WO2009105968A1 - 干燥系统以及干燥方法 - Google Patents

干燥系统以及干燥方法 Download PDF

Info

Publication number
WO2009105968A1
WO2009105968A1 PCT/CN2009/000212 CN2009000212W WO2009105968A1 WO 2009105968 A1 WO2009105968 A1 WO 2009105968A1 CN 2009000212 W CN2009000212 W CN 2009000212W WO 2009105968 A1 WO2009105968 A1 WO 2009105968A1
Authority
WO
WIPO (PCT)
Prior art keywords
absorption
solution
drying
absorbent
absorption solution
Prior art date
Application number
PCT/CN2009/000212
Other languages
English (en)
French (fr)
Inventor
苏庆泉
Original Assignee
Su Qingquan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Su Qingquan filed Critical Su Qingquan
Publication of WO2009105968A1 publication Critical patent/WO2009105968A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1425Regeneration of liquid absorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/34Regenerating or reactivating
    • B01J20/3416Regenerating or reactivating of sorbents or filter aids comprising free carbon, e.g. activated carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/34Regenerating or reactivating
    • B01J20/3433Regenerating or reactivating of sorbents or filter aids other than those covered by B01J20/3408 - B01J20/3425
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/34Regenerating or reactivating
    • B01J20/345Regenerating or reactivating using a particular desorbing compound or mixture
    • B01J20/3458Regenerating or reactivating using a particular desorbing compound or mixture in the gas phase
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B15/00Sorption machines, plants or systems, operating continuously, e.g. absorption type
    • F25B15/02Sorption machines, plants or systems, operating continuously, e.g. absorption type without inert gas
    • F25B15/06Sorption machines, plants or systems, operating continuously, e.g. absorption type without inert gas the refrigerant being water vapour evaporated from a salt solution, e.g. lithium bromide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/50Aspects relating to the use of sorbent or filter aid materials
    • B01J2220/56Use in the form of a bed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2315/00Sorption refrigeration cycles or details thereof
    • F25B2315/002Generator absorber heat exchanger [GAX]

Definitions

  • the present invention relates to a drying technique in combination with an absorption heat pump technology in the field of thermal energy engineering, and more particularly to a drying system which is driven by a low temperature heat source and which is capable of recycling a drying gas and a drying method.
  • a mixture of ethanol and water is distilled at 1 atm.
  • the steam and liquid produced after distillation have a composition of 96% ethanol and 4% water, and the azeotropic temperature is low. It is also called the lowest azeotrope at the boiling point of ethanol (78. 3 ⁇ ) and the boiling point of water (100 ⁇ ).
  • anhydrous ethanol >99%
  • the conventional rectification method has been unable to do so. Therefore, adsorption and separation are generally used to obtain high-purity ethanol, that is, by using dried materials.
  • the water in the azeotrope vapor is adsorbed to increase the concentration of ethanol.
  • the dried material After the amount of water adsorbed by the dried material reaches a saturated adsorption amount, the dried material is dried and regenerated.
  • the collected grain and tea leaves are easy to develop buds or rot and deteriorate in the case of high water content, so it is necessary to dehydrate and dry the grains, tea and other materials to a long-term preservation.
  • the embryos of the pottery also need to be dried, and the water content must be below a certain threshold to carry out the next process.
  • the existing drying system when the material is dried, high-temperature dry air or nitrogen is generally used as a drying gas to pass the dried material. At a high temperature, the water in the material is evaporated and taken away by the drying gas, thereby Achieve the purpose of drying and dehydrating materials. Therefore, the existing drying system needs to be equipped with a special high-temperature dry air or nitrogen preparation device 160 for the drying device 20.
  • the above-mentioned high-temperature air or nitrogen is usually discharged after being discharged from the dried material, and if it is selected for recycling, it must be The drying gas is cooled to condense and remove water in the desorbed gas and then heated. Therefore, the existing drying technology has a high energy consumption.
  • the main object of the present invention is to overcome the problems of the prior drying system and the drying method, and to provide a new drying system and a drying method.
  • the technical problem to be solved is to use low temperature waste heat to prepare a high temperature dry drying gas, thereby further Suitable for practical use.
  • a drying system comprising: a drying device for accommodating a material to be dried; and a drying gas supply device having an absorption solution circulating therein, the drying gas supply device comprising: an absorption tower, a built-in filler a generator having a heat exchanger built therein for increasing the concentration of the absorption solution; and an absorbent crystallizer for receiving the absorption solution from the absorption tower and/or the generator and cooling to form an absorption crystallization and absorption after crystallization a solution, the post-crystallization absorption solution is sent to a generator, and the absorbent is crystallized and sent to an absorption tower; a dry dry gas pipeline is provided at the top of the absorption tower for supplying dry drying gas to the drying device; The bottom of the drying device is provided with a wet drying gas pipe for introducing the drying gas output from the drying device into the absorption tower.
  • the drying system wherein the drying gas supply device further comprises an absorption solution from the heat exchanger, an absorption solution from the generator and/or an absorption solution from the absorption tower, and an absorption solution after crystallization. And/or absorption of the absorbing agent or absorption solution containing the crystallization of the absorbent.
  • the drying gas supply device further comprises: an absorption solution from the heat exchanger for exchanging heat between the absorption solution from the absorption tower and the post-crystallization absorption solution from the absorbent crystallizer.
  • the drying gas supply device further comprises: an absorption solution from the heat exchanger, for absorbing the absorption solution from the absorption tower with the absorbent from the absorbent crystallizer or absorbing the absorption of the absorbent crystal.
  • the solution is subjected to heat exchange.
  • the drying gas supply device further comprises: an absorption solution from the heat exchanger for crystallizing or containing the absorption solution from the absorption tower and the crystallization absorption solution and the absorbent from the absorbent crystallizer.
  • the absorption solution of the crystallization of the absorbent undergoes heat exchange.
  • the drying gas supply device further comprises: an absorption solution from the heat exchanger, configured to mix the absorption solution from the absorption tower with the absorption solution from the generator, and from the absorbent crystallizer. After crystallization, the absorption solution and the absorbent crystals or the absorption solution containing the absorbent crystals are subjected to heat exchange.
  • the drying system wherein the drying gas supply device further comprises a condenser connected to the generator through a vapor passage, and a condensation heat exchanger is disposed in the condenser.
  • the front drying system wherein the generator is in the form of a tower, wherein the generator is further provided with a packing layer, a spraying device, an air inlet and an air outlet, and the packing layer is disposed inside the generator.
  • the spraying device In the middle position, the spraying device is disposed in the upper space of the packing layer; the air inlet is located below the packing layer, and the air outlet is located above the spraying device.
  • drying the dried material in the drying device comprises the steps of: introducing a dry drying gas into the drying device to dehydrate the dried material, and drying the dry gas containing water to become wet and dry.
  • the wet drying gas is introduced into the absorption tower and contacted with the absorption solution, the absorption solution absorbs the water in the wet drying gas and releases heat, and the temperature of the drying gas is increased to form a dry drying gas; the absorption solution at the bottom of the absorption tower is derived.
  • the absorbent crystallizer and perform cooling crystallization and solid-liquid separation to form an absorbent crystal and crystallize the absorption solution.
  • the absorption solution is led out to the generator, and the absorbent crystal or the absorption solution containing the absorbent crystal is introduced into the top of the absorption tower. And heating the absorption solution in the generator to generate water vapor while concentrating the absorption solution, and introducing the concentrated absorption solution into the absorption tower.
  • the foregoing drying method further comprises: the absorption solution and the absorbent crystallizer outputted by the absorption tower before the absorption solution is sent to the generator after the crystallization, and the absorption solution output from the absorption tower is cooled. After the output crystallizes, it absorbs and dissolves to exchange heat.
  • the foregoing drying method further comprises: outputting the absorption tower before the absorption crystallization of the absorbent or the absorption solution containing the absorbent crystal is sent to the absorption tower, and the absorption solution output from the absorption tower is cooled.
  • the absorption solution exchanges heat with the absorbent crystals output from the absorbent crystallizer or the absorption solution containing the absorbent crystals.
  • the foregoing drying method further comprises: before the crystallization solution is transported to the generator after the crystallization, the absorption crystallization or the absorption solution containing the absorbent crystal is sent to the absorption tower, and the absorption solution output from the absorption tower is performed. Before cooling, the absorption solution output from the absorption tower exchanges heat with the crystallization absorption solution and the absorbent crystal or the absorption solution containing the absorbent crystal output from the absorbent crystallizer.
  • the prior drying method further comprises: transporting the absorption solution to the crystallization after the crystallization Before the generator, the absorbing agent crystal or the absorption solution containing the absorbing agent is transported to the absorption tower, and before the absorption solution output from the absorption tower is cooled, the absorption solution outputted by the generator is mixed with the absorption solution output from the absorption tower to form a mixed absorption solution.
  • the mixed absorption solution exchanges heat with the crystallization absorption solution and the absorbent crystals or the absorption solution containing the absorbent crystals output from the absorbent crystallizer.
  • the dried material in the drying device is dried by the drying system described above, which comprises the steps of: introducing a dry drying gas into the drying device, the dry drying gas passing through the dried material , the dried material is dehydrated, and the dry dry gas contains water to become a wet drying gas; the wet drying gas is introduced into the absorption tower and contacted with the absorption solution, the absorption solution absorbs the water in the wet drying gas and releases heat, and the temperature of the dried air is obtained.
  • the absorption solution at the bottom of the absorption tower is led to the absorbent crystallizer, and is cooled and crystallized and solid-liquid separated to form an absorbent crystal and a crystallization solution, after which the absorption solution is led out to the generator.
  • the crystallization of the absorbent or the absorption solution containing the crystal is introduced into the top of the absorption tower; and the absorption solution is heated in the generator and air is introduced, the air is contacted with the absorption solution in the generator, and the humid air is discharged, and the absorption solution is concentrated and concentrated.
  • the absorption solution is introduced into the absorption tower.
  • the drying system and the drying method of the present invention can recycle the drying gas to avoid waste of drying gas, waste of heat carried by the drying gas, and resource saving.
  • the dry gas supply device of the present invention can use low temperature waste heat as a heat source to provide a higher temperature dry gas, so that the low temperature heat source can be effectively utilized. Since the drying gas is in a circulating state, the adsorbate resources contained in the dried material can be recovered.
  • FIG. 1 is a flow chart showing the first embodiment of the drying system of the present invention.
  • Fig. 2 is a flow chart showing the first embodiment of the drying system of the present invention.
  • Figure 3 is a flow chart of Embodiment 3 of the drying system of the present invention.
  • 4 is a flow chart of Embodiment 4 of the drying system of the present invention.
  • Figure 5 is a flow chart of Embodiment 5 of the drying system of the present invention.
  • Figure 6 is a flow chart of Embodiment 6 of the drying system of the present invention.
  • Figure 7 is a flow chart of a prior art drying system.
  • Condensing heat exchanger 141 Absorbent crystallizer
  • Drying device 21 The best way to achieve the invention by the dry material
  • the drying system mainly comprises: a drying device 20 and a drying gas supply device 10.
  • the drying device 20 is for accommodating the dried material 21, and the dried material may be activated carbon, molecular crystallization, silica gel, activated alumina and polymer, etc., or cereals, tea leaves, ceramic embryos.
  • the drying gas supply device 10 is configured to supply the drying device 20 with a high-temperature dry drying gas (hereinafter referred to as dry drying gas), and to dry the drying process (due to the desorbed and desorbed adsorbent therein, Hereinafter, it is referred to as wet drying gas) to re-dry and heat up while separating the water which has been taken out.
  • dry drying gas a high-temperature dry drying gas
  • wet drying gas adsorbent crystallizer
  • the generator 11 has a built-in heat generating device 110 for supplying a heat source to heat the absorbing solution in the generator, evaporating water in the absorbing solution to form a vapor, and absorbing the solution to be concentrated.
  • the heat source is a low temperature heat source, which is a heat source used in an industrial process and is generally wasted.
  • the generator 11 is also provided with a vapor passage 19 for discharging the vapor, and the discharged vapor is ready for use.
  • the concentrated absorption solution obtained by the generator 11 is sent to the absorption tower 12 through a line 143.
  • the absorbent crystallizer 141 has an absorption solution introduction port, an absorption solution outlet port, and an absorbent crystallizing outlet port.
  • the absorption solution introduction port is connected to the bottom of the absorption tower 12, and the absorption solution outlet port is connected to the top of the generator 11.
  • the absorbent crystallization outlet is connected to the top of the absorption tower 12 via a conduit 143.
  • a low-temperature cold source is used to cool and crystallize the absorption solution, and crystallization occurs when the absorption solution reaches a freezing point.
  • the absorption solution is cooled and crystallized, and after solid-liquid separation, the absorbent crystals are transported through a pipe 143 to the absorption tower 12, and the crystallized absorption solution is piped to the generator 11 for concentration.
  • the above-mentioned absorbent crystallizer 141 may have a cold source temperature of - 18 to 60 °C.
  • the absorbent crystallizer is arranged to cool and crystallize the absorption solution outputted from the absorption tower.
  • the working concentration of the solution is absorbed by the generator which is kept low, so that the absorption solution can be concentrated by using the low temperature residual heat as the driving heat source of the generator.
  • the concentration of the absorption solution of the absorption tower can be significantly increased, so that a higher temperature absorption heat can be obtained in the absorption tower, so that the dry drying gas has higher temperature and lower water content, which is favorable for drying. Drying of the material to be dried in the apparatus, thereby improving drying efficiency.
  • the absorption tower 12 has a built-in packing layer 121, and a wet drying gas pipe 124 is provided at a lower portion of the packing layer 121.
  • the wet drying gas pipe 124 is connected to the drying device 20 to receive the wet drying gas output from the drying device.
  • a thousand dry gas pipe 123 is disposed at the top of the absorption tower 12, and the dry drying gas pipe 123 is connected to the drying device 20 to supply dry drying gas to the drying device; and a spraying device 122 is disposed on the upper portion of the packing layer 121 for
  • the high-concentration absorption solution conveyed from the pipe 143 is sprayed downward; the wet drying gas output from the drying device 20 flows upward from the bottom of the absorption tower, and the moisture contained therein is absorbed when the wet drying gas is in contact with the high-concentration absorption solution. At the same time, the absorption heat is released to raise the temperature of the drying gas.
  • the packing layer 121 serves to sufficiently contact the wet drying gas with a high concentration of the absorbing solution.
  • the drying gas flows from the bottom of the tower to the top of the tower, the water is continuously absorbed and the temperature of the drying gas is continuously increased.
  • the spraying device 122 When the spraying device 122 is reached, the water content of the drying gas is the lowest and the temperature reaches the highest to become the dry drying gas. And is delivered to the drying device 20. After a drying process, the dry drying gas becomes a wet drying gas, and then is again sent to the absorption tower, and the wet drying gas becomes dry dry gas, thereby forming Dry and wet cycle process into dry gas.
  • the drying system of the present embodiment When the drying system of the present embodiment is used for adsorption separation, the adsorption separation process is performed in the drying device 20, and the dry gas supply device 10 does not operate; after the dried material (such as molecular sieve) in the drying device 20 reaches a saturated adsorption amount, There is a need for a regeneration process in which the material to be dried (molecular sieve) is desorbed and desorbed.
  • the dry dry gas pipe 123 provides a dry gas (such as nitrogen or air) which is dried at a high temperature. Since the desorption process is generally an endothermic process, the high temperature drying gas is advantageous for the desorption of the adsorbed mass.
  • the drying system of this embodiment is used to dry cereal or ceramic embryos, it is the same process as regeneration of the adsorbent.
  • the absorbing solution is cooled in the absorbent crystallizer 141 to form an absorbent crystal and a crystallization solution, and the crystallization of the absorbent described in Example 1 and the following examples is not intended to limit it to only the absorbent crystal particles, which may also It is an absorption solution containing crystal particles of an absorbent.
  • the drying system further has an absorption solution from the heat exchanger 150, disposed between the absorption tower 12 and the absorbent crystallizer 141, for the absorption solution and the absorbent from the absorption tower 12, as compared with the embodiment 1.
  • the crystallization-absorbing solution and the crystal-containing absorption solution output from the crystallizer 141 are subjected to heat exchange. Since the temperature of the absorbing solution from the absorption tower 12 is much higher than the temperature of the absorbing agent crystallized from the absorbent crystallizer 141 and the absorbing solution after crystallization, the temperature of the absorbing solution entering the absorbent crystallizer 141 is greatly lowered after the heat exchange.
  • the amount of cold of the cold source for cooling the absorption solution can be reduced.
  • the temperature of the crystallization of the absorbent from the absorbent crystallizer after heat exchange is greatly increased, and is transported to the absorption tower to absorb the same amount of water, and the absorption heat can be released at a higher working temperature, thereby The temperature of the dry drying gas supplied from the absorption tower is increased, thereby improving the drying efficiency of the dried material in the drying device.
  • the temperature of the absorption solution after crystallization from the absorbent crystallizer is greatly increased, and is sent to the generator to evaporate the same working fluid vapor. This embodiment can reduce the consumption of low temperature heat sources due to enthalpy. , thereby improving energy efficiency.
  • the dry gas supply device 10 further includes a condenser 13 connected to the generator 11 through a vapor passage 19, and a condensing heat exchanger 130 is disposed in the condenser, so that the vapor can be cooled to a liquid for recovery. .
  • FIG. 3 is a flowchart of Embodiment 3 of the present invention.
  • the drying system and the embodiment 1 also has an absorption solution from the heat exchanger 150 for exchanging the absorption solution from the absorption tower 12 with the absorbent crystal (or the absorption solution containing the absorbent crystal) output from the absorbent crystallizer 141,
  • the heat-absorbed absorption solution from the absorption tower 12 is input to the absorbent crystallizer 141 for cooling crystallization and solid-liquid separation; the heat-treated absorbent crystals output from the absorbent crystallizer 141 are transported through the pipe 143 to In the absorption tower 12.
  • the absorbing solution of the generator 11 is also input to the absorption tower 12 via the pipe 143, whereby the absorbing solution output from the generator 11 is crystallized and mixed with the heat-treated absorbent, and is input into the absorption tower.
  • the post-crystallization absorption solution output from the absorbent crystallizer 141 is sent to the generator 11. Since the temperature of the absorbing solution from the absorption tower 12 is much higher than the temperature of the crystallization of the absorbent output from the absorbent crystallizer 141, the temperature of the absorbing solution entering the absorbent crystallizer 141 is greatly lowered after the heat exchange, so that the use can be reduced.
  • the cooling capacity of the cold source that cools the absorption solution.
  • the temperature of the crystallization of the absorbent from the absorbent crystallizer after heat exchange is greatly increased, and is transported to the absorption tower to absorb the same amount of water, and the absorption heat can be dried at a higher working temperature.
  • the temperature of the dry drying gas provided by the absorption tower can be increased, thereby improving the drying efficiency of the dried material in the drying apparatus.
  • the drying system further has an absorption solution from the heat exchanger 150 for heat exchange between the absorption solution from the absorption tower 12 and the absorption solution after being crystallized from the absorbent crystallizer 141, as compared with the first embodiment.
  • the heat absorbing solution from the absorption tower 12 is sent to the absorbent crystallizer 141 for cooling crystallization and solid-liquid separation, and the absorbing solution after heat exchange is sent to the generator 11.
  • the absorption solution of the output of the generator 11 and the absorbent crystals (or the absorption solution containing the absorbent crystals) output from the absorbent crystallizer 141 are sent to the absorption tower 12 through a pipe 143.
  • the temperature of the absorbing solution from the absorption tower 12 is much higher than the temperature of the absorbing solution after crystallization from the absorbent crystallizer 141, the temperature of the absorbing solution entering the absorbent crystallizer 141 is greatly lowered after heat exchange, thereby being able to be reduced The amount of cold source used to cool the absorption solution.
  • the temperature of the absorbing solution after crystallization from the absorbent crystallizer is greatly increased, and is transported to the generator, which can reduce the amount of the driving heat source of the generator, thereby reducing energy consumption.
  • FIG. 5 is a flowchart of Embodiment 5 of the present invention.
  • the drying system also has an absorption solution from the heat exchanger 150 as compared to Example 1.
  • the absorption solution output pipe of the generator 11 is connected to the absorption solution output pipe of the absorption tower 12, and the connected node is located in the absorption solution.
  • the absorbing solution from the generator 11 is mixed with the absorbing solution from the absorption tower 12, and then enters the absorbing solution from the heat exchanger 150, and the sorbent which is output from the absorbent crystallizer 141 is crystallized and crystallized, and the absorbing solution is simultaneously subjected to heat exchange.
  • the absorbing solution is sent to the generator 11 through the absorption solution input pipe.
  • the heat-treated absorbent crystals are transported to the absorption tower 12 through the absorption solution input conduit.
  • the absorption solution from the generator 11 is mixed with the absorption solution from the absorption tower 12, and then cooled and crystallized. Compared with the above-described manner, the amount of the absorption solution of the cooled crystal is increased, so that more absorption solution after crystallization can be obtained. Thereby, the use efficiency of the absorbent crystallizer can be improved.
  • FIG. 6 there is shown a flow chart of the drying system of the sixth embodiment of the present invention.
  • the drying system is compared with the above embodiments 1-5, wherein the generator 11 is designed in the shape of a tower, in which the packing layer 221, the heat exchanger 110 and the spraying device 222 are provided, the packing The layer is disposed at a middle position inside the generator 11, and above the packing layer 221 is a spraying device for spraying the crystallization after absorption solution from the absorbent crystallizer 141, so that the solution passes through the gravity from top to bottom.
  • Overfill layer 222 is shown in the above embodiments 1-5, wherein the generator 11 is designed in the shape of a tower, in which the packing layer 221, the heat exchanger 110 and the spraying device 222 are provided, the packing The layer is disposed at a middle position inside the generator 11, and above the packing layer 221 is a spraying device for spraying the crystallization after absorption solution from the absorbent crystallizer 141, so that the solution passes through the gravity from top to
  • An air inlet and an air outlet are also provided on the generator 11, the air inlet being open under the packing layer for introducing air into the generator 11; the air outlet is opened above the spraying device 222, thereby
  • the air entering the generator 11 may be in contact with the post-crystallization absorbing solution sprayed from the shower device 221.
  • the filler layer 221 is used for making the absorption solution after crystallization have a large contact area with air and prolonging the contact time, so that the adsorbate energy in the absorption solution after crystallization can be more diffused into the air and carried from the air outlet.
  • the generator is raised to increase the concentration of the absorbing solution.
  • an absorption heat exchanger 125 is disposed at the bottom of the absorption tower 12, and the dry dry gas at the top of the absorption tower 12 is passed therein for heating to improve the dry drying gas.
  • the temperature further increases its drying capacity.
  • Embodiment 7 of the present invention also proposes a drying method for dehydrating and drying the dried material in the drying apparatus by using the drying system described in Embodiment 1, which mainly includes drying gas circulation and absorption solution circulation.
  • the drying cycle of the invention comprises the following steps: generating a dry drying gas which is dried at a high temperature by an absorption tower, and introducing the drying gas into the drying device, the dry drying gas passing through Drying the material, the water in the dried material is removed into the drying gas, the drying gas contains water to become a wet drying gas; and the wet drying gas derived from the drying device is passed into the absorption tower to contact the absorption solution, and the absorption solution is absorbed.
  • the adsorbate in the wet drying gas is exothermic, and the temperature of the drying gas is increased to become a dry drying gas;
  • the absorption solution circulation comprises the following steps: the absorption solution at the bottom of the absorption tower is led to an absorbent crystallizer, and is subjected to cooling crystallization and solid-liquid separation to form an absorbent crystal and a crystallization solution, and the absorption solution is led to the generator after crystallization.
  • the absorption crystal or the absorption solution containing the crystal is introduced into the absorption tower; and the absorption solution is heated by the low temperature residual heat in the generator to generate vapor while concentrating the absorption solution, and the concentrated absorption solution is introduced into the absorption tower.
  • Embodiment 8 of the present invention also proposes a drying method using the drying system described in Embodiments 2 - 5.
  • the embodiment further comprises: the absorption solution from the generator and/or the absorption solution from the absorber, and the crystallization solution and/or the absorbent after crystallization or the crystallization of the absorbent
  • the absorption solution is subjected to heat exchange.
  • Increasing the temperature of the absorption solution entering the generator facilitates evaporation and concentration, which saves the heat supply of the generator; at the same time, lowers the temperature of the absorption solution entering the absorbent crystallizer, which is advantageous for cooling the crystallization, thereby reducing the supply of cold.
  • the absorption solution output from the absorption tower is subjected to heat exchange with the post-crystallization absorption solution before the crystallization solution is transported to the generator after crystallization, and the absorption solution output from the absorption tower is cooled.
  • the absorption crystallization or the absorption solution containing the absorption of the absorbent and the output of the absorption tower are The solution is absorbed for heat exchange.
  • the absorption solution outputted by the absorption tower is After crystallization, the absorption solution and the absorbent crystals or the absorption solution containing the absorbent crystals are subjected to heat exchange.
  • the absorbing solution output from the generator and the output of the absorption tower are before the absorbing agent is crystallized and sent to the absorption tower before the absorption solution output from the absorption tower is cooled.
  • the absorption solution is mixed to form a mixed absorption solution which is exchanged with the post-crystallization absorption solution and the absorbent crystal or the absorption solution containing the absorbent crystal.
  • a process of condensing the vapor generated in the generator is further included, thereby owing the liquid adsorbate.
  • Embodiment 9 of the present invention also proposes a drying method using the drying system described in Embodiment 6.
  • the difference is that the absorption solution concentration process performed in the generator is such that the generator heats the absorption solution and introduces air into the generator to make the air and the absorption solution in the generator After the contact, the air carrying the solvent of the absorption solution is discharged, and the absorption solution is concentrated, and the concentrated absorption solution is introduced into the absorption tower.
  • the filler layer is arranged in the generator to make the air and the absorption solution more fully contact, thereby facilitating the diffusion of the adsorbate in the absorption solution into the air, thereby improving the amount of the air-borne adsorbate, thereby increasing the concentration of the absorption solution. effectiveness.
  • the drying system proposed by the above embodiment of the present invention comprises only one drying device.
  • the drying system of the present invention further comprises two or more drying device embodiments, each of which is connected to the drying gas supply device.
  • the connection method is the same. After one of the drying devices reaches a predetermined level of drying, the dry drying gas line and the wet drying gas line can be switched to another drying device to continue the drying process.
  • the drying system thus constructed can be continuously subjected to a drying process, thereby being more suitable for practical use.
  • the technical solution described in the above embodiments of the present invention is not particularly limited in the type of the absorption solution to be used.
  • the above examples are all exemplified by the absorption solution of the water-absorbent as the working medium pair, and the absorbent can be LiBr. , LiCl, NaBr, KBr, CaCl 2 , MgBr 2 and mixtures thereof, and the like.
  • the absorbent solution formed by the pair of adsorbent-absorbent absorbed by the absorbent may be used.
  • the process conditions of the dry gas supply device of the present invention can be determined depending on the type of the dried material used in the drying device.
  • the drying gas is air and the absorbent is LiBr
  • the LiBr concentration of the absorption solution at the top of the absorption tower is: 62 to 78 wt%; the dry air temperature at the top of the absorption tower is: 70 to 220 °C.
  • the adsorption Shield content of the dry air at the top of the absorption tower is: 0 - 50wt%; the generator operating temperature is above 65 °C; the cooling temperature of the absorbent crystallizer is: -18 ⁇ 37 °C; the LiBr of the top of the generator absorbs the solution
  • the concentration is: 56 ⁇ 62wt%.
  • drying device The dried material used is activated carbon, the adsorbate is water, water-LiBr is used as the working medium pair, hot water of 75 °C is used as the driving heat source of the generator, and 15 °C cooling water is used as the cold source of the crystallizer.
  • the adsorbate is water
  • water-LiBr is used as the working medium pair
  • hot water of 75 °C is used as the driving heat source of the generator
  • 15 °C cooling water is used as the cold source of the crystallizer.
  • the dried material is regenerated under normal pressure.
  • the dried material used in the drying device is activated alumina, the adsorbate is water, and water-LiBr is used as the working medium pair, 100 ° C. Saturated water vapor is used as the heat source for the generator, 32 ⁇ of cooling water as the crystallizer and a cold source for the condenser.
  • Example 3
  • the dried material is regenerated under normal pressure.
  • the dried material used in the drying device is activated carbon, the adsorbate is water, and water-LiBr is used as the working medium pair, and the heat of 75 ° C is used.
  • Water acts as a heat source for the generator, dew point 1 (TC air as generator air, 15 ° C cooling water as a source of crystallizer.
  • the dried material is regenerated under normal pressure.
  • the dried material used in the drying device is activated carbon, the adsorbed material is methanol, and methanol-LiBr is used as the working medium pair, and the heat of 75 ° C is used.
  • Water acts as a heat source for the generator and 15 °C cooling water acts as a source of cooling for the crystallizer.
  • Table 1 shows the operating parameters and performance of the above Examples 1-4.
  • the singularity of the heat source or the pressure of 0. 4MPa or more is required to be used as a heat source to achieve the drying effect of the above example.
  • the steam is of high grade energy. From this, it can be seen that the present invention can receive a grade which greatly reduces the required energy, thereby providing a significant effect for providing a means for effectively utilizing low-temperature waste heat.
  • the drying system and the drying method of the present invention are capable of recycling the drying gas to avoid waste of drying gas, waste of heat carried by the drying gas, and resource saving.
  • the dry gas supply device of the present invention can use low temperature waste heat as a heat source to provide a higher temperature dry gas, so that the low temperature heat source can be effectively utilized. Since the drying gas is in a circulating state, the adsorbate resources contained in the dried material can be recovered.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Drying Of Gases (AREA)
  • Gas Separation By Absorption (AREA)

Description

千燥系统以及干燥方法 技术领域
本发明涉及一种与热能工程领域的吸收式热泵技术相结合的干燥技 术, 特别涉及一种采用低温热源驱动, 且能够循环利用干燥气体的干燥系 统以及干燥方法。 背景技术
乙醇与水的混合物,在 1大气压下进行蒸馏,当温度达 78. 15 °C时,蒸馏 后产生的蒸汽与液体,其组成均为 96%的乙醇与 4%的水,此共沸温度低于乙 醇的沸点(78. 3 Ό)与水的沸点(100Ό) ,故又称为最低共沸混合物。 对于制 备可作为车用燃料的无水乙醇(>99% )来说, 传统的精馏方法已无能为力, 因而一般是采用吸附分离的方式来获得高纯度的乙醇, 即, 通过使用被干 燥物料来吸附共沸物蒸汽中的水, 从而使乙醇浓度提高。 当被干燥物料的 水吸附量达到饱和吸附量之后, 要对被干燥物料进行干燥再生。 另外, 在 农业生产中, 所采集的谷物、 茶叶在含水量较高的情况下很容易发育出芽, 或者腐烂变质, 所以需要对谷物、 茶叶等物料进行一定程度的脱水千燥, 才能长期保存。 在陶瓷生产中, 对陶器的胚胎也需要进行干燥, 必须使其 含水量在一定阈值以下, 才能进行下一步工艺过程。
请参阅图 7所示, 是现有干燥系统的流程图。 现有的干燥系统在对物 料进行干燥时, 一般是采用高温干燥空气或者氮气作为干燥气体, 使其通 过被干燥物料, 在高温状态下, 物料中的水被蒸发并被干燥气带走, 从而 达到对物料干燥脱水的目的。 所以, 现有的干燥系统需要为干燥装置 20配 套有专门的高温干燥空气或者氮气的制备装置 160 ,上述的高温空气或者氮 气从被干燥物料出来后通常被排放, 如果选择循环使用, 则必须对干燥气 进行冷却以冷凝去除解吸气中的水之后再加热。 因此, 现有干燥技术的能 耗较高。
可见, 提供一种能够高效率地循环利用干燥气的干燥系统和干燥方法 对节能减排是有益的。 本发明的主要目的在于克服现有的干燥系统以及干燥方法存在的问 题, 而提供一种新的干燥系统以及干燥方法, 所要解决的技术问题是采用 低温余热来制备高温干燥的干燥气, 从而更加适于实用。
本发明的目的及解决其技术问题是采用以下技术方案来实现的。 依据 本发明提出的一种干燥系统, 其包括:干燥装置, 用于容纳被干燥物料;以 及干燥气供给装置, 其内部循环有吸收溶液, 该千燥气供给装置包括:吸收 塔, 内置有填料层; 发生器, 内置有发生换热器, 用于提高吸收溶液的浓 度;及吸收剂结晶器, 接收来自吸收塔和 /或发生器的吸收溶液并进行冷却, 形成吸收剂结晶和结晶后吸收溶液, 所述的结晶后吸收溶液输送至发生器, 所述的吸收剂结晶输送至吸收塔; 在上述的吸收塔顶部设有干干燥气管道, 用于向干燥装置提供干干燥气; 在上述干燥装置底部设有湿干燥气管道, 用于将干燥装置输出的干燥气导入吸收塔。
本发明的目的及解决其技术问题还可采用以下技术措施进一步实现。 优选的, 前述干燥系统, 其中所述的干燥气供给装置还包括吸收溶液 自换热器, 用于来自所述的发生器的吸收溶液和 /或来自吸收塔的吸收溶 液, 与结晶后吸收溶液和 /或吸收剂结晶或者含吸收剂结晶的吸收溶液进行 换热。
优选的, 前述干燥系统, 于所述的干燥气供给装置还包括: 吸收溶液 自换热器, 用于将来自吸收塔的吸收溶液与来自吸收剂结晶器的结晶后吸 收溶液进行换热。
优选的, 前述干燥系统, 所述的干燥气供给装置还包括: 吸收溶液自 换热器, 用于将来自吸收塔的吸收溶液与来自吸收剂结晶器的吸收剂结晶 或者含吸收剂结晶的吸收溶液进行换热。
优选的, 前述干燥系统, 所述的干燥气供给装置还包括: 吸收溶液自 换热器, 用于将来自吸收塔的吸收溶液与来自吸收剂结晶器的结晶后吸收 溶液和吸收剂结晶或者含吸收剂结晶的吸收溶液进行换热。
优选的, 前述干燥系统, 所述的干燥气供给装置还包括: 吸收溶液自 换热器, 用于将来自吸收塔的吸收溶液与来自发生器的吸收溶液混合后,与 来自吸收剂结晶器的结晶后吸收溶液和吸收剂结晶或者含吸收剂结晶的吸 收溶液进行换热。 优选的, 前述干燥系统, 其中所述的干燥气供给装置还包括冷凝器,通 过蒸气通路与发生器相连, 在冷凝器中设有冷凝换热器。
优选的, 前迷干燥系统, 其中所述的发生器为塔状, 在该在该发生器 还设有填料层、 喷淋设备、 空气入口和空气出口, 所述填料层设置在发生 器内部的中段位置, 所述喷淋设备设置在该填料层上部空间; 所述空气入 口位于填料层的下方, 所述空气出口位于喷淋 i史备的上方。
本发明的目的及解决其技术问题还采用以下的技术方案来实现。 依据 本发明提出的一种干燥方法, 对干燥装置内的被干燥物料进行干燥, 其包 括以下步骤: 向干燥装置内通入干干燥气, 使被干燥物料脱水, 干干燥气 含有水成为湿干燥气; 将所述湿干燥气通入吸收塔与吸收溶液接触, 吸收 溶液吸收湿干燥气中的水并放热, 干燥气的温度得到升高而形成干干燥气; 吸收塔底部的吸收溶液导出到吸收剂结晶器中, 并进行冷却结晶及固液分 离形成吸收剂结晶和结晶后吸收溶液, 结晶后吸收溶液导出到发生器中,吸 收剂结晶或者含吸收剂结晶的吸收溶液导入吸收塔顶部; 以及在发生器中 加热吸收溶液, 产生水蒸气的同时浓缩吸收溶液, 并将浓缩后的吸收溶液 导入吸收塔。
本发明的目的及解决其技术问题还可采用以下技术措施进一步实现。 优选的, 前述的干燥方法, 还包括: 在所述的结晶后吸收溶液输送到 发生器之前, 且吸收塔输出的吸收溶液进行冷却之前, 所述的吸收塔输出 的吸收溶液与吸收剂结晶器输出的结晶后吸收溶淡进行换热。
优选的, 前述的干燥方法, 还包括: 在所述的吸收剂结晶或者含吸收 剂结晶的吸收溶液输送到吸收塔之前 , 且吸收塔输出的吸收溶液进行冷却 之前, 所述的吸收塔输出的吸收溶液与吸收剂结晶器输出的吸收剂结晶或 者含吸收剂结晶的吸收溶液进行换热。
优选的, 前述的干燥方法, 还包括: 在所述的结晶后吸收溶液输送到 发生器之前, 吸收剂结晶或者含吸收剂结晶的吸收溶液输送到吸收塔之前, 且吸收塔输出的吸收溶液进行冷却之前, 所迷吸收塔输出的吸收溶液与吸 收剂结晶器输出的结晶后吸收溶液和吸收剂结晶或者含吸收剂结晶的吸收 溶液进行换热。
优选的, 前迷的干燥方法, 还包括: 在所述的结晶后吸收溶液输送到 发生器之前, 吸收剂结晶或者含吸收剂结晶的吸收溶液输送到吸收塔之前, 吸收塔输出的吸收溶液进行冷却之前, 发生器输出的吸收溶液与吸收塔输 出的吸收溶液混合形成混合吸收溶液, 该混合吸收溶液与吸收剂结晶器输 出的结晶后吸收溶液和吸收剂结晶或者含吸收剂结晶的吸收溶液进行换 热。
本发明的目的及解决其技术问题还采用以下的技术方案来实现。 依据 本发明提出的一种干燥方法, 采用上述的干燥系统, 对干燥装置内的被干 燥物料进行干燥, 其包括以下步骤: 向干燥装置内通入干干燥气, 该干干 燥气通过被干燥物料, 使被干燥物料脱水, 干干燥气含水成为湿干燥气;将 所述湿干燥气通入吸收塔与吸收溶液接触, 吸收溶液吸收湿干燥气中的水 并放热, 千燥气的温度得到升高而形成干干燥气; 吸收塔底部的吸收溶液 导出到吸收剂结晶器中, 并进行冷却结晶及固液分离形成吸收剂结晶和结 晶后吸收溶液, 结晶后吸收溶液导出到发生器中, 吸收剂结晶或者含结晶 的吸收溶液导入吸收塔顶部; 以及在发生器中加热吸收溶液并通入空气,使 空气与发生器中的吸收溶液接触后排出湿空气, 同时浓缩吸收溶液,将浓缩 后的吸收溶液导入吸收塔。
本发明与现有技术相比具有明显的优点和有益效果。 由以上技术方案 可知,本发明的干燥系统以及干燥方法, 其能够使干燥气循环利用从而避免 了干燥气的浪费, 以及干燥气所携带热量的浪费, 节约了资源。 另夕卜,本发 明的干燥气供给装置可以利用低温余热作为热源动力来提供温度更高的干 燥气, 使低温热源得到有效的利用。 由于干燥气为循环状态, 所以可以回 收被干燥物料中所含有的吸附质资源。
上述说明仅是本发明技术方案的概迷, 为了能够更清楚了解本发明的 技术手段, 并可依照说明书的内容予以实施, 以下以本发明的较佳实施例 并配合附图详细说明如后。 附图说明
图 1是本发明干燥系统的实施例 1的流程图。
图 2是本发明干燥系统的实施例 1的流程图。
图 3是本发明千燥系统的实施例 3的流程图。 图 4是本发明干燥系统的实施例 4的流程图。
图 5是本发明干燥系统的实施例 5的流程图。
图 6是本发明干燥系统的实施例 6的流程图。
图 7是现有干燥系统的流程图。
10: 干燥气供给装置 11: 发生器
110: 发生换热器 12: 吸收塔
121、 221: 填料层
122、 222: 喷淋设备 123: 干干燥气管道
124: 湿千燥气管道 125: 吸收换热器
13: 冷凝器
130: 冷凝换热器 141 : 吸收剂结晶器
150: 吸收溶液自换热器
19: 蒸气通路
20: 干燥装置 21: 被千燥物料 实现发明的最佳方式
为更进一步阐述本发明为达成预定发明目的所采取的技术手段及功 效,以下结合附图及较佳实施例, 对依据本发明提出的干燥系统其具体实施 方式、 结构、 特征及其功效, 详细说明如后。
请参阅图 1所示, 是本发明实施例 1提出的干燥系统的流程图。 该干 燥系统主要包括: 干燥装置 20和干燥气供给装置 10。 该干燥装置 20用于 容纳被干燥物料 21 ,被干燥物料可以是进行完吸附过程的活性炭、分子歸、 硅胶、 活性氧化铝以及聚合物等, 或者谷物、 茶叶、 陶瓷胚胎。 所述的干 燥气供给装置 10, 用于向干燥装置 20提供高温干燥的干燥气(以下称为干 干燥气), 并对完成干燥过程的干燥气 (由于其中含有解吸脱附下来的吸附 质, 以下称为湿干燥气)重新进行干燥和升温, 同时分离被脱出的水。 该 干燥气供给装置 10包括发生器 11、 吸收塔 12以及吸收剂结晶器 141。
该发生器 11 , 内置有发生换热器 110用于提供热源对发生器内的吸收 溶液进行加热, 使吸收溶液中的水蒸发形成蒸气, 同时吸收溶液得到浓缩。 所述的热源为低温热源, 是工业过程中被利用过的热源, 一般会被浪费掉。 该发生器 11还设有蒸气通路 19用于排出所述蒸气, 所排出的蒸气待用。 发生器 11得到的浓缩后的吸收溶液通过管道 143输送到吸收塔 12中。
该吸收剂结晶器 141 ,具有吸收溶液导入口、吸收溶液导出口和吸收剂 结晶导出口, 该吸收溶液导入口连接于吸收塔 12的底部, 该吸收溶液导出 口连接于发生器 11的顶部, 该吸收剂结晶导出口通过管道 143连接于吸收 塔 12的顶部。 在吸收剂结晶器 141中采用低温冷源对吸收溶液进行冷却结 晶, 由于吸收溶液达到凝固点时会出现结晶, 温度越低液相的吸收溶液的 平衡浓度就越低,因此, 通过冷却结晶, 无论冷却结晶前的吸收溶液度有多 高, 结晶后液相的吸收剂浓度可达到或接近冷却温度下的吸收剂平衡浓度。 对吸收溶液进行冷却结晶, 并进行固液分离后将吸收剂结晶通过管道 143 输送到吸收塔 12 ,而将结晶后的吸收溶液通过管道输送到发生器 11中进行 浓缩。 上述的吸收剂结晶器 141所采用的冷源温度可以为- 18 ~ 60°C。 设置 吸收剂结晶器对吸收塔输出的吸收溶液进行冷却结晶 , 其效果之一在于, 在保持较低的发生器吸收溶液工作浓度, 从而可以利用低温余热作为发生 器的驱动热源对吸收溶液进行浓缩再生的前提下, 可显著提高吸收塔的吸 收溶液的浓度, 从而可在吸收塔中得到温度更高的吸收热, 使得干干燥气 具有更高的温度和更低的水含量, 有利于在干燥装置中对被干燥物料的干 燥, 从而提高干燥效率。
该吸收塔 12 , 内置有填料层 121, 在填料层 121下部设有湿干燥气管 道 124 , 该湿干燥气管道 124连接于千燥装置 20, 接收从干燥装置输出的 湿干燥气。 在吸收塔 12的顶部设有千干燥气管道 123, 所述的干干燥气管 道 123连接到干燥装置 20向干燥装置提供干干燥气; 在填料层 121的上部 设有喷淋设备 122 ,用于向下喷洒从管道 143输送过来的高浓度的吸收溶液; 干燥装置 20输出的湿干燥气从吸收塔底部进入向上流动, 湿干燥气与.高浓 度的吸收溶液接触时其中包含的水份被吸收, 同时释放出吸收热使干燥气 温度升高。 填料层 121 用于使湿干燥气与高浓度的吸收溶液能充分接触。 干燥气从塔底向塔顶流动过程中水份不断地被吸收而干燥气的温度也不断 地升高, 到达喷淋设备 122 时, 干燥气的水含量达到最低而温度达到最高 成为干干燥气, 并被输送到干燥装置 20中。 经过千燥过程, 干干燥气变为 湿干燥气, 然后再次被输送到吸收塔中, 湿干燥气变为干干燥气, 从而形 成干燥气的干湿循环过程。
当本实施例的干燥系统用于吸附分离时, 在干燥装置 20内进行吸附分 离过程, 而干燥气供给装置 10不工作; 干燥装置 20内的被干燥物料(如 分子筛)达到饱和吸附量后, 就需要对被干燥物料(分子筛)进行解吸脱 附的再生过程。 此时由干干燥气管道 123提供高温干燥的干燥气(如氮气 或者空气), 由于脱附过程一般为吸热过程, 所以温度高的干燥气有利于吸 附质的解吸。 当本实施例的干燥系统用于干燥谷物或者陶瓷胚胎时, 与对 吸附剂的再生是同样的过程。
吸收溶液在吸收剂结晶器 141 中被冷却形成吸收剂结晶和结晶后吸收 溶液, 实施例 1 以及下述实施例中所述的吸收剂结晶不用于限定其仅仅为 吸收剂结晶颗粒, 其还可以是含有吸收剂结晶颗粒的吸收溶液。
请参阅图 2所示, 是本发明实施例 2提出的干燥系统的流程图。 该干 燥系统与实施例 1相比, 其还具有吸收溶液自换热器 150, 设置于吸收塔 12和吸收剂结晶器 141之间,用于对从吸收塔 12输出的吸收溶液与从吸收 剂结晶器 141 输出的结晶后吸收溶液及含结晶吸收溶液进行热交换。 由于 来自吸收塔 12的吸收溶液的温度远高于从吸收剂结晶器 141输出的吸收剂 结晶和结晶后吸收溶液的温度, 所以经过换热后, 进入吸收剂结晶器 141 的吸收溶液温度大大降 从而可以减少用于冷却吸收溶液的冷源的冷量。 同时, 经过换热后的来自吸收剂结晶器的吸收剂结晶的温度大大提高, 其 被输送到吸收塔中, 吸收同样量的水份, 可以在更高的工作温度下释放吸 收热, 从而可以提高吸收塔向外提供的干干燥气的温度, 从而提高干燥装 置中对被干燥物料的干燥效率。 经过换热后的来自吸收剂结晶器的结晶后 吸收溶液的温度大大提高, 其被输送到发生器中, 蒸发出同样的工质蒸汽, 本实施例可以减少发生 ϋ的对低温热源的消耗量, 从而提高能源利用效率。 所述吸收剂结晶器 141的导出口输出的含结晶溶液和发生器 11输出的吸收 溶液混合, 并通过管道 143将混合后的吸收溶液输送到吸收塔 12。 经过混 合, 可以使吸收剂结晶溶解并提高温度, 易于输送。 较佳的, 所述的干燥 气供给装置 10还包括冷凝器 13,其通过蒸气通路 19与发生器 11相连,在 冷凝器中设有冷凝换热器 130, 从而可以将蒸气冷却为液体加以回收。
请参阅图 3所示,是本发明实施例 3的流程图。该干燥系统与实施例 1 相比, 其还具有吸收溶液自换热器 150, 用于使来自吸收塔 12的吸收溶液 与从吸收剂结晶器 141输出的吸收剂结晶(或者含吸收剂结晶的吸收溶液) 进行换热, 换热后的吸收剂结晶送入管道 143。 经过换热后的来自吸收塔 12的吸收溶液输入到吸收剂结晶器 141中进行冷却结晶和固液分离; 经过 换热后的从吸收剂结晶器 141输出的吸收剂结晶经管道 143被输送至吸收 塔 12中。 发生器 11的吸收溶液也经管道 143输入到吸收塔 12, 从而将发 生器 11输出的吸收溶液与经过换热后的吸收剂结晶混合后共同输入到吸收 塔中。 从吸收剂结晶器 141输出的结晶后吸收溶液输送到发生器 11内。 由 于来自吸收塔 12的吸收溶液的温度远高于从吸收剂结晶器 141输出的吸收 剂结晶的温度, 所以经过换热后, 进入吸收剂结晶器 141 的吸收溶液温度 大大降低, 从而可以减少用于冷却吸收溶液的冷源的冷量。 同时, 经过换 热后的来自吸收剂结晶器的吸收剂结晶的温度大大提高, 其被输送到吸收 塔中, 吸收同样量的水份, 可以在更高的工作温度下幹放吸收热, 从而可 以提高吸收塔提供的干干燥气的温度, 从而提高干燥装置中对被干燥物料 的干燥效率。
请参阅图 4所示,是本发明实施例 4的流程图。该干燥系统与实施例 1 相比, 其还具有吸收溶液自换热器 150, 用于使来自吸收塔 12的吸收溶液 与从吸收剂结晶器 141输出结晶后吸收溶液进行换热。 经过换热后的来自 吸收塔 12 的吸收溶液输入到吸收剂结晶器 141 中进行冷却结晶和固液分 离,换热后的结晶后吸收溶液送入发生器 11。发生器 11的输出的吸收溶液 和吸收剂结晶器 141 输出的吸收剂结晶 (或含吸收剂结晶的吸收溶液)共 同通过管道 143输送至吸收塔 12。由于来自吸收塔 12的吸收溶液的温度远 高于从吸收剂结晶器 141输出的结晶后吸收溶液的温度, 所以经过换热后, 进入吸收剂结晶器 141 的吸收溶液温度大大降低, 从而可以减少用于冷却 吸收溶液的冷源的用量。 同时, 经过换热后的来自吸收剂结晶器的结晶后 吸收溶液的温度大大提高, 其被输送到发生器中, 可以减少发生器的驱动 热源的用量, 从而降低能耗。
请参阅图 5所示, 是本发明实施例 5的流程图。。 该干燥系统与实施例 1相比, 其还具有吸收溶液自换热器 150。 发生器 11的吸收溶液输出管道 与吸收塔 12的吸收溶液输出管道相连, 相连的节点位于进入吸收溶液自换 热器 150之前。 来自发生器 11的吸收溶液与来自吸收塔 12的吸收溶液混 合后进入吸收溶液自换热器 150,与从吸收剂结晶器 141输出的吸收剂结晶 和结晶后吸收溶液同时进行换热。 经过换热后的结晶后吸收溶液通过吸收 溶液输入管道输送至发生器 11中。 经过换热后的吸收剂结晶通过吸收溶液 输入管道输送至吸收塔 12 中。 将来自发生器 11的吸收溶液与来自吸收塔 12的吸收溶液混合后进行冷却结晶, 与前述方式相比, 增加了被冷却结晶 的吸收溶液的量, 从而可以得到更多的结晶后吸收溶液, 从而可以提高吸 收剂结晶器的使用效率。
请参阅图 6所示, 是本发明实施例 6提出的干燥系统的流程图。 该干 燥系统与上实施例 1-5相比, 其中所述的发生器 11被设计为塔状, 在该发 生器 11内设有填料层 221、 换热器 110和喷淋设备 222 , 该填料层设置在 发生器 11内部的中段位置, 在该填料层 221之上为所述的喷淋设备用于喷 洒来自吸收剂结晶器 141 的结晶后吸收溶液, 使该溶液通过重力自上而下 穿过填料层 222。 在发生器 11上还设置有空气入口和空气出口, 该空气入 口开设在填料层之下, 用于向发生器 11内通入空气; 该空气出口开设在喷 淋设备 222之上, 从而使通入发生器 11的空气可以与从喷淋设备 221喷洒 的结晶后吸收溶液相接触。 填料层 221是用于使结晶后吸收溶液与空气有 较大的接触面积以及延长接触时间, 从而可以使结晶后吸收溶液中的吸附 质能更多地扩散到空气中, 并从空气出口被携带出发生器, 从而提高吸收 溶液的浓度。
此外, 为了更好的利用吸收热, 较佳的, 在吸收塔 12的底部还设有吸 收换热器 125 , 将吸收塔 12顶部的干干燥气通入其中进行加热, 以提高干 干燥气的温度, 从而进一步提高其干燥能力。 现, 例如填料的选择以及填充方式, 较佳的, 选择现有技术中具有较小阻 力以及较大接触面积的填料层。
本发明的实施例 7还提出一种干燥方法, 采用上述实施例 1所述的干 燥系统, 对干燥装置内的被干燥物料进行脱水干燥, 该方法主要包括干燥 气循环和吸收溶液循环。 所迷的干燥气循环包括以下步骤: 由吸收塔产生 高温干燥的干干燥气, 并向干燥装置内通入该干燥气, 该干干燥气通过被 干燥物料, 使被干燥物料中的水份被脱除进入干燥气中, 干燥气含有水份 成为湿干燥气; 以及从干燥装置导出的湿干燥气通入吸收塔与吸收溶液接 触, 吸收溶液吸收湿干燥气中的吸附质并放热, 干燥气的温度得到升高而 成为干干燥气;
所述的吸收溶液循环包括以下步骤: 吸收塔底部的吸收溶液导出到吸 收剂结晶器中, 并进行冷却结晶及固液分离形成吸收剂结晶和结晶后吸收 溶液, 结晶后吸收溶液导出到发生器中, 吸收剂结晶或者含结晶的吸收溶 液导入吸收塔 部; 以及在发生器中利用低温余热加热吸收溶液, 产生蒸 气同时浓缩吸收溶液, 并将浓缩后的吸收溶液导入吸收塔。
本发明实施例 8还提出一种干燥方法, 采用实施例 2 - 5所述的干燥系 统。 与实施例 7 的方法相比, 本实施例还包括: 所述的来自发生器的吸收 溶液和 /或来自吸收器的吸收溶液, 与结晶后吸收溶液和 /或吸收剂结晶或 者含吸收剂结晶的吸收溶液进行换热。 提高进入发生器的吸收溶液的温度, 有利于蒸发浓缩, 节约发生器的供热; 同时降低进入吸收剂结晶器的吸收 溶液温度, 有利于冷却结晶, 从而减少冷量的供应。
较佳的, 在所迷的结晶后吸收溶液输送到发生器之前, 且吸收塔输出 的吸收溶液进行冷却之前, 所述的吸收塔输出的吸收溶液与所述的结晶后 吸收溶液进行换热。
较佳的, 在所述的吸收剂结晶输送到吸收塔之前, 且吸收塔输出的吸 收溶液进行冷却之前, 所述的吸收剂结晶或者含吸收剂结晶的吸收溶液与 所述的吸收塔输出的吸收溶液进行换热。
较佳的, 在所述的结晶后吸收溶液输送到发生器之前, 吸收剂结晶输 送到吸收塔之前, 且吸收塔输出的吸收溶液进行冷却之前, 所述吸收塔输 出的吸收溶液与所述的结晶后吸收溶液和吸收剂结晶或者含吸收剂结晶的 吸收溶液进行换热。
较佳的, 在所述的结晶后吸收溶液输送到发生器之前, 吸收剂结晶输 送到吸收塔之前, 吸收塔输出的吸收溶液进行冷却之前, 发生器输出的吸 收溶液与所述吸收塔输出的吸收溶液混合形成混合吸收溶液, 该混合吸收 溶液与所述的结晶后吸收溶液和吸收剂结晶或者含吸收剂结晶的吸收溶液 进行换热。 较佳的, 在本实施例中还包括对发生器中产生的蒸气进行冷凝的过程, 从而回 欠液态吸附质。
本发明实施例 9还提出一种干燥方法, 采用实施例 6所述的干燥系统。 与实施例 Ί和 8的方法相比, 其区别在于在发生器内进行的吸收溶液浓缩 过程为, 在发生器加热吸收溶液并向发生器中通入空气, 使空气与发生器 中的吸收溶液接触后排出携带有吸收溶液溶剂的空气, 同时浓缩吸收溶液, 将浓缩后的吸收溶液导入吸收塔。 在发生器中设置填料层, 使空气与吸收 溶液能够更加充分的接触, 从而有利于吸收溶液中的吸附质扩散到空气中, 有利于提高空气携带吸附质的量, 从而提高对吸收溶液的浓缩效率。
本发明上述实施例提出的干燥系统中仅包含有一个千燥装置, 在具体 实施中本发明的干燥系统还包含两个或者多个干燥装置的实施方式, 每个 干燥装置与干燥气供给装置的连接方式相同。 当其中的一个干燥装置达到 预定的干燥水平后, 可以将干干燥气管道和湿干燥气管道切换到另外的干 燥装置继续进行干燥过程。 如此构成的干燥系统可以连续进行干燥过程, 从而更加适于实用。
本发明的上述实施例所述的技术方案对所采用吸收溶液的种类并无特 别的限制, 上述实施例皆以水-吸收剂为工质对的吸收溶液为例进行说明, 吸收剂可采用 LiBr, LiCl, NaBr, KBr, CaCl2, MgBr2及其混合物等。 在本 发明的干燥装置用于吸附剂再生时, 可以采用与吸收剂所吸收的吸附质-吸 收剂为工盾对构成的吸收溶液。
本发明的干燥气供给装置的工艺条件可根据干燥装置所采用被干燥物 料的种类来决定。 当干燥气体为空气、 吸收剂为 LiBr时, 作为干燥气供给 装置的工艺条件范围, 吸收塔顶部吸收溶液的 LiBr 浓度为: 62 ~ 78wt%; 吸收塔顶部干空气温度为: 70 ~ 220°C ;吸收塔顶部干空气的吸附盾含量为: 0 - 50wt%;发生器工作温度为 65 °C以上;吸收剂结晶器的冷却温度为: -18 ~ 37 °C ; 发生器顶部吸收溶液的 LiBr浓度为: 56 ~ 62wt%。
以下通过具有具体参数的实例来说明上述实施例的可实施性。 实例 1
根据实施例 7所述的方法在常压下进行被干燥物料的再生, 干燥装置 所采用的被干燥物料为活性碳, 吸附质为水, 采用水 -LiBr作为工质对、 75 °C的热水作为发生器的驱动热源、 15 °C冷却水作为结晶器的冷源。 实例 2
根据实施例 8 所述的方法在常压下进行被干燥物料的再生, 干燥装置 所采用的被干燥物料为活性氧化铝,吸附质为水,采用水 -LiBr作为工质对、 100°C的饱和水蒸气作为发生器的驱动热源、 32 Ό冷却水作为结晶器以及冷 凝器的冷源。 实例 3
根据实施例 9 所述的方法在常压下进行被干燥物料的再生, 干燥装置 所采用的被干燥物料为活性碳, 吸附质为水, 采用水 -LiBr作为工质对、 75 °C的热水作为发生器的驱动热源、 露点 1 (TC的空气作为发生器空气、 15°C 冷却水作为结晶器的冷源。 实例 4
根据实施例 7 所述的方法在常压下进行被干燥物料的再生, 干燥装置 所采用的被干燥物料为活性碳,吸附质为甲醇,采用甲醇- LiBr作为工质对、 75 °C的热水作为发生器的驱动热源、 15 °C冷却水作为结晶器的冷源。 表 1为上述实例 1-4的工作参数和性能。
Figure imgf000014_0001
置 换热器出口温度 rc ) ― 35 ― ―
压力 (kPa) ― 6. 0 ― - 塔顶吸收溶液浓度 ( wt% ) 75 78 75 75 吸 塔底吸收溶液浓度 ( wt% ) 72 75 72 72 收
塔项输出干空气的温度(。C )
塔 165 200 165 165 塔顶输出干空气的吸附质含量
(wt% ) 35 50 35 40 . 结
a
曰曰 溴化鋰结晶温度(。C ) 19 37 19 19 干 塔底输出湿空气的温度( °C ) 135 160 135 135 燥
装 输出湿空气的吸附质含量 (Wt% ) 45 60 45 50 置 如果采用现有的干燥技术进行被干燥物料的干燥, 为了实现上述实例 的干燥效果, 作为热源必须投入电能或压力 0. 4MPa以上的蒸汽等高品位能 量。 由此可见, 本发明可收到大幅度降低所需能量的品位, 从而为有效利 用低温余热提供手段的显著效果。
以上所述, 仅是本发明的较佳实施例而已, 并非对本发明作任何形式 上的限制, 虽然本发明已以较佳实施例揭露如上, 然而并非用以限定本发 明,任何熟悉本专业的技术人员, 在不脱离本发明技术方案范围内,当可利 用上述揭示的技术内容作出些许更动或修饰为等同变化的等效实施例,但 凡是未脱离本发明技术方案的内容, 依据本发明的技术实质对以上实施例 所作的任何简单修改、 等同变化与修饰, 均仍属于本发明技术方案的范围 内。
工业应用性
本发明的干燥系统以及干燥方法, 其能够使干燥气循环利用从而避免 了干燥气的浪费, 以及干燥气所携带热量的浪费, 节约了资源。 另夕卜,本发 明的干燥气供给装置可以利用低温余热作为热源动力来提供温度更高的干 燥气, 使低温热源得到有效的利用。 由于干燥气为循环状态, 所以可以回 收被干燥物料中所含有的吸附质资源。

Claims

权 利 要 求
1、 一种干燥系统, 其特征在于其包括:
干燥装置, 用于容纳被干燥物料; 以及
干燥气供给装置, 其内部循环有吸收溶液, 该干燥气供给装置包括: 吸收塔, 内置有填料层;
发生器, 内置有发生换热器, 用于提高吸收溶液的浓度; 及 吸收剂结晶器, 接收来自吸收塔和 /或发生器的吸收溶液并进行冷 却, 形成吸收剂结晶和结晶后吸收溶液, 所述的结晶后吸收溶液输送至发 生器, 所述的吸收剂结晶输送至吸收塔;
在上述的吸收塔顶部设有干干燥气管道, 用于向干燥装置提供干干燥 气; 在上述干燥装置底部设有湿干燥气管道, 用于将干燥装置输出的干燥 气导入吸收塔。
2、 根据权利要求 1所述的干燥系统, 其特征在于其中所述的干燥气供 给装置还包括吸收溶液自换热器, 用于来自所述的发生器的吸收溶液和 /或 来自吸收塔的吸收溶液, 与结晶后吸收溶液和 /或吸收剂结晶或者含吸收剂 结晶的吸收溶液进行换热。
3、 根据权利要求 1所述的干燥系统, 其特征在于所述的干燥气供给装 置还包括: 吸收溶液自换热器, 用于将来自吸收塔的吸收溶液与来自吸收 剂结晶器的结晶后吸收溶液进行换热。
4、 根据权利要求 1所述的干燥系统, 其特征在于所述的干燥气供给装 置还包括: 吸收溶液自换热器, 用于将来自吸收塔的吸收溶液与来自吸收 剂结晶器的吸收剂结晶或者含吸收剂结晶的吸收溶液进行换热。
5、 根据权利要求 1所述的干燥系统, 其特征在于所述的干燥气供给装 置还包括: 吸收溶液自换热器, 用于将来自吸收塔的吸收溶液与来自吸收 剂结晶器的结晶后吸收溶液和吸收剂结晶或者含吸收剂结晶的吸收溶液进 行换热。
6、 根据权利要求 5所述的干燥系统, 其特征在于所述的干燥气供给装 置还包括: 吸收溶液自换热器, 用于将来自吸收塔的吸收溶液与来自发生 器的吸收溶液混合后, 与来自吸收剂结晶器的结晶后吸收溶液和吸收剂结 晶或者含吸收剂结晶的吸收溶液进行换热。
7、 在权利要求 1-6任一项所述的干燥系统, 其特征在于其中所迷的干 燥气供给装置还包括冷凝器, 通过蒸气通路与发生器相连, 在冷凝器中设 有冷凝换热器。
8、 根据权利要求 1-6任一项所述的干燥系统, 其特征在于其中所述的 发生器为塔状, 在该在该发生器还设有填料层、 喷淋设备、 空气入口和空 气出口, 所述填料层设置在发生器内部的中段位置, 所述喷淋设备设置在 该填料层上部空间; 所述空气入口位于填料层的下方, 所述空气出口位于 喷淋设备的上方。
9、 一种干燥方法, 釆用上述权利要求 1所述的干燥系统, 对干燥装置 内的被干燥物料进行干燥, 其包括以下步骤:
向干燥装置内通入干干燥气, 使被干燥物料脱水, 干干燥气含有水成 为湿干燥气;
将所述湿干燥气通入吸收塔与吸收溶液接触, 吸收溶液吸收湿干燥气 中的水并放热, 干燥气的温度得到升高而形成干干燥气;
吸收塔底部的吸收溶液导出到吸收剂结晶器中, 并进行冷却结晶及固 液分离形成吸收剂结晶和结晶后吸收溶液, 结晶后吸收溶液导出到发生器 中, 吸收剂结晶或者含吸收剂结晶的吸收溶液导入吸收塔顶部; 以及
在发生器中加热吸收溶液, 产生水蒸气的同时浓缩吸收溶液, 并将浓 缩后的吸收溶液导入吸收塔。
10、 根据权利要求 9 所述的干燥方法, 其特征在于还包括: 在所述的 结晶后吸收溶液输送到发生器之前, 且吸收塔输出的吸收溶液进行冷却之 前, 所述的吸收塔输出的吸收溶液与吸收剂结晶器输出的结晶后吸收溶液 进行换热。
11、 根据权利要求 9 所述的干燥方法, 其特征在于还包括: 在所述的 吸收剂结晶或者含吸收剂结晶的吸收溶液输送到吸收塔之前 , 且吸收塔输 出的吸收溶液进行冷却之前 , 所述的吸收塔输出的吸收溶液与吸收剂结晶 器输出的吸收剂结晶或者含吸收剂结晶的吸收溶液进行换热。
12、 根据权利要求 9 所述的干燥方法, 其特征在于还包括: 在所述的 结晶后吸收溶液输送到发生器之前, 吸收剂结晶或者含吸收剂结晶的吸收 溶液输送到吸收塔之前, 且吸收塔输出的吸收溶液进行冷却之前, 所述吸 收塔输出的吸收溶液与吸收剂结晶器输出的结晶后吸收溶液和吸收剂结晶 或者含吸收剂结晶的吸收溶液进行换热。
13、 根据权利要求 9 所述的干燥方法, 其特征在于还包括: 在所述的 结晶后吸收溶液输送到发生器之前, 吸收剂结晶或者含吸收剂结晶的吸收 溶液输送到吸收塔之前, 吸收塔输出的吸收溶液进行冷却之前, 发生器输 出的吸收溶液与吸收塔输出的吸收溶液混合形成混合吸收溶液, 该混合吸 收溶液与吸收剂结晶器输出的结晶后吸收溶液和吸收剂结晶或者含吸收剂 结晶的吸收溶液进行换热。
14、 一种干燥方法, 采用上述权利要求 1 所述的干燥系统, 对干燥装 置内的被干燥物料进行干燥, 其包括以下步骤:
向干燥装置内通入干干燥气, 该干干燥气通过被干燥物料, 使被干燥 物料脱水, 干干燥气含水成为湿干燥气;
将所述湿干燥气通入吸收塔与吸收溶液接触, 吸收溶液吸收湿干燥气 中的水并放热, 干燥气的温度得到升高而形成干干燥气;
吸收塔底部的吸收溶液导出到吸收剂结晶器中, 并进行冷却结晶及固 液分离形成吸收剂结晶和结晶后吸收溶液, 结晶后吸收溶液导出到发生器 中, 吸收剂结晶或者含结晶的吸收溶液导入吸收塔顶部; 以及
在发生器中加热吸收溶液并通入空气, 使空气与发生器中的吸收溶液 接触后排出湿空气, 同时浓缩吸收溶液, 将浓缩后的吸收溶液导入吸收塔。
PCT/CN2009/000212 2008-02-29 2009-02-27 干燥系统以及干燥方法 WO2009105968A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN 200810006385 CN101518706B (zh) 2008-02-29 2008-02-29 吸附装置以及吸附剂再生方法
CN200810006385.7 2008-02-29

Publications (1)

Publication Number Publication Date
WO2009105968A1 true WO2009105968A1 (zh) 2009-09-03

Family

ID=41015520

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2009/000212 WO2009105968A1 (zh) 2008-02-29 2009-02-27 干燥系统以及干燥方法
PCT/CN2009/000211 WO2009105967A1 (zh) 2008-02-29 2009-02-27 吸附装置以及吸附剂再生方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/000211 WO2009105967A1 (zh) 2008-02-29 2009-02-27 吸附装置以及吸附剂再生方法

Country Status (2)

Country Link
CN (1) CN101518706B (zh)
WO (2) WO2009105968A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112066686A (zh) * 2020-10-09 2020-12-11 浙江浙能技术研究院有限公司 一种新型冷凝热回收盘式污泥低温干化系统

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103673111B (zh) * 2013-12-16 2015-12-02 内蒙古科技大学 多功能空气除湿净化固体吸附再生床
CN110605107B (zh) * 2019-09-24 2022-04-01 常州大学 低排放一体式吸附剂就地再生装置
CN113669816B (zh) * 2021-09-14 2024-07-09 北京联力源科技有限公司 蒸发冷却系统及其运行方法
CN113877357B (zh) * 2021-10-27 2023-10-27 中冶南方工程技术有限公司 一种高炉煤气吸附脱硫再生系统及方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4979965A (en) * 1988-08-01 1990-12-25 Ahlstromforetagen Svenska Ab Method of dehumidifying gases
JP2005205304A (ja) * 2004-01-22 2005-08-04 Dia Research Martech Inc 除湿剤およびその再生方法
CN1887409A (zh) * 2005-06-28 2007-01-03 镇江市江南环保设备研究所 塔内结晶氨法脱硫工艺及装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5628205A (en) * 1989-03-08 1997-05-13 Rocky Research Refrigerators/freezers incorporating solid-vapor sorption reactors capable of high reaction rates
US5618427A (en) * 1995-02-13 1997-04-08 W. R. Grace & Co.-Conn. Composition and method for degradation of nitroaromatic contaminants
DE102005041889A1 (de) * 2005-09-03 2007-03-08 Fan Separator Gmbh Trocknung von Ethanol mit Zeolith
CN100501272C (zh) * 2007-04-19 2009-06-17 北京科技大学 一种中低温余热转化为蒸汽的系统及方法
CN101081361A (zh) * 2007-06-28 2007-12-05 同济大学 一种吸附床循环解吸分流回收再生方法及其装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4979965A (en) * 1988-08-01 1990-12-25 Ahlstromforetagen Svenska Ab Method of dehumidifying gases
JP2005205304A (ja) * 2004-01-22 2005-08-04 Dia Research Martech Inc 除湿剤およびその再生方法
CN1887409A (zh) * 2005-06-28 2007-01-03 镇江市江南环保设备研究所 塔内结晶氨法脱硫工艺及装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112066686A (zh) * 2020-10-09 2020-12-11 浙江浙能技术研究院有限公司 一种新型冷凝热回收盘式污泥低温干化系统

Also Published As

Publication number Publication date
WO2009105967A1 (zh) 2009-09-03
CN101518706B (zh) 2011-11-09
CN101518706A (zh) 2009-09-02

Similar Documents

Publication Publication Date Title
TWI351500B (en) Low power dehumidifier
CN101175898B (zh) 用于管理流体中水含量的系统和方法
WO2009094896A1 (fr) Système d'évaporation et procédé d'évaporation-concentration
JP2009524790A (ja) 流体中の水分含有量を管理するシステム及びその方法
WO2009105968A1 (zh) 干燥系统以及干燥方法
JP2012096206A (ja) 熱輸送媒体の再生装置
JP6165150B2 (ja) 除湿機およびその使用方法
CA1279482C (en) Air conditioning process and apparatus therefor
JP3943102B2 (ja) 着霜防止機能を有する熱交換器及びその表面の着霜防止方法
CN107537167A (zh) 蒸发浓缩结晶系统及蒸发处理方法
CN103550941B (zh) 一种低温蒸发浓缩装置及高浓度废水浓缩方法
CN109019733A (zh) 单填料塔加湿热泵溶液浓缩系统及方法
CN101275766B (zh) 空气除湿与溶液再生装置
JP2023553032A (ja) 湿気の多い条件下で二酸化炭素を捕捉するための装置、システム、および方法
JP5187827B2 (ja) 低温廃熱を利用した吸着式ヒートポンプシステム
CN207270730U (zh) 蒸发浓缩结晶系统
JP2004324977A (ja) 吸収式冷凍機
JP5142347B2 (ja) バイオマスアルコールの製造方法
WO2009094895A1 (fr) Système et procédé de distillation
CN203754456U (zh) 一种氮气循环的低温蒸发浓缩装置
CN102716597A (zh) 有机废气冷凝液化回收装置
WO1991000772A1 (en) Air conditioning process and apparatus
CN206027114U (zh) 加湿除湿系统
KR102549953B1 (ko) 흡착 기반 히트 펌프
JP2858908B2 (ja) 吸収冷暖房機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09714851

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09714851

Country of ref document: EP

Kind code of ref document: A1