WO2009106660A1 - Method for the recovery of germanium in solution by means of complexing and use of ion-exchange resins - Google Patents

Method for the recovery of germanium in solution by means of complexing and use of ion-exchange resins Download PDF

Info

Publication number
WO2009106660A1
WO2009106660A1 PCT/ES2009/000102 ES2009000102W WO2009106660A1 WO 2009106660 A1 WO2009106660 A1 WO 2009106660A1 ES 2009000102 W ES2009000102 W ES 2009000102W WO 2009106660 A1 WO2009106660 A1 WO 2009106660A1
Authority
WO
WIPO (PCT)
Prior art keywords
solution
resin
germanium
complex
carried out
Prior art date
Application number
PCT/ES2009/000102
Other languages
Spanish (es)
French (fr)
Inventor
Constantino FERNÁNDEZ PEREIRA
Fátima ARROYO TORRALBO
Original Assignee
Universidad De Sevilla
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad De Sevilla filed Critical Universidad De Sevilla
Publication of WO2009106660A1 publication Critical patent/WO2009106660A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G17/00Compounds of germanium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/42Treatment or purification of solutions, e.g. obtained by leaching by ion-exchange extraction
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B41/00Obtaining germanium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the invention relates to a process for the recovery of germanium present in aqueous solutions, which is separated from other metals also present in said solution by the use of ion exchange resins.
  • the selective extraction is achieved by the formation of an organic germanium complex, which is adsorbed in a conventional anionic resin.
  • the germanium is desorbed from the resin by contacting it with an aqueous solution, which may have an acidic character. , basic or neutral.
  • an aqueous solution which may have an acidic character. , basic or neutral.
  • the possibility of selecting a desorption solution facilitates possible subsequent operations to obtain the highest purity germanium. After desorption, the resin can be regenerated for a new use.
  • germanium germanium
  • the estimated concentration of germanium (Ge) in the earth's crust is in the range 1-7 ppm, but its extraction is not simple, since it is quite dispersed and is only concentrated in some minerals such as germanite or renierite .
  • Germanium-rich coals have regained importance, due to the depletion of some germanium ores (Van Lier, RJ. M .; Dreisinger, DB (1995) Sep .Processes Proc. Symp. 203-24).
  • the Ge is generally recovered from the ashes, which may contain a concentration of Ge about ten times greater than that of the original coal, after a first stage of leaching it, obtaining an aqueous solution containing Ge in low concentrations next to other metals , such as Zn, Cu or Fe. Therefore, the separation and concentration of Ge from aqueous extracts of coal ashes is a great technological challenge.
  • aqueous solutions There are numerous methods described in the literature for the separation or recovery of the Ge present in aqueous solutions, among which the following can be mentioned:
  • the present invention relates to a process for the recovery of germanium from aqueous solutions and provides a simple and effective process for the concentration and selective separation of germanium from aqueous solutions containing other metals, such as zinc, antimony , arsenic, cobalt, vanadium, molybdenum or nickel.
  • the process of the invention comprises the following steps:
  • STAGE I formation of the Ge complex by adding to the aqueous solution some reagent that forms anionic complexes with this element, such as catechol, some dicarboxylic acids and other diphenols.
  • Catechol has been selected due to its selectivity towards Ge, and its low cost compared to other complexing agents.
  • This stage can be performed using different CATVGe molar proportions, although the minimum amount should be the stoichiometric proportion, which is 3.
  • STAGE II Extraction with ion exchange resins, which is done by contacting the fertile solution (F) that contains the Ge-CAT complex with a certain amount of resin. This contact can be made discontinuously, adding the resin to the solution and stirring, or continuously using columns.
  • the choice of the resin is carried out between the anionic resins, strongly basic and macroporous, which have pore sizes large enough to retain in them the germanium complex.
  • the amount of resin that needs to be added, expressed in the form of equivalents, must be at least 2 times the number of equivalents of Ge, although a greater excess can displace the equilibrium favorably to the extraction.
  • the contact time can be adjusted from a few minutes to longer times, depending on the type of contact and the required extraction performance. In the examples included in this patent, the contact has been maintained for 7h although it has been proven that shorter contact times also allow the extraction of the complex.
  • the contact can be continuous, using resin filled columns; or discontinuous, using containers with agitation. After the extraction, the resulting or refined aqueous solution (R) is practically free of germanium, while the rest of the metals remain in the refining, and the resin is loaded with the Ge-CAT complex.
  • STAGE III separation of the resin and the refining by filtration or by other methods.
  • STEP IV discharge of the Ge contained in the resin, for which the resin loaded with Ge is contacted with an eluent aqueous solution (E) containing the agent responsible for breaking the joint between the complex and the functional groups of The resin
  • E eluent aqueous solution
  • germanium can be concentrated, using a volume of solution E smaller than that of the original solution F, which allows a saving of reagents. It is not recommended that the ratio between F / E volumes be greater than 20, due to a decrease in discharge performance.
  • this contact can be carried out discontinuously or continuously. The contact time can also be adjusted from a few minutes to longer times. In the examples included in the present patent, the contact has been maintained for 7h although it has been proven that shorter contact times also allow the discharge of germanium.
  • STAGE V separation of the resin from the concentrated solution by filtration or by other methods, to obtain an aqueous phase concentrated in Ge and practically free of other elements, which will be called the concentrated solution (C).
  • the concentrated solution (C) can be reused again as an eluent solution in a new Ge discharge process, resulting in an increase in the final concentration of Ge with each reuse.
  • STEP VII regeneration of the resin by one or several cycles with different aqueous solutions before a new use, to reinstate the active groups, and condition it for its new use in the process.
  • HCI or NaCI can be used, if the resin is to be used in chloride form, or NaOH, if the resin is desired to have hydroxide form.
  • concentration of these solutions must be much higher than that of the eluent solutions (according to the manufacturer's specifications), and an excess greater than 100% of the theoretical capacity of the resin must be used.
  • Example 1 Extraction of Ge with a resin of type IRA-958 (Rohm-Haas).
  • the phases are separated: the resin, which is charged with the Ge complex, and the virtually free solution of that element (refined).
  • the refining is analyzed, and its Ge content turns out to be less than 5 mg / L, so the extraction yield is greater than 95%.
  • Example 2 Extraction of Ge with a resin of the type IRA-900 (Rohm-Haas) from a solution obtained by leaching an ash from a thermal power plant.
  • Solution L a liquid solution whose composition is shown in Table 1.
  • Solution L has been obtained by extracting a fly ash from a thermal power plant at room temperature for 24 hours, in a stirred reactor At atmospheric pressure
  • composition is shown in Table 2.
  • Said composition shows how the extracted germanium represents 92.6% of the initially present in the solution L, while the rest of the elements remain in the liquid solution, that is, they are hardly extracted by Ia resin, resulting in the selective operation for the Ge. As can be seen, they are only somewhat retained by the resin: Sb, V, Mo and Ni, much less As or Zn, but in all cases to a much lesser extent than germanium. It should also be noted that the initial amounts of elements such as V, Mo or Zn ( ⁇ 2.5 mg / L) in ash leachate (solution L) are much smaller than those of Ge (35.6 mg / L) .
  • Example 3 discharge of the adsorbed Ge onto an IRA-958 resin caused by a NaCI solution
  • the germanium-loaded resin is contacted with 150 ml of a 3M sodium chloride solution and both phases are kept stirred by flipping for 7 h at room temperature.
  • the phases are separated, and the sodium chloride solution now presents the composition indicated in Table 4.
  • the re-extracted germanium represents 89.2% of the resin content.
  • Example 4 Ge extraction with an IRA-958 resin and discharge produced by a NaCI solution
  • the phases are separated, and the refining is saved for analysis.
  • the extraction yields are shown in Table 5.
  • the extracted germanium represents 93.1% of that initially present in solution L, while the rest of the elements hardly change their concentration. Only partially adsorbed in the resin: Sb, Co, V, Mo, Ni or Zn, but in all cases to a much lesser extent than germanium, and in almost all cases, starting from much lower concentrations ( ⁇ 2.5 mg / L) than that of Ge in the original solution.
  • the germanium-loaded resin is contacted with 250 ml of a 3M sodium chloride solution and both phases are kept stirred by flipping for 7 h at room temperature. Then the phases are separated, and the sodium chloride solution is analyzed. The discharge yields are shown in Table 6. This table also shows the concentrations of these elements present in the concentrated solution (C).
  • Table 7 shows the global loading and unloading performance of each element in the operation explained in example 4.

Abstract

The invention relates to a method for the recovery of germanium present in aqueous solutions, which is separated form other materials also present in said solutions through the use of ion-exchange resins. The selective extraction is performed by forming an organic germanium complex which is absorbed in a conventional anionic resin. Finally, the germanium is desorbed from the resin when the resin is brought into contact with an aqueous solution which can be an acid, base or neutral solution. The possibility of selecting a desorption solution facilitates the possible subsequent operations for obtaining germanium of higher purity. Following desorption, the resin can be regenerated for a new use.

Description

PROCEDIMIENTO PARA LA RECUPERACIÓN DE GERMANIO EN PROCEDURE FOR THE RECOVERY OF GERMANIUM IN
DISOLUCIÓN MEDIANTE COMPLEJACIÓN Y UTILIZACIÓN DEDISSOLUTION BY COMPLEXING AND USING
RESINAS DE INTERCAMBIO IÓNICOION EXCHANGE RESINS
Objeto de Ia invenciónObject of the invention
La invención se refiere a un procedimiento para Ia recuperación del germanio presente en soluciones acuosas, que se separa de otros metales también presentes en dicha solución mediante Ia utilización de resinas de intercambio iónico. La extracción selectiva se consigue mediante Ia formación de un complejo orgánico de germanio, que se adsorbe en una resina aniónica convencional.. Finalmente, el germanio se desorbe de Ia resina mediante el contacto de Ia misma con una solución acuosa, que puede tener carácter ácido, básico o neutro. La posibilidad de seleccionar una solución de desorción facilita las posibles operaciones posteriores para obtener el germanio de mayor pureza. Tras Ia desorción, Ia resina puede regenerarse para una nueva utilización.The invention relates to a process for the recovery of germanium present in aqueous solutions, which is separated from other metals also present in said solution by the use of ion exchange resins. The selective extraction is achieved by the formation of an organic germanium complex, which is adsorbed in a conventional anionic resin. Finally, the germanium is desorbed from the resin by contacting it with an aqueous solution, which may have an acidic character. , basic or neutral. The possibility of selecting a desorption solution facilitates possible subsequent operations to obtain the highest purity germanium. After desorption, the resin can be regenerated for a new use.
Además de Ia separación de impurezas, este procedimiento consigue alcanzar un grado de concentración en Ia solución final de germanio de unas 20 veces, con respecto a Ia solución original.In addition to the separation of impurities, this procedure achieves a degree of concentration in the final germanium solution of about 20 times, with respect to the original solution.
Estado de Ia técnicaState of the art
La concentración estimada de germanio (Ge) en Ia corteza terrestre se encuentra comprendida en el rango 1-7 ppm, pero su extracción no es sencilla, ya que se encuentra bastante disperso y sólo se encuentra concentrado en algunos minerales como Ia germanita o Ia renierita. Aunque actualmente casi todo el germanio primario se recupera como un subproducto del refino del Zn, los carbones ricos en germanio han recobrado importancia, debido al agotamiento de algunas menas de germanio (Van Lier, RJ. M.; Dreisinger, D.B. (1995) Sep. Processes Proc. Symp. 203-24). El Ge generalmente se recupera de las cenizas, que pueden contener una concentración de Ge unas diez veces mayor que Ia del carbón original, tras una primera etapa de lixiviación de Ia misma, obteniéndose una disolución acuosa que contiene Ge en bajas concentraciones junto a otros metales, tales como Zn, Cu o Fe. Por tanto, Ia separación y concentración de Ge procedente de extractos acuosos de cenizas de carbón supone un gran reto tecnológico. Son numerosos los métodos descritos en Ia bibliografía para Ia separación o recuperación del Ge presente en disoluciones acuosas, entre los que se pueden citar los siguientes:The estimated concentration of germanium (Ge) in the earth's crust is in the range 1-7 ppm, but its extraction is not simple, since it is quite dispersed and is only concentrated in some minerals such as germanite or renierite . Although almost all primary germanium is currently being recovered as a byproduct of Zn refining, Germanium-rich coals have regained importance, due to the depletion of some germanium ores (Van Lier, RJ. M .; Dreisinger, DB (1995) Sep .Processes Proc. Symp. 203-24). The Ge is generally recovered from the ashes, which may contain a concentration of Ge about ten times greater than that of the original coal, after a first stage of leaching it, obtaining an aqueous solution containing Ge in low concentrations next to other metals , such as Zn, Cu or Fe. Therefore, the separation and concentration of Ge from aqueous extracts of coal ashes is a great technological challenge. There are numerous methods described in the literature for the separation or recovery of the Ge present in aqueous solutions, among which the following can be mentioned:
1. Precipitación, como se puede ver en los trabajos de Jandová (Jandová, J.; Stefanova, T.; Vu, H. (2001). Proceedings of EMC 2001, 69-75), Font (Font, O.1. Precipitation, as can be seen in the works of Jandová (Jandová, J .; Stefanova, T .; Vu, H. (2001). Proceedings of EMC 2001, 69-75), Font (Font, O.
(2007). Tesis Doctoral. Departamento de Ingeniería Minera y Recursos Naturales de Ia Universitat Politécnica de Catalunya (UPC)) o Schoeller (Schoeller. Analyst. 1932, 57:551).(2007). Doctoral thesis. Department of Mining Engineering and Natural Resources of the Polytechnic University of Catalonia (UPC) or Schoeller (Schoeller. Analyst. 1932, 57: 551).
2. Extracción con CI4C a partir de disoluciones fuertemente acidas en medio clorhídrico (Schoeller. Analyst. 1932, 57:551).2. Extraction with CI 4 C from strongly acidic solutions in hydrochloric medium (Schoeller. Analyst. 1932, 57: 551).
3. Destilación del GeCI4 (Jandová, J.; Vu, H.; Fecko, P. (2002). Proceedings - Annual International Pittsburgh Coal Conference 19, 1075-1080).3. Distillation of GeCI 4 (Jandová, J .; Vu, H .; Fecko, P. (2002). Proceedings - Annual International Pittsburgh Coal Conference 19, 1075-1080).
4. Flotación iónica (Hernández-Expósito, A.; Chímenos, J. M.; Fernández, A.I.; Font, O.; Querol, X.; Coca, P.; García-Peña, F. (2006). Chem. Eng. J. 118, 69-75; Matis, K. A.; Mavros, P. (1991). Sep. & Purif. Reviews 20(1), pp 1 - 48; Matis, K. A.; Stalidis, G. A.; Zoumboulis, A. I. (1988). Sep. Sci. Technol. 23 (4-5), pp. 347- 362).4. Ionic flotation (Hernández-Expósito, A .; Chímenos, JM; Fernández, AI; Font, O .; Querol, X .; Coca, P .; García-Peña, F. (2006). Chem. Eng. J 118, 69-75; Matis, KA; Mavros, P. (1991). Sep. & Purif. Reviews 20 (1), pp 1-48; Matis, KA; Stalidis, GA; Zoumboulis, AI (1988). Sep. Sci. Technol. 23 (4-5), pp. 347-362).
5. Adsorción sobre carbón activo (Marco, J.; Cazorla, D.; Linares, A. (2006). Patente ES2257181). 6. Extracción con solventes, normalmente previa complejación con diversos reactivos orgánicos, entre los que destacan las hidroxioximas y los derivados de Ia 8-hidroxiquinoleina, que se han utilizado industrialmente, empleando para ello productos comerciales como LIX 63 (una oxima de Henkel Corporation), LIX 26 (una 8-hidroxiquinoleina de Henkel Corporation) y Kelex 100 (una 8- hidroxiquinoleina de (Sherex Chemical Company) (Deschepper, A.; Van Peteghem. A., US 3883634; Rouillard, D.; Cote, G.; Fossi, P.; Marchon, B., US 4389379; De Schepper A.; Coussement, M,; Van Peteghem, A., US 4432951). Menéndez et al. detallan en su patente (Menendez, F. J. S.; Menendez, F. M. S.; De La Cuadra Herrera, A.; Tamargo, F.A.; Lorenzo, L.P.; Valcarcel, M.R.; Fernandez, V.A., US 4886648) un proceso de recuperación de germanio, en particular de disoluciones diluidas, mediante Ia adición de ácido tartárico y Ia extracción con una fase orgánica que contiene una amina terciaria.5. Adsorption on activated carbon (Marco, J .; Cazorla, D .; Linares, A. (2006). Patent ES2257181). 6. Extraction with solvents, usually after complexing with various organic reagents, among which the hydroxyoxime and derivatives of 8-hydroxyquinoline, which have been used industrially, using commercial products such as LIX 63 (an oxime of Henkel Corporation) , LIX 26 (an 8-hydroxyquinoline from Henkel Corporation) and Kelex 100 (an 8-hydroxyquinoline from (Sherex Chemical Company) (Deschepper, A .; Van Peteghem. A., US 3883634; Rouillard, D .; Cote, G. ; Fossi, P .; Marchon, B., US 4389379; De Schepper A .; Coussement, M ;; Van Peteghem, A., US 4432951). Menéndez et al. Detail in their patent (Menendez, FJS; Menendez, FMS ; De La Cuadra Herrera, A .; Tamargo, FA; Lorenzo, LP; Valcarcel, MR; Fernandez, VA, US 4886648) a process of recovery of germanium, in particular of diluted solutions, by the addition of tartaric acid and extraction with an organic phase containing a tertiary amine.
7. Utilización de resinas de intercambio iónico. Más recientemente, y debido a los residuos generados en Ia mayoría de los procesos anteriores, se han realizado estudios de recuperación de Ge a partir de soluciones acuosas mediante Ia extracción con resinas. Las resinas convencionales fuertemente básicas pueden separar el germanio (IV), pero no de forma selectiva (Everest, D. A.; Salmón, J. E. (1954) J. Chem. Soc. 2438; Everest, DA. Popiel, WJ. (1956) J. Chem. Soc. 3183; Everest, DA. Popiel, WJ. (1957) J. Chem. Soc. 2433; Everest DA.; Popiel. WJ. (1958) J. Inorg. Nucí. Chem. 6 p. 153). A pesar de esto, en el trabajo de (Boateng, D. A. D; BaII; D. L; Swinkels; G. M. (19), US 4525332) se asegura que tanto las resinas débilmente básicas como las fuertemente básicas son adecuadas para extraer Ge en presencia de antimonio y de zinc.7. Use of ion exchange resins. More recently, and due to the waste generated in most of the previous processes, they have been carried out Ge recovery studies from aqueous solutions by means of resin extraction. Strongly basic conventional resins can separate germanium (IV), but not selectively (Everest, DA; Salmon, JE (1954) J. Chem. Soc. 2438; Everest, DA. Popiel, WJ. (1956) J. Chem. Soc. 3183; Everest, DA. Popiel, WJ. (1957) J. Chem. Soc. 2433; Everest DA .; Popiel. WJ. (1958) J. Inorg. Nucí. Chem. 6 p. 153). Despite this, the work of (Boateng, DA D; BaII; D. L; Swinkels; GM (19), US 4525332) ensures that both weakly basic and strongly basic resins are suitable for extracting Ge in the presence of antimony and zinc.
En los trabajos de Inukai et al. (Inukai Y.;Chinen T.;Matsuda T.;Kaida Y.;Yasuda S. (1998). Analytica Chimica Acta 371(2) 187-193(7)) y Harada et al. (Harada, A. Tarutani T; Yoshimura. K. (1988) Anal. Chim. Acta 209, p. 333), se afirma que el Ge (IV) no se retiene sobre las resinas quelatantes convencionales para cationes metálicos, ya que en solución acuosa, el Ge no se encuentra en forma catiónica, sino en forma de oxoácido (Ge(OH)4), o de oxoaniones (GeO(OH)3- y GeO2(OH)2 "2) dependiendo del pH de Ia solución. Los mismos autores aseguran que una resina aniónica, fuertemente básica sí extraería el germanio en solución, pero no de forma selectiva (DA. Everest, WJ. Popiel. (1956) J. Chem. Soc. 3183, DA. Everest, WJ. Popie. (1957) J. Chem. Soc. 2433, DA. Everest and WJ. Popiel. (1958) J. Inorg. Nuc. Chem. 6, p. 153).In the works of Inukai et al. (Inukai Y.; Chinen T.; Matsuda T.; Kaida Y.; Yasuda S. (1998). Analytica Chimica Acta 371 (2) 187-193 (7)) and Harada et al. (Harada, A. Tarutani T; Yoshimura. K. (1988) Anal. Chim. Acta 209, p. 333), it is stated that Ge (IV) is not retained on conventional chelating resins for metal cations, since in aqueous solution, the Ge is not in cationic form, but in the form of oxoacid (Ge (OH) 4 ), or oxoanions (GeO (OH) 3- and GeO 2 (OH) 2 "2 ) depending on the pH of Ia The same authors assure that an anionic resin, strongly basic, would extract the germanium in solution, but not selectively (DA. Everest, WJ. Popiel. (1956) J. Chem. Soc. 3183, DA. Everest, WJ Popie. (1957) J. Chem. Soc. 2433, DA. Everest and WJ. Popiel. (1958) J. Inorg. Nuc. Chem. 6, p. 153).
Debido a que el germanio forma complejos con compuestos difenólicos y polisacáridos (Antikainen. PJ. (1959) Acta Chem. Scand. 13, p. 312; Antikainen PJ.; Huttunen E. (1973). Suomen Kemistilehti B 46, p. 184), existen algunos trabajos que han estudiado Ia extracción selectiva del Ge utilizando resinas que contienen en su superficie los grupos funcionales apropiados. Hay dos formas de obtener una resina de intercambio iónico con grupos funcionales: 1. Incorporar el grupo funcional durante Ia polimerización, por ejemplo empleando monómeros ya funcionalizados, o 2. Introducir los grupos funcionales sobre Ia matriz tras Ia polimerización, mediante las reacciones químicas oportunas. Así, se tienen resinas comerciales específicas para Ia extracción de Ge, como Sephadex (Harada, A.; Tarutani T; Yoshimura. K. (1988). Anal. Chim. Acta 209, p. 333) y N- metilglucamina (Yasuda S.; Kawazu K. (1988). Bunseki Kagaku 37, p. T67; Schilde, U; Uhlemann E. (1993). React. Polym. 20, p. 181; Schilde, U.; Kraudeit H.; Uhlemann, E. (1994). React. Polym. 22, p. 101; Yoshimura, K.; Kariya, R.; Tarutani, T. (1979) Anal. Chim. Acta 109, p. 115; Yasuda, S.; Yamauchi, H.; (1987) Nippon Kagaku Kaishi 752; Schilde, U.; Uhlemann, E. (1992). React. Polym. 18, p. 155), que presentan algunos problemas de selectividad, o resinas como las fabricadas por Inukai et al. (Inukai Y.; Chinen T.; Matsuda T.; Kaida Y.; Yasuda S. (1998). Anal. Chim. Acta, vol. 371, 2 (5), 187-193(7)), que sintetizan resinas quelatantes de poliestireno con grupos 1 , 2 diol ó 1 , 3 diol, o de tipo quitosana, con muy buenos rendimientos tanto de carga como de descarga. Este mismo tipo de resinas se describe en el trabajo de Hayashi et al. (Hayashi, H.; Ueno, H.; Kogyo, G (1985). Patente US 4525332). Kunio et al. (Kunio, S.; Akira, T.; Hiroyuk, Ti; Masan ide, H; Shiyouzou, T; Kouzou, K (1985) Method of recoven/ of germanium Patente JP 60166225) han patentado un proceso en el que se recupera Ge de forma selectiva a partir de soluciones diluidas, utilizando una resina que se carga con una sustancia complejante de Ge, como el tanino. Otro trabajo similar es el de Ziegenbalg (Ziegenbalg, S.; Scheffer, E. (1963). Patente GB 933563) en el que se introducen en Ia resina distintos agentes complejantes que contienen grupos hidroxilos. La elución del Ge se realiza en todos los casos con una solución concentrada de HCI (molaridad por encima de 7 M). El principal problema de Ia mayoría de estas resinas quelatantes es su elevado precio, una cinética de absorción más lenta.Because germanium complexes with diphenolic compounds and polysaccharides (Antikainen. PJ. (1959) Acta Chem. Scand. 13, p. 312; Antikainen PJ .; Huttunen E. (1973). Suomen Kemistilehti B 46, p. 184 ), there are some studies that have studied the selective extraction of Ge using resins that contain the appropriate functional groups on their surface. There are two ways to obtain an ion exchange resin with functional groups: 1. Incorporate the functional group during the polymerization, for example using already functionalized monomers, or 2. Introduce the functional groups on the matrix after the polymerization, by means of the appropriate chemical reactions . Thus, there are specific commercial resins for the extraction of Ge, such as Sephadex (Harada, A .; Tarutani T; Yoshimura. K. (1988). Anal. Chim. Acta 209, p. 333) and N-methylglucamine (Yasuda S .; Kawazu K. (1988). Bunseki Kagaku 37, p. T67; Schilde, U; Uhlemann E. (1993). React. Polym. 20, p. 181; Schilde, U .; Kraudeit H .; Uhlemann, E . (1994). React. Polym. 22, p. 101; Yoshimura, K .; Kariya, R .; Tarutani, T. (1979) Anal. Chim. Acta 109, p. 115; Yasuda, S .; Yamauchi, H .; (1987) Nippon Kagaku Kaishi 752; Schilde, U .; Uhlemann, E. (1992). React. Polym 18, p. 155), which present some problems of selectivity, or resins such as those manufactured by Inukai et al. (Inukai Y .; Chinen T .; Matsuda T .; Kaida Y .; Yasuda S. (1998). Anal. Chim. Acta, vol. 371, 2 (5), 187-193 (7)), which synthesize resins polystyrene chelators with groups 1, 2 diol or 1, 3 diol, or chitosan type, with very good yields both loading and unloading. This same type of resins is described in the work of Hayashi et al. (Hayashi, H .; Ueno, H .; Kogyo, G (1985). US Patent 4525332). Kunio et al. (Kunio, S .; Akira, T .; Hiroyuk, Ti; Masan ide, H; Shiyouzou, T; Kouzou, K (1985) Method of recoven / of Germanium Patent JP 60166225) have patented a process in which Ge recovers selectively from dilute solutions, using a resin that is loaded with a complexing substance of Ge, such as tannin. Another similar work is that of Ziegenbalg (Ziegenbalg, S .; Scheffer, E. (1963). GB 933563) in which different complexing agents containing hydroxyl groups are introduced into the resin. Elution of Ge is performed in all cases with a concentrated HCI solution (molarity above 7 M). The main problem of most of these chelating resins is their high price, a slower absorption kinetics.
Descripción de las figurasDescription of the figures
Figura 1- Estructura del catecol (CAT)Figure 1- Catechol structure (CAT)
Figura 2.- estructura del complejo germanio-catecolFigure 2.- structure of the germanium-catechol complex
Descripción de Ia invención La presente invención se refiere a un procedimiento para Ia recuperación del germanio a partir de soluciones acuosas y proporciona un proceso simple y efectivo para Ia concentración y Ia separación selectiva del germanio de soluciones acuosas que contengan otros metales, como cinc, antimonio, arsénico, cobalto, vanadio, molibdeno o níquel. El procedimiento de Ia invención comprende las siguientes etapas:Description of the invention The present invention relates to a process for the recovery of germanium from aqueous solutions and provides a simple and effective process for the concentration and selective separation of germanium from aqueous solutions containing other metals, such as zinc, antimony , arsenic, cobalt, vanadium, molybdenum or nickel. The process of the invention comprises the following steps:
ETAPA I: formación del complejo de Ge mediante Ia adición a Ia solución acuosa de algún reactivo que forme complejos aniónicos con este elemento, como el catecol, algunos ácidos dicarboxílicos y otros difenoles. Se ha seleccionado el catecol debido a su selectividad hacia el Ge, y a su bajo coste si se compara con otros agentes complejantes. Esta etapa puede realizarse empleando diferentes proporciones molares CATVGe, aunque Ia cantidad mínima debe ser Ia proporción estequiométrica, que es 3. Una vez disuelto el catecol en Ia solución, Ia formación del complejo es prácticamente instantánea, en condiciones de agitación que permitan un buen contacto entre el Ge y el catecol. Como se ha dicho, Ia estabilidad del complejo de Ge-catecol y los valores de las constantes sucesivas de acidez del catecol determinan un intervalo de máxima estabilidad del complejo entre pH = 4-9, aunque para otros agentes complejantes este intervalo puede variar. ETAPA II: extracción con resinas de intercambio iónico, Io que se realiza poniendo en contacto Ia solución fértil (F) que contiene el complejo Ge-CAT con cierta cantidad de resina. Este contacto puede realizarse en discontinuo, añadiendo Ia resina a Ia solución y agitando, o en continuo mediante el empleo de columnas.STAGE I: formation of the Ge complex by adding to the aqueous solution some reagent that forms anionic complexes with this element, such as catechol, some dicarboxylic acids and other diphenols. Catechol has been selected due to its selectivity towards Ge, and its low cost compared to other complexing agents. This stage can be performed using different CATVGe molar proportions, although the minimum amount should be the stoichiometric proportion, which is 3. Once the catechol is dissolved in the solution, the formation of the complex is practically instantaneous, under conditions of agitation that allow good contact. between the Ge and the catechol. As mentioned, the stability of the Ge-catechol complex and the values of the successive acid constants of the catechol determine a maximum stability interval of the complex between pH = 4-9, although for other complexing agents this range may vary. STAGE II: Extraction with ion exchange resins, which is done by contacting the fertile solution (F) that contains the Ge-CAT complex with a certain amount of resin. This contact can be made discontinuously, adding the resin to the solution and stirring, or continuously using columns.
La elección de Ia resina se lleva a cabo entre las resinas aniónicas, fuertemente básicas y macroporosas, que poseen tamaños de poro Io suficientemente grandes como para retener en ellos el complejo de germanio. La cantidad de resina que es necesario añadir, expresada en forma de equivalentes, ha de ser al menos 2 veces el n° de equivalentes de Ge, aunque un exceso mayor puede desplazar el equilibrio de forma favorable a Ia extracción. El tiempo de contacto puede ajustarse desde unos minutos hasta tiempos mayores, según el tipo de contacto y el rendimiento de extracción requerido. En los ejemplos incluidos en Ia presente patente, se ha mantenido el contacto durante 7h aunque se ha comprobado que tiempos menores de contacto permiten también Ia extracción del complejo. El contacto puede ser continuo, empleando columnas rellenas de resina; o discontinuo, empleando recipientes con agitación. Tras Ia extracción, Ia solución acuosa resultante o refinado (R) queda exenta prácticamente de germanio, mientras que el resto de los metales permanece en el refinado, y Ia resina queda cargada con el complejo Ge-CAT.The choice of the resin is carried out between the anionic resins, strongly basic and macroporous, which have pore sizes large enough to retain in them the germanium complex. The amount of resin that needs to be added, expressed in the form of equivalents, must be at least 2 times the number of equivalents of Ge, although a greater excess can displace the equilibrium favorably to the extraction. The contact time can be adjusted from a few minutes to longer times, depending on the type of contact and the required extraction performance. In the examples included in this patent, the contact has been maintained for 7h although it has been proven that shorter contact times also allow the extraction of the complex. The contact can be continuous, using resin filled columns; or discontinuous, using containers with agitation. After the extraction, the resulting or refined aqueous solution (R) is practically free of germanium, while the rest of the metals remain in the refining, and the resin is loaded with the Ge-CAT complex.
ETAPA III: separación de Ia resina y del refinado mediante filtración o por otros métodos.STAGE III: separation of the resin and the refining by filtration or by other methods.
ETAPA IV: descarga del Ge contenido en Ia resina, para Io que se pone en contacto Ia resina cargada de Ge con una solución acuosa eluyente (E) que contiene el agente responsable de que se rompa Ia unión entre el complejo y los grupos funcionales de Ia resina. Una de las ventajas del método de extracción con resinas propuesto reside en Ia posibilidad de elegir el proceso de descarga en medio ácido, básico, o neutro. Aunque Ia descarga del germanio es posible utilizando soluciones de NaOH, NaCI y HCI, con molaridades superiores a 0,5 M, los mejores rendimientos se han obtenido con soluciones de molaridad superior a 1 M en los tres casos.STEP IV: discharge of the Ge contained in the resin, for which the resin loaded with Ge is contacted with an eluent aqueous solution (E) containing the agent responsible for breaking the joint between the complex and the functional groups of The resin One of the advantages of the extraction method with The proposed resin resides in the possibility of choosing the discharge process in acidic, basic, or neutral medium. Although the discharge of germanium is possible using NaOH, NaCI and HCI solutions, with molarities greater than 0.5 M, the best yields have been obtained with molarity solutions greater than 1 M in all three cases.
En Ia etapa de elución puede concentrarse el germanio, utilizando un volumen de solución E menor que el de Ia solución F original, Io que permite un ahorro de reactivos. No se recomienda que Ia relación entre volúmenes F/E sea mayor de 20, debido a una disminución en el rendimiento de descarga. Al igual que en Ia etapa II, este contacto puede realizarse en discontinuo, o en continuo. El tiempo de contacto también puede ajustarse desde unos minutos hasta tiempos mayores. En los ejemplos incluidos en Ia presente patente, se ha mantenido el contacto durante 7h aunque se ha comprobado que tiempos menores de contacto permiten también Ia descarga del germanio. ETAPA V: separación de Ia resina de Ia solución concentrada mediante filtración o por otros métodos, para obtener una fase acuosa concentrada en Ge y prácticamente libre de otros elementos, que se denominará solución concentrada (C).In the elution stage, germanium can be concentrated, using a volume of solution E smaller than that of the original solution F, which allows a saving of reagents. It is not recommended that the ratio between F / E volumes be greater than 20, due to a decrease in discharge performance. As in stage II, this contact can be carried out discontinuously or continuously. The contact time can also be adjusted from a few minutes to longer times. In the examples included in the present patent, the contact has been maintained for 7h although it has been proven that shorter contact times also allow the discharge of germanium. STAGE V: separation of the resin from the concentrated solution by filtration or by other methods, to obtain an aqueous phase concentrated in Ge and practically free of other elements, which will be called the concentrated solution (C).
ETAPA Vl: opcionalmente, Ia solución concentrada (C) puede ser reutilizada de nuevo como solución eluyente en un nuevo proceso de descarga de Ge, produciéndose un aumento en Ia concentración final de Ge con cada reutilización.STAGE Vl: optionally, the concentrated solution (C) can be reused again as an eluent solution in a new Ge discharge process, resulting in an increase in the final concentration of Ge with each reuse.
ETAPA VII: regeneración de Ia resina mediante uno o varios ciclos con distintas soluciones acuosas antes de una nueva utilización, para reinstaurar los grupos activos, y acondicionarla para su nueva utilización en el proceso. Se puede utilizar HCI o NaCI, si Ia resina se quiere seguir utilizando en forma cloruro, o NaOH, si Ia resina se desea tener en forma hidróxido. La concentración de estas soluciones ha de ser mucho más elevada que Ia de las soluciones eluyentes (según las especificaciones del fabricante), y se ha de usar un exceso superior al 100% de Ia capacidad teórica de Ia resina.STEP VII: regeneration of the resin by one or several cycles with different aqueous solutions before a new use, to reinstate the active groups, and condition it for its new use in the process. HCI or NaCI can be used, if the resin is to be used in chloride form, or NaOH, if the resin is desired to have hydroxide form. The concentration of these solutions must be much higher than that of the eluent solutions (according to the manufacturer's specifications), and an excess greater than 100% of the theoretical capacity of the resin must be used.
HOJA DE SUSTITUCIÓN (REGLA 26) Modo de realización de Ia invenciónSUBSTITUTE SHEET (RULE 26) Embodiment of the invention
Para ¡lustrar el procedimiento descrito en Ia presente invención se describen los siguientes ejemplos, pero en ningún caso deben considerarse como limitantes del mismo.To illustrate the procedure described in the present invention, the following examples are described, but in no case should they be considered as limiting thereof.
Ejemplo 1 : Extracción de Ge con una resina del tipo IRA-958 (Rohm-Haas).Example 1: Extraction of Ge with a resin of type IRA-958 (Rohm-Haas).
Se parte de 75 mL de un patrón con 100 mg/L de Ge. A dicha solución se Ie añaden 35 mg de catecol (CAT), y se agita bien. El pH original de Ia solución (2,1) se aumenta hasta 7,8 mediante Ia adición de 6 mL de una solución 0,1 M de NaOH.It starts from 75 mL of a standard with 100 mg / L of Ge. To this solution is added 35 mg of catechol (CAT), and stirred well. The original pH of the solution (2.1) is increased to 7.8 by adding 6 mL of a 0.1 M NaOH solution.
La solución anterior se pone en contacto con 340 mg de una resina IRA-958 (en forma cloruro), y se mantiene el contacto entre las fases durante 7 h, a temperatura ambiente.The above solution is contacted with 340 mg of an IRA-958 resin (in chloride form), and the contact between the phases is maintained for 7 h, at room temperature.
A continuación, se separan las fases: Ia resina, que queda cargada del complejo de Ge, y Ia solución prácticamente libre de ese elemento (refinado). El refinado se analiza, y su contenido de Ge resulta ser menor de 5 mg/L, por Io que el rendimiento de extracción es superior al 95%.Next, the phases are separated: the resin, which is charged with the Ge complex, and the virtually free solution of that element (refined). The refining is analyzed, and its Ge content turns out to be less than 5 mg / L, so the extraction yield is greater than 95%.
Ejemplo 2: Extracción de Ge con una resina del tipo IRA-900 (Rohm-Haas) a partir de una solución obtenida mediante lixiviación de una ceniza procedente de una central térmica.Example 2: Extraction of Ge with a resin of the type IRA-900 (Rohm-Haas) from a solution obtained by leaching an ash from a thermal power plant.
Se parte de 1000 mL de una solución líquida (solución L) cuya composición se muestra en Ia Tabla 1. La solución L ha sido obtenida extrayendo con agua una ceniza volante procedente de una central térmica a temperatura ambiente durante 24h, en un reactor con agitación a presión atmosférica.It starts from 1000 mL of a liquid solution (solution L) whose composition is shown in Table 1. Solution L has been obtained by extracting a fly ash from a thermal power plant at room temperature for 24 hours, in a stirred reactor At atmospheric pressure
A Ia solución L se Ie añaden 296 mg de catecol (CAT)1 y se agita bien. El pH original de Ia solución (4,2) se aumenta hasta 7,1 mediante Ia adición de 15 mL de una solución 0,1 M de NaOH.To solution L, 296 mg of catechol (CAT) 1 is added and stirred well. The original pH of the solution (4.2) is increased to 7.1 by adding 15 mL of a 0.1 M NaOH solution.
HOJA DE SUSTITUCIÓN (REGLA 26) Tabla 1. Composición de Ia solución LSUBSTITUTE SHEET (RULE 26) Table 1. Composition of solution L
Figure imgf000009_0001
Figure imgf000009_0001
La solución anterior se pone en contacto con 1524 mg de una resina IRA-900 (en forma cloruro), y se mantiene el contacto mediante volteo durante 7 h a temperatura ambiente.The above solution is contacted with 1524 mg of an IRA-900 resin (in chloride form), and the contact is maintained by flipping for 7 h at room temperature.
Posteriormente se separan las fases, y el refinado se guarda para análisis. Su composición se muestra en Ia Tabla 2. Dicha composición muestra como el germanio extraído supone un 92,6 % del inicialmente presente en Ia solución L, mientras que el resto de elementos permanece en Ia solución líquida, es decir, apenas son extraídos por Ia resina, resultando Ia operación selectiva para el Ge. Como se puede observar, tan sólo son algo retenidos por Ia resina: Sb, V, Mo y Ni, y mucho menos As ó Zn, pero en todos los casos en mucha menor medida que el germanio. Hay que señalar además, que las cantidades iniciales de elementos como V, Mo o Zn (< 2,5 mg/L) en el lixiviado de ceniza (solución L) son mucho menores que los de Ge (35,6 mg/L).The phases are subsequently separated, and the refining is saved for analysis. Its composition is shown in Table 2. Said composition shows how the extracted germanium represents 92.6% of the initially present in the solution L, while the rest of the elements remain in the liquid solution, that is, they are hardly extracted by Ia resin, resulting in the selective operation for the Ge. As can be seen, they are only somewhat retained by the resin: Sb, V, Mo and Ni, much less As or Zn, but in all cases to a much lesser extent than germanium. It should also be noted that the initial amounts of elements such as V, Mo or Zn (<2.5 mg / L) in ash leachate (solution L) are much smaller than those of Ge (35.6 mg / L) .
HOJA DE SUSTITUCIÓN (REGLA 26) Tabla 2. Composición del refinado (R)SUBSTITUTE SHEET (RULE 26) Table 2. Refining composition (R)
Figure imgf000010_0001
Figure imgf000010_0001
Ejemplo 3: descarga del Ge adsorbido sobre una resina IRA-958 provocada por una solución de NaCIExample 3: discharge of the adsorbed Ge onto an IRA-958 resin caused by a NaCI solution
Se parte de 1889 mg de una resina cargada de Ge por haber sido puesto en contacto con la solución L anterior. Como se ha indicado anteriormente, en esta resina se han retenido, además del germanio, pequeñas cantidades de otros elementos. La cantidad máxima de cada uno de estos elementos que se puede encontrar en Ia resina se ha calculado por diferencia entre Ia concentración de cada elemento en Ia solución líquida (L) y el refinado (R), y dichas cantidades se muestran en Ia Tabla 3.It starts from 1889 mg of a resin loaded with Ge for having been contacted with the previous L solution. As indicated above, in this resin, in addition to germanium, small amounts of other elements have been retained. The maximum amount of each of these elements that can be found in the resin has been calculated by difference between the concentration of each element in the liquid solution (L) and the refined (R), and said amounts are shown in Table 3 .
HOJA DE SUSTITUCIÓN (REGLA 26) Tabla 3. Cantidades máximas adsorbidas en Ia resinaSUBSTITUTE SHEET (RULE 26) Table 3. Maximum amounts adsorbed on the resin
Figure imgf000011_0001
Figure imgf000011_0001
A continuación, Ia resina cargada de germanio se pone en contacto con 150 ml_ de una solución de cloruro sódico 3 M y ambas fases se mantienen agitadas mediante volteo durante 7 h a temperatura ambiente. Se separan las fases, y Ia solución de cloruro sódico presenta ahora Ia composición que se indica en Ia Tabla 4. En este caso, el germanio reextraído supone un 89,2% del contenido en Ia resina.Next, the germanium-loaded resin is contacted with 150 ml of a 3M sodium chloride solution and both phases are kept stirred by flipping for 7 h at room temperature. The phases are separated, and the sodium chloride solution now presents the composition indicated in Table 4. In this case, the re-extracted germanium represents 89.2% of the resin content.
HOJA DE SUSTITUCIÓN (REGLA 26) Tabla 4. Composición de Ia solución concentrada (solución C) obtenida tras Ia descarga del germanio y rendimientos de descargaSUBSTITUTE SHEET (RULE 26) Table 4. Composition of the concentrated solution (solution C) obtained after the germanium discharge and discharge yields
Figure imgf000012_0001
Figure imgf000012_0001
Al comparar las concentraciones de metales en Ia solución original L (Tabla 1) con las observadas en Ia tabla anterior (solución concentrada), se pone de manifiesto Ia bondad de un método que permite concentrar el Ge unas cuatro veces, al mismo tiempo que reduce Ia presencia de las principales interferencias.When comparing the concentrations of metals in the original solution L (Table 1) with those observed in the previous table (concentrated solution), the goodness of a method that allows to concentrate the Ge about four times, while reducing The presence of the main interferences.
Ejemplo 4: extracción de Ge con una resina IRA-958 y descarga producida por una solución de NaCIExample 4: Ge extraction with an IRA-958 resin and discharge produced by a NaCI solution
Se parte de 1000 ml_ de una solución líquida (solución L). A dicha solución se Ie añaden 294 mg de catecol (CAT), y se agita bien. El pH original de Ia solución (4,3) se aumenta hasta 7 mediante Ia adición de 15 mL de una solución 0,1 M de NaOH. La solución anterior se pone en contacto con 1893 mg de una resina IRA- 958 (en forma cloruro), y se mantiene el contacto mediante volteo durante 7 h a temperatura ambiente.It starts from 1000 ml_ of a liquid solution (solution L). To this solution is added 294 mg of catechol (CAT), and stirred well. The original pH of the solution (4.3) is increased to 7 by adding 15 mL of a 0.1 M NaOH solution. The above solution is contacted with 1893 mg of an IRA-958 resin (in chloride form), and the contact is maintained by flipping for 7 h at room temperature.
Se separan las fases, y el refinado se guarda para análisis. Los rendimientos de extracción se muestran en Ia Tabla 5. En este ejemplo el germanio extraído supone un 93,1 % del inicialmente presente en Ia solución L, mientras que el resto de elementos apenas cambia su concentración. Tan sólo se adsorben parcialmente en Ia resina: Sb, Co, V, Mo, Ni ó Zn, pero en todos los casos en mucha menor medida que el germanio, y en casi todos los casos, partiendo de unas concentraciones mucho más bajas (< 2,5 mg/L) que Ia de Ge en Ia solución original.The phases are separated, and the refining is saved for analysis. The extraction yields are shown in Table 5. In this example, the extracted germanium represents 93.1% of that initially present in solution L, while the rest of the elements hardly change their concentration. Only partially adsorbed in the resin: Sb, Co, V, Mo, Ni or Zn, but in all cases to a much lesser extent than germanium, and in almost all cases, starting from much lower concentrations (< 2.5 mg / L) than that of Ge in the original solution.
HOJA DE SUSTITUCIÓN (REGLA 26) Tabla 5. Rendimientos de extracción por elementoSUBSTITUTE SHEET (RULE 26) Table 5. Extraction performances by element
Figure imgf000013_0001
Figure imgf000013_0001
A continuación, Ia resina cargada de germanio se pone en contacto con 250 ml_ de una solución de cloruro sódico 3 M y ambas fases se mantienen agitados mediante volteo durante 7 h a temperatura ambiente. Luego se separan las fases, y Ia solución de cloruro sódico se analiza. Los rendimientos de descarga se muestran en Ia Tabla 6. En esta tabla se muestran además las concentraciones de estos elementos presentes en Ia solución concentrada (C).Next, the germanium-loaded resin is contacted with 250 ml of a 3M sodium chloride solution and both phases are kept stirred by flipping for 7 h at room temperature. Then the phases are separated, and the sodium chloride solution is analyzed. The discharge yields are shown in Table 6. This table also shows the concentrations of these elements present in the concentrated solution (C).
De nuevo, pueden hacerse aquí las consideraciones realizadas en el ejemplo 3 relativas a Ia selectividad del método y a Ia concentración del Ge.Again, the considerations made in Example 3 regarding the selectivity of the method and the concentration of the Ge can be made here.
HOJA DE SUSTITUCIÓN (REGLA 26) Tabla 6. Composición de Ia solución concentrada (solución C) obtenida tras Ia descarga del germanio y rendimientos de elución por elementosSUBSTITUTE SHEET (RULE 26) Table 6. Composition of the concentrated solution (solution C) obtained after the discharge of germanium and yields of elution by elements
Figure imgf000014_0001
Figure imgf000014_0001
En Ia tabla 7 se recogen los rendimientos globales de carga y descarga cada elemento en Ia operación explicada en el ejemplo 4.Table 7 shows the global loading and unloading performance of each element in the operation explained in example 4.
Tabla 7. Rendimientos globales de carga-descarga del Ge y principales elementos interferentesTable 7. Global loading and unloading performance of the Ge and main interfering elements
Figure imgf000014_0002
Figure imgf000014_0002
HOJA DE SUSTITUCIÓN (REGLA 26) Si se compara el rendimiento de extracción global del germanio con el del resto de elementos, se puede ver que los únicos elementos cuyos rendimientos de extracción son elevados, son el V y el Mo, probablemente por encontrarse ambos en formas aniónicas en solución. Sin embargo, estos elementos presentan unos contenidos en Ia solución líquida original (L) menores de 0,5 mg/L y en Ia solución concentrada (C) menores de 1 mg/L. En el caso del Sb, principal impureza en Ia etapa de extracción, se puede ver que el rendimiento global es del 0,6%.SUBSTITUTE SHEET (RULE 26) If the overall extraction performance of germanium is compared with that of the other elements, it can be seen that the only elements whose extraction yields are high are V and Mo, probably because they are both in anionic forms in solution. However, these elements have contents in the original liquid solution (L) of less than 0.5 mg / L and in the concentrated solution (C) of less than 1 mg / L. In the case of Sb, the main impurity in the extraction stage, it can be seen that the overall yield is 0.6%.
HOJA DE SUSTITUCIÓN (REGLA 26) SUBSTITUTE SHEET (RULE 26)

Claims

Reivindicaciones Claims
1. Un procedimiento para Ia recuperación del Ge presente en una fase líquida acuosa (L) en Ia que se encuentran otros metales, tras adición de un agente complejante, mediante Ia utilización de resinas de intercambio aniónico, caracterizado porque comprende: a) Ia complejación del Ge contenido en Ia solución líquida (L) mediante Ia adición de un reactivo complejante, realizando posteriormente un ajuste del pH para alcanzar Ia máxima estabilidad del complejo. b) Ia puesta en contacto de Ia solución fértil con Ia resina de intercambio. La cantidad de resina, expresada en forma de equivalentes, ha de ser al menos 2 veces el n° de equivalentes de germanio. c) Ia separación de Ia resina de Ia solución resultante (refinado, R). d) Ia descarga del germanio de Ia resina, poniéndola en contacto con una solución acuosa acida (HCI), básica (NaOH) o neutra (NaCI), denominada solución eluyente (E). e) Ia separación de Ia resina de Ia solución concentrada en Ge (solución concentrada, C) y Ia regeneración de Ia resina mediante uno o varios ciclos con soluciones acidas, básicas o neutras de concentración elevada, para reinstaurar los grupos activos, y acondicionarla para su nueva utilización en el proceso.1. A process for the recovery of the Ge present in an aqueous liquid phase (L) in which other metals are found, after the addition of a complexing agent, through the use of anion exchange resins, characterized in that it comprises: a) the complexation of the Ge contained in the liquid solution (L) by the addition of a complexing reagent, subsequently carrying out a pH adjustment to reach the maximum stability of the complex. b) the contacting of the fertile solution with the exchange resin. The amount of resin, expressed in the form of equivalents, must be at least 2 times the number of equivalents of germanium. c) The separation of the resin from the resulting solution (refined, R). d) the discharge of germanium from the resin, putting it in contact with an aqueous acidic (HCI), basic (NaOH) or neutral (NaCI) solution, called eluent solution (E). e) the separation of the resin from the solution concentrated in Ge (concentrated solution, C) and the regeneration of the resin by one or several cycles with acidic, basic or neutral solutions of high concentration, to reinstate the active groups, and condition it for its new use in the process.
2. Procedimiento según Ia reivindicación 1 caracterizado porque Ia complejación del Ge contenido en Ia solución L se realiza mediante Ia adición de un agente complejante seleccionado entre compuestos orgánicos oxigenados, ácidos dicarboxílicos o compuestos poli-alcohólicos, ó polifenólicos, capaces de formar complejos estables con el germanio, como por ejemplo el catecol, empleando una proporción molar catecoLGe de al menos 3.2. Method according to claim 1 characterized in that the complexation of the Ge contained in the solution L is carried out by the addition of a complexing agent selected from oxygenated organic compounds, dicarboxylic acids or poly-alcoholic compounds, or polyphenolics, capable of forming stable complexes with Germanium, such as catechol, using a catecoLGe molar ratio of at least 3.
3. Procedimiento según Ia reivindicación 1 caracterizado porque el pH seleccionado para Ia formación del complejo debe encontrarse en el intervalo de estabilidad del complejo, siendo el pH para el catecol superior a 4 e inferior a 9.3. Method according to claim 1 characterized in that the pH selected for the formation of the complex must be in the stability range of the complex, the pH for the catechol being greater than 4 and less than 9.
HOJA DE SUSTITUCIÓN (REGLA 26) SUBSTITUTE SHEET (RULE 26)
4. Procedimiento según Ia reivindicación 1 caracterizado porque el proceso de extracción del complejo se lleva a cabo mediante una resina de intercambio aniónica, fuertemente básica y macroporosa.4. Method according to claim 1 characterized in that the process of extraction of the complex is carried out by means of an anion exchange resin, strongly basic and macroporous.
5. Procedimiento según Ia reivindicación 1 caracterizado porque el contacto entre Ia resina y Ia solución fértil se realiza empleando tiempos de contacto que oscilan desde unos minutos hasta varias horas, siendo el proceso continuo con columnas rellenas de resina ó discontinuo con recipientes del tipo tanque agitado.5. Method according to claim 1 characterized in that the contact between the resin and the fertile solution is carried out using contact times ranging from a few minutes to several hours, the process being continuous with columns filled with resin or discontinuous with containers of the stirred tank type .
6. Procedimiento según Ia reivindicación 1 caracterizado porque Ia separación entre Ia resina y el refinado puede realizarse mediante filtración o por otros métodos, como decantación.6. Method according to claim 1 characterized in that the separation between the resin and the refining can be carried out by filtration or by other methods, such as decantation.
7. Procedimiento según Ia reivindicación 1 caracterizado porque el proceso de elución se lleva a cabo con una disolución acuosa de HCI, NaCI o NaOH, cuya concentración deberá ser mayor de 0,5 M.7. Method according to claim 1 characterized in that the elution process is carried out with an aqueous solution of HCI, NaCl or NaOH, the concentration of which must be greater than 0.5 M.
8. Procedimiento según Ia reivindicación 1 caracterizado porque Ia descarga del Ge se realiza poniendo en contacto Ia resina con diferentes volúmenes de solución E, en un rango de razón de volúmenes solución fértil (F)/solución eluyente (E) cuyo valor sea como máximo 20/1 , con Io que Ia solución final de Ge puede concentrarse hasta 20 veces.8. Method according to claim 1 characterized in that the discharge of the Ge is carried out by contacting the resin with different volumes of solution E, in a range of volumes of fertile solution (F) / eluent solution (E) value whose maximum is 20/1, so that the final solution of Ge can be concentrated up to 20 times.
9. Procedimiento según Ia reivindicación 1 caracterizado porque Ia separación entre Ia resina y Ia solución concentrada puede realizarse mediante filtración o por otros métodos, como decantación.9. Method according to claim 1 characterized in that the separation between the resin and the concentrated solution can be carried out by filtration or by other methods, such as decantation.
10. Procedimiento según las reivindicaciones 1-9 caracterizado porque Ia solución concentrada (C) puede ser reutilizada en varios procesos de descarga de Ge, produciéndose un aumento en Ia concentración final de Ge con cada utilización.10. Method according to claims 1-9 characterized in that the concentrated solution (C) can be reused in several processes of discharge of Ge, producing an increase in the final concentration of Ge with each use.
HOJA DE SUSTITUCIÓN (REGLA 26) SUBSTITUTE SHEET (RULE 26)
11. Procedimiento según las reivindicaciones 1-9 caracterizado porque las resinas pueden reutilizarse en varios ciclos de carga y descarga de germanio, tras someterlas a regeneración para Io cual se puede utilizar soluciones acuosas de HCI o NaCI, si Ia resina se quiere seguir utilizando en forma cloruro, o NaOH, si Ia resina se desea tener en forma hidróxido, siendo Ia concentración de estas soluciones más elevada que Ia de las soluciones eluyentes y en un exceso superior al 100% de Ia capacidad teórica de Ia resina.11. Method according to claims 1-9 characterized in that the resins can be reused in several cycles of loading and unloading of germanium, after being subjected to regeneration for which aqueous solutions of HCI or NaCI can be used, if the resin is to be used in it forms chloride, or NaOH, if the resin is desired to have in hydroxide form, the concentration of these solutions being higher than that of the eluent solutions and in an excess greater than 100% of the theoretical capacity of the resin.
HOJA DE SUSTITUCIÓN (REGLA 26) ResumenSUBSTITUTE SHEET (RULE 26) Summary
La invención se refiere a un procedimiento para Ia recuperación del germanio presente en soluciones acuosas, que se separa de otros metales también presentes en dicha solución mediante Ia utilización de resinas de intercambio iónico. La extracción selectiva se consigue mediante Ia formación de un complejo orgánico de germanio, que se adsorbe en una resina aniónica convencional.. Finalmente, el germanio se desorbe de Ia resina mediante el contacto de Ia misma con una solución acuosa, que puede tener carácter ácido, básico o neutro. La posibilidad de seleccionar una solución de desorción facilita las posibles operaciones posteriores para obtener el germanio de mayor pureza. Tras Ia desorción, Ia resina puede regenerarse para una nueva utilización.The invention relates to a process for the recovery of germanium present in aqueous solutions, which is separated from other metals also present in said solution by the use of ion exchange resins. The selective extraction is achieved by the formation of an organic germanium complex, which is adsorbed in a conventional anionic resin. Finally, the germanium is desorbed from the resin by contacting it with an aqueous solution, which may have an acidic character. , basic or neutral. The possibility of selecting a desorption solution facilitates possible subsequent operations to obtain the highest purity germanium. After desorption, the resin can be regenerated for a new use.
HOJA DE SUSTITUCIÓN (REGLA 26) SUBSTITUTE SHEET (RULE 26)
PCT/ES2009/000102 2008-02-28 2009-02-26 Method for the recovery of germanium in solution by means of complexing and use of ion-exchange resins WO2009106660A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP200800570 2008-02-28
ES200800570A ES2325292B1 (en) 2008-02-28 2008-02-28 PROCEDURE FOR THE RECOVERY OF GERMANIUM IN DISSOLUTION BY COMPLEXING AND USING ION EXCHANGE RESINS.

Publications (1)

Publication Number Publication Date
WO2009106660A1 true WO2009106660A1 (en) 2009-09-03

Family

ID=40951220

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2009/000102 WO2009106660A1 (en) 2008-02-28 2009-02-26 Method for the recovery of germanium in solution by means of complexing and use of ion-exchange resins

Country Status (2)

Country Link
ES (1) ES2325292B1 (en)
WO (1) WO2009106660A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103866124A (en) * 2014-04-16 2014-06-18 六盘水中联工贸实业有限公司 Method for extracting germanium from germanium-containing acidic solution by using TiO2.nH2O
CN106906364A (en) * 2017-03-07 2017-06-30 云南临沧鑫圆锗业股份有限公司 The process of Ti recovery from germanic fluorine containing corrosion liquid

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB933563A (en) * 1960-02-12 1963-08-08 Forsch Ne Metalle Process for the recovery of germanium values
ES2257181A1 (en) * 2004-10-14 2006-07-16 Universidad De Alicante Recuperation of germanium in solution by activated carbon comprises adsorption by activated carbon, for acid desorption of the germanium and concentration
WO2007103277A2 (en) * 2006-03-03 2007-09-13 Los Alamos National Security, Llc Separation of germanium-68 from gallium-68

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB933563A (en) * 1960-02-12 1963-08-08 Forsch Ne Metalle Process for the recovery of germanium values
ES2257181A1 (en) * 2004-10-14 2006-07-16 Universidad De Alicante Recuperation of germanium in solution by activated carbon comprises adsorption by activated carbon, for acid desorption of the germanium and concentration
WO2007103277A2 (en) * 2006-03-03 2007-09-13 Los Alamos National Security, Llc Separation of germanium-68 from gallium-68

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103866124A (en) * 2014-04-16 2014-06-18 六盘水中联工贸实业有限公司 Method for extracting germanium from germanium-containing acidic solution by using TiO2.nH2O
CN103866124B (en) * 2014-04-16 2016-01-20 六盘水中联工贸实业有限公司 One TiO 2nH 2o extracts the method for germanium from germanic acidic solution
CN106906364A (en) * 2017-03-07 2017-06-30 云南临沧鑫圆锗业股份有限公司 The process of Ti recovery from germanic fluorine containing corrosion liquid

Also Published As

Publication number Publication date
ES2325292B1 (en) 2010-06-24
ES2325292A1 (en) 2009-08-31

Similar Documents

Publication Publication Date Title
Kauczor et al. Structure and properties of Levextrel resins
CN106148737B (en) A method of recycling association rhenium resource from sandstone-type uranium mineralization with respect ground dipping uranium extracting process adsorption tail liquid
JP2019099901A (en) Method for recovering lithium from lithium-containing solution
US5508010A (en) Method of separating fission molybdenum
Chen et al. Separation and recovery of Pd (II) and Pt (II) from cyanide liquors of Pd‐Pt flotation concentrate via solvent extraction
ES2293831B2 (en) PROCEDURE FOR THE RECOVERY OF GERMAN PRESENT IN CARBON ASHES.
US3970737A (en) Metal, particularly gold, recovery from adsorbed cyanide complexes
AU2007266303B2 (en) Process for recovering metals from resins
ES2325292B1 (en) PROCEDURE FOR THE RECOVERY OF GERMANIUM IN DISSOLUTION BY COMPLEXING AND USING ION EXCHANGE RESINS.
JP2010229017A (en) Method for producing high-purity ammonium paratungstate
Benabdallah et al. Increasing the circularity of the copper metallurgical industry: Recovery of Sb (III) and Bi (III) from hydrochloric solutions by integration of solvating organophosphorous extractants and selective precipitation
Sekimoto et al. Extraction of lithium from salt lake brine with tributyl phosphate and an ionic liquid
JP6098569B2 (en) Purification method of aqueous cobalt chloride solution
JPS5842737A (en) Recovering method for gallium
CN109173340B (en) Method for removing chlorine from strong acidic solution by adsorption
Kouraim et al. Investigation of uranium sorption from acidic sulfate solution using organosilicate compound and Amberlite IRA 402
Nakahiro et al. Recovery of gold with ion exchange resin from leaching solution by acidothioureation
KR20150024019A (en) Method of recovery of high purity platinum from a leaching solution of spent catalyst
Losev et al. Extraction of gallium from carbon concentrate-Aluminum industry waste
RU2008136586A (en) METHOD FOR RADIO TIN SEPARATION UNDER CARRIER FROM TI-SB INTERMETALLIDE (OPTIONS)
RU2720703C1 (en) Method of extracting ni-63 from an irradiated target and cleaning it of impurities
JP3412003B2 (en) Novel lithium adsorbent and method for producing the same
RU2523892C2 (en) Method of extracting rhenium from uranium-containing solutions
JP4994340B2 (en) Method for separating zirconium and hafnium
NO872216L (en) PROGRESS FOR THE EXTRACTION OF INDIUM, GERMANIUM AND / OR GALLIUM.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09713886

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09713886

Country of ref document: EP

Kind code of ref document: A1