WO2009111916A1 - 遥控模型飞机 - Google Patents

遥控模型飞机 Download PDF

Info

Publication number
WO2009111916A1
WO2009111916A1 PCT/CN2008/070486 CN2008070486W WO2009111916A1 WO 2009111916 A1 WO2009111916 A1 WO 2009111916A1 CN 2008070486 W CN2008070486 W CN 2008070486W WO 2009111916 A1 WO2009111916 A1 WO 2009111916A1
Authority
WO
WIPO (PCT)
Prior art keywords
wing
aircraft
propeller
model aircraft
fuselage
Prior art date
Application number
PCT/CN2008/070486
Other languages
English (en)
French (fr)
Inventor
田瑜
江文彦
Original Assignee
Tian Yu
Jiang Wenyan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tian Yu, Jiang Wenyan filed Critical Tian Yu
Priority to PCT/CN2008/070486 priority Critical patent/WO2009111916A1/zh
Publication of WO2009111916A1 publication Critical patent/WO2009111916A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63HTOYS, e.g. TOPS, DOLLS, HOOPS OR BUILDING BLOCKS
    • A63H27/00Toy aircraft; Other flying toys
    • A63H27/02Model aircraft

Definitions

  • the invention relates to a remotely controlled model aircraft in the field of aircraft models. Background technique
  • indoor remote control model aircraft typically have to operate in larger spaces (such as indoor stadiums) to control flight activities. Therefore, people are eager to have an easy-to-handle, low-cost and safe remote-controlled aircraft used in, for example, a small space in a home. This requires the remote-controlled aircraft to have both ultra-low speed and ultra-small conditions.
  • the aircraft relies on the wing to generate lift to fly forward normally, and the lift increases as the wing area increases.
  • the lift of the aircraft In the absence of updrafts, the lift of the aircraft must be equal to or greater than the gravity of the aircraft to maintain a level flight and a continuous ascent flight, and the lift of the aircraft is proportional to the square of the flight speed. In other words, if the same aircraft needs to reduce the speed of maintaining a level flight by 1/2, the aircraft weight must be reduced to 1/4 of the original to maintain normal flight. It can be seen that both the size of the aircraft should be greatly reduced and the flight speed should be lowered very low, which will cause the lift of the aircraft to drop sharply. Under existing conditions, it is difficult to manufacture an indoor remote control aircraft that meets the above requirements in accordance with conventional techniques. Therefore, it is necessary to find a technology that can effectively solve the above problems. Summary of the invention
  • the present invention provides a remote control model aircraft including a fuselage, a main wing disposed on the fuselage, a power motor, a propeller driven by a powered motor, and a horizontal tail and a vertical tail provided at the rear of the fuselage, wherein the propeller
  • the rear fuselage is provided with at least one increasing wing, and at least a part of the rising wing has an elevation angle of between 12° and 60° with respect to the horizontal tail, so that the airflow passing through the propeller during the flight of the aircraft acts on the lifting wing.
  • the lift generated at the augmentation wing is substantially coincident with the center of gravity of the aircraft.
  • the elevation wing of the remote control model aircraft described above has an elevation angle of between 15 ° and 40 ° with respect to the horizontal tail.
  • the raising wing has an elevation angle of between 18 ° and 30 ° with respect to the horizontal tail.
  • the number of the main wing propeller and the raising wing is one, wherein the propeller is disposed corresponding to the middle of the main wing, and the lifting wing is disposed between the left and right wings of the main wing and the left and right wings Connected together.
  • the raising wings may be disposed between the left and right wings of the main wing and integrated with the left and right wings.
  • the number of the propeller and the raising wing may be two, which are respectively disposed on the left and right sides of the aircraft.
  • the two lifting wings can be respectively disposed on the left and right wings of the main wing.
  • the main wing of the remote control model aircraft described above may be a single wing, a wing or a multi-wing structure.
  • the propeller may be placed in front of or behind the main wing, but in front of the center of gravity of the aircraft.
  • the lifting wing is correspondingly disposed on the fuselage outside the main wing.
  • FIG. 1A is a schematic perspective view of a remote control model aircraft according to an embodiment of the present invention.
  • Fig. 1B is a side cross-sectional view of the aircraft showing the raising wing of one embodiment of the present invention.
  • FIG. 2 is a schematic view showing the mechanical analysis of the raising and lowering wing of the remote control model aircraft according to an embodiment of the present invention.
  • 3 is a schematic structural view of a remote control model aircraft according to another embodiment of the present invention.
  • front and rear refer to the direction of travel of the aircraft
  • left and right refer to the sides perpendicular to the direction of travel of the aircraft.
  • a remote control model aircraft 100 includes a fuselage. 10.
  • the main wing 11 , the horizontal tail 12 and the vertical tail 13 are arranged on the fuselage.
  • the main wing 11 is a double-wing structure including an upper wing 11a and a lower wing l lb connected therebetween by two vertical connecting plates 11c (refer to FIG. 1B).
  • the power unit of the aircraft 100 includes a propeller 14, a power motor 15 for driving the propeller 14, and a gearing mechanism 16 between the motor 15 and the propeller 14.
  • the propeller 14 is mounted in front of the main wing 11 of the aircraft and corresponds to the middle of the main wing, advancing the aircraft in a pull-in manner (i.e., power is in front of the center of gravity of the aircraft).
  • the tail portion of the vertical tail 13 is provided with a tail rudder 13a which is controlled by a servo motor (not shown) to control the traveling direction of the aircraft 100 during flight.
  • the aircraft of the present invention further includes a communication device for receiving a wireless signal, a power source, and the like.
  • a lifting wing 17 is provided between the left and right wings of the main wing 11, and the lifting wing 17 is preferably integrated with the wings of the main wing 11, but in the present invention
  • the raising wing 17 is not necessarily connected to the main wing 11 or formed on the main wing, but may be coupled to the body 10 in other manners.
  • the booster wing 17 has a greater inclination than the main wing.
  • the elevation angles of the wings of the main wing 11 with respect to the horizontal tail 12 are approximately 3 ° to 7 °, and the elevation angle of the raising wing 17 with respect to the horizontal tail is between 12 ° and 60 °. Such an angle enables the booster wing 17 to function to increase the lift of the aircraft.
  • Fig. 2 is a schematic view showing the mechanical analysis of the raising and lowering wing of the remote control model aircraft 100 of the above embodiment.
  • point 0 is the center of gravity of the aircraft
  • the vertical line at point 0 is the center of gravity of the aircraft
  • the aircraft is assumed to have gravity G.
  • the oncoming airflow f passes through the propeller 14 and moves back and forth in a concentrated manner, encountering the obstruction of the augmentation wing 17 behind the propeller 14. Due to the angle of the augmentation wing 17, part of the airflow will flow downward obliquely and increase.
  • the wing 17 produces a reaction force, and the component of the reaction force in the vertical direction provides a lift force F to the lifter for canceling part of the gravity G of the aircraft to reduce the requirement for wing lift during flight.
  • the component of the reaction force in the horizontal direction is the resistance of the aircraft to advance.
  • the inclination of the raising wings 17 should be kept in an appropriate range. Between 12° and 60°, the elevation angle of the raising wing 17 relative to the horizontal tail 12 is further selected at 15 ° to 40 °, which has a good effect. If the elevation angle is greater than 40 degrees, the resistance increases too much, and a greater power margin is required to achieve good results.
  • This elevation angle is between 18 ° and 30 °. It is a more appropriate choice. It should be noted that the present invention does not limit the shape of the raising wing 17.
  • the planar shape From the perspective of the planar shape, it may be square or round, etc., from the perspective of space expansion, it may be flat type, airfoil type, curved Types, etc., one skilled in the art can design a suitable raised wing shape for a particular aircraft.
  • the raising wing 17 when the raising wing 17 is of a flat type, the elevation angles of the upper positions thereof with respect to the horizontal tail 12 are kept constant; when the lifting wings 17 are in the shape of a curvature such as an airfoil type or a curved type, for example, as shown in FIG. 1B.
  • the elevation angles of the various positions on the raising wing 17 with respect to the horizontal tail 12 may be slightly changed, allowing a part of the raising wings (such as the head or the tail) not satisfying the above-mentioned elevation angle range, but the main aspect of the raising wing 17 Part of the design still meets the elevation range of the design.
  • wheel sets 18 and 19 are installed at the bottom of the aircraft to facilitate the landing of the aircraft and protect the fuselage from damage.
  • the main wing 11 may be a single-wing structure, which eliminates the lower wing 1 in the previous embodiment.
  • Lb other structures are similar to the previous embodiment.
  • the two vertical connecting plates 11c located at the left and right edges of the raising wings 17 block the airflow from being outwardly dispersed, which will help to improve the airflow after the propeller 14 is raised. Concentration at 17 points, which increases the lift effect.
  • the drawing is generally employed in the present invention to advance the aircraft.
  • the propeller 14 is mounted in front of the main wing 11, but in some embodiments, the adjustment of the center of gravity allows the power mounted behind the main wing to be still in front of the center of gravity, so in these embodiments, Installing the booster wing on the fuselage behind the propeller will also have a better effect.
  • booster wing may be provided at a position behind a propeller, such as up and down spaced apart.
  • an additional wing may be provided above or below the main wing on which the raising wing has been provided to enhance the lift effect; in the case of a two- or multi-wing aircraft, it may be on at least a portion of the main wing Set the lifting wing to increase the lift effect. It is worth mentioning that the appropriate force is required to make the combined force of the lift provided by these lifting wings approximately coincide with the center of gravity of the aircraft.
  • the remote control model aircraft of the present invention is described by taking a single power and a lifting wing as an example, but the invention is not limited thereto.
  • at least part of the propeller may be The rear side is equipped with a lifting wing to increase the lift.
  • FIG. 3 which is a schematic diagram of a remote control model aircraft according to another embodiment of the present invention, the aircraft 200 includes a fuselage 20, a main wing 21, a horizontal tail 22, and a vertical tail 23.
  • the main wing 21 is still a double-wing structure.
  • the propeller 24 and its driving motor, and the lifting wing 25 are two, wherein the propellers 24 are respectively mounted on the left and right wings of the main wing 21, respectively.
  • the raising wings 25 are disposed on the left and right wings of the main wing 21 and are located behind the corresponding propellers.
  • two powers composed of the propeller 24 and its driving motor may be respectively disposed in front of the left and right wings of the main wing 21, and a lifting wing (four in total) may be disposed behind each propeller 24, An increaser wing (2 in total) can be placed symmetrically behind one of the propellers 24 on each side.
  • a structure in which a lifting wing is attached to the fuselage behind the propeller is also used instead of the above-described structure in which the lifting wing is disposed on the wings of the main wing.
  • lifters can also be placed behind the two propellers. The combined force of the lift provided by these ascending wings should be roughly coincident with the center of gravity of the aircraft.
  • the remote-controlled model aircraft of the present invention can increase the lift of the aircraft by using the structure of the lifting wing behind the propeller.
  • various types of aircraft designed by the concept of the present invention can have a smaller outer size. And lower flight speed, so it is more suitable for flying in small indoor spaces.

Landscapes

  • Toys (AREA)

Description

遥控模型飞机 技术领域
本发明涉及航模领域中的遥控模型飞机。 背景技术
遥控模型飞机广受人们的喜爱, 至今已有几十年的发展历史。 由于室外气候 多变, 遇到炎热、 严寒、 风雨天气时, 飞行会受到影响, 甚至无法进行飞行活动。 在多年前开始掀起制作和开发室内遥控飞机产品的热潮, 并正在蓬勃发展。
由于体积和速度的限制, 室内的遥控模型飞机一般须在较大的空间 (如室内 体育馆等场所)才能操控飞行活动。 因此, 人们渴望能有在例如家中的小空间内使 用的易操控、 低价格又安全的遥控飞机。 这就需要遥控飞机同时具备飞行超低速、 尺寸超小型两个条件。
然而, 根据空气动力学的基本原理, 飞机依靠机翼产生升力才能正常向前飞 行, 升力随翼面积增大而增加。在没有上升气流的情况下, 飞机升力必须等于或大 于飞机所受重力才能维持平飞及持续上升飞行,而飞机的升力与飞行速度的平方成 正比。 换言之, 同样一架飞机如需要把维持平飞的速度下降 1/2, 则必须把飞机重 量降到原来的 1/4才能维持正常飞行。 由此可见, 既要大幅度缩小飞机外型尺寸, 又要把飞行速度降得很低, 均会使飞机的升力急剧下降。在现有条件下, 按照常规 技术制造能满足上述需求的室内遥控飞机存在很大的困难。因而,寻找一种能有效 解决上述难题的技术显得十分必要。 发明内容
本发明的目的是提供一种适合室内小空间飞行的遥控模型飞机。
为此, 本发明提出一种遥控模型飞机, 包括机身、 设于机身上的主翼、 动 力马达、受动力马达驱动的螺旋桨、 以及设于机身尾部的水平尾翼和垂直尾翼, 其中在螺旋桨后方的机身上设有至少一增升翼, 该增升翼的至少一部分相对于 水平尾翼的仰角在 12° 〜60° 之间, 以使飞机飞行时经过螺旋桨的气流作用于 增升翼而产生一抵消飞机部分重力的升力。 在本发明的一实施例中, 在上述增升翼处产生的升力与飞机的重心线是大 致重合。
在本发明的较佳实施例中, 上述的遥控模型飞机的增升翼相对于水平尾翼 的仰角在 15 ° 〜40 ° 之间。 在更佳的实施例中, 该增升翼相对于水平尾翼的仰 角在 18 ° 〜30° 之间。
在本发明的一实施例中, 主翼螺旋桨和增升翼的数量为 1个, 其中螺旋桨 对应于所述主翼中部设置, 而增升翼可设置于主翼的左、 右两翼之间且与左右 两翼连为一体。 在本发明的实施例中, 上述增升翼可以设置于上述主翼的左右 两翼之间且与左右两翼连为一体。
在本发明的实施例中, 螺旋桨和增升翼的数量可为 2个, 分别设于飞机的 左右两侧。 其中, 此 2个增升翼可分别设置在主翼的左右两翼上。
在本发明的实施例中, 上述的遥控模型飞机的主翼可为单翼、 双翼或多翼 结构。 螺旋桨可以设置于主翼的前方或者后方, 但是位于飞机的重心线前方, 当螺旋桨设置于主翼后方时, 增升翼相应地设置在主翼以外的机身部位上。 附图概述
本发明的特征、 性能由以下的实施例及其附图进一步描述。
图 1A是本发明一个实施例的遥控模型飞机立体结构示意图。
图 1B是示出本发明一个实施例的增升翼的飞机侧面剖视图。
图 2是对本发明一个实施例的遥控模型飞机的增升翼处的力学分析示意图。 图 3是本发明另一个实施例的遥控模型飞机结构示意图。 本发明的最佳实施方式
在下面的描述中, 将以示范性的实施例来阐述本发明, 但是这些示范性的实 施例不应理解为对本发明的限制,任何在本发明的精神范围内的均等替换或变化均 在由所附权利要求书所界定的范围内。
在下文中, "前" 、 "后"是指飞机的行进方向、 "左" 、 "右"是指垂直 于飞机行进方向的两侧。
参照图 1A及图 1B所示, 本发明一个实施例的遥控模型飞机 100, 包括一机身 10、 机身上设有主翼 11、 水平尾翼 12、 垂直尾翼 13。 在本实施例中, 主翼 11为 双翼结构, 包括上机翼 11a和下机翼 l lb, 其间通过两个垂直连接板 11c (参照图 1B)连接。 此飞机 100的动力装置包括螺旋桨 14、 用以驱动螺旋桨 14的动力马达 15、 以及马达 15与螺旋桨 14之间的齿轮传动机构 16。 作为示例, 螺旋桨 14安装 于飞机的主翼 11的前方且对应主翼中部, 以拉进方式 (即动力在飞机重心前方) 使飞机前进。 垂直尾翼 13的尾部设有尾舵 13a, 其受伺服电机 (图未示) 控制而 摆动, 以控制飞机 100飞行时的行进方向。 另外, 虽然未示出, 但本发明的飞机还 包括用以接收无线信号的通信装置、 以及电源等。
本实施例在螺旋桨 14后方的机身上, 例如是在主翼 11 的左右两翼之间设有 一增升翼 17, 此增升翼 17较佳地与主翼 11的两翼连为一体, 但在本发明的实施 例中,增升翼 17并不必然与主翼 11连接或形成于主翼上,而可以其他方式与机身 10连结。 增升翼 17比该主翼具有更大的倾斜度。 举例来说, 主翼 11的两翼相对 于上述水平尾翼 12的仰角大致在 3 ° 〜7 ° , 而增升翼 17相对于水平尾翼的仰角 在 12 ° 〜60 ° 之间。这样的角度使增升翼 17能够起到增加飞机的升力的作用。
图 2是对上述实施例的遥控模型飞机 100的增升翼处的力学分析示意图。 如 图 2所示, 设点 0为飞机的重心位置, 则点 0所在的垂线为飞机的重心线, 并假设 飞机具有重力 G。 当飞机行进时, 迎面的气流 f 经过螺旋桨 14后集中向后运动, 遇到螺旋桨 14后方的增升翼 17的阻碍, 由于增升翼 17的角度, 部分气流会往斜 下方流出而对增升翼 17产生一反作用力, 此反作用力在垂直方向上的分量会对增 升翼提供一升力 F,用于抵消飞机的部分重力 G, 以降低飞行时对机翼升力的要求。 反作用力在水平方向上的分量则为飞机前进的阻力。
经过上述分析可知, 螺旋桨 14的位置离增升翼 17越近则气流越集中, 升 力效果越明显。 值得注意的是, 流向增升翼 17 的气流产生的反作用合力应在 重力线附近, 最好与重力线大致重合, 这可以降低飞行时 (尤其是改变动力大 小时) 的不稳定。
此外, 增升翼 17的倾斜度应保持在适当范围。 在 12° 〜60° 之间, 增升 翼 17相对于水平尾翼 12仰角进一步选取在 15 ° 〜40 ° , 会有比较好的效果。 如果此仰角大于 40 度, 则阻力增加太多, 要取得好的效果需要更大的动力富 余量。 考虑目前马达、 电池等飞机部件的性能水平, 此仰角在 18 ° 〜30 ° 之间 是更为合适的选择。 值得注意的是, 本发明并不限制增升翼 17 的形状, 从平 面形状来看, 其可以是方型或圆型等, 从空间延展来看, 其可以是平板型、 翼 面型、 弯型、 等等, 本领域技术人员可以根据具体飞机设计合适的增升翼形状。 其中当增升翼 17为平板型时,其上各位置相对于水平尾翼 12的仰角保持恒定; 当增升翼 17为翼面型、 弯型等带有弧度的形状时, 例如图 1B所示, 增升翼 17 上的各个位置相对于水平尾翼 12 的仰角可以有些许的变化, 允许其中有一部 分增升翼 (如头部或尾部) 不满足上述的仰角范围, 但是增升翼 17 的主要部 分仍然满足设计的仰角范围。
另外, 由于升力的余量, 允许在飞机底部安装轮子组 18和 19, 以方便飞 机的降落, 保护机身不受损坏。
虽然上述的实施例是以双翼结构的主翼 11 为例进行描述, 但是在一个未 图示的实施例中, 主翼 11 可为单翼结构, 此结构取消了前一实施例中的下机 翼 l lb, 其他结构与前一实施例类似。 但是前一实施例与本实施例相比, 两个 位于增升翼 17的左右两边缘的垂直连接板 11c阻挡气流向外散出,将有助于提 高经过螺旋桨 14后的气流在增升翼 17处的集中度, 从而提高升力增加效果。
另外, 由于要求流向增升翼 17的气流产生的反作用合力应在重力线附近, 最好与重力线重合, 因此本发明中一般地采用拉进方式使飞机前进。 在上述的 实施例中, 螺旋桨 14是安装于主翼 11的前方, 但是在某些实施例中, 通过重 心的调整可以使安装于主翼后方的动力还是位于重心前方, 因此在这些实施例 中, 在螺旋桨后方的机身上安装增升翼也会有较好的效果。
本领域技术人员容易理解, 在其他的实施例中, 在一个螺旋桨后方的位置 可以设置一个以上增升翼, 这些增升翼例如上、 下相隔。 以单层翼结构飞机而 言, 可以在已经设置增升翼的主翼上方或下方再设置一增升翼, 以提高升力效 果; 以双翼或多翼结构飞机而言, 可以在至少部分主翼层上设置增升翼, 以提 高升力效果。 值得一提的是, 需要通过合适的设计使这些增升翼所提供的升力 的合力大致与飞机的重心线重合。
在上述的实施例中, 以单个动力和增升翼为例描述了本发明的遥控模型飞 机, 但本发明并不以此为限, 在多个动力的遥控模型飞机中, 可在至少部分螺 旋桨后方安装增升翼来起到提高升力的效果。 下面以一实施例为例进行说明。 请参照图 3所示, 这是本发明另一个实施例的遥控模型飞机示意图, 此飞 机 200包括机身 20、 主翼 21、 水平尾翼 22、 垂直尾翼 23。 本实施例中, 主翼 21仍然为双翼结构, 与上述实施例不同的是, 螺旋桨 24及其驱动马达, 以及增 升翼 25均为 2个, 其中螺旋桨 24例如是分别安装在主翼 21的左右两翼前方, 而增升翼 25则是设置在主翼 21的左右两翼上并位于对应的螺旋桨后方。
此外, 也可以在主翼 21的左、 右两翼前方分别设置两个由螺旋桨 24及其 驱动马达组成的动力, 此时可以在每一螺旋桨 24的后方设置一增升翼(共计 4 个) , 也可以对称地在每一侧的其中一螺旋桨 24 后方设置一增升翼 (共计 2 个) 。
在螺旋桨 24安装于主翼 21后方但仍是位于重心前方的实施例中, 也采用 在螺旋桨后方的机身上安装增升翼的结构来代替上述的将增升翼设置在主翼 的两翼上的结构。 而对于分别在机身前、 后两个位置设置螺旋桨的飞机, 也可 以分别在这两个螺旋桨后方设置增升翼, 这些增升翼所提供的升力的合力应大 致与飞机的重心线重合。 工业应用性
本发明的遥控模型飞机利用在螺旋桨后方安装增升翼的结构, 可以提高飞机 的升力,对于具有相同重量的飞机,利用本发明的构思设计的各种类型的飞机可以 有更小的外型尺寸和更低的飞行速度, 因此更适合在室内小空间内飞行。

Claims

权 利 要 求
1、 一种遥控模型飞机, 包括机身、 设于机身上的主翼、 动力马达、 受所 述动力马达驱动的螺旋桨、 以及设于机身尾部的水平尾翼和垂直尾翼, 其中在 螺旋桨后方的机身上设有至少一增升翼, 所述增升翼的至少一部分相对于所述 水平尾翼的仰角在 12° 〜60° 之间, 以使经过所述螺旋桨的气流作用于所述增 升翼而产生一抵消飞机部分重力的升力。
2、 如权利要求 1所述的遥控模型飞机, 其特征在于, 所述升力与所述飞 机的重心线大致重合。
3、 如权利要求 1所述的遥控模型飞机, 其特征在于, 所述增升翼的所述 至少一部分相对于所述水平尾翼的仰角在 15 ° 〜40 ° 之间。
4、 如权利要求 3所述的遥控模型飞机, 其特征在于, 所述增升翼的所述 至少一部分相对于所述水平尾翼的仰角在 18 ° 〜30 ° 之间。
5、 如权利要求 1所述的遥控模型飞机, 其特征在于, 所述螺旋桨和所述 增升翼的数量为 1个, 其中所述螺旋桨对应于所述主翼中部设置。
6、 如权利要求 5所述的遥控模型飞机, 其特征在于, 所述增升翼设置于 所述主翼的左、 右两翼之间且与所述左右两翼连为一体。
7、 如权利要求 1所述的遥控模型飞机, 其特征在于, 所述螺旋桨和所述 增升翼的数量为 2个, 分别设于所述飞机的左右两侧。
8、 如权利要求 7所述的遥控模型飞机, 其特征在于, 所述 2个增升翼分 别设置在所述主翼的左右两翼上。
9、 如权利要求 1所述的遥控模型飞机, 其特征在于, 所述主翼为单翼、 双翼或多翼结构。
10、 如权利要求 1所述的遥控模型飞机, 其特征在于, 所述螺旋桨设置于 所述主翼的前方。
11、 如权利要求 1所述的遥控模型飞机, 其特征在于, 所述螺旋桨设置于 所述主翼的后方且位于所述飞机的重心线前方。
PCT/CN2008/070486 2008-03-13 2008-03-13 遥控模型飞机 WO2009111916A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2008/070486 WO2009111916A1 (zh) 2008-03-13 2008-03-13 遥控模型飞机

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2008/070486 WO2009111916A1 (zh) 2008-03-13 2008-03-13 遥控模型飞机

Publications (1)

Publication Number Publication Date
WO2009111916A1 true WO2009111916A1 (zh) 2009-09-17

Family

ID=41064723

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2008/070486 WO2009111916A1 (zh) 2008-03-13 2008-03-13 遥控模型飞机

Country Status (1)

Country Link
WO (1) WO2009111916A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230211245A1 (en) * 2021-12-31 2023-07-06 Hangzhou Zt Model Co., Ltd. Remote-control aircraft

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3705700A (en) * 1970-10-23 1972-12-12 Willard R Custer Air flow control means for channel winged aircraft
US5087000A (en) * 1990-04-20 1992-02-11 Taiyo Kogyo Co., Ltd. Toy airplane
CN2542561Y (zh) * 2002-04-30 2003-04-02 广州天象地效飞行器股份有限公司 一种具有动力增升的地效飞行器
CN2550022Y (zh) * 2002-04-22 2003-05-14 田瑜 双马达调速控制的模型飞机
WO2006085981A1 (en) * 2005-02-04 2006-08-17 Silverlit Toys, Inc. Propulsion system for model airplane
CN1903659A (zh) * 2005-07-29 2007-01-31 田瑜 检测飞机进入下坠的方法、装置及使用这种检测方法的飞机防坠装置
US20070029440A1 (en) * 2003-10-02 2007-02-08 Israel Aircraft Industries Ltd. Aircraft configuration for micro and mini uav

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3705700A (en) * 1970-10-23 1972-12-12 Willard R Custer Air flow control means for channel winged aircraft
US5087000A (en) * 1990-04-20 1992-02-11 Taiyo Kogyo Co., Ltd. Toy airplane
CN2550022Y (zh) * 2002-04-22 2003-05-14 田瑜 双马达调速控制的模型飞机
CN2542561Y (zh) * 2002-04-30 2003-04-02 广州天象地效飞行器股份有限公司 一种具有动力增升的地效飞行器
US20070029440A1 (en) * 2003-10-02 2007-02-08 Israel Aircraft Industries Ltd. Aircraft configuration for micro and mini uav
WO2006085981A1 (en) * 2005-02-04 2006-08-17 Silverlit Toys, Inc. Propulsion system for model airplane
CN1903659A (zh) * 2005-07-29 2007-01-31 田瑜 检测飞机进入下坠的方法、装置及使用这种检测方法的飞机防坠装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230211245A1 (en) * 2021-12-31 2023-07-06 Hangzhou Zt Model Co., Ltd. Remote-control aircraft
US12090417B2 (en) * 2021-12-31 2024-09-17 Hangzhou Zt Model Co., Ltd. Remote-control aircraft

Similar Documents

Publication Publication Date Title
JP4441826B2 (ja) リング状の翼構造を有する航空機
JP6567054B2 (ja) 傾斜翼付きマルチロータ
JP5421503B2 (ja) 自家用航空機
WO2017016096A1 (zh) 一种新型垂直起降飞行器及其控制方法
KR20190039888A (ko) 틸팅식 날개 구성을 가지는 수직 이륙 및 착륙 항공기
CN101633409B (zh) 双向同步自动翻转扑翼机
WO2016184358A1 (zh) 基于双飞控系统的固定结构式垂直起降飞机及其控制方法
BR112015013134B1 (pt) Aeronave de decolagem e pouso na vertical
WO2023000571A1 (zh) 飞行汽车
CN112368206B (zh) 尾座式垂直起降飞机
WO2021023187A1 (zh) 一种倾转旋翼无人机的控制方法及倾转旋翼无人机
CN103332293A (zh) 倾转式双涵道超小型无人机
CN103803078A (zh) 一种利用主动气流产生升力的飞碟式直升机
WO2019109306A1 (zh) 无人飞行器
CN107963209A (zh) 串列翼倾转旋翼无人机
CN106005394A (zh) 一种救援飞行器
CN104875875A (zh) 一种气羽翼式气流定向载重运输飞行器
CN108298075A (zh) 能悬停的扑翼飞行器及其控制方式
KR101772223B1 (ko) 로터가 숨겨진 하이브리드 수직이착륙 무인항공기
CN103552688A (zh) 一种扑翼旋翼耦合构型及相应的微型飞行器设计
CN103909796B (zh) 垂直升降飞行汽车
WO2009111916A1 (zh) 遥控模型飞机
CN204473119U (zh) 轻量化无人机
CN110816827A (zh) 一种仿生蝴蝶扑翼飞行器
CN205469774U (zh) 具有尾翼的飞机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08715222

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08715222

Country of ref document: EP

Kind code of ref document: A1