WO2009112194A1 - Brennkraftmaschine mit wärmespeicher - Google Patents

Brennkraftmaschine mit wärmespeicher Download PDF

Info

Publication number
WO2009112194A1
WO2009112194A1 PCT/EP2009/001559 EP2009001559W WO2009112194A1 WO 2009112194 A1 WO2009112194 A1 WO 2009112194A1 EP 2009001559 W EP2009001559 W EP 2009001559W WO 2009112194 A1 WO2009112194 A1 WO 2009112194A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
internal combustion
combustion engine
heat
line
Prior art date
Application number
PCT/EP2009/001559
Other languages
English (en)
French (fr)
Inventor
Hansjörg FINKBEINER
Georg Seidel
Original Assignee
Daimler Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daimler Ag filed Critical Daimler Ag
Publication of WO2009112194A1 publication Critical patent/WO2009112194A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P11/00Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
    • F01P11/14Indicating devices; Other safety devices
    • F01P11/20Indicating devices; Other safety devices concerning atmospheric freezing conditions, e.g. automatically draining or heating during frosty weather
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • F28D20/026Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat with different heat storage materials not coming into direct contact
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M5/00Heating, cooling, or controlling temperature of lubricant; Lubrication means facilitating engine starting
    • F01M5/02Conditioning lubricant for aiding engine starting, e.g. heating
    • F01M5/021Conditioning lubricant for aiding engine starting, e.g. heating by heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P11/00Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
    • F01P11/14Indicating devices; Other safety devices
    • F01P2011/205Indicating devices; Other safety devices using heat-accumulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/04Lubricant cooler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D2020/0004Particular heat storage apparatus
    • F28D2020/0026Particular heat storage apparatus the heat storage material being enclosed in mobile containers for transporting thermal energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Definitions

  • the invention relates to an internal combustion engine with heat storage.
  • the heat storage can be designed as a hot water tank, as latent heat storage or any other heat storage.
  • Latent heat storage in motor vehicles store surplus heat energy occurring during operation of the motor vehicle and make it available again when needed, for example during a cold start.
  • Known latent heat storage use the enthalpy of reversible thermodynamic state changes of a storage medium.
  • the storage medium is chosen so that a recrystallization, ie a phase change from liquid to solid shortly below a melting temperature occurs.
  • the interior of the storage is usually constructed as a heat exchanger, in which on one side the storage medium is enclosed, and on the other side flows through a heat-supplying or heat-withdrawing medium. When used in motor vehicles, these are generally coolant from the engine cooling circuit.
  • the storage medium In order to maintain the charge of the latent heat storage, the storage medium must be kept above its melting temperature. If the heat-removing medium flows through the latent heat storage device during a cold start at a significantly lower temperature than the storage medium, a heat exchange takes place between the medium and the storage medium. As soon as the temperature of the storage medium drops to the melting temperature level, the amount of heat energy which was previously applied when melting is released, and is transferred to the medium flowing through.
  • the object of the present invention is to improve the thermal management of an internal combustion engine.
  • a heat accumulator is provided, which is connected via an infeed line and a discharge line with the oil-water heat exchanger ( ⁇ WWT).
  • ⁇ WWT oil-water heat exchanger
  • a valve in the supply line to the heat accumulator makes it possible to regulate whether the supply takes place via the ⁇ WWT or via the circuit.
  • a division of the supply between the two leads is conceivable.
  • a valve in the discharge from the heat accumulator makes it possible to control whether the heat of the heat accumulator is supplied to the ⁇ WWT or the circuit.
  • a division of the supply between the two leads is conceivable.
  • Fig. 1 is a schematic representation of an arrangement of a
  • FIG. 2 representation analogous to FIG. 1 with hot water tank
  • FIG. 3 representation analogous to FIG. 1 with any
  • FIG. 4 is a schematic representation of an arrangement of a
  • latent heat storage When using a latent heat storage (LWS) is due to the low thermal conductivity of the candidate LWS materials for heat transfer, a large surface area necessary.
  • latent storage materials are known, which are bound in a granulate 2, which retains its shape and thus its surface macroscopically even during melting of the storage material.
  • FIGS. 1 to 3 refer to the fact that the reservoir 1 is switchably integrated in the cooling water (KW) circuit 6 of the engine so that the oil-water heat exchanger ( ⁇ WWT) 10 of the engine for heat transfer between memory 1 and engine oil circuit 7 is used.
  • ⁇ WWT oil-water heat exchanger
  • the storage granules 2 are hydraulically separated from the oil circuit 7.
  • the storage granulate 2 is removed by means of a retaining device, e.g. a perforated plate, in the KW circuit 6 through-flow fixed.
  • the main advantage for both variants is that no additional heat exchanger is needed. In particular, it is not necessary to provide the heat accumulator with one or more heat exchangers. In addition, this gives rise to the possibility of using either the oil circuit 7I or the coolant circuit 6 for rapid recharging of the LWS depending on the operating situation of the engine. Analogously, there is the possibility to distribute the heat storage during unloading as desired variably into the KW or the oil.
  • FIG. 1 shows one possible arrangement.
  • Fig. 2 shows: The described arrangement is also useful if instead of a LWS a hot water tank containing hot KW 13 of FIG. 2 is used.
  • FIG. 3 shows: The described arrangement also makes sense if, instead of a LWS, an arbitrary heat accumulator according to FIG. 3 is used.
  • the reservoir 1 contains a heat exchanger 12, e.g. a tube bundle or plates, which ensures the heat transfer from the storage material 11.
  • a heat exchanger 12 e.g. a tube bundle or plates, which ensures the heat transfer from the storage material 11.
  • Any storage materials are suitable, e.g. Latent heat storage material such as salt hydrate or paraffin; Adsorption storage material such as silica gel or zeolite; or material for sensitive heat storage.
  • Fig. 4 shows that the heat storage can be integrated into the oil circuit.
  • the statements and possibilities for integration in the cooling water circuit also apply analogously to the oil circuit purchase.
  • the latent heat storage heats the oil without transmission losses directly in the oil circuit.
  • the rapid increase in the engine oil temperature is caused after a cold start. This results in a fuel economy advantage.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Atmospheric Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Lubrication Of Internal Combustion Engines (AREA)

Abstract

Die Erfindung betrifft eine Brennkraftmaschine mit einem Ölkreislauf (7), einem Kühlwasserkreislauf (6) und einem ÖL-Wasser-Wärmetauscher (10). Aufgabe der vorliegenden Erfindung ist es, das Wärmemanagement einer Brennkraftmaschine zu verbessern. Erfindungsgemäß ist ein Wärmespeicher (1) vorgesehen, der über eine zuführende Leitung und eine abführende Leitung mit dem Öl-Wasser-Wärmetauscher (10) verbunden ist.

Description

Brennkraftmaschine mit Wärmespeicher
Die Erfindung betrifft eine Brennkraftmaschine mit Wärmespeicher. Dabei kann der Wärmespeicher als Warmwasserspeicher, als Latentwärmespeicher oder sonstiger beliebiger Wärmespeicher ausgeführt sein.
Latentwärmespeicher in Kraftfahrzeugen speichern während des Betriebs des Kraftfahrzeugs anfallende überschüssige Wärmeenergie und stellen sie bei Bedarf, beispielsweise bei einem Kaltstart wieder zur Verfügung. Bekannte Latentwärmespeicher nutzen dabei die Enthalpie reversibler thermodynamischer Zustandsänderungen eines Speichermediums. Solche Speichermedien sind beispielsweise diverse Salze und Parafine, die eine hohe Schmelzwärme bei einem Phasenwechsel von fest nach flüssig freisetzen. Diese Wärme wird auch als latente Wärme (latent vom Lateinischen latere = verborgen sein) bezeichnet, da sie ohne gleichzeitige Temperaturerhöhung gespeichert bzw. freigesetzt werden kann. Das Speichermedium ist so gewählt, dass eine Rekristallisation, d.h. ein Phasenwechsel von flüssig nach fest kurz unterhalb einer Schmelztemperatur eintritt. Das Innere des Speichers ist gewöhnlich wie ein Wärmetauscher aufgebaut, in dem auf der einen Seite das Speichermedium eingeschlossen ist, und auf der anderen Seite ein Wärme lieferndes bzw. Wärme entziehendes Medium durchströmt. Beim Einsatz in Kraftfahrzeugen handelt es sich hierbei in der Regel um Kühlmittel aus dem Motorkühlkreislauf. Um die Ladung des Latentwärmespeichers aufrecht zu erhalten, muss das Speichermedium oberhalb seiner Schmelztemperatur gehalten werden. Wenn das Wärme entziehende Medium bei einem Kaltstart mit einer deutlich niedrigeren Temperatur als das Speichermedium den Latentwärmespeicher durchströmt, findet ein Wärmeaustausch zwischen dem Medium und dem Speichermedium statt. Sobald die Temperatur des Speichermediums auf Schmelztemperatur-Niveau sinkt, wird der Betrag an Wärmeenergie frei, welcher zuvor beim Schmelzen aufgebracht wurde, und wird auf das durchströmende Medium übertragen. Aufgabe der vorliegenden Erfindung ist es, das Wärmemanagement einer Brennkraftmaschine zu verbessern.
Diese Aufgabe wird durch eine Brennkraftmaschine mit den Merkmalen des Anspruchs 1 gelöst.
Erfindungsgemäß ist ein Wärmespeicher vorgesehen ist, der über eine zuführende Leitung und eine abführende Leitung mit dem Öl-Wasser-Wärmetauscher (ÖWWT) verbunden ist. Damit ist es möglich dem Öl-Wasser-Wärmetauscher Wärme aus dem Wärmespeicher zuzuführen und umgekehrt überschüssige Wärme des Öl-Wasser- Wärmetauschers in den Wärmespeicher abzuführen. Mit dieser Anordnung ist ein gezielter Wärmetransfer zwischen Ölkreislauf und Kühlwasserkreislauf möglich. Beispielsweise ist es möglich das Öl über einen im Kühlwasser angeordneten Wärmetauscher zu erwärmen. Ebenso ist es möglich das Kühlwasser zu erwärmen, indem man dem Öl Wärme entzieht und dies dem Kühlwasser zuführt. Eine Umwälzpumpe kann die Umlaufgeschwindigkeit des transportierten Mediums und damit die Geschwindigkeit des Wärmetranports verändern bzw. regeln.
Ein Ventil in der Zuleitung zum Wärmespeicher ermöglicht es zu regeln, ob die Zufuhr über den ÖWWT erfolgt oder über den Kreislauf. Auch eine Aufteilung der Zufuhr zwischen den beiden Zuleitungen ist denkbar.
Ein Ventil in der Ableitung vom Wärmespeicher ermöglicht es zu regeln, ob die Wärme des Wärmespeichers dem ÖWWT oder dem Kreislauf zugeführt wird. Auch eine Aufteilung der Zufuhr zwischen den beiden Zuleitungen ist denkbar.
Die Einbindung eines Wärmespeichers in den Ölkreislauf oder den Kühlwasserkreislauf wird so umgesetzt, dass einerseits viele bereits bestehende Motorkomponenten genutzt werden können und andererseits ein großer Freiheitsgrad im Hinblick auf mögliche Betriebsstrategien erreicht wird.
Dabei zeigen:
Fig. 1 schematische Darstellung einer Anordnung eines
Latentwärmespeichers in einem Kühlwasserkreislauf, Fig. 2 Darstellung analog Fig. 1 mit Warmwasserspeichers
Fig. 3 Darstellung analog Fig. 1 mit beliebigem
Wärmespeicher. Fig. 4 schematische Darstellung einer Anordnung eines
Latentwärmespeichers in einem Ölkreislauf.
Bei Einsatz eines Latentwärmespeichers (LWS) ist durch die geringe Wärmeleitfähigkeit der in Frage kommenden LWS-Materialien für die Wärmeübertragung eine große Oberfläche notwendig. Dazu sind Latentspeichermaterialien bekannt, die in einem Granulat 2 gebunden sind, das auch beim Schmelzen des Speichermaterials seine Form und damit seine Oberfläche makroskopisch beibehält.
Die in Fig. 1 bis Fig. 3 dargestellte Ausführungsformen der Erfindung beziehen sich darauf, den Speicher 1 im Kühlwasser(KW)-Kreislauf 6 des Motors schaltbar so zu integrieren, dass der Öl-Wasser-Wärmetauscher (ÖWWT) 10 des Motors zur Wärmeübertragung zwischen Speicher 1 und Motorölkreislauf 7 verwendet wird. Somit ist im Fall der Verwendung eines LWS das Speichergranulat 2 hydraulisch vom Ölkreislauf 7 getrennt. Das Speichergranulat 2 wird mit Hilfe einer Rückhaltevorrichtung, z.B. eines Lochblechs, im KW-Kreislauf 6 durchströmbar fixiert.
Der Hauptvorteil für beide Varianten besteht darin, dass kein zusätzlicher Wärmetauscher benötigt wird. Insbesondere ist es nicht nötig den Wärmespeicher mit einem oder mehreren Wärmetauschern zu versehen. Außerdem ergibt sich so die Möglichkeit, zur schnellen Wiederaufladung des LWS je nach Betriebssituation des Motors entweder den Ölkreislauf 7I oder den Kühlmittelkreislauf 6 heranzuziehen. Analog bietet sich die Möglichkeit, die Speicherwärme beim Entladen nach Wunsch variabel ins KW oder das Öl zu verteilen.
Eine mögliche Anordnung zeigt Fig. 1 (hier mit LWS dargestellt):
Über die Ventile 5 lassen sich danach folgende Kreisläufe schalten: Speicherentladung:
• Wärmespeicher 1 - ÖWWT 10 (mit Umwälzpumpe 4) oder
• Wärmespeicher 1 - Motor-KW-Kreislauf 6 (Umwälzpumpe 4 aus) Speicherbeladung:
• Wärmespeicher 1 - ÖWWT 10 (mit Umwälzpumpe 4) oder
• Wärmespeicher 1 - Motor-KW-Kreislauf 6 (Umwälzpumpe 4 aus) Standardbetrieb:
• ÖWWT 10 - Motor-KW-Kreislauf 6 (Umwälzpumpe 4 aus) Optionaler Ölbypass 8:
Falls das Beladen über den KW-Kreislauf 6 geschehen soll, obwohl das Öl hohe Temperaturen über dem Siedepunkt des Kühlwassers hat, muss ein über ein Ventil 9 schaltbarer Bypass 8 für den Ölkreislauf 7 vorgesehen werden, um das im ÖWWT 10 stehende KW nicht zum Kochen zu bringen.
Fig. 2 zeigt: Die beschriebene Anordnung ist auch sinnvoll, wenn statt eines LWS ein Warmwasserspeicher, der heißes KW 13 gemäß Fig. 2 enthält verwendet wird.
Fig. 3 zeigt: Die beschriebene Anordnung ist auch sinnvoll, wenn statt eines LWS ein beliebiger Wärmespeicher gemäß Fig. 3 verwendet wird. Dabei enthält der Speicher 1 einen Wärmeüberträger 12, z.B. ein Rohrbündel oder Platten, welcher für die Wärmeübertragung aus dem Speichermaterial 11 sorgt. Es kommen beliebige Speichermaterialien in Frage, z.B. Latentwärmespeichermaterial wie Salzhydrat oder Paraffin; Adsorptionsspeichermaterial wie Silicagel oder Zeolith; oder Material zur sensiblen Wär- mespeicherung.
Fig. 4 zeigt, dass der Wärmespeicher auch in den Ölkreislauf eingebunden sein kann. Die Aussagen und Möglichkeiten für eine Einbindung in den Kühlwasserkreislauf gelten auch analog für den Ölkreiskauf. Vorteil hier, der Latentwärmespeicher erwärmt das Öl ohne Übertragungsverluste direkt im Ölkreislauf. Durch den Einsatz eines Wärmespeichers 1 im Ölkreislauf wird die zügige Erhöhung der Motoröltemperatur nach einem Kaltstart bewirkt. Dadurch kommt ein Kraftstoffverbrauchsvorteil zustande. Darüber hinaus ist es mit der in Fig. 4 dargestellten Ausführungsform möglich, die dem heißen Öl das Kühlmittel frühzeitig zu erwärmen, womit die NOx-Emission gesenkt werden kann.

Claims

Patentansprüche
1. Brennkraftmaschine mit einem Ölkreislauf (7), einem Kühlwasserkreislauf (6) und einem ÖL-Wasser-Wärmetauscher (10) dadurch gekennzeichnet, dass ein Wärmespeicher (1) vorgesehen ist, der über eine zuführende Leitung und eine abführende Leitung mit dem Öl-Wasser-Wärmetauscher (10) verbunden ist.
2. Brennkraftmaschine nach Anspruch 1 , dadurch gekennzeichnet, dass in der zuführenden Leitung ein erstes Ventil (5) angeordnet ist.
3. Brennkraftmaschine nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass in der abführenden Leitung ein zweites Ventil (5) angeordnet ist.
4. Brennkraftmaschine nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass in der zuführenden Leitung eine Umwälzpumpe (4) angeordnet ist.
5. Brennkraftmaschine nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass der Wärmespeicher (1) über eine wasserzuführende Leitung und eine wasserabführende Leitung mit dem Öl-Wasser-Wärmetauscher (10) verbunden ist.
6. Brennkraftmaschine nach Anspruch 5, dadurch gekennzeichnet, dass das erste Ventil (5) der wasserzuführende Leitung und das zweite Ventil (5) der wasserabführende Leitung mit Kühlwasserkreislauf (6) verbunden sind.
7. Brennkraftmaschine nach Anspruch 5 oder 6, dadurch gekennzeichnet, dass im Ölkreislauf (7) ein Ventil (9) vorgesehen ist, durch das dass die Ölzuleitung des Öl-Wasser-Wärmetauscher (10) mit der Ölableitung des Öl-Wasser- Wärmetauscher (10) über einen Bypass (8) verbindbar ist.
8. Brennkraftmaschine nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass der Wärmespeicher (1) über eine ölzuführende Leitung und eine ölabführende Leitung mit dem Öl-Wasser-Wärmetauscher (10) verbunden ist,
9. Brennkraftmaschine nach Anspruch 8, dadurch gekennzeichnet, dass das Ventil (5) der ölzuführende Leitung und das Ventil (5) der ölabführende Leitung mit dem Ölkreislauf (7) verbunden sind.
10. Brennkraftmaschine nach Anspruch 8 oder 9, dadurch gekennzeichnet, dass im Kühlwasserkreislauf (6) ein Ventil (9) vorgesehen ist, durch das dass die Kühlwasserzuleitung des Öl-Wasser-Wärmetauscher (10) mit der Kühlwasserableitung des Öl-Wasser-Wärmetauscher (10) über einen Bypass (8) verbindbar ist.
PCT/EP2009/001559 2008-03-11 2009-03-05 Brennkraftmaschine mit wärmespeicher WO2009112194A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008013657A DE102008013657A1 (de) 2008-03-11 2008-03-11 Brennkraftmaschine mit Wärmespeicher
DE102008013657.3 2008-03-11

Publications (1)

Publication Number Publication Date
WO2009112194A1 true WO2009112194A1 (de) 2009-09-17

Family

ID=40677455

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/001559 WO2009112194A1 (de) 2008-03-11 2009-03-05 Brennkraftmaschine mit wärmespeicher

Country Status (2)

Country Link
DE (1) DE102008013657A1 (de)
WO (1) WO2009112194A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104989488A (zh) * 2015-07-17 2015-10-21 河南柴油机重工有限责任公司 一种极寒环境下发动机的外部辅助系统
WO2017108608A1 (en) * 2015-12-23 2017-06-29 Castrol Limited Apparatus

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009030105A1 (de) * 2009-06-22 2010-12-23 Martin Hägele Wärmerückgewinnungssystem für ein Kraftfahrzeug
DE102012024764A1 (de) * 2012-12-18 2014-06-18 Bomag Gmbh Baumaschine und Verfahren zum Verhindern des Einfrierens einer Betriebflüssigkeit einer Baumaschine sowie Verfahren zum Kühlen eines Kühlmittels einer Baumaschine
DE102015208582B4 (de) * 2015-05-08 2022-06-30 Bayerische Motoren Werke Aktiengesellschaft Kraftfahrzeug und Verfahren zum Betrieb eines entsprechenden Kraftfahrzeugs
FR3058209B1 (fr) * 2016-10-27 2019-09-20 Commissariat A L'energie Atomique Et Aux Energies Alternatives Systeme de stockage thermique par materiau a changement de phase
GB2575680B (en) * 2018-07-20 2022-07-13 Bae Systems Plc Thermal management system
GB2575679B (en) 2018-07-20 2022-06-15 Bae Systems Plc Thermal Management System
CN109209631B (zh) * 2018-11-07 2020-11-03 杭州富春云科技有限公司 基于机房余热回收的发电机组润滑油加热系统

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6013980A (ja) * 1983-07-06 1985-01-24 Mitsubishi Heavy Ind Ltd デイ−ゼルエンジンの暖機装置
EP0634565A1 (de) * 1993-07-12 1995-01-18 MAN Nutzfahrzeuge Aktiengesellschaft Verfahren zur Verbesserung des Kaltstartverhaltens von Verbrennungsmaschinen
DE4431351A1 (de) * 1994-09-02 1996-03-07 Bayerische Motoren Werke Ag Kraftfahrzeug mit einer Brennkraftmaschine, einem Getriebe sowie einem Wärmespeicher
EP1267050A1 (de) * 2001-06-12 2002-12-18 Peugeot Citroen Automobiles SA Wärmesteuervorrichtung eines Wärmespeichers für Kraftfahrzeuge
JP2003322018A (ja) * 2002-04-26 2003-11-14 Toyota Motor Corp 蓄熱装置を備えた内燃機関
JP2004052734A (ja) * 2002-07-24 2004-02-19 Toyota Motor Corp 蓄熱装置を備えた内燃機関
FR2864148A1 (fr) * 2003-12-23 2005-06-24 Peugeot Citroen Automobiles Sa Dispositif de regulation thermique de fluides circulant dans un vehicule a moteur thermique et procede mis en oeuvre par ce dispositif
DE102005052632A1 (de) * 2005-11-04 2007-05-10 Robert Bosch Gmbh Vorrichtung zum Erwärmen einer Kraftmaschine
US20070272174A1 (en) * 2006-05-26 2007-11-29 Norman Szalony Thermal energy recovery and management system
JP2008175189A (ja) * 2007-01-22 2008-07-31 Honda Motor Co Ltd 蓄熱装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6013980A (ja) * 1983-07-06 1985-01-24 Mitsubishi Heavy Ind Ltd デイ−ゼルエンジンの暖機装置
EP0634565A1 (de) * 1993-07-12 1995-01-18 MAN Nutzfahrzeuge Aktiengesellschaft Verfahren zur Verbesserung des Kaltstartverhaltens von Verbrennungsmaschinen
DE4431351A1 (de) * 1994-09-02 1996-03-07 Bayerische Motoren Werke Ag Kraftfahrzeug mit einer Brennkraftmaschine, einem Getriebe sowie einem Wärmespeicher
EP1267050A1 (de) * 2001-06-12 2002-12-18 Peugeot Citroen Automobiles SA Wärmesteuervorrichtung eines Wärmespeichers für Kraftfahrzeuge
JP2003322018A (ja) * 2002-04-26 2003-11-14 Toyota Motor Corp 蓄熱装置を備えた内燃機関
JP2004052734A (ja) * 2002-07-24 2004-02-19 Toyota Motor Corp 蓄熱装置を備えた内燃機関
FR2864148A1 (fr) * 2003-12-23 2005-06-24 Peugeot Citroen Automobiles Sa Dispositif de regulation thermique de fluides circulant dans un vehicule a moteur thermique et procede mis en oeuvre par ce dispositif
DE102005052632A1 (de) * 2005-11-04 2007-05-10 Robert Bosch Gmbh Vorrichtung zum Erwärmen einer Kraftmaschine
US20070272174A1 (en) * 2006-05-26 2007-11-29 Norman Szalony Thermal energy recovery and management system
JP2008175189A (ja) * 2007-01-22 2008-07-31 Honda Motor Co Ltd 蓄熱装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104989488A (zh) * 2015-07-17 2015-10-21 河南柴油机重工有限责任公司 一种极寒环境下发动机的外部辅助系统
WO2017108608A1 (en) * 2015-12-23 2017-06-29 Castrol Limited Apparatus
US10704451B2 (en) 2015-12-23 2020-07-07 Castrol Limited Heat exchanger for an apparatus

Also Published As

Publication number Publication date
DE102008013657A1 (de) 2009-09-17

Similar Documents

Publication Publication Date Title
WO2009112194A1 (de) Brennkraftmaschine mit wärmespeicher
DE102009012318B4 (de) Wärmespeichersystem
DE102008013650A1 (de) Kühlkreislauf in einem Kraftfahrzeug
DE112011100535B4 (de) Wärmespeichergerät für ein Fahrzeug
EP1798486A2 (de) Heiz- oder Brauchwasserwärmespeicher mit mindestens zwei Wärmequellen
DE4402215A1 (de) Verfahren zur Verbesserung des Kaltstartverhaltens von Verbrennungsmaschinen
DE102017111340B4 (de) System zum Erwärmen eines Motors mit einem Motorkühlmittelsystem und einem Wärmepumpensystem
EP0593928B1 (de) Wärmespeichersystem für den Kaltstart von Verbrennungsmaschinen
DE102014220816B4 (de) Vorrichtung zum Erwärmen eines Schmiermittels einer Brennkraftmaschine
AT508992A1 (de) Latentwärmespeicher
DE3245026A1 (de) Verfahren und waermetauscheranordnung zur temperierung bei kraftfahrzeugen mit verbrennungsmotor
DE102017200328A1 (de) Harnstoffbehälter als Wärmespeicher
DE102008013655A1 (de) Vorrichtung und Verfahren zum Betrieb eines Latentwärmespeichers
DE102009058575A1 (de) Kühlkreislauf einer Brennkraftmaschine sowie ein Arbeitsverfahren zum Betrieb eines Kühlkreislaufs
WO2006086966A1 (de) Brauchwasserheizgerät und verfahren zum erwärmen von brauchwasser
DE102006042905B3 (de) Speicheranordnung und Umladeverfahren für Wärmeenergie
DE4432292B4 (de) Verteilereinrichtung für das Kühl- bzw. Heizsystem von Fahrzeugen mit Verbrennungsmotoren
DE102006032852A1 (de) Fahrzeug mit einem Kühlsystem mit mehreren Fluidkreisläufen und einer gemeinsamen Steuer/Regeleinrichtung und einem Ausgleichsbehälter mit Wärmetauschspeichereinrichtung
DE102006057846A1 (de) Heiz- oder Brauchwasserwärmespeicher mit mindestens zwei Wärmequellen
WO2017178537A1 (de) Vorrichtung und verfahren zur energierückgewinnung
EP2906790A1 (de) Latentwärmespeicher und dessen verwendung
DE19802362C2 (de) Verfahren und Einrichtung zur Reduzierung der Wartezeit für das Zapfen von warmem Brauchwasser
DE102018210146B4 (de) Wärmemanagementsystem in einem Kraftfahrzeug
DE102007045161A1 (de) Latentwärmespeicher für einen Verbrennungsmotor
AT502828B1 (de) Heiz- oder brauchwasserwärmespeicher mit mindestens zwei wärmequellen

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09720910

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09720910

Country of ref document: EP

Kind code of ref document: A1