtained.
  • chelating agent can be used without limitation as long as it forms a chelate compound with manganese ions.
  • EDTA ethylenediaminetetraacetic acid
  • 1,2-dihydroxyanthraquinone-3-yl-methylamino-N N′-diacetic acid
  • 5,5′-dibromopyrogallolsulfophthalein 1- (1- Hydroxy-2-naphthylazo) -6-nitro-2-naphthol-4-sulfonic acid sodium salt
  • 4-Methylumbelliferone-8-methyleneiminodiacetic acid 3-sulfo-2,6-dichloro-3 ′, 3 ′′ -dimethyl-4′-fuxone-5 ′, 5 ′′ -dicarboxylic acid trisodium salt Salt, 3,3′-bis [N,
  • the oxygen-containing gas supplied to the cathode air is suitable.
  • the exhaust gas from the cathode chamber may be deoxygenated as necessary, and then vented to the anode chamber to be used for purging dissolved oxygen from the anode solution L.
  • the supply amount of the oxygen-containing gas may be such that DO is detected (for example, 0.5 mg / L or less) when the dissolved oxygen (DO) concentration of the cathode solution is measured.
  • partition material paper made of a porous non-conductive material, woven fabric, non-woven fabric, so-called organic membrane (microfiltration membrane), honeycomb molded body, lattice-shaped molded body, and the like can be used.
  • a material made of a hydrophilic material is used because of easy proton movement, or a microfiltration membrane in which a hydrophobic membrane is made hydrophilic is preferable.
  • a hydrophobic material it is good to process it so that water can pass easily as shapes, such as a woven fabric, a nonwoven fabric, and a honeycomb.
  • the non-conductive material examples include polyethylene, polypropylene, polycarbonate, polyethersulfone (PES), polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), polyvinyl alcohol (PVA), and cellulose. Cellulose acetate and the like are preferable.
  • the partition material is preferably a thin one having a thickness of 10 ⁇ m to 10 mm, particularly about 30 to 100 ⁇ m.
  • the partition material is excellent in water permeability with a thickness of about 1 to 10 mm, such as a honeycomb or lattice. Is preferred.
  • the partition material is optimally paper having a thickness of 1 mm or less in terms of thickness and price.
  • the microfiltration membrane which hydrophilized PES and PVDF is very thin, it is suitable as a partition material in the case of calculating
  • a nonwoven fabric made of polyethylene or polypropylene is preferable in terms of cost.
  • the anode is preferably a porous body having a large surface area, a large number of voids, and water permeability so that many microorganisms can be retained.
  • Specific examples include a conductive material sheet having a roughened surface and a porous conductor (for example, graphite felt, expanded titanium, expanded stainless steel, etc.) in which the conductive material is made into a felt-like porous sheet. .
  • the anode is preferably made of a fibrous body such as felt.
  • the anode When the anode has a thickness larger than the thickness of the anode chamber, the anode is compressed and inserted into the anode chamber, and comes into close contact with the partition material by its own restoring elasticity.
  • a plurality of sheet conductors may be laminated to form an anode.
  • the same kind of conductor sheets may be laminated, or different kinds of conductor sheets (for example, a graphite sheet having a rough surface and a graphite felt) may be laminated.
  • the total thickness of the anode is preferably 3 mm to 50 mm, particularly about 5 to 40 mm.
  • the laminated surface is preferably oriented in a direction connecting the liquid inlet and the outlet so that the liquid flows along a mating surface (laminated surface) between the sheets.
  • the cathode is made of a felt-like or porous conductive material such as graphite felt, foamed stainless steel, or foamed titanium. In the case of a porous material, the diameter of the void is preferably about 0.01 to 1 mm.
  • a cathode it is preferable to use a cathode in which these conductive materials are formed in a shape (for example, a plate shape) that is easily adhered to the partition material.
  • an oxygen reduction catalyst is preferably used.
  • the catalyst may be supported using graphite felt as a base material. Examples of the catalyst include noble metals such as platinum, metal oxides such as manganese dioxide, and carbon-based materials such as activated carbon.
  • an inexpensive graphite electrode may be used as it is (without supporting platinum) as a cathode.
  • the thickness of the cathode is preferably 0.03 to 50 mm.
  • FIG. 1 and 2 both show a microbial power generation apparatus in which a cathode solution is held in the cathode chamber, but the present invention is not limited to such a microbial power generation apparatus, and the cathode chamber is an empty room.
  • the present invention can also be applied to an air cathode type microbial power generation apparatus that circulates air.
  • a 7 cm ⁇ 25 cm ⁇ 1 cm (thickness) anode chamber was filled with two 1 cm thick graphite felts to form an anode.
  • a cathode chamber was formed on the anode chamber through a nonwoven fabric having a thickness of 30 ⁇ m.
  • the cathode chamber also has a size of 7 cm ⁇ 25 cm ⁇ 1 cm (thickness), and was filled with two 10 mm thick graphite felts to form a cathode.
  • a stainless steel wire was bonded to the graphite felt of the anode and the cathode with a conductive paste to form an electrical lead wire and connected with a resistance of 3 ⁇ .
  • the raw water containing 1,000 mg / L of acetic acid, 50 mM phosphate buffer and ammonium chloride was passed through the anode chamber, maintaining the pH at 7.5.
  • This raw water was heated to 35 ° C. in a separate water tank in advance and then passed through the anode chamber at 70 mL / min, thereby heating the anode chamber to 35 ° C.
  • the effluent of another microbial power generation device was passed as an inoculum.
  • a cathode solution containing 50 mM potassium ferricyanide and a phosphate buffer was supplied to the cathode chamber at a flow rate of 70 mL / min.
  • Power generation amount 300 W / m 3 at 1 week after passing water starts - anode chamber volume (. Which hereinafter referred to as W / m 3) to reach, but remained in the subsequent 6 weeks 280 ⁇ 330W / m 3, then 2 It decreased to 100 W / m 3 in a week.
  • W / m 3 anode chamber volume
  • the graphite felt was covered with a thick biofilm, and it was confirmed that a water channel was formed in a part of the felt. It is thought that the amount of attached organisms increased to cover the negative electrode, and the flow of water and the contact efficiency with the substrate were reduced.
  • Example 1 With the same configuration as Comparative Example 1, one week passed after the start of water flow, and when it reached 300 W / m 3 , once every 12 hours for 10 minutes, the concentration after addition to the anode chamber inflow water was 100 mg / L. Hydrogen peroxide was added so that Immediately after the addition, the power generation amount decreased greatly, but recovered to the original value in about 30 minutes, and the power generation amount remained at 280 to 330 W / m 3 over the next five months. When the device was disassembled and the negative electrode was taken out, the amount of biofilm attached was small compared to the comparative example, and the state where water flowed into the graphite felt was maintained.
  • Example 2 With the same configuration as that of the comparative example, nitrogen gas was passed through the anode chamber with an air volume of 200 mL / min. When it reached 300 W / m 3 in one week after the start of water flow, hydrogen peroxide was added once a day for 10 minutes so that the concentration after addition to the anode chamber influent water was 100 mg / L. Immediately after the addition, the power generation amount decreased greatly, but recovered to the original value in about 30 minutes, and the power generation amount remained at 280 to 330 W / m 3 over the next five months. When the device was disassembled and the negative electrode was taken out, the amount of biofilm attached was small compared to the comparative example, and the state where water flowed into the graphite felt was maintained.
  • Example 3 In the same configuration as the comparative example, when 300 W / m 3 was reached in one week after the start of water flow, the concentration after addition to the inflow water into the anode chamber for 30 minutes was 300 mg-effective chlorine / L once a week. Sodium hypochlorite was added as follows. Immediately after the addition, the power generation amount decreased greatly, but recovered to the original value in 1 to 2 hours, and thereafter, the power generation amount remained at 280 to 330 W / m 3 over 5 months. When the device was disassembled and the negative electrode was taken out, the amount of biofilm attached was small compared to the comparative example, and the state where water flowed into the graphite felt was maintained.
  • the present invention suppresses excessive adhesion of microorganisms to the anode surface in the anode chamber of the microbial power generation apparatus, and can stably obtain a high power generation amount for a long period of time. It was done.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Fuel Cell (AREA)

Abstract

A microbial power generation device having an anode chamber 4 which has an anode 6 and holds a fluid containing microbes and an electron donor, and also having a cathode chamber 3 which is separated from the anode chamber 4 by an ion-permeable non-conductive film 2 which is interposed therebetween, the microbial power generation device being configured so as to generate power by supplying an organic material-containing raw water to the anode chamber 4, and supplying a fluid containing an electron acceptor to the cathode chamber 3, wherein an antimicrobial agent is intermittently added to the anode chamber 4. In addition, the interior of the anode chamber 4 is intermittently aerated by using an inert gas from a diffuser tube 17.

Description

殺菌剤を用いる微生物発電装置及び微生物発電装置の運転方法Microbial power generation apparatus using disinfectant and method for operating microbial power generation apparatus
 本発明は、微生物の代謝反応を利用する発電装置及び微生物発電装置の運転方法に関する。本発明は特に、有機物を微生物に酸化分解させる際に得られる還元力を電気エネルギーとして取り出す微生物発電装置及び微生物発電装置の運転方法に関する。 The present invention relates to a power generation apparatus that utilizes a metabolic reaction of microorganisms and a method for operating the microorganism power generation apparatus. In particular, the present invention relates to a microbial power generation apparatus that extracts, as electric energy, a reducing power obtained when an organic substance is oxidatively decomposed into microorganisms, and a method for operating the microbial power generation apparatus.
 微生物を用いた発電装置として、特許文献1,2には、カソード室とアノード室とを電解質膜で区画したものが記載されている。 As power generation devices using microorganisms, Patent Documents 1 and 2 describe a device in which a cathode chamber and an anode chamber are partitioned by an electrolyte membrane.
 特許文献1には、アノード室内のpHを7~9に調整することにより、アノード室で微生物反応に伴う炭酸ガスの発生によりpHが低下するのを防止し、発電効率を高くすることが記載されている。 Patent Document 1 describes that by adjusting the pH in the anode chamber to 7 to 9, it is possible to prevent the pH from being lowered due to the generation of carbon dioxide gas accompanying the microbial reaction in the anode chamber and to increase the power generation efficiency. ing.
特開2009-152097号公報JP 2009-152097 A 特開2000-133326号公報JP 2000-133326 A
 微生物発電装置を長期間運転すると、発電微生物が電極表面で増殖するが、微生物が電極表面に過度に付着するようになると、基質との接触効率や電極表面の導電性が低下し、発電量が減少する。ひどい場合には、アノード室が閉塞して基質を供給できなくなってしまう。 When the microorganism power generation device is operated for a long period of time, the power generation microorganisms grow on the electrode surface, but if the microorganisms become excessively attached to the electrode surface, the contact efficiency with the substrate and the conductivity of the electrode surface decrease, and the power generation amount is reduced. Decrease. In severe cases, the anode chamber is blocked and the substrate cannot be supplied.
 本発明は、アノード室における微生物の過度な付着を抑制し、高い発電量が長期的に安定して得られる微生物発電装置及び微生物発電方法を提供することを目的とする。 An object of the present invention is to provide a microbial power generation apparatus and a microbial power generation method capable of suppressing excessive adhesion of microorganisms in the anode chamber and stably obtaining a high power generation amount for a long period of time.
 本発明の微生物発電装置は、アノードを有し、微生物及び電子供与体を含む液を保持するアノード室と、該アノード室に対し多孔性非導電性膜を介して隔てられたカソード室とを有し、該アノード室に有機物含有原水を供給し、カソード室に電子受容体を含む流体を供給して発電を行う微生物発電装置において、該アノード室内に殺菌剤を供給する殺菌剤供給手段を備えたことを特徴とする。 The microbial power generation device of the present invention has an anode chamber having an anode and holding a liquid containing a microorganism and an electron donor, and a cathode chamber separated from the anode chamber by a porous non-conductive film. In the microbial power generation apparatus for generating power by supplying organic substance-containing raw water to the anode chamber and supplying a fluid containing an electron acceptor to the cathode chamber, a sterilizing agent supplying means for supplying the sterilizing agent to the anode chamber is provided. It is characterized by that.
 本発明の一態様では、前記殺菌剤は過酸化水素、次亜塩素酸または次亜塩素酸塩である。 In one embodiment of the present invention, the bactericide is hydrogen peroxide, hypochlorous acid or hypochlorite.
 本発明の一態様では、前記アノード室に不活性ガスを供給する手段を有する。 In one aspect of the present invention, there is provided means for supplying an inert gas to the anode chamber.
 本発明の微生物発電装置の運転方法は、アノードを有し、微生物及び電子供与体を含む液を保持するアノード室と、該アノード室に対し多孔性非導電性膜を介して隔てられたカソード室とを有し、該アノード室に有機物含有原水を供給し、カソード室に電子受容体を含む流体を供給して発電を行う微生物発電装置の運転方法において、前記アノード室内に間欠的に殺菌剤を供給することを特徴とする。 An operation method of a microbial power generation device of the present invention includes an anode chamber having an anode and holding a liquid containing a microorganism and an electron donor, and a cathode chamber separated from the anode chamber via a porous non-conductive film. In a method for operating a microbial power generation apparatus that supplies raw material-containing raw water to the anode chamber and supplies a fluid containing an electron acceptor to the cathode chamber to generate electric power, a disinfectant is intermittently provided in the anode chamber. It is characterized by supplying.
 本発明の一態様では、前記アノード室に対し、2時間~30日に1回の頻度で、1回当り1分~1時間殺菌剤を供給する。 In one embodiment of the present invention, a bactericide is supplied to the anode chamber at a frequency of once every 2 hours to 30 days for 1 minute to 1 hour.
 本発明の一態様では、前記アノード室内に不活性ガスを連続的又は間欠的に供給する。 In one embodiment of the present invention, an inert gas is supplied continuously or intermittently into the anode chamber.
 本発明では、アノード室に殺菌剤を好ましくは間欠的に供給する。これにより、アノード表面への発電微生物の過度な付着が抑制され、高い発電量を安定的に維持できる。また、嫌気条件であるアノード室では、発電菌以外にメタン生成菌が増殖して発電効率を低下させることがあるが、間欠的な殺菌剤の添加により、発電菌よりも増殖速度の低いメタン生成菌の増殖がより抑制され、発電効率を高く維持することも可能となる。 In the present invention, the bactericide is preferably supplied intermittently to the anode chamber. Thereby, excessive adhesion of the power generation microorganisms to the anode surface is suppressed, and a high power generation amount can be stably maintained. In addition, in the anode chamber under anaerobic conditions, methane-producing bacteria may grow in addition to power-generating bacteria, which may reduce power generation efficiency. Bacterial growth is further suppressed, and the power generation efficiency can be kept high.
本発明の実施形態に係る微生物発電装置の概略的な断面図である。1 is a schematic cross-sectional view of a microbial power generation device according to an embodiment of the present invention. 別の実施形態に係る微生物発電装置の概略的な断面図である。It is a schematic sectional drawing of the microbial power generation device concerning another embodiment.
 以下、本発明についてさらに詳細に説明する。 Hereinafter, the present invention will be described in more detail.
 図1は本発明の実施の形態に係る微生物発電装置の概略的な構成を示す模式的断面図である。 FIG. 1 is a schematic cross-sectional view showing a schematic configuration of a microbial power generation apparatus according to an embodiment of the present invention.
 槽体1内が多孔性非導電性膜よりなる区隔材2によってカソード室3とアノード室4とに区画されている。カソード室3内にあっては、区隔材2に密着するように、導電性多孔質材料よりなるカソード5が配置されている。カソード5と槽体1の壁面との間のカソード室3はカソード溶液で満たされている。このカソード溶液を曝気するように、カソード室3内の下部に散気管7が設けられている。この散気管7に空気などの酸素含有ガスが導入され、カソード室上部のガス流出口8から曝気排ガスが流出する。なお、曝気に伴ってカソード溶液が蒸発したり、飛散して減少するので、弁15を有した補給口16から補充用のカソード溶液を適宜供給する。 The tank body 1 is partitioned into a cathode chamber 3 and an anode chamber 4 by a partition material 2 made of a porous non-conductive film. In the cathode chamber 3, a cathode 5 made of a conductive porous material is disposed so as to be in close contact with the partition material 2. The cathode chamber 3 between the cathode 5 and the wall surface of the tank body 1 is filled with the cathode solution. A diffuser tube 7 is provided in the lower part of the cathode chamber 3 so as to aerate the cathode solution. Oxygen-containing gas such as air is introduced into the aeration tube 7 and aeration exhaust gas flows out from the gas outlet 8 at the upper part of the cathode chamber. Since the cathode solution evaporates or scatters with aeration, the replenishment cathode solution is appropriately supplied from the replenishing port 16 having the valve 15.
 アノード室4内には、導電性多孔質材料よりなるアノード6が配置されている。このアノード6は、区隔材2に密着しており、アノード6から区隔材2にプロトン(H)が受け渡し可能となっている。 An anode 6 made of a conductive porous material is disposed in the anode chamber 4. The anode 6 is in close contact with the partition material 2, and protons (H + ) can be transferred from the anode 6 to the partition material 2.
 この多孔質材料よりなるアノード6に微生物が担持されている。アノード室4には流入口4aからアノード溶液Lを導入し、流出口4bから廃液を排出させる。なお、アノード室4内は嫌気性とされる。 Microorganisms are supported on the anode 6 made of this porous material. The anode solution L is introduced into the anode chamber 4 from the inlet 4a, and the waste liquid is discharged from the outlet 4b. The anode chamber 4 is anaerobic.
 アノード室4内のアノード溶液Lは循環往口9、循環配管10、循環用ポンプ11及び循環戻口12を介して循環される。この循環配管10には、アノード室4から流出してきた液のpHを測定するpH計14が設けられると共に、アルカリや酸などのpH調整剤添加用配管13が接続されている。また、循環配管10には、殺菌剤の添加用の配管19が接続されている。なお、殺菌剤添加配管19はアノード室4に直接に接続されてもよい。ただし、循環水に殺菌剤を添加することにより、アノード室4の全体に殺菌剤を満遍なく供給することができる。 The anode solution L in the anode chamber 4 is circulated through a circulation outlet 9, a circulation pipe 10, a circulation pump 11, and a circulation return 12. The circulation pipe 10 is provided with a pH meter 14 for measuring the pH of the liquid flowing out from the anode chamber 4 and connected with a pH regulator addition pipe 13 such as an alkali or an acid. In addition, a piping 19 for adding a bactericide is connected to the circulation piping 10. Note that the sterilizing agent addition pipe 19 may be directly connected to the anode chamber 4. However, the sterilizing agent can be supplied uniformly to the whole anode chamber 4 by adding the sterilizing agent to the circulating water.
 アノード室4に散気管17が設置されており、バルブ17aを開とすることにより窒素などの不活性ガスでアノード室4内が曝気されるよう構成されている。アノード室4の上部には、バルブ18aを有したガス流出口18が設けられている。 A diffuser tube 17 is installed in the anode chamber 4, and the inside of the anode chamber 4 is aerated with an inert gas such as nitrogen by opening the valve 17a. A gas outlet 18 having a valve 18 a is provided in the upper part of the anode chamber 4.
 散気管7に空気などの酸素含有ガスを供給してカソード室3内のカソード溶液を曝気すると共に、必要に応じポンプ11を作動させてアノード溶液Lを循環させることにより、
         (有機物)+HO→CO+H+e
なる反応が進行する。この電子eがアノード6、端子22、外部抵抗21、端子20を経てカソード5へ流れる。
By supplying an oxygen-containing gas such as air to the aeration tube 7 to aerate the cathode solution in the cathode chamber 3, and operating the pump 11 as necessary to circulate the anode solution L,
(Organic) + H 2 O → CO 2 + H + + e
The reaction proceeds. The electrons e flow to the cathode 5 through the anode 6, the terminal 22, the external resistor 21, and the terminal 20.
 上記反応で生じたプロトンHは、区隔材2を通ってカソード5に移動する。カソード5では、
          O+4H+4e→2H
なる反応が進行する。このような反応により、カソード5とアノード6との間に起電力が生じ、端子20,22を介して外部抵抗21に電流が流れる。
Proton H + generated by the above reaction moves to the cathode 5 through the partition material 2. In cathode 5,
O 2 + 4H + + 4e → 2H 2 O
The reaction proceeds. Due to such a reaction, an electromotive force is generated between the cathode 5 and the anode 6, and a current flows to the external resistor 21 through the terminals 20 and 22.
 アノード室4に好ましくは間欠的に殺菌剤を添加する。これにより、アノード表面への発電微生物の過度な付着が抑制され、高い発電量を安定的に維持できる。また、嫌気条件であるアノード室では、発電菌以外にメタン生成菌が増殖して発電効率を低下させることがあるが、間欠的な殺菌剤の添加により、発電菌よりも増殖速度の低いメタン生成菌の増殖がより抑制され、発電効率を高く維持することも可能となる。 A disinfectant is preferably added to the anode chamber 4 preferably intermittently. Thereby, excessive adhesion of the power generation microorganisms to the anode surface is suppressed, and a high power generation amount can be stably maintained. In addition, in the anode chamber under anaerobic conditions, methane-producing bacteria may grow in addition to power-generating bacteria, which may reduce power generation efficiency. Bacterial growth is further suppressed, and the power generation efficiency can be kept high.
 殺菌剤としては、一般にスライムコントロール剤として用いられる剤を用いることができるが、コストや残留性が低く後段処理への影響が少ないことなどから、過酸化水素、次亜塩素酸もしくはその塩、次亜臭素酸もしくはその塩が好ましい。 As a bactericidal agent, an agent generally used as a slime control agent can be used. However, hydrogen peroxide, hypochlorous acid or a salt thereof, and the like can be used because of low cost and persistence and little influence on subsequent processing. Bromine acid or a salt thereof is preferred.
 アノード室への殺菌剤の添加頻度は、2時間~30日に1回、好ましくは6時間~1週間に1回とし、1回あたりの添加時間は1分~1時間、好ましくは5分~30分とする。 The frequency of addition of the disinfectant to the anode chamber is once every 2 hours to 30 days, preferably 6 hours to once a week, and the addition time per time is 1 minute to 1 hour, preferably 5 minutes to 30 minutes.
 アノード室流入水に対する添加濃度は、殺菌剤の種類にもよるが、過酸化水素であれば好ましくは10~3,000mg/L、より好ましくは100~500mg/L、次亜塩素酸または次亜塩素酸塩であれば好ましくは10~3,000mg-有効塩素/L、より好ましくは100~500mg-有効塩素/Lである。 The concentration added to the water flowing into the anode chamber depends on the type of the bactericidal agent, but is preferably 10 to 3,000 mg / L, more preferably 100 to 500 mg / L for hydrogen peroxide, hypochlorous acid or hypochlorous acid. In the case of a chlorate, it is preferably 10 to 3,000 mg-effective chlorine / L, more preferably 100 to 500 mg-effective chlorine / L.
 アノード室4では、微生物による有機物の分解反応によりCOが生成することにより、pHが変化しようとする。そこで、pH計14の検出pHが好ましくは7~9となるようにアルカリや酸がアノード溶液Lに添加される。このアルカリや酸は、アノード室4に直接に添加されてもよいが、循環水に添加することにより、アノード室4内の全域を部分的な偏りなしにpH7~9に保つことができる。 In the anode chamber 4, the pH tends to change due to the generation of CO 2 by the decomposition reaction of organic substances by microorganisms. Therefore, alkali or acid is added to the anode solution L so that the pH detected by the pH meter 14 is preferably 7-9. The alkali or acid may be added directly to the anode chamber 4, but by adding to the circulating water, the entire area in the anode chamber 4 can be maintained at a pH of 7 to 9 without partial deviation.
 また、連続的又は間欠的にバルブ17a,18aを開とし、散気管7からの不活性ガスによってアノード室4内を曝気し、排ガスをガス流出口18から流出させる。これにより、アノード6の表面にガスによる剪断力が与えられ、生物膜の過度な付着を抑制する効果が高まるのに加え、特にカソード室で酸素を電子受容体とする場合などには、好気性スライムの増殖などにより性能低下に繋がる、カソード室からアノード室に浸透する酸素を除去する効果も奏される。不活性ガスとしては窒素が好適であるが、これに限定されない。 Further, the valves 17 a and 18 a are opened continuously or intermittently, the inside of the anode chamber 4 is aerated by the inert gas from the diffuser tube 7, and the exhaust gas is caused to flow out from the gas outlet 18. As a result, a shearing force due to gas is applied to the surface of the anode 6 to increase the effect of suppressing excessive adhesion of the biofilm, and in addition, when oxygen is used as an electron acceptor in the cathode chamber, etc. The effect of removing oxygen penetrating from the cathode chamber to the anode chamber, which leads to performance degradation due to the growth of slime, etc., is also achieved. Nitrogen is suitable as the inert gas, but is not limited thereto.
 図2は本発明の別の実施の形態に係る微生物発電装置の概略的な断面図である。 FIG. 2 is a schematic cross-sectional view of a microbial power generation apparatus according to another embodiment of the present invention.
 略直方体形状の槽体30内に2枚の板状の区隔材31が互いに平行に配置されることにより、該区隔材31,31同士の間にアノード室32が形成され、該アノード室32とそれぞれ該区隔材31を隔てて2個のカソード室33,33が形成されている。 Two plate-shaped partition members 31 are arranged in parallel with each other in a substantially rectangular parallelepiped tank body 30, thereby forming an anode chamber 32 between the partition members 31, 31. Two cathode chambers 33 and 33 are formed by separating the partition member 31 from the partition member 32.
 アノード室32内には、各区隔材31と密着するように、多孔質材料よりなるアノード34が配置されている。アノード34は、区隔材に対し軽く(例えば0.1kg/cm以下の圧力で)押し付けられている。 An anode 34 made of a porous material is disposed in the anode chamber 32 so as to be in close contact with each partition material 31. The anode 34 is lightly pressed against the partition material (for example, at a pressure of 0.1 kg / cm 2 or less).
 カソード室33内には、区隔材31と接して多孔質材料よりなるカソード35が配置されている。このカソード35は、ゴム等よりなるスペーサ36に押圧されて区隔材31に軽く(例えば0.1kg/cm以下の圧力で)押し付けられて密着している。カソード35と区隔材31との密着性を高めるために、両者を溶着したり、部分的に接着剤で接着してもよい。 A cathode 35 made of a porous material is disposed in the cathode chamber 33 in contact with the partition material 31. The cathode 35 is pressed by a spacer 36 made of rubber or the like and is pressed lightly (for example, at a pressure of 0.1 kg / cm 2 or less) against the partition material 31 to be in close contact therewith. In order to improve the adhesion between the cathode 35 and the partition material 31, they may be welded or partially bonded with an adhesive.
 このカソード35及びアノード34は、端子37,39を介して外部抵抗38に接続されている。 The cathode 35 and the anode 34 are connected to an external resistor 38 via terminals 37 and 39.
 カソード35と槽体30の側壁との間のカソード室33はカソード溶液が満たされている。各カソード室33内の下部に散気管51が設置され、カソード溶液が曝気可能とされている。曝気排ガスは、カソード室33の上部のガス流出口52から流出する。なお、図示は省略するが、各カソード室33に対しカソード溶液を補充するように補給口が設けられている。 The cathode chamber 33 between the cathode 35 and the side wall of the tank body 30 is filled with the cathode solution. A diffuser tube 51 is installed in the lower part of each cathode chamber 33 so that the cathode solution can be aerated. The aerated exhaust gas flows out from the gas outlet 52 at the top of the cathode chamber 33. Although not shown, a replenishing port is provided for each cathode chamber 33 so as to replenish the cathode solution.
 アノード室32には、流入口32aからアノード溶液Lが導入され、流出口32bから廃液が流出する。アノード室32内は嫌気性とされる。 In the anode chamber 32, the anode solution L is introduced from the inlet 32a, and the waste liquid flows out from the outlet 32b. The anode chamber 32 is anaerobic.
 アノード室32内のアノード溶液は、循環往口41、循環配管42、循環ポンプ43及び循環戻口44を介して循環される。この循環配管42に、殺菌剤添加用配管61が接続されている。また、循環配管42に、pH計47が設けられると共に、アルカリ添加用配管45が接続されている。アノード室32から流出するアノード溶液のpHをpH計47で検出し、このpHが好ましくは7~9となるように水酸化ナトリウム水溶液などのアルカリが添加される。 The anode solution in the anode chamber 32 is circulated through a circulation outlet 41, a circulation pipe 42, a circulation pump 43, and a circulation return port 44. A sterilizing agent adding pipe 61 is connected to the circulating pipe 42. The circulation pipe 42 is provided with a pH meter 47 and an alkali addition pipe 45 is connected thereto. The pH of the anode solution flowing out from the anode chamber 32 is detected by a pH meter 47, and an alkali such as an aqueous sodium hydroxide solution is added so that this pH is preferably 7-9.
 アノード室32に散気管57が設置されており、バルブ57aを開とすることにより、不活性ガスでアノード室32内が曝気されるよう構成されている。アノード室32の上部には、バルブ58aを有したガス流出口58が設けられている。 A diffuser tube 57 is installed in the anode chamber 32, and the inside of the anode chamber 32 is aerated with an inert gas by opening the valve 57a. A gas outlet 58 having a valve 58 a is provided in the upper part of the anode chamber 32.
 この図2の微生物発電装置においても、散気管51に酸素含有ガスを供給してカソード室33内のカソード溶液を曝気すると共に、アノード室32にアノード溶液を流通させ、好ましくはアノード溶液を循環させることにより、カソード35とアノード34との間に電位差が生じ、外部抵抗38に電流が流れる。 2, the oxygen-containing gas is supplied to the diffuser pipe 51 to aerate the cathode solution in the cathode chamber 33, and the anode solution is circulated through the anode chamber 32, preferably the anode solution is circulated. As a result, a potential difference is generated between the cathode 35 and the anode 34, and a current flows through the external resistor 38.
 配管61から好ましくは間欠的に殺菌剤を添加すると共に、間欠的にバルブ57a,58aを開とし、散気管57からの不活性ガスによってアノード室32内を曝気し、排ガスをガス流出口58から流出させる。 A disinfectant is preferably added intermittently from the pipe 61, the valves 57a and 58a are intermittently opened, the inside of the anode chamber 32 is aerated by the inert gas from the air diffuser 57, and the exhaust gas is discharged from the gas outlet 58. Spill.
 図1,2では、散気管をカソード室3,33内に配置してカソード室3,33内でカソード溶液の曝気を行っているが、カソード室内のカソード溶液を別の曝気室に導入して曝気してもよい。 In FIGS. 1 and 2, the aeration tube is disposed in the cathode chambers 3 and 33 and the cathode solution is aerated in the cathode chambers 3 and 33, but the cathode solution in the cathode chamber is introduced into another aeration chamber. It may be aerated.
 次に、本発明の微生物発電装置の微生物、アノード溶液、カソード溶液などのほか、区隔材、アノード及びカソードの好適な材料等について説明する。 Next, in addition to the microorganisms, anode solution, cathode solution, and the like of the microorganism power generation apparatus of the present invention, suitable materials for the partition material, anode, and cathode will be described.
 アノード溶液L中に含有させることで電気エネルギーを産生させる微生物は、電子供与体としての機能を有するものであれば特に制限されない。例えば、Saccharomyces、Hansenula、Candida、Micrococcus、Staphylococcus、Streptococcus、Leuconostoa、Lactobacillus、Corynebacterium、Arthrobacter、Bacillus、Clostridium、Neisseria、Escherichia、Enterobacter、Serratia、Achromobacter、Alcaligenes、Flavobacterium、Acetobacter、Moraxella、Nitrosomonas、Nitorobacter、Thiobacillus、Gluconobacter、Pseudomonas、Xanthomonas、Vibrio、Comamonas及びProteus(Proteus vulgaris)の各属に属する細菌、糸状菌、酵母などを挙げることができる。このような微生物を含む汚泥として下水等の有機物含有水を処理する生物処理槽から得られる活性汚泥、下水の最初沈澱池からの流出水に含まれる微生物、嫌気性消化汚泥等を植種としてアノード室に供給し、微生物をアノードに保持させることができる。発電効率を高くするためには、アノード室内に保持される微生物量は高濃度であることが好ましく、例えば微生物濃度は1~50g/Lであることが好ましい。 The microorganism that produces electric energy by being contained in the anode solution L is not particularly limited as long as it has a function as an electron donor. For example, Saccharomyces, Hansenula, Candida, Micrococcus, Staphylococcus, Streptococcus, Leuconostoa, Lactobacillus, Corynebacterium, Arthrobacter, Bacillus, Clostridium, Neisseria, Escherichia, Enterobacter, Serratia, Aigenes Examples include bacteria, filamentous fungi and yeasts belonging to each genus of Gluconobacter, Pseudomonas, Xanthomonas, Vibrio, Comamonas and Proteus (Proteus vulgaris). The activated sludge obtained from a biological treatment tank that treats organic matter-containing water such as sewage as sludge containing such microorganisms, microorganisms contained in the effluent from the first sedimentation basin of sewage, anaerobic digested sludge, etc. The chamber can be fed and microorganisms can be retained on the anode. In order to increase the power generation efficiency, the amount of microorganisms retained in the anode chamber is preferably high, and for example, the microorganism concentration is preferably 1 to 50 g / L.
 アノード溶液Lとしては、微生物又は細胞を保持し、かつ発電に必要な組成を有する溶液が用いられる。例えば、呼吸系の発電を行う場合は、アノード溶液としては、ブイヨン培地、M9培地、L培地、Malt Extract、MY培地、硝化菌選択培地などの呼吸系の代謝を行うのに必要なエネルギー源や栄養素などの組成を有する培地が利用できる。また、下水、有機性産業排水、生ゴミ等の有機性廃棄物を用いることができる。 As the anode solution L, a solution that holds microorganisms or cells and has a composition necessary for power generation is used. For example, when generating electricity in the respiratory system, the anode solution may be an energy source necessary for metabolism of the respiratory system such as bouillon medium, M9 medium, L medium, Malt Extract, MY medium, or nitrifying bacteria selection medium. A medium having a composition such as nutrients can be used. In addition, organic waste such as sewage, organic industrial wastewater, and garbage can be used.
 アノード溶液L中には、微生物又は細胞からの電子の引き抜きをより容易とするために電子メディエーターを含有させてもよい。この電子メディエーターとしては、例えば、チオニン、ジメチルジスルホン化チオニン、ニューメチレンブルー、トルイジンブルー-O等のチオニン骨格を有する化合物、2-ヒドロキシ-1,4-ナフトキノン等の2-ヒドロキシ-1,4-ナフトキノン骨格を有する化合物、ブリリアントクレジルブルー、ガロシアニン、レソルフィン、アリザリンブリリアントブルー、フェノチアジノン、フェナジンエソスルフェート、サフラニン-O、ジクロロフェノールインドフェノール、フェロセン、ベンゾキノン、フタロシアニン、あるいはベンジルビオローゲン及びこれらの誘導体などを挙げることができる。 The anode solution L may contain an electron mediator in order to make it easier to extract electrons from microorganisms or cells. Examples of the electron mediator include compounds having a thionin skeleton such as thionine, dimethyldisulfonated thionine, new methylene blue and toluidine blue-O, and 2-hydroxy-1,4-naphthoquinone such as 2-hydroxy-1,4-naphthoquinone. Examples include compounds having a skeleton, brilliant cresyl blue, garocyanine, resorufin, alizarin brilliant blue, phenothiazinone, phenazine esosulphate, safranin-O, dichlorophenolindophenol, ferrocene, benzoquinone, phthalocyanine, or benzyl viologen and their derivatives. be able to.
 さらに、微生物の発電機能を増大させるような材料、例えばビタミンCのような抗酸化剤や、微生物中の特定の電子伝達系や物質伝達系のみを働かせる機能増大材料を溶解すると、さらに効率よく電力を得ることができるので好ましい。 Furthermore, if materials that increase the power generation function of microorganisms, such as antioxidants such as vitamin C, or materials that increase the function of only specific electron transfer systems or substance transfer systems in microorganisms, are dissolved, power can be more efficiently generated. Is preferable.
 アノード溶液Lは、必要に応じ、リン酸バッファを含有していてもよい。 The anode solution L may contain a phosphate buffer as necessary.
 アノード溶液Lは有機物を含むものである。この有機物としては、微生物によって分解されるものであれば特に制限はなく、例えば水溶性の有機物、水中に分散する有機物微粒子などが用いられる。アノード溶液は、下水、食品工場排水などの有機性廃液であってもよい。アノード溶液L中の有機物濃度は、発電効率を高くするために100~10000mg/L程度の高濃度であることが好ましい。 The anode solution L contains an organic substance. The organic substance is not particularly limited as long as it can be decomposed by microorganisms. For example, water-soluble organic substances, organic fine particles dispersed in water, and the like are used. The anodic solution may be an organic effluent such as sewage or food factory effluent. The organic substance concentration in the anode solution L is preferably as high as about 100 to 10,000 mg / L in order to increase the power generation efficiency.
 アノード溶液の温度は10~70℃程度が好ましい。 The temperature of the anode solution is preferably about 10 to 70 ° C.
 カソード溶液は、中性もしくはアルカリ性、例えばpH6.0~9.0であることが好ましく、pHをこのような範囲に保つためにバッファを含有してもよい。 The cathode solution is preferably neutral or alkaline, for example, pH 6.0 to 9.0, and may contain a buffer in order to keep the pH in such a range.
 また、カソード溶液は、電子受容体として、フェリシアン化カリウム、硫酸マンガン、塩化マンガン、塩化第二鉄、硫酸第二鉄等の酸化還元試薬を含んでいても良い。この場合、カソード溶液中の酸化還元試薬濃度としては、10~2,000mM程度が好ましい。 Further, the cathode solution may contain an oxidation-reduction reagent such as potassium ferricyanide, manganese sulfate, manganese chloride, ferric chloride, ferric sulfate as an electron acceptor. In this case, the concentration of the redox reagent in the cathode solution is preferably about 10 to 2,000 mM.
 カソード溶液はまたキレート剤を含んでもよい。キレート剤を配合することにより、4価のマンガンが溶解状態で存在できるようになり、還元反応の速度が速くなるという効果が得られる。 The catholyte solution may also contain a chelating agent. By blending a chelating agent, tetravalent manganese can be present in a dissolved state, and the effect of increasing the speed of the reduction reaction can be obtained.
 キレート剤としては、マンガンイオンとキレート化合物を形成するものであれば制限なく使用できる。具体的には、エチレンジアミン四酢酸(EDTA)、1,2-ジヒドロキシアントラキノン-3-イル-メチルアミノ-N,N’-二酢酸、5,5’-ジブロモピロガロールスルホフタレイン、1-(1-ヒドロキシ-2-ナフチルアゾ)-6-ニトロ-2-ナフトール-4-スルホン酸ナトリウム塩、シクロ-トリス-[7-(1-アゾ-8-ヒドロキシナフタレン-3,6-ジスルホン酸)]6ナトリウム塩、4-メチルアンベリフェロン-8-メチレンイミノ二酢酸、3-スルホ-2,6-ジクロロ-3’,3’’-ジメチル-4’-フクソン-5’,5’’-ジカルボン酸3ナトリウム塩、3,3’-ビス[N,N-ジ(カルボキシメチル)アミノメチル]チモールスルホンフタレイン,ナトリウム塩、7-(1-ナフチルアゾ)-8-ヒドロキシキノリン-5-スルホン酸ナトリウム塩、4-(2-ピリジルアゾ)レゾルシノール、ピロカテコールスルホンフタレイン、3,3’-ビス[N,N-ジ(カルボキシメチル)アミノメチル]-オルソ-クレゾールスルホンフタレイン,2ナトリウム塩などが挙げられる。なお、キレート剤は生物分解されにくい安定なものが望ましい。 Any chelating agent can be used without limitation as long as it forms a chelate compound with manganese ions. Specifically, ethylenediaminetetraacetic acid (EDTA), 1,2-dihydroxyanthraquinone-3-yl-methylamino-N, N′-diacetic acid, 5,5′-dibromopyrogallolsulfophthalein, 1- (1- Hydroxy-2-naphthylazo) -6-nitro-2-naphthol-4-sulfonic acid sodium salt, cyclo-tris- [7- (1-azo-8-hydroxynaphthalene-3,6-disulfonic acid)] 6 sodium salt 4-Methylumbelliferone-8-methyleneiminodiacetic acid, 3-sulfo-2,6-dichloro-3 ′, 3 ″ -dimethyl-4′-fuxone-5 ′, 5 ″ -dicarboxylic acid trisodium salt Salt, 3,3′-bis [N, N-di (carboxymethyl) aminomethyl] thymolsulfonphthalein, sodium salt, 7- (1-naphthylazo) -8-hydroxyquinoline-5-sulfonic acid sodium salt, 4 -(2- Rijiruazo) resorcinol, pyrocatechol sulfone phthalein, 3,3'-bis [N, N-di (carboxymethyl) aminomethyl] - ortho - cresol sulfonic phthalein, etc. disodium salt. The chelating agent is preferably a stable one that is not easily biodegradable.
 カソードに供給する酸素含有ガスとしては、空気が好適である。カソード室からの排ガスは、必要に応じ脱酸素処理した後、アノード室に通気し、アノード溶液Lからの溶存酸素のパージに用いてもよい。この酸素含有ガスの供給量としては、カソード溶液の溶存酸素(DO)濃度を測定した場合にDOが検出される程度(例えば0.5mg/L以下)であればよい。 As the oxygen-containing gas supplied to the cathode, air is suitable. The exhaust gas from the cathode chamber may be deoxygenated as necessary, and then vented to the anode chamber to be used for purging dissolved oxygen from the anode solution L. The supply amount of the oxygen-containing gas may be such that DO is detected (for example, 0.5 mg / L or less) when the dissolved oxygen (DO) concentration of the cathode solution is measured.
 区隔材としては、多孔性非導電性材料よりなる紙、織布、不織布、いわゆる有機膜(精密濾過膜)、ハニカム成形体、格子状成形体等が使用できる。区隔材としては、プロトンの移動の容易さから親水的な材料で構成されたものを用いるか、もしくは疎水膜を親水化した精密濾過膜が好ましい。疎水性の材料を使用する場合は、織布、不織布、ハニカム等の形状として水が通りやすいように加工するとよい。上記の非導電性材料としては、具体的には、ポリエチレン、ポリプロピレン、ポリカーボネイト、ポリエーテルサルホン(PES)、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、ポリビニルアルコール(PVA)、セルロース、酢酸セルロース等が好適である。プロトンを透過させ易くするために、区隔材は厚さが10μm~10mm特に30~100μm程度の薄いものが好ましい。 As the partition material, paper made of a porous non-conductive material, woven fabric, non-woven fabric, so-called organic membrane (microfiltration membrane), honeycomb molded body, lattice-shaped molded body, and the like can be used. As the partition material, a material made of a hydrophilic material is used because of easy proton movement, or a microfiltration membrane in which a hydrophobic membrane is made hydrophilic is preferable. When using a hydrophobic material, it is good to process it so that water can pass easily as shapes, such as a woven fabric, a nonwoven fabric, and a honeycomb. Specific examples of the non-conductive material include polyethylene, polypropylene, polycarbonate, polyethersulfone (PES), polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), polyvinyl alcohol (PVA), and cellulose. Cellulose acetate and the like are preferable. In order to facilitate the permeation of protons, the partition material is preferably a thin one having a thickness of 10 μm to 10 mm, particularly about 30 to 100 μm.
 アノード溶液として有機性廃水を用いる場合、懸濁物質等による目詰りを防止するために、区隔材として厚さ1~10mm程度の通水性に優れる、例えばハニカム状、格子状等のものを用いるのが好ましい。アノード溶液として廃水を用いない場合、区隔材としては、厚みおよび価格の点で、厚さが1mm以下の紙が最適である。また、PESやPVDFを親水化した精密濾過膜は厚みが極めて薄いため、高出力を求める場合の区隔材として好適である。さらに、コスト面ではポリエチレンまたはポリプロピレンから作られた不織布が好適である。 When organic waste water is used as the anode solution, in order to prevent clogging due to suspended substances and the like, the partition material is excellent in water permeability with a thickness of about 1 to 10 mm, such as a honeycomb or lattice. Is preferred. When waste water is not used as the anode solution, the partition material is optimally paper having a thickness of 1 mm or less in terms of thickness and price. Moreover, since the microfiltration membrane which hydrophilized PES and PVDF is very thin, it is suitable as a partition material in the case of calculating | requiring high output. Furthermore, a nonwoven fabric made of polyethylene or polypropylene is preferable in terms of cost.
 アノードは、多くの微生物を保持できるよう、表面積が大きく空隙が多く形成され通水性を有する多孔体が好ましい。具体的には、少なくとも表面が粗とされた導電性物質のシートや導電性物質をフェルト状その他の多孔性シートにした多孔性導電体(例えばグラファイトフェルト、発泡チタン、発泡ステンレス等)が挙げられる。このような多孔質のアノードを区隔材に密着させた場合、電子メディエータを用いることなく、微生物反応で生じた電子がアノードに渡るようになり、電子メディエータを不要とすることができる。 The anode is preferably a porous body having a large surface area, a large number of voids, and water permeability so that many microorganisms can be retained. Specific examples include a conductive material sheet having a roughened surface and a porous conductor (for example, graphite felt, expanded titanium, expanded stainless steel, etc.) in which the conductive material is made into a felt-like porous sheet. . When such a porous anode is brought into close contact with the partition material, electrons generated by the microbial reaction can be passed to the anode without using an electron mediator, and the electron mediator can be dispensed with.
 アノードは、フェルト等の繊維体よりなることが好ましい。かかるアノードは、アノード室厚みよりも大きい厚さを有する場合、それを押し縮めてアノード室に挿入し、それ自身の復元弾性によって区隔材に密着するようになる。 The anode is preferably made of a fibrous body such as felt. When the anode has a thickness larger than the thickness of the anode chamber, the anode is compressed and inserted into the anode chamber, and comes into close contact with the partition material by its own restoring elasticity.
 複数のシート状導電体を積層してアノードとしてもよい。この場合、同種の導電体シートを積層してもよく、異なる種類の導電体シート同士(例えばグラファイトフェルトと粗面を有するグラファイトシート)を積層してもよい。 A plurality of sheet conductors may be laminated to form an anode. In this case, the same kind of conductor sheets may be laminated, or different kinds of conductor sheets (for example, a graphite sheet having a rough surface and a graphite felt) may be laminated.
 アノードは全体の厚さが3mm以上50mm以下、特に5~40mm程度であることが好ましい。積層シートによってアノードを構成した場合、シート同士の合わせ面(積層面)に沿って液が流れるように、積層面を液の流入口と流出口とを結ぶ方向に配向させるのが好ましい。 The total thickness of the anode is preferably 3 mm to 50 mm, particularly about 5 to 40 mm. When the anode is constituted by a laminated sheet, the laminated surface is preferably oriented in a direction connecting the liquid inlet and the outlet so that the liquid flows along a mating surface (laminated surface) between the sheets.
 カソードは、フェルト状又は多孔質状の導電性材料、例えばグラファイトフェルト、発泡ステンレス、発泡チタン等で構成される。多孔質材の場合、空隙の直径が0.01~1mm程度であることが好ましい。カソードとしては、区隔材と密着させやすい形状(例えば板状)にこれら導電性材料を成形されたものを用いることが好ましい。酸素を電子受容体とする場合は酸素還元触媒を用いることが好ましく、例えばグラファイトフェルトを基材として触媒を担持させるとよい。触媒としては白金等の貴金属、二酸化マンガン等の金属酸化物、活性炭などのカーボン系材料が例示される。電子受容体の種類によっては、例えばヘキサシアノ鉄(III)酸カリウム(フェリシアン化カリウム)を含む液を用いる場合などは安価なグラファイト電極をそのまま(白金を担持させずに)カソードとして使用してもよい。カソードの厚みは0.03~50mmであることが好ましい。 The cathode is made of a felt-like or porous conductive material such as graphite felt, foamed stainless steel, or foamed titanium. In the case of a porous material, the diameter of the void is preferably about 0.01 to 1 mm. As the cathode, it is preferable to use a cathode in which these conductive materials are formed in a shape (for example, a plate shape) that is easily adhered to the partition material. When oxygen is used as an electron acceptor, an oxygen reduction catalyst is preferably used. For example, the catalyst may be supported using graphite felt as a base material. Examples of the catalyst include noble metals such as platinum, metal oxides such as manganese dioxide, and carbon-based materials such as activated carbon. Depending on the type of electron acceptor, for example, when a liquid containing potassium hexacyanoferrate (III) (potassium ferricyanide) is used, an inexpensive graphite electrode may be used as it is (without supporting platinum) as a cathode. The thickness of the cathode is preferably 0.03 to 50 mm.
 なお、図1,2は、いずれもカソード室内にカソード溶液を保持した微生物発電装置を示しているが、本発明は、このような微生物発電装置に何ら限定されることなく、カソード室を空室として空気を流通させるエアーカソードタイプの微生物発電装置にも適用することができる。 1 and 2 both show a microbial power generation apparatus in which a cathode solution is held in the cathode chamber, but the present invention is not limited to such a microbial power generation apparatus, and the cathode chamber is an empty room. The present invention can also be applied to an air cathode type microbial power generation apparatus that circulates air.
 以下、比較例及び実施例について説明する。 Hereinafter, comparative examples and examples will be described.
[比較例1]
 7cm×25cm×1cm(厚さ)のアノード室に、厚さ1cmのグラファイトフェルトを2枚重ねて充填してアノードを形成した。このアノード室に対して、厚さ30μmの不織布を介してカソード室を形成した。カソード室も7cm×25cm×1cm(厚さ)であり、厚さ10mmのグラファイトフェルトを2枚重ねて充填してカソードを形成した。アノードとカソードのグラファイトフェルトには、それぞれステンレス線を導電性ペーストで接着して電気引出し線とし、3Ωの抵抗で接続した。
[Comparative Example 1]
A 7 cm × 25 cm × 1 cm (thickness) anode chamber was filled with two 1 cm thick graphite felts to form an anode. A cathode chamber was formed on the anode chamber through a nonwoven fabric having a thickness of 30 μm. The cathode chamber also has a size of 7 cm × 25 cm × 1 cm (thickness), and was filled with two 10 mm thick graphite felts to form a cathode. A stainless steel wire was bonded to the graphite felt of the anode and the cathode with a conductive paste to form an electrical lead wire and connected with a resistance of 3Ω.
 アノード室には、pHを7.5に維持した、酢酸1,000mg/Lと50mMリン酸バッファおよび塩化アンモニウムを含む原水を通水した。この原水を予め、別水槽で35℃に加温してからアノード室へ70mL/minで通液することにより、アノード室の温度を35℃に加温した。なお、原水の通水に先立って、他の微生物発電装置の流出液を植菌として通液した。カソード室には50mMのフェリシアン化カリウムとリン酸バッファとを含むカソード溶液を70mL/minの流量で供給した。 The raw water containing 1,000 mg / L of acetic acid, 50 mM phosphate buffer and ammonium chloride was passed through the anode chamber, maintaining the pH at 7.5. This raw water was heated to 35 ° C. in a separate water tank in advance and then passed through the anode chamber at 70 mL / min, thereby heating the anode chamber to 35 ° C. Prior to the flow of the raw water, the effluent of another microbial power generation device was passed as an inoculum. A cathode solution containing 50 mM potassium ferricyanide and a phosphate buffer was supplied to the cathode chamber at a flow rate of 70 mL / min.
 発電量は、通水開始後1週間で300W/m-アノード室容積(以下、W/mと記載する。)に達し、以後6週間280~330W/mで推移したが、その後2週間で100W/mまで低下した。装置を解体してアノードを取り出したところ、グラファイトフェルトの内部まで厚い生物膜で覆われており、フェルトの一部に水みちが形成されているのが確認された。付着生物量が増加して負極を覆い、水の流れ、基質との接触効率が低下したと考えられる。 Power generation amount, 300 W / m 3 at 1 week after passing water starts - anode chamber volume (. Which hereinafter referred to as W / m 3) to reach, but remained in the subsequent 6 weeks 280 ~ 330W / m 3, then 2 It decreased to 100 W / m 3 in a week. When the device was disassembled and the anode was taken out, the graphite felt was covered with a thick biofilm, and it was confirmed that a water channel was formed in a part of the felt. It is thought that the amount of attached organisms increased to cover the negative electrode, and the flow of water and the contact efficiency with the substrate were reduced.
[実施例1]
 比較例1と同じ構成で、通水開始後1週間経過し、300W/mに達したところで、12時間おきに1回、10分間、アノード室流入水に添加後の濃度として100mg/Lとなるように過酸化水素を添加した。添加直後、発電量は大きく低下したが、30分程度で元の値に回復し、以後5ヶ月に渡り、発電量は280~330W/mで推移した。装置を解体して負極を取り出したところ、比較例に比べ、生物膜の付着量は少なく、グラファイトフェルト内部まで水が流れる状態が保たれていた。
[Example 1]
With the same configuration as Comparative Example 1, one week passed after the start of water flow, and when it reached 300 W / m 3 , once every 12 hours for 10 minutes, the concentration after addition to the anode chamber inflow water was 100 mg / L. Hydrogen peroxide was added so that Immediately after the addition, the power generation amount decreased greatly, but recovered to the original value in about 30 minutes, and the power generation amount remained at 280 to 330 W / m 3 over the next five months. When the device was disassembled and the negative electrode was taken out, the amount of biofilm attached was small compared to the comparative example, and the state where water flowed into the graphite felt was maintained.
[実施例2]
 比較例と同じ構成で、アノード室に窒素ガスを200mL/minの風量で通気した。通水開始後1週間で300W/mに達したところで、1日に1回、10分間、アノード室流入水に添加後の濃度として100mg/Lとなるように過酸化水素を添加した。添加直後、発電量は大きく低下したが、30分程度で元の値に回復し、以後5ヶ月に渡り、発電量は280~330W/mで推移した。装置を解体して負極を取り出したところ、比較例に比べ、生物膜の付着量は少なく、グラファイトフェルト内部まで水が流れる状態が保たれていた。
[Example 2]
With the same configuration as that of the comparative example, nitrogen gas was passed through the anode chamber with an air volume of 200 mL / min. When it reached 300 W / m 3 in one week after the start of water flow, hydrogen peroxide was added once a day for 10 minutes so that the concentration after addition to the anode chamber influent water was 100 mg / L. Immediately after the addition, the power generation amount decreased greatly, but recovered to the original value in about 30 minutes, and the power generation amount remained at 280 to 330 W / m 3 over the next five months. When the device was disassembled and the negative electrode was taken out, the amount of biofilm attached was small compared to the comparative example, and the state where water flowed into the graphite felt was maintained.
[実施例3]
 比較例と同じ構成で、通水開始後1週間で300W/mに達したところで、1週間に1回、30分間、アノード室流入水に添加後の濃度として300mg-有効塩素/Lとなるように次亜塩素酸ナトリウムを添加した。添加直後、発電量は大きく低下したが、1~2時間で元の値に回復し、以後5ヶ月に渡り、発電量は280~330W/mで推移した。装置を解体して負極を取り出したところ、比較例に比べ、生物膜の付着量は少なく、グラファイトフェルト内部まで水が流れる状態が保たれていた。
[Example 3]
In the same configuration as the comparative example, when 300 W / m 3 was reached in one week after the start of water flow, the concentration after addition to the inflow water into the anode chamber for 30 minutes was 300 mg-effective chlorine / L once a week. Sodium hypochlorite was added as follows. Immediately after the addition, the power generation amount decreased greatly, but recovered to the original value in 1 to 2 hours, and thereafter, the power generation amount remained at 280 to 330 W / m 3 over 5 months. When the device was disassembled and the negative electrode was taken out, the amount of biofilm attached was small compared to the comparative example, and the state where water flowed into the graphite felt was maintained.
 以上の比較例及び実施例より、本発明によって、微生物発電装置におけるアノード室でのアノード表面への微生物の過度な付着が抑制され、高い発電量を長期安定して得られるようになることが確認された。 From the above comparative examples and examples, it is confirmed that the present invention suppresses excessive adhesion of microorganisms to the anode surface in the anode chamber of the microbial power generation apparatus, and can stably obtain a high power generation amount for a long period of time. It was done.
 本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更が可能であることは当業者に明らかである。
 本出願は、2018年3月22日付で出願された日本特許出願2018-054660に基づいており、その全体が引用により援用される。
Although the present invention has been described in detail using specific embodiments, it will be apparent to those skilled in the art that various modifications can be made without departing from the spirit and scope of the invention.
This application is based on Japanese Patent Application No. 2018-054660 filed on Mar. 22, 2018, which is incorporated by reference in its entirety.
 1,30 槽体
 2,31 区隔材
 3,33 カソード室
 4,32 アノード室
 5,35 カソード
 6,34 アノード
 7,17,51,57 散気管
 9,61 殺菌剤添加用配管
DESCRIPTION OF SYMBOLS 1,30 Tank 2,31 Partition material 3,33 Cathode chamber 4,32 Anode chamber 5,35 Cathode 6,34 Anode 7,17,51,57 Air diffuser 9,61 Piping for adding bactericide

Claims (7)

  1.  アノードを有し、微生物及び電子供与体を含む液を保持するアノード室と、該アノード室に対し多孔性非導電性膜を介して隔てられたカソード室とを有し、
     該アノード室に有機物含有原水を供給し、カソード室に電子受容体を含む流体を供給して発電を行う微生物発電装置において、
     該アノード室内に殺菌剤を供給する殺菌剤供給手段を備えたことを特徴とする微生物発電装置。
    An anode chamber having an anode and holding a liquid containing a microorganism and an electron donor; and a cathode chamber separated from the anode chamber by a porous non-conductive membrane;
    In the microbial power generation device for supplying the organic material-containing raw water to the anode chamber and generating a power by supplying a fluid containing an electron acceptor to the cathode chamber,
    A microbial power generation apparatus comprising a sterilizing agent supplying means for supplying a sterilizing agent into the anode chamber.
  2.  前記殺菌剤は過酸化水素、次亜塩素酸または次亜塩素酸塩である請求項1の微生物発電装置。 The microbial power generation apparatus according to claim 1, wherein the bactericide is hydrogen peroxide, hypochlorous acid or hypochlorite.
  3.  前記アノード室に不活性ガスを供給する手段を有する請求項1又は2の微生物発電装置。 The microorganism power generation apparatus according to claim 1 or 2, further comprising means for supplying an inert gas to the anode chamber.
  4.  アノードを有し、微生物及び電子供与体を含む液を保持するアノード室と、該アノード室に対し多孔性非導電性膜を介して隔てられたカソード室とを有し、
     該アノード室に有機物含有原水を供給し、カソード室に電子受容体を含む流体を供給して発電を行う微生物発電装置の運転方法において、
     前記アノード室内に間欠的に殺菌剤を供給することを特徴とする微生物発電装置の運転方法。
    An anode chamber having an anode and holding a liquid containing a microorganism and an electron donor; and a cathode chamber separated from the anode chamber by a porous non-conductive membrane;
    In the operation method of the microbial power generation apparatus for supplying the organic material-containing raw water to the anode chamber and supplying the fluid containing the electron acceptor to the cathode chamber to generate power,
    A method for operating a microbial power generation apparatus, wherein a bactericide is intermittently supplied into the anode chamber.
  5.  前記アノード室に対し、2時間~30日に1回の頻度で、1回当り1分~1時間殺菌剤を供給する請求項4の微生物発電装置の運転方法。 The method for operating a microbial power generation apparatus according to claim 4, wherein a bactericide is supplied to the anode chamber once every 2 hours to 30 days for 1 minute to 1 hour.
  6.  前記殺菌剤は過酸化水素、次亜塩素酸または次亜塩素酸塩である請求項4又は5の微生物発電装置の運転方法。 The method of operating a microbial power generation device according to claim 4 or 5, wherein the bactericide is hydrogen peroxide, hypochlorous acid or hypochlorite.
  7.  前記アノード室に不活性ガスを連続的又は間欠的に供給する請求項4~6のいずれかの微生物発電装置の運転方法。 The method for operating a microbial power generation device according to any one of claims 4 to 6, wherein an inert gas is supplied continuously or intermittently to the anode chamber.
PCT/JP2019/004987 2018-03-22 2019-02-13 Microbial power generation device using antimicrobial agent, and method for operating microbial power generation device WO2019181280A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-054660 2018-03-22
JP2018054660A JP6652149B2 (en) 2018-03-22 2018-03-22 Microbial power generator using germicide and method of operating microbial power generator

Publications (1)

Publication Number Publication Date
WO2019181280A1 true WO2019181280A1 (en) 2019-09-26

Family

ID=67987623

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/004987 WO2019181280A1 (en) 2018-03-22 2019-02-13 Microbial power generation device using antimicrobial agent, and method for operating microbial power generation device

Country Status (3)

Country Link
JP (1) JP6652149B2 (en)
TW (1) TW202005155A (en)
WO (1) WO2019181280A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008288198A (en) * 2007-05-18 2008-11-27 Toyota Motor Engineering & Manufacturing North America Inc Microbial fuel cell
JP2011065822A (en) * 2009-09-16 2011-03-31 Kurita Water Ind Ltd Microorganism power generation device and method of manufacturing the same
JP2017021978A (en) * 2015-07-10 2017-01-26 株式会社明電舎 Microbial fuel cell
JP6252702B1 (en) * 2017-03-24 2017-12-27 栗田工業株式会社 Microbial power generation method and apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008288198A (en) * 2007-05-18 2008-11-27 Toyota Motor Engineering & Manufacturing North America Inc Microbial fuel cell
JP2011065822A (en) * 2009-09-16 2011-03-31 Kurita Water Ind Ltd Microorganism power generation device and method of manufacturing the same
JP2017021978A (en) * 2015-07-10 2017-01-26 株式会社明電舎 Microbial fuel cell
JP6252702B1 (en) * 2017-03-24 2017-12-27 栗田工業株式会社 Microbial power generation method and apparatus

Also Published As

Publication number Publication date
JP2019169282A (en) 2019-10-03
JP6652149B2 (en) 2020-02-19
TW202005155A (en) 2020-01-16

Similar Documents

Publication Publication Date Title
JP5298589B2 (en) Microbial power generator
WO2019181281A1 (en) Microbial power generation device and method for operating same
JP5428328B2 (en) Microbial power generation method and microbial power generation apparatus
JP5407156B2 (en) Microbial power generation method and microbial power generation apparatus
JP5526505B2 (en) Microbial power generator
JP2009295488A (en) Microbiological power generation device and positive electrode for microbiological power generation device
JP2010033824A (en) Microorganism electric generation device
JP6252702B1 (en) Microbial power generation method and apparatus
JP5359725B2 (en) Microbial power generation method and microbial power generation apparatus
WO2019171833A1 (en) Microbial power-generation device and method
JP2010146801A (en) Method and device for microbial electric generation
JP6358352B1 (en) Microbial power generation apparatus and microbial power generation method
JP5287149B2 (en) Microbial power generation method and microbial power generation apparatus
WO2019181280A1 (en) Microbial power generation device using antimicrobial agent, and method for operating microbial power generation device
JP2009231231A (en) Microbial power generation method, and device
JP7218648B2 (en) Microbial power generation method and apparatus
JP5338588B2 (en) Microbial power generation method and apparatus
JP2009231230A (en) Microbial power generation method and device
JP2009238558A (en) Microbiological power generation method and device
JP2019160459A (en) Operation method of microorganism power generation device
JP2020163328A (en) Biological treatment system and method for organic wastewater
JP2010170828A (en) Method and device for bio-power generation
JP2010009772A (en) Biogenerator, and method of manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19771908

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19771908

Country of ref document: EP

Kind code of ref document: A1