WO2009106654A1 - Procedimiento para la obtención de películas de materiales semiconductores incorporando una banda intermedia - Google Patents

Procedimiento para la obtención de películas de materiales semiconductores incorporando una banda intermedia Download PDF

Info

Publication number
WO2009106654A1
WO2009106654A1 PCT/ES2009/000038 ES2009000038W WO2009106654A1 WO 2009106654 A1 WO2009106654 A1 WO 2009106654A1 ES 2009000038 W ES2009000038 W ES 2009000038W WO 2009106654 A1 WO2009106654 A1 WO 2009106654A1
Authority
WO
WIPO (PCT)
Prior art keywords
intermediate band
mixture
components
semiconductor material
semiconductor
Prior art date
Application number
PCT/ES2009/000038
Other languages
English (en)
French (fr)
Inventor
Luis CASTAÑER MUÑOZ
Antonio LUQUE LÓPEZ
Antonio MARTÍ VEGA
Original Assignee
Universidad Politécnica de Madrid
Universitat Politecnica De Catalunya
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad Politécnica de Madrid, Universitat Politecnica De Catalunya filed Critical Universidad Politécnica de Madrid
Priority to EP09715579A priority Critical patent/EP2256791A4/en
Priority to US12/919,619 priority patent/US20110100797A1/en
Publication of WO2009106654A1 publication Critical patent/WO2009106654A1/es

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/02546Arsenides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0617AIII BV compounds, where A is Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
    • H01L21/203
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type

Definitions

  • intermediate band materials constitute the basis of a new generation of photovoltaic devices called “intermediate band solar cells” (IBSC). This new type of solar cell was patented in 2001 (US Patent 6444897B1) without giving ideas about how such intermediate band materials could be obtained, with the exception of their synthesis using quantum dot technology.
  • An intermediate band material is characterized by displaying a collection of permitted levels (1) for electrons inside what would otherwise be the prohibited band (2) of a semiconductor (Fig. 1).
  • the term "band" is preferred in order to emphasize a series of physical properties that are required at these levels and that are more characteristic of the electronic bands of semiconductors than of levels that defects can also introduce into the semiconductor gap.
  • these levels make possible the absorption of photons, as will be explained later, and that, in an ideal case, the recombination processes from the conduction band (3) to the intermediate band (1) and from the intermediate band (1) to the valence band (4) they are radiatively limited (that is, by processes, which emit a photon).
  • the general foundations of this theory were published in 1997 by Luque and Mart ⁇ (A. Luque and A. Mart ⁇ , Physical Review Letters 78, 5014-5017, 1997).
  • the existence of the intermediate band is beneficial for the operation of a solar cell because it allows two photons of energy to be absorbed below the gap, which would otherwise be lost because the semiconductor is transparent to them, to generate an electron-hollow pair. In addition, it is possible that this additional photon absorption is carried out without associated degradation of the output voltage of the cell.
  • the generation of this electron-hollow pair is carried out because, for example, a photon (5) pumps an electron from the valence band to the intermediate band and another (6) from the intermediate band to the conduction band.
  • the intermediate band solar cell indicates that for this mechanism to be efficient, the intermediate band should be half full of electrons in order to have both empty states, to receive electrons from the valence band, as full, to be able to supply electrons to the conduction band.
  • the intermediate band should be half full of electrons in order to have both empty states, to receive electrons from the valence band, as full, to be able to supply electrons to the conduction band.
  • two photons (7) it would also be possible for two photons (7) to be absorbed by two transitions from the valence band to the intermediate band.
  • an electron (8) in the intermediate band would be recombined with a gap in the valence band by an impact ionization process that would result in the pumping of a second electron (9) from the intermediate band to the conduction band (A. Luque et al., IEEE Transactions on Electron Devices 50, 447-454, 2003).
  • quantum dots has been proposed for the synthesis of intermediate band materials (A. Mart ⁇ et al. Proc. Of the 28th IEEE Photovoltaics Specialists Conference, edited by IEEE, New York, 2000).
  • IBSC prototypes based on quantum dots have recently been manufactured that have allowed experimentally demonstrate the principles of operation of the intermediate band solar cell (A. Luque et al., Applied Physics Letters 87, 083505-3, 2005; A Mart ⁇ et al., Physical Review Letters 97, 247701-4, 2006).
  • the use of quantum dots performed in these works is based on semiconductor heterostructures that use IU-V compounds.
  • the manufacturing cost of the cell remains of the same order of magnitude as that of a multlunion cell, so that lowering the price of photovoltaic kWh through quantum dots can only be achieved through the real achievement of devices with efficiencies significantly higher than those of multi-junction cells.
  • This invention relates to a process for obtaining thin films of semiconductor materials with an intermediate band and does not attempt to make parts with that material. Obtaining the mentioned thin films is done in the following stages:
  • the atmosphere in which the thermal process is performed is controlled, the vacuum being able to be without discarding another atmosphere.
  • the treatment Thermal is done directly on the powder of the stoichiometric mixture without having previously subjected it to the molding process under pressure.
  • a homogeneous powder which is now a powder of the intermediate band semiconductor material instead of a mixture of powders of its components. Pressing of the homogeneous powder to give it the consistency and form suitable for its location in an electrode of a sputtering equipment.
  • the simplest, without excluding other forms, consists of a tablet shape of the appropriate diameter and thickness to the electrodes of the sputtering equipment
  • Figure 1 Simplified band diagram of an intermediate band solar cell showing the intermediate band (1), the conduction band (3), the valence band (4), the total gap (2), the absorption process of a photon from the valence band to the intermediate band (6), from the intermediate band to the conduction band (5) and an example of generation by impact ionization whereby the absorption of two low energy photons (7) it gives rise again to the promotion of an electron from the intermediate band to the conduction band (9) when the energy of one of the electrons (8) is captured when recombining from the intermediate band to the valence band.
  • the compound chosen for the description of this preferred manufacturing mode is a typical compound of semiconductors that can have an intermediate band, without excluding other compounds or compositions.
  • the preferred method of manufacturing consists of several stages: (a) preparation and weighing of the materials; (b) preparation of the target for sputtering and (c) depositing the delegated layers of the composite material by means of sputtering.
  • the stage (a) of preparation and weighing of the materials consists in obtaining the gallium, arsenic and titanium materials.
  • Gallium is a material that is acquired in the form of ingots of at least 100 grams with a purity of 99.999% and is supplied on dry ice by having a melting point of 29.78 0 C.
  • the arsenic is supplied in crystalline form.
  • Titanium is supplied as a 20 micron particle powder with a purity of 99.7%.
  • the preparation of the materials consists in weighing the appropriate proportions to achieve a stoichiometric mixture with the proportions of the compound. This mixture consists; for 100 grams of compound, in 47.791 gr. Gallium, 51,877 gr. of arsenic and 0.332 gr. Titanium
  • the necessary quantities of the elements gallium, arsenic and titanium are available, they are mixed cold and the metallurgical process necessary to achieve the composite material is carried out.
  • This process consists of the introduction of the component materials in a quartz ampoule duly sealed by one of its ends, the ampoule is evacuated from the gases present and filled with Argon at a pressure of 10 ⁇ 3 Torr to avoid unwanted reactions of the component elements with oxygen and nitrogen from the air. Once the necessary argon pressure is achieved, the quartz vial is sealed at the other end.
  • a thermal cycle is carried out above the melting temperature of the three elements with soft rise and fall ramps, typically of the order of 1O 0 C per hour, without excluding other speeds. After this thermal cycle it is possible to crystallize the compound with suitable composition if the phase is stable. The result of this phase is a polycrystalline ingot of the desired composition.
  • Step (b) of the detailed manufacturing process consists in grinding the polycrystalline ingot into fine particles of the order of 20 microns without excluding other sizes. Once the powder of the compound with the desired composition is achieved, it is then introduced into a capsule, which is subjected to pressure, typically several atmospheres and at room temperature, without excluding other pressures or temperatures. The result of this stage is a pressed capsule of the composite material with the desired stoichiometry.
  • the step (c) of the preferred remanufacturing process consists in the introduction of the previous capsule in the support of the targets of a spray system Cathodic, normally refrigerated.
  • the vacuum cabin is closed and the tank parameters are adjusted, which are the radiofrequency power and the argon pressure in the hood, in accordance with the manufacturer's recommendations, without excluding other conditions.
  • the time required depends on the thickness of the film that is deposited, which will typically be of some microns, without excluding other thicknesses.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Photovoltaic Devices (AREA)

Abstract

La presente invención describe un procedimiento de obtención de películas delgadas de materiales semiconductores de banda intermedia consistente en la obtención de un blanco de partículas prensadas del dicho material para utilizarlo en un equipo de pulverización catódica. El blanco se obtiene mediante el proceso térmico de una mezcla de los componentes del material semiconductor, siguiendo un perfil específico de temperaturas y tiempos, para conseguir un material en forma policristalina de Ia misma composición que el material semiconductor de banda intermedia. El material policristalino se desagrega mediante procedimientos mecánicos nuevamente en forma de polvo y se compacta posteriormente, mediante Ia aplicación de presión en forma adecuada para formar un blanco.

Description

Título
PROCEDIMIENTO PARA LA OBTENCIÓN DE PELÍCULAS DE MATERIALES
SEMICONDUCTORES INCORPORANDO UNA BANDA INTERMEDIA
Sector Técnico Tecnología energética (conversores fotovoltaicos), tecnología óptica (LEDs y láseres), ingeniería de telecomunicaciones y medicina (sensores de radiación), instrumentación de laboratorio (fotodetectores). Estado de Ia Técnica Los "materiales de banda intermedia" constituyen Ia base de una nueva generación de dispositivos fotovoltaicos denominados "células solares de banda intermedia" (IBSC). Este nuevo tipo de célula solar fue patentada en el año 2001 (US Patent 6444897B1 ) sin que se diesen entonces ideas de cómo podrían obtenerse tales materiales de banda intermedia, con Ia excepción de su síntesis mediante tecnología de puntos cuánticos.
Un material de banda intermedia se caracteriza por exhibir una colección de niveles permitidos (1 ) para los electrones en el interior de Io que de otra forma sería Ia banda prohibida (2) de un semiconductor (Fig. 1 ). Para referirse a esta colección de niveles intermedios se prefiere el término de "banda" con el fin de poner énfasis en una serie de propiedades físicas que les son requeridas a estos niveles y que son más características de las bandas electrónicas de los semiconductores que de los niveles que los defectos puedan introducir también en el gap de un semiconductor. Así, por ejemplo, se requiere que estos niveles hagan posible Ia absorción de fotones, como se explicará después, y que, en un caso ideal, los procesos de recombinación desde Ia banda de conducción (3) a Ia banda intermedia (1 ) y desde Ia banda intermedia (1 ) a Ia banda de valencia (4) estén limitados radiativamente (es decir, por procesos, que emitan un fotón). Los fundamentos generales de esta teoría fueron publicados en 1997 por Luque y Martí (A. Luque y A. Martí, Physical Review Letters 78, 5014-5017, 1997).
La existencia de Ia banda intermedia resulta beneficiosa para el funcionamiento de una célula solar porque permite absorber dos fotones de energía inferior al gap, que de otra forma se perderían por ser el semiconductor transparente a ellos, para generar un par electrón-hueco. Además, resulta posible que esta absorción adicional de fotones se realice sin llevar asociada una degradación del voltaje de salida de Ia célula. La generación de este par electrón-hueco se realiza porque, por ejemplo, un fotón (5) bombea un electrón desde Ia banda de valencia a Ia banda intermedia y otro (6) desde Ia banda intermedia a Ia de conducción. La teoría general de Ia célula solar de banda intermedia señala que para que este mecanismo sea eficiente, Ia banda intermedia debería encontrarse medio llena de electrones con el fin de poseer tanto estados vacíos, para recibir electrones desde Ia banda de valencia, como llenos, para ser capaz de suplir electrones a Ia banda de conducción. Por otro lado, para Ia generación neta de un par electrón-hueco también sería posible que se absorbiesen dos fotones (7) mediante dos transiciones desde Ia banda de valencia a Ia banda intermedia. A continuación, un electrón (8) en Ia banda intermedia se recombinaría con un hueco en Ia banda de valencia mediante un proceso de ionización por impacto que daría lugar al bombeo de un segundo electrón (9) desde Ia banda intermedia a Ia banda de conducción (A. Luque et al., IEEE Transactions on Electron Devices 50, 447-454, 2003).
Se ha calculado que Ia eficiencia límite de conversión fotovoltaica para este nuevo tipo de célula solar es del 63.2 % (A. Luque y A. Martí, Progress in Photovoltaics: Res. Appl. 9, 73-86, 2001 ). El interés en Ia IBSC no solo reside en su elevada eficiencia límite, superior incluso al de un tándem dedos células solares en serie, sino en que basa su operación en un principio físico que abre Ia puerta a nuevo tipo de materiales -los materiales de banda intermedia- cuya utilización podría dar lugar finalmente a un coste de producción del kWh fotovoltaico competitivo con el producido por otras fuentes de energía.
Para Ia síntesis de materiales de banda intermedia se ha propuesto Ia utilización de puntos cuánticos (A. Martí et al. Proc. of the 28th IEEE Photovoltaics Specialists Conference, edited by IEEE, New York, 2000). De hecho, recientemente se han fabricado prototipos de IBSC basados en puntos cuánticos que han permitido demostrar experimentalmente los principios de funcionamiento de Ia célula solar de banda intermedia (A. Luque et al., Applied Physics Letters 87, 083505-3, 2005; A. Martí et al., Physical Review Letters 97, 247701-4, 2006). Sin embargo, Ia utilización de puntos cuánticos realizada en estos trabajos está basada en heteroestructuras semiconductoras que utilizan compuestos IU-V. En consecuencia, el coste de fabricación de Ia célula sigue siendo del mismo orden de magnitud que el de una célula de multlunión, por Io que el abaratamiento del precio del kWh fotovoltaico mediante puntos cuánticos solo podrá alcanzarse mediante Ia consecución real de dispositivos con eficiencias significativamente superiores a las de las células multiunión.
La literatura predice teóricamente Ia existencia de varios materiales que exhiban esta banda intermedia como una de sus características inherentes. Es el caso, por ejemplo, del CuGaS2 con un 25 % de Ga sustituido por Ti (P. Palacios et al. Physica Status Solidi a-Applications and Materials Science 203, 1395-1401 , 2006), del TixGa1-xP (P. Palacios et al. Physical Review B 73, 2006), del ZnS dopado con Cr (C.
Tablero, Physical Review B 74, 2006). Por otro lado, Yu et al. han encontrado evidencia experimental de Ia formación de múltiples bandas en semiconductores H-Vl con oxígeno diluido (Yu et al. Physical Review Letters 91 , 246403, 2003) y en compuestos cuaternarios de GaNAsP (K. M. Yu et al. Applied Physics Letters 88, 092110, 2006). En un contexto más general se ha defendido que bastaría una concentración suficientemente alta (superior al valor que define Ia transición de Mott) de impurezas que dan lugar a centros profundos para que se inhibiesen los mecanismos de recombinación no-radiativos asociados típicamente a estos niveles y pasasen a revelar propiedades de banda intermedia (Solicitud de patente P200503055; A. Luque et al. Physica B 382, 320-327, 2006).
Sin embargo, en ninguno de estos casos se menciona el procedimiento que se describe en esta patente como método de síntesis de un material de banda intermedia, que además es aplicable con generalidad a varios tipos de materiales y que se detalla en Ia próxima sección.
Descripción de Ia invención
Para explicar cómo nuestra invención permite Ia obtención práctica de materiales semiconductores incorporando una banda intermedia, hay que referirse a Ia metalurgia de materiales en forma de partículas conocida con el nombre de 'powder metallurgy' que, siendo conocida desde hace mas de cien años, desde hace unos 25
, años es utilizada de forma industrial para producir componentes mecánicos usando polvos metálicos y calentándolos justo por debajo de su punto de fusión. Entre los diferentes métodos de procesado de estas piezas se encuentra el más común, denominado 'press and sinter' que consiste en colocar el polvo del material en un molde y compactarlo a una presión determinada, para luego, una vez extraído del molde proceder al tratamiento térmico en atmósfera controlada. Hay otros métodos relacionados con esta técnica que incluyen Ia aplicación de presión y calor simultáneamente, el forjado de las preformas después de prensadas o Ia inyección.
Sin embargo, Ia mayoría de las soluciones y métodos industriales van encaminados a conseguir fabricar piezas con procedimientos^ baratos y con poca necesidad de mecanizado posterior para cumplir tolerancias y dimensiones. Estas motivaciones no existen en el objetivo de esta patente, por cuanto se trata de un procedimiento que si bien está relacionado con Ia metalurgia de materiales en forma de partículas presenta las características que se describen a continuación y que además permiten distinguirla de Ia metalurgia de polvo convencional:
Esta invención se refiere a un procedimiento para Ia obtención de películas delgadas de materiales semiconductores con una banda intermedia y no trata de hacer piezas con ese material. La obtención de las películas delgadas mencionadas se realiza en las siguientes etapas:
Preparación de Ia mezcla de los componentes del material semiconductor en forma de polvo, mediante Ia selección de las proporciones necesarias para que Ia mezcla sea estequiométrica , pero sin excluir otras proporciones - procesado térmico de Ia mezcla de los componentes del material semiconductor obtenida en Ia etapa anterior por encima del puntó de fusión de sus componentes hasta su síntesis en forma de material policristalino semiconductor termodinámicamente estable. En esta parte del procesado no es necesario Ia utilización de molde porque Ia forma que adquiera el material resultante del proceso térmico no es importante para el resto del procesado.
Una vez se ha conseguido el material semiconductor según se ha descrito en
Ia etapa anterior, éste tendrá Ia forma que se derive del soporte que se haya utilizado. Una posibilidad, sin descartar otros métodos de soportar el material
1 durante el proceso térmico, es encerrar Ia mezcla de los componentes del material semiconductor en una ampolla de cuarzo cerrada al vacío, de forma que se evite Ia contaminación de Ia mezcla a alta temperatura. Por consiguiente, de una forma similar a Ia metalurgia de polvo convencional, en esta invención Ia atmósfera en Ia que se realiza el proceso térmico es controlada, pudiendo ser el vacío sin descartar otra atmósfera. Sin embargo, a diferencia del proceso metalúrgico de polvo convencional, el tratamiento térmico se hace directamente sobre el polvo de Ia mezcla estequiométrica sin haberla sometido previamente al proceso de moldeado bajo presión.
- desagregación del material policristalino obtenido en Ia etapa anterior mediante su molido mecánico hasta Ia obtención de un polvo homogéneo, que ahora es un polvo del material semiconductor de banda intermedia en lugar de una mezcla de polvos de sus componentes. prensado del polvo homogéneo hasta darle Ia consistencia y forma adecuada para su ubicación en un electrodo de un equipo de pulverización catódica. Lo más sencillo, sin excluir otras formas, consiste en una forma de pastilla del diámetro y espesor adecuados a los electrodos del equipo de pulverización catódica
- obtención de películas delgadas del material semiconductor de banda intermedia mediante Ia pulverización catódica del polvo prensado.
Descripción de los dibujos
Figura 1. Diagrama de bandas simplificado de una célula solar de banda intermedia mostrando Ia banda intermedia (1), Ia banda de conducción (3), Ia banda de valencia (4), el gap total (2), el proceso de absorción de un fotón desde Ia banda de valencia a Ia banda intermedia (6), desde Ia banda intermedia a Ia banda de conducción (5) y un ejemplo de generación por ionización por impacto por el cual Ia absorción de dos fotones de baja energía (7) da lugar de nuevo a Ia promoción de un electrón desde Ia banda intermedia a Ia de conducción (9) al capturarse Ia energía de uno de los electrones (8) al recombinarse desde Ia banda intermedia a Ia de valencia.
Modo de fabricación preferente
El compuesto elegido para Ia descripción de este modoi de fabricación preferente, Ga099AsTi00I, es un compuesto típico de los semiconductores que pueden presentar banda intermedia, sin excluir otros compuestos ni composiciones. El método preferente de fabricación consiste en varias etapas: (a) preparación y pesado de los materiales; (b) elaboración del blanco para pulverización catódica y (c) depósito de las capas delegadas del material compuesto mediante Ia pulverización catódica.
La etapa (a) de preparación y pesado de los materiales consiste en Ia obtención de los materiales galio, arsénico y titanio. El galio es un material que se adquiere en forma de lingotes de 100 gramos como mínimo con una pureza de 99,999% y se suministra en hielo seco por tener un punto de fusión de 29.780C. El arsénico se suministra en forma cristalina. El titanio se suministra en forma de polvo de partículas de 20 mieras con una pureza de 99.7%.
La preparación de los materiales consiste en pesar las proporciones adecuadas para conseguir una mezcla estequiométrica con las proporciones del compuesto. Esta mezcla consiste; para 100 gramos de compuesto, en 47.791 gr. de galio, 51.877 gr. de arsénico y 0.332 gr. de titanio.
Una vez se dispone de las cantidades necesarias de los elementos galio, arsénico y titanio se procede a mezclarlos en frío y se realiza el proceso metalúrgico necesario para conseguir el material compuesto. Este proceso consiste en Ia introducción de los materiales componentes en una ampolla de cuarzo debidamente sellada por uno de sus extremos, Ia ampolla es evacuada de los gases presentes y se rellena con Argón a una presión de 10~3 Torr para evitar reacciones indeseadas de los elementos componentes con el oxígeno y el nitrógeno del aire. Una vez conseguida Ia presión de argón necesaria se procede a sellar Ia ampolla de cuarzo por el otro extremo. A continuación se procede a realizar un ciclo térmico por encima de Ia temperatura de fusión de los tres elementos con rampas de subida y de bajada suaves, típicamente del orden de 1O0C por hora, sin excluir otras velocidades. Tras este ciclo térmico se consigue cristalizar el compuesto con composición adecuada si Ia fase es estable. El resultado de esta fase es un lingote policristalino de Ia composición deseada.
El paso (b) del proceso detallado de fabricación consiste en el molido del lingote policristalino en partículas finas del orden de 20 mieras sin excluir otros tamaños. Conseguido así el polvo del compuesto con Ia composición deseada se procede a introducirlo en una cápsula, Ia cual se somete a presión, típicamente varias atmósferas y a temperatura ambiente, sin excluir otras presiones o temperaturas. El resultado de esta etapa es una cápsula prensada del material compuesto con Ia estequiometría deseada-.
El paso (c) del proceso refabricación preferente consiste en Ia introducción de Ia cápsula anterior en el soporte de los blancos de un sistema de pulverización catódica, normalmente refrigerado. Se procede a cerrar Ia cabina de vacío y se ajustan los parámetros del depósito que son Ia potencia de radiofrecuencia y Ia presión de argón en Ia campana, de acuerdo con las recomendaciones del fabricante, sin excluir otras condiciones. El tiempo necesario depende del espesor de Ia película que se deposite, que será típicamente de alguna mieras, sin excluir otros espesores.

Claims

Reivindicaciones
1. Procedimiento para Ia obtención de películas de materiales semiconductores con una banda intermedia caracterizado porque comprende las siguientes etapas:
Preparación de Ia mezcla de los componentes del material semiconductor en forma de polvo, procesado térmico de Ia mezcla de los componentes del material semiconductor obtenida en Ia etapa anterior por encima del punto de fusión de sus componentes hasta su síntesis en forma de material policristalino semiconductor termodinámicamente estable, desagregación del material policristalino obtenido en Ia etapa anterior mediante su molido mecánico hasta Ia obtención de un polvo homogéneo, - prensado del polvo homogéneo hasta darle Ia consistencia y forma adecuada para su ubicación en un electrodo de un equipo de pulverización catódica,
Obtención de películas delgadas del material semiconductor de banda intermedia mediante Ia pulverización catódica del polvo prensado.
2. Procedimiento según reivindicación 1 caracterizado porque, en una realización preferida, el material semiconductor consiste en una mezcla estequiométrica de sus componentes.
3. Procedimiento según las reivindicaciones 1 o 2 caracterizado porque, en una realización preferida, antes del procesado térmico, se introduce Ia mezcla de los componentes del material semiconductor en un recipiente en el que existe una atmósfera controlada para evitar Ia contaminación de Ia mezcla a altas temperaturas.
PCT/ES2009/000038 2008-02-28 2009-01-27 Procedimiento para la obtención de películas de materiales semiconductores incorporando una banda intermedia WO2009106654A1 (es)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP09715579A EP2256791A4 (en) 2008-02-28 2009-01-27 METHOD FOR OBTAINING SEMICONDUCTOR MATERIAL FILMS COMPRISING AN INTERMEDIATE BAND
US12/919,619 US20110100797A1 (en) 2008-02-28 2009-01-27 Procedure for obtaining films of intermediate band semiconductor materials

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP200800571 2008-02-28
ES200800571A ES2302663B2 (es) 2008-02-28 2008-02-28 Procedimiento para la obtencion de peliculas de materiales semiconductores incorporando una banda intermedia.

Publications (1)

Publication Number Publication Date
WO2009106654A1 true WO2009106654A1 (es) 2009-09-03

Family

ID=39577393

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2009/000038 WO2009106654A1 (es) 2008-02-28 2009-01-27 Procedimiento para la obtención de películas de materiales semiconductores incorporando una banda intermedia

Country Status (4)

Country Link
US (1) US20110100797A1 (es)
EP (1) EP2256791A4 (es)
ES (1) ES2302663B2 (es)
WO (1) WO2009106654A1 (es)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6444897B1 (en) 1999-06-09 2002-09-03 Universidad Politecnica De Madrid Intermediate band semiconductor photovoltaic solar cell
US20060201583A1 (en) * 2003-01-07 2006-09-14 Michaluk Christopher A Powder metallurgy sputtering targets and methods of producing same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW232079B (es) * 1992-03-17 1994-10-11 Wisconsin Alumni Res Found
WO2005037566A1 (ja) * 2003-10-16 2005-04-28 Ricoh Company, Ltd. 相変化型光記録媒体及びその製造方法、スパッタリングターゲット、並びに光記録媒体の使用方法及び光記録装置
ES2276624B2 (es) * 2005-12-13 2008-03-16 Universidad Politecnica De Madrid Metodo para la supresion de la recombinacion no radiativa en materiales dopados con centros profundos.
WO2007077114A1 (de) * 2006-01-03 2007-07-12 Basf Se Photovoltaisch aktives halbleitermaterial und photovoltaische zelle

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6444897B1 (en) 1999-06-09 2002-09-03 Universidad Politecnica De Madrid Intermediate band semiconductor photovoltaic solar cell
US20060201583A1 (en) * 2003-01-07 2006-09-14 Michaluk Christopher A Powder metallurgy sputtering targets and methods of producing same

Non-Patent Citations (17)

* Cited by examiner, † Cited by third party
Title
A. LUQUE ET AL., APPLIED PHYSICS LETTERS, vol. 87, 2005, pages 083505 - 3
A. LUQUE ET AL., IEEE TRANSACTIONS ON ELECTRON DEVICES, vol. 50, 2003, pages 447 - 454
A. LUQUE ET AL., PHYSICA B, vol. 382, 2006, pages 320 - 327
A. LUQUE; A. MARTI, PHYSICAL REVIEW LETTERS, vol. 78, 1997, pages 5014 - 5017
A. LUQUE; A. MARTI, PROGRESS IN PHOTOVOLTAICS: RES. APPL., vol. 9, 2001, pages 73 - 86
A. MARTI ET AL., PHYSICAL REVIEW LETTERS, vol. 97, 2006, pages 247701 - 4
A. MARTI ET AL., PROC. OF THE 28TH IEEE PHOTOVOLTAICS SPECIALISTS CONFERENCE, 2000
C. TABLERO: "74", PHYSICAL REVIEW B, 2006
CUADRA, L. ET AL.: "Present status of intermediate band solar cell research", THIN SOLID FILMS, vol. 451-452, 2004, pages 593 - 599 *
K. M. YU ET AL., APPLIED PHYSICS LETTERS, vol. 88, 2006, pages 092110
P. PALACIOS ET AL., PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, vol. 203, 2006, pages 1395 - 1401
P. PALACIOS ET AL., PHYSICAL REVIEW B, vol. 73, 2006
See also references of EP2256791A4
TABLERO, C. ET AL.: "Properties of intermediate band materials", SOLAR ENERGY MATERIALS & SOLAR CELLS, vol. 87, 2005, pages 323 - 331 *
WAHNON, P. ET AL.: "Ab-initio spin polarized electronic structure calculations for TixGanAsm photovoltaic materials", JOURNAL OF MATERIALS SCIENCE, vol. 40, 2005, pages 1383 - 1386 *
YU ET AL., PHYSICAL REVIEW LETTERS, vol. 91, 2003, pages 246403
YU, K.M. ET AL.: "Diluted II-VI oxide semiconductors with multiple band gaps.", PHYSICAL REVIEW LETTERS, vol. 91, 11 December 2003 (2003-12-11), pages 246403 *

Also Published As

Publication number Publication date
ES2302663B2 (es) 2009-02-16
EP2256791A1 (en) 2010-12-01
ES2302663A1 (es) 2008-07-16
EP2256791A4 (en) 2011-06-01
US20110100797A1 (en) 2011-05-05

Similar Documents

Publication Publication Date Title
Shi et al. Tin selenide (SnSe): growth, properties, and applications
Roghabadi et al. Stability progress of perovskite solar cells dependent on the crystalline structure: From 3D ABX 3 to 2D Ruddlesden–Popper perovskite absorbers
Fu et al. Black phosphorus quantum dots as dual-functional electron-selective materials for efficient plastic perovskite solar cells
Zhang et al. Controlled growth of bismuth antimony telluride BixSb2− xTe3 nanoplatelets and their bulk thermoelectric nanocomposites
Ye et al. Stabilizing the black phase of cesium lead halide inorganic perovskite for efficient solar cells
US9847469B2 (en) Natural-superlattice-structured thermoelectric material
CN103390721B (zh) 热电材料以及包括其的热电元件、热电模块和热电装置
CN110963474A (zh) 一种黑磷基纳米材料的制备方法
US20140174494A1 (en) Thermoelectric material, thermoelectric element and apparatus including the same, and preparation method thereof
Al Mamun et al. Unveiling the irreversible performance degradation of organo-inorganic halide perovskite films and solar cells during heating and cooling processes
Fan et al. Ultrafast, energy-efficient synthesis of intermetallics; Microwave-induced metal plasma (MIMP) synthesis of Mg2Sn
US20210074900A1 (en) ZrNiSn-BASED HALF-HEUSLER THERMOELECTRIC MATERIAL AND PROCESS FOR MANUFACTURING SAME AND FOR REGULATING ANTISITE DEFECTS THEREIN
ES2302663B2 (es) Procedimiento para la obtencion de peliculas de materiales semiconductores incorporando una banda intermedia.
Masood et al. Structural, surface and optical investigations of Cu+ implanted NiO film prepared by reactive sputtering
Phan Vu et al. Three-photon absorption induced photoluminescence in organo-lead mixed halide perovskites
Sekar et al. Significance of Formamidinium Incorporation in Perovskite Composition and Its Impact on Solar Cell Efficiency: A Mini‐Review
Berry et al. Single crystal growth tricks and treats
JP5660528B2 (ja) GaあるいはSnでドーピングされたバルク状マンガンシリサイド単結晶体あるいは多結晶体およびその製造方法
JP4072620B2 (ja) 酸化亜鉛超微粒子および酸化亜鉛超微粒子の製造方法
Serpa et al. TiO2 aerogel as interlock layer improves thermal stability in perovskite solar cells
JP6008282B2 (ja) Geクラスレートの製造方法
Chen et al. Could two-dimensional perovskites fundamentally solve the instability of perovskite photovoltaics
Liu et al. and Its First-Principles Analysis
Qi et al. Implementation of a Multi‐Functional‐Group Strategy for Enhanced Performance of Perovskite Solar Cells through the Incorporation of 3‐Amino‐4‐Phenylbutyric Acid Hydrochloride
KR101717750B1 (ko) 이종 금속 및 산화물이 첨가된 화합물 반도체 및 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09715579

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009715579

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12919619

Country of ref document: US