WO2009104563A1 - Organic el display and manufacturing method thereof - Google Patents

Organic el display and manufacturing method thereof Download PDF

Info

Publication number
WO2009104563A1
WO2009104563A1 PCT/JP2009/052566 JP2009052566W WO2009104563A1 WO 2009104563 A1 WO2009104563 A1 WO 2009104563A1 JP 2009052566 W JP2009052566 W JP 2009052566W WO 2009104563 A1 WO2009104563 A1 WO 2009104563A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic
sealing
sealing member
support substrate
substrate
Prior art date
Application number
PCT/JP2009/052566
Other languages
French (fr)
Japanese (ja)
Inventor
誠 内海
Original Assignee
富士電機ホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電機ホールディングス株式会社 filed Critical 富士電機ホールディングス株式会社
Publication of WO2009104563A1 publication Critical patent/WO2009104563A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/871Self-supporting sealing arrangements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/871Self-supporting sealing arrangements
    • H10K59/8722Peripheral sealing arrangements, e.g. adhesives, sealants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/873Encapsulations

Definitions

  • the present invention relates to an organic EL display and a method for manufacturing the same, and more particularly to an organic EL display capable of preventing moisture from entering from the outside environment and realizing excellent luminous efficiency over a long period of time and a method for manufacturing the same.
  • Organic EL displays are expected to achieve high luminous intensity and luminous efficiency because they can achieve high current density at low voltage.
  • multi-color display capable of high-definition multi-color display and eventually full-color display is expected.
  • the practical application of organic EL displays is expected.
  • color organic EL display has a drawback that the light emission characteristic (current-luminance characteristic) is remarkably lowered by driving for a certain period.
  • a typical cause of the deterioration of the light emission characteristics is the growth of dark spots.
  • This dark spot is a light emitting defect point.
  • the cause of dark spots is considered to be due to oxidation or aggregation of the laminated material constituting the element due to oxygen or moisture in the element.
  • the growth proceeds not only during energization but also during storage, and in particular, (1) accelerated by oxygen or moisture present around the element, and (2) oxygen or moisture present as an adsorbate in the organic laminated film. (3) It is also considered that it is affected by moisture adsorbed on the component at the time of device fabrication or moisture penetration during production.
  • Patent Document 1 As a technique for preventing moisture from entering the organic EL element, a method of forming a frame-shaped desiccant at the position of the sealing material for bonding the substrate on which the organic EL element is formed and the sealing substrate (Patent Document 1) There is also known a method (Patent Document 2) in which a bent structure is formed at a site where a sealing material is formed, and a passage route for moisture or the like is lengthened. In addition, in order to efficiently prevent moisture from reaching the organic EL element, a technique of welding between substrates using a laser is also known (Patent Document 3). JP 2005-340020 A JP 2005-38842 A JP 2006-338948 A
  • the method of bonding a sealing substrate using a sealing material is a simple method.
  • moisture permeates through the portion of the sealing material, as a countermeasure, as disclosed in Patent Document 1 and Patent Document 2, moisture is adsorbed with a desiccant or A method has been adopted in which the lifetime of the panel is increased by lengthening the transmission path and extending the transmission time.
  • an object of the present invention is to provide a low-cost organic EL display that can solve the above-described problems and prevent the ingress of moisture from an adhesion site while reducing the number of parts and man-hours, and a method for manufacturing the same. .
  • the inventor has found that the joint between the support substrate and the sealing substrate is formed on the sealing member formed on the supporting substrate, the sealing film formed on the sealing member, and the side of the sealing member.
  • the present invention has been completed by finding that the above-mentioned problems can be solved by constituting the adhesive layer with the formed adhesive layer.
  • the organic EL display of the present invention is opposed to a support substrate, an organic EL element formed on the support substrate, including a lower electrode, an organic layer, and an upper electrode, and the support substrate with a predetermined distance therebetween.
  • an organic EL display comprising a sealing substrate disposed, and the support substrate and the sealing substrate being bonded together, A convex sealing member formed on an outer peripheral portion surrounding the organic EL element on the support substrate; A sealing film formed on the upper electrode, the supporting substrate and the sealing member, or on the upper electrode, the lower electrode, the supporting substrate and the sealing member; A sealing substrate that is bonded to the support substrate by an adhesive layer formed on a side of the sealing member and that is in contact with the support substrate at a position of the sealing film formed on the sealing member When, It is characterized by having.
  • the sealing members may be formed in two rows, and the adhesive layer may be formed between the two rows of sealing members. Further, instead of the convex sealing member, a concave sealing member protruding on the substrate is formed, and the adhesive layer is formed in the concave portion of the concave sealing member. You can also
  • the sealing member is preferably made of an acrylic resin, a novolac resin, or a polyimide resin, and the sealing film is preferably an inorganic oxide film, an inorganic oxynitride film, or an inorganic nitride film. Furthermore, it is preferable that the sealing member is continuously formed on an outer peripheral portion surrounding the organic EL element on the support substrate.
  • the manufacturing method of the organic EL display of this invention is the planarization film
  • the above configuration can reduce the number of parts and man-hours while reducing the moisture intrusion route at the bonded portion between the substrates, and can achieve a long display life without using a desiccant. It has become possible to realize an organic EL display that has been improved.
  • FIG. 1 shows a schematic cross-sectional view of a preferred example of the organic EL display of the present invention.
  • an organic EL display 100 of the present invention includes a support substrate 10, an organic EL element 20 formed thereon and including a lower electrode 11, an organic layer 12, and an upper electrode 13, and above the organic EL element 20. And a sealing substrate 30 disposed opposite to the support substrate 10 at a predetermined interval, and the support substrate 10 and the sealing substrate 30 are bonded to each other.
  • reference numeral 11A denotes a wiring portion of the lower electrode
  • reference numeral 13A denotes a wiring portion of the upper electrode 13.
  • the convex sealing member 14 is disposed at the outer peripheral portion surrounding the organic EL element 20 on the support substrate 10, that is, at the position where the support substrate 10 and the sealing substrate 30 are bonded. Is formed. Further, on the sealing member 14, the sealing film is continuously formed from the upper electrode 13 and the supporting substrate 10 (in the drawing, the supporting substrate 10, or the planarizing film 10b and the insulating film 11a formed thereon). 15 is formed.
  • the sealing member 14 can be continuously formed on the outer peripheral portion surrounding the organic EL element 20 on the support substrate 10 as shown in FIG. Further, as shown in FIG. 3B, the sealing member 14 may be formed so as to have a discontinuous portion in order to ensure the allowance for the flow of the adhesive.
  • the support substrate 10 and the sealing substrate 30 are bonded by the adhesive layer 16 formed on the side of the sealing member 14 and formed on the sealing member 14. Contact is made at the position of the sealing film 15.
  • the support substrate 10 is mainly composed of a substrate 10a, and further includes a color filter layer, a thin film transistor (TFT), and a planarization film 10b according to the structure of the organic EL display.
  • the material of the substrate 10a is particularly limited as long as it can withstand various conditions (for example, a solvent used, a temperature, and the like) used in forming the layers 11, 12, and 13 sequentially stacked on the support substrate 10. Is not to be done. Preferably, those having excellent dimensional stability are used.
  • suitable materials include a glass substrate or a rigid resin substrate formed of an acrylic resin such as polyolefin or polymethyl methacrylate, a polyester resin such as polyethylene terephthalate, a polycarbonate resin, or a polyimide resin.
  • suitable materials include flexible films formed of acrylic resins such as polyolefin and polymethyl methacrylate, polyester resins such as polyethylene terephthalate, polycarbonate resins, and polyimide resins.
  • a material that can maintain the adhesion with the material of the layers 11, 12, and 13 formed thereon and can withstand the process is selected.
  • a novolac resin, an acrylic resin, a polyimide resin, etc. Can be used. These materials can be produced by a normal photolithography process.
  • the organic EL element 20 includes the lower electrode 11, the organic layer 12, and the upper electrode 13 as described above.
  • the lower electrode 11 has a function of charge injection into the organic layer 12 and connection with an external drive circuit.
  • Desirable materials when the lower electrode 11 functions as a reflective electrode are made of a highly reflective metal (aluminum, silver, molybdenum, tungsten, nickel, chromium, or the like) or an amorphous alloy (NiP, NiB, CrP, or CrB). The thing which becomes.
  • Particularly preferable reflective electrode materials include those made of a silver alloy from the viewpoint that a reflectance of 80% or more in visible light can be obtained. For example, an alloy of silver and at least one of group 8 nickel, rubidium, lead, and platinum, or an alloy of silver and at least one of group 2A magnesium and calcium Can be used.
  • Desirable materials when the lower electrode 11 functions as a transparent electrode include conductive metal oxides such as SnO 2 , In 2 O 3 , In—Sn oxide, In—Zn oxide, ZnO, or Zn—Al oxide. Can be used.
  • the organic layer 12 is disposed between the lower electrode 11 and the upper electrode 13 and is a layer that forms the core of the light emitting unit.
  • the organic layer 12 includes at least an organic light emitting layer, and includes a hole transport layer, a hole injection layer, an electron transport layer, and / or an electron injection layer as necessary.
  • the following layer configuration can be adopted for the organic layer 12.
  • a known material can be used for the organic light emitting layer.
  • a material for obtaining blue to blue-green light emission include fluorescent brighteners such as benzothiazole, benzimidazole, or benzoxazole, metal chelated oxonium compounds (Alq 3 (tris (8-quinolinol) aluminum) ), Styrylbenzene compounds (4,4′-bis (diphenylvinyl) biphenyl (DPVBi), etc.), aromatic dimethylidin compounds, condensed aromatic ring compounds, ring assembly compounds, or porphyrin compounds Compounds and the like are preferred.
  • the organic light emitting layer which emits the light of a various wavelength range can also be formed by adding a dopant to a host compound.
  • a distyrylarylene compound N, N′-ditolyl-N, N′-diphenylbiphenylamine (TPD), Alq 3 or the like can be used as the host compound.
  • perylene blue purple
  • coumarin 6 blue
  • quinacridone compounds blue green to green
  • rubrene yellow
  • 4-dicyanomethylene-2- (p-dimethylaminostyryl) -6- Methyl-4H-pyran DCM, red
  • platinum octaethylporphyrin complex PtOEP, red
  • a material having a triarylamine partial structure, a carbazole partial structure, or an oxadiazole partial structure can be used.
  • TPD ⁇ -NPD
  • MTDAPB o-, m-, p-
  • m-MTDATA or the like.
  • phthalocyanines including copper phthalocyanine
  • indanthrene compounds can be used.
  • the electron transport layer aluminum complexes such as Alq 3, PBD (2- (4 -biphenyl) -5- (4-tert-butylphenyl) -1,3,4-oxadiazole) or TPOB (1, 3, 5 Oxadiazole derivatives such as tris (4-tert-butylphenyl-1,3,4-oxadiazolyl) benzene), TAZ (3- (biphenyl-4-yl) -4-phenyl-5- (4-tert- butylphenyl) -1,2,4-triazole), triazine derivatives, phenylquinoxalines, or thiophene such as BMB-2T (5,5'-bis (dimethoxyboryl) -2,2'-bithiophene) Derivative It is possible to use of the material.
  • PBD (4 -biphenyl) -5- (4-tert-butylphenyl) -1,3,4-oxadiazole
  • a material such as an aluminum complex such as Alq 3 or an aluminum quinolinol complex doped with an alkali metal or an alkaline earth metal can be used.
  • the organic layer 12 can be formed from each of the layers as described above.
  • a buffer layer for further increasing the electron injection efficiency is optionally selected between the organic layer 12 and the upper electrode 13. It can also be formed (not shown).
  • an electron injecting material such as an alkali metal, an alkaline earth metal or an alloy thereof, or a rare earth metal or a fluoride thereof can be used.
  • a damage mitigating layer (not shown) made of MgAg or the like on the organic layer 12 in order to mitigate damage when the upper electrode 13 is formed.
  • the upper electrode 13 can be formed using the same material as that of the lower electrode 11 regardless of whether the upper electrode 13 functions as a reflective electrode or a transparent electrode.
  • the transmittance of the upper electrode 12 is preferably 50% or more with respect to light having a wavelength of 400 to 800 nm in order to make the function of taking out the light emitted from the organic layer 12 upward. More preferably, it is 85% or more.
  • the sealing member 14 is formed on the support substrate 10 as described above, and the sealing film 15 is continuously formed on the sealing member 14 from above the upper electrode 13.
  • the material used for the sealing member 14 a material having an appropriate elasticity, small deformation with respect to the pressure generated at the time of bonding, and a property that does not break is preferable. For example, when the weight is 3.0 gf, the material has a film thickness retention rate of 50% or more. Since the sealing member 14 has appropriate elasticity, a close contact (contact) area between the support substrate 10 and the sealing substrate 30 can be increased.
  • Specific materials for the sealing member 14 include acrylic resin, novolac resin, polyimide resin, and the like.
  • the sealing member 14 may be formed into two rows of convex shapes as shown in FIG. As shown to C), you may form in the concave shape which protrudes on a board
  • the sealing member 14 is formed with the same height as the gap between the sealing substrate 30 and the support substrate 10, and is formed with a thickness of 1 to 50 ⁇ m, for example.
  • the adhesive layer 16 is formed on the side of the sealing member 14, but as shown in the figure, the adhesive layer 16 is formed in the case of the two rows of convex sealing members 14 shown in FIG. Can be formed between the two rows of sealing members 14, and in the case of the concave sealing member 14 shown in FIG. 4C, it is formed in the concave portion of the concave sealing member 14. can do.
  • the sealing film 15 is preferably formed of an inorganic oxide film, an inorganic oxynitride film, or an inorganic nitride film. Specifically, for example, silicon oxide, silicon oxynitride, silicon nitride, or the like can be used. As described above, the sealing film 15 covers the upper electrode 13, the support substrate 10, and the sealing member 14 (or the upper electrode, the lower electrode, the support substrate, and the sealing member).
  • the sealing film 15 can be formed by a sputtering method or a CVD method. In particular, the sealing film 15 is preferably formed by a CVD method that enables high-speed film formation at a low temperature. Further, the thickness of the sealing film 15 can be set to 100 nm to 10 ⁇ m. In particular, from the viewpoint of reducing moisture permeability and maintaining productivity, it is desirable to form the sealing film 15 with a thickness of 1 to 5 ⁇ m.
  • the adhesive layer 16 is used to bond the support substrate 10 and the sealing substrate 30 (in the example shown in FIG. 1, the laminate 17 such as a color filter formed on the sealing substrate 30).
  • the preferable adhesive layer 16 include those made of a UV (ultraviolet) curable adhesive.
  • the formation position of the adhesive layer 16 may be either a position in contact with the sealing member 14 or a position away from the sealing member 14 as long as it is on the side of the sealing member 14.
  • the sealing member 14 has a concave structure at the center, it can be formed at the center of the sealing member 14.
  • the sealing substrate 30 is used to isolate the organic EL element 20 from the outside and make the light emitting function of the organic EL element 20 effective.
  • the preferred sealing substrate 30 is formed of, for example, a glass substrate, a metal sealing substrate such as SUS or Al, or an acrylic resin such as polyolefin or polymethyl methacrylate, a polyester resin such as polyethylene terephthalate, a polycarbonate resin, or a polyimide resin.
  • a rigid resin substrate may be mentioned.
  • examples of other preferable sealing substrate 30 include a flexible film formed of an acrylic resin such as polyolefin or polymethyl methacrylate, a polyester resin such as polyethylene terephthalate, a polycarbonate resin, or a polyimide resin.
  • the laminate 17 such as a color filter includes a color filter and a color conversion layer.
  • the color filter is a layer that transmits only light in a desired wavelength range.
  • the color filter is effective in that the color purity of the light whose wavelength distribution is converted by the color conversion layer can be improved when the laminate 17 has a laminated structure with the color conversion layer.
  • Examples of the color filter include those using a commercially available liquid crystal color filter material such as a color mosaic manufactured by FUJIFILM Electronics Materials Corporation.
  • the light conversion layer is a layer containing a fluorescent dye for color conversion, and may contain a matrix resin. This layer is a layer for performing wavelength distribution conversion on the light emitted from the organic EL element 20 and emitting light in different wavelength ranges.
  • the fluorescent dye constituting the light conversion layer is a dye that emits light in a desired wavelength range (for example, red, green, or blue).
  • Examples of the fluorescent dye that absorbs light in the blue to blue-green region and emits fluorescence in the red region include rhodamine B, rhodamine 6G, rhodamine 3B, rhodamine 101, rhodamine 110, sulforhodamine, basic violet 11, and basic red 2.
  • rhodamine dyes cyanine dyes
  • pyridine dyes such as 1-ethyl-2- [4- (p-dimethylaminophenyl) -1,3-butadienyl] -pyridinium-perchlorate (pyridine 1), or oxazine System dyes and the like.
  • various dyes direct dyes, acid dyes, basic dyes, disperse dyes, etc.
  • a coumarin dye such as trifluoromethylquinolidine (9,9a, 1-gh) coumarin (coumarin 153), or basic yellow 51 which is a coumarin dye dye, and further naphthalimide such as solvent yellow 11 and solvent yellow 116 System dyes and the like.
  • various dyes direct dyes, acid dyes, basic dyes, disperse dyes, etc.
  • various dyes can be used if they are fluorescent.
  • acrylic resin As the matrix resin constituting the light conversion layer, acrylic resin, various silicone polymers, or any material that can be substituted for them can be used.
  • silicone polymers straight silicone polymers and modified resin silicone polymers can be used.
  • FIG. 1 The example of FIG. 1 shown above is an integrated transparent electrode that functions as a common electrode, a switching element composed of a plurality of thin film transistors formed on a supporting substrate, a lower electrode composed of a plurality of parts connected in a one-to-one relationship.
  • a so-called active matrix-driven organic EL display in which an organic layer is interposed between the two layers.
  • This organic EL display includes a plurality of light emitting units.
  • the organic EL display of the present invention is not limited to active matrix driving, and can be a so-called passive matrix driving organic EL display.
  • FIG. 2 is a cross-sectional view showing the main part of the organic EL display 200 including a single organic EL element 20.
  • passive matrix driving is not limited to the illustrated example, and may include a plurality of light emitting units controlled independently.
  • both the lower electrode and the upper electrode are electrode groups composed of a plurality of stripe electrodes, and the extending direction of the stripe electrodes constituting the lower electrode intersects with the extending direction of the stripe electrodes constituting the upper electrode.
  • An example in which an organic layer is interposed between these electrodes is given. In such a case, it is preferable to make the above-described crossing directions orthogonal to each other because a display for displaying an arbitrary image and / or character can be configured.
  • an insulating oxide SiOx, TiO 2 , ZrO 2 , AlOx, etc.
  • the insulating film 11a can also be formed in the gaps between the plurality of electrodes on the support substrate 10 using nitride (AlNx, SiNx, etc.), a polymer material, or the like.
  • the example shown in FIG. 1 is a display for realizing monochrome display, but the present invention is not limited to such an example, and includes a multi-color display.
  • the present invention is not limited to such an example, and includes a multi-color display.
  • the layered body 17 such as the organic EL element 20, the light conversion layer, and the color filter shown in FIG.
  • the color conversion layers included in the body 17 are red, green, and blue color conversion layers, and the color filters included in the stacked body 17 are associated with the color conversion layers of each unit, so that the three types of units Are combined into a pixel.
  • the lower electrode 11 is formed on the support substrate 10.
  • vapor deposition or sputtering using resistance heating or electron beam heating can be used.
  • the film formation rate can be 0.1 to 10 nm / second at a film formation pressure of 1.0 ⁇ 10 ⁇ 4 Pa or less.
  • an inert gas such as Ar can be used as the sputtering gas, and the film forming pressure can be set to about 0.1 to 2.0 Pa.
  • the forming atmosphere is a vacuum because excellent adhesion with an adjacent layer can be realized.
  • the organic layer 12 is formed on the lower electrode 11.
  • an organic light emitting layer and an optional hole transport layer, hole injection layer, electron transport layer, and electron injection layer are deposited in a predetermined order using resistance heating or electron beam heating. Can be formed. It is important to form each layer constituting the organic layer 15 with a film thickness sufficient to achieve desired characteristics.
  • the thickness of each layer constituting the organic layer 12 is 2 to 50 nm for the organic light emitting layer, 2 to 50 nm for the hole transport layer, 2 to 200 nm for the hole injection layer, 2 to 50 nm for the electron transport layer,
  • the electron injection layer is preferably 2 to 50 nm.
  • the buffer layer optionally formed between the organic layer 12 and the upper electrode 13 can be formed by vapor deposition using resistance heating or electron beam heating, and the film thickness depends on the driving voltage and transparency. Is preferably 10 nm or less.
  • the upper electrode 13 is formed on the organic layer 12.
  • the upper electrode 13 can be formed using a sputtering method or a vapor deposition method.
  • an inert gas such as Ar can be used as the sputtering gas, and a DC magnetron sputtering method or the like can be used at a film forming pressure of about 0.1 to 2.0 Pa.
  • the sealing member 14 is formed on the support substrate 10.
  • the sealing member 14 may be formed on the support substrate 10 at the same time as the planarization film 10b prior to the organic EL element, or at the same time as the formation process of the insulating film 11a covering between adjacent lower electrode patterns. May be. Therefore, the sealing member 14 can be formed before the lower electrode 11 is formed. Moreover, in order to ensure sufficient thickness, it is also possible to divide and form in multiple times.
  • the forming method for example, a method of forming by applying a material of each layer by a spin coating method, a roll coating method, a casting method, a dip coating method or the like and then patterning by a photolithography method or the like can be used.
  • the sealing film 15 is formed on at least the upper electrode 13, the support substrate 10, and the sealing member 14. Moreover, it forms also on the lower electrode 11 and the insulating film 11a as needed.
  • the sealing film is a continuous integral film.
  • the sealing film 15 can be formed using a sputtering method, a CVD method, or a vapor deposition method. For example, it can be formed by a plasma CVD method using monosilane, ammonia or the like as a reaction gas at a pressure of about 10 to 200 Pa.
  • a laminated body 17 (color filter and color conversion layer) such as a color filter is formed on the sealing substrate 30 as necessary.
  • the laminated body 17 such as a color filter is formed by applying a material of each layer by a known lamination method, that is, a spin coating method, a roll coating method, a casting method, a dip coating method, and the like, and then patterning by a photolithography method or the like. Can be formed.
  • the formation method of the color filter layer is particularly established as the formation method of the color filter layer. Therefore, the formation method by the photolithographic method is preferable after the application by the spin coating method.
  • a light conversion layer is formed on the sealing substrate 30 as necessary.
  • a light conversion layer is formed using a plurality of types of color conversion dyes
  • a plurality of types of color conversion dyes are premixed at a predetermined ratio to obtain a premixture obtained by mixing the matrix with a matrix resin. It can also be used for vapor deposition.
  • multiple types of color conversion dye-containing matrix resins can be arranged in separate heating sites, and the resins containing the respective color conversion dyes can be separately heated to perform co-evaporation.
  • co-evaporation is advantageous when there are large differences in characteristics such as vapor deposition rate and / or vapor pressure among a plurality of types of color conversion dyes.
  • a method such as plasma CVD can be used.
  • this is a step of bonding the support substrate 10 and the sealing substrate 30 using an adhesive 16.
  • any known bonding method can be used.
  • the gap between the support substrate 10 and the sealing substrate 30 is supported by the sealing member 14.
  • the organic EL display 100 of the present invention shown in FIG. 1 is obtained.
  • FIG. 2 is a sectional view of an essential part of an organic EL display driven by a passive matrix according to an embodiment of the present invention.
  • Example 1 In this example, an organic EL display (number of pixels 2 ⁇ 2 (red only), pixel width 0.3 mm) was produced.
  • Fusion glass (Corning 1737 glass, 50 ⁇ 50 ⁇ 1.1 mm) was used as the support substrate 10.
  • An Ag film having a thickness of 100 nm was deposited on the support substrate 10 by a sputtering method, and patterning was performed by a photolithographic method to form a stripe-shaped lower electrode 11 having a width of 0.3 mm.
  • a continuous pattern having a width of 200 ⁇ m and a thickness of 5 ⁇ m is formed at a position corresponding to the outer peripheral portion of the support substrate 10 by photolithography using an acrylic material (PC-405G, manufactured by JSR) as the sealing member 14. did.
  • the support substrate 10 on which the sealing member 14 was formed was placed in a resistance heating vapor deposition apparatus, and Li having a film thickness of 1.5 nm was deposited on the lower electrode 11 using a mask to form a cathode buffer layer.
  • an organic layer 12 was obtained by sequentially depositing four layers of an electron transport layer / an organic EL layer / a hole transport layer / a hole injection layer using a resistance heating vapor deposition apparatus.
  • the internal pressure of the vacuum chamber during film formation was 1 ⁇ 10 ⁇ 4 Pa.
  • Each layer constituting the organic layer 15 was deposited at a deposition rate of 0.1 nm / s.
  • a 20 nm thick Alq 3 (tris (8-quinolinol) aluminum was formed as an electron transport layer
  • a 30 nm thick DPVBi was formed as an organic EL layer
  • a 10 nm thick ⁇ -NPD was formed as a hole transport layer.
  • the hole injection layer copper phthalocyanine having a film thickness of 100 nm was formed.
  • MgAg with a film thickness of 5 nm was deposited to form a damage mitigation layer when forming the transparent electrode.
  • the laminate on which the organic layer 12 was formed was moved to the counter sputtering apparatus without breaking the vacuum.
  • a metal mask was placed to deposit IZO having a film thickness of 100 nm, and a stripe-shaped transparent upper electrode 13 having a width of 0.3 mm extending in a direction perpendicular to the stripe of the lower electrode 11 was formed.
  • the support substrate 10 on which the upper electrode 13 is formed is transferred to a plasma CVD chamber, and a silicon nitride film is formed on the upper electrode 13, the support substrate 11 and the sealing member 14 using monosilane gas and ammonia gas.
  • a sealing film 15 was obtained.
  • the film forming pressure was 100 Pa, and the RF power was 2 kW.
  • an organic EL element 20 composed of the lower electrode 11 / the organic layer 12 / the upper electrode 13 and having the sealing film 15 formed thereon was obtained.
  • a red filter material (CR7001, manufactured by FUJIFILM Electronics Materials) is applied to the transparent substrate (sealing substrate) 30, and 0.5 mm ⁇ 0.5 mm at a position corresponding to the light emitting portion of the organic EL element 20.
  • a red color filter layer having a thickness of 1.5 ⁇ m was formed.
  • the laminate on which the color filter layer was formed was conveyed to a resistance heating vapor deposition apparatus, and a light conversion layer containing coumarin 6 and DCM-2 was produced.
  • a 300 nm-thick photoconversion layer was formed by co-evaporation in which coumarin 6 and DCM-2 were heated in separate crucibles in the vapor deposition apparatus.
  • the heating temperature of each crucible was controlled so that the deposition rate of coumarin 6 was 0.3 nm / s and the deposition rate of DCM-2 was 0.005 nm / s.
  • the molar ratio of coumarin 6 and DCM-2 is 49: 1 based on the total number of constituent molecules.
  • the support substrate 10 on which the organic EL element 20 is formed and the transparent substrate 30 on which the color filter layer is formed are carried into a bonding apparatus having an oxygen concentration of 5 ppm or less and a water concentration of 5 ppm or less to form the organic EL element 20.
  • An adhesive layer 16 was formed dropwise on the inside of the sealing member 14 on the support substrate 10 using an epoxy-based ultraviolet curable adhesive. After depressurizing the inside of the apparatus to about 10 Pa, the positions of the light emitting portion of the organic EL element 20 and the red color filter layer were aligned, the both laminates were bonded together, and the inside of the apparatus was returned to atmospheric pressure.
  • the adhesive layer 16 was irradiated with ultraviolet rays to be temporarily cured, placed in a heating furnace and heated to 80 ° C. for 1 hour, and then naturally cooled in the furnace for 30 minutes. Thereafter, the bonded body was taken out from the apparatus to obtain an organic EL display.
  • Example 2 The sealing member 14 is formed on the outer periphery of the support substrate 10 as a two-row pattern having a width of 100 ⁇ m and an interval of 500 ⁇ m, and the adhesive layer 16 is formed between the two rows of the sealing member 14 as in Example 1. Similarly, an organic EL display was produced.
  • Example 3 A first sealing member pattern having a thickness of 3 ⁇ m and a width of 700 ⁇ m was formed on the outer peripheral portion of the support substrate 10 by photolithography using an acrylic resin (PC-405G, manufactured by JSR). Again, using the same acrylic resin, two rows of sealing member patterns having a thickness of 2 ⁇ m, a width of 100 ⁇ m, and an interval of 500 ⁇ m were formed on the first sealing member pattern by photolithography.
  • the concave sealing member 14 was formed on the support substrate 10. Other steps were performed in the same manner as in Example 1. In this case, the adhesive layer 16 is formed in the concave portion of the concave sealing member 14.
  • Example 1 An organic EL display was produced in the same manner as in Example 1 except that the sealing member 14 was not formed.
  • the organic EL displays of Examples 1 to 3 and Comparative Example 1 formed as described above were continuously driven at a current density of 0.1 A / cm 2 in an environment of 60 ° C. and 60 RH%, and voltage and luminance were measured.
  • the value obtained by dividing the luminance by the current value is calculated as the luminous efficiency, and the retention ratio of the luminous efficiency at 1000 hours when the initial luminous efficiency is 1 is shown in Table 1 below.
  • the present invention it is possible to improve the life characteristics of an organic EL display that has been a problem in the past. For this reason, the organic EL display of the present invention can achieve excellent luminous efficiency over a long period of time. Therefore, it can be said that the present invention is a promising technology in a situation where development of an organic EL display having higher light emission efficiency has been demanded in recent years.

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

Disclosed is a low-cost organic EL display and the manufacturing method thereof with which the number of parts and the number of processing steps can be reduced, and with which the infiltration of moisture from adhesion sites can be prevented. The organic EL display (100) comprises a support substrate (10), an organic EL element (20) formed thereon and including a lower electrode (11), an organic layer (12) and an upper electrode (13), and a sealing substrate (30) arranged at a prescribed interval and opposite to the support substrate (10), wherein the support substrate (10) and the sealing substrate (30) are bonded together. There are a protruding sealing member (14), which is formed at the perimeter of the support substrate (10) surrounding the organic EL element (20), and a sealing film (15), which is formed on the upper electrode (13), the support substrate (10), and the sealing member (14) or on the upper electrode (13), the lower electrode (11), the support substrate (10), and the sealing member (14), and the sealing substrate (30), which is adhered to the support substrate (10) by means of an adhesive layer (16) that is formed on the side of the sealing member (14), is in contact with the support substrate (10) at the location where the sealing film (15) is formed on the sealing member (14).

Description

有機ELディスプレイおよびその製造方法Organic EL display and manufacturing method thereof
 本発明は有機ELディスプレイおよびその製造方法に関し、特に、外部環境からの水分の浸入を防止でき、長期間にわたり優れた発光効率が実現できる有機ELディスプレイおよびその製造方法に関する。 The present invention relates to an organic EL display and a method for manufacturing the same, and more particularly to an organic EL display capable of preventing moisture from entering from the outside environment and realizing excellent luminous efficiency over a long period of time and a method for manufacturing the same.
 近年、自発光型の有機EL素子を用いた有機ELディスプレイの研究が盛んに行われている。有機ELディスプレイは、低電圧で高い電流密度が実現できるため、高い発光輝度および発光効率を実現することが期待されており、特に、高精細なマルチカラー表示、ひいてはフルカラー表示が可能な多色の有機ELディスプレイの実用化が期待されている。 In recent years, research on organic EL displays using self-luminous organic EL elements has been actively conducted. Organic EL displays are expected to achieve high luminous intensity and luminous efficiency because they can achieve high current density at low voltage. In particular, multi-color display capable of high-definition multi-color display and eventually full-color display is expected. The practical application of organic EL displays is expected.
 カラーディスプレイとしての実用上の重要課題は、精細なカラー表示機能を有するとともに、色再現性を含め長期的な安定性を有することである。しかし、カラー有機ELディスプレイには、一定期間の駆動により発光特性(電流-輝度特性)が著しく低下するという欠点がある。 An important practical issue for a color display is having a fine color display function and long-term stability including color reproducibility. However, the color organic EL display has a drawback that the light emission characteristic (current-luminance characteristic) is remarkably lowered by driving for a certain period.
 この発光特性の低下原因の代表的なものは、ダークスポットの成長である。このダークスポットとは、発光欠陥点のことである。駆動時および保存中に材料の酸化が進むと、ダークスポットの成長が進行して、発光面全体に広がる。ダークスポットの発生原因は、素子中の酸素または水分により、素子を構成する積層材料が酸化または凝集することによるものと考えられている。その成長は、通電中はもちろん、保存中にも進行し、特に、(1)素子の周囲に存在する酸素または水分により加速され、(2)有機積層膜中に吸着物として存在する酸素または水分に影響され、また、(3)素子作製時の部品に吸着している水分あるいは製造時等における水分の侵入にも影響されると考えられている。 A typical cause of the deterioration of the light emission characteristics is the growth of dark spots. This dark spot is a light emitting defect point. As the oxidation of the material proceeds during driving and storage, the growth of dark spots proceeds and spreads over the entire light emitting surface. The cause of dark spots is considered to be due to oxidation or aggregation of the laminated material constituting the element due to oxygen or moisture in the element. The growth proceeds not only during energization but also during storage, and in particular, (1) accelerated by oxygen or moisture present around the element, and (2) oxygen or moisture present as an adsorbate in the organic laminated film. (3) It is also considered that it is affected by moisture adsorbed on the component at the time of device fabrication or moisture penetration during production.
 この有機EL素子への水分の浸入を妨げる手法として、有機EL素子が形成された基板と封止基板とを貼り合せるシール材の位置に、枠状の乾燥剤を形成する方法(特許文献1)や、シール材を形成する部位に屈曲した構造を形成し、水分等の通過経路を長くする方法(特許文献2)が知られている。また、有機EL素子に水分が到達することを効率よく防止するために、レーザーを用いて基板間を溶着する技術も公知である(特許文献3)。
特開2005-340020号公報 特開2005-38842号公報 特開2006-338948号公報
As a technique for preventing moisture from entering the organic EL element, a method of forming a frame-shaped desiccant at the position of the sealing material for bonding the substrate on which the organic EL element is formed and the sealing substrate (Patent Document 1) There is also known a method (Patent Document 2) in which a bent structure is formed at a site where a sealing material is formed, and a passage route for moisture or the like is lengthened. In addition, in order to efficiently prevent moisture from reaching the organic EL element, a technique of welding between substrates using a laser is also known (Patent Document 3).
JP 2005-340020 A JP 2005-38842 A JP 2006-338948 A
 シール材を用いて封止基板を貼り合せる方法は、簡便な方法であるといえる。しかしながら、この場合、シール材の部位で水分が透過してしまうため、その対策として、特許文献1や特許文献2に開示されているように、乾燥剤で水分を吸着したり、または、水分の透過経路を長くして透過時間を長くすることで、パネル寿命を高める方法が採られている。 It can be said that the method of bonding a sealing substrate using a sealing material is a simple method. However, in this case, since moisture permeates through the portion of the sealing material, as a countermeasure, as disclosed in Patent Document 1 and Patent Document 2, moisture is adsorbed with a desiccant or A method has been adopted in which the lifetime of the panel is increased by lengthening the transmission path and extending the transmission time.
 また、特許文献3に記載されているようにレーザーにより溶着する方法もあるが、この方法では、封止部の固着のために、工数を増やす必要がある。有機ELディスプレイの実用化のためには、使用部品数を低減し、かつ、工数を削減することにより、低コスト化を図ることが重要である。かかる観点からは、乾燥剤を用いずに、エポキシ樹脂などの接着剤を用いて、長期間にわたり安定した発光特性を得ることが求められ、これにより、部品点数および工数の削減が可能となる。 Also, there is a method of welding with a laser as described in Patent Document 3, but in this method, it is necessary to increase the number of steps for fixing the sealing portion. In order to put the organic EL display into practical use, it is important to reduce the cost by reducing the number of parts used and the number of steps. From such a point of view, it is required to obtain stable light emission characteristics over a long period of time using an adhesive such as an epoxy resin without using a desiccant, and this makes it possible to reduce the number of parts and man-hours.
 そこで本発明の目的は、上記問題を解消して、部品点数および工数の削減を図りつつ、接着部位からの水分の浸入を防止できる低コストの有機ELディスプレイおよびその製造方法を提供することにある。 Accordingly, an object of the present invention is to provide a low-cost organic EL display that can solve the above-described problems and prevent the ingress of moisture from an adhesion site while reducing the number of parts and man-hours, and a method for manufacturing the same. .
 本発明者は鋭意検討した結果、支持基板と封止基板との接合部を、支持基板上に形成した封止部材と、その上に形成された封止膜と、封止部材の側方に形成された接着層とにより構成するものとすることで、上記課題を解決できることを見出して、本発明を完成するに至った。 As a result of intensive studies, the inventor has found that the joint between the support substrate and the sealing substrate is formed on the sealing member formed on the supporting substrate, the sealing film formed on the sealing member, and the side of the sealing member. The present invention has been completed by finding that the above-mentioned problems can be solved by constituting the adhesive layer with the formed adhesive layer.
 すなわち、本発明の有機ELディスプレイは、支持基板と、該支持基板上に形成され、下部電極、有機層および上部電極を含む有機EL素子と、前記支持基板との間に所定間隔をおいて対向配置された封止基板とを備え、前記支持基板と封止基板とが貼り合わされてなる有機ELディスプレイにおいて、
 前記支持基板上の前記有機EL素子を囲む外周部に形成された凸形状の封止部材と、
 前記上部電極、支持基板および封止部材上、または、前記上部電極、下部電極、支持基板および封止部材上に形成された封止膜と、
 前記封止部材の側方に形成された接着層により前記支持基板と接着され、かつ、前記封止部材上に形成された前記封止膜の位置で前記支持基板に当接している封止基板と、
を有することを特徴とするものである。
That is, the organic EL display of the present invention is opposed to a support substrate, an organic EL element formed on the support substrate, including a lower electrode, an organic layer, and an upper electrode, and the support substrate with a predetermined distance therebetween. In an organic EL display comprising a sealing substrate disposed, and the support substrate and the sealing substrate being bonded together,
A convex sealing member formed on an outer peripheral portion surrounding the organic EL element on the support substrate;
A sealing film formed on the upper electrode, the supporting substrate and the sealing member, or on the upper electrode, the lower electrode, the supporting substrate and the sealing member;
A sealing substrate that is bonded to the support substrate by an adhesive layer formed on a side of the sealing member and that is in contact with the support substrate at a position of the sealing film formed on the sealing member When,
It is characterized by having.
 本発明の有機ELディスプレイにおいては、前記封止部材が二列で形成され、前記接着層が該二列の封止部材間に形成されているものとすることもできる。また、前記凸形状の封止部材に代えて、基板上に突出する凹形状の封止部材が形成され、前記接着層が、該凹形状の封止部材の凹部内に形成されているものとすることもできる。 In the organic EL display of the present invention, the sealing members may be formed in two rows, and the adhesive layer may be formed between the two rows of sealing members. Further, instead of the convex sealing member, a concave sealing member protruding on the substrate is formed, and the adhesive layer is formed in the concave portion of the concave sealing member. You can also
 さらに、前記封止部材は、アクリル樹脂、ノボラック樹脂またはポリイミド樹脂からなることが好ましく、前記封止膜は、無機酸化膜、無機酸化窒化膜または無機窒化膜であることが好ましい。さらにまた、前記封止部材は、前記支持基板上の前記有機EL素子を囲む外周部に、連続的に形成されていることが好ましい。 Furthermore, the sealing member is preferably made of an acrylic resin, a novolac resin, or a polyimide resin, and the sealing film is preferably an inorganic oxide film, an inorganic oxynitride film, or an inorganic nitride film. Furthermore, it is preferable that the sealing member is continuously formed on an outer peripheral portion surrounding the organic EL element on the support substrate.
 また、本発明の有機ELディスプレイの製造方法は、上記本発明の有機ELディスプレイを製造するにあたり、前記封止部材を、前記支持基板上に、前記有機EL素子に先立って形成される平坦化膜と同時に形成することを特徴とするものである。 Moreover, the manufacturing method of the organic EL display of this invention is the planarization film | membrane formed prior to the said organic EL element on the said support substrate in manufacturing the organic EL display of the said invention. It is characterized by forming at the same time.
 本発明によれば、上記構成としたことで、部品点数および工数の削減を図りつつ、基板間の接着部位における水分の浸入経路を減少することができ、乾燥剤を用いることなくディスプレイの長寿命化を図った有機ELディスプレイを実現することが可能となった。 According to the present invention, the above configuration can reduce the number of parts and man-hours while reducing the moisture intrusion route at the bonded portion between the substrates, and can achieve a long display life without using a desiccant. It has become possible to realize an organic EL display that has been improved.
本発明の有機ELディスプレイの一例を示す模式的断面図である。It is typical sectional drawing which shows an example of the organic electroluminescent display of this invention. 本発明の有機ELディスプレイの他の例を示す模式的断面図である。It is typical sectional drawing which shows the other example of the organic electroluminescent display of this invention. 封止部材の配設形状の例を示す平面透過図である。It is a plane transmission figure which shows the example of arrangement | positioning shape of a sealing member. 封止部材および接着層の配設状態の例を示す断面図である。It is sectional drawing which shows the example of the arrangement | positioning state of a sealing member and an adhesion layer.
符号の説明Explanation of symbols
10 支持基板
10a 基板
10b 平坦化膜
11 下部電極
11a 絶縁膜
11A 下部電極の配線部
12 有機層
13 上部電極
13A 上部電極の配線部
14 封止部材
15 封止膜
16 接着層
17 カラーフィルタなどの積層体
20 有機EL素子
30 封止基板
100,200 有機ELディスプレイ
DESCRIPTION OF SYMBOLS 10 Support substrate 10a Substrate 10b Flattening film 11 Lower electrode 11a Insulating film 11A Lower electrode wiring part 12 Organic layer 13 Upper electrode 13A Upper electrode wiring part 14 Sealing member 15 Sealing film 16 Adhesive layer 17 Lamination of color filters, etc. Body 20 Organic EL element 30 Sealing substrate 100, 200 Organic EL display
 以下、本発明の好適実施形態について、図面を参照しつつ詳細に説明する。なお、以下に示す例は、単なる例示であって、当業者の通常の創作能力の範囲で適宜設計変更することが可能である。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. The example shown below is merely an example, and the design can be changed as appropriate within the scope of ordinary creation ability of those skilled in the art.
<有機ELディスプレイ>
 図1に、本発明の有機ELディスプレイの一好適例の模式的断面図を示す。図示するように、本発明の有機ELディスプレイ100は、支持基板10と、その上に形成され、下部電極11、有機層12および上部電極13を含む有機EL素子20と、有機EL素子20の上方に位置し、かつ、支持基板10との間に所定間隔をおいて対向配置された封止基板30とを備え、支持基板10と封止基板30とが貼り合わされてなるものである。なお、図中の符号11Aは下部電極11の配線部、符号13Aは上部電極13の配線部を示す。
<Organic EL display>
FIG. 1 shows a schematic cross-sectional view of a preferred example of the organic EL display of the present invention. As shown in the figure, an organic EL display 100 of the present invention includes a support substrate 10, an organic EL element 20 formed thereon and including a lower electrode 11, an organic layer 12, and an upper electrode 13, and above the organic EL element 20. And a sealing substrate 30 disposed opposite to the support substrate 10 at a predetermined interval, and the support substrate 10 and the sealing substrate 30 are bonded to each other. In the figure, reference numeral 11A denotes a wiring portion of the lower electrode 11, and reference numeral 13A denotes a wiring portion of the upper electrode 13.
 本発明の有機ELディスプレイ100においては、支持基板10上の有機EL素子20を囲む外周部、すなわち、支持基板10と封止基板30とが接着される位置に、凸形状の封止部材14が形成されている。また、この封止部材14上には、上部電極13および支持基板10(図中では支持基板10、またはその上に形成された平坦化膜10bおよび絶縁膜11a)から連続して、封止膜15が形成されている。ここで、封止部材14は、支持基板10上の有機EL素子20を囲む外周部に、図3(A)に示すように、連続的に形成することができる。また、封止部材14は、図3(B)に示すように、接着剤の流れ出しの裕度を確保するために、不連続な部分を有するよう形成してもよい。 In the organic EL display 100 of the present invention, the convex sealing member 14 is disposed at the outer peripheral portion surrounding the organic EL element 20 on the support substrate 10, that is, at the position where the support substrate 10 and the sealing substrate 30 are bonded. Is formed. Further, on the sealing member 14, the sealing film is continuously formed from the upper electrode 13 and the supporting substrate 10 (in the drawing, the supporting substrate 10, or the planarizing film 10b and the insulating film 11a formed thereon). 15 is formed. Here, the sealing member 14 can be continuously formed on the outer peripheral portion surrounding the organic EL element 20 on the support substrate 10 as shown in FIG. Further, as shown in FIG. 3B, the sealing member 14 may be formed so as to have a discontinuous portion in order to ensure the allowance for the flow of the adhesive.
 本発明の有機ELディスプレイ100においては、支持基板10と封止基板30とが、封止部材14の側方に形成された接着層16により接着され、かつ、封止部材14上に形成された封止膜15の位置で当接している。かかる構成としたことで、従来は接着剤(シール材)を介して接合していた基板間を、封止膜15と封止基板30とが密着した状態で当接するものとすることができ、基板間の隙間をより少なくすることができる。したがって、内部への水分の浸入をより効果的に抑制して、乾燥剤を用いることなく長寿命化を図った有機ELディスプレイとすることが可能となる。 In the organic EL display 100 of the present invention, the support substrate 10 and the sealing substrate 30 are bonded by the adhesive layer 16 formed on the side of the sealing member 14 and formed on the sealing member 14. Contact is made at the position of the sealing film 15. By adopting such a configuration, it is possible to contact between the substrates that have been conventionally bonded via an adhesive (sealant) in a state where the sealing film 15 and the sealing substrate 30 are in close contact with each other, The gap between the substrates can be reduced. Therefore, it is possible to suppress the intrusion of moisture into the interior more effectively and to obtain an organic EL display having a long life without using a desiccant.
(支持基板)
 支持基板10は主として基板10aからなり、有機ELディスプレイの構造に応じて、さらに、カラーフィルタ層や、薄膜トランジスタ(TFT,thin film transistor)、平坦化膜10bを含む。基板10aの材質としては、支持基板10上に順次積層される層11,12,13の形成において用いられる種々の条件(例えば、使用される溶媒、温度等)に耐え得るものであれば特に限定されるものではない。好適には、寸法安定性に優れるものを用いる。好適な材質の例としては、ガラス基板、またはポリオレフィン、ポリメチルメタクリレートなどのアクリル樹脂、ポリエチレンテレフタレートなどのポリエステル樹脂、ポリカーボネート樹脂もしくはポリイミド樹脂で形成された剛直性の樹脂基板が挙げられる。また、他の好適な材質の例としては、ポリオレフィン、ポリメチルメタクリレートなどのアクリル樹脂、ポリエチレンテレフタレートなどのポリエステル樹脂、ポリカーボネート樹脂またはポリイミド樹脂などで形成された可撓性フィルムが挙げられる。また、平坦化膜10bの材料としては、上部に形成される層11,12,13の材料と密着性を保ち、プロセスに耐えうる材料が選択され、例えば、ノボラック樹脂、アクリル樹脂、ポリイミド樹脂等を用いることができる。これらの材料は、通常のフォトリソグラフ工程により作製することができる。
(Support substrate)
The support substrate 10 is mainly composed of a substrate 10a, and further includes a color filter layer, a thin film transistor (TFT), and a planarization film 10b according to the structure of the organic EL display. The material of the substrate 10a is particularly limited as long as it can withstand various conditions (for example, a solvent used, a temperature, and the like) used in forming the layers 11, 12, and 13 sequentially stacked on the support substrate 10. Is not to be done. Preferably, those having excellent dimensional stability are used. Examples of suitable materials include a glass substrate or a rigid resin substrate formed of an acrylic resin such as polyolefin or polymethyl methacrylate, a polyester resin such as polyethylene terephthalate, a polycarbonate resin, or a polyimide resin. Examples of other suitable materials include flexible films formed of acrylic resins such as polyolefin and polymethyl methacrylate, polyester resins such as polyethylene terephthalate, polycarbonate resins, and polyimide resins. Further, as the material of the planarizing film 10b, a material that can maintain the adhesion with the material of the layers 11, 12, and 13 formed thereon and can withstand the process is selected. For example, a novolac resin, an acrylic resin, a polyimide resin, etc. Can be used. These materials can be produced by a normal photolithography process.
(有機EL素子)
 本発明に係る有機EL素子20は、上述したように、下部電極11、有機層12および上部電極13を含む。
(Organic EL device)
The organic EL element 20 according to the present invention includes the lower electrode 11, the organic layer 12, and the upper electrode 13 as described above.
(下部電極)
 下部電極11は、有機層12への電荷注入と、外部駆動回路との接続という機能を持つ。下部電極11が反射電極として機能する場合の望ましい材料としては、高反射率の金属(アルミニウム、銀、モリブデン、タングステン、ニッケル若しくはクロムなど)、またはアモルファス合金(NiP、NiB、CrP若しくはCrBなど)からなるものが挙げられる。また、特に好ましい反射電極材料としては、可視光において80%以上の反射率を得ることができるという観点から、銀合金からなるものが挙げられる。例えば、銀と、8族のニッケル、ルビジウム、鉛および白金のうちの少なくとも1種との合金、さらには、銀と、2A族であるマグネシウムおよびカルシウムのうちの少なくとも1種との合金からなるものを用いることができる。
(Lower electrode)
The lower electrode 11 has a function of charge injection into the organic layer 12 and connection with an external drive circuit. Desirable materials when the lower electrode 11 functions as a reflective electrode are made of a highly reflective metal (aluminum, silver, molybdenum, tungsten, nickel, chromium, or the like) or an amorphous alloy (NiP, NiB, CrP, or CrB). The thing which becomes. Particularly preferable reflective electrode materials include those made of a silver alloy from the viewpoint that a reflectance of 80% or more in visible light can be obtained. For example, an alloy of silver and at least one of group 8 nickel, rubidium, lead, and platinum, or an alloy of silver and at least one of group 2A magnesium and calcium Can be used.
 下部電極11が透明電極として機能する場合の望ましい材料としては、SnO、In、In-Sn酸化物、In-Zn酸化物、ZnO、またはZn-Al酸化物などの導電性金属酸化物を用いることができる。 Desirable materials when the lower electrode 11 functions as a transparent electrode include conductive metal oxides such as SnO 2 , In 2 O 3 , In—Sn oxide, In—Zn oxide, ZnO, or Zn—Al oxide. Can be used.
(有機層)
 有機層12は、下部電極11と上部電極13との間に挟まれて配置され、発光部の中核をなす層である。有機層12は、少なくとも有機発光層を含み、必要に応じて正孔輸送層、正孔注入層、電子輸送層および/または電子注入層を含む。有機層12には、例えば、下記のような層構成を採用することができる。
 (1)有機発光層
 (2)正孔注入層/有機発光層
 (3)有機発光層/電子注入層
 (4)正孔注入層/有機発光層/電子注入層
 (5)正孔輸送層/有機発光層/電子注入層
 (6)正孔注入層/正孔輸送層/有機発光層/電子注入層
 (7)正孔注入層/正孔輸送層/有機発光層/電子輸送層/電子注入層
 なお、上記(1)~(7)の各構成においては、陽極として機能する電極が左側に接続され、陰極として機能する電極が右側に接続される。
(Organic layer)
The organic layer 12 is disposed between the lower electrode 11 and the upper electrode 13 and is a layer that forms the core of the light emitting unit. The organic layer 12 includes at least an organic light emitting layer, and includes a hole transport layer, a hole injection layer, an electron transport layer, and / or an electron injection layer as necessary. For example, the following layer configuration can be adopted for the organic layer 12.
(1) Organic light emitting layer (2) Hole injection layer / organic light emitting layer (3) Organic light emitting layer / electron injection layer (4) Hole injection layer / organic light emitting layer / electron injection layer (5) Hole transport layer / Organic light emitting layer / electron injection layer (6) Hole injection layer / hole transport layer / organic light emitting layer / electron injection layer (7) Hole injection layer / hole transport layer / organic light emitting layer / electron transport layer / electron injection Layer In each of the configurations (1) to (7), the electrode functioning as the anode is connected to the left side, and the electrode functioning as the cathode is connected to the right side.
 有機発光層には、公知の材料を用いることができる。青色から青緑色の発光を得るための材料としては、例えば、ベンゾチアゾール系、ベンゾイミダゾール系もしくはベンゾオキサゾール系などの蛍光増白剤、金属キレート化オキソニウム化合物(Alq(トリス(8-キノリノール)アルミニウム)に代表されるアルミニウム錯体など)、スチリルベンゼン系化合物(4,4’-ビス(ジフェニルビニル)ビフェニル(DPVBi)など)、芳香族ジメチリディン系化合物、縮合芳香環化合物、環集合化合物、またはポルフィリン系化合物などが好ましい。 A known material can be used for the organic light emitting layer. Examples of a material for obtaining blue to blue-green light emission include fluorescent brighteners such as benzothiazole, benzimidazole, or benzoxazole, metal chelated oxonium compounds (Alq 3 (tris (8-quinolinol) aluminum) ), Styrylbenzene compounds (4,4′-bis (diphenylvinyl) biphenyl (DPVBi), etc.), aromatic dimethylidin compounds, condensed aromatic ring compounds, ring assembly compounds, or porphyrin compounds Compounds and the like are preferred.
 また、ホスト化合物にドーパントを添加することによって、種々の波長域の光を発する有機発光層を形成することもできる。この場合、ホスト化合物としては、ジスチリルアリーレン系化合物、N,N’-ジトリル-N,N’-ジフェニルビフェニルアミン(TPD)、またはAlqなどを使用することができる。一方、ドーパントとしては、ペリレン(青紫色)、クマリン6(青色)、キナクリドン系化合物(青緑色~緑色)、ルブレン(黄色)、4-ジシアノメチレン-2-(p-ジメチルアミノスチリル)-6-メチル-4H-ピラン(DCM、赤色)、または白金オクタエチルポルフィリン錯体(PtOEP、赤色)などを使用することができる。 Moreover, the organic light emitting layer which emits the light of a various wavelength range can also be formed by adding a dopant to a host compound. In this case, a distyrylarylene compound, N, N′-ditolyl-N, N′-diphenylbiphenylamine (TPD), Alq 3 or the like can be used as the host compound. On the other hand, as dopants, perylene (blue purple), coumarin 6 (blue), quinacridone compounds (blue green to green), rubrene (yellow), 4-dicyanomethylene-2- (p-dimethylaminostyryl) -6- Methyl-4H-pyran (DCM, red), platinum octaethylporphyrin complex (PtOEP, red) or the like can be used.
 正孔輸送層には、トリアリールアミン部分構造、カルバゾール部分構造、またはオキサジアゾール部分構造を有する材料を用いることができる。例えば、TPD、α-NPD、MTDAPB(o-,m-,p-)、またはm-MTDATAなどを使用することが好ましい。 For the hole transport layer, a material having a triarylamine partial structure, a carbazole partial structure, or an oxadiazole partial structure can be used. For example, it is preferable to use TPD, α-NPD, MTDAPB (o-, m-, p-), m-MTDATA, or the like.
 正孔注入層には、フタロシアニン類(銅フタロシアニンなどを含む)、またはインダンスレン系化合物などの材料を用いることができる。 For the hole injection layer, materials such as phthalocyanines (including copper phthalocyanine) or indanthrene compounds can be used.
 電子輸送層には、Alqのようなアルミニウム錯体、PBD(2-(4-biphenyl)-5-(4-tert-butylphenyl)-1,3,4-oxadiazole)もしくはTPOB(1,3,5-tris(4-tert-butylphenyl-1,3,4-oxadiazolyl)benzene)のようなオキサジアゾール誘導体、TAZ(3-(biphenyl-4-yl)-4-phenyl-5-(4-tert-butylphenyl)-1,2,4-triazole)のようなトリアゾール誘導体、トリアジン誘導体、フェニルキノキサリン類、またはBMB-2T(5,5’-Bis(dimesitylboryl)-2,2’-bithiophene)のようなチオフェン誘導体などの材料を用いることができる。 The electron transport layer, aluminum complexes such as Alq 3, PBD (2- (4 -biphenyl) -5- (4-tert-butylphenyl) -1,3,4-oxadiazole) or TPOB (1, 3, 5 Oxadiazole derivatives such as tris (4-tert-butylphenyl-1,3,4-oxadiazolyl) benzene), TAZ (3- (biphenyl-4-yl) -4-phenyl-5- (4-tert- butylphenyl) -1,2,4-triazole), triazine derivatives, phenylquinoxalines, or thiophene such as BMB-2T (5,5'-bis (dimethoxyboryl) -2,2'-bithiophene) Derivative It is possible to use of the material.
 電子注入層には、Alqのようなアルミニウム錯体、またはアルカリ金属若しくはアルカリ土類金属をドープしたアルミニウムのキノリノール錯体などの材料を用いることができる。 For the electron injection layer, a material such as an aluminum complex such as Alq 3 or an aluminum quinolinol complex doped with an alkali metal or an alkaline earth metal can be used.
 有機層12は、以上のような各層から形成することができるが、これらの層とは別に、有機層12と上部電極13との間に、さらに電子注入効率を高めるためのバッファ層を任意選択的に形成することもできる(図示せず)。バッファ層としては、アルカリ金属、アルカリ土類金属もしくはそれらの合金、または希土類金属もしくはそれらのフッ化物などの電子注入性材料を用いることができる。また、有機層12上には、上部電極13形成時のダメージを緩和するために、MgAg等からなるダメージ緩和層(図示せず)を形成することも好ましい。 The organic layer 12 can be formed from each of the layers as described above. In addition to these layers, a buffer layer for further increasing the electron injection efficiency is optionally selected between the organic layer 12 and the upper electrode 13. It can also be formed (not shown). As the buffer layer, an electron injecting material such as an alkali metal, an alkaline earth metal or an alloy thereof, or a rare earth metal or a fluoride thereof can be used. Moreover, it is also preferable to form a damage mitigating layer (not shown) made of MgAg or the like on the organic layer 12 in order to mitigate damage when the upper electrode 13 is formed.
(上部電極)
 上部電極13は、反射電極として機能する場合および透明電極として機能する場合のいずれについても、下部電極11と同様の材料を用いて形成することができる。
(Upper electrode)
The upper electrode 13 can be formed using the same material as that of the lower electrode 11 regardless of whether the upper electrode 13 functions as a reflective electrode or a transparent electrode.
 また、上部電極12の透過率は、有機層12からの発光を上方に取り出す機能を実効あるものとするため、波長400~800nmの光に対して50%以上とすることが好ましく、同条件において85%以上とすることがより好ましい。 Further, the transmittance of the upper electrode 12 is preferably 50% or more with respect to light having a wavelength of 400 to 800 nm in order to make the function of taking out the light emitted from the organic layer 12 upward. More preferably, it is 85% or more.
(封止部材)
 封止部材14は、前述したように支持基板10上に形成され、その上には、上部電極13上から連続して封止膜15が形成されている。封止部材14に用いられる材料としては、適度な弾性を有していて、貼り合せの際に生じる圧力に対して変形が小さく、かつ、破壊しない特性を持つものが好適である。例えば、加重3.0gfのときに、膜厚の保持率が50%以上である材料である。封止部材14が適度な弾性を持つことで、支持基板10と封止基板30との密着(当接)面積を大きくとることができる。封止部材14が具体的な材料としては、アクリル樹脂、ノボラック樹脂、ポリイミド樹脂等を挙げることができる。
(Sealing member)
The sealing member 14 is formed on the support substrate 10 as described above, and the sealing film 15 is continuously formed on the sealing member 14 from above the upper electrode 13. As the material used for the sealing member 14, a material having an appropriate elasticity, small deformation with respect to the pressure generated at the time of bonding, and a property that does not break is preferable. For example, when the weight is 3.0 gf, the material has a film thickness retention rate of 50% or more. Since the sealing member 14 has appropriate elasticity, a close contact (contact) area between the support substrate 10 and the sealing substrate 30 can be increased. Specific materials for the sealing member 14 include acrylic resin, novolac resin, polyimide resin, and the like.
 封止部材14の形状としては、図1および図4(A)に示すように凸形状に形成する他、図4(B)に示すように二列の凸形状に形成したり、図4(C)に示すように、基板上に突出する凹形状に形成してもよい。いずれの場合も、支持基板10上の有機EL素子20を囲む外周部に形成することが必要である。封止部材14は、封止基板30と支持基板10との間のギャップと同じ高さで形成され、例えば、1~50μmで形成される。なお、封止部材14の側方には接着層16が形成されるが、図示するように、接着層16は、図4(B)に示す二列の凸形状の封止部材14の場合には、この二列の封止部材14間に形成することができ、図4(C)に示す凹形状の封止部材14の場合には、この凹形状の封止部材14の凹部内に形成することができる。 As the shape of the sealing member 14, in addition to the convex shape as shown in FIG. 1 and FIG. 4 (A), the sealing member 14 may be formed into two rows of convex shapes as shown in FIG. As shown to C), you may form in the concave shape which protrudes on a board | substrate. In either case, it is necessary to form the outer peripheral portion surrounding the organic EL element 20 on the support substrate 10. The sealing member 14 is formed with the same height as the gap between the sealing substrate 30 and the support substrate 10, and is formed with a thickness of 1 to 50 μm, for example. The adhesive layer 16 is formed on the side of the sealing member 14, but as shown in the figure, the adhesive layer 16 is formed in the case of the two rows of convex sealing members 14 shown in FIG. Can be formed between the two rows of sealing members 14, and in the case of the concave sealing member 14 shown in FIG. 4C, it is formed in the concave portion of the concave sealing member 14. can do.
 封止膜15は、無機酸化膜、無機酸化窒化膜または無機窒化膜により好適に形成され、具体的には例えば、酸化ケイ素、酸化窒化ケイ素、窒化ケイ素等を用いることができる。封止膜15は、上述したように、上部電極13、支持基板10および封止部材14(または、上部電極、下部電極、支持基板および封止部材)を被覆する。封止膜15は、スパッタ法、CVD法で形成することができ、特に、低温で高速製膜が可能なCVD法で形成することが望ましい。また、封止膜15の厚さは、100nm~10μmとすることができ、特に、透湿性を低減し、生産性を維持する観点からは、1~5μmで形成することが望ましい。 The sealing film 15 is preferably formed of an inorganic oxide film, an inorganic oxynitride film, or an inorganic nitride film. Specifically, for example, silicon oxide, silicon oxynitride, silicon nitride, or the like can be used. As described above, the sealing film 15 covers the upper electrode 13, the support substrate 10, and the sealing member 14 (or the upper electrode, the lower electrode, the support substrate, and the sealing member). The sealing film 15 can be formed by a sputtering method or a CVD method. In particular, the sealing film 15 is preferably formed by a CVD method that enables high-speed film formation at a low temperature. Further, the thickness of the sealing film 15 can be set to 100 nm to 10 μm. In particular, from the viewpoint of reducing moisture permeability and maintaining productivity, it is desirable to form the sealing film 15 with a thickness of 1 to 5 μm.
(接着層)
 接着層16は、支持基板10と封止基板30(図1に示す例においては、封止基板30上にカラーフィルタ等の積層体17が形成されたもの)とを貼り合わせるために用いられる。好ましい接着層16としては、例えば、UV(紫外線)硬化型接着剤などからなるものが挙げられる。他の好ましい接着剤16としては、上記UV硬化型接着剤に、支持基板10と封止基板30との間の距離を補完するための要素、例えば、ガラスビーズなどのスペーサ粒子を含有させたものが挙げられる。すなわち、本発明においては、接着層16がスペーサ粒子を含んでいても、含んでいなくてもよい。
(Adhesive layer)
The adhesive layer 16 is used to bond the support substrate 10 and the sealing substrate 30 (in the example shown in FIG. 1, the laminate 17 such as a color filter formed on the sealing substrate 30). Examples of the preferable adhesive layer 16 include those made of a UV (ultraviolet) curable adhesive. As another preferable adhesive 16, an element for supplementing the distance between the support substrate 10 and the sealing substrate 30, for example, spacer particles such as glass beads, is contained in the UV curable adhesive. Is mentioned. That is, in the present invention, the adhesive layer 16 may or may not contain spacer particles.
 接着層16の形成位置は、封止部材14の側方であれば、封止部材14に接する位置であっても、封止部材14から離れた位置であっても、いずれでもよい。特に、前述したように、封止部材14が中央に凹構造を持つ場合には、封止部材14の中央に形成することもできる。 The formation position of the adhesive layer 16 may be either a position in contact with the sealing member 14 or a position away from the sealing member 14 as long as it is on the side of the sealing member 14. In particular, as described above, when the sealing member 14 has a concave structure at the center, it can be formed at the center of the sealing member 14.
(封止基板)
 封止基板30は、有機EL素子20を外部から隔離して、有機EL素子20の発光機能を実効あるものとするために用いられる。好ましい封止基板30として、例えば、ガラス基板、SUS、Al等の金属封止基板、または、ポリオレフィン、ポリメチルメタクリレートなどのアクリル樹脂、ポリエチレンテレフタレートなどのポリエステル樹脂、ポリカーボネート樹脂若しくはポリイミド樹脂で形成された剛直性の樹脂基板が挙げられる。また、他の好ましい封止基板30の例としては、ポリオレフィン、ポリメチルメタクリレートなどのアクリル樹脂、ポリエチレンテレフタレートなどのポリエステル樹脂、ポリカーボネート樹脂、またはポリイミド樹脂などで形成された可撓性フィルムが挙げられる。
 また、封止基板30として透明基材を用いて、図示するように、カラーフィルタなどの積層体17、光変換層(図示せず)を形成してもよい。
(Sealing substrate)
The sealing substrate 30 is used to isolate the organic EL element 20 from the outside and make the light emitting function of the organic EL element 20 effective. The preferred sealing substrate 30 is formed of, for example, a glass substrate, a metal sealing substrate such as SUS or Al, or an acrylic resin such as polyolefin or polymethyl methacrylate, a polyester resin such as polyethylene terephthalate, a polycarbonate resin, or a polyimide resin. A rigid resin substrate may be mentioned. Examples of other preferable sealing substrate 30 include a flexible film formed of an acrylic resin such as polyolefin or polymethyl methacrylate, a polyester resin such as polyethylene terephthalate, a polycarbonate resin, or a polyimide resin.
Moreover, you may form the laminated body 17 and color conversion layers (not shown), such as a color filter, using a transparent base material as the sealing substrate 30, as shown in the figure.
(カラーフィルタなどの積層体)
 カラーフィルタなどの積層体17には、カラーフィルタと色変換層とが含まれる。カラーフィルタは、所望の波長域の光のみを透過させる層である。カラーフィルタは、積層体17が色変換層との積層構造をとる場合、色変換層によって波長分布変換された光の色純度を向上させることができる点で有効である。カラーフィルタとしては、例えば、富士フイルムエレクトロニクスマテリアルズ(株)製のカラーモザイクなどの、市販の液晶用カラーフィルタ材料を用いたものが挙げられる。
(Laminates such as color filters)
The laminate 17 such as a color filter includes a color filter and a color conversion layer. The color filter is a layer that transmits only light in a desired wavelength range. The color filter is effective in that the color purity of the light whose wavelength distribution is converted by the color conversion layer can be improved when the laminate 17 has a laminated structure with the color conversion layer. Examples of the color filter include those using a commercially available liquid crystal color filter material such as a color mosaic manufactured by FUJIFILM Electronics Materials Corporation.
(光変換層)
 光変換層は、色変換用の蛍光色素を含む層であり、マトリクス樹脂を含んでもよい。この層は、有機EL素子20から出射された光に対して波長分布変換を行い、異なる波長域の光を放出するための層である。ここで、光変換層を構成する蛍光色素は、所望の波長域(例えば、赤色、緑色、または青色)の光を出射する色素である。
(Light conversion layer)
The light conversion layer is a layer containing a fluorescent dye for color conversion, and may contain a matrix resin. This layer is a layer for performing wavelength distribution conversion on the light emitted from the organic EL element 20 and emitting light in different wavelength ranges. Here, the fluorescent dye constituting the light conversion layer is a dye that emits light in a desired wavelength range (for example, red, green, or blue).
 青色から青緑色領域の光を吸収して、赤色領域の蛍光を発する蛍光色素としては、例えば、ローダミンB、ローダミン6G、ローダミン3B、ローダミン101、ローダミン110、スルホローダミン、ベーシックバイオレット11、ベーシックレッド2などのローダミン系色素、シアニン系色素、1-エチル-2-〔4-(p-ジメチルアミノフェニル)-1,3-ブタジエニル〕-ピリジニウム-パークロレート(ピリジン1)などのピリジン系色素、あるいはオキサジン系色素などが挙げられる。さらに、各種染料(直接染料、酸性染料、塩基性染料、分散染料など)も、蛍光性があれば使用することができる。 Examples of the fluorescent dye that absorbs light in the blue to blue-green region and emits fluorescence in the red region include rhodamine B, rhodamine 6G, rhodamine 3B, rhodamine 101, rhodamine 110, sulforhodamine, basic violet 11, and basic red 2. Such as rhodamine dyes, cyanine dyes, pyridine dyes such as 1-ethyl-2- [4- (p-dimethylaminophenyl) -1,3-butadienyl] -pyridinium-perchlorate (pyridine 1), or oxazine System dyes and the like. Furthermore, various dyes (direct dyes, acid dyes, basic dyes, disperse dyes, etc.) can be used as long as they have fluorescence.
 これに対し、青色ないし青緑色領域の光を吸収して、緑色領域の蛍光を発する蛍光色素としては、例えば3-(2’-ベンゾチアゾリル)-7-ジエチルアミノクマリン(クマリン6)、3-(2’-ベンゾイミダゾリル)-7-ジエチルアミノクマリン(クマリン7)、3-(2’-N-メチルベンゾイミダゾリル)-7-ジエチルアミノクマリン(クマリン30)、2,3,5,6-1H,4H-テトラヒドロ-8-トリフルオロメチルキノリジン(9,9a,1-gh)クマリン(クマリン153)などのクマリン系色素、あるいはクマリン色素系染料であるベーシックイエロー51、さらにはソルベントイエロー11、ソルベントイエロー116などのナフタルイミド系色素などが挙げられる。さらに、各種染料(直接染料、酸性染料、塩基性染料、分散染料など)も蛍光性があれば使用することができる。 On the other hand, examples of fluorescent dyes that absorb light in the blue or blue-green region and emit fluorescence in the green region include, for example, 3- (2′-benzothiazolyl) -7-diethylaminocoumarin (coumarin 6), 3- (2 '-Benzimidazolyl) -7-diethylaminocoumarin (coumarin 7), 3- (2'-N-methylbenzimidazolyl) -7-diethylaminocoumarin (coumarin 30), 2,3,5,6-1H, 4H-tetrahydro-8 A coumarin dye such as trifluoromethylquinolidine (9,9a, 1-gh) coumarin (coumarin 153), or basic yellow 51 which is a coumarin dye dye, and further naphthalimide such as solvent yellow 11 and solvent yellow 116 System dyes and the like. Furthermore, various dyes (direct dyes, acid dyes, basic dyes, disperse dyes, etc.) can be used if they are fluorescent.
 また、光変換層を構成するマトリクス樹脂としては、アクリル樹脂もしくは種々のシリコーンポリマー、またはそれらに代替可能なものであればいかなるものも使用することができる。例えば、ストレート型シリコーンポリマー、および変性樹脂型シリコーンポリマーを用いることができる。 As the matrix resin constituting the light conversion layer, acrylic resin, various silicone polymers, or any material that can be substituted for them can be used. For example, straight silicone polymers and modified resin silicone polymers can be used.
 以上に示す図1の例は、支持基板上に形成された複数の薄膜トランジスタからなるスイッチング素子と1対1に接続される複数の部分からなる下部電極と、共通電極として機能する一体型の透明電極との間に有機層を介在させる、いわゆるアクティブマトリクス駆動の有機ELディスプレイを示す。この有機ELディスプレイは、複数の発光部を備えている。 The example of FIG. 1 shown above is an integrated transparent electrode that functions as a common electrode, a switching element composed of a plurality of thin film transistors formed on a supporting substrate, a lower electrode composed of a plurality of parts connected in a one-to-one relationship. A so-called active matrix-driven organic EL display in which an organic layer is interposed between the two layers. This organic EL display includes a plurality of light emitting units.
 また、本発明の有機ELディスプレイは、アクティブマトリクス駆動に限られず、いわゆるパッシブマトリクス駆動の有機ELディスプレイとすることもできる。図2は、その要部を示す断面図であり、単一の有機EL素子20を備える有機ELディスプレイ200の例である。このようなパッシブマトリクス駆動の場合も、図示する例には限られず、独立して制御される複数の発光部を備えるものとすることもできる。例えば、下部電極および上部電極の両方を複数のストライプ状電極からなる電極群とし、下部電極を構成するストライプ状電極の延在方向と上部電極を構成するストライプ状電極の延在方向とを交差させて、これらの電極間に有機層を介在させる例が挙げられる。なお、このような場合には、上記交差態様を直交させることが、任意の画像、および/または文字を表示するディスプレイを構成できる点で好ましい。 Further, the organic EL display of the present invention is not limited to active matrix driving, and can be a so-called passive matrix driving organic EL display. FIG. 2 is a cross-sectional view showing the main part of the organic EL display 200 including a single organic EL element 20. Such passive matrix driving is not limited to the illustrated example, and may include a plurality of light emitting units controlled independently. For example, both the lower electrode and the upper electrode are electrode groups composed of a plurality of stripe electrodes, and the extending direction of the stripe electrodes constituting the lower electrode intersects with the extending direction of the stripe electrodes constituting the upper electrode. An example in which an organic layer is interposed between these electrodes is given. In such a case, it is preferable to make the above-described crossing directions orthogonal to each other because a display for displaying an arbitrary image and / or character can be configured.
 なお、パッシブマトリクス駆動およびアクティブマトリクス駆動のいずれの場合においても、複数の電極からなる下部電極を形成する場合には、絶縁性酸化物(SiOx、TiO、ZrO、AlOxなど)、または絶縁性窒化物(AlNx、SiNxなど)、高分子材料などを用いて、支持基板10上の、複数の電極の間隙に絶縁膜11aを形成することもできる。 In both cases of passive matrix driving and active matrix driving, when a lower electrode composed of a plurality of electrodes is formed, an insulating oxide (SiOx, TiO 2 , ZrO 2 , AlOx, etc.) or an insulating property is used. The insulating film 11a can also be formed in the gaps between the plurality of electrodes on the support substrate 10 using nitride (AlNx, SiNx, etc.), a polymer material, or the like.
 また、図1に示した例は、モノクローム表示を実現するためのディスプレイであるが、本発明はこのような例には限られず、マルチカラー表示のディスプレイも包含する。マルチカラー表示のディルプレイを実現する場合には、図1に示す有機EL素子20、光変換層およびカラーフィルタなどの積層体17からなるユニットを3種類存在させ、各ユニットにおける光変換層および積層体17に含まれる色変換層を、赤色、緑色、および青色の色変換層とするとともに、積層体17に含まれるカラーフィルタを各ユニットの色変換層と対応させることで、当該3種類のユニットを組み合わせて画素とする。 The example shown in FIG. 1 is a display for realizing monochrome display, but the present invention is not limited to such an example, and includes a multi-color display. When realizing display of multi-color display, there are three types of units including the layered body 17 such as the organic EL element 20, the light conversion layer, and the color filter shown in FIG. The color conversion layers included in the body 17 are red, green, and blue color conversion layers, and the color filters included in the stacked body 17 are associated with the color conversion layers of each unit, so that the three types of units Are combined into a pixel.
<有機ELディスプレイの製造方法>
 図1に示す有機ELディスプレイを製造するに際しては、以下の各形成工程を採用することができる。
<Method for manufacturing organic EL display>
When the organic EL display shown in FIG. 1 is manufactured, the following forming steps can be employed.
(有機EL素子形成工程)
[下部電極形成工程]
 支持基板10上に下部電極11を形成する工程である。高反射率の金属を用いる場合、抵抗加熱または電子ビーム加熱を用いた蒸着、スパッタ法を用いることができる。蒸着の場合には、1.0×10-4Pa以下の製膜圧力において、製膜レートを0.1~10nm/秒とすることができる。これに対し、スパッタ法、例えば、DCマグネトロンスパッタ法等を用いる場合には、スパッタガスとしてAr等の不活性ガスを用い、0.1~2.0Pa程度の製膜圧力とすることができる。蒸着およびスパッタ法のいずれにおいても、形成雰囲気を真空とすることが、隣接する層との優れた密着性を実現できる点で好ましい。
(Organic EL element formation process)
[Lower electrode formation process]
In this step, the lower electrode 11 is formed on the support substrate 10. In the case of using a metal having a high reflectivity, vapor deposition or sputtering using resistance heating or electron beam heating can be used. In the case of vapor deposition, the film formation rate can be 0.1 to 10 nm / second at a film formation pressure of 1.0 × 10 −4 Pa or less. On the other hand, when a sputtering method such as a DC magnetron sputtering method is used, an inert gas such as Ar can be used as the sputtering gas, and the film forming pressure can be set to about 0.1 to 2.0 Pa. In any of vapor deposition and sputtering, it is preferable that the forming atmosphere is a vacuum because excellent adhesion with an adjacent layer can be realized.
[有機層形成工程]
 下部電極11上に有機層12を形成する工程である。有機層12としては、有機発光層と、任意選択された正孔輸送層、正孔注入層、電子輸送層および電子注入層とを、所定の順に、抵抗加熱または電子ビーム加熱を用いた蒸着を用いて形成することができる。なお、有機層15を構成する各層は、それぞれ所望の特性を実現するのに十分な膜厚で形成することが肝要である。有機層12を構成する各層の膜厚は、有機発光層については2~50nm、正孔輸送層については2~50nm、正孔注入層については2~200nm、電子輸送層については2~50nm、電子注入層については2~50nmとすることが好ましい。
[Organic layer formation process]
In this step, the organic layer 12 is formed on the lower electrode 11. As the organic layer 12, an organic light emitting layer and an optional hole transport layer, hole injection layer, electron transport layer, and electron injection layer are deposited in a predetermined order using resistance heating or electron beam heating. Can be formed. It is important to form each layer constituting the organic layer 15 with a film thickness sufficient to achieve desired characteristics. The thickness of each layer constituting the organic layer 12 is 2 to 50 nm for the organic light emitting layer, 2 to 50 nm for the hole transport layer, 2 to 200 nm for the hole injection layer, 2 to 50 nm for the electron transport layer, The electron injection layer is preferably 2 to 50 nm.
 また、有機層12と上部電極13との間に任意選択的に形成するバッファ層は、抵抗加熱または電子ビーム加熱を用いた蒸着によって形成することができ、その膜厚は、駆動電圧および透明性を考慮して、10nm以下とすることが好ましい。 Further, the buffer layer optionally formed between the organic layer 12 and the upper electrode 13 can be formed by vapor deposition using resistance heating or electron beam heating, and the film thickness depends on the driving voltage and transparency. Is preferably 10 nm or less.
[上部電極形成工程]
 有機層12の上部に上部電極13を形成する工程である。上部電極13は、スパッタ法、蒸着法を用いて形成することができる。例えば、スパッタガスとしてAr等の不活性ガスを用い、0.1~2.0Pa程度の製膜圧力において、DCマグネトロンスパッタ法等を用いることができる。この際、有機層12の劣化を防止するため、ターゲット上部に形成されるプラズマを直接有機層12に照射しないことが好ましい。
[Upper electrode formation process]
In this step, the upper electrode 13 is formed on the organic layer 12. The upper electrode 13 can be formed using a sputtering method or a vapor deposition method. For example, an inert gas such as Ar can be used as the sputtering gas, and a DC magnetron sputtering method or the like can be used at a film forming pressure of about 0.1 to 2.0 Pa. At this time, in order to prevent the organic layer 12 from deteriorating, it is preferable not to directly irradiate the organic layer 12 with plasma formed on the target.
(封止部材形成工程)
 支持基板10上に封止部材14を形成する工程である。封止部材14は、支持基板10上に有機EL素子に先立って、平坦化膜10bと同時に形成してもよく、また、隣り合う下部電極パターン間を被覆する絶縁膜11aの形成工程と同時に形成してもよい。したがって、封止部材14は、上記下部電極11を形成する前に形成することも可能である。また、十分な厚さを確保するため、複数回に分けて形成することも可能である。その形成方法としては、例えば、スピンコート法、ロールコート法、キャスト法、ディップコート法などにより各層の材料を塗布した後、フォトリソグラフ法などによってパターニングすることにより形成する方法を用いることができる。
(Sealing member forming step)
In this step, the sealing member 14 is formed on the support substrate 10. The sealing member 14 may be formed on the support substrate 10 at the same time as the planarization film 10b prior to the organic EL element, or at the same time as the formation process of the insulating film 11a covering between adjacent lower electrode patterns. May be. Therefore, the sealing member 14 can be formed before the lower electrode 11 is formed. Moreover, in order to ensure sufficient thickness, it is also possible to divide and form in multiple times. As the forming method, for example, a method of forming by applying a material of each layer by a spin coating method, a roll coating method, a casting method, a dip coating method or the like and then patterning by a photolithography method or the like can be used.
(封止膜形成工程)
 封止膜15を、少なくとも上部電極13、支持基板10および封止部材14上に形成する工程である。また、必要に応じて下部電極11や絶縁膜11a上にも形成する。封止膜は連続する一体の膜である。封止膜15は、スパッタ法、CVD法、蒸着法を用いて形成することができる。例えば、反応ガスとしてモノシランとアンモニア等を用いて、10~200Pa程度の圧力において、プラズマCVD法で形成することができる。
(Sealing film forming process)
In this process, the sealing film 15 is formed on at least the upper electrode 13, the support substrate 10, and the sealing member 14. Moreover, it forms also on the lower electrode 11 and the insulating film 11a as needed. The sealing film is a continuous integral film. The sealing film 15 can be formed using a sputtering method, a CVD method, or a vapor deposition method. For example, it can be formed by a plasma CVD method using monosilane, ammonia or the like as a reaction gas at a pressure of about 10 to 200 Pa.
(封止構造形成工程)
[封止体形成工程]
 封止基板30上に、必要に応じて、カラーフィルタなどの積層体17(カラーフィルタおよび色変換層)を形成する。カラーフィルタなどの積層体17は、公知の積層法、即ち、スピンコート法、ロールコート法、キャスト法、ディップコート法などにより、各層の材料を塗布した後、フォトリソグラフ法などによってパターニングすることにより形成することができる。これらの公知の形成方法の中でも、特に、カラーフィルタ層の形成条件としては、形成方法が確立しているため、スピンコート法による塗布の後に、フォトリソグラフ法による形成方法とすることが好ましい。なお、1つの透明基板30に複数種類のカラーフィルタなどの色変調部を形成する場合には、複数種類の色変調部をマトリクス状に形成することで、フルカラー表示を実現することができる。
(Sealing structure forming process)
[Sealed body forming step]
A laminated body 17 (color filter and color conversion layer) such as a color filter is formed on the sealing substrate 30 as necessary. The laminated body 17 such as a color filter is formed by applying a material of each layer by a known lamination method, that is, a spin coating method, a roll coating method, a casting method, a dip coating method, and the like, and then patterning by a photolithography method or the like. Can be formed. Among these known formation methods, the formation method of the color filter layer is particularly established as the formation method of the color filter layer. Therefore, the formation method by the photolithographic method is preferable after the application by the spin coating method. When forming a plurality of types of color modulators such as color filters on one transparent substrate 30, a full color display can be realized by forming a plurality of types of color modulators in a matrix.
[光変換層形成工程]
 封止基板30上に、必要に応じて、光変換層を形成する工程である。複数種の色変換色素を用いて光変換層を形成する場合には、複数種の色変換色素を所定の比率で予め混合し、これをマトリクス樹脂と混合した予備混合物を得、当該予備混合物を用いて蒸着を行うこともできる。または、色変換色素含有マトリクス樹脂の複数種を別個の加熱部位に配置し、それぞれの色変換色素が含まれる樹脂を別個に加熱して共蒸着を行うこともできる。特に、複数種の色変換色素の間で、蒸着速度および/または蒸気圧などの特性に大きな差異がある場合には、共蒸着を行うことが有利である。
[Light conversion layer forming step]
In this process, a light conversion layer is formed on the sealing substrate 30 as necessary. When a light conversion layer is formed using a plurality of types of color conversion dyes, a plurality of types of color conversion dyes are premixed at a predetermined ratio to obtain a premixture obtained by mixing the matrix with a matrix resin. It can also be used for vapor deposition. Alternatively, multiple types of color conversion dye-containing matrix resins can be arranged in separate heating sites, and the resins containing the respective color conversion dyes can be separately heated to perform co-evaporation. In particular, co-evaporation is advantageous when there are large differences in characteristics such as vapor deposition rate and / or vapor pressure among a plurality of types of color conversion dyes.
 なお、光変換層上に、全体を被覆するパッシベーション膜を任意選択的に形成する場合には、プラズマCVDのような方法を用いることができる。特に、光変換層の劣化を防止する観点からは、100℃以下の基板温度において製膜することが好ましい。 In the case where a passivation film that covers the entire surface is optionally formed on the light conversion layer, a method such as plasma CVD can be used. In particular, from the viewpoint of preventing the deterioration of the light conversion layer, it is preferable to form the film at a substrate temperature of 100 ° C. or less.
[支持基板と封止基板との貼り合せ形成工程]
 図1に示すように、支持基板10と封止基板30とを接着剤16を用いて貼り合せる工程である。貼り合せ条件としては、公知のいかなる接着方法を使用することもできる。有機層12への熱の影響を低減するため、紫外線硬化と熱硬化とを併用するエポキシ樹脂系を選択することが好ましい。支持基板10と封止基板30との間隙は、封止部材14により支持される。以上により、図1に示す本発明の有機ELディスプレイ100が得られる。
[Bonding process of supporting substrate and sealing substrate]
As shown in FIG. 1, this is a step of bonding the support substrate 10 and the sealing substrate 30 using an adhesive 16. As a bonding condition, any known bonding method can be used. In order to reduce the influence of heat on the organic layer 12, it is preferable to select an epoxy resin system that uses both ultraviolet curing and thermal curing. The gap between the support substrate 10 and the sealing substrate 30 is supported by the sealing member 14. Thus, the organic EL display 100 of the present invention shown in FIG. 1 is obtained.
 以下に、本発明を実施例により詳細に説明し、本願発明の効果を実証する。図2は、本発明の実施例に係るパッシブマトリクス駆動の有機ELディスプレイの要部断面図である。
(実施例1)
 本実施例は、有機ELディスプレイ(画素数2×2(赤色のみ)、画素幅0.3mm)を作製した例である。
Hereinafter, the present invention will be described in detail by examples, and the effects of the present invention will be demonstrated. FIG. 2 is a sectional view of an essential part of an organic EL display driven by a passive matrix according to an embodiment of the present invention.
Example 1
In this example, an organic EL display (number of pixels 2 × 2 (red only), pixel width 0.3 mm) was produced.
 支持基板10としてフュージョンガラス(コーニング製1737ガラス、50×50×1.1mm)を用いた。この支持基板10上に、スパッタ法を用いて膜厚100nmのAg膜を堆積させ、フォトリソグラフ法によるパターニングを行って、幅0.3mmのストライプ状の下部電極11を形成した。 Fusion glass (Corning 1737 glass, 50 × 50 × 1.1 mm) was used as the support substrate 10. An Ag film having a thickness of 100 nm was deposited on the support substrate 10 by a sputtering method, and patterning was performed by a photolithographic method to form a stripe-shaped lower electrode 11 having a width of 0.3 mm.
 次いで、封止部材14として、アクリル材料(PC-405G、JSR製)を用いて、フォトリソグラフ法により、支持基板10の外周部にあたる位置に、幅200μm、厚さ5μmの連続的なパターンを形成した。 Next, a continuous pattern having a width of 200 μm and a thickness of 5 μm is formed at a position corresponding to the outer peripheral portion of the support substrate 10 by photolithography using an acrylic material (PC-405G, manufactured by JSR) as the sealing member 14. did.
 封止部材14を形成した支持基板10を抵抗加熱蒸着装置内に設置し、マスクを使用して下部電極11上に膜厚1.5nmのLiを堆積させて、陰極バッファ層を形成した。引き続いて、抵抗加熱蒸着装置を用いて、電子輸送層/有機EL層/正孔輸送層/正孔注入層の4層を順次堆積させて、有機層12を得た。製膜の際の真空槽内圧は、1×10-4Paとした。有機層15を構成する各層は、0.1nm/sの蒸着速度で堆積した。電子輸送層としては膜厚20nmのAlq(トリス(8-キノリノール)アルミニウムを、有機EL層としては膜厚30nmのDPVBiを形成した。また、正孔輸送層としては膜厚10nmのα―NPDを、正孔注入層としては膜厚100nmの銅フタロシアニンを形成した。 The support substrate 10 on which the sealing member 14 was formed was placed in a resistance heating vapor deposition apparatus, and Li having a film thickness of 1.5 nm was deposited on the lower electrode 11 using a mask to form a cathode buffer layer. Subsequently, an organic layer 12 was obtained by sequentially depositing four layers of an electron transport layer / an organic EL layer / a hole transport layer / a hole injection layer using a resistance heating vapor deposition apparatus. The internal pressure of the vacuum chamber during film formation was 1 × 10 −4 Pa. Each layer constituting the organic layer 15 was deposited at a deposition rate of 0.1 nm / s. A 20 nm thick Alq 3 (tris (8-quinolinol) aluminum was formed as an electron transport layer, a 30 nm thick DPVBi was formed as an organic EL layer, and a 10 nm thick α-NPD was formed as a hole transport layer. As the hole injection layer, copper phthalocyanine having a film thickness of 100 nm was formed.
 引き続いて、膜厚5nmのMgAgを堆積させて、透明電極形成時のダメージ緩和層を形成した。有機層12を製膜した積層体を、真空を破ることなしに対向スパッタ装置へと移動させた。メタルマスクを配置して膜厚100nmのIZOを堆積させ、下部電極11のストライプと直交する方向に延びる、幅0.3mmのストライプ形状の透明な上部電極13を形成した。 Subsequently, MgAg with a film thickness of 5 nm was deposited to form a damage mitigation layer when forming the transparent electrode. The laminate on which the organic layer 12 was formed was moved to the counter sputtering apparatus without breaking the vacuum. A metal mask was placed to deposit IZO having a film thickness of 100 nm, and a stripe-shaped transparent upper electrode 13 having a width of 0.3 mm extending in a direction perpendicular to the stripe of the lower electrode 11 was formed.
 次いで、上部電極13を形成した支持基板10をプラズマCVDチャンバーへ搬送し、モノシランガスおよびアンモニアガスを用いて、上部電極13、支持基板11および封止部材14上に窒化ケイ素膜を製膜して、封止膜15を得た。製膜圧力は100Pa,RF電力は2kWであった。以上により、下部電極11/有機層12/上部電極13からなり、その上部に封止膜15が形成された有機EL素子20を得た。 Next, the support substrate 10 on which the upper electrode 13 is formed is transferred to a plasma CVD chamber, and a silicon nitride film is formed on the upper electrode 13, the support substrate 11 and the sealing member 14 using monosilane gas and ammonia gas. A sealing film 15 was obtained. The film forming pressure was 100 Pa, and the RF power was 2 kW. As described above, an organic EL element 20 composed of the lower electrode 11 / the organic layer 12 / the upper electrode 13 and having the sealing film 15 formed thereon was obtained.
 一方、透明基板(封止基板)30に、赤色フィルター材料(CR7001、富士フイルムエレクトロニクスマテリアルズ製)を塗布して、有機EL素子20の発光部に相当する位置に、0.5mm×0.5mmの寸法の膜厚1.5μmの赤色カラーフィルタ層を形成した。 On the other hand, a red filter material (CR7001, manufactured by FUJIFILM Electronics Materials) is applied to the transparent substrate (sealing substrate) 30, and 0.5 mm × 0.5 mm at a position corresponding to the light emitting portion of the organic EL element 20. A red color filter layer having a thickness of 1.5 μm was formed.
 次いで、カラーフィルタ層を形成した積層体を抵抗加熱蒸着装置へと搬送し、クマリン6およびDCM-2を含む光変換層を作製した。クマリン6およびDCM-2を蒸着装置内の別個の坩堝にて加熱する共蒸着によって、膜厚300nmの光変換層を形成した。この際には、クマリン6の蒸着速度が0.3nm/s、DCM-2の蒸着速度が0.005nm/sとなるように、それぞれの坩堝の加熱温度を制御した。本実施例の光変換層は、総構成分子数を基準としてクマリン6とDCM-2のモル比が49:1となっている。 Next, the laminate on which the color filter layer was formed was conveyed to a resistance heating vapor deposition apparatus, and a light conversion layer containing coumarin 6 and DCM-2 was produced. A 300 nm-thick photoconversion layer was formed by co-evaporation in which coumarin 6 and DCM-2 were heated in separate crucibles in the vapor deposition apparatus. At this time, the heating temperature of each crucible was controlled so that the deposition rate of coumarin 6 was 0.3 nm / s and the deposition rate of DCM-2 was 0.005 nm / s. In the light conversion layer of this example, the molar ratio of coumarin 6 and DCM-2 is 49: 1 based on the total number of constituent molecules.
 次いで、有機EL素子20を形成した支持基板10と、カラーフィルタ層を形成した透明基板30とを、酸素濃度5ppm以下、水分濃度5ppm以下の貼り合せ装置内に搬入し、有機EL素子20を形成した支持基板10上の封止部材14の内側に、エポキシ系紫外線硬化型接着剤を用いて接着層16を滴下形成した。装置内を約10Paまで減圧した後、有機EL素子20の発光部と赤色カラーフィルタ層との位置を合わせて、両積層体を貼り合せ、装置内を大気圧に戻した。 Next, the support substrate 10 on which the organic EL element 20 is formed and the transparent substrate 30 on which the color filter layer is formed are carried into a bonding apparatus having an oxygen concentration of 5 ppm or less and a water concentration of 5 ppm or less to form the organic EL element 20. An adhesive layer 16 was formed dropwise on the inside of the sealing member 14 on the support substrate 10 using an epoxy-based ultraviolet curable adhesive. After depressurizing the inside of the apparatus to about 10 Pa, the positions of the light emitting portion of the organic EL element 20 and the red color filter layer were aligned, the both laminates were bonded together, and the inside of the apparatus was returned to atmospheric pressure.
 次いで、マスクを用いて接着層16のみに紫外線を照射して仮硬化させ、加熱炉に入れて1時間にわたり80℃に加熱した後、30分間にわたって炉内で自然冷却させた。その後、貼り合せ体を装置から取出して、有機ELディスプレイを得た。 Next, using a mask, only the adhesive layer 16 was irradiated with ultraviolet rays to be temporarily cured, placed in a heating furnace and heated to 80 ° C. for 1 hour, and then naturally cooled in the furnace for 30 minutes. Thereafter, the bonded body was taken out from the apparatus to obtain an organic EL display.
(実施例2)
 封止部材14を、支持基板10の外周部に、幅100μm、間隔500μmの二列のパターンとして形成し、接着層16をこの二列の封止部材14間に形成した以外は実施例1と同様にして、有機ELディスプレイを作製した。
(Example 2)
The sealing member 14 is formed on the outer periphery of the support substrate 10 as a two-row pattern having a width of 100 μm and an interval of 500 μm, and the adhesive layer 16 is formed between the two rows of the sealing member 14 as in Example 1. Similarly, an organic EL display was produced.
(実施例3)
 支持基板10上の外周部に、アクリル樹脂(PC-405G、JSR製)を用いて、フォトリソグラフ法により、厚さ3μm、幅700μmの第1の封止部材パターンを形成した。再度、同じアクリル樹脂を用いて、フォトリソグラフ法により、第1の封止部材パターン上に、厚さ2μm、幅100μm、間隔500μmの2列の封止部材パターンを形成した。以上の操作により、支持基板10上に、凹形状の封止部材14を形成した。他の工程は実施例1と同様に行った。なおこの場合、接着層16は上記凹形状の封止部材14の凹部内に形成した。
(Example 3)
A first sealing member pattern having a thickness of 3 μm and a width of 700 μm was formed on the outer peripheral portion of the support substrate 10 by photolithography using an acrylic resin (PC-405G, manufactured by JSR). Again, using the same acrylic resin, two rows of sealing member patterns having a thickness of 2 μm, a width of 100 μm, and an interval of 500 μm were formed on the first sealing member pattern by photolithography. Through the above operation, the concave sealing member 14 was formed on the support substrate 10. Other steps were performed in the same manner as in Example 1. In this case, the adhesive layer 16 is formed in the concave portion of the concave sealing member 14.
(比較例1)
 実施例1において、封止部材14を形成しない以外は、実施例1と同様にして、有機ELディスプレイを作製した。
(Comparative Example 1)
In Example 1, an organic EL display was produced in the same manner as in Example 1 except that the sealing member 14 was not formed.
 以上のように形成した実施例1~3および比較例1の有機ELディスプレイについて、60℃、60RH%の環境で電流密度0.1A/cmで連続駆動し、電圧および輝度について計測した。輝度を電流値で割った値を発光効率として算出し、初期の発光効率を1としたときの1000時間での発光効率の保持率を、下記の表1に示す。 The organic EL displays of Examples 1 to 3 and Comparative Example 1 formed as described above were continuously driven at a current density of 0.1 A / cm 2 in an environment of 60 ° C. and 60 RH%, and voltage and luminance were measured. The value obtained by dividing the luminance by the current value is calculated as the luminous efficiency, and the retention ratio of the luminous efficiency at 1000 hours when the initial luminous efficiency is 1 is shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 上記表1の結果から、本発明の条件を満足する各実施例では、発光効率の維持率において優れた結果が得られていることがわかる。このように、本発明の範囲内である各実施例では、寿命特性に優れた結果が得られた一方、本発明の範囲を逸脱する比較例1では、寿命が短いことが判る。これは、比較例1では、封止部材を設けなかったために、接着層から水分の浸入があったためと考えられる。 From the results in Table 1 above, it can be seen that in each example satisfying the conditions of the present invention, excellent results were obtained in the maintenance efficiency of luminous efficiency. As described above, in each of the examples within the scope of the present invention, excellent results were obtained in the life characteristics, while in Comparative Example 1 that deviates from the scope of the present invention, it can be seen that the life is short. This is probably because, in Comparative Example 1, no sealing member was provided, so that moisture entered from the adhesive layer.
 本発明によれば、従来問題となっていた有機ELディスプレイの寿命特性を向上できる。このため、本発明の有機ELディスプレイは、長時間にわたって優れた発光効率を実現することが可能である。よって、本発明は、近年、より発光効率の高い有機ELディスプレイの開発が要請されている状況下において、有望な技術であるといえる。 According to the present invention, it is possible to improve the life characteristics of an organic EL display that has been a problem in the past. For this reason, the organic EL display of the present invention can achieve excellent luminous efficiency over a long period of time. Therefore, it can be said that the present invention is a promising technology in a situation where development of an organic EL display having higher light emission efficiency has been demanded in recent years.

Claims (15)

  1.  支持基板と、該支持基板上に形成され、下部電極、有機層および上部電極を含む有機EL素子と、前記支持基板との間に所定間隔をおいて対向配置された封止基板とを備え、前記支持基板と封止基板とが貼り合わされてなる有機ELディスプレイにおいて、
     前記支持基板上の前記有機EL素子を囲む外周部に形成された凸形状の封止部材と、
     前記上部電極、支持基板および封止部材上、または、前記上部電極、下部電極、支持基板および封止部材上に形成された封止膜と、
     前記封止部材の側方に形成された接着層により前記支持基板と接着され、かつ、前記封止部材上に形成された前記封止膜の位置で前記支持基板に当接している封止基板と、
    を有することを特徴とする有機ELディスプレイ。
    A support substrate, an organic EL element formed on the support substrate and including a lower electrode, an organic layer, and an upper electrode, and a sealing substrate disposed opposite to the support substrate at a predetermined interval; In the organic EL display in which the support substrate and the sealing substrate are bonded together,
    A convex sealing member formed on an outer peripheral portion surrounding the organic EL element on the support substrate;
    A sealing film formed on the upper electrode, the supporting substrate and the sealing member, or on the upper electrode, the lower electrode, the supporting substrate and the sealing member;
    A sealing substrate that is bonded to the support substrate by an adhesive layer formed on a side of the sealing member and that is in contact with the support substrate at a position of the sealing film formed on the sealing member When,
    An organic EL display comprising:
  2.  前記封止部材が二列で形成され、前記接着層が該二列の封止部材間に形成されている請求項1記載の有機ELディスプレイ。 The organic EL display according to claim 1, wherein the sealing members are formed in two rows, and the adhesive layer is formed between the two rows of sealing members.
  3.  前記凸形状の封止部材に代えて、基板上に突出する凹形状の封止部材が形成され、前記接着層が、該凹形状の封止部材の凹部内に形成されている請求項1記載の有機ELディスプレイ。 The recessed sealing member which protrudes on a board | substrate is formed instead of the said convex sealing member, and the said contact bonding layer is formed in the recessed part of this concave sealing member. Organic EL display.
  4.  前記封止部材が、アクリル樹脂、ノボラック樹脂またはポリイミド樹脂からなる請求項1記載の有機ELディスプレイ。 2. The organic EL display according to claim 1, wherein the sealing member is made of acrylic resin, novolac resin or polyimide resin.
  5.  前記封止部材が、アクリル樹脂、ノボラック樹脂またはポリイミド樹脂からなる請求項2記載の有機ELディスプレイ。 3. The organic EL display according to claim 2, wherein the sealing member is made of an acrylic resin, a novolac resin or a polyimide resin.
  6.  前記封止部材が、アクリル樹脂、ノボラック樹脂またはポリイミド樹脂からなる請求項3記載の有機ELディスプレイ。 4. The organic EL display according to claim 3, wherein the sealing member is made of acrylic resin, novolac resin or polyimide resin.
  7.  前記封止膜が、無機酸化膜、無機酸化窒化膜または無機窒化膜である請求項1記載の有機ELディスプレイ。 2. The organic EL display according to claim 1, wherein the sealing film is an inorganic oxide film, an inorganic oxynitride film, or an inorganic nitride film.
  8.  前記封止膜が、無機酸化膜、無機酸化窒化膜または無機窒化膜である請求項2記載の有機ELディスプレイ。 3. The organic EL display according to claim 2, wherein the sealing film is an inorganic oxide film, an inorganic oxynitride film, or an inorganic nitride film.
  9.  前記封止膜が、無機酸化膜、無機酸化窒化膜または無機窒化膜である請求項3記載の有機ELディスプレイ。 4. The organic EL display according to claim 3, wherein the sealing film is an inorganic oxide film, an inorganic oxynitride film, or an inorganic nitride film.
  10.  前記封止部材が、前記支持基板上の前記有機EL素子を囲む外周部に、連続的に形成されている請求項1記載の有機ELディスプレイ。 The organic EL display according to claim 1, wherein the sealing member is continuously formed on an outer peripheral portion surrounding the organic EL element on the support substrate.
  11.  前記封止部材が、前記支持基板上の前記有機EL素子を囲む外周部に、連続的に形成されている請求項2記載の有機ELディスプレイ。 The organic EL display according to claim 2, wherein the sealing member is continuously formed on an outer peripheral portion surrounding the organic EL element on the support substrate.
  12.  前記封止部材が、前記支持基板上の前記有機EL素子を囲む外周部に、連続的に形成されている請求項3記載の有機ELディスプレイ。 The organic EL display according to claim 3, wherein the sealing member is continuously formed on an outer peripheral portion surrounding the organic EL element on the support substrate.
  13.  支持基板と、該支持基板上に形成され、下部電極、有機層および上部電極を含む有機EL素子と、前記支持基板との間に所定間隔をおいて対向配置された封止基板とを備え、前記支持基板と封止基板とが貼り合わされてなる有機ELディスプレイを製造するにあたり、
     前記有機ELディスプレイが、前記支持基板上の前記有機EL素子を囲む外周部に形成された凸形状の封止部材と、
     前記上部電極、支持基板および封止部材上、または、前記上部電極、下部電極、支持基板および封止部材上に形成された封止膜と、
     前記封止部材の側方に形成された接着層により前記支持基板と接着され、かつ、前記封止部材上に形成された前記封止膜の位置で前記支持基板に当接している封止基板と、
    を有し、
     前記封止部材を、前記支持基板上に、前記有機EL素子に先立って形成される平坦化膜と同時に形成することを特徴とする有機ELディスプレイの製造方法。
    A support substrate, an organic EL element formed on the support substrate and including a lower electrode, an organic layer, and an upper electrode, and a sealing substrate disposed opposite to the support substrate at a predetermined interval; In manufacturing an organic EL display in which the support substrate and the sealing substrate are bonded together,
    The organic EL display is a convex sealing member formed on the outer peripheral portion surrounding the organic EL element on the support substrate;
    A sealing film formed on the upper electrode, the supporting substrate and the sealing member, or on the upper electrode, the lower electrode, the supporting substrate and the sealing member;
    A sealing substrate that is bonded to the support substrate by an adhesive layer formed on a side of the sealing member and that is in contact with the support substrate at a position of the sealing film formed on the sealing member When,
    Have
    The method for manufacturing an organic EL display, wherein the sealing member is formed on the supporting substrate simultaneously with a planarizing film formed prior to the organic EL element.
  14.  前記封止部材が二列で形成され、前記接着層が該二列の封止部材間に形成されている請求項13記載の有機ELディスプレイの製造方法。 14. The method of manufacturing an organic EL display according to claim 13, wherein the sealing members are formed in two rows, and the adhesive layer is formed between the two rows of sealing members.
  15.  前記凸形状の封止部材に代えて、基板上に突出する凹形状の封止部材が形成され、前記接着層が、該凹形状の封止部材の凹部内に形成されている請求項13記載の有機ELディスプレイの製造方法。 14. A concave sealing member protruding on a substrate is formed instead of the convex sealing member, and the adhesive layer is formed in a concave portion of the concave sealing member. Manufacturing method of organic EL display.
PCT/JP2009/052566 2008-02-20 2009-02-16 Organic el display and manufacturing method thereof WO2009104563A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008038884 2008-02-20
JP2008-038884 2008-02-20

Publications (1)

Publication Number Publication Date
WO2009104563A1 true WO2009104563A1 (en) 2009-08-27

Family

ID=40985444

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/052566 WO2009104563A1 (en) 2008-02-20 2009-02-16 Organic el display and manufacturing method thereof

Country Status (2)

Country Link
TW (1) TW201002129A (en)
WO (1) WO2009104563A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011049063A1 (en) * 2009-10-23 2011-04-28 新日鐵化学株式会社 Organic electroluminescent element
JP2011233341A (en) * 2010-04-27 2011-11-17 Nec Lighting Ltd Method for manufacturing organic electroluminescent lighting device
WO2016098655A1 (en) * 2014-12-15 2016-06-23 シャープ株式会社 Organic el device
CN109256481A (en) * 2018-08-30 2019-01-22 云谷(固安)科技有限公司 Display panel and display device
US10629843B2 (en) 2014-10-17 2020-04-21 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device, module, electronic device, and method for manufacturing light-emitting device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104465704B (en) * 2014-12-03 2019-08-23 京东方科技集团股份有限公司 Display panel and its packaging method, display device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004347822A (en) * 2003-05-21 2004-12-09 Semiconductor Energy Lab Co Ltd Light emitting device and its manufacturing method
JP2007059094A (en) * 2005-08-22 2007-03-08 Kyocera Corp Organic el display and manufacturing method of organic el display
JP2007148120A (en) * 2005-11-29 2007-06-14 Kyocera Corp Image display device and its manufacturing method
JP2007234431A (en) * 2006-03-01 2007-09-13 Seiko Epson Corp Organic light-emitting device, method of manufacturing organic light-emitting device, and electronic equipment
JP2007335403A (en) * 2006-06-14 2007-12-27 Samsung Electronics Co Ltd Display device and its manufacturing method
JP2008010233A (en) * 2006-06-28 2008-01-17 Toppan Printing Co Ltd Organic el panel

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004347822A (en) * 2003-05-21 2004-12-09 Semiconductor Energy Lab Co Ltd Light emitting device and its manufacturing method
JP2007059094A (en) * 2005-08-22 2007-03-08 Kyocera Corp Organic el display and manufacturing method of organic el display
JP2007148120A (en) * 2005-11-29 2007-06-14 Kyocera Corp Image display device and its manufacturing method
JP2007234431A (en) * 2006-03-01 2007-09-13 Seiko Epson Corp Organic light-emitting device, method of manufacturing organic light-emitting device, and electronic equipment
JP2007335403A (en) * 2006-06-14 2007-12-27 Samsung Electronics Co Ltd Display device and its manufacturing method
JP2008010233A (en) * 2006-06-28 2008-01-17 Toppan Printing Co Ltd Organic el panel

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011049063A1 (en) * 2009-10-23 2011-04-28 新日鐵化学株式会社 Organic electroluminescent element
US9290498B2 (en) 2009-10-23 2016-03-22 Nippon Steel & Sumikin Chemical Co., Ltd. Organic electroluminescent device having an electron- and/or exciton-blocking layer comprising an indolocarbazole compound
JP2011233341A (en) * 2010-04-27 2011-11-17 Nec Lighting Ltd Method for manufacturing organic electroluminescent lighting device
US10629843B2 (en) 2014-10-17 2020-04-21 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device, module, electronic device, and method for manufacturing light-emitting device
US11189817B2 (en) 2014-10-17 2021-11-30 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device, module, electronic device, and method for manufacturing light-emitting device
US11778850B2 (en) 2014-10-17 2023-10-03 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device, module, electronic device, and method for manufacturing light-emitting device
WO2016098655A1 (en) * 2014-12-15 2016-06-23 シャープ株式会社 Organic el device
US9997736B2 (en) 2014-12-15 2018-06-12 Sharp Kabushiki Kaisha Organic EL device
CN109256481A (en) * 2018-08-30 2019-01-22 云谷(固安)科技有限公司 Display panel and display device
CN109256481B (en) * 2018-08-30 2020-09-11 云谷(固安)科技有限公司 Display panel and display device

Also Published As

Publication number Publication date
TW201002129A (en) 2010-01-01

Similar Documents

Publication Publication Date Title
JP4545780B2 (en) Manufacturing method of organic light emitting display device
KR101312568B1 (en) Sealing film for organic el element, organic el element, and organic el display
EP1476000A1 (en) Organic el display and its production method
WO2013047331A1 (en) Method for manufacturing display device
US20070275624A1 (en) Method of the manufacturing an organic EL display
TW200914898A (en) Color conversion filter and manufacturing method of the organic EL display
JP2010080341A (en) Display
JP2003077651A (en) Manufacturing method for organic electroluminescent element
WO2010087248A1 (en) Display panel producing method and substrate for display device
JP5378354B2 (en) Organic EL device and manufacturing method thereof
US9608229B2 (en) Organic EL lighting panel substrate, organic EL lighting panel, and organic EL lighting device
WO2009104563A1 (en) Organic el display and manufacturing method thereof
JP2007164123A (en) Color filter with color conversion function, organic el display and producing method thereof
JPH11297477A (en) Organic el color display
JP2009110785A (en) Organic el element panel and its manufacturing method
JP2003264059A (en) Electroluminescent element
KR101347471B1 (en) Organic el device and method of manufacturing organic el device
JP2008140621A (en) Organic el display and its manufacturing method
WO2009099009A1 (en) Organic el display and manufacturing method of the same
TW201320429A (en) Method for manufacturing display device, and display device
JP2009205929A (en) Full-color organic el display panel
US9129915B2 (en) Organic EL display device and method of manufacturing the same
JP6098234B2 (en) Organic electroluminescence display device
WO2015104798A1 (en) Organic electroluminescent element, illumination device, and illumination system
JP4747776B2 (en) Organic EL panel, organic EL display, and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09711638

Country of ref document: EP

Kind code of ref document: A1

WA Withdrawal of international application
NENP Non-entry into the national phase

Ref country code: DE