WO2009107335A1 - 充電装置及び充電方法 - Google Patents

充電装置及び充電方法 Download PDF

Info

Publication number
WO2009107335A1
WO2009107335A1 PCT/JP2009/000594 JP2009000594W WO2009107335A1 WO 2009107335 A1 WO2009107335 A1 WO 2009107335A1 JP 2009000594 W JP2009000594 W JP 2009000594W WO 2009107335 A1 WO2009107335 A1 WO 2009107335A1
Authority
WO
WIPO (PCT)
Prior art keywords
charging
battery
discharge
circuit
voltage
Prior art date
Application number
PCT/JP2009/000594
Other languages
English (en)
French (fr)
Inventor
丸山知己
齊木英司
加藤章利
本多義博
Original Assignee
岩崎電気株式会社
東京整流器株式会社
株式会社ジェーピーエス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 岩崎電気株式会社, 東京整流器株式会社, 株式会社ジェーピーエス filed Critical 岩崎電気株式会社
Priority to US12/918,978 priority Critical patent/US8531157B2/en
Priority to EP09716128.5A priority patent/EP2249454B1/en
Priority to CN2009801064188A priority patent/CN101960690B/zh
Publication of WO2009107335A1 publication Critical patent/WO2009107335A1/ja
Priority to US13/960,296 priority patent/US8810193B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00302Overcharge protection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/441Methods for charging or discharging for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/445Methods for charging or discharging in response to gas pressure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/46Accumulators structurally combined with charging apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/52Removing gases inside the secondary cell, e.g. by absorption
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0016Circuits for equalisation of charge between batteries using shunting, discharge or bypass circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a charging device and a charging method, and more particularly, to a technique for improving charging efficiency.
  • a charging device having an overcharge protection circuit for preventing overcharge of the secondary battery is known.
  • a discharge route circuit including a discharge resistor is provided in parallel for each secondary battery, and when an overcharge of any secondary battery is detected, the secondary battery in which overcharge is detected is detected.
  • the battery is forcibly discharged by connecting to the discharge route circuit, and the charging current flowing into the secondary battery is bypassed to the discharge route circuit (see, for example, Patent Document 2).
  • the overcharge protection circuit Since it functions as a balance circuit that balances the battery voltage between the secondary batteries so as to have a certain upper limit value, charging that compensates for variations in characteristics between the secondary batteries becomes possible. Also, for secondary battery charging where the battery voltage (internal resistance) at the time of charging changes greatly due to deterioration over time, there is a secondary charge when charging at the start of use and when charging after some deterioration over time. Since the upper limit value of the battery voltage is kept constant regardless of the internal resistance of the battery, charging that compensates for aging deterioration becomes possible.
  • JP 2003-87991 A Japanese Patent Laid-Open No. 10-50352
  • the charging device includes an overcharge protection circuit
  • an overcharge protection circuit for example, when charging is performed to a state close to full charge using the technique described in Patent Document 1, the battery voltage of each secondary battery approaches the fully charged voltage.
  • the discharge is performed by sequentially connecting to the discharge route circuit. For this reason, there is a problem that the charging power is wasted due to the discharge of the discharge route circuit and the charging efficiency is lowered. Further, when the discharge in the discharge route circuit is frequently performed, there arises a problem that deterioration of peripheral parts is promoted by heat generated by the discharge in the discharge route circuit.
  • This type of problem occurs not only in a charging device including an overcharge protection circuit, but also in a secondary battery that accompanies gas generation due to heat generated by charging. That is, in the state where gas is generated in the secondary battery during charging, as in the case where charging power is wasted due to discharge to the discharge route circuit of the overcharge protection circuit, the internal resistance of the secondary battery The charging power is unnecessarily consumed as heat generation due to an increase in the charging power and the charging efficiency is lowered. In addition, the problem of promoting deterioration of peripheral parts due to heat generation also occurs.
  • the present invention has been made in view of the above-described circumstances, and an object of the present invention is to provide a charging device and a charging method capable of suppressing wasteful consumption of charging power during charging and increasing charging efficiency.
  • the present invention provides a charging route circuit provided for each secondary battery in a charging device that supplies a charging current to a battery set in which a plurality of secondary batteries are connected in series to charge the battery set. And connecting the secondary battery to the discharge route circuit for discharging based on the battery voltage of the secondary battery during charging, or disconnecting the secondary battery from the discharge route circuit for discharging.
  • the present invention provides a charging device that supplies a charging current to a battery assembly in which a plurality of secondary batteries are connected in series to charge the battery assembly, A gas generation detecting means for detecting the generation of gas from the secondary battery, and when the gas generation is detected by the gas generation detecting means, the charging current is decreased until the gas generation stops. And charging control means for continuing charging.
  • the charging control unit may maintain the charging current at the predetermined lower limit current value when the charging current falls below a predetermined lower limit current value.
  • the supply to the battery set is continued, and charging is stopped when the voltage of the battery set reaches a predetermined charge completion voltage.
  • external power is supplied to a parallel circuit in which the battery set and an external load are connected in parallel, and the battery set is charged and power is supplied to the external load.
  • the battery pack is configured to perform a charge current flowing into the battery set while maintaining the battery set and the external load in a conductive state while the battery set is not charged. It is characterized by controlling to maintain at zero.
  • the present invention provides a charging method for supplying a charging current to a battery set in which a plurality of secondary batteries are connected in series for charging, and for each secondary battery.
  • a circuit is provided to discharge the secondary battery connected to the discharge route circuit based on the battery voltage of the secondary battery during charging, or disconnect the secondary battery from the discharge route circuit to discharge the battery. If any of the secondary batteries starts discharging into the discharge root circuit, the charging current is stopped until the discharge of the secondary battery that has started discharging to the discharge root circuit stops. The charging is continued and the charging is continued.
  • the present invention provides a charging method in which a charging current is supplied to a battery set in which a plurality of secondary batteries are connected in series to charge the battery set.
  • a charging current is supplied to a battery set in which a plurality of secondary batteries are connected in series to charge the battery set.
  • charging is continued by decreasing the charging current until the gas generation stops.
  • the present invention during charging, charging is performed while reducing the charging current so as to stop the discharge to the discharge route circuit or the generation of gas from the secondary battery. Therefore, useless consumption of charging power due to the occurrence of charging can be suppressed, and charging efficiency can be improved.
  • FIG. 1 is a diagram illustrating a configuration of a charging device 1 according to the present embodiment.
  • the charging device 1 includes a storage battery unit 2 that stores electric power, and a charger unit 4 that supplies the electric power to the storage battery unit 2 and charges it.
  • the charger unit 4 includes an external power connector 6, a charger 8, a charger controller 10, a current detector 12, a display 14, and a cutoff switch 16.
  • the external power connector 6 is a connector to which an external power source 18 such as a commercial power source is connected, and the power of the external power source 18 is input to the charger 8.
  • the charger 8 supplies power from the external power source 18 to the storage battery unit 2 and the external load 19 to charge the storage battery unit 2 and drive the external load 19.
  • the external load 19 is a target device that supplies power stored in the storage battery unit 2 when the external power source 18 is powered off. More specifically, the battery 8 and the external load 19 are connected in parallel to the charger 8, and the parallel circuit 9 is configured by the battery 2 and the external load 19.
  • the charger 8 applies a voltage ⁇ to the parallel circuit 9 to supply a DC charging current Ic to the storage battery unit 2 and supply power to the external load 19.
  • the charger 8 When a power failure occurs in the external power supply 18, the charger 8 is in a high impedance state as seen from the parallel circuit 9 including the storage battery unit 2 and the external load 19, so the storage battery unit 2 and the external load 19 are automatically connected in series, Livestock power is supplied from the storage battery unit 2 to the external load 19.
  • the charger controller 10 variably controls the current value of the charging current Ic during charging, and is connected to the storage battery unit 2 via the signal line 20.
  • the charger controller 10 controls the charging current Ic based on a signal received from the storage battery unit 2 via the signal line 20.
  • the current detector 12 is inserted on a series circuit in which the charger 8 and the storage battery unit 2 are connected, the charging current Ic from the storage battery unit 2 to the charger 8, and the discharge current accompanying the discharge from the charger 8. Id is detected and output to the charger controller 10.
  • the display 14 displays various information under the control of the charger controller 10, for example, displays the calculated value of the current storage amount W of the storage battery unit 2. Further, the charger controller 10 has a function of counting the number of times the storage battery unit 2 is charged, and calculates the ratio of the current number of times of charging to a predetermined number of times indicating the life of a battery set 24 (described later) provided in the storage battery unit 2. Then, the ratio is displayed on the display unit 14 as information indicating how much the battery set 24 has expired.
  • the cut-off switch 16 is a normally closed switch for stopping the discharge of the storage battery unit 2, is inserted on a series circuit connecting the charger 8 and the storage battery unit 2, and is stored under the control of the charger controller 10. When the unit 2 is supplying power to the external load 19, the storage battery unit 2 is opened to prevent overdischarge. Thereby, the discharge accompanying the electric power supply etc. from the storage battery part 2 to the external load 19 is stopped, and an overdischarge is prevented.
  • the cutoff switch 16 is a normally closed switch
  • the storage battery unit 2 and the external load 19 are normally held in a conductive state. Since the storage battery unit 2 and the external load 19 are thus kept in a conductive state without being interrupted by a switch or the like in this way, even if a power failure occurs in the external power supply 18, the power supply to the switch is not made. A situation in which the storage battery unit 2 and the external load 19 remain disconnected without stopping and operating is prevented. However, if the storage battery unit 2 and the external load 19 are always kept in a conductive state, the storage power of the storage battery unit 2 is supplied to the external load 19 when the storage battery unit 2 is not charged.
  • the charging device 1 performs zero current charging to maintain the charging current Ic flowing into the storage battery unit 2 at substantially zero, whereby electric power is supplied from the storage battery unit 2 to the external load 19 and is discharged wastefully. Is prevented.
  • the charger controller 10 sets the parallel circuit 9 so that the charging current Ic flowing into the storage battery unit 2 is maintained at substantially zero based on the detection value of the current detector 12.
  • the voltage ⁇ to be applied is feedback controlled. As a result, the differential pressure between the voltage ⁇ and the voltage of the storage battery unit 2 becomes substantially equal, the charging current Ic to the storage battery unit 2 becomes substantially zero, and this state is maintained and the storage from the storage battery unit 2 to the external load 19 is performed.
  • the power supply is held in a stopped state.
  • the storage battery unit 2 includes a battery set 24 formed by connecting n (n ⁇ 2) secondary batteries (cells) 22 in series, and an overcharge protection circuit (balance circuit) 26.
  • the secondary battery 22 is a lithium polymer battery as an example of a lithium ion battery.
  • any secondary battery such as a nickel metal hydride battery or a nickel cadmium battery can be used.
  • the secondary batteries 22 constituting the battery set 24 are all the same type of secondary batteries.
  • the storage battery unit 2 is provided with an anode terminal 30 electrically connected to the anode of the battery set 24 and a cathode terminal 32 electrically connected to the negative electrode of the battery set 24.
  • the anode terminal 30 and the cathode A terminal 32 is electrically connected to the charger unit 4.
  • the charging current Ic is supplied from the charger unit 4 to the battery set 24 via the anode terminal 30 to charge the battery set 24.
  • the overcharge protection circuit 26 protects overcharge to the secondary battery 22 by aligning the voltage balance between the secondary batteries 22, and a discharge route circuit 34 provided in parallel for each secondary battery 22. And a detector group 36 provided for each secondary battery 22 and a battery control unit 38.
  • the discharge route circuit 34 is a circuit in which a discharge resistor (balance resistor) 40 and a switching element 42 are connected in series in the route.
  • the switching element 42 is a normally open contact, and is closed when the battery voltage Vb of the secondary battery 22 reaches the overcharge protection voltage Vth1.
  • This overcharge protection voltage Vth1 is set to a value lower than the full charge voltage Vm according to the type of the secondary battery 22, and is considered to be, for example, full charge when the secondary battery 22 is a lithium polymer battery. It is a value not exceeding 4.2V.
  • the discharge route circuit 34 is electrically connected to the secondary battery 22, and the secondary battery 22 starts discharging to the discharge route circuit 34.
  • the secondary battery is discharged due to energy discharge due to discharge or a decrease in the amount of inflow into the secondary battery 22 by bypassing the charging current Ic to the discharge route circuit 34.
  • the battery voltage Vb of 22 gradually decreases.
  • the switching element 42 is opened, and the discharge to the discharge route circuit 34 is stopped. Transition to a charged state.
  • the difference between the overcharge protection voltage Vth1 and the protection stop voltage Vth2 is set to such an extent that at least chattering of the switching element 42 can be prevented.
  • the charging current Ic flowing into the secondary battery 22 is bypassed by the discharge route circuit 34 and introduced into the secondary battery 22 at the subsequent stage.
  • the current value bypassed at this time is determined by the resistance value of the discharge resistor 40.
  • the detector group 36 includes an overcharge protection detector 44, a charge completion detector 46, and a discharge cutoff detector 48.
  • the overcharge protection detector 44, the charge completion detector 46, and the discharge interruption detector 48 have a comparator circuit that compares the battery voltage Vb of the secondary battery 22 with a predetermined voltage set for each. Has been.
  • the overcharge protection detector 44 detects the battery voltage Vb of the secondary battery 22, compares the battery voltage Vb with the overcharge protection voltage Vth1, and the battery voltage Vb exceeds the overcharge protection voltage Vth1. In this case, the switching element 42 is closed, and the secondary battery 22 is discharged to the discharge route circuit 34.
  • the overcharge protection detector 44 opens the switching element 42 and stops discharging the secondary battery 22 to the discharge route circuit 34 when the battery voltage Vb falls below the protection stop voltage Vth2.
  • the overcharge protection detector 44 Each time the overcharge protection detector 44 opens or closes the switching element 42, the overcharge protection detector 44 outputs to the battery control unit 38 an open / closed signal indicating the open / closed state of the switching element 42, that is, the start / stop of discharge.
  • the battery control unit 38 When such an open / close signal is input, the battery control unit 38 outputs an open / close signal to the charger controller 10 of the charger unit 4 via the signal line 20, whereby the charger controller 10 supplies the discharge route circuit 34. It becomes possible to detect the presence or absence of discharge.
  • the charger controller 10 detects that any secondary battery 22 has started discharging to the discharge route circuit 34 based on the open / close signal during charging, the discharge to the discharge route circuit 34 is stopped. Control is performed until the charging current Ic is decreased until such time, and this control will be described later.
  • the charge completion detector 46 detects the battery voltage Vb of the secondary battery 22 and outputs this detection signal to the battery control unit 38.
  • the battery control unit 38 integrates the battery voltage Vb of each secondary battery 22, calculates the voltage Vall of the battery set 24, and outputs it to the charger controller 10 via the signal line 20.
  • the charger controller 10 uses a voltage ⁇ to be applied to the parallel circuit 9 including the storage battery unit 2 as a charging current Ic flowing through the storage battery unit 2.
  • the charge to the storage battery unit 2 is stopped by controlling to be zero and setting the zero current charging state.
  • the charge completion voltage Vth3 is a value obtained by integrating the full charge voltage Vm of the secondary battery 22 by the number of secondary batteries 22. In addition, even when the battery voltage Vb of any of the secondary batteries 22 reaches the upper limit value of the allowable voltage, the charging of the storage battery unit 2 is quickly stopped.
  • the discharge cutoff detector 48 detects the battery voltage Vb of the secondary battery 22 during non-charging of the battery set 24, that is, while the livestock power of the battery set 24 is supplied to the external load 19.
  • the battery voltage Vb is compared with the discharge cutoff voltage Vth4, and when the battery voltage Vb is lower than the discharge cutoff voltage Vth4, a detection signal is output to the battery control unit 38.
  • the discharge cutoff voltage Vth4 prevents the secondary battery 22 from discharging beyond the end voltage, that is, a so-called overdischarge state, and is set to a voltage that does not fall below the end voltage. For example, when the secondary battery 22 is a lithium polymer battery, the discharge cutoff voltage Vth4 is set to about 3V.
  • the charging device 1 includes a temperature detection sensor such as a thermistor for detecting the battery temperature of the battery set 24, and the temperature of the battery set 24 is set to a predetermined temperature (for example, 60 degrees for a lithium polymer battery) during charging. When it exceeds, it is comprised so that charge may be stopped.
  • a temperature detection sensor such as a thermistor for detecting the battery temperature of the battery set 24, and the temperature of the battery set 24 is set to a predetermined temperature (for example, 60 degrees for a lithium polymer battery) during charging. When it exceeds, it is comprised so that charge may be stopped.
  • FIG. 2 is a flowchart illustrating a charging process of the charging device 1
  • FIG. 3 is a diagram illustrating a charging pattern by the charging device 1.
  • FIG. 3 shows a charging pattern for two secondary batteries 22A and 22B having different battery voltage rise characteristics during charging.
  • the charging device 1 When charging, the charging device 1 first determines whether or not the charging start condition is satisfied (step S1).
  • the charging start conditions include, for example, various conditions such as when the battery set 24 is not fully charged, when the cutoff switch 16 is opened to prevent overdischarge, and when a certain period has elapsed since the end of the previous charging. Is set.
  • the charging device 1 supplies the charging current Ic having the current value Iini to the storage battery unit 2 and starts charging (step S2). That is, the charging device 1 adjusts the voltage ⁇ applied to the battery set 24 so that the current value of the charging current Ic becomes the current value Iini while sampling the detection signal from the current detector 12.
  • the battery voltage Vb of each of the secondary batteries 22A and 22B of the battery set 24 increases from the charging initial voltages V0a and V0b. Start.
  • the battery voltage Vb of the secondary battery 22B reaches the overcharge protection voltage Vth1.
  • the overcharge protection detector 44 of the secondary battery 22A closes the switching element 42 to prevent the secondary battery 22A from being overcharged, and the secondary battery 22A is connected to the discharge route circuit 34 for discharging.
  • an open / close signal is output to the charger controller 10, whereby the charger controller 10 detects the discharge of the secondary battery 22A to the discharge route circuit 34. Is done.
  • the charger controller 10 when the charger controller 10 detects the discharge of any of the secondary batteries 22 to the discharge route circuit 34 (step S3: YES), the charger controller 10 sequentially decreases the current value of the charging current Ic ( Step S4). As a result, as shown in FIG. 3, the current value of the charging current Ic is reduced from the time t1 when the battery voltage Vb of the secondary battery 22A reaches the overcharge protection voltage Vth1.
  • the overcharge protection of the secondary battery 22A occurs.
  • the detector 44 opens the switching element 42 and stops discharging the secondary battery 22A to the discharge route circuit 34. This stoppage of discharge to the discharge route circuit 34 is detected by the charger controller 10 by the output of the open / close signal to the charger controller 10.
  • step S5 when the charger controller 10 detects the stop of discharge of the secondary battery 22 to the discharge route circuit 34 (step S5: YES), the charger controller 10 stops the decrease in the current value of the charging current Ic. (Step S6), the processing procedure is returned to step S3, and charging is continued. As a result, as shown in FIG. 3, the charging current Ic decreases until the battery voltage Vb of the secondary battery 22A falls to the protection stop voltage Vth2, and is fixed to the current value when the discharge is stopped. When the charging current Ic is decreased, not only the secondary battery 22A but also the battery voltage Vb of the other secondary battery 22B is reduced.
  • the charging current Ic is decreased until the discharge of the secondary battery 22 to the discharge route circuit 34 stops. The process is repeated.
  • the number of repetitions varies depending on the difference in voltage rise characteristics when the secondary battery 22 is charged, the degree of deterioration, and the like, and is not always repeated a fixed number of times.
  • the charging current Ic decreases, and when the charging current Ic is decreased by the processing of step S4, the charging current Ic is reduced. It becomes lower than the charging lower limit current value Ith (time t3).
  • This charging lower limit current value Ith is set to a predetermined current value indicated when each secondary battery 22 approaches a fully charged state.
  • step S7 when the charger controller 10 detects that the charging current Ic is equal to or lower than the charging lower limit current value Ith (step S7: YES), the charger controller 10 maintains the charging current Ic at the charging lower limit current value Ith. Charging is continued (step S8).
  • step S9 YES
  • the charging device 1 sets the charging state of the storage battery unit 2 to the zero current charging state, stops charging the storage battery unit 2 (step S10), and ends the charging process.
  • the voltage ⁇ of the charger 8 is feedback controlled so that the charging current Ic flowing into the storage battery unit 2 is maintained at substantially zero.
  • charging to the storage battery unit 2 is stopped, and the storage battery unit 2 and the external load 19 are held in a conductive state while the supply of livestock power from the storage battery unit 2 to the external load 19 is stopped. To do.
  • the charger controller 10 when any of the secondary batteries 22 starts discharging to the discharge route circuit 34 by the overcharge protection operation of the overcharge protection circuit 26, the charger controller 10 The charging current Ic is decreased until the discharge of the secondary battery 22 that has started to the discharge route circuit 34 stops, and the charging is continued.
  • the discharge of each secondary battery 22 to the discharge route circuit 34 is suppressed, so that charging power is not wasted due to discharging, and charging efficiency is improved.
  • the heat generation in the discharge route circuit 34 is reduced, deterioration of peripheral components is also prevented.
  • the charger controller 10 when the charging current Ic is lower than the predetermined charging lower limit current value Ith, the charger controller 10 maintains the charging current Ic at the charging lower limit current value Ith and supplies it to the battery set 24. The charging is stopped when the voltage Vall of the battery set 24 reaches a predetermined charging completion voltage Vth3.
  • the battery voltage Vb of many secondary batteries 22 exceeds the overcharge protection voltage Vth1 and is discharged.
  • the charging current Ic is a relatively low charge lower limit current value Ith, so that the energy consumed by the discharge root circuit 34 is also suppressed to a small state. Then, each secondary battery 22 can be charged to the full charge voltage Vm in a state where the amount of energy consumed by the discharge route circuit 34 is suppressed in this way.
  • the battery set 24 and the external load 19 are connected to the charger 8 by configuring the parallel circuit 9 with the battery set 24 and the external load 19, so that the battery set 24 and the external load 19 are conducted during non-charging. Held in a state. For this reason, when the external power supply 18 supplied to the charger 8 has a power failure or the like, the battery set 24 and the external load 19 automatically form a series circuit, and the stored power is supplied from the battery set 24 to the external load 19. Will start immediately. Further, when the battery 8 is not charged, the voltage ⁇ applied by the charger 8 to the parallel circuit 9 is controlled so that the charging current Ic flowing into the battery set 24 is maintained at substantially zero. It is not supplied and wasteful discharge of the battery set 24 is prevented.
  • the battery voltage Vb of any of the secondary batteries 22 decreases to the predetermined discharge cutoff voltage Vth4, the supply of stored power from the battery set 24 to the external device is cut off, and the battery set 24 Therefore, overcharge of each secondary battery 22 can be reliably prevented.
  • FIG. 4 is a diagram illustrating a configuration of the charging apparatus 100 according to the present embodiment.
  • the charging device 100 of this embodiment includes a gas generation detection circuit 50.
  • This gas generation detection circuit 50 detects the generation of gas in any of the secondary batteries 122 during charging and outputs it to the battery control unit 38.
  • the battery control unit 38 outputs the signal to the charger controller 10 via the signal line 20.
  • the charger controller 10 Each time the generation of gas is detected during charging, the charger controller 10 continues charging by reducing the charging current Ic until the generation of gas stops.
  • the charging current Ic is lower than the charging lower limit current value Ith, the same processing as that after step S7 in FIG. 2 described in the first embodiment is performed.
  • step S7 when the charger controller 10 detects that the charging current Ic has become equal to or lower than the charging lower limit current value Ith (step S7: YES), the charging controller 10 maintains the charging current Ic at the charging lower limit current value Ith and continues charging ( In step S8), when the voltage Vall of the battery set 124 has reached the above-described charging completion voltage Vth3 (step S9: YES), charging is stopped by setting the charging state of the storage battery unit 2 to the zero current charging state (step S10). ), The charging process is terminated.
  • the gas generation detection circuit 50 is configured to directly detect the presence or absence of gas generation by a gas sensor or the like, or to monitor the battery voltage Vb of each secondary battery 122 to generate a gas from the secondary battery 122. It is good also as a structure which detects generation
  • embodiment mentioned above shows the one aspect
  • it is configured to suppress excessive consumption of charging power in the overcharge protection circuit 26 during charging, and excessive charging power associated with gas generation in the secondary battery 122 during charging.
  • the present invention is not limited to this, and a power consumption factor that consumes charging power other than charging may be generated during charging, and this power consumption factor is solved by reducing the charging current. If so, the present invention can also be applied to charging such a battery set. That is, when consumption of charging power due to a power consumption factor is generated during charging, charging may be continued by reducing the charging current until the consumption stops.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

 充電時に充電電力の無駄な消費を抑制し、充電効率を高める。  複数の二次電池22が直列に接続された電池組24に充電電流Icを供給して充電する充電装置1において、前記二次電池22ごとに設けられた放電ルート回路34を有し、充電中に前記二次電池22の電池電圧Vbに基づいて前記放電ルート回路34に前記二次電池22を接続して放電させ、或いは、前記放電ルート回路34から前記二次電池22を切断して放電を停止させる過充電保護回路26と、前記過充電保護回路26により、いずれかの前記二次電池22が放電ルート回路34に放電を開始した場合には、放電を開始した二次電池22の放電ルート回路34への放電が停止するまで前記充電電流Icを減少させて充電を継続する充電器コントローラー10とを備える構成とした。

Description

充電装置及び充電方法
 本発明は、充電装置及び充電方法に係り、特に、充電効率を高める技術に関する。
 直列に多段接続された二次電池を充電する充電装置が従来から知られている。
 この種の充電装置においては、二次電池の電圧が所定電圧に達するまで所定の定電流で充電し、その後、電流値を小さくして充電を行うことで、二次電池の内部抵抗による影響を小さくして、より満充電に近い状態まで充電することを可能にした、いわゆる多段定電流充電方式が提案されている(例えば、特許文献1参照)。
 また、二次電池への過充電を防止するために過充電保護回路を備えた充電装置が知られている。この種の過充電保護回路は、二次電池毎に放電抵抗を含む放電ルート回路を並列に設け、いずれかの二次電池の過充電を検出した場合、過充電が検出された二次電池を放電ルート回路に接続して強制的に放電させ、また、この二次電池に流入する充電電流を放電ルート回路にバイパスさせている(例えば、特許文献2参照)。
 この過充電保護回路を充電装置に設けることにより、過充電の保護の他にも次のような利点がある。すなわち、リチウムポリマー電池等のように充電時の内部抵抗値等の特性を揃えて製造することが困難な二次電池を多段に直列に接続して充電を行う場合に、過充電保護回路が各二次電池間の電池電圧を一定の上限値に揃えるようにバランスさせるバランス回路として機能するため、二次電池間の特性のばらつきを補償した充電が可能になる。また、経年劣化により充電時の電池電圧(内部抵抗)が大きく変化するような二次電池の充電に対しても、使用開始時の充電時と、ある程度経年劣化した時の充電時とで二次電池の内部抵抗によらず電池電圧の上限値が一定に維持されるため経年劣化を補償した充電が可能になる。
特開2003-87991号公報 特開平10-50352号公報
 しかしながら、充電装置が過充電保護回路を備える場合、例えば上記特許文献1の記載の技術を用いて満充電に近い状態まで充電を行うと、各二次電池の電池電圧が満充電の電圧に近づいたものから順次放電ルート回路に接続されて放電が行われる。このため、放電ルート回路の放電により充電電力が無駄に消費され、充電効率を低下させる、といった問題がある。また、放電ルート回路での放電が頻繁に行われると、放電ルート回路での放電による発熱によって周辺部品の劣化を促す、といった問題も生じる。
 この種の問題は、過充電保護回路を備えた充電装置に限らず、充電による発熱によりガスの発生を伴う二次電池にも同様に生じる。
 すなわち、過充電保護回路の放電ルート回路への放電により充電電力が無駄に消費されるのと同様に、充電中に二次電池でガスが発生している状態においては、二次電池の内部抵抗が増大する等の理由で充電電力が発熱として無駄に消費され、充電効率を低下させる。また、発熱によって周辺部品の劣化を促す、といった問題も同様に生じる。
 本発明は、上述した事情に鑑みてなされたものであり、充電時に充電電力の無駄な消費を抑制し、充電効率を高めることができる充電装置及び充電方法を提供することを目的とする。
 上記目的を達成するために、本発明は、複数の二次電池が直列に接続された電池組に充電電流を供給して充電する充電装置において、前記二次電池ごとに設けられた放電ルート回路を有し、充電中に前記二次電池の電池電圧に基づいて前記放電ルート回路に前記二次電池を接続して放電させ、或いは、前記放電ルート回路から前記二次電池を切断して放電を停止させる過充電保護回路と、前記過充電保護回路により、いずれかの前記二次電池が放電ルート回路に放電を開始した場合には、放電を開始した二次電池の放電ルート回路への放電が停止するまで前記充電電流を減少させて充電を継続する充電制御手段とを備えたことを特徴とする。
 また上記目的を達成するために、本発明は、複数の二次電池が直列に接続された電池組に充電電流を供給して充電する充電装置において、前記電池組への充電中に、いずれかの前記二次電池からのガスの発生を検知するガス発生検知手段と、前記ガス発生検知手段により、前記ガスの発生が検知されたときには、前記ガスの発生が停止するまで前記充電電流を減少させて充電を継続する充電制御手段とを備えたことを特徴とする。
 また本発明は、上記のいずれかの充電装置において、前記充電制御手段は、前記充電電流が所定の下限電流値を下回った場合には、前記所定の下限電流値に充電電流を維持して前記電池組への供給を継続し、前記電池組の電圧が所定の充電完了電圧に達したときに充電を停止することを特徴とする。
 また本発明は、上記のいずれかの充電装置において、前記電池組、及び外部負荷が並列接続された並列回路に外部電力を供給し、前記電池組の充電、及び前記外部負荷への電力供給を行う充電器を備え、非充電時には、前記電池組及び前記外部負荷を導通させた状態で維持しつつ、前記充電器が前記並列回路に印加する電圧を、前記電池組に流入する充電電流を略ゼロに維持するように制御することを特徴とする。
 また上記目的を達成するために、本発明は、複数の二次電池が直列に接続された電池組に充電電流を供給して充電する充電方法において、前記二次電池ごとに設けられた放電ルート回路を設け、充電中に前記二次電池の電池電圧に基づいて前記放電ルート回路に前記二次電池を接続して放電させ、或いは、前記放電ルート回路から前記二次電池を切断して放電を停止させて過充電保護を行い、いずれかの前記二次電池が放電ルート回路に放電を開始した場合には、放電を開始した二次電池の放電ルート回路への放電が停止するまで前記充電電流を減少させて充電を継続することを特徴とする。
 また上記目的を達成するために、本発明は、複数の二次電池が直列に接続された電池組に充電電流を供給して充電する充電方法において、前記電池組への充電中に、いずれかの前記二次電池からのガスの発生を検知したときには、前記ガスの発生が停止するまで前記充電電流を減少させて充電を継続することを特徴とする。
 本発明によれば、充電中においては、放電ルート回路への放電、或いは、二次電池からのガスの発生を停止させるように充電電流を減少させながら充電が行われるため、放電、或いは、ガスの発生に伴う充電電力の無駄な消費が抑えられ、充電効率を高めることができる。
本発明の第1実施形態に係る充電装置の構成を示す図である。 充電処理のフローチャートである。 充電パターンを示す図である。 第2実施形態に係る充電装置の構成を示す図である。
符号の説明
 1、100 充電装置
 2 蓄電池部
 4 充電器部
 8 充電器
 9 並列回路
 10 充電器コントローラー(充電制御手段)
 12 電流検出器
 14 表示器
 19 外部負荷
 22、22A、22B、122 二次電池
 24 電池組
 26 過充電保護回路
 34 放電ルート回路
 38 電池制御部
 40 放電抵抗
 42 スイッチング素子
 44 過充電保護用検出器
 46 充電完了検出器
 48 放電遮断用検出器
 50 ガス発生検知回路
 Ic 充電電流
 Ith 充電下限電流値
 Vb 電池電圧
 Vm 満充電電圧
 Vth1 過充電保護電圧
 Vth2 保護停止電圧
 Vth3 充電完了電圧
 Vth4 放電遮断電圧
 以下、図面を参照して本発明の実施形態について説明する。
<第1実施形態>
 図1は、本実施形態に係る充電装置1の構成を示す図である。この図に示すように、充電装置1は、電力を蓄える蓄電池部2と、この蓄電池部2に電力を供給して充電する充電器部4とを備えている。
 充電器部4は、外部電源コネクタ6と、充電器8と、充電器コントローラー10と、電流検出器12と、表示器14と、遮断スイッチ16とを有している。
 外部電源コネクタ6は、商用電源等の外部電源18が接続されるコネクタであり、外部電源18の電力が充電器8に入力されている。
 充電器8は、外部電源18の電力を蓄電池部2及び外部負荷19に供給して、蓄電池部2の充電及び外部負荷19の駆動を行うものである。この外部負荷19は、外部電源18の停電時に蓄電池部2の蓄電力を供給する対象の機器である。
 さらに詳述すると、充電器8には、蓄電池部2及び外部負荷19が並列に接続されており、これら蓄電池部2及び外部負荷19により並列回路9が構成されている。そして、充電器8は、この並列回路9に電圧αを印加することで、蓄電池部2に直流の充電電流Icを供給し、また、外部負荷19に電力を供給する。
 外部電源18に停電が発生すると、蓄電池部2及び外部負荷19から成る並列回路9からみて充電器8がハイインピーダンス状態になるため、蓄電池部2及び外部負荷19が自動的に直列に接続され、蓄電池部2から外部負荷19に畜電力が供給される。
 充電器コントローラー10は、充電中においては充電電流Icの電流値を可変制御するものであり、信号線20を介して蓄電池部2と接続されている。充電器コントローラー10は、この信号線20を介して蓄電池部2から受信した信号に基づいて充電電流Icを制御する。
 電流検出器12は、充電器8と蓄電池部2とを接続した直列回路上に介挿され、この蓄電池部2から充電器8に向う充電電流Icと、充電器8からの放電に伴う放電電流Idとを検出し、充電器コントローラー10に出力するものである。
 充電器コントローラー10は、電流検出器12の検出信号に基づいて充電電流Icの電流値を可変制御する。また、充電器コントローラー10は、充電時において、予め設定された設定時間ごとに電流検出器12の検出信号を取り込んでサンプリングし、サンプリングした充電電流Icを積算し充電量Wcを算出し、放電時においては、サンプリングした放電電流Idを積算し放電量Wdを算出する。
 充電器コントローラー10は、このように算出した充電量Wc及び放電量Wdに基づいて、蓄電池部2の現在の蓄電量Wを算出する。すなわち、蓄電池部2が満充電された状態の容量を初期容量W0とした場合、現在の蓄電量Wは、W=W0-Wd+Wcにより求められる。
 表示器14は、充電器コントローラー10の制御の下、各種情報を表示するものであり、例えば蓄電池部2の現在の蓄電量Wの算出値を表示する。
 また、充電器コントローラー10は、蓄電池部2への充電回数をカウントする機能を備え、蓄電池部2が備える電池組24(後述)の寿命を示す所定の充電回数に対する現在の充電回数の割合を算出し、その割合を、電池組24の寿命がどの程度尽きているかを示す情報として表示器14に表示する。
 遮断スイッチ16は、蓄電池部2の放電を停止するための常閉スイッチであり、充電器8と蓄電池部2とを接続した直列回路上に介挿され、充電器コントローラー10の制御の下、蓄電池部2が外部負荷19に電力を供給しているときに、当該蓄電池部2の過放電を防止するために開成する。これにより、蓄電池部2から外部負荷19への電力供給等に伴う放電が停止され過放電が防止される。
 また、遮断スイッチ16は常閉スイッチであるため、通常は蓄電池部2と外部負荷19との間が導通状態で保持されている。このように蓄電池部2と外部負荷19との間をスイッチ等で常時遮断せずに導通状態で維持する構成としているため、外部電源18に停電が発生したとしても、当該スイッチへの電力供給が停止して作動せずに蓄電池部2と外部負荷19との間が遮断されたままになる、といった事態が防止される。
 しかし蓄電池部2と外部負荷19との間を常時導通状態で保持すると、蓄電池部2の非充電時には、当該蓄電池部2の蓄電力が外部負荷19に供給されてしまう。そこで、充電装置1は、非充電時には、蓄電池部2に流入する充電電流Icを略ゼロに維持するゼロ電流充電を行うことで、蓄電池部2から外部負荷19に電力が供給され無駄に放電されるのを防止する。
 具体的には、非充電時において、充電器コントローラー10は、電流検出器12の検出値に基づいて、蓄電池部2に流入する充電電流Icが略ゼロに維持されるように、並列回路9に印加する電圧αをフィードバック制御する。この結果、電圧αと蓄電池部2の電圧との差圧が略等しくなって蓄電池部2への充電電流Icが略ゼロになり、この状態が保持されて蓄電池部2から外部負荷19への蓄電力の供給が停止状態で保持される。
 次いで蓄電池部2の構成について詳述する。
 蓄電池部2は、n個(n≧2)の二次電池(セル)22を直列に接続してなる電池組24と、過充電保護回路(バランス回路)26とを有する。二次電池22は例えばリチウムイオン電池の一例たるリチウムポリマー電池である。この他にも、ニッケル水素電池、ニッケルカドミウム電池等の任意の二次電池を用いることが可能である。ただし、電池組24を構成する二次電池22は全て同一種の二次電池とする。
 蓄電池部2には、電池組24の陽極に電気的に接続される陽極端子30、及び電池組24の負極に電気的に接続される陰極端子32が設けられており、これら陽極端子30及び陰極端子32が上記充電器部4に電気的に接続されている。充電時には、充電器部4から陽極端子30を介して電池組24に充電電流Icが供給されて電池組24の充電が行われる。
 過充電保護回路26は、二次電池22間の電圧バランスを揃えることで、二次電池22への過充電を保護するものであり、二次電池22ごとに並列に設けられた放電ルート回路34と、二次電池22ごとに設けられた検出器群36と、電池制御部38とを備えている。
 放電ルート回路34は、経路中に放電抵抗(バランス抵抗)40及びスイッチング素子42を直列に接続した回路である。スイッチング素子42は常開接点であり、二次電池22の電池電圧Vbが過充電保護電圧Vth1に達した場合に閉成する。この過充電保護電圧Vth1は、二次電池22の種類に応じた満充電電圧Vmよりも低い値に設定されたものであり、二次電池22がリチウムポリマー電池の場合は例えば満充電とみなされる4.2Vを超えない値である。
 スイッチング素子42が閉成した場合、放電ルート回路34が二次電池22電気的に接続され、当該二次電池22は放電ルート回路34に放電を開始する。放電ルート回路34への放電中においては、放電によるエネルギー放出や、充電電流Icが放電ルート回路34へバイパスされて二次電池22への流入量が減少する事などに要因して、二次電池22の電池電圧Vbが次第に低下する。そして、電池電圧Vbが過充電保護電圧Vth1よりも所定のマージン分だけ低い保護停止電圧Vth2まで下がると、スイッチング素子42が開成し、放電ルート回路34への放電が停止され、充電時には、再度、充電状態に移行する。過充電保護電圧Vth1と保護停止電圧Vth2との差は、少なくともスイッチング素子42のチャタリングを防止可能な程度とされる。
 二次電池22の放電中においては、その二次電池22に流入する充電電流Icが放電ルート回路34にバイパスされ、後段の二次電池22に導入される。このときバイパスされる電流値は、放電抵抗40の抵抗値により決定される。
 検出器群36は、過充電保護用検出器44、充電完了検出器46及び放電遮断用検出器48を備えている。これら過充電保護用検出器44、充電完了検出器46及び放電遮断用検出器48は、二次電池22の電池電圧Vbを、各々に設定された所定電圧と比較するコンパレータ回路を有して構成されている。
 過充電保護用検出器44は、二次電池22の電池電圧Vbを検出し、この電池電圧Vbと上記の過充電保護電圧Vth1とを比較し、電池電圧Vbが過充電保護電圧Vth1を超えた場合に、スイッチング素子42を閉成して、二次電池22を放電ルート回路34へ放電させる。また、過充電保護用検出器44は、電池電圧Vbが保護停止電圧Vth2を下回った場合に、スイッチング素子42を開成して二次電池22の放電ルート回路34への放電を停止する。
 また過充電保護用検出器44は、スイッチング素子42を開閉するごとに、スイッチング素子42の開閉状態、すなわち、放電の開始/停止を示す開閉信号を電池制御部38に出力する。電池制御部38は、かかる開閉信号が入力されると、充電器部4の充電器コントローラー10に信号線20を介して開閉信号を出力し、これにより、充電器コントローラー10が放電ルート回路34への放電の有無を検知可能になる。
 充電器コントローラー10は、充電時において、開閉信号に基づいて、いずれかの二次電池22が放電ルート回路34へ放電を開始したことを検知した場合、当該放電ルート回路34への放電が停止されるまで充電電流Icを減少させる制御を行うが、かかる制御については後述する。
 充電完了検出器46は、二次電池22の電池電圧Vbを検出し、この検出信号を電池制御部38に出力する。電池制御部38は、各二次電池22の電池電圧Vbを積算して、電池組24の電圧Vallを算出し、信号線20を介して充電器コントローラー10に出力する。充電器コントローラー10は、電池組24の電圧Vallが所定の充電完了電圧Vth3に達した場合、蓄電池部2を含む並列回路9に印加する電圧αを、当該蓄電池部2に流れる充電電流Icが略ゼロとなるように制御して上記ゼロ電流充電状態として蓄電池部2への充電を停止する。上記充電完了電圧Vth3は、二次電池22の満充電電圧Vmを二次電池22の数だけ積算した値である。
 なお、いずれかの二次電池22の電池電圧Vbが許容された電圧の上限値に至った場合にも、蓄電池部2の充電が速やかに停止される構成とされている。
 放電遮断用検出器48は、電池組24への非充電の間、すなわち、電池組24の畜電力が外部負荷19に供されている間、二次電池22の電池電圧Vbを検出し、この電池電圧Vbと放電遮断電圧Vth4とを比較し、電池電圧Vbが放電遮断電圧Vth4を下回った場合に、検知信号を電池制御部38に出力する。放電遮断電圧Vth4は、二次電池22が終止電圧を超えて放電する状態、いわゆる過放電状態に至るのを防止するものであり、終止電圧を下回らない電圧に設定されている。例えば、二次電池22がリチウムポリマー電池である場合、放電遮断電圧Vth4は約3Vに設定される。
 電池制御部38は、いずれかの放電遮断用検出器48から検出信号を受けた場合、放電を遮断すべき事を示す遮断信号を、信号線20を介して充電器コントローラー10に出力する。充電器コントローラー10は、電池制御部38から遮断信号を受け取った場合、上記遮断スイッチ16を開成する。これにより、蓄電池部2から外部負荷19への電力供給等による放電が停止される。
 なお、この充電装置1は、電池組24の電池温度を検出するサーミスタ等の温度検出センサを有し、充電時に、電池組24の温度が所定温度(例えば、リチウムポリマー電池においては60度)を超えた場合に、充電を停止するように構成されている。
 次いで、充電装置1の充電制御について説明する。
 図2は充電装置1の充電処理を示すフローチャートであり、図3は充電装置1による充電パターンを示す図である。なお、図3には、充電時の電池電圧の上昇特性が異なる2つの二次電池22A、22Bについての充電パターンを示している。
 充電装置1は、充電を行う場合、先ず、充電開始条件が満足されたか否かを判断する(ステップS1)。充電開始条件には、例えば電池組24が満充電状態でなくなったときや、過放電防止のために遮断スイッチ16が開成したとき、前回の充電終了から一定期間が経過したとき等の各種の条件が設定されている。
 充電開始条件が満足された場合(ステップS1:YES)、充電装置1は、電流値Iiniの充電電流Icを蓄電池部2に供給して充電を開始する(ステップS2)。すなわち、充電装置1は、電流検出器12による検出信号をサンプリングしながら充電電流Icの電流値が電流値Iiniになるように電池組24に印加する電圧αを調整する。図3に示すように、充電電流Icの供給が開始されて充電が始まると(時間t0)、電池組24の各二次電池22A、22Bの電池電圧Vbが充電初期電圧V0a、V0bから上昇を開始する。
 そして、例えば、図3に示すように、二次電池22Aが二次電池22Bよりも電池電圧Vbが上昇し易い特性を有する場合、二次電池22Bの電池電圧Vbが過充電保護電圧Vth1に至るよりも前に、二次電池22Aの電池電圧Vbが過充電保護電圧Vth1に達する(時間t1)。この結果、二次電池22Aの過充電保護用検出器44が二次電池22Aへの過充電を防止すべくスイッチング素子42を閉成し、二次電池22Aを放電ルート回路34に接続して放電を開始させる。過充電保護用検出器44がスイッチング素子42を閉成した場合、開閉信号が充電器コントローラー10に出力され、これにより、二次電池22Aの放電ルート回路34への放電が充電器コントローラー10に検知される。
 充電器コントローラー10は、図2に示すように、いずれかの二次電池22の放電ルート回路34への放電を検知した場合(ステップS3:YES)、充電電流Icの電流値を順次減少させる(ステップS4)。
 これにより、図3に示すように、二次電池22Aの電池電圧Vbが過充電保護電圧Vth1に達した時間t1から充電電流Icの電流値が減少させられる。
 二次電池22Aは、放電ルート回路34への放電、及び、充電電流Icの減少に伴い次第に電池電圧Vbを下げ、保護停止電圧Vth2まで下がると(時間t2)、二次電池22Aの過充電保護用検出器44がスイッチング素子42を開成し、二次電池22Aの放電ルート回路34への放電を停止する。この放電ルート回路34への放電停止は、開閉信号の充電器コントローラー10への出力により、充電器コントローラー10に検知される。
 充電器コントローラー10は、図2に示すように、二次電池22の放電ルート回路34への放電停止を検知した場合(ステップS5:YES)、充電電流Icの電流値の減少を停止して現状の値に固定し(ステップS6)、処理手順をステップS3に戻して充電を継続する。
 これにより、図3に示すように、二次電池22Aの電池電圧Vbが保護停止電圧Vth2に下がるまで充電電流Icが減少し、放電が停止したときの電流値に固定される。なお、充電電流Icを減少させた場合には、これに伴い、二次電池22Aのみならず他の二次電池22Bの電池電圧Vbも低下する。
 そして以降、いずれかの二次電池22の放電ルート回路34への放電が検知されるごとに、その二次電池22の放電ルート回路34への放電が停止するまで充電電流Icを減少する、という処理が繰り返し行われる。この繰り返し回数は、二次電池22の充電時の電圧上昇特性の違いや劣化の度合い等により変動し、常に決まった回数の繰り返しが行われる訳では無い。
 各二次電池22が満充電状態に近づく充電終期においては、図3に示すように、充電電流Icが小さくなり、上記ステップS4の処理により、充電電流Icを減少させたときに充電電流Icが充電下限電流値Ithを下回るようになる(時間t3)。この充電下限電流値Ithは、各二次電池22が満充電状態に近づいたときに示す所定の電流値が設定される。
 充電器コントローラー10は、図2に示すように、充電電流Icが充電下限電流値Ith以下になった事を検出すると(ステップS7:YES)、充電電流Icを充電下限電流値Ithに維持して充電を継続する(ステップS8)。
 この結果、各二次電池22の充電状態が満充電状態に近くなり、電池電圧Vbが過充電保護電圧Vth1を超え、放電ルート回路34への放電を開始する二次電池22が多数になる。このときには、充電電流Icが非常に小さい値であるため、放電ルート回路34にバイパスされる電流値も小さく放電抵抗40でのエネルギーロスも小さい。そして、放電ルート回路34に放電中の二次電池22であっても、充電電流Icのうち、放電ルート回路34にバイパスされなかった僅かな電流が流入し、図3に示すように、電池電圧Vbが過充電保護電圧Vth1を超えて満充電電圧Vmに達する(時間t4)。
 このようにして、電池組24の電圧Vallが上述した充電完了電圧Vth3に達した場合には(ステップS9:YES)、充電開始(時間t0)から放電量Wdの約100%が充電されたこととなる。したがって、充電装置1は、蓄電池部2の充電状態を上記ゼロ電流充電状態にして蓄電池部2への充電を停止し(ステップS10)、充電処理を終了する。
 このゼロ電流充電においては、蓄電池部2に流入する充電電流Icを略ゼロに維持するように、充電器8の電圧αがフィードバック制御される。これにより、蓄電池部2への充電が停止状態となると共に、蓄電池部2と外部負荷19とを導通状態で保持しつつ蓄電池部2から外部負荷19への畜電力の供給を停止した状態に保持する。
 このように、本実施形態によれば、過充電保護回路26の過充電保護動作によって、いずれかの二次電池22が放電ルート回路34に放電を開始した場合に、充電器コントローラー10は、放電を開始した二次電池22の放電ルート回路34への放電が停止するまで充電電流Icを減少させて充電を継続する構成とした。
 この構成により、充電中においては、各二次電池22の放電ルート回路34への放電が抑制されるため、充電電力が放電によって無駄に消費されることが無く、充電効率が高められる。
 これに加え、放電ルート回路34における発熱も小さくなることから、周辺部品の劣化も防止される。
 また本実施形態によれば、充電器コントローラー10は、充電電流Icが所定の充電下限電流値Ithを下回った場合、この充電下限電流値Ithに充電電流Icを維持して電池組24への供給を継続し、電池組24の電圧Vallが所定の充電完了電圧Vth3に達したときに充電を停止する構成とした。
 この構成により、充電下限電流値Ithに充電電流Icを維持して電池組24への供給を継続することで、多くの二次電池22の電池電圧Vbが過充電保護電圧Vth1を超えて、放電ルート回路34への放電を行う状態になるものの、充電電流Icが比較的小さい充電下限電流値Ithであるため、放電ルート回路34で消費されるエネルギーも小さい状態に抑えられる。そして、このように放電ルート回路34で消費されるエネルギー量が抑えられた状態で、各二次電池22を満充電電圧Vmまで充電することができる。
 また本実施形態によれば、電池組24、及び外部負荷19で並列回路9を構成して充電器8に接続する構成としたため、非充電の間、電池組24及び外部負荷19が導通された状態で保持される。このため、充電器8に供給される外部電源18が停電等した場合には、電池組24及び外部負荷19が自動的に直列回路を構成し、電池組24から外部負荷19への蓄電力供給が速やかに開始される。
 さらに、非充電時には、充電器8が並列回路9に印加する電圧αを、電池組24に流入する充電電流Icを略ゼロに維持するに制御するため、電池組24から外部負荷19に電力が供給されることがなく、当該電池組24の無駄な放電が防止される。
 また本実施形態によれば、いずれかの二次電池22の電池電圧Vbが所定の放電遮断電圧Vth4まで低下した場合、電池組24から外部機器への蓄電力の供給を遮断し、電池組24への充電を開始する構成としたため、各二次電池22の過放電を確実に防止することができる。
<第2実施形態>
 次いで、本発明の第2実施形態について説明する。
 本実施形態では、充電中にガスが発生する性質を有する複数の二次電池122を直列に接続した電池組124に充電を行う充電装置100について説明する。
 図4は、本実施形態に係る充電装置100の構成を示す図である。なお、同図において、図1に示したものには同一の符号を付し、その説明を省略する。
 この図に示すように、本実施形態の充電装置100は、ガス発生検知回路50を備えている。このガス発生検知回路50は、充電中に、いずれかの二次電池122でのガスの発生を検知して電池制御部38に出力するものである。電池制御部38は、ガスの発生が検知された場合、信号線20を介して充電器コントローラー10に出力する。
 充電器コントローラー10は、充電中にガスの発生が検知されごとに、ガスの発生が停止するまで充電電流Icを減少させて充電を継続することになる。
 なお、充電電流Icが充電下限電流値Ithを下回る場合には、第1実施形態で説明した図2のステップS7以降と同様の処理を行う。すなわち、充電器コントローラー10は、充電電流Icが充電下限電流値Ith以下になった事を検出すると(ステップS7:YES)、充電電流Icを充電下限電流値Ithに維持して充電を継続し(ステップS8)、電池組124の電圧Vallが上述した充電完了電圧Vth3に達した場合には(ステップS9:YES)、蓄電池部2への充電状態をゼロ電流充電状態として充電を停止し(ステップS10)、充電処理を終了する。
 このように本実施形態によれば、充電中においては、各二次電池122でのガスの発生が抑制されるため、二次電池122の内部抵抗の上昇が抑えられるため、この内部抵抗の上昇に伴う充電電力の無駄な消費が抑制されることとなり、充電効率が高められる。
 なお、ガス発生検知回路50は、ガスセンサ等によりガスの発生の有無を直接検知する構成や、各二次電池122の電池電圧Vbを監視し、二次電池122からガスの発生を生じさせる所定の電圧に電池電圧Vbが到達した事を検知することで、ガスの発生を間接的に検知する構成としても良い。
 また、ガス発生検知回路50がガス発生の有無をセンサ等で直接検出する構成である場合には、このガス発生検知回路50の検知結果に基づいて、充電器コントローラー10がガス発生の停止を判断する構成としても良く、また、ガスの発生が停止する所定の電池電圧と二次電池122の電池電圧Vbとを比較することで、間接的にガスの発生停止を検知する構成としても良い。
 なお、上述した実施形態は、あくまでも本発明の一態様を示すものであり、本発明の範囲内で任意に変形および応用が可能である。
 例えば、上述した実施形態では、充電中における過充電保護回路26での充電電力の余分な消費、及び、充電中における二次電池122でのガス発生に伴う充電電力の余分な消費を抑える構成とした。
 しかしながら、これに限らず、電池組が、充電電力を充電以外に無駄に消費する電力消費要因が充電中に発生し得るものであり、なおかつ、この電力消費要因が充電電流を減少させることで解消するものである場合には、そのような電池組への充電にも、本発明を適用することが可能である。
 すなわち、充電中に電力消費要因による充電電力の消費が発生された場合には、この消費が停止するまで充電電流を減少させて充電を継続すれば良い。

Claims (6)

  1.  複数の二次電池が直列に接続された電池組に充電電流を供給して充電する充電装置において、
     前記二次電池ごとに設けられた放電ルート回路を有し、充電中に前記二次電池の電池電圧に基づいて前記放電ルート回路に前記二次電池を接続して放電させ、或いは、前記放電ルート回路から前記二次電池を切断して放電を停止させる過充電保護回路と、
     前記過充電保護回路により、いずれかの前記二次電池が放電ルート回路に放電を開始した場合には、放電を開始した二次電池の放電ルート回路への放電が停止するまで前記充電電流を減少させて充電を継続する充電制御手段と
     を備えたことを特徴とする充電装置。
  2.  複数の二次電池が直列に接続された電池組に充電電流を供給して充電する充電装置において、
     前記電池組への充電中に、いずれかの前記二次電池からのガスの発生を検知するガス発生検知手段と、
     前記ガス発生検知手段により、前記ガスの発生が検知されたときには、前記ガスの発生が停止するまで前記充電電流を減少させて充電を継続する充電制御手段と
     を備えたことを特徴とする充電装置。
  3.  請求項1又は2に記載の充電装置において、
     前記充電制御手段は、
     前記充電電流が所定の下限電流値を下回った場合には、前記所定の下限電流値に充電電流を維持して前記電池組への供給を継続し、前記電池組の電圧が所定の充電完了電圧に達したときに充電を停止することを特徴とする充電装置。
  4.  請求項1乃至3のいずれかに記載の充電装置において、
     前記電池組、及び外部負荷が並列接続された並列回路に外部電力を供給し、前記電池組の充電、及び前記外部負荷への電力供給を行う充電器を備え、
     非充電時には、前記電池組及び前記外部負荷を導通させた状態で維持しつつ、前記充電器が前記並列回路に印加する電圧を、前記電池組に流入する充電電流を略ゼロに維持するように制御することを特徴とする充電装置。
  5.  複数の二次電池が直列に接続された電池組に充電電流を供給して充電する充電方法において、
     前記二次電池ごとに設けられた放電ルート回路を設け、充電中に前記二次電池の電池電圧に基づいて前記放電ルート回路に前記二次電池を接続して放電させ、或いは、前記放電ルート回路から前記二次電池を切断して放電を停止させて過充電保護を行い、
     いずれかの前記二次電池が放電ルート回路に放電を開始した場合には、放電を開始した二次電池の放電ルート回路への放電が停止するまで前記充電電流を減少させて充電を継続することを特徴とする充電方法。
  6.  複数の二次電池が直列に接続された電池組に充電電流を供給して充電する充電方法において、
     前記電池組への充電中に、いずれかの前記二次電池からのガスの発生を検知したときには、前記ガスの発生が停止するまで前記充電電流を減少させて充電を継続することを特徴とする充電方法。
PCT/JP2009/000594 2008-02-25 2009-02-16 充電装置及び充電方法 WO2009107335A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US12/918,978 US8531157B2 (en) 2008-02-25 2009-02-16 Charging apparatus having overcharge protection and charging method for the same
EP09716128.5A EP2249454B1 (en) 2008-02-25 2009-02-16 Recharging device and recharging method
CN2009801064188A CN101960690B (zh) 2008-02-25 2009-02-16 充电设备和充电方法
US13/960,296 US8810193B2 (en) 2008-02-25 2013-08-06 Charging apparatus having gas generation detector and charging method for the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008043467A JP2009201336A (ja) 2008-02-25 2008-02-25 充電装置及び充電方法
JP2008-043467 2008-02-25

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US12/918,978 A-371-Of-International US8531157B2 (en) 2008-02-25 2009-02-16 Charging apparatus having overcharge protection and charging method for the same
US13/960,296 Division US8810193B2 (en) 2008-02-25 2013-08-06 Charging apparatus having gas generation detector and charging method for the same

Publications (1)

Publication Number Publication Date
WO2009107335A1 true WO2009107335A1 (ja) 2009-09-03

Family

ID=41015742

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/000594 WO2009107335A1 (ja) 2008-02-25 2009-02-16 充電装置及び充電方法

Country Status (6)

Country Link
US (2) US8531157B2 (ja)
EP (1) EP2249454B1 (ja)
JP (2) JP2009201336A (ja)
KR (1) KR101566569B1 (ja)
CN (1) CN101960690B (ja)
WO (1) WO2009107335A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111446514A (zh) * 2020-03-17 2020-07-24 上海理工大学 伴随电池寿命衰减合理调整锂电池放电截止电压的方法

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8754611B2 (en) * 2008-04-11 2014-06-17 Apple Inc. Diffusion-limited adaptive battery charging
JP2011159236A (ja) * 2010-02-03 2011-08-18 Daiwa House Industry Co Ltd 住宅履歴情報表示システム及び住宅履歴情報表示方法
US20120086401A1 (en) * 2010-10-07 2012-04-12 Intersil Americas Inc. Cell balancing circuit for use in a multi-cell battery system
JP2012222837A (ja) * 2011-04-04 2012-11-12 Toshiba Mitsubishi-Electric Industrial System Corp 二次電池充電制御システム
FR2978625B1 (fr) * 2011-07-25 2014-12-26 Renault Sa Methode et dispositif d'equilibrage des batteries d'accumulateurs electriques
US9081068B2 (en) 2012-09-18 2015-07-14 Apple Inc. Method and apparatus for determining a capacity of a battery
US9831691B2 (en) * 2012-09-18 2017-11-28 Nec Energy Devices, Ltd. Power storage system and cell protection method which protects the cell by both cutting from the cell pack and the cell pack from the system
KR101451009B1 (ko) 2013-03-27 2014-10-15 주식회사 엘지씨엔에스 직렬 연결된 다수 개의 전지 직류 마이크로그리드 충방전 시스템
KR101470735B1 (ko) 2013-05-15 2014-12-08 주식회사 엘지씨엔에스 직렬 연결된 다수의 2차 전지 충방전을 위한 능동 벨런스회로와 알고리즘을 구비한 2차 전지 충방전 제어장치 및 방법
JP6225588B2 (ja) * 2013-09-17 2017-11-08 ソニー株式会社 蓄電装置および蓄電装置の制御方法
US9776523B2 (en) 2013-12-05 2017-10-03 Wei Yuan Method and apparatus for controlling charging process
JP6264162B2 (ja) * 2014-04-04 2018-01-24 株式会社村田製作所 充電装置および充電制御方法、並びに、蓄電装置、電力貯蔵装置、電力システムおよび電動車両
GB2528712B (en) 2014-07-29 2019-03-27 Nicoventures Holdings Ltd E-cigarette and re-charging pack
CN104810884B (zh) * 2015-04-07 2016-04-13 南京欧陆电气传动有限公司 一种电动汽车充电控制系统
CN106532789A (zh) * 2015-09-11 2017-03-22 上海哲宏机电有限公司 可充电电池
CN107134816A (zh) * 2016-02-26 2017-09-05 朱经纬 一种智能快速充电装置
US9837844B2 (en) * 2016-03-08 2017-12-05 Nxp Usa, Inc. Regulation circuit having analog and digital feedback and method therefor
JP6966864B2 (ja) * 2017-04-20 2021-11-17 エイブリック株式会社 バッテリ装置
KR101962957B1 (ko) * 2018-06-26 2019-03-27 김철웅 배터리의 수명 연장 및 보호기능이 포함된 배터리 보호시스템
JP7096193B2 (ja) * 2019-04-04 2022-07-05 矢崎総業株式会社 電池制御ユニット及び電池システム
WO2020215154A1 (en) 2019-04-23 2020-10-29 Dpm Technologies Inc. Fault tolerant rotating electric machine
CN111525651A (zh) * 2020-05-27 2020-08-11 广东小天才科技有限公司 一种充电方法、充电芯片和终端设备
CN112531857B (zh) * 2020-12-30 2022-11-01 国网河南省电力公司信息通信公司 一种蓄电池的电池热检测控制装置
CA3217299A1 (en) * 2021-05-04 2022-11-10 Tung Nguyen Battery control systems and methods
CA3159864A1 (en) 2021-05-13 2022-11-13 Exro Technologies Inc. Method and apparatus to drive coils of a multiphase electric machine
JP2022178992A (ja) * 2021-05-21 2022-12-02 東芝テック株式会社 端末管理システム及び端末管理装置並びにその制御プログラム
JP2023137633A (ja) * 2022-03-18 2023-09-29 大阪瓦斯株式会社 ガス検知方法およびガス検知装置
DE102022109869A1 (de) * 2022-04-25 2023-10-26 Benning CMS Technology GmbH Verfahren zum Aufladen eines wiederaufladbaren Energiespeichers

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH073251U (ja) * 1993-06-14 1995-01-17 神鋼電機株式会社 電池を備えた移動可能な機器用の電源装置
JPH07264780A (ja) * 1994-03-18 1995-10-13 Nissan Motor Co Ltd 組電池の充放電制御装置
JPH1050352A (ja) 1996-07-30 1998-02-20 Mitsumi Electric Co Ltd セルバランス回路
JPH11329510A (ja) * 1998-05-11 1999-11-30 Matsushita Electric Ind Co Ltd 電池の充電方法
JP2000014030A (ja) * 1998-06-18 2000-01-14 Honda Motor Co Ltd 車両用充電制御装置
JP2003087991A (ja) 2001-09-07 2003-03-20 Nissan Motor Co Ltd 充電装置および充電方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3867199A (en) * 1972-06-05 1975-02-18 Communications Satellite Corp Nickel hydrogen cell
US4371825A (en) * 1981-06-04 1983-02-01 Energy Development Associates, Inc. Method of minimizing the effects of parasitic currents
US4396880A (en) * 1981-06-05 1983-08-02 Firing Circuits Inc. Method and apparatus for charging a battery
US4465963A (en) * 1982-11-12 1984-08-14 Oakwood Energy Group, Inc. Battery charging system utilizing optical gas sensor
JPH0536754A (ja) 1991-07-31 1993-02-12 Matsushita Electric Ind Co Ltd 半導体装置
JPH073251A (ja) 1993-06-21 1995-01-06 Eishiyou Kagaku Kogyo Kk 起泡用エアゾール組成物
FR2725849B1 (fr) * 1994-10-18 1996-12-20 Accumulateurs Fixes Procede de regulation de la charge d'un ensemble accumulateur electrique et agencement mettant en oeuvre ce procede
US9397370B2 (en) * 1999-06-25 2016-07-19 The Board Of Trustees Of The University Of Illinois Single and multiple cell battery with built-in controller
JP2001268786A (ja) * 2000-03-23 2001-09-28 Ngk Insulators Ltd 電気二重層コンデンサ用充電装置及び充電方法
WO2004049540A2 (en) * 2002-11-25 2004-06-10 Tiax Llc Cell balancing system for equalizing state of charge among series-connected electrical energy storage units
US6844705B2 (en) * 2002-12-09 2005-01-18 Intersil Americas Inc. Li-ion/Li-polymer battery charger configured to be DC-powered from multiple types of wall adapters
KR100772643B1 (ko) * 2006-03-09 2007-11-02 박태수 외부 센서구동용 별도의 전원을 구비한 데이터 로깅장치 및 케이블의 데이터 로깅장치
JP2007318950A (ja) * 2006-05-27 2007-12-06 Gs Yuasa Corporation:Kk 二次電池のセル電圧バランス装置
JP4398489B2 (ja) * 2007-05-29 2010-01-13 レノボ・シンガポール・プライベート・リミテッド 電池パック、機器、および充電制御方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH073251U (ja) * 1993-06-14 1995-01-17 神鋼電機株式会社 電池を備えた移動可能な機器用の電源装置
JPH07264780A (ja) * 1994-03-18 1995-10-13 Nissan Motor Co Ltd 組電池の充放電制御装置
JPH1050352A (ja) 1996-07-30 1998-02-20 Mitsumi Electric Co Ltd セルバランス回路
JPH11329510A (ja) * 1998-05-11 1999-11-30 Matsushita Electric Ind Co Ltd 電池の充電方法
JP2000014030A (ja) * 1998-06-18 2000-01-14 Honda Motor Co Ltd 車両用充電制御装置
JP2003087991A (ja) 2001-09-07 2003-03-20 Nissan Motor Co Ltd 充電装置および充電方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2249454A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111446514A (zh) * 2020-03-17 2020-07-24 上海理工大学 伴随电池寿命衰减合理调整锂电池放电截止电压的方法

Also Published As

Publication number Publication date
US8531157B2 (en) 2013-09-10
CN101960690B (zh) 2013-11-06
US20130314033A1 (en) 2013-11-28
EP2249454B1 (en) 2016-05-25
JP2011188740A (ja) 2011-09-22
KR20100122911A (ko) 2010-11-23
US20110169454A1 (en) 2011-07-14
JP2009201336A (ja) 2009-09-03
KR101566569B1 (ko) 2015-11-05
EP2249454A4 (en) 2013-09-11
EP2249454A1 (en) 2010-11-10
CN101960690A (zh) 2011-01-26
US8810193B2 (en) 2014-08-19
JP4865103B2 (ja) 2012-02-01

Similar Documents

Publication Publication Date Title
JP4865103B2 (ja) 充電装置及び充電方法
JP4499164B2 (ja) 充電装置及び充電方法
JP5618986B2 (ja) 充電装置
KR100885291B1 (ko) 충전 장치
KR102392376B1 (ko) 배터리 시스템
US8232776B2 (en) Charging method for an assembled cell and an assembled cell system
EP2629388A1 (en) Power management system
JP2015073429A (ja) 直列群のバッテリまたはキャパシタのセル充電状態および放電状態の分岐を検出する方法
JP2005151683A (ja) 電池パックの充電装置
JP2008236930A (ja) 二次電池の充電装置
JP2008005693A (ja) 電池装置
JP5474438B2 (ja) 二次電池装置
CN103580071A (zh) 具有电池管理系统的充电装置
KR102538244B1 (ko) 다이오드를 이용한 배터리 이상 방지 장치 및 방법
KR20220111119A (ko) 배터리 손상 방지를 위한 급속충전 장치 및 방법
JPH03291866A (ja) 蓄電池システム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980106418.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09716128

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12918978

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20107018768

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2009716128

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE