WO2009105967A1 - 吸附装置以及吸附剂再生方法 - Google Patents

吸附装置以及吸附剂再生方法 Download PDF

Info

Publication number
WO2009105967A1
WO2009105967A1 PCT/CN2009/000211 CN2009000211W WO2009105967A1 WO 2009105967 A1 WO2009105967 A1 WO 2009105967A1 CN 2009000211 W CN2009000211 W CN 2009000211W WO 2009105967 A1 WO2009105967 A1 WO 2009105967A1
Authority
WO
WIPO (PCT)
Prior art keywords
absorption
absorption solution
solution
tower
absorbent
Prior art date
Application number
PCT/CN2009/000211
Other languages
English (en)
French (fr)
Inventor
苏庆泉
Original Assignee
Su Qingquan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Su Qingquan filed Critical Su Qingquan
Publication of WO2009105967A1 publication Critical patent/WO2009105967A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1425Regeneration of liquid absorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/34Regenerating or reactivating
    • B01J20/3416Regenerating or reactivating of sorbents or filter aids comprising free carbon, e.g. activated carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/34Regenerating or reactivating
    • B01J20/3433Regenerating or reactivating of sorbents or filter aids other than those covered by B01J20/3408 - B01J20/3425
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/34Regenerating or reactivating
    • B01J20/345Regenerating or reactivating using a particular desorbing compound or mixture
    • B01J20/3458Regenerating or reactivating using a particular desorbing compound or mixture in the gas phase
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B15/00Sorption machines, plants or systems, operating continuously, e.g. absorption type
    • F25B15/02Sorption machines, plants or systems, operating continuously, e.g. absorption type without inert gas
    • F25B15/06Sorption machines, plants or systems, operating continuously, e.g. absorption type without inert gas the refrigerant being water vapour evaporated from a salt solution, e.g. lithium bromide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/50Aspects relating to the use of sorbent or filter aid materials
    • B01J2220/56Use in the form of a bed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2315/00Sorption refrigeration cycles or details thereof
    • F25B2315/002Generator absorber heat exchanger [GAX]

Definitions

  • the present invention relates to an adsorption separation technique in combination with an absorption heat pump technology in the field of thermal energy engineering, and more particularly to an adsorption device capable of recycling heat of a desorbed gas and recovering an adsorbate resource, and an adsorbent regeneration method.
  • a mixture of ethanol and water is distilled at 1 atm.
  • the steam and liquid produced after distillation have a composition of 96% ethanol and 4% water, and the azeotropic temperature is low.
  • TC the boiling point of water
  • the traditional The distillation method is powerless, so it is generally used to obtain high-purity ethanol by adsorption separation, that is, by using an adsorbent to adsorb water in the azeotrope vapor, thereby increasing the concentration of ethanol.
  • the existing adsorption device generally uses high-temperature dry air or nitrogen as the adsorbent regeneration.
  • the desorbed gas is passed through the adsorbent bed, and at a high temperature, 7j desorbs and desorbs on the adsorbent, and is taken away by the desorbed gas, thereby achieving the purpose of adsorbent regeneration.
  • the existing adsorption device needs to be equipped with a special high-temperature dry air or nitrogen preparation device 160 for the adsorption tower 20.
  • the above-mentioned high-temperature air or nitrogen is usually discharged from the adsorption bed, and if it is selected for recycling, it must be desorbed.
  • the gas is cooled to condense and remove the water in which it is desorbed and then heated. Therefore, the energy consumption of the existing adsorbent regeneration technology is high.
  • the main object of the present invention is to overcome the problems of the prior art adsorption device and the adsorbent regeneration method, and to provide a new adsorption device and an adsorbent regeneration method.
  • the technical problem to be solved is to use low temperature waste heat to prepare high temperature dry.
  • the desorbed gas can recover the adsorbate resources adsorbed by the absorbent, thereby being more suitable for practical use and having industrial utilization value.
  • An adsorption device comprises: an adsorption tower having an adsorbent bed therein; and a desorption gas supply device having an absorption solution circulating therein, the desorption gas supply device comprising: an absorption tower, having a built-in a packing layer; a generator having a built-in heat exchanger for increasing the concentration of the absorbing solution; and an absorbent crystallizer for receiving the absorption solution from the absorption tower and/or the generator and cooling to form an crystallization and crystallization of the absorbent
  • the absorption solution is sent to the generator after the crystallization, and the absorption agent is crystallized and sent to the absorption tower.
  • the absorbent crystallizer has an absorption solution introduction port, an absorption solution outlet port and an absorbent crystal crystallization outlet port, the absorption solution introduction port is connected to the absorption tower, the absorption solution outlet port is connected to the generator, and the absorption crystallization outlet port is connected to An absorption tower; a dry desorbing pipe is arranged at the top of the upper absorption tower, and is connected to the top of the adsorption tower for dry desorption to be supplied to the adsorption tower, and a moisture desorption gas is provided at the bottom of the adsorption tower. The pipe is connected to the bottom of the absorption tower for introducing the desorbed gas that completes the desorption process into the absorption tower.
  • the desorbing gas supply device further comprises an absorption solution from the heat exchanger, disposed between the absorption tower and the absorbent crystallizer, for the absorption solution from the generator and/or Or the absorption solution from the absorption tower is exchanged with the absorption solution and/or the absorption crystal of the absorption liquid or the absorption solution containing the absorption agent crystal.
  • the foregoing adsorption device further comprises: an absorption solution from the heat exchanger for exchanging heat between the absorption solution from the absorption tower and the post-crystallization absorption solution from the absorbent crystallizer.
  • the foregoing adsorption device further comprises: an absorption solution from the heat exchanger for exchanging the absorption solution from the absorption tower with the absorption crystal of the absorbent from the absorbent crystallizer or the absorption solution containing the absorption of the absorbent.
  • the foregoing adsorption device further comprises: an absorption solution from the heat exchanger for crystallization of the absorption solution from the absorption tower with the crystallization solution and the absorbent from the absorbent crystallizer or the absorption solution containing the absorbent crystal Perform heat exchange.
  • the foregoing adsorption device further comprises: an absorption solution from the heat exchanger for mixing the absorption solution from the generator and the absorption solution from the absorption tower into the absorption solution from the heat exchanger, and from the absorbent crystallizer After the crystallization, the absorption solution and the absorbent crystal or the absorption solution containing the absorbent crystal are subjected to heat exchange.
  • the desorbing gas supply device further comprises a mixer for extracting the crystal-containing solution derived from the crystallization outlet of the absorbent and from the bottom of the generator.
  • the absorption solution is mixed.
  • the desorbing gas supply device further comprises a condenser connected to the generator through a vapor passage, and a condensation heat exchanger is disposed in the condenser.
  • the foregoing adsorption device wherein the generator is in the shape of a tower, a filler layer, a shower device, an air inlet and an air outlet are disposed in the generator, and the filler layer is disposed at a middle position inside the generator.
  • the spraying device is disposed in an upper space of the packing layer; the air inlet is located below the packing layer, and the air outlet is located above the spraying device.
  • the adsorbent in the adsorption tower is regenerated by the adsorption device as described above, and the method comprises the following steps:
  • a dry desorbed gas is introduced into the adsorption tower, and the dry desorbed gas passes through the adsorbent bed to desorb and desorb the adsorbed adsorbent adsorbed by the adsorbent, and the dry desorbed gas contains the adsorbate to become a wet desorbed gas;
  • the wet desorbed gas derived from the adsorption tower is introduced into the absorption tower to be in contact with the absorption solution, and the absorption solution absorbs the adsorbate in the moisture desorption gas and releases the heat, and the temperature of the desorption gas is increased to form a dry desorption gas;
  • the bottom absorption solution is led to the absorbent crystallizer, and is subjected to cooling crystallization and solid-liquid separation. After crystallization, the absorption solution is led out to the generator, and the absorbent crystal or the absorption solution containing the absorbent crystal is introduced into the top of the absorption tower;
  • the absorption solution is heated in the generator to generate adsorbate vapor while concentrating the absorption solution, and the concentrated absorption solution is introduced into the absorption tower.
  • the prior art adsorbent regeneration method further comprises: before the crystallization, the absorption solution is sent to the generator, and before the absorption solution output from the absorption tower is cooled, the absorption solution output by the absorption tower is The crystallization solution is absorbed after the crystallization.
  • the foregoing method for regenerating the adsorbent further comprises: absorbing the absorbent or absorbing the crystal of the absorbent before the absorbing agent is crystallized and transported to the absorption tower, and before the absorption solution output from the absorption tower is cooled.
  • the solution exchanges heat with the absorption solution output from the absorption tower.
  • the foregoing method for regenerating the adsorbent further comprises: before the crystallization solution is transported to the generator after the crystallization, before the crystallization of the absorbent is sent to the absorption tower, and before the absorption solution output from the absorption tower is cooled, the absorption The absorption solution outputted by the tower and the crystallization solution after the crystallization Heat exchange with the crystallization of the absorbent or the absorption solution containing the crystallization of the absorbent.
  • the foregoing method for regenerating the adsorbent further comprises: before the crystallization of the absorption solution after the crystallization is sent to the generator, before the crystallization of the absorption agent is sent to the absorption tower, before the absorption solution outputted by the absorption tower is cooled, the output of the generator
  • the absorption solution is mixed with the absorption solution output from the absorption tower to form a mixed absorption solution, and the mixed absorption solution exchanges heat with the crystallizing absorption solution and the absorbent crystal or the absorption solution containing the absorbent crystal.
  • the vapor generated in the generator is condensed to recover the condensed adsorbate.
  • the adsorbent in the adsorption tower is regenerated by the aforementioned adsorption device, and the method comprises the following steps:
  • a dry desorbed gas is introduced into the adsorption tower, and the dry desorbed gas passes through the adsorbent bed to desorb and desorb the adsorbed adsorbent adsorbed by the adsorbent, and the dry desorbed gas contains the adsorbate to become a wet desorbed gas;
  • the wet desorbed gas derived from the adsorption tower is introduced into the absorption tower to be in contact with the absorption solution, and the absorption solution absorbs the adsorbate in the moisture desorption gas and releases the heat, and the temperature of the desorption gas is increased to form a dry desorption gas;
  • the bottom absorption solution is led to the absorbent crystallizer, and is subjected to cooling crystallization and solid-liquid separation. After crystallization, the absorption solution is led out to the generator, and the absorbent crystal or the absorption solution containing the crystal is introduced into the top of the absorption tower;
  • the absorption solution is heated in the generator and air is introduced to bring the air into contact with the absorption solution in the generator, and then the air carrying the adsorbate is discharged, and the absorption solution is concentrated, and the concentrated absorption solution is introduced into the absorption tower.
  • the present invention has significant advantages and advantageous effects over the prior art.
  • the adsorption apparatus and the adsorbent regeneration method of the present invention can recycle the desorbed gas to avoid understanding the waste of the inhalation and the waste of the heat carried by the desorbed gas, thereby saving resources.
  • the desorbing gas supply device of the present invention can utilize low-temperature residual heat as a heat source to supply a desorbed gas having a higher temperature, so that the low-temperature heat source can be effectively utilized. Since the desorbed gas is in a circulating state, the adsorbate resources adsorbed in the adsorbent can be recovered.
  • Figure 1 is a flow chart showing the first embodiment of the adsorption apparatus of the present invention.
  • Fig. 2 is a flow chart showing a second embodiment of the adsorption apparatus of the present invention.
  • Fig. 3 is a flow chart showing a third embodiment of the adsorption apparatus of the present invention.
  • Fig. 4 is a flow chart showing a fourth embodiment of the adsorption apparatus of the present invention.
  • Fig. 5 is a flow chart showing a fifth embodiment of the adsorption apparatus of the present invention.
  • Fig. 6 is a flow chart showing a sixth embodiment of the adsorption apparatus of the present invention.
  • Figure 7 is a flow chart of a conventional adsorption device.
  • Condensing heat exchanger 141 Absorbent crystallizer
  • Adsorption tower 21 adsorbent bed
  • FIG. 1 is a flow chart of the adsorption device proposed in Embodiment 1 of the present invention.
  • the adsorption device uses an adsorbent to separate the adsorbate-containing mixture, and the adsorbate in the mixture is adsorbed in the adsorbent to achieve a separation effect.
  • the adsorption device mainly comprises: an adsorption tower 20 and a desorption gas supply device 10.
  • the adsorption tower 20 is provided with an adsorbent bed 21, and the adsorbent bed 21 can be filled with an adsorbent such as activated carbon, molecular sieve, silica gel, activated alumina and polymer, and preferably an adsorbent having a strong absorption capacity for the adsorbate.
  • an adsorbent such as activated carbon, molecular sieve, silica gel, activated alumina and polymer, and preferably an adsorbent having a strong absorption capacity for the adsorbate.
  • the mixture is introduced from the bottom of the adsorption tower 20, and the adsorbent in the adsorbent bed 21 adsorbs the adsorbate in the mixture.
  • Adsorption after the adsorption process is completed, the separated material is output from the top of the adsorption tower 20 tower.
  • the desorbing gas supply device 10 is configured to supply the adsorption tower 20 with a high-temperature dry desorbed gas (hereinafter referred to as dry desorption gas), and to desorb the desorption and desorption process (because it contains desorption)
  • dry desorption gas a high-temperature dry desorbed gas
  • the attached adsorbate hereinafter referred to as wet desorption, is re-dried and warmed while separating the adsorbate therein.
  • the desorbing gas supply device 10 includes a generator 11, an absorption tower 12, and an absorbent crystallizer 141.
  • the generator 11 has a built-in heat exchanger 110 for supplying a heat source to heat the absorption solution in the generator, evaporating the adsorbate in the absorption solution to form a vapor, and absorbing the solution to be concentrated.
  • the generator 11 is also provided with a vapor passage 19 for discharging the vapor, and the discharged vapor is used.
  • the concentrated absorption solution obtained by the generator 11 is sent to the absorption tower 12 through a line 143.
  • the absorbent crystallizer 141 has an absorption solution introduction port, an absorption solution outlet port, and an absorbent crystallizing outlet port.
  • the absorption solution introduction port is connected to the bottom of the absorption tower 12, and the absorption solution outlet port is connected to the top of the generator 11.
  • the absorbent crystallization outlet is connected to the top of the absorption tower 12 via a conduit 143.
  • the absorption solution is cooled and crystallized by using a low-temperature cold source, and crystallization occurs when the absorption solution reaches the freezing point.
  • the absorption solution is cooled and crystallized, and after solid-liquid separation, the absorbent crystals are sent to the absorption tower 12 through a pipe 143, and the crystallized absorption solution is piped to the generator 11 for concentration.
  • the above-mentioned absorbent crystallizer 141 may have a cold source temperature of - 18 to 60 °C.
  • the absorbent crystallizer is arranged to cool and crystallize the absorption solution outputted from the absorption tower.
  • the working concentration of the solution is absorbed by the generator which is kept low, so that the absorption solution can be concentrated by using the low temperature residual heat as the driving heat source of the generator.
  • the concentration of the absorption solution of the absorption tower can be significantly increased, so that a higher temperature absorption heat can be obtained in the absorption tower, so that the dry desorption gas has higher temperature and lower adsorption content, which is beneficial to The desorption and desorption process is carried out to improve the desorption efficiency.
  • the absorption tower 12 has a built-in packing layer 121, and a wet desorbing gas duct 124 is disposed at a lower portion of the packing layer 121, and the wet desorbing gas duct 124 is connected to the bottom of the adsorption tower 20.
  • the absorption column 12 At the top of the absorption column 12 is provided with a suction duct 123 dry solutions, solutions of the thousands of connections to the intake duct 20 of the adsorption tower top; in the filler layer 121 is provided with an upper spray device 122, for spraying down a high concentration of absorption solution delivered from the conduit 143; the wet desorbed gas output from the adsorption tower 20 enters the upward flow from the bottom of the absorption tower When the wet desorption is contacted with the high concentration absorption solution, the adsorbate contained therein is absorbed, and the absorption heat is released to raise the temperature of the desorption gas.
  • the packing layer 121 serves to sufficiently contact the wet desorbed gas with a high concentration of the absorption solution.
  • the adsorbate As the desorbed gas flows from the bottom of the tower to the top of the tower, the adsorbate is continuously absorbed and the temperature of the desorbed gas is continuously increased. When it reaches the spraying device 122, the adsorbed content of the desorbed gas reaches the lowest and the temperature reaches the highest. , becomes dry desorbed and is delivered to the adsorption tower 20. After the desorption and desorption process, the dry desorption becomes a wet desorption gas, and then is again sent to the absorption tower, and the wet desorption gas becomes a dry desorption gas, thereby forming a dry and wet cycle process of the desorption gas.
  • the adsorption separation process is performed in the adsorption column 20, and the desorption gas supply device 10 does not operate; after the adsorbent in the adsorption column 20 reaches the saturated adsorption amount, the adsorbent is required.
  • the regeneration process of desorption and desorption is carried out.
  • the dry desorbing pipe 123 provides a high-temperature dry desorbing gas (such as nitrogen or air). Since the desorption process is generally an endothermic process, the desorbed gas having a high temperature is favorable for the desorption of the adsorbate.
  • the absorbing solution forms an absorbent crystal in the absorbent crystallizer 141 and absorbs the solution after crystallization.
  • the crystallization of the absorbent described in Example 1 and the following examples is not intended to limit it to only the absorbent crystal particles, but may also be an absorption solution containing the absorbent crystal particles.
  • FIG. 2 it is a flow chart of the adsorption device proposed in Embodiment 2 of the present invention.
  • the adsorption device further has an absorption solution from the heat exchanger 150 and a mixer 142 which is disposed between the absorption tower 12 and the absorbent crystallizer 141 from the heat exchanger 150 for use in comparison with the first embodiment.
  • the absorption solution output from the absorption tower 12 is heat-exchanged with the post-crystallization absorption solution and the crystal-containing absorption solution output from the absorbent crystallizer 141.
  • the temperature of the absorbing solution from the absorption tower 12 is much higher than the temperature of the absorbing agent crystallized from the absorbent crystallizer 141 and the absorbing solution after crystallization, the temperature of the absorbing solution entering the absorbent crystallizer 141 is greatly lowered after the heat exchange. Thereby, the amount of cooling for cooling the absorption solution can be reduced.
  • the temperature of the crystallization of the absorbent from the absorbent crystallizer after heat exchange is greatly increased, and is transported to the absorption tower to absorb the same amount of working fluid vapor, thereby releasing the heat of absorption at a higher working temperature, thereby It is possible to increase the temperature of the desorption gas supplied to the outside of the absorption tower, thereby improving the desorption efficiency.
  • the temperature of the crystallization solution from the absorbent crystallizer is greatly increased, and is sent to the generator to evaporate the same industrial steam.
  • This embodiment can reduce the heat consumed by the generator, thereby improving the energy. usage efficiency.
  • a mixer 142 for mixing the crystal-containing solution output from the outlet of the absorbent crystallizer 141 and the absorption solution output from the generator 11, and conveying the mixed absorption solution to the mixed solution through the conduit 143 Absorption tower 12. After mixing, the absorbent crystals can be dissolved and the temperature is increased, making it easy to transport.
  • the desorbing gas supply device 10 further includes a condenser 13 connected to the generator 11 through a vapor passage 19, and a condensation heat exchanger 130 is disposed in the condenser, so that the vapor can be cooled to a liquid force. ⁇ back to "jt.
  • the absorption solution is from the heat exchanger 150 for crystallizing the absorption solution from the absorption tower 12 and the absorbent output from the absorbent crystallizer 141 (or an absorption solution containing the absorbent crystals).
  • the heat exchange is performed, and the heat transfer absorbing agent is crystallized into the pipe 143.
  • the absorbing solution from the absorption tower 12 after the heat exchange is input to the absorbent crystallizer 141 for cooling crystallization and solid-liquid separation; the crystallization of the absorbent which is output from the absorbent crystallizer 141 after heat exchange is sent to the 143 through the pipe 143.
  • the absorption tower 12' In the absorption tower 12'.
  • the absorption solution of the generator 11 is also input to the absorption tower 12 via the pipe 143, whereby the absorption solution output from the generator 11 is crystallized and mixed with the heat-treated absorbent, and is input into the absorption tower.
  • the post-crystallization absorbing solution output from the absorber crystallizer 141 is sent to the generator 11. Since the temperature of the absorbing solution from the absorption tower 12 is much higher than the temperature of the crystallization of the absorbent output from the absorbent crystallizer 141, the temperature of the absorbing solution entering the absorbent crystallizer 141 is greatly lowered after the heat exchange, so that the use can be reduced.
  • the cooling capacity of the absorption solution is cooled.
  • the temperature of the crystallization of the absorbent from the absorbent crystallizer after heat exchange is greatly increased, and is transported to the absorption tower to absorb the same amount of working fluid vapor, thereby releasing the heat of absorption at a higher working temperature, thereby The temperature of the dry desorption gas provided by the absorption tower can be increased, thereby improving desorption efficiency and energy utilization efficiency.
  • the absorption solution is supplied from the heat exchanger 150 for heat exchange between the absorption solution from the absorption tower 12 and the absorption solution after being output from the absorbent crystallizer 141.
  • the absorbing solution from the absorption tower 12 after the heat exchange is input to the absorbent crystallizer 141 for cooling crystallization and solid-liquid separation, and the absorbing solution of the heat exchange is sent to the generator 11.
  • the absorption solution of the generator 11 and the absorbent crystals (or the absorption solution containing the absorbent crystals) output from the absorbent crystallizer 141 are collectively supplied to the absorption tower 12 through the pipe 143.
  • FIG. 5 is a flowchart of Embodiment 5 of the present invention.
  • the absorption solution output line of the generator 11 is connected to the absorption solution output line of the absorption column 12, and the connected nodes are located before the absorption solution from the heat exchanger 150.
  • the absorbing solution from the generator 11 is mixed with the absorbing solution from the absorption tower 12, and then enters the absorbing solution from the heat exchanger 150, and is condensed with the absorbent output from the absorbent crystallizer 141, and the absorbing solution is simultaneously subjected to heat exchange. After the crystallization after the heat exchange, the absorbing solution is sent to the generator 11 through the absorption solution input pipe.
  • the heat-treated absorbent crystals are transported to the absorption tower 12 through the absorption solution input conduit.
  • the absorption solution from the generator 11 is mixed with the absorption solution from the absorption tower 12, and then cooled and crystallized. Compared with the above-described manner, the amount of the absorption solution of the cooled crystal is increased, so that more absorption solution after crystallization can be obtained. Thereby, the use efficiency of the absorbent crystallizer can be improved.
  • FIG. 6 there is shown a flow chart of the adsorption apparatus proposed in Embodiment 6 of the present invention.
  • the adsorption device is compared with the above embodiments 1-5, wherein the generator 11 is designed in the shape of a tower, in which the filler layer 221, the heat exchanger 110 and the shower device 222 are provided, the filler The layer is disposed at a middle position inside the generator 11, and above the packing layer 221 is a spraying device for spraying the crystallization after absorption solution from the absorbent crystallizer 141, so that the solution passes through the gravity from top to bottom.
  • Overfill layer 222 is shown in the above embodiments 1-5, wherein the generator 11 is designed in the shape of a tower, in which the filler layer 221, the heat exchanger 110 and the shower device 222 are provided, the filler The layer is disposed at a middle position inside the generator 11, and above the packing layer 221 is a spraying device for spraying the crystallization after absorption solution from the absorbent crystallizer 141,
  • An air inlet and an air outlet are also provided on the generator 11, the air inlet being open under the packing layer for introducing air into the generator 11; the air outlet is opened above the spraying device 222, thereby
  • the air entering the generator 11 may be in contact with the post-crystallization absorbing solution sprayed from the shower device 221.
  • the filler layer 221 is used for making the solution after crystallization have a large contact area with air and prolonging the contact time, so that the adsorbed energy in the solution after crystallization can be more diffused into the air and carried out from the air outlet. , thereby increasing the concentration of the absorption solution.
  • a absorption heat exchanger is further disposed at the bottom of the absorption tower 12 to pass the dry desorbed gas at the top of the absorption tower 12 therein for heating, thereby improving the dry desorption.
  • the temperature further increases its desorption capacity.
  • Embodiment 7 of the present invention also proposes a method for regenerating an adsorbent, which adopts the above-mentioned Embodiment 1
  • the adsorption device described above regenerates the adsorbent in the adsorption column, and the method mainly includes a desorption gas cycle and an absorption solution cycle.
  • the desorption gas cycle comprises the following steps: generating a high-temperature dry dry desorption gas from the absorption tower, and introducing the desorbed gas into the adsorption tower, the dry desorption gas passing through the adsorbent bed to make the adsorbent
  • the adsorbed adsorbent is desorbed and desorbed, and the desorbed gas contains an adsorption shield to become a wet desorbing gas; and the wet desorbed gas derived from the adsorption tower is introduced into the absorption tower to be in contact with the absorption solution, and the absorption solution absorbs the adsorbate in the wet desorption gas.
  • the temperature of the desorption gas is increased to become dry desorption.
  • the absorption solution circulation comprises the following steps: the absorption solution at the bottom of the absorption tower is led to an absorbent crystallizer, and is subjected to cooling crystallization and solid-liquid separation. After crystallization, the solution is led to a generator, and the crystallization solution is introduced into the top of the absorption tower; And in the generator, the absorption solution is heated by the low temperature residual heat, the vapor is generated while the absorption solution is concentrated, and the concentrated absorption solution is introduced into the absorption tower.
  • Embodiment 8 of the present invention also proposes a method for regenerating an adsorbent, which employs the adsorption device described in Examples 2-5.
  • the embodiment further comprises: the absorption solution from the generator and/or the absorption solution from the absorber, and the crystallization solution and/or the absorbent after crystallization or the crystallization of the absorbent
  • the absorption solution is subjected to heat exchange.
  • Increasing the temperature of the absorbing solution entering the generator facilitates evaporation and concentration, which saves the heat supply of the generator.
  • the temperature of the absorbing solution entering the absorbent crystallizer is lowered, which is advantageous for cooling crystallization, thereby reducing the supply of cold.
  • the absorption solution outputted from the absorption tower is subjected to heat exchange with the post-crystallization absorption solution before the crystallization solution is transported to the generator after the crystallization, and the absorption solution output from the absorption tower is cooled.
  • the absorption crystallization or the absorption solution containing the absorption of the absorbent and the output of the absorption tower are The solution is absorbed for heat exchange.
  • the absorption solution outputted by the absorption tower is After crystallization, the absorption solution and the absorbent crystals or the absorption solution containing the absorbent crystals are subjected to heat exchange.
  • the absorbing solution output from the generator and the output of the absorption tower are before the absorbing agent is crystallized and sent to the absorption tower before the absorption solution output from the absorption tower is cooled.
  • the absorption solution is mixed to form a mixed absorption solution, and the mixed absorption solution and the crystallization solution and the absorbent are crystallized or the absorption solution containing the absorbent crystal is absorbed. Perform heat exchange.
  • a process of condensing the vapor generated in the generator is further included to recover the liquid adsorbate.
  • Embodiment 9 of the present invention also proposes a method for regenerating an adsorbent, which employs the adsorption device described in Embodiment 6.
  • the difference is that the absorption solution concentration process performed in the generator is such that the generator heats the absorption solution and introduces air into the generator to make the air and the absorption solution in the generator. After the contact, the air carrying the solvent of the absorption solution is discharged, and the absorption solution is concentrated, and the concentrated absorption solution is introduced into the absorption tower.
  • the filler layer is arranged in the generator to make the air and the absorption solution more fully contact, thereby facilitating the diffusion of the adsorbate in the absorption solution into the air, which is beneficial to increasing the amount of adsorption carried by the air, thereby improving the concentration of the absorption solution. effectiveness.
  • the adsorption device proposed by the above embodiment of the present invention comprises only one adsorption tower.
  • the adsorption device of the present invention further comprises two or more adsorption tower embodiments, each of the adsorption tower and the desorption gas supply device.
  • the connection method is the same.
  • the adsorption towers reaches a saturated adsorption amount, the adsorbent is regenerated according to the above-described adsorbent regeneration method, and at the same time, the separated material is switched to another adsorption tower for adsorption.
  • the adsorption device thus constructed can continuously perform the adsorption separation process, thereby being more suitable for practical use.
  • the technical solution described in the above embodiments of the present invention has no particular limitation on the type of the absorbing solution to be used.
  • the above examples are all exemplified by the absorbing solution of the adsorbent-absorbent as the working medium pair, and the absorbent can be used as an example.
  • the process conditions of the desorbed gas supply device of the present invention can be determined depending on the type of adsorbent used in the adsorption column, its regeneration conditions, and the like.
  • the desorbed gas is air and the absorbent is LiBr
  • the LiBr concentration of the absorption solution at the top of the absorption tower is: 62 to 78 wt%
  • the dry air temperature at the top of the absorption tower is 70 to 220 ° C
  • the adsorption content of dry air at the top of the absorption tower is: 0 ⁇ 50wt%
  • the generator working temperature is above 65 C
  • the cooling temperature of the absorbent crystallizer is: -18 ⁇ 37 °C
  • the LiBr of the top of the generator absorbs the solution
  • the concentration is: 56 ⁇ 62wt%.
  • the regeneration of the adsorbent is carried out under normal pressure according to the method described in Example 7, and the adsorption tower is employed.
  • the adsorbent is activated carbon
  • the adsorbate is water
  • water-LiBr is used as the working fluid pair
  • hot water of 75 °C is used as the driving heat source of the generator
  • 15 °C cooling water is used as the cold source of the crystallizer.
  • the regeneration of the adsorbent is carried out under normal pressure.
  • the adsorbent used in the adsorption tower is activated alumina, the adsorbate is water, and water-LiBr is used as the working fluid pair and 10 CTC saturated steam is used.
  • the regeneration of the adsorbent is carried out under normal pressure.
  • the adsorbent used in the adsorption tower is activated carbon, the adsorbate is water, and water-LiBr is used as the working medium pair, and 75 hot water is used as the generator.
  • the regeneration of the adsorbent is carried out under normal pressure.
  • the adsorbent used in the adsorption tower is activated carbon, the adsorbate is methanol, and the decyl alcohol-LiBr is used as the working medium pair and the heat at 75 °C.
  • As the driving heat source of the generator 15. C cooling water acts as a cold source for the crystallizer. Table 1 shows the operating parameters and performance of the above Examples 1-4.
  • Adsorbate content of wet air output at the bottom of the tower (wt %) 45 60 45 50
  • electric energy or pressure must be input as a heat source.
  • High grade energy such as steam of 4 MPa or more.
  • the adsorption device and the adsorbent regeneration method of the present invention can recycle the desorbed gas to avoid understanding the waste of inhalation and the waste of heat carried by the desorbed gas, thereby saving resources.
  • the desorbing gas supply device of the present invention can utilize low-temperature residual heat as a heat source to supply a desorbed gas having a higher temperature, so that the low-temperature heat source can be effectively utilized. Since the desorbed gas is in a circulating state, it is possible to return the adsorbent resources adsorbed in the adsorbent.

Description

吸附装置以及吸附剂再生方法 技术领域
本发明涉及一种与热能工程领域的吸收式热泵技术相结合的吸附分离 技术, 特别涉及一种能够循环利用解吸气体的热量并回收吸附质资源的吸 附装置以及吸附剂再生方法。 背景技术
乙醇与水的混合物,在 1大气压下进行蒸馏,当温度达 78. 15 °C时,蒸馏 后产生的蒸汽与液体,其组成均为 96%的乙醇与 4%的水,此共沸温度低于乙 醇的沸点(78. 3 Ό)与水的沸点(10(TC) ,故又称为最低共沸混合物。 对于制 备可作为车用燃料的无水乙醇 ( >99% )来说, 传统的精馏方法已无能为力, 因而一般是采用吸附分离的方式来获得高纯度的乙醇, 即, 通过使用吸附 剂来吸附共沸物蒸汽中的水, 从而使乙醇浓度提高。 当吸附剂的水吸附量 达到饱和吸附量之后, 需要对吸附剂进行再生。 请参阅图 7 所示, 是现有 吸附装置的流程图。 现有的吸附装置在进行吸附剂再生时, 一般是采用高 温干燥空气或者氮气作为解吸气体, 使其通过吸附剂床层, 在高温状态下, 7j在吸附剂上发生解吸脱附, 并被解吸气带走, 从而达到吸附剂再生的目 的。 所以, 现有的吸附装置需要为吸附塔 20配套有专门的高温干燥空气或 者氮气的制备装置 160,上述的高温空气或者氮气从吸附床层出来后通常被 排放, 如果选择循环使用, 则必须对解吸气进行冷却以冷凝去除解吸其中 的水之后再加热。 因此, 现有吸附剂再生技术的能耗较高。
可见, 提供一种能够高效率地循环利用解吸气所携带的热量的吸附装 置和吸附剂再生方法对节能减排是有益的。 发明内容
本发明的主要目的在于克服现有的吸附装置以及吸附剂再生方法存在 的问题, 而提供一种新的吸附装置以及吸附剂再生方法, 所要解决的技术 问题是采用低温余热来制备高温千燥的解吸气, 并能够回收吸收剂所吸附 的吸附质资源, 从而更加适于实用, 且具有产业上的利用价值。
本发明的目的及解决其技术问题是采用以下技术方案来实现的。 依据 本发明提出的一种吸附装置, 其包括: 吸附塔, 内设有吸附剂床层;以及解 吸气供给装置, 其内部循环有吸收溶液, 该解吸气供给装置包括: 吸收塔, 内置有填料层; 发生器, 内置有发生换热器, 用于提高吸收溶液的浓度;及 吸收剂结晶器, 接收来自吸收塔和 /或发生器的吸收溶液并进行冷却, 形成 吸收剂结晶和结晶后吸收溶液, 所述的结晶后吸收溶液输送至发生器, 所 述^吸收剂结晶输送至吸收塔。 该吸收剂结晶器具有吸收溶液导入口, 吸 收溶液导出口和吸收剂结晶导出口, 该吸收溶液导入口连接于吸收塔, 该 吸收溶液导出口连接于发生器, 该吸收剂结晶导出口连接于吸收塔; 在上 迷的吸收塔顶部设有干解吸气管道, 并连接于吸附塔的顶部, 用于向吸附 塔提供的干解吸气, 在上述的吸附塔底部设有湿解吸气管道, 并连接于吸 收塔的底部, 用于将完成脱附过程的解吸气导入吸收塔内。
本发明的目的及解决其技术问题还可采用以下技术措施进一步实现。 优选的, 前述吸附装置, 其中所述的解吸气供给装置还包括吸收溶液 自换热器, 设置于吸收塔和吸收剂结晶器之间, 用于来自所述的发生器的 吸收溶液和 /或来自吸收塔的吸收溶液, 与结晶后吸收溶液和 /或吸收剂结 晶或者含吸收剂结晶的吸收溶液进行换热。
优选的, 前述吸附装置, 其还包括: 吸收溶液自换热器, 用于将来自 吸收塔的吸收溶液与来自吸收剂结晶器的结晶后吸收溶液进行换热。
优选的, 前述吸附装置, 其还包括: 吸收溶液自换热器, 用于将来自 吸收塔的吸收溶液与来自吸收剂结晶器的吸收剂结晶或者含吸收剂结晶的 吸收溶液进行换热。
优选的, 前述吸附装置, 其还包括: 吸收溶液自换热器, 用于将来自 吸收塔的吸收溶液与来自吸收剂结晶器的结晶后吸收溶液和吸收剂结晶或 者含吸收剂结晶的吸收溶液进行换热。
优选的, 前述吸附装置, 其还包括: 吸收溶液自换热器, 用于将来自 发生器的吸收溶液和来自吸收塔的吸收溶液混合后进入吸收溶液自换热 器, 与来自吸收剂结晶器的结晶后吸收溶液和吸收剂结晶或者含吸收剂结 晶的吸收溶液进行换热。
优选的, 前述吸附装置, 其中所述的解吸气供给装置还包括混合器, 用于将从所述吸收剂结晶导出口导出的含结晶溶液和从发生器底部导出的 吸收溶液进行混合。
优选的, 前述吸附装置, 其中所述的解吸气供给装置还包括冷凝器,其 通过蒸气通路与发生器相连, 在冷凝器中设有冷凝换热器。
优选的, 前述吸附装置, 其中所述的发生器为塔状, 在该发生器内设 有填料层、 喷淋设备、 空气入口和空气出口, 所述填料层设置在发生器内 部的中段位置, 所述喷淋设备设置在该填料层上部空间; 所述空气入口位 于填料层的下方, 所述空气出口位于喷淋设备的上方。
本发明的目的及解决其技术问题还采用以下的技术方案来实现。 依据 本发明提出的一种吸附剂再生方法, 釆用前述的吸附装置, 对吸附塔内的 吸附剂进行再生, 该方法包括以下步骤:
向吸附塔内通入干解吸气, 该干解吸气通过吸附剂床层, 使吸附剂所 吸附的吸附质解吸脱附, 干解吸气含有吸附质成为湿解吸气;
从吸附塔导出的湿解吸气通入吸收塔与吸收溶液接触, 吸收溶液吸收 湿解吸气中的吸附质并放热, 解吸气的温度得到升高而形成干解吸气; 吸收塔底部的吸收溶液导出到吸收剂结晶器中, 并进行冷却结晶及固 液分离, 结晶后吸收溶液导出到发生器中, 吸收剂结晶或者含吸收剂结晶 的吸收溶液导入吸收塔顶部; 以及
在发生器中加热吸收溶液, 产生吸附质蒸气同时浓缩吸收溶液, 并将 浓缩后的吸收溶液导入吸收塔。
本发明的目的及解决其技术问题还可采用以下技术措施进一步实现。 优选的, 前迷的吸附剂再生方法, 还包括: 在所述的结晶后吸收溶液 输送到发生器之前, 且吸收塔输出的吸收溶液进行冷却之前, 所述的吸收 塔输出的吸收溶液与所述的结晶后吸收溶液进行换热。
优选的, 前述的吸附剂再生方法, 还包括: 在所述的吸收剂结晶输送 到吸收塔之前, 且吸收塔输出的吸收溶液进行冷却之前, 所述的吸收剂结 晶或者含吸收剂结晶的吸收溶液与所述的吸收塔输出的吸收溶液进行换 热。
优选的, 前述的吸附剂再生方法, 还包括: 在所述的结晶后吸收溶液 输送到发生器之前, 吸收剂结晶输送到吸收塔之前, 且吸收塔输出的吸收 溶液进行冷却之前, 所述吸收塔输出的吸收溶液与所述的结晶后吸收溶液 和吸收剂结晶或者含吸收剂结晶的吸收溶液进行换热。
优选的, 前述的吸附剂再生方法, 还包括: 在所述的结晶后吸收溶液 输送到发生器之前, 吸收剂结晶输送到吸收塔之前, 吸收塔输出的吸收溶 液进行冷却之前, 发生器输出的吸收溶液与所述吸收塔输出的吸收溶液混 合形成混合吸收溶液, 该混合吸收溶液与所述的结晶后吸收溶液和吸收剂 结晶或者含吸收剂结晶的吸收溶液进行换热。
优选的, 前述的吸附剂再生方法, 对其中所述的发生器中产生的蒸气 进行冷凝, 回收冷凝吸附质。
本发明的目的及解决其技术问题还采用以下的技术方案来实现。 依据 本发明提出的一种吸附剂再生方法, 采用前述的吸附装置, 对吸附塔内的 吸附剂进行再生, 该方法包括以下步骤:
向吸附塔内通入干解吸气, 该干解吸气通过吸附剂床层, 使吸附剂所 吸附的吸附质解吸脱附, 干解吸气含有吸附质成为湿解吸气;
从吸附塔导出的湿解吸气通入吸收塔与吸收溶液接触, 吸收溶液吸收 湿解吸气中的吸附质并放热, 解吸气的温度得到升高而形成干解吸气; 吸收塔底部的吸收溶液导出到吸收剂结晶器中, 并进行冷却结晶及固 液分离, 结晶后吸收溶液导出到发生器中, 吸收剂结晶或者含结晶的吸收 溶液导入吸收塔顶部; 以及
在发生器中加热吸收溶液并通入空气, 使空气与发生器中的吸收溶液 接触后排出携带有吸附质的空气, 同时浓缩吸收溶液, 将浓缩后的吸收溶 液导入吸收塔。
本发明与现有技术相比具有明显的优点和有益效果。 由以上技术方案 可知,本发明的吸附装置以及吸附剂再生方法, 其能够使解吸气循环利用从 而避免了解吸气的浪费, 以及解吸气所携带热量的浪费, 节约了资源。 另 外, 本发明的解吸气供给装置可以利用低温余热作为热源动力来提供温度 更高的解吸气, 使低温热源得到有效的利用。 由于解吸气为循环状态, 所 以可以回收吸附剂中所吸附的吸附质资源。
上述说明仅是本发明技术方案的概述, 为了能够更清楚了解本发明的 技术手段, 并可依照说明书的内容予以实施, 以下以本发明的较佳实施例 并配合附图祥细说明如后。 附图说明
图 1是本发明吸附装置的实施例 1的流程图。
图 2是本发明吸附装置的实施例 2的流程图。
图 3是本发明吸附装置的实施例 3的流程图。
图 4是本发明吸附装置的实施例 4的流程图。
图 5是本发明吸附装置的实施例 5的流程图。
图 6是本发明吸附装置的实施例 6的流程图。
图 7是现有吸附装置的流程图。
10: 解吸气供给装置 11 : 发生器
110: 发生换热器 12: 吸收塔
121、 221 : 填料层
122、 222 : 喷淋设备 123: 干解吸气管道
124: 湿解吸气管道 125: 吸收换热器
13: 冷凝器
130: 冷凝换热器 141: 吸收剂结晶器
142: 混合器 150: 吸收溶液自换热器
19: 蒸气通路
20: 吸附塔 21 : 吸附剂床层 实现发明的最佳方式
为更进一步阐述本发明为达成预定发明目的所采取的技术手段及功 效,以下结合附图及较佳实施例, 对依据本发明提出的吸附装置其具体实施 方式、 结构、 特征及其功效, 详细说明如后。
请参阅图 1所示, 是本发明实施例 1提出的吸附装置的流程图。 该吸 附装置采用吸附剂对含吸附质混合物料进行分离 , 混合物料中的吸附质被 吸附在吸附剂中, 从而达到分离效果。 该吸附装置主要包括: 吸附塔 20和 解吸气供给装置 10。 该吸附塔 20内设有吸附剂床层 21 , 吸附剂床层 21可 充填活性炭、 分子筛、 硅胶、 活性氧化铝以及聚合物等吸附剂, 优选其中 对吸附质具有较强吸收能力的吸附剂。 在进行吸附分离时, 混合物料从吸 附塔 20底部通入, 在吸附剂床层 21处吸附剂对混合物料中的吸附质进行 吸附, 完成吸附过程后, 被分离的物料从吸附塔 20塔顶部输出。 所述的解 吸气供给装置 10, 用于向吸附塔 20提供高温干燥的解吸气(以下称为干解 吸气), 并对完成解吸脱附过程的解吸气(由于其中含有解吸脱附下来的吸 附质, 以下称为湿解吸气)重新进行干燥和升温, 同时分离其中的吸附质。 该解吸气供给装置 10包括发生器 11、 吸收塔 12以及吸收剂结晶器 141。
该发生器 11 , 内置有发生换热器 110用于提供热源对发生器内的吸收 溶液进行加热, 使吸收溶液中的吸附质蒸发形成蒸气, 同时吸收溶液得到 浓缩。 该发生器 11还设有蒸气通路 19用于排出所述蒸气,所排出的蒸气待 用。 发生器 11得到的浓缩后的吸收溶液通过管道 143输送到吸收塔 12中。
该吸收剂结晶器 141, 具有吸收溶液导入口、吸收溶液导出口和吸收剂 结晶导出口, 该吸收溶液导入口连接于吸收塔 12的底部, 该吸收溶液导出 口连接于发生器 11的顶部, 该吸收剂结晶导出口通过管道 143连接于吸收 塔 12的顶部。 在吸收剂结晶器 141中采用低温冷源对吸收溶液进行冷却结 晶,由于吸收溶液达到凝固点时会出现结晶, 温度越低液相的吸收溶液的平 衡浓度就越低,因此,通过冷却结晶,无论冷却结晶前的吸收溶液度有多高, 结晶后液相的吸收剂浓度可达到或接近冷却温度下的吸收剂平衡浓度。 对 吸收溶液进行冷却结晶, 并进行固液分离后将吸收剂结晶通过管道 143输 送到吸收塔 12 ,而将结晶后的吸收溶液通过管道输送到发生器 11中进行浓 缩。 上述的吸收剂结晶器 141所采用的冷源温度可以为- 18 ~ 60°C。 设置吸 收剂结晶器对吸收塔输出的吸收溶液进行冷却结晶, 其效果之一在于, 在 保持较低的发生器吸收溶液工作浓度, 从而可以利用低温余热作为发生器 的驱动热源对吸收溶液进行浓缩再生的前提下, 可显著提高吸收塔的吸收 溶液的浓度, 从而可在吸收塔中得到温度更高的吸收热, 使得干解吸气具 有更高的温度和更低的吸附质含量, 有利于解吸脱附过程的进行, 从而提 高解吸效率。
该吸收塔 12 , 内置有填料层 121 , 在填料层 121下部设有湿解吸气管 道 124,该湿解吸气管道 124连接于吸附塔 20的底部。在吸收塔 12的顶部 设有干解吸气管道 123,所述的千解吸气管道 连接到吸附塔 20的顶部; 在填料层 121的上部设有喷淋设备 122,用于向下喷洒从管道 143输送过来 的高浓度的吸收溶液; 吸附塔 20输出的湿解吸气从吸收塔底部进入向上流 动, 湿解吸气与高浓度的吸收溶液接触时其中包含的吸附质被吸收, 同时 释放出吸收热使解吸气温度升高。 填料层 121 用于使湿解吸气与高浓度的 吸收溶液能充分接触。 解吸气从塔底向塔顶流动过程中吸附质不断地被吸 收而解吸气的温度也不断地升高, 到达喷淋设备 122 时, 解吸气的吸附质 含量达到最低而温度达到最高, 成为干解吸气并被输送到吸附塔 20中。 经 过解吸脱附过程, 干解吸气变为湿解吸气, 然后再次被输送到吸收塔中, 湿解吸气变为干解吸气, 从而形成解吸气的干湿循环过程。
本实施例的吸附装置, 在进行吸附分离时, 吸附塔 20内进行吸附分离 过程, 而解吸气供给装置 10不工作; 吸附塔 20内的吸附剂达到饱和吸附 量后, 就需要对吸附剂进行解吸脱附的再生过程。此时由干解吸气管道 123 提供高温干燥的解吸气(如氮气或者空气),由于脱附过程一般为吸热过程, 所以温度高的解吸气有利于吸附质的解吸。
吸收溶液在吸收剂结晶器 141 中形成吸收剂结晶和结晶后吸收溶液。 实施例 1 以及下述实施例中所述的吸收剂结晶不用于限定其仅仅为吸收剂 结晶颗粒, 其还可以是含有吸收剂结晶颗粒的吸收溶液。
请参阅图 2所示, 是本发明实施例 2提出的吸附装置的流程图。 该吸 附装置与实施例 1相比, 其还具有吸收溶液自换热器 150以及混合器 142 , 该吸收溶液自换热器 150设置于吸收塔 12和吸收剂结晶器 141之间, 用于 对从吸收塔 12输出的吸收溶液与从吸收剂结晶器 141输出的结晶后吸收溶 液及含结晶吸收溶液进行热交换。 由于来自吸收塔 12的吸收溶液的温度远 高于从吸收剂结晶器 141输出的吸收剂结晶和结晶后吸收溶液的温度, 所 以经过换热后, 进入吸收剂结晶器 141 的吸收溶液温度大大降低, 从而可 以减少用于冷却吸收溶液的冷量。 同时, 经过换热后的来自吸收剂结晶器 的吸收剂结晶的温度大大提高, 其被输送到吸收塔中, 吸收同样量的工质 蒸汽, 可以在更高的工作温度下释放吸收热, 从而可以提高吸收塔向外提 供的千解吸气的温度, 从而提高解吸效率。 经过换热后的来自吸收剂结晶 器的结晶后溶液的温度大大提高, 其被输送到发生器中, 蒸发出同样的工 廣蒸汽, 本实施例可以减少发生器的消耗的热量, 从而提高能源利用效率。 混合器 142,用于将所述吸收剂结晶器 141的导出口输出的含结晶溶液和发 生器 11输出的吸收溶液混合, 并通过管道 143将混合后的吸收溶液输送到 吸收塔 12。 经过混合, 可以使吸收剂结晶溶解并提高温度, 易于输送。 较 佳的, 所述的解吸气供给装置 10还包括冷凝器 13 , 其通过蒸气通路 19与 发生器 11相连, 在冷凝器中设有冷凝换热器 130, 从而可以将蒸气冷却为 液体力 ρ以回》jt。
请参阅图 3所示, 是本发明实施例 3的流程图。 与实施例 1相比., 所 述的吸收溶液自换热器 150 , 用于使来自吸收塔 12的吸收溶液与从吸收剂 结晶器 141输出的吸收剂结晶(或者含吸收剂结晶的吸收溶液 )进行换热, 换热后的吸收剂结晶送入管道 143。 经过换热后的来自吸收塔 12的吸收溶 液输入到吸收剂结晶器 141 中进行冷却结晶和固液分离; 经过换热后的从 吸收剂结晶器 141输出的吸收剂结晶经管道 143被输送至吸收塔 12中'。 发 生器 11的吸收溶液也经管道 143输入到吸收塔 12 , 从而将发生器 11输出 的吸收溶液与经过换热后的吸收剂结晶混合后共同输入到吸收塔中。 从吸 收剂结晶器 141输出的结晶后吸收溶液输送到发生器 11内。 由于来自吸收 塔 12的吸收溶液的温度远高于从吸收剂结晶器 141输出的吸收剂结晶的温 度, 所以经过换热后, 进入吸收剂结晶器 141 的吸收溶液温度大大降低, 从而可以减少用于冷却吸收溶液的冷量。 同时, 经过换热后的来自吸收剂 结晶器的吸收剂结晶的温度大大提高, 其被输送到吸收塔中, 吸收同样量 的工质蒸汽, 可以在更高的工作温度下释放吸收热, 从而可以提高吸收塔 提供的干解吸气的温度, 从而提高解吸效率和能源利用效率。
请参阅图 4所示, 是本发明实施例 4的流程图。 与实施例 2相比, 所 述的吸收溶液自换热器 150 , 用于使来自吸收塔 12的吸收溶液与从吸收剂 结晶器 141输出结晶后吸收溶液进行换热。 经过换热后的来自吸收塔 12的 吸收溶液输入到吸收剂结晶器 141 中进行冷却结晶和固液分离, 换热^的 结晶后吸收溶液送入发生器 11。 发生器 11的吸收溶液和吸收剂结晶器 141 输出的吸收剂结晶 (或含吸收剂结晶的吸收溶液)共同通过管道 143输送 至吸收塔 12。由于来自吸收塔 12的吸收溶液的温度远高于从吸收剂结晶器 141 输出的结晶后吸收溶液的温度, 所以经过换热后, 进入吸收剂结晶器 141的吸收溶液温度大大降低,从而可以减少用于冷却吸收溶液的的冷源的 用量。 同时, 经过换热后的来自吸收剂结晶器的结晶后吸收溶液的温度大 大提高, 其被输送到发生器中, 可以减少发生器的驱动热源的用量, 从而 请参阅图 5所示, 是本发明实施例 5的流程图。 与实施例 2相比, 所 述的发生器 11的吸收溶液输出管道与吸收塔 12的吸收溶液输出管道相连, 相连的节点位于进入吸收溶液自换热器 150之前。 来自发生器 11的吸收溶 液与来自吸收塔 12的吸收溶液混合后进入吸收溶液自换热器 150, 与从吸 收剂结晶器 141 输出的吸收剂结晶和结晶后吸收溶液同时进行换热。 经过 换热后的结晶后吸收溶液通过吸收溶液输入管道输送至发生器 11中。 经过 换热后的吸收剂结晶通过吸收溶液输入管道输送至吸收塔 12中。 将来自发 生器 11的吸收溶液与来自吸收塔 12的吸收溶液混合后进行冷却结晶, 与 前述方式相比, 增加了被冷却结晶的吸收溶液的量, 从而可以得到更多的 结晶后吸收溶液, 从而可以提高吸收剂结晶器的使用效率。
请参阅图 6所示, 是本发明实施例 6提出的吸附装置的流程图。 该吸 附装置与上实施例 1-5相比, 其中所述的发生器 11被设计为塔状, 在该发 生器 11内设有填料层 221、 换热器 110和喷淋设备 222 , 该填料层设置在 发生器 11内部的中段位置, 在该填料层 221之上为所述的喷淋设备用于喷 洒来自吸收剂结晶器 141 的结晶后吸收溶液, 使该溶液通过重力自上而下 穿过填料层 222。 在发生器 11上还设置有空气入口和空气出口, 该空气入 口开设在填料层之下, 用于向发生器 11内通入空气; 该空气出口开设在喷 淋设备 222之上, 从而使通入发生器 11的空气可以与从喷淋设备 221喷洒 的结晶后吸收溶液相接触。 填料层 221 是用于使结晶后溶液与空气有较大 的接触面积以及延长接触时间, 从而可以使结晶后溶液中的吸附质能更多 地扩散到空气中, 并从空气出口被携带出发生器, 从而提高吸收溶液的浓 度。
此外, 为了更好的利用吸收热, 较佳的, 在吸收塔 12的底部还设有吸 收换热器 将吸收塔 12顶部的干解吸气通入其中进行加热, 以提高干 解吸气的温度, 从而进一步提高其解吸能力。 现, 例如填料的选择以及填充方式, 较佳的, 选择现有技术中具有较小阻 力以及较大接触面积的填料层。
本发明的实施例 7还提出一种吸附剂再生方法, 采用上述实施例 1所 述的吸附装置, 对吸附塔内的吸附剂进行再生, 该方法主要包括解吸气循 环和吸收溶液循环。 所述的解吸气循环包括以下步骤: 由吸收塔产生高温 干燥的干解吸气, 并向吸附塔内通入该解吸气, 该干解吸气通过吸附剂床 层, 使吸附剂所吸附的吸附质解吸脱附, 解吸气含有吸附盾成为湿解吸气; 以及从吸附塔导出的湿解吸气通入吸收塔与吸收溶液接触, 吸收溶液吸收 湿解吸气中的吸附质并放热 , 解吸气的温度得到升高而成为干解吸气。
所述的吸收溶液循环包括以下步骤: 吸收塔底部的吸收溶液导出到吸 收剂结晶器中, 并进行冷却结晶及固液分离, 结晶后溶液导出到发生器中, 含结晶溶液导入吸收塔顶部; 以及在发生器中利用低温余热加热吸收溶液, 产生蒸气同时浓缩吸收溶液, 并将浓缩后的吸收溶液导入吸收塔。
本发明实施例 8还提出一种吸附剂再生方法, 采用实施例 2-5所.述的 吸附装置。 与实施例 7 的方法相比, 本实施例还包括: 所述的来自发生器 的吸收溶液和 /或来自吸收器的吸收溶液, 与结晶后吸收溶液和 /或吸收剂 结晶或者含吸收剂结晶的吸收溶液进行换热。 提高进入发生器的吸收溶液 的温度, 有利于蒸发浓缩, 节约发生器的供热; 同时降低进入吸收剂结晶 器的吸收溶液温度, 有利于冷却结晶, 从而减少冷量的供应。
较佳的, 在所述的结晶后吸收溶液输送到发生器之前, 且吸收塔输出 的吸收溶液进行冷却之前, 所述的吸收塔输出的吸收溶液与所述的结晶后 吸收溶液进行换热。
较佳的, 在所述的吸收剂结晶输送到吸收塔之前, 且吸收塔输出的吸 收溶液进行冷却之前, 所述的吸收剂结晶或者含吸收剂结晶的吸收溶液与 所述的吸收塔输出的吸收溶液进行换热。
较佳的, 在所述的结晶后吸收溶液输送到发生器之前, 吸收剂结晶输 送到吸收塔之前, 且吸收塔输出的吸收溶液进行冷却之前, 所述吸收塔输 出的吸收溶液与所述的结晶后吸收溶液和吸收剂结晶或者含吸收剂结晶的 吸收溶液进行换热。
较佳的, 在所述的结晶后吸收溶液输送到发生器之前, 吸收剂结晶输 送到吸收塔之前, 吸收塔输出的吸收溶液进行冷却之前, 发生器输出的吸 收溶液与所述吸收塔输出的吸收溶液混合形成混合吸收溶液, 该混合吸收 溶液与所述的结晶后吸收溶液和吸收剂结晶或者含吸收剂结晶的吸收溶液 进行换热。
较佳的, 在本实施例中还包括对发生器中产生的蒸气进行冷凝的过程, 从而回收液态吸附质。
本发明实施例 9还提出一种吸附剂再生方法, 采用实施例 6所述的吸 附装置。 与实施例 7和 8的方法相比, 其区别在于在发生器内进行的吸收 溶液浓缩过程为, 在发生器加热吸收溶液并向发生器中通入空气, 使空气 与发生器中的吸收溶液接触后排出携带有吸收溶液溶剂的空气, 同时浓缩 吸收溶液, 将浓缩后的吸收溶液导入吸收塔。 在发生器中设置填料层, 使 空气与吸收溶液能够更加充分的接触, 从而有利于吸收溶液中的吸附质扩 散到空气中, 有利于提高空气携带吸附^的量, 从而提高对吸收溶液的浓 缩效率。
本发明上述实施例提出的吸附装置中仅包含有一个吸附塔, 在具体实 施中本发明的吸附装置还包含两个或者多个吸附塔的实施方式, 每个吸附 塔与解吸气供给装置的连接方式相同。 当其中的一个吸附塔达到饱和吸附 量时按照上迷的吸附剂再生方法进行吸附剂的再生, 同时, 被分离物料切 换到另外的吸附塔进行吸附过程。 如此构成的吸附装置可以连续进行吸附 分离过程, 从而更加适于实用。
本发明的上述实施例所述的技术方案对所采用吸收溶液的种类并无特 别的限制, 上述实施例皆以吸附质-吸收剂为工质对的吸收溶液为例进行说 明,吸收剂可采用 LiBr, LiCl, NaBr, KBr, CaCl2, MgBr2及其混合物等。
本发明的解吸气供给装置的工艺条件可根据吸附塔所采用吸附剂的种 类及其再生条件等来决定。 当解吸气体为空气、 吸收剂为 LiBr时, 作为解 吸气供给装置的工艺条件范围, 吸收塔顶部吸收溶液的 LiBr浓度为: 62 ~ 78wt%; 吸收塔顶部干空气温度为: 70 ~ 220°C ; 吸收塔顶部干空气的吸附 质含量为: 0 ~ 50wt%; 发生器工作温度为 65 C以上; 吸收剂结晶器的冷却 温度为: -18 ~ 37°C ; 发生器顶部吸收溶液的 LiBr浓度为: 56 ~ 62wt%。
以下通过具有具体参数的实例来说明上述实施例的可实施性。 实例 1
根据实施例 7 所述的方法在常压下进行吸附剂的再生, 吸附塔所采用 的吸附剂为活性碳, 吸附质为水, 采用水 - LiBr作为工质对、 75 °C的热水作 为发生器的驱动热源、 15 °C冷却水作为结晶器的冷源。 实例 2
根据实施例 8 所述的方法在常压下进行吸附剂的再生, 吸附塔所采用 的吸附剂为活性氧化铝, 吸附质为水, 采用水 -LiBr作为工质对、 10CTC的 饱和水蒸气作为发生器的驱动热源、 32 °C冷却水作为结晶器以及冷凝器的 冷源。 实例 3
根据实施例 9 所述的方法在常压下进行吸附剂的再生, 吸附塔所采用 的吸附剂为活性碳, 吸附质为水, 采用水 -LiBr作为工质对、 75 的热水作 为发生器的驱动热源、 露点 10°C的空气作为发生器空气、 15 °C冷却水作为 结晶器的冷源。 实例 4
根据实施例 7 所述的方法在常压下进行吸附剂的再生, 吸附塔所采用 的吸附剂为活性碳, 吸附质为甲醇, 采用曱醇- LiBr作为工质对、 75 °C的热 7 作为发生器的驱动热源、 15。C冷却水作为结晶器的冷源。 表 1为上述实例 1-4的工作参数和性能。
Figure imgf000014_0001
置 换热器出口温度 ΓΟ ― 35 ― ―
压力 (kPa) ― 6. 0 ― ― 塔顶吸收溶液浓度 ( wt% ) 75 78 75 75 吸 塔底吸收溶液浓度 ( wt ) 72 75 72 72 收
塔 塔顶输出干空气的温度( 'C ) 165 200 165 165 塔顶输出干空气的吸附质舍量 (wt % ) 35 50 35 40 结
曰曰 淡化鋰结晶温度( °C ) 19 37 19 19 吸 塔底输出湿空气的温度( 'C ) 135 160 135 135 附
塔底输出湿空气的吸附质含量 (wt % ) 45 60 45 50 塔 如果采用现有的吸附剂再生技术进行吸附剂再生, 为了实现上述实例 的解吸再生效果, 作为热源必须投入电能或压力 0. 4MPa以上的蒸汽等高品 位能量。 由此可见, 本发明可收到大幅度降低所需能量的品位, 从而为有 效利用低温余热提供手段的显著效杲。
以上所述, 仅是本发明的较佳实施例而已, 并非对本发明作任何形式 上的限制, 虽然本发明已以较佳实施例揭露如上, 然而并非用以限定本发 明,任何熟悉本专业的技术人员, 在不脱离本发明技术方案范围内,当可利 用上述揭示的技术内容作出些许更动或修饰为等同变化的等效实施例 ,但 凡是未脱离本发明技术方案的内容, 依据本发明的技术实质对以上实施例 所作的任何简单修改、 等同变化与修饰, 均仍属于本发明技术方案的范围 内。 工业应用性
本发明的吸附装置以及吸附剂再生方法, 能够使解吸气循环利用从而 避免了解吸气的浪费, 以及解吸气所携带热量的浪费, 节约了资源。 另夕卜, 本发明的解吸气供给装置可以利用低温余热作为热源动力来提供温度更高 的解吸气, 使低温热源得到有效的利用。 由于解吸气为循环状态, 所以可 以回 i|欠吸附剂中所吸附的吸附质资源。

Claims

权 利 要 求
1、 一种吸附装置, 其特征在于其包括:
吸附塔, 内设有吸附剂床层; 以及
解吸气供给装置, 其内部循环有吸收溶液, 该解吸气供给装置包括: 吸收塔, 内置有填料层;
发生器, 内置有发生换热器, 用于提高吸收溶液的浓度; 及 吸收剂结晶器, 接收来自吸收塔和 /或发生器的吸收溶液并进行冷 却, 形成吸收剂结晶和结晶后吸收溶液, 所述的结晶后吸收溶液输送至发 生器, 所述的吸收剂结晶输送至吸收塔;
在上述的吸收塔顶部设有干解吸气管道, 并连接于吸附塔的顶部, 用 于向吸附塔提供干解吸气; 在上述吸附塔底部设有湿解吸气管道, 并连接 于吸收塔的底部, 用于将完成脱附过程的解吸气导入吸收塔内。
2、 根据权利要求 1所述的吸附装置, 其特征在于其中所述的解吸气供 给装置还包括吸收溶液自换热器, 用于来自所迷的发生器的吸收溶液和 /或 来自吸收塔的吸收溶液, 与结晶后吸收溶液和 /或吸收剂结晶或者含吸收剂 结晶的吸收溶液进行换热。
3、 根据权利要求 1所述的吸附装置, 其特征在于其还包括: 吸收溶液 自换热器, 用于将来自吸收塔的吸收溶液与来自吸收剂结晶器的结晶后吸 收溶液进行换热。
4、 根据权利要求 1所述的吸附装置, 其特征在于其还包括: 吸收溶液 自换热器, 用于将来自吸收塔的吸收溶液与来自吸收剂结晶器的吸收剂结 晶或者含吸收剂结晶的吸收溶液进行换热。
5、 根据权利要求 1所述的吸附装置, 其特征在于其还包括: 吸收溶液 自换热器, 用于将来自吸收塔的吸收溶液与来自吸收剂结晶器的结晶后吸 收溶液和吸收剂结晶或者含吸收剂结晶的吸收溶液进行换热。
6、 根据权利要求 5所述的吸附装置, 其特征在于其还包括: 吸收溶液 自换热器, 用于将来自发生器的吸收溶液和来自吸收塔的吸收溶液混合后 进入吸收溶液自换热器, 与来自吸收剂结晶器的结晶后吸收溶液和吸收剂 结晶或者含吸收剂结晶的吸收溶液进行换热。
7、 在权利要求 1-6任一项所述的吸附装置, 其特征在于其中所述的解 吸气供给装置还包括冷凝器, 其通过蒸气通路与发生器相连, 在冷凝器中 设有冷凝换热器。
8、 根据权利要求 1-6任一项所述的吸附装置, 其特征在于其中所述的 发生器为塔状, 在该在该发生器还设有填料层、 喷淋设备、 空气入口和空 气出口, 所述填料层设置在发生器内部的中段位置, 所述喷淋设备设置在 该填料层上部空间; 所述空气入口位于填料层的下方, 所述空气出口位于 喷淋 ϋ备的上方。
9、 一种吸附剂再生方法, 采用上述权利要求 1-8任一项所述的吸附装 置, 对吸附塔内的吸附剂进行再生, 其包括以下步驟:
向吸附塔内通入干解吸气, 该干解吸气通过吸附剂床层, 使吸附剂所 吸附的吸附质解吸脱附, 干解吸气含有吸附质成为湿解吸气;
从吸附塔导出的湿解吸气通入吸收塔与吸收溶液接触, 吸收溶液吸收 湿解吸气中的吸附质并放热, 解吸气的温度得到升高而形成干解吸气; 吸收塔底部的吸收溶液导出到吸收剂结晶器中, 并进行冷却结晶及固 液分离, 结晶后吸收溶液导出到发生器中, 吸收剂结晶或者含吸收剂结晶 的吸收溶液导入吸收塔顶部; 以及
在发生器中加热吸收溶液, 产生吸附质蒸气的同时浓缩吸收溶液, 并 将浓缩后的吸收溶液导入吸收塔。
10、 根据权利要求 9 所述的吸附剂再生方法, 其特征在于还包括: 在 所述的结晶后吸收溶液输送到发生器之前, 且吸收塔输出的吸收溶液进行 冷却之前, 所述的吸收塔输出的吸收溶液与所述的结晶后吸收溶液进行换 热。
11、 根据权利要求 9 所述的吸附剂再生方法, 其特征在于还包括: 在 所述的吸收剂结晶输送到吸收塔之前, 且吸收塔输出的吸收溶液进行冷却 之前, 所述的吸收剂结晶或者含吸收剂结晶的吸收溶液与所述的吸收塔输 出的吸收溶液进行换热。
12、 根据权利要求 9所述的吸附剂再生方法, 其特征在于还包括: 在 所述的结晶后吸收溶液输送到发生器之前, 吸收剂结晶输送到吸收塔之前, 且吸收塔输出的吸收溶液进行冷却之前, 所述吸收塔输出的吸收溶液与所 述的结晶后吸收溶液和吸收剂结晶或者含吸收剂结晶的吸收溶液进行换 热。 '
13、 根据权利要求 12所述的吸附剂再生方法, 其特征在于还包括: 在 所述的结晶后吸收溶液输送到发生器之前, 吸收剂结晶输送到吸收塔之前, 吸收塔输出的吸收溶液进行冷却之前, 发生器输出的吸收溶液与所述吸收 塔输出的吸收溶液混合形成混合吸收溶液, 该混合吸收溶液与所述的结晶 后吸收溶液和吸收剂结晶或者含吸收剂结晶的吸收溶液进行换热。
14、 一种吸附剂再生方法, 采用上述权利要求 1-8任一项所述的吸附 装置, 对吸附塔内的吸附剂进行再生, 其包括以下步骤:
向吸附塔内通入干解吸气, 该干解吸气通过吸附剂床层, 使吸附剂所 吸附的吸附质解吸脱附 , 干解吸气含有吸附质成为湿解吸气;
从吸附塔导出的湿解吸气通入吸收塔与吸收溶液接触, 吸收溶液吸收 湿解吸气中的吸附质并放热, 解吸气的温度得到升高而形成干解吸气; 吸收塔底部的吸收溶液导出到吸收剂结晶器中, 并进行冷却结晶及固 液分离, 结晶后吸收溶液导出到发生器中, 吸收剂结晶或者含结晶的吸收 溶液导入吸收塔顶部; 以及
在发生器中加热吸收溶液并通入空气, 使空气与发生器中的吸收溶液 接触后排出携带有吸附盾的空气, 同时浓缩吸收溶液, 将浓缩后的吸收溶 液导入吸收塔。
PCT/CN2009/000211 2008-02-29 2009-02-27 吸附装置以及吸附剂再生方法 WO2009105967A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN 200810006385 CN101518706B (zh) 2008-02-29 2008-02-29 吸附装置以及吸附剂再生方法
CN200810006385.7 2008-02-29

Publications (1)

Publication Number Publication Date
WO2009105967A1 true WO2009105967A1 (zh) 2009-09-03

Family

ID=41015520

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2009/000211 WO2009105967A1 (zh) 2008-02-29 2009-02-27 吸附装置以及吸附剂再生方法
PCT/CN2009/000212 WO2009105968A1 (zh) 2008-02-29 2009-02-27 干燥系统以及干燥方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/000212 WO2009105968A1 (zh) 2008-02-29 2009-02-27 干燥系统以及干燥方法

Country Status (2)

Country Link
CN (1) CN101518706B (zh)
WO (2) WO2009105967A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103673111B (zh) * 2013-12-16 2015-12-02 内蒙古科技大学 多功能空气除湿净化固体吸附再生床
CN110605107B (zh) * 2019-09-24 2022-04-01 常州大学 低排放一体式吸附剂就地再生装置
CN112066686B (zh) * 2020-10-09 2023-06-23 浙江浙能技术研究院有限公司 一种新型冷凝热回收盘式污泥低温干化系统
CN113877357B (zh) * 2021-10-27 2023-10-27 中冶南方工程技术有限公司 一种高炉煤气吸附脱硫再生系统及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996025635A1 (en) * 1995-02-16 1996-08-22 Rocky Research Improved refrigerators/freezers incorporating solid-vapor sorption reactors capable of high reaction rates
DE102005041889A1 (de) * 2005-09-03 2007-03-08 Fan Separator Gmbh Trocknung von Ethanol mit Zeolith
CN101033897A (zh) * 2007-04-19 2007-09-12 北京科技大学 一种中低温余热转化为蒸汽的系统及方法
CN101081361A (zh) * 2007-06-28 2007-12-05 同济大学 一种吸附床循环解吸分流回收再生方法及其装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE464853B (sv) * 1988-08-01 1991-06-24 Ahlstroem Foeretagen Foerfarande foer avfuktning av en gas, speciellt luft
US5618427A (en) * 1995-02-13 1997-04-08 W. R. Grace & Co.-Conn. Composition and method for degradation of nitroaromatic contaminants
JP2005205304A (ja) * 2004-01-22 2005-08-04 Dia Research Martech Inc 除湿剤およびその再生方法
CN100428979C (zh) * 2005-06-28 2008-10-29 江苏世纪江南环保有限公司 塔内结晶氨法脱硫工艺及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996025635A1 (en) * 1995-02-16 1996-08-22 Rocky Research Improved refrigerators/freezers incorporating solid-vapor sorption reactors capable of high reaction rates
DE102005041889A1 (de) * 2005-09-03 2007-03-08 Fan Separator Gmbh Trocknung von Ethanol mit Zeolith
CN101033897A (zh) * 2007-04-19 2007-09-12 北京科技大学 一种中低温余热转化为蒸汽的系统及方法
CN101081361A (zh) * 2007-06-28 2007-12-05 同济大学 一种吸附床循环解吸分流回收再生方法及其装置

Also Published As

Publication number Publication date
CN101518706B (zh) 2011-11-09
CN101518706A (zh) 2009-09-02
WO2009105968A1 (zh) 2009-09-03

Similar Documents

Publication Publication Date Title
JP5945333B2 (ja) 発電所排煙の二酸化炭素回収方法および装置
KR101250769B1 (ko) 하이브리드 공기조화 시스템
TW201210676A (en) Carbon dioxide gas recovering device
CN101703869B (zh) 从废气中回收有机溶剂的方法及其装置
CN107261754A (zh) VOCs废气回收处理方法及装置
WO2022018832A1 (ja) 炭酸ガス回収システム
WO2009094896A1 (fr) Système d'évaporation et procédé d'évaporation-concentration
JP7461679B2 (ja) 吸収、脱離及び回収を一体化したVOCs回収システム及び方法
WO2010054537A1 (zh) 热泵循环系统以及冷热联供方法
WO2009155790A1 (zh) 二氧化碳分离系统以及分离方法
WO2009105967A1 (zh) 吸附装置以及吸附剂再生方法
JP6165150B2 (ja) 除湿機およびその使用方法
JP3943102B2 (ja) 着霜防止機能を有する熱交換器及びその表面の着霜防止方法
KR20150113367A (ko) 엔엠피 회수 정제 시스템
CN105233689B (zh) 一种高效低能耗的有机胺湿法烟气脱硫解吸系统
KR20110113095A (ko) 이산화탄소 회수장치
WO2009094895A1 (fr) Système et procédé de distillation
CN104673417B (zh) 用于煤制天然气的预冷却和干燥净化的系统和方法
US20160209090A1 (en) Microemulsion-enabled heat transfer
KR20130137473A (ko) 이산화탄소 포집을 위한 이산화탄소 제거장치
WO2012016418A1 (zh) 吸附式热流体自身冷却系统
CN208750868U (zh) 一种除湿溶液再生装置及一种空气除湿系统
JP2008020094A (ja) 吸収式ヒートポンプ装置
CN108488955A (zh) 一种除湿溶液再生装置及一种空气除湿系统
US20160200591A1 (en) Microemulsion-enabled water capture and recovery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09714790

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09714790

Country of ref document: EP

Kind code of ref document: A1