WO2009104692A1 - 鉄基焼結合金粉末 - Google Patents

鉄基焼結合金粉末 Download PDF

Info

Publication number
WO2009104692A1
WO2009104692A1 PCT/JP2009/052921 JP2009052921W WO2009104692A1 WO 2009104692 A1 WO2009104692 A1 WO 2009104692A1 JP 2009052921 W JP2009052921 W JP 2009052921W WO 2009104692 A1 WO2009104692 A1 WO 2009104692A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
mass
hardness
iron
based sintered
Prior art date
Application number
PCT/JP2009/052921
Other languages
English (en)
French (fr)
Inventor
上野 英生
裕二 曽田
弘訓 秀島
Original Assignee
三菱製鋼株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱製鋼株式会社 filed Critical 三菱製鋼株式会社
Priority to US12/918,483 priority Critical patent/US8685180B2/en
Priority to CN2009801057790A priority patent/CN101952470B/zh
Priority to EP09712175.0A priority patent/EP2253727B1/en
Publication of WO2009104692A1 publication Critical patent/WO2009104692A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/1039Sintering only by reaction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/008Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of engine cylinder parts or of piston parts other than piston rings
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/001Heat treatment of ferrous alloys containing Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/007Heat treatment of ferrous alloys containing Co
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/02Hardening by precipitation
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0278Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
    • C22C33/0285Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5% with Cr, Co, or Ni having a minimum content higher than 5%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • C22C38/105Ferrous alloys, e.g. steel alloys containing cobalt containing Co and Ni
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L3/00Lift-valve, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces; Parts or accessories thereof
    • F01L3/02Selecting particular materials for valve-members or valve-seats; Valve-members or valve-seats composed of two or more materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2301/00Using particular materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2303/00Manufacturing of components used in valve arrangements

Definitions

  • the present invention relates to an iron-based sintered alloy powder, and more particularly, to a powder suitable for a powder constituting an iron-based sintered alloy valve seat of an internal combustion engine.
  • Patent Publication 2006-299404 contains C: 0.3 to 1.5%, and 1 to 20% in total of one or more selected from Ni, Co, Mo, Cr, and V.
  • the composition is composed of Fe and unavoidable impurities in the balance, the hard particles having a Vickers hardness of 500 HV0.1 to 1200 HV0.1, 10% to 60% by weight, and a density of 6.7 g / cm It has been proposed that the crushing strength be 3 MPa or more.
  • Patent Publication No. 2004-307950 includes Ni 3 to 12%, Mo 3 to 12%, Nb 0.1 to 3%, Cr 0.5 to 5%, V 0.6 to 4%, C 0.5 to 2%, Fe Further, an iron-based sintered alloy is proposed in which 3 to 20% by mass of hard particles are dispersed in a base made of inevitable impurities.
  • hard particles are composed of Mo: 20 to 70% by weight, C: 0.2 to 3%, Mn: 1 to 15%, the balance being Fe and inevitable impurities and Co.
  • Sintered alloy is mass% and the total components are Mo: 4 to 35%, C: 0.2 to 3%, Mn: 0.5 to 8%, Co: 3 to 40%, the balance is inevitable impurities and Fe
  • the base component is C: 0.2-5%, Mn: 0.1-10%, the balance is inevitable impurities and Fe
  • the hard particle component is Mo: 20-70%, C: 0.2-3% , Mn: 1 to 20%, the balance consists of inevitable impurities and Co, and it is proposed that hard particles are dispersed in an area ratio of 10 to 60% in the matrix.
  • the valve seat itself is required to have good heat conduction because heat during combustion in the engine does not accumulate.
  • the sintered density is high, and in order to increase the sintered density, it is necessary that the density of the green compact before sintering is high.
  • the moldability at the time of compression molding is good, and in order to improve the moldability, it is necessary that the powder hardness is low.
  • the problem to be solved by the present invention is to provide an iron-based sintered alloy powder that is excellent in formability and wear resistance and does not precipitate carbides that may cause wear of the counterpart material.
  • Marage steel is steel in which alloy elements that increase hardness as precipitates are dissolved in supersaturation in martensite at room temperature and precipitation hardened by increasing the temperature.
  • martensite has a problem of high hardness when formed as a powder.
  • ordinary maraging steel has a problem that it contains Ti and Al, which are nitrides that reduce fatigue strength.
  • the present inventors do not contain Ti and Al in producing powder by quenching molten steel by conventional techniques such as gas atomization, water atomization, and centrifugal atomization.
  • gas atomization gas atomization
  • water atomization water atomization
  • centrifugal atomization By adjusting the chemical composition of the molten steel, we succeeded in obtaining a supersaturated solid solution in the form of soft austenite without becoming martensite.
  • This supersaturated solid solution powder has good moldability because of its low hardness at the time of compression molding at room temperature, and particularly has good wear resistance because it is cured during the heating and cooling processes during sintering as a valve seat.
  • the metallurgical mechanism of this phenomenon is as follows.
  • An alloy element that lowers the Ms point which is a temperature at which austenite is transformed into martensite, is added, and the molten steel is rapidly cooled to obtain a supersaturated solid solution, and austenite is obtained at room temperature.
  • the supersaturated alloy element is precipitated in the austenite, resulting in a highly hard precipitate, and at the same time, the alloy element that had lowered the Ms point is released from the austenite, so the Ms point of the austenite rises and during cooling become martensite.
  • the above-described object of the present invention is achieved by the following iron-based sintered alloy powder.
  • C is controlled as an inevitable impurity element to less than 0.1% by mass, Si: 0.5 to 8.5% by mass, Ni: 10 to 25% by mass, Mo: 5 to 20% by mass, Co: 5 to 20% by mass %, And the balance of Fe and the inevitable impurities is rapidly cooled, so that the powder hardness during compression molding is less than 250 HV in Vickers hardness, and the sintered hardness after sintering is Vickers hardness. It is a powder characterized by being 450HV or higher.
  • the iron-based sintered alloy powder of the present invention is excellent in formability and wear resistance, and is suitable for an iron-based sintered alloy powder, particularly a valve seat of an internal combustion engine, in which carbides that may cause wear of the counterpart material do not precipitate.
  • An iron-based sintered alloy powder can be provided.
  • the present invention avoids the precipitation of carbide by controlling C as an inevitable impurity element to less than 0.1% by mass, Si: 0.5 to 8.5% by mass, Ni: 10 to 25% by mass, Mo: 5 to 20% by mass %, Co: 5 to 20% by mass of iron-based sintered alloy powder with supersaturated solid solution mainly composed of austenite effective for softening powder by quenching molten steel consisting of Fe and inevitable impurities. Is to provide.
  • C Less than 0.1% by mass
  • C is an element that forms carbides. Carbide wears against the mating material that the sintered parts manufacturer of each valve seat is concerned about. In order to avoid the harmful effects, C needs to be less than 0.1% by mass. Also, the formation of carbides is not preferable for the following two points. In the valve seat itself as well as the counterpart material, the carbide has a deformability different from that of the surrounding metal, and when stress is applied, a strain may be generated at the interface between the metal and the carbide and peel off. Since the presence of carbide is inferior in heat conductivity to that of metal, it is difficult for heat generated by engine combustion to escape to the cylinder block, and the heat load on the valve seat increases. Therefore, C is limited to less than 0.1% by mass.
  • Si 0.5 to 8.5% by mass
  • Si is an alloy element that becomes a precipitate during sintering from Mo and a supersaturated solid solution described later. In order to ensure the effect, the amount of Si needs to be 0.5% by mass or more.
  • Si is an alloying element that increases the hardness of the powder, and excessive addition increases the hardness of the powder during molding. In order to avoid the adverse effect, the amount of Si needs to be 8.5% by mass or less. Therefore, the amount of Si added is limited to 0.5 to 8.5% by mass.
  • Ni 10-25% by mass
  • Ni is an austenite forming element, and at the same time, lowers the Ms point, thereby ensuring soft austenite at room temperature and keeping the powder hardness low.
  • the amount of Ni needs to be 10% by mass or more.
  • Ni is an alloying element that lowers the hardness of the powder, and is preferable at the time of molding, but excessive addition reduces the hardness of the powder after sintering.
  • the amount of Ni needs to be 25% by mass or less. Further, excessive addition of Ni is not preferable from the viewpoint of being an expensive alloy element. Therefore, the amount of Ni added is limited to 10 to 25% by mass.
  • Mo 5-20% by mass
  • Mo is an alloy element that secures soft austenite at room temperature by lowering the Ms point at the same time as an alloy element that becomes a precipitate during sintering from the above-described Si and supersaturated solids.
  • the amount of Mo needs to be 5% by mass or more.
  • Mo is an alloying element that increases the hardness of the powder, and excessive addition increases the hardness of the powder during molding. In order to avoid this harmful effect, the amount of Mo needs to be 20% by mass or less. Further, excessive addition of Mo is not preferable from the viewpoint of being an expensive alloy element. Therefore, the amount of Mo added is limited to 5 to 20% by mass.
  • Co 5 to 20% by mass
  • Co is an alloying element that increases the amount of Si and Mo as precipitates in the austenite and promotes the precipitation of these precipitates. In order to ensure the effect, it is necessary to add 5% by mass of Co.
  • Co is an alloy element that increases the hardness of the powder, and excessive addition increases the hardness of the powder during molding. In order to avoid the harmful effects, the amount of Co needs to be 20% by mass or less. Further, excessive addition of Co is not preferable from the viewpoint of being an expensive alloy element. Therefore, the amount of Co added is limited to 5 to 20% by mass.
  • powder hardness at the time of compression molding less than 250 HV.
  • This powder hardness means a value measured by a Vickers hardness test-test method specified in JIS Z 2244.
  • the powder hardness at the time of compression molding was limited to less than 250 HV.
  • the sintered hardness after sintering is 450 HV or more.
  • This sintered hardness means a value measured by a Vickers hardness test-test method defined in JIS Z 2244 for a sintered body treated by the treatment procedure shown in FIG.
  • the sintered hardness after sintering needs to be 450 HV or higher. Therefore, the sintering hardness after sintering is limited to 450 HV or more.
  • Test Nos. 1 to 9 are invention examples and powders of limited chemical components. As a result, the hardness of the powder is less than 250 HV, and the hardness after sintering is 450 HV or more.
  • Test Nos. A to h are comparative examples and are powders that do not satisfy the limited chemical components. Therefore, the following is pointed out.
  • the amount of Si added is less than 0.5% by mass of the lower limit of the limited range. Therefore, precipitation of precipitates is insufficient, and the hardness of the powder after sintering heat treatment is less than 450 HV.
  • Test No. b the amount of Si added exceeds the upper limit of 8.5% by mass of the limited range. Therefore, the hardness of the powder at the time of molding is high and is 250 HV or more.
  • the amount of Ni added is less than 10% by mass of the lower limit of the limited range. Therefore, it is estimated that austenite is not formed, the Ms point is not sufficiently lowered, and martensite is generated. Therefore, the hardness of the powder at the time of molding is 250 HV or more.
  • the amount of Ni added exceeds the upper limit of 25% by mass of the limited range. Therefore, the hardness of the powder becomes too low and the powder hardness after sintering is less than 450 HV.
  • the amount of Mo added is less than 5% by mass of the lower limit of the limited range. Therefore, it is estimated that the Ms point is not sufficiently lowered and martensite is generated. Therefore, the hardness of the powder at the time of molding is 250 HV or more.
  • the addition amount of Mo exceeds 20% by mass of the upper limit of the limited range. Therefore, the hardness of the powder at the time of molding is high and is 250 HV or more.
  • the amount of Co added is less than 5% by mass of the lower limit of the limited range. Therefore, precipitation of precipitates is insufficient, and the hardness of the powder after sintering heat treatment is less than 450 HV.
  • Test No. h shows that the amount of Co exceeds 20% by mass of the upper limit of the limited range. Therefore, the hardness of the powder at the time of molding is high and is 250 HV or more.
  • Tables 2 and 3 show the chemical components and powder hardness of the powders evaluated.
  • the steel of the present invention is a test No. 1 powder shown as an invention example in Table 1.
  • Trivalloy alloy registered trademark: manufactured by Delorosterite
  • Trivalloy alloy is a conventional Co-based powder for valve seats, but the powder hardness is high due to the sintered parts manufacturers of each valve seat. It was pointed out.
  • the relative density of the molded body is a numerical value in which the density of an ideal molded body that does not include pores is 100% and the density of the actual molded body is relatively compared. When compared simply by apparent density, a compact of powder having a large true specific gravity has a high numerical value even if there are many pores, and evaluation of moldability cannot be performed.
  • the molded body relative density is not within the scope of the present invention, it is one of the parameters showing the quality of the moldability. The higher the molded body relative density, the better the moldability.
  • the relative density of the compact is 95% or less
  • the molding process is two steps.
  • the steel according to the present invention has a relative density of 95.5%, and one step can be omitted.
  • FIG. 4 shows the change in hardness of the evaluation powder after molding and after sintering. From this, it was confirmed that the steel of the present invention has increased in hardness after sintering.
  • FIG. 5 shows the relationship between the hardness of the entire valve seat and the relative density of the molded body.
  • the steel of the present invention had higher crushing strength than that of the trivalloy alloy and was densely sintered. Therefore, it is confirmed that the steel of the present invention can improve both the formability and the wear resistance, which are the problems of the present invention, and is one of the best modes for application to a valve seat.
  • the iron-based present invention powder which is cheaper than the current Co-based powder, is able to ensure almost the same wear resistance while improving moldability, which is a significant industrial advantage. .
  • the iron-based sintered alloy valve seat of the internal combustion engine has been described.
  • the present invention is not limited to the valve seat, and requires formability and wear resistance, and the counterpart material is required not to be worn.
  • Industrial applications can also be made in the field of ferrous sintered alloy products such as gears, pulleys, shafts, bearings, and jigs.

Abstract

 成形性と耐摩耗性に優れ、相手材を摩耗させる懸念のある炭化物が析出しない鉄基焼結合金製バルブシート用粉末を提供する。  Cを不可避的な不純物元素として0.1質量%未満に制御することにより炭化物の析出を回避し、Si:0.5~8.5質量%、Ni:10~25質量%、Mo:5~20質量%、Co:5~20質量%を含有し、残部がFe及び不可避的不純物よりなる溶鋼を従来の技術であるガスアトマイズ法、水アトマイズ法、遠心力アトマイズ法などで急冷することにより、粉末の軟化に有効なオーステナイトが主体である上記合金元素の過飽和固溶体とした粉末を提供する。この粉末は硬さが低いので圧縮成形時には成形性が優れており、一方焼結後には硬化するので、最終製品のバルブシートでは耐摩耗性が優れている。また、炭化物が析出しないので相手材も摩耗させる懸念がない。

Description

鉄基焼結合金粉末
 本発明は鉄基焼結合金粉末に係り、特に内燃機関の鉄基焼結合金製バルブシートを構成する粉末に好適なものに関する。
 近年、CO2 排出量低減を指向したエンジンの高出力化や燃費向上等に伴い内燃機関用バルブシートの使用環境は高温化・低潤滑化へと苛酷になり、種々の検討がなされている。
 例えば、特許公開2006-299404にはC:0.3~1.5%と、Ni、Co、Mo、Cr、Vのうちから選ばれた1種または2種以上を合計で1~20%とを、含有する基地相中に、Fe、Mo、Siを主成分とする金属間化合物、Co、Mo、Siを主成分とする金属間化合物、Ni、Mo、Siを主成分とする金属間化合物のうちの1種または2種以上を含み、Si:1~15%、Mo:20~60%を含み、Cr、Ni、Co、Feのうちから選ばれた1種または2種以上を10~70%を含み、残部がFe及び不可避的不純物からなる組成で、ビッカース硬さで500HV0.1~1200HV0.1の硬さを有する硬質粒子を、重量%で、10~60%含有し、密度を6.7g/cm以上、圧環強さを350MPa以上とすることが提案されている。
 また、特許公開2004-307950には、Ni 3~12%、Mo3~12%、Nb0.1~3%、Cr0.5~5%、V0.6~4%、C0.5~2%、Fe及び不可避不純物からなる基地に、全体に対して3~20質量%の硬質粒子を分散してなる鉄基焼結合金が提案されている。
 さらに、特許公開2004-156101には、硬質粒子は重量%でMo:20~70%、C:0.2~3%、Mn:1~15%、残部がFe及び不可避不純物とCoからなり、焼結合金は質量%で全体成分がMo:4~35%、C:0.2~3%、Mn:0.5~8%、Co:3~40%、残部が不可避不純物とFeからなり、基地成分がC:0.2~5%、Mn:0.1~10%、残部が不可避不純物とFeからなり、硬質粒子成分がMo:20~70%、C:0.2~3%、Mn:1~20%、残部が不可避不純物とCoからなり、硬質粒子が基地中に面積比で10~60%分散させることが提案されている。
 以上の特許文献の他にこの技術分野に関する数多くの提案がなされているが、バルブシートを構成する粉末に係わり、化学成分以外の特性に関する提案は見当たらない。本発明者らは粉末の開発において、鉄基焼結合金製バルブシート用粉末の成形性を良好にするためには粉末を軟らかくしなければならず、耐摩耗性を良好にするためには粉末を硬くしなければならないといった相反する課題に直面していた。その理由は以下の通りとなる。
 先ず、バルブシートは強度が高いことに加えて、バルブシート自体にエンジン内の燃焼時の熱が蓄積しないために熱伝導が良好なことが要求される。そのためには焼結密度が高いことが必要であり、焼結密度を高めるためには、焼結前の圧粉体の密度が高いことが必要である。焼結前の圧粉体の密度を高めるためには圧縮成形時の成形性が良好なことが必要であり、成形性を高めるためには、粉末硬さが低いことが必要である。
 しかし、粉末硬さを低くすると焼結後の最終製品であるバルブシートの強度が低下し、耐摩耗性が劣化することになる。さらに、バルブシートの焼結部品メーカにおいては、耐摩耗性を良好にするために金属と変形能が異なる炭化物を析出させると相手材を摩耗することが懸念されていた。
 本発明が解決しようとする課題は、成形性と耐摩耗性に優れ、かつ相手材を摩耗させる懸念のある炭化物が析出しない鉄基焼結合金粉末を提供することである。
 本発明者らは、上記の課題を解決するために従来の技術であるマルエージ鋼の技術思想に注目した。マルエージ鋼は析出物として硬さを上げる合金元素を室温のマルテンサイト中に過飽和に固溶し、温度を上げることで析出硬化させた鋼である。しかし、マルテンサイトは粉末として成形するには硬さが高いといった問題があった。また、通常のマルエージ鋼は疲労強度を低下させる窒化物となるTi、Alを含有するといった問題があった。
 そこで、本発明者らは、これらの問題を踏まえて、溶鋼を従来の技術であるガスアトマイズ法、水アトマイズ法、遠心力アトマイズ法などで急冷して粉末を製造するにあたって、Ti、Alを含有しない溶鋼の化学成分を調整することによって、マルテンサイトにならずに軟質のオーステナイトのままで過飽和固溶体を得ることに成功した。この過飽和固溶体の粉末は室温における圧縮成形時には硬さが低いので成形性が良好であり、特にバルブシートとして焼結する際の加熱、冷却過程で硬化するので耐摩耗性が良好である。この現象の冶金的の機構は下記の通りである。
 オーステナイトからマルテンサイトに変態する温度であるMs点を低下する合金元素を添加し、溶鋼を急冷することで過飽和固溶体とし、室温でオーステナイトを得る。
焼結中にオーステナイトに過飽和していた合金元素が析出し、硬さの高い析出物となると同時に、Ms点を低下していた合金元素がオーステナイトから抜けるのでオーステナイトのMs点が上昇し、冷却時にマルテンサイトとなる。
 したがって、本発明の上記した目的は、以下の鉄基焼結合金粉末によって達成される。
 本発明は、Cを不可避的な不純物元素として0.1質量%未満に制御し、Si:0.5~8.5質量%、Ni:10~25質量%、Mo:5~20質量%、Co:5~20質量%を含有し、残部がFe及び不可避的不純物よりなる溶鋼を急冷することにより、圧縮成形時の粉末硬さがビッカース硬さで250HV未満となり、焼結後の焼結硬さがビッカース硬さで450HV以上となることを特徴とする粉末である。
 本発明の鉄基焼結合金粉末によれば、成形性と耐摩耗性に優れ、相手材を摩耗させる懸念のある炭化物が析出しない鉄基焼結合金粉末、特に内燃機関のバルブシート用に好適な鉄基焼結合金粉末を提供することができる。
本発明の実施例における焼結熱処理条件を示す説明図である。 発明例と比較例の焼結熱処理後の硬さと粉末硬さとの関係を示すグラフである。 評価粉末の成形体相対密度と成形時の粉末硬さとの関係を示すグラフである。 評価粉末の成形時から焼結後の硬さの変化を示すグラフである。 バルブシート全体の硬さと成形体相対密度との関係を示すグラフである。 バルブシートの圧環強度と成形体相対密度との関係を示すグラフである。
 以下、本発明の好ましい実施の形態を説明する。
 本発明は、Cを不可避的な不純物元素として0.1質量%未満に制御することにより炭化物の析出を回避し、Si:0.5~8.5質量%、Ni:10~25質量%、Mo:5~20質量%、Co:5~20質量%を含有し、残部がFe及び不可避的不純物よりなる溶鋼を急冷することにより、粉末の軟化に有効なオーステナイトが主体である過飽和固溶体とした鉄基焼結合金粉末を提供するものである。
 本発明を構成する限定理由は以下の通りである。
 C :0.1質量%未満
 Cは炭化物を形成する元素である。炭化物は各バルブシートの焼結部品メーカが懸念するような相手材を摩耗する。その弊害を回避するためにはCは0.1質量%未満にする必要がある。また、以下の2点についても炭化物の形成は好ましくない。
 相手材ばかりでなくバルブシート自体の中でも炭化物は周囲の金属と変形能が異なり、応力が作用した際に、金属と炭化物の界面で歪を発生させ、剥離する場合がある。
 炭化物の存在は金属よりも熱伝導性が劣ることから、エンジンの燃焼により発生した熱をシリンダーブロックへ逃がしにくくなり、バルブシートへの熱負荷が大きくなる。
 従って、Cを0.1質量%未満に限定した。
 Si:0.5~8.5質量%
Siは後述するMoと過飽和固溶体から焼結中に析出物となる合金元素である。その効果を確実にするためにはSiの添加量を0.5質量%以上にする必要である。一方、Siは粉末の硬さを上げる合金元素であり、過剰な添加は成形時の粉末の硬さを上げる。その弊害を回避するためにはSiの添加量を8.5質量%以下にする必要がある。
 従って、Siの添加量を0.5~8.5質量%に限定した。
 Ni:10~25質量%
 Niはオーステナイト形成元素であるのと同時にMs点を低下することにより、室温で軟質なオーステナイトを確保し、粉末の硬さを低く保つ合金元素である。その効果を確実にするためにはNiの添加量を10質量%以上とする必要がある。一方、Niは粉末の硬さを下げる合金元素であり、成形時は好ましいが、過剰な添加は焼結後の粉末の硬さまで低下する。その弊害を回避するためにはNiの添加量を25質量%以下にする必要がある。また、Niは高価な合金元素である観点からも過剰の添加は好ましくない。
 従って、Niの添加量を10~25質量%に限定した。
 Mo:5~20質量%、
 Moは前述したSiと過飽和固容体から焼結中に析出物となる合金元素であるのと同時にMs点を低下することにより、室温で軟質なオーステナイトを確保する合金元素である。その効果を確保するためにはMoの添加量を5質量%以上とする必要がある。一方、Mo は粉末の硬さを上げる合金元素であり、過剰な添加は成形時の粉末の硬さを上げる。その弊害を回避するためにはMoの添加量を20質量%以下にする必要がある。また、Moは高価な合金元素である観点からも過剰の添加は好ましくない。
 従って、Moの添加量を5~20質量%に限定した。
 Co:5~20質量%
 Coは析出物となるSiとMoのオーステナイト中への固溶量を増加し、これらの析出物の析出を促進する合金元素である。その効果を確保するためにはCoの添加量を5質量%とする必要がある。一方、Coは粉末の硬さを上げる合金元素であり、過剰な添加は成形時の粉末の硬さを上げる。その弊害を回避するためにはCoの添加量を20質量%以下にする必要がある。また、Coは高価な合金元素である観点からも過剰の添加は好ましくない。
 従って、Coの添加量を5~20質量%に限定した。
 本発明において、圧縮成形時の粉末硬さ:250HV未満である。この粉末硬さは、JIS Z 2244 で規定されるビッカース硬さ試験-試験方法によって測定した値を意味する。粉末の成形性を確保するためには、圧縮成形時の粉末硬さを250HV未満とする必要がある。従って、圧縮成形時の粉末硬さを250HV未満に限定した。
 本発明において、焼結後の焼結硬さ:450HV以上である。この焼結硬さは図1に示す処理手順で処理した焼結体をJIS Z 2244 で規定されるビッカース硬さ試験-試験方法によって測定した値を意味する。焼結体の耐摩耗性を確保するためには、焼結後の焼結硬さが450HV以上とする必要がある。従って、焼結後の焼結硬さを450HV以上に限定した。
 先ず、表1に示した化学成分の鋼を高周波溶解炉で溶解し、溶鋼を水アトマイズ法で急冷して粉末を製造した。この粉末を成形時の粉末として硬さを測定した。さらに、各バルブシートの焼結部品メーカの情報から図1に示す焼結熱処理条件で熱処理を実施し、焼結熱処理後の粉末として硬さを測定した。これらの結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 ここで、試験No.1~9は発明例であり、限定された化学成分の粉末である。これより、いずれも粉末の硬さが250HV未満で、かつ焼結後相当の硬さが450HV以上である。
 一方、試験No.a~hは比較例であり、限定された化学成分を満足しない粉末である。従って、以下のことが指摘される。
 試験No.aはSiの添加量が限定範囲の下限の0.5質量%未満である。従って、析出物の析出が不十分で、焼結熱処理後の粉末の硬さが450HV未満である。
 試験No.bはSiの添加量が限定範囲の上限の8.5質量%を超えている。従って、成形時の粉末の硬さが高く、250HV以上である。
 試験No.cはNiの添加量が限定範囲の下限の10質量%未満である。従って、オーステナイトが形成せず、かつ、Ms点が十分に低下せず、マルテンサイトが生じていると推定される。そのため、成形時の粉末の硬さが250HV以上である。
 試験No.dはNiの添加量が限定範囲の上限の25質量%を超えている。従って、粉末の硬さが低くなり過ぎ、焼結後の粉末硬さが450HV未満である。
 試験No.eはMoの添加量が限定範囲の下限の5質量%未満である。従って、Ms点が十分に低下せず、マルテンサイトが生じていると推定される。そのため、成形時の粉末の硬さが250HV以上である。
 試験No.fはMoの添加量が限定範囲の上限の20質量%を超えている。従って、成形時の粉末の硬さが高く、250HV以上である。
 試験No.gはCoの添加量が限定範囲の下限の5質量%未満である。従って、析出物の析出が不十分で、焼結熱処理後の粉末の硬さが450HV未満である。
 試験No.hはCoの添加量が限定範囲の上限の20質量%を超えている。従って、成形時の粉末の硬さが高く、250HV以上である。
 これらの効果を図2に示す。これより、本発明の課題である成形性と耐摩耗性に優れ、相手材を摩耗させる懸念のある炭化物が析出しない鉄基焼結合金製バルブシート用粉末を提供できた。
 本発明鋼をバルブシートの硬質粒子として適用した事例を説明する。表2及び表3に評価した粉末の化学成分および粉末硬さを示す。
ここで、本発明鋼は表1で発明例として示した試験No.1の粉末である。また、トリバロイ合金(登録商標:デロロステライト社製)は従来技術のCo基のバルブシート用粉末であるが、各バルブシートの焼結部品メーカから粉末硬さが高く成形性が問題となっていることが指摘されていた。
 先ず、表2に示した化学成分の鋼を高周波溶解炉で溶解し、溶鋼を水アトマイズ法で急冷して粉末を製造した。次に、それぞれ、これらの粉末30質量%、基地粉末として鉄粉を68.25質量%、黒鉛粉1質量%およびステアリン酸亜鉛0.75質量%を混合した。尚、鉄粉の硬さは70HVである。 これらの混合物を外径21mm、内径13.5mmの金型に供給し、6トン/cm2の圧力で高さ6mmのバルブシートを成形した。
 これらの成形体について、成形体相対密度を測定した。成形体相対密度とは気孔を含まない理想的な成形体の密度を100%として、実際の成形体の密度を相対的に比較した数値である。単純に見掛け密度で比較すると真比重が大きい粉末の成形体は気孔が多くても高い数値となり、成形性の評価ができないので成形体相対密度で評価した。成形体相対密度は本発明の範囲にはないが、成形性の良否を現すパラメータのひとつであり、成形体相対密度が高いほど成形性が良好と評価される。これらの結果を表2に示す。
 図3には、圧縮成形した成形体の相対密度に及ぼす成形時の粉末硬さの影響を示す。
Figure JPOXMLDOC01-appb-T000002
 これより、成形時の粉末硬さが低いほど成形体相対密度が高く、本発明鋼は本発明の範囲を満足し、トリバロイ合金よりも成形性が良好であることがわかる。一般に、成形体相対密度が95%以下では成形工程が2工程となるが、本発明鋼は成形体相対密度が95.5%であり、1工程を省略することが可能である。
 次に、これらの成形体について図1に示す焼結熱処理を行い、硬質粒子部の硬さを測定した。それらの結果を表3に示す。図4には成形時から焼結後における評価粉末の硬さの変化を示す。これより、本発明鋼は焼結後に硬さが上昇していることが確認された。
Figure JPOXMLDOC01-appb-T000003
 さらに、バルブシート全体の硬さを評価するために、ロックウェルBスケールで硬さ試験を行った。それらの結果を表3に示す。図5にバルブシート全体の硬さと成形体相対密度との関係を示す。
 これより、本発明鋼のほうがトリバロイ合金よりも硬質粒子の硬さが低いにもかかわらず、バルブシート全体の硬さが高いことが確認され、耐摩耗性が良好であると評価された。この現象は、本発明鋼がトリバロイ合金よりも成形性が良好で、成形体相対密度が高いために、緻密に焼結したことによると推定された。この推定を裏付けるためにバルブシートを環の上下から荷重を負荷し、壊れる荷重から強度を求める圧環強度を測定した。それらの結果を表3に示す。図6にバルブシートの圧環強度と成形体相対密度との関係を示す。
 これより本発明鋼のほうがトリバロイ合金よりも圧環強度が高く緻密に焼結したことが確認された。従って、本発明鋼は、本発明の課題である成形性と耐摩耗性の改善の両立が可能であり、バルブシートへの適用が最良の形態の一つであることが確認された。
尚、コストについては、現用のCo基粉末よりも安価な鉄基の本発明粉末にて、成形性を改善しながらも、ほぼ同等の耐摩耗性を確保できることも、産業上の大きな利点である。
 以上、内燃機関の鉄基焼結合金製バルブシートに係わり説明してきたが、本発明はバルブシートに限らず、成形性と耐摩耗性を必要とし、かつ相手材も摩耗させないことを要求される歯車、プーリー、シャフト、軸受け、冶工具などの鉄基焼結合金製品の分野においても産業上の利用ができる。
 

Claims (2)

  1.  Cを不可避的な不純物元素として0.1質量%未満に制御し、Si:0.5~8.5質量%、Ni:10~25質量%、Mo:5~20質量%、Co:5~20質量%を含有し、残部がFe及び不可避的不純物よりなる溶鋼を急冷することにより、圧縮成形時の粉末硬さがビッカース硬さで250HV未満となり、焼結後の焼結硬さがビッカース硬さで450HV以上となることを特徴とする鉄基焼結合金粉末。
  2.  前記鉄基焼結合金粉末が、内燃機関の鉄基焼結合金製バルブシート用粉末である請求項1に記載の鉄基焼結合金粉末。
PCT/JP2009/052921 2008-02-20 2009-02-19 鉄基焼結合金粉末 WO2009104692A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/918,483 US8685180B2 (en) 2008-02-20 2009-02-19 Iron-based alloy powder
CN2009801057790A CN101952470B (zh) 2008-02-20 2009-02-19 铁基合金粉末
EP09712175.0A EP2253727B1 (en) 2008-02-20 2009-02-19 Iron-based alloy powder

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008039420A JP5270926B2 (ja) 2008-02-20 2008-02-20 鉄基焼結合金粉末
JP2008-039420 2008-02-20

Publications (1)

Publication Number Publication Date
WO2009104692A1 true WO2009104692A1 (ja) 2009-08-27

Family

ID=40985570

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/052921 WO2009104692A1 (ja) 2008-02-20 2009-02-19 鉄基焼結合金粉末

Country Status (6)

Country Link
US (1) US8685180B2 (ja)
EP (1) EP2253727B1 (ja)
JP (1) JP5270926B2 (ja)
KR (1) KR20100118137A (ja)
CN (1) CN101952470B (ja)
WO (1) WO2009104692A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102653045A (zh) * 2011-03-03 2012-09-05 上海广凌气门座有限公司 一种汽车发动机气门座的制造方法
JP2017507251A (ja) * 2014-01-27 2017-03-16 ロバルマ, ソシエダッド アノニマRovalma, S.A. 鉄系合金の遠心噴霧法
US20180312946A1 (en) * 2014-11-03 2018-11-01 Nuovo Pignone Srl Metal alloy for additive manufacturing of machine components
JP6319121B2 (ja) * 2015-01-29 2018-05-09 セイコーエプソン株式会社 粉末冶金用金属粉末、コンパウンド、造粒粉末および焼結体の製造方法
JP6595223B2 (ja) * 2015-06-22 2019-10-23 株式会社ファインシンター 焼結合金の基地組成用合金粉、基地組成用合金粉を含有する焼結合金及び焼結合金の製造方法
CN108213437B (zh) * 2018-02-02 2021-04-13 陕西华夏粉末冶金有限责任公司 采用新能源汽车铁基粉末材料制备感应齿圈的方法
WO2021039711A1 (ja) * 2019-08-26 2021-03-04 日立金属株式会社 Fe-Co-Si-B-Nb系ターゲット

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53112206A (en) * 1977-03-14 1978-09-30 Daido Steel Co Ltd Production of sintered alloy with good abrasion resistance
JP2002363681A (ja) * 2001-06-08 2002-12-18 Toyota Motor Corp 焼結合金、その製造方法およびバルブシート
JP2004156101A (ja) 2002-11-06 2004-06-03 Toyota Motor Corp 硬質粒子、耐摩耗性鉄基焼結合金、耐摩耗性鉄基焼結合金の製造方法及びバルブシート
JP2004307950A (ja) 2003-04-08 2004-11-04 Riken Corp 鉄基焼結合金、バルブシートリング、鉄基焼結合金製造用原料粉末、及び鉄基焼結合金の製造方法
JP2006299404A (ja) 2005-03-23 2006-11-02 Nippon Piston Ring Co Ltd 内燃機関用鉄基焼結合金製バルブシート材

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3294527A (en) * 1964-06-09 1966-12-27 Int Nickel Co Age hardening silicon-containing maraging steel
US4098607A (en) * 1976-11-04 1978-07-04 The United States Of America As Represented By The Secretary Of The Army 18% Ni-Mo-Co maraging steel having improved toughness and its method of manufacture
US5538683A (en) * 1993-12-07 1996-07-23 Crucible Materials Corporation Titanium-free, nickel-containing maraging steel die block article and method of manufacture
JP3469435B2 (ja) 1997-06-27 2003-11-25 日本ピストンリング株式会社 内燃機関用バルブシート
US6238455B1 (en) * 1999-10-22 2001-05-29 Crs Holdings, Inc. High-strength, titanium-bearing, powder metallurgy stainless steel article with enhanced machinability
EP1111080B1 (en) 1999-12-24 2007-03-07 Hitachi Metals, Ltd. Maraging steel having high fatigue strength and maraging steel strip made of same
JP2001279386A (ja) * 2000-03-31 2001-10-10 Daido Steel Co Ltd 鋳造性に優れたマルエージング鋼およびその製造方法
DE602004025163D1 (de) * 2003-03-07 2010-03-11 Jtekt Corp Brikett als Rohstoff für die Eisenherstellung und Brikett zur Einführung in eine schlackenbildende Vorrichtung
DE102006058066B3 (de) * 2006-12-07 2008-08-14 Deutsche Edelstahlwerke Gmbh Pulvermetallurgisch hergestelltes Stahlblech
JP2008183931A (ja) 2007-01-26 2008-08-14 Toyoda Gosei Co Ltd ウエザストリップ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53112206A (en) * 1977-03-14 1978-09-30 Daido Steel Co Ltd Production of sintered alloy with good abrasion resistance
JP2002363681A (ja) * 2001-06-08 2002-12-18 Toyota Motor Corp 焼結合金、その製造方法およびバルブシート
JP2004156101A (ja) 2002-11-06 2004-06-03 Toyota Motor Corp 硬質粒子、耐摩耗性鉄基焼結合金、耐摩耗性鉄基焼結合金の製造方法及びバルブシート
JP2004307950A (ja) 2003-04-08 2004-11-04 Riken Corp 鉄基焼結合金、バルブシートリング、鉄基焼結合金製造用原料粉末、及び鉄基焼結合金の製造方法
JP2006299404A (ja) 2005-03-23 2006-11-02 Nippon Piston Ring Co Ltd 内燃機関用鉄基焼結合金製バルブシート材

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2253727A4

Also Published As

Publication number Publication date
KR20100118137A (ko) 2010-11-04
EP2253727A1 (en) 2010-11-24
EP2253727B1 (en) 2016-06-15
US20100316523A1 (en) 2010-12-16
CN101952470A (zh) 2011-01-19
CN101952470B (zh) 2013-05-22
US8685180B2 (en) 2014-04-01
JP2009197270A (ja) 2009-09-03
EP2253727A4 (en) 2012-06-06
JP5270926B2 (ja) 2013-08-21

Similar Documents

Publication Publication Date Title
US7241327B2 (en) Iron-based sintered alloy with dispersed hard particles
JP5773267B2 (ja) 鉄基焼結摺動部材およびその製造方法
JP4183346B2 (ja) 粉末冶金用混合粉末ならびに鉄系焼結体およびその製造方法
WO2009104692A1 (ja) 鉄基焼結合金粉末
JP5661096B2 (ja) 鉄バナジウム粉末合金
JP5992402B2 (ja) 窒化焼結コンポーネントの製造方法
GB2476395A (en) Sintered valve guide and a method of making a sintered valve guide
JP2010216016A (ja) 粉末冶金用混合物及びこれを用いた粉末冶金部品の製造方法
KR102350989B1 (ko) 소결 구성요소를 생성하는 방법 및 소결 구성요소
JP2003268414A (ja) バルブシート用焼結合金、バルブシート及び製造方法
CN102605273A (zh) 一种钢结硬质合金及其制备方法
JP2010090470A (ja) 鉄系焼結合金およびその製造方法
TW201107495A (en) High strength low alloyed sintered steel
JPS5918463B2 (ja) 耐摩耗性焼結合金およびその製法
CN107000053B (zh) 粉末冶金用铁基合金粉末和烧结锻造部件
JP2010280957A (ja) 鉄基焼結合金、鉄基焼結合金の製造方法およびコンロッド
JP2002356704A (ja) 耐摩耗性硬質相形成用合金粉末およびそれを用いた耐摩耗性焼結合金の製造方法
EP1347067B1 (en) Iron-based sintered alloy for use as valve seat
CN104711485A (zh) 低合金钢粉
JP6819624B2 (ja) 粉末冶金用鉄基混合粉末およびその製造方法ならびに引張強さと耐衝撃性に優れた焼結体
JPWO2019163937A1 (ja) 焼結バルブガイド及びその製造方法
JP6528899B2 (ja) 粉末冶金用混合粉および焼結体の製造方法
JP4301657B2 (ja) 高強度焼結合金鋼の製造方法
JP2003166025A (ja) 硬質粒子分散型焼結合金及びその製造方法
JP2018178143A (ja) 耐摩耗性鉄基焼結合金の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980105779.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09712175

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12918483

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009712175

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20107020430

Country of ref document: KR

Kind code of ref document: A