WO2009102026A1 - Organic luminescent medium and organic el device - Google Patents

Organic luminescent medium and organic el device Download PDF

Info

Publication number
WO2009102026A1
WO2009102026A1 PCT/JP2009/052424 JP2009052424W WO2009102026A1 WO 2009102026 A1 WO2009102026 A1 WO 2009102026A1 JP 2009052424 W JP2009052424 W JP 2009052424W WO 2009102026 A1 WO2009102026 A1 WO 2009102026A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
substituted
unsubstituted
carbon atoms
formula
Prior art date
Application number
PCT/JP2009/052424
Other languages
French (fr)
Japanese (ja)
Inventor
Masahiro Kawamura
Masakazu Funahashi
Mitsunori Ito
Original Assignee
Idemitsu Kosan Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co., Ltd. filed Critical Idemitsu Kosan Co., Ltd.
Priority to JP2009553465A priority Critical patent/JPWO2009102026A1/en
Publication of WO2009102026A1 publication Critical patent/WO2009102026A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1014Carbocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B

Definitions

  • the present invention relates to an organic light emitting medium and an organic EL element using the same.
  • an organic EL element (organic electroluminescence element) using light emission of an organic compound.
  • the organic EL element has a plurality of organic thin films stacked between an anode and a cathode. In this configuration, a voltage is applied between the anode and the cathode. Then, holes and electrons are injected into the organic thin film from the anode and the cathode, respectively. Excited molecules are generated in the light emitting layer in the organic thin film by the injected holes and electrons. Then, energy when returning from the excited state to the ground state is emitted as light.
  • Patent Document 1 discloses a combination of an anthracene host and an arylamine.
  • Patent Documents 2 to 4 disclose a combination of an anthracene host having a specific structure and a diaminopyrene dopant.
  • Patent Documents 5 and 6 disclose anthracene-based host materials.
  • any of the materials has a problem that it is difficult to obtain short-wavelength light emission (for example, blue light emission) with high light emission efficiency and a short lifetime.
  • the present invention provides an organic EL element that can obtain short-wavelength light emission (for example, blue light emission) with high light emission efficiency and has a long lifetime, and an organic light-emitting medium that can be used for an organic thin film layer of the organic EL element.
  • the purpose is to provide.
  • this invention is an organic luminescent medium containing the diaminopyrene derivative represented by following formula (1), and the anthracene derivative represented by following formula (2).
  • Ar 1 to Ar 4 are each independently a substituted or unsubstituted aryl group having 6 to 50 nuclear carbon atoms, or a substituted or unsubstituted heterocyclic group having 5 to 50 nuclear atoms.
  • R 21 and R 22 are each independently a group selected from a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, and a substituted or unsubstituted cycloalkyl group having 3 to 50 nuclear carbon atoms. (However, one or more of Ar 1 to Ar 4 are ⁇ -naphthyl groups, and R 21 and R 22 are not simultaneously hydrogen atoms.)
  • Ar 11 and Ar 12 are each independently a substituted or unsubstituted aryl group having 6 to 20 nuclear carbon atoms, and R 1 to R 8 are each independently a hydrogen atom or a substituted group.
  • R 1 to R 8 are each independently a hydrogen atom or a substituted group.
  • the present invention has one or more organic thin film layers including a light emitting layer between a cathode and an anode, and at least one of the organic thin film layers contains the organic light emitting medium of the present invention. It is an element.
  • the light emission of short wavelength (for example, blue light emission) can be obtained by high luminous efficiency, and the organic light emission which can be used for the organic thin film layer of the organic EL element with the long lifetime, and the said organic EL element A medium can be provided.
  • the organic light-emitting medium of the present invention contains a specific diaminopyrene derivative and a specific anthracene derivative.
  • the organic light-emitting medium contributes to light emission as a constituent component of the organic thin film layer of the organic EL element, and is present in the layer as, for example, a deposit. And when it uses for an organic EL element, light emission of a short wavelength including blue light emission with high luminous efficiency is enabled, and it can contribute to lifetime improvement.
  • the diaminopyrene derivative and the anthracene derivative according to the present invention will be described.
  • the diaminopyrene derivative according to the present invention is represented by the following formula (1).
  • Ar 1 to Ar 4 are each independently a substituted or unsubstituted aryl group having 6 to 50 nuclear carbon atoms, or a substituted or unsubstituted heterocyclic group having 5 to 50 nuclear atoms.
  • R 21 and R 22 are each independently a group selected from a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, and a substituted or unsubstituted cycloalkyl group having 3 to 50 nuclear carbon atoms.
  • Ar 1 to Ar 4 are ⁇ -naphthyl groups, and R 21 and R 22 are not simultaneously hydrogen atoms.
  • nuclear carbon means a carbon atom constituting a saturated ring, an unsaturated ring, or an aromatic ring.
  • the “nuclear atom” means a carbon atom and a hetero atom constituting a hetero ring (including a saturated ring, an unsaturated ring, and an aromatic ring).
  • substituents in “substituted or unsubstituted...” include alkyl groups, aryl groups, cycloalkyl groups, alkoxy groups, heterocyclic groups, aralkyl groups, aryloxy groups, arylthio groups, alkoxy groups as described later.
  • Examples thereof include a carbonyl group, a halogen atom, a hydroxyl group, a nitro group, a cyano group, a carboxyl group, a dibenzofuranyl group, and a fluorenyl group.
  • Examples of the aryl group of Ar 1 to Ar 4 having 6 to 50 nuclear carbon atoms include a phenyl group, a 2-methylphenyl group, a 3-methylphenyl group, a 4-methylphenyl group, a 4-ethylphenyl group, a biphenyl group, 4-methylbiphenyl group, 4-ethylbiphenyl group, 4-cyclohexylbiphenyl group, terphenyl group, 3,5-dichlorophenyl group, naphthyl group, 5-methylnaphthyl group, anthryl group, pyrenyl group, chrysenyl group, fluoranthenyl Group, perylenyl group and the like.
  • the number of nuclear carbons is preferably 6 to 20 and more preferably 6 to 12 from the viewpoint of vapor deposition temperature.
  • heterocyclic group of Ar 1 to Ar 4 having 5 to 50 nuclear atoms examples include imidazole, benzimidazole, pyrrole, furan, thiophene, oxadiazoline, indoline, carbazole, pyridine, quinoline, isoquinoline, benzoquinone, pyralazine, Residues such as imidazolidine, piperidine and the like can be mentioned.
  • the number of nucleus atoms is preferably 5 to 20 and more preferably 5 to 12 from the viewpoint of vapor deposition temperature.
  • Two of Ar 1 to Ar 4 in Formula (1) are preferably ⁇ -naphthyl groups, and Ar 1 and Ar 3 are more preferably ⁇ -naphthyl groups.
  • R 21 and R 22 are each independently a substituted or unsubstituted alkyl group having 1 to 5 carbon atoms, or a substituted or unsubstituted cycloalkyl group having 3 to 6 nuclear carbon atoms. It is preferable.
  • R 21 and R 22 in formula (1) are preferably the same group (for example, the above substituent).
  • the substituted or unsubstituted alkyl group having 1 to 50 carbon atoms of R 21 and R 22 includes a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group, an s-butyl group, an isobutyl group, t -Butyl group, n-pentyl group, n-hexyl group, n-heptyl group, n-octyl group, hydroxymethyl group, 1-hydroxyethyl group, 2-hydroxyethyl group, 2-hydroxyisobutyl group, 1,2- Dihydroxyethyl group, 1,3-dihydroxyisopropyl group, 2,3-dihydroxy-t-butyl group, 1,2,3-trihydroxypropyl group, chloromethyl group, 1-chloroethyl group, 2-chloroethyl group, 2- Chloroisobutyl, 1,2-dichloroethyl,
  • the carbon number is preferably from 1 to 10, more preferably from 1 to 6, from the viewpoint of vapor deposition temperature.
  • methyl, ethyl, propyl, isopropyl, n-butyl, s-butyl, isobutyl, t-butyl, n-pentyl and n-hexyl are preferred.
  • Examples of the substituted or unsubstituted cycloalkyl group having 3 to 50 nuclear carbon atoms of the substituent of R 21 and R 22 include cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, 4-methylcyclohexyl group, 1- Examples thereof include an adamantyl group, a 2-adamantyl group, a 1-norbornyl group, and a 2-norbornyl group.
  • the number of nuclear carbons is preferably from 3 to 10, more preferably from 5 to 8, from the viewpoint of vapor deposition temperature. Of these, a cyclopentyl group and a cyclohexyl group are preferable.
  • diaminopyrene derivative represented by the formula (1) include compounds represented by the following formula.
  • the anthracene derivative according to the present invention is represented by the following formula (2).
  • Ar 11 and Ar 12 are each independently a substituted or unsubstituted aryl group having 6 to 20 nuclear carbon atoms
  • R 1 to R 8 are each independently a hydrogen atom or a substituted group.
  • an unsubstituted aryl group having 6 to 50 nuclear carbon atoms including a condensed aryl group
  • a substituted or unsubstituted heterocyclic group having 5 to 50 nuclear atoms and a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms.
  • the anthracene derivative according to the present invention is preferably any of the following anthracene derivatives (A), (B), and (C), and is selected depending on the configuration of the organic EL element to be applied and the required characteristics.
  • Ar 11 and Ar 12 in the formula (2) are each independently a substituted or unsubstituted condensed aryl group having 10 to 20 nuclear carbon atoms.
  • the anthracene derivative can be classified into a case where Ar 11 and Ar 12 are the same group, and a case where they are different groups. Specific examples include anthracene derivatives represented by the following formulas (2-1) to (2-3) and anthracene derivatives in which Ar 11 and Ar 12 in the formula (2) are different groups.
  • Ar 11 and Ar 12 are substituted or unsubstituted 9-phenanthrenyl groups.
  • R 11 is a hydrogen atom, a substituted or unsubstituted aryl group having 6 to 50 nuclear carbon atoms, a substituted or unsubstituted heterocyclic group having 5 to 50 nuclear atoms, substituted or unsubstituted.
  • Ar 11 and Ar 12 in the formula (2) are substituted or unsubstituted ⁇ -naphthyl groups.
  • R 11 is the same as in the formula (2-1), and b is an integer of 1 to 7.
  • b is an integer of 2 or more, a plurality of R 11 are two Each may be the same or different, provided that the substituted or unsubstituted ⁇ -naphthyl groups are the same.
  • Ar 11 and Ar 12 in the formula (2) are substituted or unsubstituted ⁇ -naphthyl groups.
  • R 11 and b are the same as those in the formula (2-1).
  • b is an integer of 2 or more, a plurality of R 11 are two substituted or unsubstituted. Each may be the same or different, provided that the ⁇ -naphthyl groups are the same.
  • Ar 11 and Ar 12 are the aforementioned substituted or unsubstituted 9-phenanthrenyl group, substituted or unsubstituted ⁇ -naphthyl group. And a substituted or unsubstituted ⁇ -naphthyl group.
  • anthracene derivative (B) In the anthracene derivative, one of Ar 11 and Ar 12 in Formula (2) is a substituted or unsubstituted phenyl group, and the other is a substituted or unsubstituted condensed aryl group having 10 to 20 nuclear carbon atoms.
  • Specific examples of the anthracene derivative include anthracene derivatives represented by the following formulas (2-4) and (2-5).
  • Ar 11 in the formula (2) is a substituted or unsubstituted ⁇ -naphthyl group
  • Ar 12 is a substituted or unsubstituted phenyl group.
  • Ar 6 is a substituted or unsubstituted aryl group having 6 to 50 nuclear carbon atoms, a substituted or unsubstituted alkyl group having 1 to 50 nuclear carbon atoms, or a substituted or unsubstituted nuclear carbon number.
  • a substituted or unsubstituted fluorenyl group or a substituted or unsubstituted dibenzofluorenyl group may be formed together with the phenylene group, and R 11 and b are the same as in the formula (2-1). If is an integer of 2 or more, plural R 11 are each may be the same or different.
  • Ar 11 in the formula (2) is a substituted or unsubstituted ⁇ -naphthyl group
  • Ar 12 is a substituted or unsubstituted phenyl group.
  • Ar 6 is the same as in formula (2-4)
  • R 11 and b are the same as in formula (2-1). Also, when b is an integer of 2 or more And the plurality of R 11 may be the same or different.
  • the anthracene derivative is represented by the following formula (2-6), specifically, any one of the following formulas (2-6-1), (2-6-2), and (2-6-3) It is preferable that it is a derivative represented.
  • R 1 to R 8 are the same as in Formula (2).
  • Ar 5 is the same as Ar 6 in Formula (2-4), and is independently selected from Ar 6 .
  • R 1 to R 8 are the same as in formula (2).
  • R 1 to R 8 are the same as in formula (2).
  • Ar 5 is a substituted or unsubstituted condensed aryl group having 10 to 20 nuclear carbon atoms.
  • R 1 to R 8 are the same as those in the formula (2).
  • Ar 5a and Ar 6a are each independently a substituted or unsubstituted condensed aryl having 10 to 20 nuclear carbon atoms. Group.
  • the aryl group of Ar 11, Ar 12, Ar 5 , Ar 6 substituted or unsubstituted aromatic ring group having 6 to 20, a phenyl group, 1-naphthyl, 2-naphthyl, 1-anthryl group, 2-anthryl Group, 9-anthryl group, 1-phenanthryl group, 2-phenanthryl group, 3-phenanthryl group, 4-phenanthryl group, 9-phenanthryl group, 1-naphthacenyl group, 2-naphthacenyl group, 9-naphthacenyl group, 1-pyrenyl Group, 2-pyrenyl group, 4-pyrenyl group, 6-chrysenyl group, 1-benzo [c] phenanthryl group, 2-benzo [c] phenanthryl group, 3-benzo [c] phenanthryl group, 4-benzo [c] Phenanthryl group, 5-benzo [c] phenanthryl group, 6-benzo [c] phen
  • the substituted or unsubstituted condensed aryl group having 10 to 20 nuclear carbon atoms of Ar 5a and Ar 6a includes a 1-naphthyl group, a 2-naphthyl group, a 1-anthryl group, a 2-anthryl group, and a 9-anthryl group.
  • Examples of the substituted or unsubstituted aryl group having 6 to 50 nuclear carbon atoms of R 1 to R 8 include a phenyl group, a 1-naphthyl group, a 2-naphthyl group, a 1-anthryl group, a 2-anthryl group, and a 9-anthryl group.
  • Examples of the substituted or unsubstituted heterocyclic group having 5 to 50 nuclear atoms of R 1 to R 8 include 1-pyrrolyl group, 2-pyrrolyl group, 3-pyrrolyl group, pyrazinyl group, 2-pyridinyl group, and 3-pyridinyl group.
  • Examples of the substituted or unsubstituted alkyl group having 1 to 50 carbon atoms of R 1 to R 8 include methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, s-butyl group, isobutyl group, and t-butyl.
  • n-pentyl group n-hexyl group, n-heptyl group, n-octyl group, hydroxymethyl group, 1-hydroxyethyl group, 2-hydroxyethyl group, 2-hydroxyisobutyl group, 1,2-dihydroxyethyl Group, 1,3-dihydroxyisopropyl group, 2,3-dihydroxy-t-butyl group, 1,2,3-trihydroxypropyl group, chloromethyl group, 1-chloroethyl group, 2-chloroethyl group, 2-chloroisobutyl Group, 1,2-dichloroethyl group, 1,3-dichloroisopropyl group, 2,3-dichloro-t-butyl group, 1,2,3-trichloro group Pill group, bromomethyl group, 1-bromoethyl group, 2-bromoethyl group, 2-bromoisobutyl group, 1,2-dibromoethyl group, 1,
  • Examples of the substituted or unsubstituted cycloalkyl group having 3 to 50 nuclear carbon atoms represented by R 1 to R 8 include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a 4-methylcyclohexyl group, and a 1-adamantyl group. , 2-adamantyl group, 1-norbornyl group, 2-norbornyl group and the like.
  • the number of nuclear carbons is preferably from 3 to 10, more preferably from 5 to 8, from the viewpoint of vapor deposition temperature.
  • the substituted or unsubstituted alkoxy group having 1 to 50 carbon atoms of R 1 to R 8 is a group represented by —OZ, and Z is the substituted or unsubstituted carbon number of 1 to 50 of R 1 to R 8.
  • the substituted or unsubstituted aralkyl group having 7 to 50 carbon atoms (the aryl moiety has 6 to 49 carbon atoms and the alkyl moiety has 1 to 44 carbon atoms) as the substituent of R 1 to R 8 includes a benzyl group, 1-phenylethyl Group, 2-phenylethyl group, 1-phenylisopropyl group, 2-phenylisopropyl group, phenyl-t-butyl group, ⁇ -naphthylmethyl group, 1- ⁇ -naphthylethyl group, 2- ⁇ -naphthylethyl group, 1 - ⁇ -naphthylisopropyl, 2- ⁇ -naphthylisopropyl, ⁇ -naphthylmethyl, 1- ⁇ -naphthylethyl, 2- ⁇ -naphthylethyl, 1- ⁇ -naphthylis
  • Aryloxy and arylthio groups of R 1 ⁇ substituted or unsubstituted aromatic ring group having 6 to 50 R 8 each is represented by -OY and -SY, Y represents a substituted or unsubstituted wherein R 1 ⁇ R 8 Selected from aryl groups having 6 to 50 nuclear carbon atoms.
  • the number of nuclear carbons is preferably 6 to 20, more preferably 6 to 10, from the viewpoint of the deposition temperature.
  • a substituted or unsubstituted alkoxy group having 2 to 50 carbon atoms of R 1 to R 8 (the alkyl moiety has 1 to 49 carbon atoms) is represented as —COOZ, and Z is a substituted or unsubstituted group of R 1 to R 8. Or an alkyl group having 1 to 49 carbon atoms.
  • the carbon number is preferably from 2 to 20, more preferably from 2 to 6, from the viewpoint of vapor deposition temperature.
  • Examples of the substituted silyl group of R 1 to R 8 include a trimethylsilyl group, a triethylsilyl group, a t-butyldimethylsilyl group, a vinyldimethylsilyl group, a propyldimethylsilyl group, and a triphenylsilyl group.
  • halogen atoms for R 1 to R 8 include fluorine, chlorine, bromine and iodine.
  • anthracene derivative represented by the formula (2) include derivatives represented by the following formula.
  • anthracene derivative represented by the formula (2) include derivatives represented by the following formula.
  • an organic light emitting medium containing the diaminopyrene derivative represented by the above formula (1) and the anthracene derivative represented by the above formula (2) for the organic thin film layer of the organic EL element, light emission at a short wavelength can be achieved. It can be obtained with high luminous efficiency, and the lifetime of the element can be extended. This is because the ⁇ -naphthyl group is bonded to diaminopyrene, so that it becomes difficult to conjugate, and in addition to shortening the wavelength, an alkyl group or a cycloalkyl group is substituted on the pyrene mother nucleus, thereby It is presumed that it has a short wavelength and long life effect.
  • the diaminopyrene derivative represented by the formula (1) is preferably combined with the anthracene derivative represented by the formula (2-4), the formula (2-5) and the formula (2-6-3).
  • the diaminopyrene derivative represented by the formula (1) can be synthesized, for example, by reacting dialkyldibromopyrene with a corresponding secondary amine compound in the presence of a metal catalyst.
  • the anthracene derivative represented by Formula (2) is compoundable by the method of WO2004 / 018587, for example.
  • the organic light-emitting medium of the present invention is in a state in which the diaminopyrene derivative formulas (1) and (2) represented by the formula (1) as described above coexist.
  • the mass ratio of the diaminopyrene derivative represented by the formula (1) and the anthracene derivative represented by the formula (2) is preferably 50:50 to 0.1: 99.9, and 20:80 to 1 : 99 is more preferable.
  • the organic EL device of the present invention is a device in which one or more organic thin film layers are formed between an anode and a cathode.
  • the organic thin film layer is a plurality of layers, one layer is a light emitting layer.
  • a light emitting layer as an organic thin film layer is formed between the anode and the cathode.
  • At least one of the organic thin film layers contains the organic light emitting medium of the present invention, and in order to transport holes injected from the anode or electrons injected from the cathode to the light emitting material. Further, a hole injection material or an electron injection material may be contained.
  • the organic light-emitting medium of the present invention has high light-emitting properties and has excellent hole-injecting properties, hole-transporting properties, electron-injecting properties, and electron-transporting properties. Can be used.
  • the organic light emitting medium contained in at least one layer (preferably the light emitting layer) of the organic thin film layer is preferably 0.1 to 20% by mass, and more preferably 1 to 10% by mass.
  • the organic light-emitting medium of the present invention has extremely high fluorescence quantum efficiency, high hole transport ability and electron transport ability, and can form a uniform thin film. is there.
  • the organic EL device of the present invention is an organic EL device in which an organic thin film layer comprising at least two layers including at least a light emitting layer is sandwiched between a cathode and an anode, and the organic EL device of the present invention is interposed between the anode and the light emitting layer. It is also preferable to have an organic layer whose main component is a luminescent medium. Examples of the organic layer include a hole injection layer and a hole transport layer.
  • organic EL elements having a plurality of organic thin film layers are (anode / hole injection layer / light emitting layer / cathode), (anode / light emitting layer / electron injection layer / cathode), (anode / hole). (Injection layer / light emitting layer / electron injection layer / cathode) and the like.
  • organic light-emitting medium of the present invention further known light-emitting materials, doping materials, hole-injecting materials, and electron-injecting materials can be used for the multiple layers as needed.
  • the organic EL element can prevent the brightness
  • a light emitting material, a doping material, a hole injection material, and an electron injection material can be used in combination. Further, by using a doping material, it is possible to improve light emission luminance and light emission efficiency and to obtain red and blue light emission.
  • the hole injection layer, the light emitting layer, and the electron injection layer may each be formed of two or more layers. In that case, in the case of a hole injection layer, the layer that injects holes from the electrode is a hole injection layer, and the layer that receives holes from the hole injection layer and transports holes to the light emitting layer is a hole transport layer. Call.
  • an electron injection layer a layer that injects electrons from an electrode is referred to as an electron injection layer, and a layer that receives electrons from the electron injection layer and transports electrons to a light emitting layer is referred to as an electron transport layer.
  • an electron injection layer a layer that injects electrons from an electrode
  • an electron transport layer a layer that receives electrons from the electron injection layer and transports electrons to a light emitting layer.
  • Each of these layers is selected and used depending on factors such as the energy level of the material, heat resistance, and adhesion to the organic layer or metal electrode.
  • Examples of host materials or doping materials that can be used in the light emitting layer together with the organic light emitting medium of the present invention include, for example, naphthalene, phenanthrene, rubrene, anthracene, tetracene, pyrene, perylene, chrysene, decacyclene, coronene, tetraphenylcyclopentadiene, pentaphenylcyclopentaene.
  • Condensed polyaromatic compounds such as pentadiene, fluorene, spirofluorene, 9,10-diphenylanthracene, 9,10-bis (phenylethynyl) anthracene, 1,4-bis (9′-ethynylanthracenyl) benzene, and the like
  • organometallic complexes such as tris (8-quinolinolato) aluminum, bis- (2-methyl-8-quinolinolato) -4- (phenylphenolinato) aluminum, triarylamine derivatives, styrylamido Derivatives, stilbene derivatives, coumarin derivatives, pyran derivatives, oxazone derivatives, benzothiazole derivatives, benzoxazole derivatives, benzimidazole derivatives, pyrazine derivatives, cinnamic acid ester derivatives, diketopyrrolopyrrole derivatives, acridone derivatives,
  • a hole injection material As a hole injection material, it has the ability to transport holes, has a hole injection effect from the anode, an excellent hole injection effect for the light emitting layer or organic light emitting medium, and excitons generated in the light emitting layer
  • the compound which prevents the movement to the electron injection layer or the electron injection material and has an excellent thin film forming ability is preferable.
  • phthalocyanine derivatives naphthalocyanine derivatives, porphyrin derivatives, oxazole, oxadiazole, triazole, imidazole, imidazolone, imidazolethione, pyrazoline, pyrazolone, tetrahydroimidazole, oxazole, oxadiazole, hydrazone, acylhydrazone, polyaryl Examples include alkane, stilbene, butadiene, benzidine type triphenylamine, styrylamine type triphenylamine, diamine type triphenylamine, and derivatives thereof, and polymer materials such as polyvinylcarbazole, polysilane, and conductive polymers. However, it is not limited to these.
  • more effective hole injection materials are aromatic tertiary amine derivatives and phthalocyanine derivatives.
  • aromatic tertiary amine derivative include triphenylamine, tolylamine, tolyldiphenylamine, N, N′-diphenyl-N, N ′-(3-methylphenyl) -1,1′-biphenyl-4,4 '-Diamine, N, N, N', N '-(4-methylphenyl) -1,1'-phenyl-4,4'-diamine, N, N, N', N '-(4-methylphenyl) ) -1,1′-biphenyl-4,4′-diamine, N, N′-diphenyl-N, N′-dinaphthyl-1,1′-biphenyl-4,4′-diamine, N, N ′-( Methylpheny
  • phthalocyanine (Pc) derivative examples include H 2 Pc, CuPc, CoPc, NiPc, ZnPc, PdPc, FePc, MnPc, ClAlPc, ClGaPc, ClInPc, ClSnPc, Cl 2 SiPc, (HO) AlPc, (HO) GaPc, Examples include, but are not limited to, phthalocyanine derivatives and naphthalocyanine derivatives such as VOPc, TiOPc, MoOPc, and GaPc—O—GaPc.
  • the organic EL device of the present invention includes a layer containing these aromatic tertiary amine derivatives and / or phthalocyanine derivatives, for example, the hole transport layer or the hole injection layer, between the light emitting layer and the anode. Preferably formed.
  • an electron injection material it has the ability to transport electrons, has an electron injection effect from the cathode, an excellent electron injection effect for the light emitting layer or light emitting material, and a hole injection layer of excitons generated in the light emitting layer
  • the compound which prevents the movement to and is excellent in thin film forming ability is preferable.
  • the electron injecting material 8-hydroxyquinoline or a metal complex of its derivative or an oxadiazole derivative is preferable.
  • a metal chelate oxinoid compound containing a chelate of oxine (generally 8-quinolinol or 8-hydroxyquinoline), such as tris (8-quinolinolato) aluminum, is injected. It can be used as a material.
  • examples of the oxadiazole derivative include an electron transfer compound represented by the following general formula.
  • Ar 1 , Ar 2 , Ar 3 , Ar 5 , Ar 6 , and Ar 9 each represent a substituted or unsubstituted aryl group, and may be the same or different from each other.
  • Ar 4 , Ar 7 and Ar 8 represent a substituted or unsubstituted arylene group, which may be the same or different.
  • examples of the aryl group include a phenyl group, a biphenyl group, an anthranyl group, a perylenyl group, and a pyrenyl group.
  • examples of the arylene group include a phenylene group, a naphthylene group, a biphenylene group, an anthranylene group, a peryleneylene group, and a pyrenylene group.
  • examples of the substituent include an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, and a cyano group.
  • This electron transfer compound is preferably a thin film-forming compound.
  • electron transfer compound examples include the following.
  • materials represented by the following general formulas (A) to (F) can also be used as the electron injection material.
  • a 1 to A 3 each independently represents a nitrogen atom or a carbon atom.
  • Ar 1 is a substituted or unsubstituted aryl group having 6 to 60 nuclear carbon atoms or a substituted or unsubstituted heterocyclic group having 5 to 60 nuclear atoms
  • Ar 2 is a hydrogen atom, substituted or unsubstituted An aryl group having 6 to 60 nuclear carbon atoms, a substituted or unsubstituted heterocyclic group having 5 to 60 nuclear atoms, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, or a substituted or unsubstituted carbon group having 1 to 20 alkoxy groups, or these divalent groups.
  • either one of Ar 1 and Ar 2 a substituted or unsubstituted fused ring group having a carbon number of 10 to 60, or a substituted or unsubstituted monohetero fused ring group having 5 to 60 ring atoms.
  • L 1 , L 2 and L are each independently a single bond, a substituted or unsubstituted arylene group having 6 to 60 nuclear carbon atoms, a substituted or unsubstituted heteroarylene group having 5 to 60 nuclear atoms, or a substituted or unsubstituted An unsubstituted fluorenylene group.
  • R represents a hydrogen atom, a substituted or unsubstituted aryl group having 6 to 60 nuclear carbon atoms, a substituted or unsubstituted heterocyclic group having 5 to 60 nuclear atoms, or a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms.
  • n is an integer of 0 to 5, and when n is 2 or more, a plurality of R may be the same or different and adjacent to each other
  • a plurality of R groups may be bonded to each other to form a carbocyclic aliphatic ring or a carbocyclic aromatic ring.
  • HAr is a nitrogen-containing heterocycle having 3 to 40 carbon atoms which may have a substituent
  • L is a single bond or a nuclear carbon atom having 6 to 60 which may have a substituent
  • arylene group have a heteroarylene group, or a substituent ⁇ 60 5 good number ring atoms which may have a substituent is also optionally fluorenylene group
  • Ar 1 is, have a substituent A divalent aromatic hydrocarbon group having 6 to 60 nuclear carbon atoms
  • Ar 2 may have an aryl group or substituent having 6 to 60 nuclear carbon atoms which may have a substituent.
  • X and Y are each independently a saturated or unsaturated hydrocarbon group having 1 to 6 carbon atoms, alkoxy group, alkenyloxy group, alkynyloxy group, hydroxy group, substituted or unsubstituted aryl group, substituted Or an unsubstituted heterocyclic ring or a structure in which X and Y are combined to form a saturated or unsaturated ring, and R 1 to R 4 are each independently hydrogen, halogen atom, substituted or unsubstituted carbon number 1 To 6 alkyl groups, alkoxy groups, aryloxy groups, perfluoroalkyl groups, perfluoroalkoxy groups, amino groups, alkylcarbonyl groups, arylcarbonyl groups, alkoxycarbonyl groups, aryloxycarbonyl groups, azo groups, alkylcarbonyloxy Group, arylcarbonyloxy group, alkoxycarbonyloxy group, aryloxy group Bonyloxy, sulfiny
  • R 1 to R 8 and Z 2 are each independently a hydrogen atom, a saturated or unsaturated hydrocarbon group, an aromatic hydrocarbon group, a heterocyclic group, a substituted amino group, a substituted boryl group, or an alkoxy group.
  • X, Y and Z 1 each independently represent a saturated or unsaturated hydrocarbon group, an aromatic hydrocarbon group, a heterocyclic group, a substituted amino group, an alkoxy group or an aryloxy group.
  • Z 1 and Z 2 may be bonded to each other to form a condensed ring.
  • N represents an integer of 1 to 3, and when n is 2 or more, Z 1 may be different.
  • N is 1, X, Y and R 2 is a methyl group
  • R 8 is a hydrogen atom or a substituted boryl group
  • n is 3 and Z 1 is not a methyl group.
  • Q 1 and Q 2 each independently represent a ligand represented by the following general formula (G), and L represents a halogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted cyclohexane.
  • R 1 is a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted cycloalkyl group, substituted or unsubstituted An unsubstituted aryl group, a substituted or unsubstituted heterocyclic group) or —O—Ga—Q 3 (Q 4 ) (Q 3 and Q 4 are the same as Q 1 and Q 2 ). Represents a quantifier. ]
  • rings A 1 and A 2 are 6-membered aryl ring structures condensed with each other which may have a substituent.
  • This metal complex has strong properties as an n-type semiconductor and has a large electron injection capability. Furthermore, since the generation energy at the time of complex formation is also low, the bond between the metal of the formed metal complex and the ligand is strengthened, and the fluorescence quantum efficiency as a light emitting material is also increased.
  • substituents of the rings A 1 and A 2 that form the ligand of the general formula (G) include chlorine, bromine, iodine, halogen atoms of fluorine, methyl group, ethyl group, propyl group, Substituted or unsubstituted alkyl groups such as butyl group, s-butyl group, t-butyl group, pentyl group, hexyl group, heptyl group, octyl group, stearyl group, trichloromethyl group, phenyl group, naphthyl group, 3-methyl A substituted or unsubstituted aryl group such as phenyl group, 3-methoxyphenyl group, 3-fluorophenyl group, 3-trichloromethylphenyl group, 3-trifluoromethylphenyl group, 3-nitrophenyl group, methoxy group, n- Butoxy group, t-butoxy group, trichlor
  • the organic EL device of the present invention include a device containing a reducing dopant in an electron transporting region or an interface region between a cathode and an organic layer.
  • the reducing dopant is defined as a substance capable of reducing the electron transporting compound. Accordingly, various materials can be used as long as they have a certain reducibility, such as alkali metals, alkaline earth metals, rare earth metals, alkali metal oxides, alkali metal halides, alkaline earth metals.
  • preferable reducing dopants include Na (work function: 2.36 eV), K (work function: 2.28 eV), Rb (work function: 2.16 eV) and Cs (work function: 1 .95 eV), at least one alkali metal selected from the group consisting of Ca (work function: 2.9 eV), Sr (work function: 2.0 to 2.5 eV), and Ba (work function: 2.52 eV).
  • a more preferable reducing dopant is at least one alkali metal selected from the group consisting of K, Rb, and Cs, more preferably Rb or Cs, and most preferably Cs. .
  • alkali metals have particularly high reducing ability, and the addition of a relatively small amount to the electron injection region can improve the light emission luminance and extend the life of the organic EL element.
  • a combination of two or more alkali metals is also preferable.
  • a combination containing Cs such as Cs and Na, Cs and K, Cs and Rb, or Cs. And a combination of Na and K.
  • Cs such as Cs and Na, Cs and K, Cs and Rb, or Cs.
  • Na and K a combination of Na and K.
  • an electron injection layer composed of an insulator or a semiconductor may be further provided between the cathode and the organic layer. At this time, current leakage can be effectively prevented and the electron injection property can be improved.
  • an insulator it is preferable to use at least one metal compound selected from the group consisting of alkali metal chalcogenides, alkaline earth metal chalcogenides, alkali metal halides and alkaline earth metal halides. If the electron injection layer is composed of these alkali metal chalcogenides or the like, it is preferable in that the electron injection property can be further improved.
  • preferable alkali metal chalcogenides include, for example, Li 2 O, K 2 O, Na 2 S, Na 2 Se, and Na 2 O
  • preferable alkaline earth metal chalcogenides include, for example, CaO, BaO. , SrO, BeO, BaS, and CaSe
  • preferable alkali metal halides include, for example, LiF, NaF, KF, CsF, LiCl, KCl, and NaCl.
  • preferable alkaline earth metal halides include fluorides such as CaF 2 , BaF 2 , SrF 2 , MgF 2 and BeF 2 , and halides other than fluorides.
  • the inorganic compound constituting the electron injection layer is preferably a microcrystalline or amorphous insulating thin film. If the electron injection layer is composed of these insulating thin films, a more uniform thin film is formed, and pixel defects such as dark spots can be reduced. Examples of such inorganic compounds include the alkali metal chalcogenides, alkaline earth metal chalcogenides, alkali metal halides, and alkaline earth metal halides described above.
  • a cathode what uses a metal, an alloy, an electroconductive compound, and a mixture thereof with a small work function (4 eV or less) as an electrode material is used.
  • electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, cesium, magnesium / silver alloy, aluminum / aluminum oxide, Al / Li 2 O, Al / LiO, Al / LiF, aluminum Examples include lithium alloys, indium, and rare earth metals.
  • the cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering.
  • the transmittance of the light emitted from the cathode is larger than 10%.
  • the sheet resistance as the cathode is preferably several hundred ⁇ / ⁇ or less, and the film thickness is usually 10 nm to 1 ⁇ m, preferably 50 to 200 nm.
  • an organic EL element applies an electric field to an ultra-thin film, pixel defects are likely to occur due to leakage or short circuit.
  • an insulating thin film layer may be inserted between the pair of electrodes.
  • Examples of the material used for the insulating layer include aluminum oxide, lithium fluoride, lithium oxide, cesium fluoride, cesium oxide, magnesium oxide, magnesium fluoride, calcium oxide, calcium fluoride, aluminum nitride, titanium oxide, and silicon oxide. Germanium oxide, silicon nitride, boron nitride, molybdenum oxide, ruthenium oxide, vanadium oxide, and the like. A mixture or laminate of these may be used.
  • the organic EL device of the present invention in the light emitting layer, in addition to at least one aromatic amine derivative selected from the general formula (1), at least one of a light emitting material, a doping material, a hole injecting material, and an electron injecting material.
  • the seed may be contained in the same layer.
  • a protective layer is provided on the surface of the device, or the entire device is protected by silicon oil, resin, etc. Is also possible.
  • a material having a work function larger than 4 eV is suitable, and carbon, aluminum, vanadium, iron, cobalt, nickel, tungsten, silver, gold, platinum Palladium, etc. and their alloys, metal oxides such as tin oxide and indium oxide used for ITO substrates and NESA substrates, and organic conductive resins such as polythiophene and polypyrrole are used.
  • Suitable conductive materials for the cathode are those having a work function smaller than 4 eV, such as magnesium, calcium, tin, lead, titanium, yttrium, lithium, ruthenium, manganese, aluminum, lithium fluoride, and the like.
  • alloys include magnesium / silver, magnesium / indium, lithium / aluminum, and the like, but are not limited thereto.
  • the ratio of the alloy is controlled by the temperature of the vapor deposition source, the atmosphere, the degree of vacuum, etc., and is selected to an appropriate ratio. If necessary, the anode and the cathode may be formed of two or more layers.
  • the organic EL device of the present invention in order to emit light efficiently, it is desirable that at least one surface be sufficiently transparent in the light emission wavelength region of the device.
  • the substrate is also preferably transparent.
  • the transparent electrode is set using the above-described conductive material so as to ensure a predetermined translucency by a method such as vapor deposition or sputtering.
  • the electrode on the light emitting surface preferably has a light transmittance of 10% or more.
  • the substrate is not limited as long as it has mechanical and thermal strength and has transparency, and includes a glass substrate and a transparent resin film.
  • Transparent resin films include polyethylene, ethylene-vinyl acetate copolymer, ethylene-vinyl alcohol copolymer, polypropylene, polystyrene, polymethyl methacrylate, polyvinyl chloride, polyvinyl alcohol, polyvinyl butyral, nylon, polyether ether ketone.
  • each layer of the organic EL device for the formation of each layer of the organic EL device according to the present invention, any of dry film forming methods such as vacuum deposition, sputtering, plasma, ion plating, etc. and wet film forming methods such as spin coating, dipping, and flow coating is applied. be able to.
  • the film thickness is not particularly limited, but must be set to an appropriate film thickness. If the film thickness is too thick, a large applied voltage is required to obtain a constant light output, resulting in poor efficiency. If the film thickness is too thin, pinholes and the like are generated, and sufficient light emission luminance cannot be obtained even when an electric field is applied.
  • the normal film thickness is suitably in the range of 5 nm to 10 ⁇ m, but more preferably in the range of 10 nm to 0.2 ⁇ m.
  • the material for forming each layer is dissolved or dispersed in an appropriate solvent such as ethanol, chloroform, tetrahydrofuran, dioxane or the like to form a thin film, and any solvent may be used.
  • an appropriate resin or additive may be used for improving film formability and preventing pinholes in the film.
  • Usable resins include polystyrene, polycarbonate, polyarylate, polyester, polyamide, polyurethane, polysulfone, polymethyl methacrylate, polymethyl acrylate, cellulose and other insulating resins and copolymers thereof, poly-N-vinyl. Examples thereof include photoconductive resins such as carbazole and polysilane, and conductive resins such as polythiophene and polypyrrole.
  • the additive include an antioxidant, an ultraviolet absorber, and a plasticizer.
  • the organic EL device of the present invention can be used for a flat light emitter such as a flat panel display of a wall-mounted television, a copying machine, a printer, a light source such as a backlight of a liquid crystal display or instruments, a display board, a marker lamp, and the like.
  • the material of the present invention can be used not only in an organic EL device but also in fields such as an electrophotographic photosensitive member, a photoelectric conversion device, a solar cell, and an image sensor.
  • Synthesis Example 5 (Synthesis of Compound (DM-9-6)
  • Example 1 A 25 mm ⁇ 75 mm ⁇ 1.1 mm thick glass substrate with ITO transparent electrode (anode) (manufactured by Geomatic) was subjected to ultrasonic cleaning in isopropyl alcohol for 5 minutes and then UV ozone cleaning for 30 minutes.
  • the glass substrate with the transparent electrode line after the cleaning is mounted on the substrate holder of the vacuum deposition apparatus, and the following compound A-1 is first formed to a thickness of 60 nm so as to cover the transparent electrode on the surface where the transparent electrode line is formed. It formed into a film so that it might become. Thereafter, the following compound A-2 was formed to a thickness of 20 nm on the film made of the compound A-1.
  • the host material (anthracene derivative) EM1 and the dopant material (diaminopyrene derivative) DM5-2 of the present invention are formed on the film made of the compound A-2 by co-evaporation at a weight ratio of 40: 2.
  • a light emitting medium was formed to form a blue light emitting layer having a thickness of 40 nm.
  • an Alq having a thickness of 20 nm was deposited as an electron transport layer by vapor deposition. Thereafter, LiF was formed to a thickness of 1 nm.
  • metal Al was deposited so as to have a thickness of 150 nm to form a metal cathode, and an organic EL light emitting device was produced.
  • Example 2 to 204 organic EL devices were similarly fabricated using the materials shown in Tables 1 to 5 below instead of the host material EM1 and the dopant material DM5-2.
  • Example 1 An organic EL device was prepared in the same manner using EM74 instead of the host material EM1 and compound A having the following structure instead of the dopant material DM5-2.
  • Example 2 An organic EL device was produced in the same manner using Compound B having the following structure instead of the host material EM1 and Compound C having the following structure instead of the dopant material DM5-2.
  • Tables 1 to 5 below show the light emission wavelengths and the half lives at an initial luminance of 1000 cd / m 2 of the organic EL elements of Examples and Comparative Examples.
  • the organic EL element using the organic light-emitting medium of the present invention is useful as a light source such as a flat light emitter of a wall-mounted television or a backlight of a display.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Disclosed is an organic luminescent medium containing a specific diaminopyrene derivative and a specific anthracene derivative. Also disclosed is an organic electroluminescent device wherein one or more organic thin film layers including a light-emitting layer are arranged between a cathode and an anode, and at least one of the organic thin film layers contains the organic luminescent medium.

Description

有機発光媒体および有機EL素子Organic light-emitting medium and organic EL device
 本発明は、有機発光媒体およびこれを用いた有機EL素子に関する。 The present invention relates to an organic light emitting medium and an organic EL element using the same.
 従来、有機化合物の発光を利用した有機EL素子(有機電界発光素子)が知られている。有機EL素子は、陽極と陰極との間で積層された複数の有機薄膜を有する。この構成において、陽極と陰極との間に電圧を印加する。すると、有機薄膜に対して、陽極と陰極とから、正孔と電子とがそれぞれ注入される。注入されたホールと電子とにより有機薄膜中の発光層で励起状態の分子が生成される。そして、励起状態から基底状態に戻る際のエネルギーが光として放出される。 Conventionally, an organic EL element (organic electroluminescence element) using light emission of an organic compound is known. The organic EL element has a plurality of organic thin films stacked between an anode and a cathode. In this configuration, a voltage is applied between the anode and the cathode. Then, holes and electrons are injected into the organic thin film from the anode and the cathode, respectively. Excited molecules are generated in the light emitting layer in the organic thin film by the injected holes and electrons. Then, energy when returning from the excited state to the ground state is emitted as light.
 発光層に使用される材料の例として、特許文献1には、アントラセンホストとアリールアミンとの組み合わせが開示されている。また、特許文献2~4には、特定の構造のアントラセンホストとジアミノピレンドーパントとの組み合わせが開示されている。さらに、特許文献5,6には、アントラセン系のホスト材料が開示されている。
 しかし、いずれの材料でも、短波長の発光(例えば、青色発光)を高い発光効率で得ることが困難であったり、寿命が短かったりといった問題があった。
As an example of the material used for the light emitting layer, Patent Document 1 discloses a combination of an anthracene host and an arylamine. Patent Documents 2 to 4 disclose a combination of an anthracene host having a specific structure and a diaminopyrene dopant. Furthermore, Patent Documents 5 and 6 disclose anthracene-based host materials.
However, any of the materials has a problem that it is difficult to obtain short-wavelength light emission (for example, blue light emission) with high light emission efficiency and a short lifetime.
WO2004/018588号公報WO 2004/018588 WO2004/018587号公報WO2004 / 018587 特開2004-204238号公報JP 2004-204238 A WO2005/108348号公報WO2005 / 108348 publication WO2005/054162号公報WO2005 / 054162 publication WO2005/061656号公報WO2005 / 061656
 本発明は、短波長の発光(例えば、青色発光)を高い発光効率で得ることが可能で、寿命が長い有機EL素子、及び当該有機EL素子の有機薄膜層に用いることができる有機発光媒体を提供することを目的とする。 The present invention provides an organic EL element that can obtain short-wavelength light emission (for example, blue light emission) with high light emission efficiency and has a long lifetime, and an organic light-emitting medium that can be used for an organic thin film layer of the organic EL element. The purpose is to provide.
 上記課題を解決すべく鋭意検討した結果、本発明者らは下記本発明により当該課題を解決できることを見出した。
 すなわち、本発明は、下記式(1)で表されるジアミノピレン誘導体と、下記式(2)で表されるアントラセン誘導体とを含む有機発光媒体である。
As a result of intensive studies to solve the above problems, the present inventors have found that the following problems can be solved by the present invention.
That is, this invention is an organic luminescent medium containing the diaminopyrene derivative represented by following formula (1), and the anthracene derivative represented by following formula (2).
Figure JPOXMLDOC01-appb-C000004
(式(1)中、Ar1~Ar4は、それぞれ独立に、置換もしくは無置換の核炭素数6~50のアリール基、又は置換もしくは無置換の核原子数5~50の複素環基である。R21及びR22は、それぞれ独立に、水素原子、置換もしくは無置換の炭素数1~50のアルキル基、置換もしくは無置換の核炭素数3~50のシクロアルキル基から選ばれる基である。ただし、Ar1~Ar4のうち1つ以上は、α-ナフチル基である。また、R21及びR22が同時に水素原子になることはない。)
Figure JPOXMLDOC01-appb-C000004
(In the formula (1), Ar 1 to Ar 4 are each independently a substituted or unsubstituted aryl group having 6 to 50 nuclear carbon atoms, or a substituted or unsubstituted heterocyclic group having 5 to 50 nuclear atoms. R 21 and R 22 are each independently a group selected from a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, and a substituted or unsubstituted cycloalkyl group having 3 to 50 nuclear carbon atoms. (However, one or more of Ar 1 to Ar 4 are α-naphthyl groups, and R 21 and R 22 are not simultaneously hydrogen atoms.)
Figure JPOXMLDOC01-appb-C000005
(式(2)中、Ar11及びAr12は、それぞれ独立に、置換もしくは無置換の核炭素数6~20のアリール基であり、R1~R8は、それぞれ独立に、水素原子、置換もしくは無置換の核炭素数6~50のアリール基、置換もしくは無置換の核原子数5~50の複素環基、置換もしくは無置換の炭素数1~50のアルキル基、置換もしくは無置換の核炭素数3~50のシクロアルキル基、置換もしくは無置換の炭素数1~50のアルコキシ基、置換もしくは無置換の炭素数7~50のアラルキル基、置換もしくは無置換の核炭素数6~50のアリールオキシ基、置換もしくは無置換の核炭素数6~50のアリールチオ基、置換もしくは無置換の炭素数2~50のアルコキシカルボニル基、置換もしくは無置換のシリル基、カルボキシル基、ハロゲン原子、シアノ基、ニトロ基及びヒドロキシル基から選ばれる基である。)
Figure JPOXMLDOC01-appb-C000005
(In the formula (2), Ar 11 and Ar 12 are each independently a substituted or unsubstituted aryl group having 6 to 20 nuclear carbon atoms, and R 1 to R 8 are each independently a hydrogen atom or a substituted group. Or an unsubstituted aryl group having 6 to 50 carbon atoms, a substituted or unsubstituted heterocyclic group having 5 to 50 nuclear atoms, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted nucleus; A cycloalkyl group having 3 to 50 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 50 carbon atoms, a substituted or unsubstituted aralkyl group having 7 to 50 carbon atoms, a substituted or unsubstituted nucleus having 6 to 50 carbon atoms An aryloxy group, a substituted or unsubstituted arylthio group having 6 to 50 nuclear carbon atoms, a substituted or unsubstituted alkoxycarbonyl group having 2 to 50 carbon atoms, a substituted or unsubstituted silyl group, a carboxyl group, Gen atom, a cyano group, a group selected from nitro group and a hydroxyl group.)
 また、本発明は、陰極と陽極との間に、発光層を含む一層以上の有機薄膜層を有し、該有機薄膜層の少なくとも一層が、上記本発明の有機発光媒体を含有する有機エレクトロルミネッセンス素子である。 In addition, the present invention has one or more organic thin film layers including a light emitting layer between a cathode and an anode, and at least one of the organic thin film layers contains the organic light emitting medium of the present invention. It is an element.
 本発明によれば、短波長の発光(例えば、青色発光)を高い発光効率で得ることが可能で、寿命が長い有機EL素子、及び当該有機EL素子の有機薄膜層に用いることができる有機発光媒体を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the light emission of short wavelength (for example, blue light emission) can be obtained by high luminous efficiency, and the organic light emission which can be used for the organic thin film layer of the organic EL element with the long lifetime, and the said organic EL element A medium can be provided.
[有機発光媒体]
 本発明の有機発光媒体は、特定のジアミノピレン誘導体と、特定のアントラセン誘導体とを含む。当該有機発光媒体は、有機EL素子の有機薄膜層の構成成分として発光に寄与し、例えば、蒸着物として当該層中に存在する。そして、有機EL素子に使用した場合に、発光効率の高い青色発光をはじめとした短波長の発光を可能とし、長寿命化に寄与することができる。以下、本発明に係るジアミノピレン誘導体及びアントラセン誘導体について説明する。
[Organic light-emitting medium]
The organic light-emitting medium of the present invention contains a specific diaminopyrene derivative and a specific anthracene derivative. The organic light-emitting medium contributes to light emission as a constituent component of the organic thin film layer of the organic EL element, and is present in the layer as, for example, a deposit. And when it uses for an organic EL element, light emission of a short wavelength including blue light emission with high luminous efficiency is enabled, and it can contribute to lifetime improvement. Hereinafter, the diaminopyrene derivative and the anthracene derivative according to the present invention will be described.
(ジアミノピレン誘導体)
 本発明に係るジアミノピレン誘導体は、下記式(1)で表される。
Figure JPOXMLDOC01-appb-C000006
(式(1)中、Ar1~Ar4は、それぞれ独立に、置換もしくは無置換の核炭素数6~50のアリール基、又は置換もしくは無置換の核原子数5~50の複素環基である。R21及びR22は、それぞれ独立に、水素原子、置換もしくは無置換の炭素数1~50のアルキル基、置換もしくは無置換の核炭素数3~50のシクロアルキル基から選ばれる基である。ただし、Ar1~Ar4のうち1つ以上は、α-ナフチル基である。また、R21及びR22が同時に水素原子になることはない。)
(Diaminopyrene derivative)
The diaminopyrene derivative according to the present invention is represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000006
(In the formula (1), Ar 1 to Ar 4 are each independently a substituted or unsubstituted aryl group having 6 to 50 nuclear carbon atoms, or a substituted or unsubstituted heterocyclic group having 5 to 50 nuclear atoms. R 21 and R 22 are each independently a group selected from a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, and a substituted or unsubstituted cycloalkyl group having 3 to 50 nuclear carbon atoms. (However, one or more of Ar 1 to Ar 4 are α-naphthyl groups, and R 21 and R 22 are not simultaneously hydrogen atoms.)
 なお、本発明において、「核炭素」とは飽和環、不飽和環、または芳香環を構成する炭素原子を意味する。「核原子」とはヘテロ環(飽和環、不飽和環、および芳香環を含む)を構成する炭素原子及びヘテロ原子を意味する。
 また、「置換もしくは無置換の・・・」における置換基としては、後述するようなアルキル基、アリール基、シクロアルキル基、アルコキシ基、複素環基、アラルキル基、アリールオキシ基、アリールチオ基、アルコキシカルボニル基、ハロゲン原子、ヒドロキシル基、ニトロ基、シアノ基、カルボキシル基、ジベンゾフラニル基、フルオレニル基等が挙げられる。
In the present invention, “nuclear carbon” means a carbon atom constituting a saturated ring, an unsaturated ring, or an aromatic ring. The “nuclear atom” means a carbon atom and a hetero atom constituting a hetero ring (including a saturated ring, an unsaturated ring, and an aromatic ring).
In addition, examples of the substituent in “substituted or unsubstituted...” Include alkyl groups, aryl groups, cycloalkyl groups, alkoxy groups, heterocyclic groups, aralkyl groups, aryloxy groups, arylthio groups, alkoxy groups as described later. Examples thereof include a carbonyl group, a halogen atom, a hydroxyl group, a nitro group, a cyano group, a carboxyl group, a dibenzofuranyl group, and a fluorenyl group.
 核炭素数6~50のAr1~Ar4のアリール基としては、例えば、フェニル基、2-メチルフェニル基、3-メチルフェニル基、4-メチルフェニル基、4-エチルフェニル基、ビフェニル基、4-メチルビフェニル基、4-エチルビフェニル基、4-シクロヘキシルビフェニル基、ターフェニル基、3,5-ジクロロフェニル基、ナフチル基、5-メチルナフチル基、アントリル基、ピレニル基、クリセニル基、フルオランテニル基、ペリレニル基等が挙げられる。
 核炭素数は、蒸着温度の観点から、6~20が好ましく、6~12がさらに好ましい。
Examples of the aryl group of Ar 1 to Ar 4 having 6 to 50 nuclear carbon atoms include a phenyl group, a 2-methylphenyl group, a 3-methylphenyl group, a 4-methylphenyl group, a 4-ethylphenyl group, a biphenyl group, 4-methylbiphenyl group, 4-ethylbiphenyl group, 4-cyclohexylbiphenyl group, terphenyl group, 3,5-dichlorophenyl group, naphthyl group, 5-methylnaphthyl group, anthryl group, pyrenyl group, chrysenyl group, fluoranthenyl Group, perylenyl group and the like.
The number of nuclear carbons is preferably 6 to 20 and more preferably 6 to 12 from the viewpoint of vapor deposition temperature.
 核原子数5~50のAr1~Ar4の複素環基としては、例えば、イミダゾール、ベンゾイミダゾール、ピロール、フラン、チオフェン、オキサジアゾリン、インドリン、カルバゾール、ピリジン、キノリン、イソキノリン、ベンゾキノン、ピラロジン、イミダゾリジン、ピペリジン等の残基が挙げられる。
 核原子数は、蒸着温度の観点から、5~20が好ましく、5~12がさらに好ましい。
Examples of the heterocyclic group of Ar 1 to Ar 4 having 5 to 50 nuclear atoms include imidazole, benzimidazole, pyrrole, furan, thiophene, oxadiazoline, indoline, carbazole, pyridine, quinoline, isoquinoline, benzoquinone, pyralazine, Residues such as imidazolidine, piperidine and the like can be mentioned.
The number of nucleus atoms is preferably 5 to 20 and more preferably 5 to 12 from the viewpoint of vapor deposition temperature.
 式(1)中のAr1~Ar4のうち2つは、α-ナフチル基であることが好ましく、Ar1及びAr3が、α-ナフチル基であることがより好ましい。また、式(1)中のR21及びR22がそれぞれ独立に、置換もしくは無置換の炭素数1~5のアルキル基、または置換もしくは無置換の核炭素数3~6のシクロアルキル基であることが好ましい。さらに、式(1)中のR21とR22とは同一の基(例えば、上記置換基)であることが好ましい。 Two of Ar 1 to Ar 4 in Formula (1) are preferably α-naphthyl groups, and Ar 1 and Ar 3 are more preferably α-naphthyl groups. In the formula (1), R 21 and R 22 are each independently a substituted or unsubstituted alkyl group having 1 to 5 carbon atoms, or a substituted or unsubstituted cycloalkyl group having 3 to 6 nuclear carbon atoms. It is preferable. Furthermore, R 21 and R 22 in formula (1) are preferably the same group (for example, the above substituent).
 なお、R21及びR22の置換もしくは無置換の炭素数1~50のアルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、s-ブチル基、イソブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、ヒドロキシメチル基、1-ヒドロキシエチル基、2-ヒドロキシエチル基、2-ヒドロキシイソブチル基、1,2-ジヒドロキシエチル基、1,3-ジヒドロキシイソプロピル基、2,3-ジヒドロキシ-t-ブチル基、1,2,3-トリヒドロキシプロピル基、クロロメチル基、1-クロロエチル基、2-クロロエチル基、2-クロロイソブチル基、1,2-ジクロロエチル基、1,3-ジクロロイソプロピル基、2,3-ジクロロ-t-ブチル基、1,2,3-トリクロロプロピル基、ブロモメチル基、1-ブロモエチル基、2-ブロモエチル基、2-ブロモイソブチル基、1,2-ジブロモエチル基、1,3-ジブロモイソプロピル基、2,3-ジブロモ-t-ブチル基、1,2,3-トリブロモプロピル基、ヨードメチル基、1-ヨードエチル基、2-ヨードエチル基、2-ヨードイソブチル基、1,2-ジヨードエチル基、1,3-ジヨードイソプロピル基、2,3-ジヨード-t-ブチル基、1,2,3-トリヨードプロピル基、アミノメチル基、1-アミノエチル基、2-アミノエチル基、2-アミノイソブチル基、1,2-ジアミノエチル基、1,3-ジアミノイソプロピル基、2,3-ジアミノ-t-ブチル基、1,2,3-トリアミノプロピル基、シアノメチル基、1-シアノエチル基、2-シアノエチル基、2-シアノイソブチル基、1,2-ジシアノエチル基、1,3-ジシアノイソプロピル基、2,3-ジシアノ-t-ブチル基、1,2,3-トリシアノプロピル基、ニトロメチル基、1-ニトロエチル基、2-ニトロエチル基、2-ニトロイソブチル基、1,2-ジニトロエチル基、1,3-ジニトロイソプロピル基、2,3-ジニトロ-t-ブチル基、1,2,3-トリニトロプロピル基などが挙げられる。
 上記炭素数は、蒸着温度の観点から、1~10が好ましく、1~6がさらに好ましい。中でもメチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、s-ブチル基、イソブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基が好ましい。
The substituted or unsubstituted alkyl group having 1 to 50 carbon atoms of R 21 and R 22 includes a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group, an s-butyl group, an isobutyl group, t -Butyl group, n-pentyl group, n-hexyl group, n-heptyl group, n-octyl group, hydroxymethyl group, 1-hydroxyethyl group, 2-hydroxyethyl group, 2-hydroxyisobutyl group, 1,2- Dihydroxyethyl group, 1,3-dihydroxyisopropyl group, 2,3-dihydroxy-t-butyl group, 1,2,3-trihydroxypropyl group, chloromethyl group, 1-chloroethyl group, 2-chloroethyl group, 2- Chloroisobutyl, 1,2-dichloroethyl, 1,3-dichloroisopropyl, 2,3-dichloro-t-butyl, 1,2,3-tri Lolopropyl group, bromomethyl group, 1-bromoethyl group, 2-bromoethyl group, 2-bromoisobutyl group, 1,2-dibromoethyl group, 1,3-dibromoisopropyl group, 2,3-dibromo-t-butyl group, 1 , 2,3-tribromopropyl group, iodomethyl group, 1-iodoethyl group, 2-iodoethyl group, 2-iodoisobutyl group, 1,2-diiodoethyl group, 1,3-diiodoisopropyl group, 2,3-diiodo -T-butyl group, 1,2,3-triiodopropyl group, aminomethyl group, 1-aminoethyl group, 2-aminoethyl group, 2-aminoisobutyl group, 1,2-diaminoethyl group, 1,3 -Diaminoisopropyl group, 2,3-diamino-t-butyl group, 1,2,3-triaminopropyl group, cyanomethyl group, 1-cyanoethyl group, -Cyanoethyl group, 2-cyanoisobutyl group, 1,2-dicyanoethyl group, 1,3-dicyanoisopropyl group, 2,3-dicyano-t-butyl group, 1,2,3-tricyanopropyl group, nitromethyl group 1-nitroethyl group, 2-nitroethyl group, 2-nitroisobutyl group, 1,2-dinitroethyl group, 1,3-dinitroisopropyl group, 2,3-dinitro-t-butyl group, 1,2,3- A trinitropropyl group etc. are mentioned.
The carbon number is preferably from 1 to 10, more preferably from 1 to 6, from the viewpoint of vapor deposition temperature. Of these, methyl, ethyl, propyl, isopropyl, n-butyl, s-butyl, isobutyl, t-butyl, n-pentyl and n-hexyl are preferred.
 また、R21及びR22の置換基の置換もしくは無置換の核炭素数3~50のシクロアルキル基としては、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、4-メチルシクロヘキシル基、1-アダマンチル基、2-アダマンチル基、1-ノルボルニル基、2-ノルボルニル基などが挙げられる。
 核炭素数は、蒸着温度の観点から、3~10が好ましく、5~8がさらに好ましい。中でもシクロペンチル基、シクロヘキシル基が好ましい。
Examples of the substituted or unsubstituted cycloalkyl group having 3 to 50 nuclear carbon atoms of the substituent of R 21 and R 22 include cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, 4-methylcyclohexyl group, 1- Examples thereof include an adamantyl group, a 2-adamantyl group, a 1-norbornyl group, and a 2-norbornyl group.
The number of nuclear carbons is preferably from 3 to 10, more preferably from 5 to 8, from the viewpoint of vapor deposition temperature. Of these, a cyclopentyl group and a cyclohexyl group are preferable.
 式(1)で表されるジアミノピレン誘導体の具体例としては、下記式で表される化合物が挙げられる。 Specific examples of the diaminopyrene derivative represented by the formula (1) include compounds represented by the following formula.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
(アントラセン誘導体)
 本発明に係るアントラセン誘導体は、下記式(2)で表される。
Figure JPOXMLDOC01-appb-C000017
(式(2)中、Ar11及びAr12は、それぞれ独立に、置換もしくは無置換の核炭素数6~20のアリール基であり、R1~R8は、それぞれ独立に、水素原子、置換もしくは無置換の核炭素数6~50のアリール基(縮合アリール基を含む)、置換もしくは無置換の核原子数5~50の複素環基、置換もしくは無置換の炭素数1~50のアルキル基、置換もしくは無置換の核炭素数3~50のシクロアルキル基、置換もしくは無置換の炭素数1~50のアルコキシ基、置換もしくは無置換の炭素数7~50のアラルキル基、置換もしくは無置換の核炭素数6~50のアリールオキシ基、置換もしくは無置換の核炭素数6~50のアリールチオ基、置換もしくは無置換の炭素数2~50のアルコキシカルボニル基、置換もしくは無置換のシリル基、カルボキシル基、ハロゲン原子、シアノ基、ニトロ基及びヒドロキシル基から選ばれる基である。)
(Anthracene derivative)
The anthracene derivative according to the present invention is represented by the following formula (2).
Figure JPOXMLDOC01-appb-C000017
(In the formula (2), Ar 11 and Ar 12 are each independently a substituted or unsubstituted aryl group having 6 to 20 nuclear carbon atoms, and R 1 to R 8 are each independently a hydrogen atom or a substituted group. Or an unsubstituted aryl group having 6 to 50 nuclear carbon atoms (including a condensed aryl group), a substituted or unsubstituted heterocyclic group having 5 to 50 nuclear atoms, and a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms. Substituted or unsubstituted cycloalkyl group having 3 to 50 carbon atoms, substituted or unsubstituted alkoxy group having 1 to 50 carbon atoms, substituted or unsubstituted aralkyl group having 7 to 50 carbon atoms, substituted or unsubstituted An aryloxy group having 6 to 50 nuclear carbon atoms, a substituted or unsubstituted arylthio group having 6 to 50 nuclear carbon atoms, a substituted or unsubstituted alkoxycarbonyl group having 2 to 50 carbon atoms, a substituted or unsubstituted silyl group; Group, a carboxyl group, a halogen atom, a cyano group, a group selected from nitro group and a hydroxyl group.)
 本発明に係るアントラセン誘導体は、下記アントラセン誘導体(A)、(B)、及び(C)のいずれかであることが好ましく、適用する有機EL素子の構成や求める特性により選択される。 The anthracene derivative according to the present invention is preferably any of the following anthracene derivatives (A), (B), and (C), and is selected depending on the configuration of the organic EL element to be applied and the required characteristics.
(アントラセン誘導体(A))
 当該アントラセン誘導体は、式(2)におけるAr11及びAr12が、それぞれ独立に、置換もしくは無置換の核炭素数10~20の縮合アリール基となっている。当該アントラセン誘導体としては、Ar11及びAr12が同一の基である場合、及び異なる基である場合に分けることができる。具体的には、下記式(2-1)~(2-3)で表されるアントラセン誘導体、及び式(2)におけるAr11及びAr12が異なる基であるアントラセン誘導体が挙げられる。
(Anthracene derivative (A))
In the anthracene derivative, Ar 11 and Ar 12 in the formula (2) are each independently a substituted or unsubstituted condensed aryl group having 10 to 20 nuclear carbon atoms. The anthracene derivative can be classified into a case where Ar 11 and Ar 12 are the same group, and a case where they are different groups. Specific examples include anthracene derivatives represented by the following formulas (2-1) to (2-3) and anthracene derivatives in which Ar 11 and Ar 12 in the formula (2) are different groups.
 下記式(2-1)で表されるアントラセン誘導体は、Ar11及びAr12が、置換もしくは無置換の9-フェナントレニル基となっている。 In the anthracene derivative represented by the following formula (2-1), Ar 11 and Ar 12 are substituted or unsubstituted 9-phenanthrenyl groups.
Figure JPOXMLDOC01-appb-C000018
(式(2-1)中、R11は水素原子、置換もしくは無置換の核炭素数6~50のアリール基、置換もしくは無置換の核原子数5~50の複素環基、置換もしくは無置換の炭素数1~50のアルキル基、置換もしくは無置換の核炭素数3~50のシクロアルキル基、置換もしくは無置換の炭素数1~50のアルコキシ基、置換もしくは無置換の炭素数7~50のアラルキル基、置換もしくは無置換の核炭素数6~50のアリールオキシ基、置換もしくは無置換の核炭素数6~50のアリールチオ基、置換もしくは無置換の炭素数2~50のアルコキシカルボニル基、置換もしくは無置換のシリル基、カルボキシル基、ハロゲン原子、シアノ基、ニトロ基及びヒドロキシル基から選ばれる基であり、aは0~9の整数である。aが2以上の整数の場合、複数あるR11は、2つの置換もしくは無置換のフェナントレニル基が同一であることを条件に、それぞれが同一でも異なっていてもよい。)
Figure JPOXMLDOC01-appb-C000018
(In the formula (2-1), R 11 is a hydrogen atom, a substituted or unsubstituted aryl group having 6 to 50 nuclear carbon atoms, a substituted or unsubstituted heterocyclic group having 5 to 50 nuclear atoms, substituted or unsubstituted. An alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 50 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 50 carbon atoms, a substituted or unsubstituted carbon group having 7 to 50 carbon atoms. An aralkyl group, a substituted or unsubstituted aryloxy group having 6 to 50 nuclear carbon atoms, a substituted or unsubstituted arylthio group having 6 to 50 nuclear carbon atoms, a substituted or unsubstituted alkoxycarbonyl group having 2 to 50 carbon atoms, A group selected from a substituted or unsubstituted silyl group, carboxyl group, halogen atom, cyano group, nitro group and hydroxyl group, a is an integer of 0 to 9. a is an integer of 2 or more If, a plurality of R 11 are the two substituted or condition that unsubstituted phenanthrenyl group are identical, each may be the same or different.)
 下記式(2-2)で表されるアントラセン誘導体は、式(2)におけるAr11及びAr12が、置換もしくは無置換のβ-ナフチル基となっている。 In the anthracene derivative represented by the following formula (2-2), Ar 11 and Ar 12 in the formula (2) are substituted or unsubstituted β-naphthyl groups.
Figure JPOXMLDOC01-appb-C000019
(式(2-2)中、R11は式(2-1)と同様であり、bは1~7の整数である。bが2以上の整数の場合、複数あるR11は、2つの置換もしくは無置換のβ-ナフチル基が同一であることを条件に、それぞれが同一でも異なっていてもよい。)
Figure JPOXMLDOC01-appb-C000019
(In the formula (2-2), R 11 is the same as in the formula (2-1), and b is an integer of 1 to 7. When b is an integer of 2 or more, a plurality of R 11 are two Each may be the same or different, provided that the substituted or unsubstituted β-naphthyl groups are the same.
 下記式(2-3)で表されるアントラセン誘導体は、式(2)におけるAr11及びAr12が、置換もしくは無置換のα-ナフチル基となっている。 In the anthracene derivative represented by the following formula (2-3), Ar 11 and Ar 12 in the formula (2) are substituted or unsubstituted α-naphthyl groups.
Figure JPOXMLDOC01-appb-C000020
(式(2-2)中、R11及びbは、式(2-1)と同様である。また、bが2以上の整数の場合、複数あるR11は、2つの置換もしくは無置換のα-ナフチル基が同一であることを条件に、それぞれが同一でも異なっていてもよい。)
Figure JPOXMLDOC01-appb-C000020
(In the formula (2-2), R 11 and b are the same as those in the formula (2-1). When b is an integer of 2 or more, a plurality of R 11 are two substituted or unsubstituted. Each may be the same or different, provided that the α-naphthyl groups are the same.)
 式(2)におけるAr11及びAr12が異なる基であるアントラセン誘導体としては、Ar11及びAr12が、既述の、置換もしくは無置換の9-フェナントレニル基、置換もしくは無置換のα-ナフチル基、及び置換もしくは無置換のβ-ナフチル基のいずれかであることが好ましい。 As the anthracene derivative in which Ar 11 and Ar 12 in the formula (2) are different groups, Ar 11 and Ar 12 are the aforementioned substituted or unsubstituted 9-phenanthrenyl group, substituted or unsubstituted α-naphthyl group. And a substituted or unsubstituted β-naphthyl group.
(アントラセン誘導体(B))
 当該アントラセン誘導体は、式(2)におけるAr11及びAr12の一方が置換もしくは無置換のフェニル基であり、他方が置換もしくは無置換の核炭素数10~20の縮合アリール基となっている。当該アントラセン誘導体としては、具体的には、下記式(2-4)及び(2-5)で表されるアントラセン誘導体が挙げられる。
(Anthracene derivative (B))
In the anthracene derivative, one of Ar 11 and Ar 12 in Formula (2) is a substituted or unsubstituted phenyl group, and the other is a substituted or unsubstituted condensed aryl group having 10 to 20 nuclear carbon atoms. Specific examples of the anthracene derivative include anthracene derivatives represented by the following formulas (2-4) and (2-5).
 下記式(2-4)で表されるアントラセン誘導体は、式(2)におけるAr11が置換もしくは無置換のα-ナフチル基であり、Ar12が、置換もしくは無置換のフェニル基となっている。
Figure JPOXMLDOC01-appb-C000021
(式(2-4)中、Ar6は置換もしくは無置換の核炭素数6~50のアリール基、置換もしくは無置換の核炭素数1~50のアルキル基、置換もしくは無置換の核炭素数3~50のシクロアルキル基、置換もしくは無置換の炭素数7~50のアラルキル基、又は置換もしくは無置換の核原子数5~50の複素環基である。また、Ar6は置換しているフェニレン基と共に、置換もしくは無置換のフルオレニル基又は置換もしくは無置換のジベンゾフルオレニル基を形成していてもよい。R11及びbは、式(2-1)と同様である。また、bが2以上の整数の場合、複数あるR11は、それぞれが同一でも異なっていてもよい。)
In the anthracene derivative represented by the following formula (2-4), Ar 11 in the formula (2) is a substituted or unsubstituted α-naphthyl group, and Ar 12 is a substituted or unsubstituted phenyl group. .
Figure JPOXMLDOC01-appb-C000021
(In the formula (2-4), Ar 6 is a substituted or unsubstituted aryl group having 6 to 50 nuclear carbon atoms, a substituted or unsubstituted alkyl group having 1 to 50 nuclear carbon atoms, or a substituted or unsubstituted nuclear carbon number. A cycloalkyl group having 3 to 50, a substituted or unsubstituted aralkyl group having 7 to 50 carbon atoms, or a substituted or unsubstituted heterocyclic group having 5 to 50 nucleus atoms, and Ar 6 is substituted. A substituted or unsubstituted fluorenyl group or a substituted or unsubstituted dibenzofluorenyl group may be formed together with the phenylene group, and R 11 and b are the same as in the formula (2-1). If is an integer of 2 or more, plural R 11 are each may be the same or different.)
 下記式(2-5)で表されるアントラセン誘導体は、式(2)におけるAr11が置換もしくは無置換のβ-ナフチル基であり、Ar12が、置換もしくは無置換のフェニル基となっている。
Figure JPOXMLDOC01-appb-C000022
(式(2-5)中、Ar6は式(2-4)と同様であり、R11及びbは、式(2-1)と同様である。また、bが2以上の整数の場合、複数あるR11は、それぞれが同一でも異なっていてもよい。)
In the anthracene derivative represented by the following formula (2-5), Ar 11 in the formula (2) is a substituted or unsubstituted β-naphthyl group, and Ar 12 is a substituted or unsubstituted phenyl group. .
Figure JPOXMLDOC01-appb-C000022
(In formula (2-5), Ar 6 is the same as in formula (2-4), and R 11 and b are the same as in formula (2-1). Also, when b is an integer of 2 or more And the plurality of R 11 may be the same or different.)
(アントラセン誘導体(C))
 当該アントラセン誘導体は、下記式(2-6)で表され、具体的には、下記式(2-6-1)、(2-6-2)及び(2-6-3)のいずれかで表される誘導体であることが好ましい。
(Anthracene derivative (C))
The anthracene derivative is represented by the following formula (2-6), specifically, any one of the following formulas (2-6-1), (2-6-2), and (2-6-3) It is preferable that it is a derivative represented.
Figure JPOXMLDOC01-appb-C000023
(式(2-6)中、R1~R8は式(2)と同様である。Ar5は、式(2-4)のAr6と同様で、Ar6と独立に選択される。)
Figure JPOXMLDOC01-appb-C000023
(In Formula (2-6), R 1 to R 8 are the same as in Formula (2). Ar 5 is the same as Ar 6 in Formula (2-4), and is independently selected from Ar 6 . )
Figure JPOXMLDOC01-appb-C000024
(式(2-6-1)中、R1~R8は式(2)と同様である。)
Figure JPOXMLDOC01-appb-C000024
(In formula (2-6-1), R 1 to R 8 are the same as in formula (2).)
Figure JPOXMLDOC01-appb-C000025
(式(2-6-2)中、R1~R8は式(2)と同様である。Ar5は置換もしくは無置換の核炭素数10~20の縮合アリール基である。)
Figure JPOXMLDOC01-appb-C000025
(In formula (2-6-2), R 1 to R 8 are the same as in formula (2). Ar 5 is a substituted or unsubstituted condensed aryl group having 10 to 20 nuclear carbon atoms.)
Figure JPOXMLDOC01-appb-C000026
(式(2-6-3)中、R1~R8は式(2)と同様である。Ar5a及びAr6aはそれぞれ独立に、置換もしくは無置換の核炭素数10~20の縮合アリール基である。)
Figure JPOXMLDOC01-appb-C000026
(In the formula (2-6-3), R 1 to R 8 are the same as those in the formula (2). Ar 5a and Ar 6a are each independently a substituted or unsubstituted condensed aryl having 10 to 20 nuclear carbon atoms. Group.)
 Ar11、Ar12、Ar5、Ar6の置換もしくは無置換の核炭素数6~20のアリール基としては、フェニル基、1-ナフチル基、2-ナフチル基、1-アントリル基、2-アントリル基、9-アントリル基、1-フェナントリル基、2-フェナントリル基、3-フェナントリル基、4-フェナントリル基、9-フェナントリル基、1-ナフタセニル基、2-ナフタセニル基、9-ナフタセニル基、1-ピレニル基、2-ピレニル基、4-ピレニル基、6-クリセニル基、1-ベンゾ[c]フェナントリル基、2-ベンゾ[c]フェナントリル基、3-ベンゾ[c]フェナントリル基、4-ベンゾ[c]フェナントリル基、5-ベンゾ[c]フェナントリル基、6-ベンゾ[c]フェナントリル基、1-ベンゾ[g]クリセニル基、2-ベンゾ[g]クリセニル基、3-ベンゾ[g]クリセニル基、4-ベンゾ[g]クリセニル基、5-ベンゾ[g]クリセニル基、6-ベンゾ[g]クリセニル基、7-ベンゾ[g]クリセニル基、8-ベンゾ[g]クリセニル基、9-ベンゾ[g]クリセニル基、10-ベンゾ[g]クリセニル基、11-ベンゾ[g]クリセニル基、12-ベンゾ[g]クリセニル基、13-ベンゾ[g]クリセニル基、14-ベンゾ[g]クリセニル基、1-トリフェニル基、2-トリフェニル基、2-フルオレニル基、9,9-ジメチルフルオレン-2-イル基、ベンゾフルオレニル基、ジベンゾフルオレニル基、2-ビフェニルイル基、3-ビフェニルイル基、4-ビフェニルイル基、p-ターフェニル-4-イル基、p-ターフェニル-3-イル基、p-ターフェニル-2-イル基、m-ターフェニル-4-イル基、m-ターフェニル-3-イル基、m-ターフェニル-2-イル基、o-トリル基、m-トリル基、p-トリル基、p-t-ブチルフェニル基、p-(2-フェニルプロピル)フェニル基、3-メチル-2-ナフチル基、4-メチル-1-ナフチル基、4-メチル-1-アントリル基、4’-メチルビフェニルイル基、4”-t-ブチル-p-ターフェニル-4-イル基などが挙げられる。好ましくは、置換もしくは無置換の核炭素数10~14のアリール基であり、特に1-ナフチル基、2-ナフチル基、9-フェナントリル基が好ましい。 The aryl group of Ar 11, Ar 12, Ar 5 , Ar 6 substituted or unsubstituted aromatic ring group having 6 to 20, a phenyl group, 1-naphthyl, 2-naphthyl, 1-anthryl group, 2-anthryl Group, 9-anthryl group, 1-phenanthryl group, 2-phenanthryl group, 3-phenanthryl group, 4-phenanthryl group, 9-phenanthryl group, 1-naphthacenyl group, 2-naphthacenyl group, 9-naphthacenyl group, 1-pyrenyl Group, 2-pyrenyl group, 4-pyrenyl group, 6-chrysenyl group, 1-benzo [c] phenanthryl group, 2-benzo [c] phenanthryl group, 3-benzo [c] phenanthryl group, 4-benzo [c] Phenanthryl group, 5-benzo [c] phenanthryl group, 6-benzo [c] phenanthryl group, 1-benzo [g] chrysenyl group, 2-ben Zo [g] chrysenyl group, 3-benzo [g] chrysenyl group, 4-benzo [g] chrysenyl group, 5-benzo [g] chrysenyl group, 6-benzo [g] chrysenyl group, 7-benzo [g] chrysenyl group Group, 8-benzo [g] chrysenyl group, 9-benzo [g] chrysenyl group, 10-benzo [g] chrysenyl group, 11-benzo [g] chrysenyl group, 12-benzo [g] chrysenyl group, 13-benzo [G] chrysenyl group, 14-benzo [g] chrysenyl group, 1-triphenyl group, 2-triphenyl group, 2-fluorenyl group, 9,9-dimethylfluoren-2-yl group, benzofluorenyl group, Dibenzofluorenyl group, 2-biphenylyl group, 3-biphenylyl group, 4-biphenylyl group, p-terphenyl-4-yl group, p-terphenyl-3-yl group, p Terphenyl-2-yl group, m-terphenyl-4-yl group, m-terphenyl-3-yl group, m-terphenyl-2-yl group, o-tolyl group, m-tolyl group, p- Tolyl group, pt-butylphenyl group, p- (2-phenylpropyl) phenyl group, 3-methyl-2-naphthyl group, 4-methyl-1-naphthyl group, 4-methyl-1-anthryl group, 4 Examples include a '-methylbiphenylyl group, a 4 "-t-butyl-p-terphenyl-4-yl group, and the like. Preferred is a substituted or unsubstituted aryl group having 10 to 14 nuclear carbon atoms, particularly 1 A -naphthyl group, 2-naphthyl group, or 9-phenanthryl group is preferred.
 また、Ar5a及びAr6aの置換もしくは無置換の核炭素数10~20の縮合アリール基としては、1-ナフチル基、2-ナフチル基、1-アントリル基、2-アントリル基、9-アントリル基、1-フェナントリル基、2-フェナントリル基、3-フェナントリル基、4-フェナントリル基、9-フェナントリル基、1-ナフタセニル基、2-ナフタセニル基、9-ナフタセニル基、1-ピレニル基、2-ピレニル基、4-ピレニル基、6-クリセニル基、1-ベンゾ[c]フェナントリル基、2-ベンゾ[c]フェナントリル基、3-ベンゾ[c]フェナントリル基、4-ベンゾ[c]フェナントリル基、5-ベンゾ[c]フェナントリル基、6-ベンゾ[c]フェナントリル基、1-ベンゾ[g]クリセニル基、2-ベンゾ[g]クリセニル基、3-ベンゾ[g]クリセニル基、4-ベンゾ[g]クリセニル基、5-ベンゾ[g]クリセニル基、6-ベンゾ[g]クリセニル基、7-ベンゾ[g]クリセニル基、8-ベンゾ[g]クリセニル基、9-ベンゾ[g]クリセニル基、10-ベンゾ[g]クリセニル基、11-ベンゾ[g]クリセニル基、12-ベンゾ[g]クリセニル基、13-ベンゾ[g]クリセニル基、14-ベンゾ[g]クリセニル基、1-トリフェニル基、2-トリフェニル基、ベンゾフルオレニル基、ジベンゾフルオレニル基、等が挙げられる。特に、1-ナフチル基、2-ナフチル基、9-フェナントリル基が好ましい。 The substituted or unsubstituted condensed aryl group having 10 to 20 nuclear carbon atoms of Ar 5a and Ar 6a includes a 1-naphthyl group, a 2-naphthyl group, a 1-anthryl group, a 2-anthryl group, and a 9-anthryl group. 1-phenanthryl group, 2-phenanthryl group, 3-phenanthryl group, 4-phenanthryl group, 9-phenanthryl group, 1-naphthacenyl group, 2-naphthacenyl group, 9-naphthacenyl group, 1-pyrenyl group, 2-pyrenyl group 4-pyrenyl group, 6-chrycenyl group, 1-benzo [c] phenanthryl group, 2-benzo [c] phenanthryl group, 3-benzo [c] phenanthryl group, 4-benzo [c] phenanthryl group, 5-benzo [C] phenanthryl group, 6-benzo [c] phenanthryl group, 1-benzo [g] chrysenyl group, 2-benzo [g] chrysene Group, 3-benzo [g] chrysenyl group, 4-benzo [g] chrysenyl group, 5-benzo [g] chrysenyl group, 6-benzo [g] chrysenyl group, 7-benzo [g] chrysenyl group, 8- Benzo [g] chrysenyl group, 9-benzo [g] chrysenyl group, 10-benzo [g] chrysenyl group, 11-benzo [g] chrysenyl group, 12-benzo [g] chrysenyl group, 13-benzo [g] chrysenyl group Group, 14-benzo [g] chrysenyl group, 1-triphenyl group, 2-triphenyl group, benzofluorenyl group, dibenzofluorenyl group, and the like. In particular, a 1-naphthyl group, a 2-naphthyl group, and a 9-phenanthryl group are preferable.
 R1~R8の置換もしくは無置換の核炭素数6~50のアリール基としては、フェニル基、1-ナフチル基、2-ナフチル基、1-アントリル基、2-アントリル基、9-アントリル基、1-フェナントリル基、2-フェナントリル基、3-フェナントリル基、4-フェナントリル基、9-フェナントリル基、1-ナフタセニル基、2-ナフタセニル基、9-ナフタセニル基、1-ピレニル基、2-ピレニル基、4-ピレニル基、2-ビフェニルイル基、3-ビフェニルイル基、4-ビフェニルイル基、p-ターフェニル-4-イル基、p-ターフェニル-3-イル基、p-ターフェニル-2-イル基、m-ターフェニル-4-イル基、m-ターフェニル-3-イル基、m-ターフェニル-2-イル基、o-トリル基、m-トリル基、p-トリル基、p-t-ブチルフェニル基、p-(2-フェニルプロピル)フェニル基、3-メチル-2-ナフチル基、4-メチル-1-ナフチル基、4-メチル-1-アントリル基、4’-メチルビフェニルイル基、4”-t-ブチル-p-ターフェニル-4-イル基などが挙げられる。
 核炭素数は、蒸着温度の観点から、6~30が好ましく、6~20がさらに好ましい。
Examples of the substituted or unsubstituted aryl group having 6 to 50 nuclear carbon atoms of R 1 to R 8 include a phenyl group, a 1-naphthyl group, a 2-naphthyl group, a 1-anthryl group, a 2-anthryl group, and a 9-anthryl group. 1-phenanthryl group, 2-phenanthryl group, 3-phenanthryl group, 4-phenanthryl group, 9-phenanthryl group, 1-naphthacenyl group, 2-naphthacenyl group, 9-naphthacenyl group, 1-pyrenyl group, 2-pyrenyl group 4-pyrenyl group, 2-biphenylyl group, 3-biphenylyl group, 4-biphenylyl group, p-terphenyl-4-yl group, p-terphenyl-3-yl group, p-terphenyl-2 -Yl group, m-terphenyl-4-yl group, m-terphenyl-3-yl group, m-terphenyl-2-yl group, o-tolyl group, m-tolyl group, p-tol Group, pt-butylphenyl group, p- (2-phenylpropyl) phenyl group, 3-methyl-2-naphthyl group, 4-methyl-1-naphthyl group, 4-methyl-1-anthryl group, 4 Examples include a '-methylbiphenylyl group, 4 ″ -t-butyl-p-terphenyl-4-yl group, and the like.
The number of nuclear carbons is preferably 6 to 30, and more preferably 6 to 20, from the viewpoint of vapor deposition temperature.
 R1~R8の置換もしくは無置換の核原子数5~50の複素環基としては、1-ピロリル基、2-ピロリル基、3-ピロリル基、ピラジニル基、2-ピリジニル基、3-ピリジニル基、4-ピリジニル基、1-インドリル基、2-インドリル基、3-インドリル基、4-インドリル基、5-インドリル基、6-インドリル基、7-インドリル基、1-イソインドリル基、2-イソインドリル基、3-イソインドリル基、4-イソインドリル基、5-イソインドリル基、6-イソインドリル基、7-イソインドリル基、2-フリル基、3-フリル基、2-ベンゾフラニル基、3-ベンゾフラニル基、4-ベンゾフラニル基、5-ベンゾフラニル基、6-ベンゾフラニル基、7-ベンゾフラニル基、1-イソベンゾフラニル基、3-イソベンゾフラニル基、4-イソベンゾフラニル基、5-イソベンゾフラニル基、6-イソベンゾフラニル基、7-イソベンゾフラニル基、キノリル基、3-キノリル基、4-キノリル基、5-キノリル基、6-キノリル基、7-キノリル基、8-キノリル基、1-イソキノリル基、3-イソキノリル基、4-イソキノリル基、5-イソキノリル基、6-イソキノリル基、7-イソキノリル基、8-イソキノリル基、2-キノキサリニル基、5-キノキサリニル基、6-キノキサリニル基、1-カルバゾリル基、2-カルバゾリル基、3-カルバゾリル基、4-カルバゾリル基、9-カルバゾリル基、1-フェナントリジニル基、2-フェナントリジニル基、3-フェナントリジニル基、4-フェナントリジニル基、6-フェナントリジニル基、7-フェナントリジニル基、8-フェナントリジニル基、9-フェナントリジニル基、10-フェナントリジニル基、1-アクリジニル基、2-アクリジニル基、3-アクリジニル基、4-アクリジニル基、9-アクリジニル基、1,7-フェナントロリン-2-イル基、1,7-フェナントロリン-3-イル基、1,7-フェナントロリン-4-イル基、1,7-フェナントロリン-5-イル基、1,7-フェナントロリン-6-イル基、1,7-フェナントロリン-8-イル基、1,7-フェナントロリン-9-イル基、1,7-フェナントロリン-10-イル基、1,8-フェナントロリン-2-イル基、1,8-フェナントロリン-3-イル基、1,8-フェナントロリン-4-イル基、1,8-フェナントロリン-5-イル基、1,8-フェナントロリン-6-イル基、1,8-フェナントロリン-7-イル基、1,8-フェナントロリン-9-イル基、1,8-フェナントロリン-10-イル基、1,9-フェナントロリン-2-イル基、1,9-フェナントロリン-3-イル基、1,9-フェナントロリン-4-イル基、1,9-フェナントロリン-5-イル基、1,9-フェナントロリン-6-イル基、1,9-フェナントロリン-7-イル基、1,9-フェナントロリン-8-イル基、1,9-フェナントロリン-10-イル基、1,10-フェナントロリン-2-イル基、1,10-フェナントロリン-3-イル基、1,10-フェナントロリン-4-イル基、1,10-フェナントロリン-5-イル基、2,9-フェナントロリン-1-イル基、2,9-フェナントロリン-3-イル基、2,9-フェナントロリン-4-イル基、2,9-フェナントロリン-5-イル基、2,9-フェナントロリン-6-イル基、2,9-フェナントロリン-7-イル基、2,9-フェナントロリン-8-イル基、2,9-フェナントロリン-10-イル基、2,8-フェナントロリン-1-イル基、2,8-フェナントロリン-3-イル基、2,8-フェナントロリン-4-イル基、2,8-フェナントロリン-5-イル基、2,8-フェナントロリン-6-イル基、2,8-フェナントロリン-7-イル基、2,8-フェナントロリン-9-イル基、2,8-フェナントロリン-10-イル基、2,7-フェナントロリン-1-イル基、2,7-フェナントロリン-3-イル基、2,7-フェナントロリン-4-イル基、2,7-フェナントロリン-5-イル基、2,7-フェナントロリン-6-イル基、2,7-フェナントロリン-8-イル基、2,7-フェナントロリン-9-イル基、2,7-フェナントロリン-10-イル基、1-フェナジニル基、2-フェナジニル基、1-フェノチアジニル基、2-フェノチアジニル基、3-フェノチアジニル基、4-フェノチアジニル基、10-フェノチアジニル基、1-フェノキサジニル基、2-フェノキサジニル基、3-フェノキサジニル基、4-フェノキサジニル基、10-フェノキサジニル基、2-オキサゾリル基、4-オキサゾリル基、5-オキサゾリル基、2-オキサジアゾリル基、5-オキサジアゾリル基、3-フラザニル基、2-チエニル基、3-チエニル基、2-メチルピロール-1-イル基、2-メチルピロール-3-イル基、2-メチルピロール-4-イル基、2-メチルピロール-5-イル基、3-メチルピロール-1-イル基、3-メチルピロール-2-イル基、3-メチルピロール-4-イル基、3-メチルピロール-5-イル基、2-t-ブチルピロール-4-イル基、3-(2-フェニルプロピル)ピロール-1-イル基、2-メチル-1-インドリル基、4-メチル-1-インドリル基、2-メチル-3-インドリル基、4-メチル-3-インドリル基、2-t-ブチル1-インドリル基、4-t-ブチル1-インドリル基、2-t-ブチル3-インドリル基、4-t-ブチル3-インドリル基などが挙げられる。
 核原子数は、蒸着温度の観点から、5~30が好ましく、5~20がさらに好ましい。
Examples of the substituted or unsubstituted heterocyclic group having 5 to 50 nuclear atoms of R 1 to R 8 include 1-pyrrolyl group, 2-pyrrolyl group, 3-pyrrolyl group, pyrazinyl group, 2-pyridinyl group, and 3-pyridinyl group. Group, 4-pyridinyl group, 1-indolyl group, 2-indolyl group, 3-indolyl group, 4-indolyl group, 5-indolyl group, 6-indolyl group, 7-indolyl group, 1-isoindolyl group, 2-isoindolyl group Group, 3-isoindolyl group, 4-isoindolyl group, 5-isoindolyl group, 6-isoindolyl group, 7-isoindolyl group, 2-furyl group, 3-furyl group, 2-benzofuranyl group, 3-benzofuranyl group, 4-benzofuranyl group Group, 5-benzofuranyl group, 6-benzofuranyl group, 7-benzofuranyl group, 1-isobenzofuranyl group, 3-isobenzofuran group Nyl group, 4-isobenzofuranyl group, 5-isobenzofuranyl group, 6-isobenzofuranyl group, 7-isobenzofuranyl group, quinolyl group, 3-quinolyl group, 4-quinolyl group, 5- Quinolyl group, 6-quinolyl group, 7-quinolyl group, 8-quinolyl group, 1-isoquinolyl group, 3-isoquinolyl group, 4-isoquinolyl group, 5-isoquinolyl group, 6-isoquinolyl group, 7-isoquinolyl group, 8- Isoquinolyl group, 2-quinoxalinyl group, 5-quinoxalinyl group, 6-quinoxalinyl group, 1-carbazolyl group, 2-carbazolyl group, 3-carbazolyl group, 4-carbazolyl group, 9-carbazolyl group, 1-phenanthridinyl group 2-phenanthridinyl group, 3-phenanthridinyl group, 4-phenanthridinyl group, 6-phenanthridinyl group, 7-phena N-tridinyl group, 8-phenanthridinyl group, 9-phenanthridinyl group, 10-phenanthridinyl group, 1-acridinyl group, 2-acridinyl group, 3-acridinyl group, 4-acridinyl group, 9-acridinyl group 1,7-phenanthroline-2-yl group, 1,7-phenanthroline-3-yl group, 1,7-phenanthroline-4-yl group, 1,7-phenanthroline-5-yl group, 1,7- Phenanthroline-6-yl group, 1,7-phenanthroline-8-yl group, 1,7-phenanthroline-9-yl group, 1,7-phenanthroline-10-yl group, 1,8-phenanthroline-2-yl group 1,8-phenanthroline-3-yl group, 1,8-phenanthroline-4-yl group, 1,8-phenanthroline-5-yl group, 1,8-phene group Nthroline-6-yl group, 1,8-phenanthroline-7-yl group, 1,8-phenanthroline-9-yl group, 1,8-phenanthroline-10-yl group, 1,9-phenanthroline-2-yl group 1,9-phenanthroline-3-yl group, 1,9-phenanthroline-4-yl group, 1,9-phenanthroline-5-yl group, 1,9-phenanthroline-6-yl group, 1,9-phenanthroline -7-yl group, 1,9-phenanthroline-8-yl group, 1,9-phenanthroline-10-yl group, 1,10-phenanthroline-2-yl group, 1,10-phenanthroline-3-yl group, 1,10-phenanthroline-4-yl group, 1,10-phenanthroline-5-yl group, 2,9-phenanthroline-1-yl group, 2,9-phenanthro 3-yl group, 2,9-phenanthroline-4-yl group, 2,9-phenanthroline-5-yl group, 2,9-phenanthroline-6-yl group, 2,9-phenanthroline-7-yl group 2,9-phenanthroline-8-yl group, 2,9-phenanthroline-10-yl group, 2,8-phenanthroline-1-yl group, 2,8-phenanthroline-3-yl group, 2,8-phenanthroline -4-yl group, 2,8-phenanthroline-5-yl group, 2,8-phenanthroline-6-yl group, 2,8-phenanthroline-7-yl group, 2,8-phenanthroline-9-yl group, 2,8-phenanthroline-10-yl group, 2,7-phenanthroline-1-yl group, 2,7-phenanthroline-3-yl group, 2,7-phenanthroline-4-yl group, 2,7-phenanthroline-5-yl group, 2,7-phenanthroline-6-yl group, 2,7-phenanthroline-8-yl group, 2,7-phenanthroline-9-yl group, 2,7-phenanthroline- 10-yl group, 1-phenazinyl group, 2-phenazinyl group, 1-phenothiazinyl group, 2-phenothiazinyl group, 3-phenothiazinyl group, 4-phenothiazinyl group, 10-phenothiazinyl group, 1-phenoxazinyl group, 2-phenoxazinyl group, 3-phenoxazinyl group, 4-phenoxazinyl group, 10-phenoxazinyl group, 2-oxazolyl group, 4-oxazolyl group, 5-oxazolyl group, 2-oxadiazolyl group, 5-oxadiazolyl group, 3-flazanyl group, 2-thienyl group, 3-thienyl group, 2-methylpyrrol-1-yl group, -Methylpyrrol-3-yl group, 2-methylpyrrol-4-yl group, 2-methylpyrrol-5-yl group, 3-methylpyrrol-1-yl group, 3-methylpyrrol-2-yl group, 3 -Methylpyrrol-4-yl group, 3-methylpyrrol-5-yl group, 2-t-butylpyrrol-4-yl group, 3- (2-phenylpropyl) pyrrol-1-yl group, 2-methyl- 1-indolyl group, 4-methyl-1-indolyl group, 2-methyl-3-indolyl group, 4-methyl-3-indolyl group, 2-t-butyl 1-indolyl group, 4-t-butyl 1-indolyl group Group, 2-t-butyl 3-indolyl group, 4-t-butyl 3-indolyl group and the like.
The number of nucleus atoms is preferably from 5 to 30, more preferably from 5 to 20, from the viewpoint of the deposition temperature.
 R1~R8の置換もしくは無置換の炭素数1~50のアルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、s-ブチル基、イソブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、ヒドロキシメチル基、1-ヒドロキシエチル基、2-ヒドロキシエチル基、2-ヒドロキシイソブチル基、1,2-ジヒドロキシエチル基、1,3-ジヒドロキシイソプロピル基、2,3-ジヒドロキシ-t-ブチル基、1,2,3-トリヒドロキシプロピル基、クロロメチル基、1-クロロエチル基、2-クロロエチル基、2-クロロイソブチル基、1,2-ジクロロエチル基、1,3-ジクロロイソプロピル基、2,3-ジクロロ-t-ブチル基、1,2,3-トリクロロプロピル基、ブロモメチル基、1-ブロモエチル基、2-ブロモエチル基、2-ブロモイソブチル基、1,2-ジブロモエチル基、1,3-ジブロモイソプロピル基、2,3-ジブロモ-t-ブチル基、1,2,3-トリブロモプロピル基、ヨードメチル基、1-ヨードエチル基、2-ヨードエチル基、2-ヨードイソブチル基、1,2-ジヨードエチル基、1,3-ジヨードイソプロピル基、2,3-ジヨード-t-ブチル基、1,2,3-トリヨードプロピル基、アミノメチル基、1-アミノエチル基、2-アミノエチル基、2-アミノイソブチル基、1,2-ジアミノエチル基、1,3-ジアミノイソプロピル基、2,3-ジアミノ-t-ブチル基、1,2,3-トリアミノプロピル基、シアノメチル基、1-シアノエチル基、2-シアノエチル基、2-シアノイソブチル基、1,2-ジシアノエチル基、1,3-ジシアノイソプロピル基、2,3-ジシアノ-t-ブチル基、1,2,3-トリシアノプロピル基、ニトロメチル基、1-ニトロエチル基、2-ニトロエチル基、2-ニトロイソブチル基、1,2-ジニトロエチル基、1,3-ジニトロイソプロピル基、2,3-ジニトロ-t-ブチル基、1,2,3-トリニトロプロピル基などが挙げられる。
 上記炭素数は、蒸着温度の観点から、1~10が好ましく、1~6がさらに好ましい。
Examples of the substituted or unsubstituted alkyl group having 1 to 50 carbon atoms of R 1 to R 8 include methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, s-butyl group, isobutyl group, and t-butyl. Group, n-pentyl group, n-hexyl group, n-heptyl group, n-octyl group, hydroxymethyl group, 1-hydroxyethyl group, 2-hydroxyethyl group, 2-hydroxyisobutyl group, 1,2-dihydroxyethyl Group, 1,3-dihydroxyisopropyl group, 2,3-dihydroxy-t-butyl group, 1,2,3-trihydroxypropyl group, chloromethyl group, 1-chloroethyl group, 2-chloroethyl group, 2-chloroisobutyl Group, 1,2-dichloroethyl group, 1,3-dichloroisopropyl group, 2,3-dichloro-t-butyl group, 1,2,3-trichloro group Pill group, bromomethyl group, 1-bromoethyl group, 2-bromoethyl group, 2-bromoisobutyl group, 1,2-dibromoethyl group, 1,3-dibromoisopropyl group, 2,3-dibromo-t-butyl group, 1 , 2,3-tribromopropyl group, iodomethyl group, 1-iodoethyl group, 2-iodoethyl group, 2-iodoisobutyl group, 1,2-diiodoethyl group, 1,3-diiodoisopropyl group, 2,3-diiodo -T-butyl group, 1,2,3-triiodopropyl group, aminomethyl group, 1-aminoethyl group, 2-aminoethyl group, 2-aminoisobutyl group, 1,2-diaminoethyl group, 1,3 -Diaminoisopropyl group, 2,3-diamino-t-butyl group, 1,2,3-triaminopropyl group, cyanomethyl group, 1-cyanoethyl group, 2-cyano Ethyl group, 2-cyanoisobutyl group, 1,2-dicyanoethyl group, 1,3-dicyanoisopropyl group, 2,3-dicyano-t-butyl group, 1,2,3-tricyanopropyl group, nitromethyl group, 1-nitroethyl group, 2-nitroethyl group, 2-nitroisobutyl group, 1,2-dinitroethyl group, 1,3-dinitroisopropyl group, 2,3-dinitro-t-butyl group, 1,2,3-tri Examples thereof include a nitropropyl group.
The carbon number is preferably from 1 to 10, more preferably from 1 to 6, from the viewpoint of vapor deposition temperature.
 R1~R8の置換基の置換もしくは無置換の核炭素数3~50のシクロアルキル基としては、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、4-メチルシクロヘキシル基、1-アダマンチル基、2-アダマンチル基、1-ノルボルニル基、2-ノルボルニル基などが挙げられる。
 核炭素数は、蒸着温度の観点から、3~10が好ましく、5~8がさらに好ましい。
Examples of the substituted or unsubstituted cycloalkyl group having 3 to 50 nuclear carbon atoms represented by R 1 to R 8 include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a 4-methylcyclohexyl group, and a 1-adamantyl group. , 2-adamantyl group, 1-norbornyl group, 2-norbornyl group and the like.
The number of nuclear carbons is preferably from 3 to 10, more preferably from 5 to 8, from the viewpoint of vapor deposition temperature.
 R1~R8の置換もしくは無置換の炭素数1~50のアルコキシ基は-OZで表される基であり、Zは、前記R1~R8の置換もしくは無置換の炭素数1~50のアルキル基から選択される。
 蒸着温度の観点から、1~10が好ましく、1~6がさらに好ましい。
The substituted or unsubstituted alkoxy group having 1 to 50 carbon atoms of R 1 to R 8 is a group represented by —OZ, and Z is the substituted or unsubstituted carbon number of 1 to 50 of R 1 to R 8. Selected from the following alkyl groups:
From the viewpoint of vapor deposition temperature, 1 to 10 is preferable, and 1 to 6 is more preferable.
 R1~R8の置換基の置換もしくは無置換の炭素数7~50アラルキル基(アリール部分は炭素数6~49、アルキル部分は炭素数1~44)としては、ベンジル基、1-フェニルエチル基、2-フェニルエチル基、1-フェニルイソプロピル基、2-フェニルイソプロピル基、フェニル-t-ブチル基、α-ナフチルメチル基、1-α-ナフチルエチル基、2-α-ナフチルエチル基、1-α-ナフチルイソプロピル基、2-α-ナフチルイソプロピル基、β-ナフチルメチル基、1-β-ナフチルエチル基、2-β-ナフチルエチル基、1-β-ナフチルイソプロピル基、2-β-ナフチルイソプロピル基、1-ピロリルメチル基、2-(1-ピロリル)エチル基、p-メチルベンジル基、m-メチルベンジル基、o-メチルベンジル基、p-クロロベンジル基、m-クロロベンジル基、o-クロロベンジル基、p-ブロモベンジル基、m-ブロモベンジル基、o-ブロモベンジル基、p-ヨードベンジル基、m-ヨードベンジル基、o-ヨードベンジル基、p-ヒドロキシベンジル基、m-ヒドロキシベンジル基、o-ヒドロキシベンジル基、p-アミノベンジル基、m-アミノベンジル基、o-アミノベンジル基、p-ニトロベンジル基、m-ニトロベンジル基、o-ニトロベンジル基、p-シアノベンジル基、m-シアノベンジル基、o-シアノベンジル基、1-ヒドロキシ-2-フェニルイソプロピル基、1-クロロ-2-フェニルイソプロピル基などが挙げられる。
 上記炭素数は、蒸着温度の観点から、7~20が好ましく、7~10がさらに好ましい。
The substituted or unsubstituted aralkyl group having 7 to 50 carbon atoms (the aryl moiety has 6 to 49 carbon atoms and the alkyl moiety has 1 to 44 carbon atoms) as the substituent of R 1 to R 8 includes a benzyl group, 1-phenylethyl Group, 2-phenylethyl group, 1-phenylisopropyl group, 2-phenylisopropyl group, phenyl-t-butyl group, α-naphthylmethyl group, 1-α-naphthylethyl group, 2-α-naphthylethyl group, 1 -Α-naphthylisopropyl, 2-α-naphthylisopropyl, β-naphthylmethyl, 1-β-naphthylethyl, 2-β-naphthylethyl, 1-β-naphthylisopropyl, 2-β-naphthyl Isopropyl, 1-pyrrolylmethyl, 2- (1-pyrrolyl) ethyl, p-methylbenzyl, m-methylbenzyl, o-methylbenzyl, p-methyl Lorobenzyl group, m-chlorobenzyl group, o-chlorobenzyl group, p-bromobenzyl group, m-bromobenzyl group, o-bromobenzyl group, p-iodobenzyl group, m-iodobenzyl group, o-iodobenzyl group P-hydroxybenzyl group, m-hydroxybenzyl group, o-hydroxybenzyl group, p-aminobenzyl group, m-aminobenzyl group, o-aminobenzyl group, p-nitrobenzyl group, m-nitrobenzyl group, o -Nitrobenzyl group, p-cyanobenzyl group, m-cyanobenzyl group, o-cyanobenzyl group, 1-hydroxy-2-phenylisopropyl group, 1-chloro-2-phenylisopropyl group and the like.
The carbon number is preferably from 7 to 20, and more preferably from 7 to 10, from the viewpoint of vapor deposition temperature.
 R1~R8の置換もしくは無置換の核炭素数6~50のアリールオキシ基及びアリールチオ基は、それぞれ-OY及び-SYと表され、Yは、前記R1~R8の置換もしくは無置換の核炭素数6~50のアリール基から選ばれる。
 核炭素数は、蒸着温度の観点から、6~20が好ましく、6~10がさらに好ましい。
Aryloxy and arylthio groups of R 1 ~ substituted or unsubstituted aromatic ring group having 6 to 50 R 8 each is represented by -OY and -SY, Y represents a substituted or unsubstituted wherein R 1 ~ R 8 Selected from aryl groups having 6 to 50 nuclear carbon atoms.
The number of nuclear carbons is preferably 6 to 20, more preferably 6 to 10, from the viewpoint of the deposition temperature.
 R1~R8の置換もしくは無置換の炭素数2~50アルコキシカルボニル基(アルキル部分は炭素数1~49)は-COOZと表され、Zは、前記R1~R8の置換もしくは無置換の炭素数1~49のアルキル基から選ばれる。
 上記炭素数は、蒸着温度の観点から、2~20が好ましく、2~6がさらに好ましい。
A substituted or unsubstituted alkoxy group having 2 to 50 carbon atoms of R 1 to R 8 (the alkyl moiety has 1 to 49 carbon atoms) is represented as —COOZ, and Z is a substituted or unsubstituted group of R 1 to R 8. Or an alkyl group having 1 to 49 carbon atoms.
The carbon number is preferably from 2 to 20, more preferably from 2 to 6, from the viewpoint of vapor deposition temperature.
 R1~R8の置換シリル基としては、トリメチルシリル基、トリエチルシリル基、t-ブチルジメチルシリル基、ビニルジメチルシリル基、プロピルジメチルシリル基、トリフェニルシリル基等が挙げられる。 Examples of the substituted silyl group of R 1 to R 8 include a trimethylsilyl group, a triethylsilyl group, a t-butyldimethylsilyl group, a vinyldimethylsilyl group, a propyldimethylsilyl group, and a triphenylsilyl group.
 R1~R8のハロゲン原子としては、フッ素、塩素、臭素、ヨウ素などが挙げられる。 Examples of the halogen atom for R 1 to R 8 include fluorine, chlorine, bromine and iodine.
 式(2)で表されるアントラセン誘導体の具体例としては、下記式で表される誘導体が挙げられる。 Specific examples of the anthracene derivative represented by the formula (2) include derivatives represented by the following formula.
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000042
 また、式(2)で表されるアントラセン誘導体の他の具体例としては、下記式で表される誘導体が挙げられる。 In addition, other specific examples of the anthracene derivative represented by the formula (2) include derivatives represented by the following formula.
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000046
 上述のような式(1)で表されるジアミノピレン誘導体と、式(2)で表されるアントラセン誘導体とを含む有機発光媒体を有機EL素子の有機薄膜層に用いることで短波長の発光を高い発光効率で得ることが可能で、素子の寿命を長くすることができる。
 これは、ジアミノピレンにα-ナフチル基が結合していることにより、共役しにくくなるために短波長化することに加え、ピレン母核にアルキル基またはシクロアルキル基が置換されることにより、ホストとドーパント、ドーパント同士の会合防止効果があり、短波長、長寿命効果があると推察される。この効果は、本願で取り上げた特定の構造のホスト材料との組合せの場合においてのみ、特異的に実現できる。この特異的な組合せを用いると、ホストとドーパント、ドーパント同士が適切な距離を保つ有機薄膜を形成することができるためと推察される。
 中でも、式(1)で表されるジアミノピレン誘導体において、式(2-4)式(2-5)式(2-6-3)で表されるアントラセン誘導体と組み合わせることが好ましい。
By using an organic light emitting medium containing the diaminopyrene derivative represented by the above formula (1) and the anthracene derivative represented by the above formula (2) for the organic thin film layer of the organic EL element, light emission at a short wavelength can be achieved. It can be obtained with high luminous efficiency, and the lifetime of the element can be extended.
This is because the α-naphthyl group is bonded to diaminopyrene, so that it becomes difficult to conjugate, and in addition to shortening the wavelength, an alkyl group or a cycloalkyl group is substituted on the pyrene mother nucleus, thereby It is presumed that it has a short wavelength and long life effect. This effect can be realized specifically only in combination with a host material having a specific structure taken up in the present application. If this specific combination is used, it is assumed that an organic thin film can be formed in which the host, the dopant, and the dopant maintain an appropriate distance.
Among them, the diaminopyrene derivative represented by the formula (1) is preferably combined with the anthracene derivative represented by the formula (2-4), the formula (2-5) and the formula (2-6-3).
 式(1)で表されるジアミノピレン誘導体は、例えば、ジアルキルジブロモピレンを、金属触媒下、対応する2級アミン化合物と反応させることによって合成することができる。また、式(2)で表されるアントラセン誘導体は、例えば、WO2004/018587号公報記載の方法によって合成することができる。 The diaminopyrene derivative represented by the formula (1) can be synthesized, for example, by reacting dialkyldibromopyrene with a corresponding secondary amine compound in the presence of a metal catalyst. Moreover, the anthracene derivative represented by Formula (2) is compoundable by the method of WO2004 / 018587, for example.
 本発明の有機発光媒体は、既述のような式(1)で表されるジアミノピレン誘導体式(1)および式(2)で表されるアントラセン誘導体が共存した状態となっている。式(1)で表されるジアミノピレン誘導体と式(2)で表されるアントラセン誘導体との質量比は、50:50~0.1:99.9であることが好ましく、20:80~1:99であることがより好ましい。 The organic light-emitting medium of the present invention is in a state in which the diaminopyrene derivative formulas (1) and (2) represented by the formula (1) as described above coexist. The mass ratio of the diaminopyrene derivative represented by the formula (1) and the anthracene derivative represented by the formula (2) is preferably 50:50 to 0.1: 99.9, and 20:80 to 1 : 99 is more preferable.
[有機EL素子]
 本発明の有機EL素子は、陽極と陰極との間に一層又は複数層の有機薄膜層が形成された素子である。有機薄膜層が複数層となっている場合は、一層が発光層となっている。有機薄膜層が一層の場合、陽極と陰極との間には、有機薄膜層としての発光層が形成されている。有機薄膜層のうち少なくとも一層(好ましくは発光層)は、本発明の有機発光媒体を含有しており、さらに、陽極から注入した正孔、又は陰極から注入した電子を発光材料まで輸送させるために、正孔注入材料又は電子注入材料を含有してもよい。本発明の有機発光媒体は、高い発光特性を持ち、優れた正孔注入性、正孔輸送特性及び電子注入性、電子輸送特性をも有しているので、発光材料又はドーピング材料として発光層に使用することができる。
[Organic EL device]
The organic EL device of the present invention is a device in which one or more organic thin film layers are formed between an anode and a cathode. When the organic thin film layer is a plurality of layers, one layer is a light emitting layer. When the organic thin film layer is a single layer, a light emitting layer as an organic thin film layer is formed between the anode and the cathode. At least one of the organic thin film layers (preferably the light emitting layer) contains the organic light emitting medium of the present invention, and in order to transport holes injected from the anode or electrons injected from the cathode to the light emitting material. Further, a hole injection material or an electron injection material may be contained. The organic light-emitting medium of the present invention has high light-emitting properties and has excellent hole-injecting properties, hole-transporting properties, electron-injecting properties, and electron-transporting properties. Can be used.
 有機薄膜層のうち少なくとも一層(好ましくは発光層)に含有される有機発光媒体は、0.1~20質量%であることが好ましく、1~10質量%であることがより好ましい。また、本発明の有機発光媒体は極めて高い蛍光量子効率、高い正孔輸送能力及び電子輸送能力を併せ持ち、均一な薄膜を形成することができるので、これのみで発光層を形成することも可能である。
 また、本発明の有機EL素子は、陰極と陽極間に少なくとも発光層を含む二層以上からなる有機薄膜層が挟持されている有機EL素子において、陽極と発光層との間に本発明の有機発光媒体を主成分とする有機層を有しても好ましい。この有機層としては、正孔注入層、正孔輸送層等が挙げられる。
The organic light emitting medium contained in at least one layer (preferably the light emitting layer) of the organic thin film layer is preferably 0.1 to 20% by mass, and more preferably 1 to 10% by mass. In addition, the organic light-emitting medium of the present invention has extremely high fluorescence quantum efficiency, high hole transport ability and electron transport ability, and can form a uniform thin film. is there.
Further, the organic EL device of the present invention is an organic EL device in which an organic thin film layer comprising at least two layers including at least a light emitting layer is sandwiched between a cathode and an anode, and the organic EL device of the present invention is interposed between the anode and the light emitting layer. It is also preferable to have an organic layer whose main component is a luminescent medium. Examples of the organic layer include a hole injection layer and a hole transport layer.
 本発明において、有機薄膜層が複数層型の有機EL素子としては、(陽極/正孔注入層/発光層/陰極)、(陽極/発光層/電子注入層/陰極)、(陽極/正孔注入層/発光層/電子注入層/陰極)等の構成で積層したものが挙げられる。
 複数層には、必要に応じて、本発明の有機発光媒体に加えてさらなる公知の発光材料、ドーピング材料、正孔注入材料や電子注入材料を使用することもできる。有機EL素子は、前記有機薄膜層を複数層構造にすることにより、クエンチングによる輝度や寿命の低下を防ぐことができる。必要があれば、発光材料、ドーピング材料、正孔注入材料や電子注入材料を組み合わせて使用することができる。また、ドーピング材料により、発光輝度や発光効率の向上、赤色や青色の発光を得ることもできる。また、正孔注入層、発光層、電子注入層は、それぞれ二層以上の層構成により形成されてもよい。その際には、正孔注入層の場合、電極から正孔を注入する層を正孔注入層、正孔注入層から正孔を受け取り発光層まで正孔を輸送する層を正孔輸送層と呼ぶ。同様に、電子注入層の場合、電極から電子を注入する層を電子注入層、電子注入層から電子を受け取り発光層まで電子を輸送する層を電子輸送層と呼ぶ。これらの各層は、材料のエネルギー準位、耐熱性、有機層又は金属電極との密着性等の各要因により選択されて使用される。
In the present invention, organic EL elements having a plurality of organic thin film layers are (anode / hole injection layer / light emitting layer / cathode), (anode / light emitting layer / electron injection layer / cathode), (anode / hole). (Injection layer / light emitting layer / electron injection layer / cathode) and the like.
In addition to the organic light-emitting medium of the present invention, further known light-emitting materials, doping materials, hole-injecting materials, and electron-injecting materials can be used for the multiple layers as needed. The organic EL element can prevent the brightness | luminance and lifetime fall by quenching by making the said organic thin film layer into a multilayer structure. If necessary, a light emitting material, a doping material, a hole injection material, and an electron injection material can be used in combination. Further, by using a doping material, it is possible to improve light emission luminance and light emission efficiency and to obtain red and blue light emission. Further, the hole injection layer, the light emitting layer, and the electron injection layer may each be formed of two or more layers. In that case, in the case of a hole injection layer, the layer that injects holes from the electrode is a hole injection layer, and the layer that receives holes from the hole injection layer and transports holes to the light emitting layer is a hole transport layer. Call. Similarly, in the case of an electron injection layer, a layer that injects electrons from an electrode is referred to as an electron injection layer, and a layer that receives electrons from the electron injection layer and transports electrons to a light emitting layer is referred to as an electron transport layer. Each of these layers is selected and used depending on factors such as the energy level of the material, heat resistance, and adhesion to the organic layer or metal electrode.
 本発明の有機発光媒体と共に発光層に使用できるホスト材料又はドーピング材料としては、例えば、ナフタレン、フェナントレン、ルブレン、アントラセン、テトラセン、ピレン、ペリレン、クリセン、デカシクレン、コロネン、テトラフェニルシクロペンタジエン、ペンタフェニルシクロペンタジエン、フルオレン、スピロフルオレン、9,10-ジフェニルアントラセン、9,10-ビス(フェニルエチニル)アントラセン、1,4-ビス(9’-エチニルアントラセニル)ベンゼン等の縮合多量芳香族化合物及びそれらの誘導体、トリス(8-キノリノラート)アルミニウム、ビス-(2-メチル-8-キノリノラート)-4-(フェニルフェノリナート)アルミニウム等の有機金属錯体、トリアリールアミン誘導体、スチリルアミン誘導体、スチルベン誘導体、クマリン誘導体、ピラン誘導体、オキサゾン誘導体、ベンゾチアゾール誘導体、ベンゾオキサゾール誘導体、ベンゾイミダゾール誘導体、ピラジン誘導体、ケイ皮酸エステル誘導体、ジケトピロロピロール誘導体、アクリドン誘導体、キナクリドン誘導体等が挙げられるが、これらに限定されるものではない。 Examples of host materials or doping materials that can be used in the light emitting layer together with the organic light emitting medium of the present invention include, for example, naphthalene, phenanthrene, rubrene, anthracene, tetracene, pyrene, perylene, chrysene, decacyclene, coronene, tetraphenylcyclopentadiene, pentaphenylcyclopentaene. Condensed polyaromatic compounds such as pentadiene, fluorene, spirofluorene, 9,10-diphenylanthracene, 9,10-bis (phenylethynyl) anthracene, 1,4-bis (9′-ethynylanthracenyl) benzene, and the like Derivatives, organometallic complexes such as tris (8-quinolinolato) aluminum, bis- (2-methyl-8-quinolinolato) -4- (phenylphenolinato) aluminum, triarylamine derivatives, styrylamido Derivatives, stilbene derivatives, coumarin derivatives, pyran derivatives, oxazone derivatives, benzothiazole derivatives, benzoxazole derivatives, benzimidazole derivatives, pyrazine derivatives, cinnamic acid ester derivatives, diketopyrrolopyrrole derivatives, acridone derivatives, quinacridone derivatives, etc. However, it is not limited to these.
 正孔注入材料としては、正孔を輸送する能力を持ち、陽極からの正孔注入効果、発光層又は有機発光媒体に対して優れた正孔注入効果を有し、発光層で生成した励起子の電子注入層又は電子注入材料への移動を防止し、かつ薄膜形成能力の優れた化合物が好ましい。具体的には、フタロシアニン誘導体、ナフタロシアニン誘導体、ポルフィリン誘導体、オキサゾール、オキサジアゾール、トリアゾール、イミダゾール、イミダゾロン、イミダゾールチオン、ピラゾリン、ピラゾロン、テトラヒドロイミダゾール、オキサゾール、オキサジアゾール、ヒドラゾン、アシルヒドラゾン、ポリアリールアルカン、スチルベン、ブタジエン、ベンジジン型トリフェニルアミン、スチリルアミン型トリフェニルアミン、ジアミン型トリフェニルアミン等と、それらの誘導体、及びポリビニルカルバゾール、ポリシラン、導電性高分子等の高分子材料が挙げられるが、これらに限定されるものではない。 As a hole injection material, it has the ability to transport holes, has a hole injection effect from the anode, an excellent hole injection effect for the light emitting layer or organic light emitting medium, and excitons generated in the light emitting layer The compound which prevents the movement to the electron injection layer or the electron injection material and has an excellent thin film forming ability is preferable. Specifically, phthalocyanine derivatives, naphthalocyanine derivatives, porphyrin derivatives, oxazole, oxadiazole, triazole, imidazole, imidazolone, imidazolethione, pyrazoline, pyrazolone, tetrahydroimidazole, oxazole, oxadiazole, hydrazone, acylhydrazone, polyaryl Examples include alkane, stilbene, butadiene, benzidine type triphenylamine, styrylamine type triphenylamine, diamine type triphenylamine, and derivatives thereof, and polymer materials such as polyvinylcarbazole, polysilane, and conductive polymers. However, it is not limited to these.
 本発明の有機EL素子において使用できる正孔注入材料の中で、さらに効果的な正孔注入材料は、芳香族三級アミン誘導体及びフタロシアニン誘導体である。
 芳香族三級アミン誘導体としては、例えば、トリフェニルアミン、トリトリルアミン、トリルジフェニルアミン、N,N’-ジフェニル-N,N’-(3-メチルフェニル)-1,1’-ビフェニル-4,4’-ジアミン、N,N,N’,N’-(4-メチルフェニル)-1,1’-フェニル-4,4’-ジアミン、N,N,N’,N’-(4-メチルフェニル)-1,1’-ビフェニル-4,4’-ジアミン、N,N’-ジフェニル-N,N’-ジナフチル-1,1’-ビフェニル-4,4’-ジアミン、N,N’-(メチルフェニル)-N,N’-(4-n-ブチルフェニル)-フェナントレン-9,10-ジアミン、N,N-ビス(4-ジ-4-トリルアミノフェニル)-4-フェニル-シクロヘキサン等、又はこれらの芳香族三級アミン骨格を有したオリゴマーもしくはポリマーであるが、これらに限定されるものではない。
Among the hole injection materials that can be used in the organic EL device of the present invention, more effective hole injection materials are aromatic tertiary amine derivatives and phthalocyanine derivatives.
Examples of the aromatic tertiary amine derivative include triphenylamine, tolylamine, tolyldiphenylamine, N, N′-diphenyl-N, N ′-(3-methylphenyl) -1,1′-biphenyl-4,4 '-Diamine, N, N, N', N '-(4-methylphenyl) -1,1'-phenyl-4,4'-diamine, N, N, N', N '-(4-methylphenyl) ) -1,1′-biphenyl-4,4′-diamine, N, N′-diphenyl-N, N′-dinaphthyl-1,1′-biphenyl-4,4′-diamine, N, N ′-( Methylphenyl) -N, N ′-(4-n-butylphenyl) -phenanthrene-9,10-diamine, N, N-bis (4-di-4-tolylaminophenyl) -4-phenyl-cyclohexane, etc. Or oligomers having these aromatic tertiary amine skeletons Or is a polymer, but is not limited thereto.
 フタロシアニン(Pc)誘導体としては、例えば、H2Pc、CuPc、CoPc、NiPc、ZnPc、PdPc、FePc、MnPc、ClAlPc、ClGaPc、ClInPc、ClSnPc、Cl2SiPc、(HO)AlPc、(HO)GaPc、VOPc、TiOPc、MoOPc、GaPc-O-GaPc等のフタロシアニン誘導体及びナフタロシアニン誘導体があるが、これらに限定されるものではない。 Examples of the phthalocyanine (Pc) derivative include H 2 Pc, CuPc, CoPc, NiPc, ZnPc, PdPc, FePc, MnPc, ClAlPc, ClGaPc, ClInPc, ClSnPc, Cl 2 SiPc, (HO) AlPc, (HO) GaPc, Examples include, but are not limited to, phthalocyanine derivatives and naphthalocyanine derivatives such as VOPc, TiOPc, MoOPc, and GaPc—O—GaPc.
 また、本発明の有機EL素子は、発光層と陽極との間に、これらの芳香族三級アミン誘導体及び/又はフタロシアニン誘導体を含有する層、例えば、前記正孔輸送層又は正孔注入層を形成してなると好ましい。 Further, the organic EL device of the present invention includes a layer containing these aromatic tertiary amine derivatives and / or phthalocyanine derivatives, for example, the hole transport layer or the hole injection layer, between the light emitting layer and the anode. Preferably formed.
 電子注入材料としては、電子を輸送する能力を持ち、陰極からの電子注入効果、発光層又は発光材料に対して優れた電子注入効果を有し、発光層で生成した励起子の正孔注入層への移動を防止し、かつ薄膜形成能力の優れた化合物が好ましい。
 電子注入材料の具体例としては、8-ヒドロキシキノリン又はその誘導体の金属錯体やオキサジアゾール誘導体が好適である。上記8-ヒドロキシキノリン又はその誘導体の金属錯体の具体例としては、オキシン(一般に8-キノリノール又は8-ヒドロキシキノリン)のキレートを含む金属キレートオキシノイド化合物、例えばトリス(8-キノリノラト)アルミニウムを電子注入材料として用いることができる。
As an electron injection material, it has the ability to transport electrons, has an electron injection effect from the cathode, an excellent electron injection effect for the light emitting layer or light emitting material, and a hole injection layer of excitons generated in the light emitting layer The compound which prevents the movement to and is excellent in thin film forming ability is preferable.
As specific examples of the electron injecting material, 8-hydroxyquinoline or a metal complex of its derivative or an oxadiazole derivative is preferable. As a specific example of the metal complex of 8-hydroxyquinoline or its derivative, a metal chelate oxinoid compound containing a chelate of oxine (generally 8-quinolinol or 8-hydroxyquinoline), such as tris (8-quinolinolato) aluminum, is injected. It can be used as a material.
 一方、オキサジアゾール誘導体としては、以下の一般式で表される電子伝達化合物が挙げられる。 On the other hand, examples of the oxadiazole derivative include an electron transfer compound represented by the following general formula.
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000047
(上記式中、Ar1、Ar2、Ar3、Ar5、Ar6、及びAr9はそれぞれ置換又は無置換のアリール基を示し、それぞれ互いに同一であっても異なっていてもよい。またAr4、Ar7、Ar8は置換又は無置換のアリーレン基を示し、それぞれ同一であっても異なっていてもよい) (In the above formula, Ar 1 , Ar 2 , Ar 3 , Ar 5 , Ar 6 , and Ar 9 each represent a substituted or unsubstituted aryl group, and may be the same or different from each other. Ar 4 , Ar 7 and Ar 8 represent a substituted or unsubstituted arylene group, which may be the same or different.
 ここでアリール基としてはフェニル基、ビフェニル基、アントラニル基、ペリレニル基、ピレニル基が挙げられる。また、アリーレン基としてはフェニレン基、ナフチレン基、ビフェニレン基、アントラニレン基、ペリレニレン基、ピレニレン基などが挙げられる。また、置換基としては炭素数1~10のアルキル基、炭素数1~10のアルコキシ基又はシアノ基等が挙げられる。この電子伝達化合物は薄膜形成性のものが好ましい。 Here, examples of the aryl group include a phenyl group, a biphenyl group, an anthranyl group, a perylenyl group, and a pyrenyl group. Examples of the arylene group include a phenylene group, a naphthylene group, a biphenylene group, an anthranylene group, a peryleneylene group, and a pyrenylene group. Examples of the substituent include an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, and a cyano group. This electron transfer compound is preferably a thin film-forming compound.
 上記電子伝達性化合物の具体例としては下記のものを挙げることができる。
Figure JPOXMLDOC01-appb-C000048
Specific examples of the electron transfer compound include the following.
Figure JPOXMLDOC01-appb-C000048
 さらに、電子注入材料として、下記一般式(A)~(F)で表されるものも用いることができる。
Figure JPOXMLDOC01-appb-C000049
Further, materials represented by the following general formulas (A) to (F) can also be used as the electron injection material.
Figure JPOXMLDOC01-appb-C000049
(一般式(A)及び(B)中、A1~A3は、それぞれ独立に、窒素原子又は炭素原子である。
 Ar1は、置換もしくは無置換の核炭素数6~60のアリール基、又は置換もしくは無置換の核原子数5~60の複素環基であり、Ar2は、水素原子、置換もしくは無置換の核炭素数6~60のアリール基、置換もしくは無置換の核原子数5~60の複素環基、置換もしくは無置換の炭素数1~20のアルキル基、又は置換もしくは無置換の炭素数1~20のアルコキシ基、あるいはこれらの2価の基である。ただし、Ar1及びAr2のいずれか一方は、置換もしくは無置換の核炭素数10~60の縮合環基、又は置換もしくは無置換の核原子数5~60のモノヘテロ縮合環基である。
 L1、L2及びLは、それぞれ独立に、単結合、置換もしくは無置換の核炭素数6~60のアリーレン基、置換もしくは無置換の核原子数5~60のヘテロアリーレン基、又は置換もしくは無置換のフルオレニレン基である。
 Rは、水素原子、置換もしくは無置換の核炭素数6~60のアリール基、置換もしくは無置換の核原子数5~60の複素環基、置換もしくは無置換の炭素数1~20のアルキル基、又は置換もしくは無置換の炭素数1~20のアルコキシ基であり、nは0~5の整数であり、nが2以上の場合、複数のRは同一でも異なっていてもよく、また、隣接する複数のR基同士で結合して、炭素環式脂肪族環又は炭素環式芳香族環を形成していてもよい。)で表される含窒素複素環誘導体。
(In the general formulas (A) and (B), A 1 to A 3 each independently represents a nitrogen atom or a carbon atom.
Ar 1 is a substituted or unsubstituted aryl group having 6 to 60 nuclear carbon atoms or a substituted or unsubstituted heterocyclic group having 5 to 60 nuclear atoms, Ar 2 is a hydrogen atom, substituted or unsubstituted An aryl group having 6 to 60 nuclear carbon atoms, a substituted or unsubstituted heterocyclic group having 5 to 60 nuclear atoms, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, or a substituted or unsubstituted carbon group having 1 to 20 alkoxy groups, or these divalent groups. However, either one of Ar 1 and Ar 2, a substituted or unsubstituted fused ring group having a carbon number of 10 to 60, or a substituted or unsubstituted monohetero fused ring group having 5 to 60 ring atoms.
L 1 , L 2 and L are each independently a single bond, a substituted or unsubstituted arylene group having 6 to 60 nuclear carbon atoms, a substituted or unsubstituted heteroarylene group having 5 to 60 nuclear atoms, or a substituted or unsubstituted An unsubstituted fluorenylene group.
R represents a hydrogen atom, a substituted or unsubstituted aryl group having 6 to 60 nuclear carbon atoms, a substituted or unsubstituted heterocyclic group having 5 to 60 nuclear atoms, or a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms. Or a substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms, n is an integer of 0 to 5, and when n is 2 or more, a plurality of R may be the same or different and adjacent to each other A plurality of R groups may be bonded to each other to form a carbocyclic aliphatic ring or a carbocyclic aromatic ring. The nitrogen-containing heterocyclic derivative represented by this.
     HAr-L-Ar1-Ar2    (C)
(式中、HArは、置換基を有していてもよい炭素数3~40の含窒素複素環であり、Lは、単結合、置換基を有していてもよい核炭素数6~60のアリーレン基、置換基を有していてもよい核原子数5~60のヘテロアリーレン基又は置換基を有していてもよいフルオレニレン基であり、Ar1は、置換基を有していてもよい核炭素数6~60の2価の芳香族炭化水素基であり、Ar2は、置換基を有していてもよい核炭素数6~60のアリール基又は置換基を有していてもよい核原子数5~60の複素環基である。)で表される含窒素複素環誘導体。
HAr-L-Ar 1 -Ar 2 (C)
(In the formula, HAr is a nitrogen-containing heterocycle having 3 to 40 carbon atoms which may have a substituent, and L is a single bond or a nuclear carbon atom having 6 to 60 which may have a substituent. arylene group, have a heteroarylene group, or a substituent ~ 60 5 good number ring atoms which may have a substituent is also optionally fluorenylene group, Ar 1 is, have a substituent A divalent aromatic hydrocarbon group having 6 to 60 nuclear carbon atoms, and Ar 2 may have an aryl group or substituent having 6 to 60 nuclear carbon atoms which may have a substituent. A nitrogen-containing heterocyclic derivative represented by the formula:
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000050
(式中、X及びYは、それぞれ独立に炭素数1~6の飽和若しくは不飽和の炭化水素基、アルコキシ基、アルケニルオキシ基、アルキニルオキシ基、ヒドロキシ基、置換若しくは無置換のアリール基、置換若しくは無置換のヘテロ環又はXとYが結合して飽和又は不飽和の環を形成した構造であり、R1~R4は、それぞれ独立に水素、ハロゲン原子、置換もしくは無置換の炭素数1から6までのアルキル基、アルコキシ基、アリールオキシ基、パーフルオロアルキル基、パーフルオロアルコキシ基、アミノ基、アルキルカルボニル基、アリールカルボニル基、アルコキシカルボニル基、アリールオキシカルボニル基、アゾ基、アルキルカルボニルオキシ基、アリールカルボニルオキシ基、アルコキシカルボニルオキシ基、アリールオキシカルボニルオキシ基、スルフィニル基、スルフォニル基、スルファニル基、シリル基、カルバモイル基、アリール基、ヘテロ環基、アルケニル基、アルキニル基、ニトロ基、ホルミル基、ニトロソ基、ホルミルオキシ基、イソシアノ基、シアネート基、イソシアネート基、チオシアネート基、イソチオシアネート基もしくはシアノ基又は隣接した場合には置換若しくは無置換の環が縮合した構造である。)で表されるシラシクロペンタジエン誘導体。 Wherein X and Y are each independently a saturated or unsaturated hydrocarbon group having 1 to 6 carbon atoms, alkoxy group, alkenyloxy group, alkynyloxy group, hydroxy group, substituted or unsubstituted aryl group, substituted Or an unsubstituted heterocyclic ring or a structure in which X and Y are combined to form a saturated or unsaturated ring, and R 1 to R 4 are each independently hydrogen, halogen atom, substituted or unsubstituted carbon number 1 To 6 alkyl groups, alkoxy groups, aryloxy groups, perfluoroalkyl groups, perfluoroalkoxy groups, amino groups, alkylcarbonyl groups, arylcarbonyl groups, alkoxycarbonyl groups, aryloxycarbonyl groups, azo groups, alkylcarbonyloxy Group, arylcarbonyloxy group, alkoxycarbonyloxy group, aryloxy group Bonyloxy, sulfinyl, sulfonyl, sulfanyl, silyl, carbamoyl, aryl, heterocyclic, alkenyl, alkynyl, nitro, formyl, nitroso, formyloxy, isocyano, cyanate, A silacyclopentadiene derivative represented by an isocyanate group, a thiocyanate group, an isothiocyanate group, a cyano group, or a substituted or unsubstituted ring condensed when adjacent.
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000051
(式中、R1~R8及びZ2は、それぞれ独立に、水素原子、飽和もしくは不飽和の炭化水素基、芳香族炭化水素基、ヘテロ環基、置換アミノ基、置換ボリル基、アルコキシ基又はアリールオキシ基を示し、X、Y及びZ1は、それぞれ独立に、飽和もしくは不飽和の炭化水素基、芳香族炭化水素基、ヘテロ環基、置換アミノ基、アルコキシ基又はアリールオキシ基を示し、Z1とZ2の置換基は相互に結合して縮合環を形成してもよく、nは1~3の整数を示し、nが2以上の場合、Z1は異なってもよい。但し、nが1、X、Y及びR2がメチル基であって、R8が、水素原子又は置換ボリル基の場合、及びnが3でZ1がメチル基の場合を含まない。)で表されるボラン誘導体。 (Wherein R 1 to R 8 and Z 2 are each independently a hydrogen atom, a saturated or unsaturated hydrocarbon group, an aromatic hydrocarbon group, a heterocyclic group, a substituted amino group, a substituted boryl group, or an alkoxy group. Or an aryloxy group, and X, Y and Z 1 each independently represent a saturated or unsaturated hydrocarbon group, an aromatic hydrocarbon group, a heterocyclic group, a substituted amino group, an alkoxy group or an aryloxy group. , Z 1 and Z 2 may be bonded to each other to form a condensed ring. N represents an integer of 1 to 3, and when n is 2 or more, Z 1 may be different. , N is 1, X, Y and R 2 is a methyl group, and R 8 is a hydrogen atom or a substituted boryl group, and n is 3 and Z 1 is not a methyl group. Borane derivative.
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000052
[式中、Q1及びQ2は、それぞれ独立に、下記一般式(G)で示される配位子を表し、Lは、ハロゲン原子、置換もしくは無置換のアルキル基、置換もしくは無置換のシクロアルキル基、置換もしくは無置換のアリール基、置換もしくは無置換の複素環基、-OR1(R1は、水素原子、置換もしくは無置換のアルキル基、置換もしくは無置換のシクロアルキル基、置換もしくは無置換のアリール基、置換もしくは無置換の複素環基である。)又は-O-Ga-Q3(Q4)(Q3及びQ4は、Q1及びQ2と同じ)で示される配位子を表す。] [Wherein, Q 1 and Q 2 each independently represent a ligand represented by the following general formula (G), and L represents a halogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted cyclohexane. An alkyl group, a substituted or unsubstituted aryl group, a substituted or unsubstituted heterocyclic group, —OR 1 (R 1 is a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted cycloalkyl group, substituted or unsubstituted An unsubstituted aryl group, a substituted or unsubstituted heterocyclic group) or —O—Ga—Q 3 (Q 4 ) (Q 3 and Q 4 are the same as Q 1 and Q 2 ). Represents a quantifier. ]
Figure JPOXMLDOC01-appb-C000053
[式中、環A1及びA2は、置換基を有してよい互いに縮合した6員アリール環構造である。]
Figure JPOXMLDOC01-appb-C000053
[Wherein the rings A 1 and A 2 are 6-membered aryl ring structures condensed with each other which may have a substituent. ]
 この金属錯体は、n型半導体としての性質が強く、電子注入能力が大きい。さらには、錯体形成時の生成エネルギーも低いために、形成した金属錯体の金属と配位子との結合性も強固になり、発光材料としての蛍光量子効率も大きくなっている。 This metal complex has strong properties as an n-type semiconductor and has a large electron injection capability. Furthermore, since the generation energy at the time of complex formation is also low, the bond between the metal of the formed metal complex and the ligand is strengthened, and the fluorescence quantum efficiency as a light emitting material is also increased.
 一般式(G)の配位子を形成する環A1及びA2の置換基の具体的な例を挙げると、塩素、臭素、ヨウ素、フッ素のハロゲン原子、メチル基、エチル基、プロピル基、ブチル基、s-ブチル基、t-ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ステアリル基、トリクロロメチル基等の置換もしくは無置換のアルキル基、フェニル基、ナフチル基、3-メチルフェニル基、3-メトキシフェニル基、3-フルオロフェニル基、3-トリクロロメチルフェニル基、3-トリフルオロメチルフェニル基、3-ニトロフェニル基等の置換もしくは無置換のアリール基、メトキシ基、n-ブトキシ基、t-ブトキシ基、トリクロロメトキシ基、トリフルオロエトキシ基、ペンタフルオロプロポキシ基、2,2,3,3-テトラフルオロプロポキシ基、1,1,1,3,3,3-ヘキサフルオロ-2-プロポキシ基、6-(パーフルオロエチル)ヘキシルオキシ基等の置換もしくは無置換のアルコキシ基、フェノキシ基、p-ニトロフェノキシ基、p-t-ブチルフェノキシ基、3-フルオロフェノキシ基、ペンタフルオロフェニル基、3-トリフルオロメチルフェノキシ基等の置換もしくは無置換のアリールオキシ基、メチルチオ基、エチルチオ基、t-ブチルチオ基、ヘキシルチオ基、オクチルチオ基、トリフルオロメチルチオ基等の置換もしくは無置換のアルキルチオ基、フェニルチオ基、p-ニトロフェニルチオ基、p-t-ブチルフェニルチオ基、3-フルオロフェニルチオ基、ペンタフルオロフェニルチオ基、3-トリフルオロメチルフェニルチオ基等の置換もしくは無置換のアリールチオ基、シアノ基、ニトロ基、アミノ基、メチルアミノ基、ジエチルアミノ基、エチルアミノ基、ジエチルアミノ基、ジプロピルアミノ基、ジブチルアミノ基、ジフェニルアミノ基等のモノ又はジ置換アミノ基、ビス(アセトキシメチル)アミノ基、ビス(アセトキシエチル)アミノ基、ビスアセトキシプロピル)アミノ基、ビス(アセトキシブチル)アミノ基等のアシルアミノ基、水酸基、シロキシ基、アシル基、メチルカルバモイル基、ジメチルカルバモイル基、エチルカルバモイル基、ジエチルカルバモイル基、プロイピルカルバモイル基、ブチルカルバモイル基、フェニルカルバモイル基等のカルバモイル基、カルボン酸基、スルフォン酸基、イミド基、シクロペンタン基、シクロヘキシル基等のシクロアルキル基、フェニル基、ナフチル基、ビフェニル基、アントラニル基、フェナントリル基、フルオレニル基、ピレニル基等のアリール基、ピリジニル基、ピラジニル基、ピリミジニル基、ピリダジニル基、トリアジニル基、インドリニル基、キノリニル基、アクリジニル基、ピロリジニル基、ジオキサニル基、ピペリジニル基、モルフォリジニル基、ピペラジニル基、トリアチニル基、カルバゾリル基、フラニル基、チオフェニル基、オキサゾリル基、オキサジアゾリル基、ベンゾオキサゾリル基、チアゾリル基、チアジアゾリル基、ベンゾチアゾリル基、トリアゾリル基、イミダゾリル基、ベンゾイミダゾリル基、プラニル基等の複素環基等がある。また、以上の置換基同士が結合してさらなる6員アリール環もしくは複素環を形成しても良い。 Specific examples of the substituents of the rings A 1 and A 2 that form the ligand of the general formula (G) include chlorine, bromine, iodine, halogen atoms of fluorine, methyl group, ethyl group, propyl group, Substituted or unsubstituted alkyl groups such as butyl group, s-butyl group, t-butyl group, pentyl group, hexyl group, heptyl group, octyl group, stearyl group, trichloromethyl group, phenyl group, naphthyl group, 3-methyl A substituted or unsubstituted aryl group such as phenyl group, 3-methoxyphenyl group, 3-fluorophenyl group, 3-trichloromethylphenyl group, 3-trifluoromethylphenyl group, 3-nitrophenyl group, methoxy group, n- Butoxy group, t-butoxy group, trichloromethoxy group, trifluoroethoxy group, pentafluoropropoxy group, 2,2,3,3-tetrafluoro Substituted or unsubstituted alkoxy groups such as propoxy group, 1,1,1,3,3,3-hexafluoro-2-propoxy group, 6- (perfluoroethyl) hexyloxy group, phenoxy group, p-nitrophenoxy Group, pt-butylphenoxy group, 3-fluorophenoxy group, pentafluorophenyl group, substituted or unsubstituted aryloxy group such as 3-trifluoromethylphenoxy group, methylthio group, ethylthio group, t-butylthio group, Substituted or unsubstituted alkylthio groups such as hexylthio group, octylthio group, trifluoromethylthio group, phenylthio group, p-nitrophenylthio group, pt-butylphenylthio group, 3-fluorophenylthio group, pentafluorophenylthio Substitution of 3-group, 3-trifluoromethylphenylthio group, etc. Is an unsubstituted arylthio group, cyano group, nitro group, amino group, methylamino group, diethylamino group, ethylamino group, diethylamino group, dipropylamino group, dibutylamino group, diphenylamino group, or other mono- or disubstituted amino group , Acylamino groups such as bis (acetoxymethyl) amino group, bis (acetoxyethyl) amino group, bisacetoxypropyl) amino group, bis (acetoxybutyl) amino group, hydroxyl group, siloxy group, acyl group, methylcarbamoyl group, dimethylcarbamoyl group Group, ethylcarbamoyl group, diethylcarbamoyl group, propylcarbamoyl group, butylcarbamoyl group, phenylcarbamoyl group, etc., carbamoyl group, carboxylic acid group, sulfonic acid group, imide group, cyclopentane group, cyclohexyl group, etc. Group, phenyl group, naphthyl group, biphenyl group, anthranyl group, phenanthryl group, fluorenyl group, pyrenyl group, aryl group, pyridinyl group, pyrazinyl group, pyrimidinyl group, pyridazinyl group, triazinyl group, indolinyl group, quinolinyl group, acridinyl group , Pyrrolidinyl group, dioxanyl group, piperidinyl group, morpholidinyl group, piperazinyl group, triatinyl group, carbazolyl group, furanyl group, thiophenyl group, oxazolyl group, oxadiazolyl group, benzoxazolyl group, thiazolyl group, thiadiazolyl group, benzothiazolyl group And heterocyclic groups such as a triazolyl group, an imidazolyl group, a benzimidazolyl group, and a pranyl group. Moreover, the above substituents may combine to form a further 6-membered aryl ring or heterocyclic ring.
 本発明の有機EL素子の好ましい形態に、電子を輸送する領域又は陰極と有機層の界面領域に、還元性ドーパントを含有する素子がある。ここで、還元性ドーパントとは、電子輸送性化合物を還元ができる物質と定義される。したがって、一定の還元性を有するものであれば、様々なものが用いられ、例えば、アルカリ金属、アルカリ土類金属、希土類金属、アルカリ金属の酸化物、アルカリ金属のハロゲン化物、アルカリ土類金属の酸化物、アルカリ土類金属のハロゲン化物、希土類金属の酸化物又は希土類金属のハロゲン化物、アルカリ金属の炭酸塩、アルカリ土類金属の炭酸塩、アルカリ金属の有機錯体、アルカリ土類金属の有機錯体、希土類金属の有機錯体からなる群から選択される少なくとも一つの物質を好適に使用することができる。 Favorable forms of the organic EL device of the present invention include a device containing a reducing dopant in an electron transporting region or an interface region between a cathode and an organic layer. Here, the reducing dopant is defined as a substance capable of reducing the electron transporting compound. Accordingly, various materials can be used as long as they have a certain reducibility, such as alkali metals, alkaline earth metals, rare earth metals, alkali metal oxides, alkali metal halides, alkaline earth metals. Oxides, alkaline earth metal halides, rare earth metal oxides or rare earth metal halides, alkali metal carbonates, alkaline earth metal carbonates, alkali metal organic complexes, alkaline earth metal organic complexes In addition, at least one substance selected from the group consisting of organic complexes of rare earth metals can be preferably used.
 また、より具体的に、好ましい還元性ドーパントとしては、Na(仕事関数:2.36eV)、K(仕事関数:2.28eV)、Rb(仕事関数:2.16eV)及びCs(仕事関数:1.95eV)からなる群から選択される少なくとも一つのアルカリ金属や、Ca(仕事関数:2.9eV)、Sr(仕事関数:2.0~2.5eV)、及びBa(仕事関数:2.52eV)からなる群から選択される少なくとも一つのアルカリ土類金属が挙げられる仕事関数が2.9eV以下のものが特に好ましい。これらのうち、より好ましい還元性ドーパントは、K、Rb及びCsからなる群から選択される少なくとも一つのアルカリ金属であり、さらに好ましくは、Rb又はCsであり、最も好ましのは、Csである。これらのアルカリ金属は、特に還元能力が高く、電子注入域への比較的少量の添加により、有機EL素子における発光輝度の向上や長寿命化が図られる。また、仕事関数が2.9eV以下の還元性ドーパントとして、これら2種以上のアルカリ金属の組み合わせも好ましく、特に、Csを含んだ組み合わせ、例えば、CsとNa、CsとK、CsとRbあるいはCsとNaとKとの組み合わせであることが好ましい。Csを組み合わせて含むことにより、還元能力を効率的に発揮することができ、電子注入域への添加により、有機EL素子における発光輝度の向上や長寿命化が図られる。 More specifically, preferable reducing dopants include Na (work function: 2.36 eV), K (work function: 2.28 eV), Rb (work function: 2.16 eV) and Cs (work function: 1 .95 eV), at least one alkali metal selected from the group consisting of Ca (work function: 2.9 eV), Sr (work function: 2.0 to 2.5 eV), and Ba (work function: 2.52 eV). Particularly preferred are those having a work function of 2.9 eV or less, including at least one alkaline earth metal selected from the group consisting of: Among these, a more preferable reducing dopant is at least one alkali metal selected from the group consisting of K, Rb, and Cs, more preferably Rb or Cs, and most preferably Cs. . These alkali metals have particularly high reducing ability, and the addition of a relatively small amount to the electron injection region can improve the light emission luminance and extend the life of the organic EL element. Further, as a reducing dopant having a work function of 2.9 eV or less, a combination of two or more alkali metals is also preferable. Particularly, a combination containing Cs, such as Cs and Na, Cs and K, Cs and Rb, or Cs. And a combination of Na and K. By including Cs in combination, the reducing ability can be efficiently exhibited, and by adding to the electron injection region, the emission luminance and the life of the organic EL element can be improved.
 本発明においては陰極と有機層の間に絶縁体や半導体で構成される電子注入層をさらに設けても良い。このとき、電流のリークを有効に防止して、電子注入性を向上させることができる。このような絶縁体としては、アルカリ金属カルコゲニド、アルカリ土類金属カルコゲニド、アルカリ金属のハロゲン化物及びアルカリ土類金属のハロゲン化物からなる群から選択される少なくとも一つの金属化合物を使用するのが好ましい。電子注入層がこれらのアルカリ金属カルコゲニド等で構成されていれば、電子注入性をさらに向上させることができる点で好ましい。具体的に、好ましいアルカリ金属カルコゲニドとしては、例えば、Li2O、K2O、Na2S、Na2Se及びNa2Oが挙げられ、好ましいアルカリ土類金属カルコゲニドとしては、例えば、CaO、BaO、SrO、BeO、BaS、及びCaSeが挙げられる。また、好ましいアルカリ金属のハロゲン化物としては、例えば、LiF、NaF、KF、CsF、LiCl、KCl及びNaCl等が挙げられる。また、好ましいアルカリ土類金属のハロゲン化物としては、例えば、CaF2、BaF2、SrF2、MgF2及びBeF2といったフッ化物や、フッ化物以外のハロゲン化物が挙げられる。 In the present invention, an electron injection layer composed of an insulator or a semiconductor may be further provided between the cathode and the organic layer. At this time, current leakage can be effectively prevented and the electron injection property can be improved. As such an insulator, it is preferable to use at least one metal compound selected from the group consisting of alkali metal chalcogenides, alkaline earth metal chalcogenides, alkali metal halides and alkaline earth metal halides. If the electron injection layer is composed of these alkali metal chalcogenides or the like, it is preferable in that the electron injection property can be further improved. Specifically, preferable alkali metal chalcogenides include, for example, Li 2 O, K 2 O, Na 2 S, Na 2 Se, and Na 2 O, and preferable alkaline earth metal chalcogenides include, for example, CaO, BaO. , SrO, BeO, BaS, and CaSe. Further, preferable alkali metal halides include, for example, LiF, NaF, KF, CsF, LiCl, KCl, and NaCl. Examples of preferable alkaline earth metal halides include fluorides such as CaF 2 , BaF 2 , SrF 2 , MgF 2 and BeF 2 , and halides other than fluorides.
 また、電子注入層を構成する半導体としては、Ba、Ca、Sr、Yb、Al、Ga、In、Li、Na、Cd、Mg、Si、Ta、Sb及びZnの少なくとも一つの元素を含む酸化物、窒化物又は酸化窒化物等の一種単独又は二種以上の組み合わせが挙げられる。また、電子注入層を構成する無機化合物が、微結晶又は非晶質の絶縁性薄膜であることが好ましい。電子注入層がこれらの絶縁性薄膜で構成されていれば、より均質な薄膜が形成されるために、ダークスポット等の画素欠陥を減少させることができる。なお、このような無機化合物としては、上述したアルカリ金属カルコゲニド、アルカリ土類金属カルコゲニド、アルカリ金属のハロゲン化物及びアルカリ土類金属のハロゲン化物等が挙げられる。 In addition, as a semiconductor constituting the electron injection layer, an oxide containing at least one element of Ba, Ca, Sr, Yb, Al, Ga, In, Li, Na, Cd, Mg, Si, Ta, Sb, and Zn. , Nitrides or oxynitrides, or a combination of two or more. In addition, the inorganic compound constituting the electron injection layer is preferably a microcrystalline or amorphous insulating thin film. If the electron injection layer is composed of these insulating thin films, a more uniform thin film is formed, and pixel defects such as dark spots can be reduced. Examples of such inorganic compounds include the alkali metal chalcogenides, alkaline earth metal chalcogenides, alkali metal halides, and alkaline earth metal halides described above.
 次に、陰極としては、仕事関数の小さい(4eV以下)金属、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが用いられる。このような電極物質の具体例としては、ナトリウム、ナトリウム-カリウム合金、マグネシウム、リチウム、セシウム、マグネシウム・銀合金、アルミニウム/酸化アルミニウム、Al/Li2O、Al/LiO、Al/LiF、アルミニウム・リチウム合金、インジウム、希土類金属などが挙げられる。
 この陰極はこれらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させることにより、作製することができる。
Next, as a cathode, what uses a metal, an alloy, an electroconductive compound, and a mixture thereof with a small work function (4 eV or less) as an electrode material is used. Specific examples of such electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, cesium, magnesium / silver alloy, aluminum / aluminum oxide, Al / Li 2 O, Al / LiO, Al / LiF, aluminum Examples include lithium alloys, indium, and rare earth metals.
The cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering.
 ここで、発光層からの発光を陰極から取り出す場合、陰極の発光に対する透過率は10%より大きくすることが好ましい。また、陰極としてのシート抵抗は数百Ω/□以下が好ましく、さらに、膜厚は通常10nm~1μm、好ましくは50~200nmである。 Here, when light emitted from the light emitting layer is taken out from the cathode, it is preferable that the transmittance of the light emitted from the cathode is larger than 10%. The sheet resistance as the cathode is preferably several hundred Ω / □ or less, and the film thickness is usually 10 nm to 1 μm, preferably 50 to 200 nm.
 また、一般に、有機EL素子は、超薄膜に電界を印加するために、リークやショートによる画素欠陥が生じやすい。これを防止するために、一対の電極間に絶縁性の薄膜層を挿入しても良い。 In general, since an organic EL element applies an electric field to an ultra-thin film, pixel defects are likely to occur due to leakage or short circuit. In order to prevent this, an insulating thin film layer may be inserted between the pair of electrodes.
 絶縁層に用いられる材料としては、例えば、酸化アルミニウム、弗化リチウム、酸化リチウム、弗化セシウム、酸化セシウム、酸化マグネシウム、弗化マグネシウム、酸化カルシウム、弗化カルシウム、窒化アルミニウム、酸化チタン、酸化珪素、酸化ゲルマニウム、窒化珪素、窒化ホウ素、酸化モリブデン、酸化ルテニウム、酸化バナジウム等が挙げられる。これらの混合物や積層物を用いてもよい。 Examples of the material used for the insulating layer include aluminum oxide, lithium fluoride, lithium oxide, cesium fluoride, cesium oxide, magnesium oxide, magnesium fluoride, calcium oxide, calcium fluoride, aluminum nitride, titanium oxide, and silicon oxide. Germanium oxide, silicon nitride, boron nitride, molybdenum oxide, ruthenium oxide, vanadium oxide, and the like. A mixture or laminate of these may be used.
 本発明の有機EL素子においては、発光層中に、一般式(1)から選ばれる少なくとも一種の芳香族アミン誘導体の他に、発光材料、ドーピング材料、正孔注入材料及び電子注入材料の少なくとも1種が同一層に含有されてもよい。また、本発明により得られた有機EL素子の、温度、湿度、雰囲気等に対する安定性の向上のために、素子の表面に保護層を設けたり、シリコンオイル、樹脂等により素子全体を保護することも可能である。 In the organic EL device of the present invention, in the light emitting layer, in addition to at least one aromatic amine derivative selected from the general formula (1), at least one of a light emitting material, a doping material, a hole injecting material, and an electron injecting material. The seed may be contained in the same layer. In order to improve the stability of the organic EL device obtained by the present invention with respect to temperature, humidity, atmosphere, etc., a protective layer is provided on the surface of the device, or the entire device is protected by silicon oil, resin, etc. Is also possible.
 本発明の有機EL素子の陽極に使用される導電性材料としては、4eVより大きな仕事関数を持つものが適しており、炭素、アルミニウム、バナジウム、鉄、コバルト、ニッケル、タングステン、銀、金、白金、パラジウム等及びそれらの合金、ITO基板、NESA基板に使用される酸化スズ、酸化インジウム等の酸化金属、さらにはポリチオフェンやポリピロール等の有機導電性樹脂が用いられる。陰極に使用される導電性物質としては、4eVより小さな仕事関数を持つものが適しており、マグネシウム、カルシウム、錫、鉛、チタニウム、イットリウム、リチウム、ルテニウム、マンガン、アルミニウム、フッ化リチウム等及びそれらの合金が用いられるが、これらに限定されるものではない。合金としては、マグネシウム/銀、マグネシウム/インジウム、リチウム/アルミニウム等が代表例として挙げられるが、これらに限定されるものではない。合金の比率は、蒸着源の温度、雰囲気、真空度等により制御され、適切な比率に選択される。陽極及び陰極は、必要があれば二層以上の層構成により形成されていても良い。 As the conductive material used for the anode of the organic EL device of the present invention, a material having a work function larger than 4 eV is suitable, and carbon, aluminum, vanadium, iron, cobalt, nickel, tungsten, silver, gold, platinum Palladium, etc. and their alloys, metal oxides such as tin oxide and indium oxide used for ITO substrates and NESA substrates, and organic conductive resins such as polythiophene and polypyrrole are used. Suitable conductive materials for the cathode are those having a work function smaller than 4 eV, such as magnesium, calcium, tin, lead, titanium, yttrium, lithium, ruthenium, manganese, aluminum, lithium fluoride, and the like. However, it is not limited to these. Examples of alloys include magnesium / silver, magnesium / indium, lithium / aluminum, and the like, but are not limited thereto. The ratio of the alloy is controlled by the temperature of the vapor deposition source, the atmosphere, the degree of vacuum, etc., and is selected to an appropriate ratio. If necessary, the anode and the cathode may be formed of two or more layers.
 本発明の有機EL素子では、効率良く発光させるために、少なくとも一方の面は素子の発光波長領域において充分透明にすることが望ましい。また、基板も透明であることが望ましい。透明電極は、上記の導電性材料を使用して、蒸着やスパッタリング等の方法で所定の透光性が確保するように設定する。発光面の電極は、光透過率を10%以上にすることが望ましい。基板は、機械的、熱的強度を有し、透明性を有するものであれば限定されるものではないが、ガラス基板及び透明性樹脂フィルムがある。透明性樹脂フィルムとしては、ポリエチレン、エチレン-酢酸ビニル共重合体、エチレン-ビニルアルコール共重合体、ポリプロピレン、ポリスチレン、ポリメチルメタアクリレート、ポリ塩化ビニル、ポリビニルアルコール、ポリビニルブチラール、ナイロン、ポリエーテルエーテルケトン、ポリサルホン、ポリエーテルサルフォン、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体、ポリビニルフルオライド、テトラフルオロエチレン-エチレン共重合体、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体、ポリクロロトリフルオロエチレン、ポリビニリデンフルオライド、ポリエステル、ポリカーボネート、ポリウレタン、ポリイミド、ポリエーテルイミド、ポリイミド、ポリプロピレン等が挙げられる。 In the organic EL device of the present invention, in order to emit light efficiently, it is desirable that at least one surface be sufficiently transparent in the light emission wavelength region of the device. The substrate is also preferably transparent. The transparent electrode is set using the above-described conductive material so as to ensure a predetermined translucency by a method such as vapor deposition or sputtering. The electrode on the light emitting surface preferably has a light transmittance of 10% or more. The substrate is not limited as long as it has mechanical and thermal strength and has transparency, and includes a glass substrate and a transparent resin film. Transparent resin films include polyethylene, ethylene-vinyl acetate copolymer, ethylene-vinyl alcohol copolymer, polypropylene, polystyrene, polymethyl methacrylate, polyvinyl chloride, polyvinyl alcohol, polyvinyl butyral, nylon, polyether ether ketone. , Polysulfone, polyethersulfone, tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer, polyvinyl fluoride, tetrafluoroethylene-ethylene copolymer, tetrafluoroethylene-hexafluoropropylene copolymer, polychlorotrifluoroethylene, Polyvinylidene fluoride, polyester, polycarbonate, polyurethane, polyimide, polyetherimide, polyimide, polypropylene, etc. It is.
 本発明に係わる有機EL素子の各層の形成は、真空蒸着、スパッタリング、プラズマ、イオンプレーティング等の乾式成膜法やスピンコーティング、ディッピング、フローコーティング等の湿式成膜法のいずれの方法を適用することができる。膜厚は特に限定されるものではないが、適切な膜厚に設定する必要がある。膜厚が厚すぎると、一定の光出力を得るために大きな印加電圧が必要になり効率が悪くなる。膜厚が薄すぎるとピンホール等が発生して、電界を印加しても充分な発光輝度が得られない。通常の膜厚は5nm~10μmの範囲が適しているが、10nm~0.2μmの範囲がさらに好ましい。 For the formation of each layer of the organic EL device according to the present invention, any of dry film forming methods such as vacuum deposition, sputtering, plasma, ion plating, etc. and wet film forming methods such as spin coating, dipping, and flow coating is applied. be able to. The film thickness is not particularly limited, but must be set to an appropriate film thickness. If the film thickness is too thick, a large applied voltage is required to obtain a constant light output, resulting in poor efficiency. If the film thickness is too thin, pinholes and the like are generated, and sufficient light emission luminance cannot be obtained even when an electric field is applied. The normal film thickness is suitably in the range of 5 nm to 10 μm, but more preferably in the range of 10 nm to 0.2 μm.
 湿式成膜法の場合、各層を形成する材料を、エタノール、クロロホルム、テトラヒドロフラン、ジオキサン等の適切な溶媒に溶解又は分散させて薄膜を形成するが、その溶媒はいずれであっても良い。また、いずれの有機薄膜層においても、成膜性向上、膜のピンホール防止等のため適切な樹脂や添加剤を使用しても良い。使用の可能な樹脂としては、ポリスチレン、ポリカーボネート、ポリアリレート、ポリエステル、ポリアミド、ポリウレタン、ポリスルフォン、ポリメチルメタクリレート、ポリメチルアクリレート、セルロース等の絶縁性樹脂及びそれらの共重合体、ポリ-N-ビニルカルバゾール、ポリシラン等の光導電性樹脂、ポリチオフェン、ポリピロール等の導電性樹脂を挙げられる。また、添加剤としては、酸化防止剤、紫外線吸収剤、可塑剤等を挙げられる。 In the case of the wet film-forming method, the material for forming each layer is dissolved or dispersed in an appropriate solvent such as ethanol, chloroform, tetrahydrofuran, dioxane or the like to form a thin film, and any solvent may be used. In any organic thin film layer, an appropriate resin or additive may be used for improving film formability and preventing pinholes in the film. Usable resins include polystyrene, polycarbonate, polyarylate, polyester, polyamide, polyurethane, polysulfone, polymethyl methacrylate, polymethyl acrylate, cellulose and other insulating resins and copolymers thereof, poly-N-vinyl. Examples thereof include photoconductive resins such as carbazole and polysilane, and conductive resins such as polythiophene and polypyrrole. Examples of the additive include an antioxidant, an ultraviolet absorber, and a plasticizer.
 本発明の有機EL素子は、壁掛けテレビのフラットパネルディスプレイ等の平面発光体、複写機、プリンター、液晶ディスプレイのバックライト又は計器類等の光源、表示板、標識灯等に利用できる。また、本発明の材料は、有機EL素子だけでなく、電子写真感光体、光電変換素子、太陽電池、イメージセンサー等の分野においても使用できる。 The organic EL device of the present invention can be used for a flat light emitter such as a flat panel display of a wall-mounted television, a copying machine, a printer, a light source such as a backlight of a liquid crystal display or instruments, a display board, a marker lamp, and the like. The material of the present invention can be used not only in an organic EL device but also in fields such as an electrophotographic photosensitive member, a photoelectric conversion device, a solar cell, and an image sensor.
 次に、合成例、実施例および比較例を挙げて本発明をさらに詳しく説明するが、本発明はこれらに制限されるものではない。 Next, the present invention will be described in more detail with reference to synthesis examples, examples and comparative examples, but the present invention is not limited thereto.
合成実施例1(化合物(DM-5-2)の合成)
 アルゴン気流下、冷却管付き300ミリリットル三口フラスコ中に、1,6-ジイソプロピル-3,8-ジブロモピレン4.4g(10mmol)、N-m-トリル-1-ナフチルアミン5.8g(25mmol)、酢酸パラジウム0.03g(1.5mol%)、トリ-t-ブチルホスフィン0.06g(3mol%)、ナトリウムt-ブトキシド2.4g(25mmol)、乾燥トルエン100ミリリットルを加えた後、100℃にて一晩加熱撹拌した。反応終了後、析出した結晶を濾取し、トルエン50ミリリットル、メタノール100ミリリットルにて洗浄し、淡黄色粉末6.0gを得た。このものは、FD-MS(フィールドディソープションマススペクトル)の測定にてm/e=748を確認し、化合物(DM-5-2)と同定した。
Synthesis Example 1 (Synthesis of Compound (DM-5-2))
In a 300 ml three-necked flask equipped with a condenser tube under an argon stream, 4.4 g (10 mmol) of 1,6-diisopropyl-3,8-dibromopyrene, 5.8 g (25 mmol) of Nm-tolyl-1-naphthylamine, acetic acid After adding 0.03 g (1.5 mol%) of palladium, 0.06 g (3 mol%) of tri-t-butylphosphine, 2.4 g (25 mmol) of sodium t-butoxide, and 100 ml of dry toluene, the mixture was added at 100 ° C. The mixture was stirred overnight. After completion of the reaction, the precipitated crystals were collected by filtration and washed with 50 ml of toluene and 100 ml of methanol to obtain 6.0 g of a pale yellow powder. This was confirmed to be m / e = 748 by FD-MS (field desorption mass spectrum) measurement and identified as compound (DM-5-2).
合成実施例2(化合物(DM-5-3)の合成)
 合成実施例1において、N-m-トリル-1-ナフチルアミンの代わりに、N-3,5-ジメチルフェニル-1-ナフチルアミンを用いて同様の方法で合成した。このものは、FD-MSの測定にてm/e=776を確認し、化合物(DM-5-3)と同定した。
Synthesis Example 2 (Synthesis of Compound (DM-5-3))
Synthesis was performed in the same manner as in Synthesis Example 1 except that N-3,5-dimethylphenyl-1-naphthylamine was used instead of Nm-tolyl-1-naphthylamine. This was confirmed to be m / e = 776 by FD-MS measurement and identified as Compound (DM-5-3).
合成実施例3(化合物(DM-5-4)の合成)
 合成実施例1において、N-m-トリル-1-ナフチルアミンの代わりに、N-4-イソプロピルフェニル-1-ナフチルアミンを用いて同様の方法で合成した。このものは、FD-MSの測定にてm/e=804を確認し、化合物(DM-5-4)と同定した。
Synthesis Example 3 (Synthesis of Compound (DM-5-4))
Synthesis was performed in the same manner as in Synthesis Example 1 except that N-4-isopropylphenyl-1-naphthylamine was used instead of Nm-tolyl-1-naphthylamine. This was confirmed to be m / e = 804 by FD-MS measurement and identified as Compound (DM-5-4).
合成実施例4(化合物(DM-9-5)の合成)
 アルゴン気流下、冷却管付き300ミリリットル三口フラスコ中に、1,6-ジシクロヘキシル-3,8-ジブロモピレン5.2g(10mmol)、N-4-t-ブチルフェニル-1-ナフチルアミン6.8g(25mmol)、酢酸パラジウム0.03g(1.5mol%)、トリ-t-ブチルホスフィン0.06g(3mol%)、ナトリウムt-ブトキシド2.4g(25mmol)、乾燥トルエン100ミリリットルを加えた後、100℃にて一晩加熱撹拌した。反応終了後、析出した結晶を濾取し、トルエン50ミリリットル、メタノール100ミリリットルにて洗浄し、淡黄色粉末6.7gを得た。このものは、FD-MSの測定にてm/e=912を確認し、化合物(DM-9-5)と同定した。
Synthesis Example 4 (Synthesis of Compound (DM-9-5))
Under a stream of argon, 5.2 g (10 mmol) of 1,6-dicyclohexyl-3,8-dibromopyrene and 6.8 g (25 mmol) of N-4-tert-butylphenyl-1-naphthylamine were placed in a 300 ml three-necked flask equipped with a cooling tube. ), 0.03 g (1.5 mol%) of palladium acetate, 0.06 g (3 mol%) of tri-t-butylphosphine, 2.4 g (25 mmol) of sodium t-butoxide, and 100 ml of dry toluene, and then 100 ° C. And stirred overnight. After completion of the reaction, the precipitated crystals were collected by filtration and washed with 50 ml of toluene and 100 ml of methanol to obtain 6.7 g of a pale yellow powder. This was confirmed to be m / e = 912 by FD-MS measurement and identified as Compound (DM-9-5).
合成実施例5(化合物(DM-9-6)の合成)
 合成実施例4において、N-4-t-ブチルフェニル-1-ナフチルアミンの代わりに、N-p-トリル-1-ナフチルアミンを用いて同様の方法で合成した。このものは、FD-MSの測定にてm/e=828を確認し、化合物(DM-9-6)と同定した。
Synthesis Example 5 (Synthesis of Compound (DM-9-6))
In Synthesis Example 4, synthesis was performed in the same manner using Np-tolyl-1-naphthylamine instead of N-4-t-butylphenyl-1-naphthylamine. This was confirmed to be m / e = 828 by FD-MS measurement and identified as Compound (DM-9-6).
合成実施例6(化合物(DM-10-8)の合成)
 合成実施例4において、N-4-t-ブチルフェニル-1-ナフチルアミンの代わりに、N-4-シクロペンチルフェニル-1-ナフチルアミンを用いて同様の方法で合成した。このものは、FD-MSの測定にてm/e=936を確認し、化合物(DM-10-8)と同定した。
Synthesis Example 6 (Synthesis of Compound (DM-10-8))
Synthesis was performed in the same manner as in Synthesis Example 4 except that N-4-cyclopentylphenyl-1-naphthylamine was used instead of N-4-t-butylphenyl-1-naphthylamine. This was confirmed to be m / e = 936 by FD-MS measurement and identified as Compound (DM-10-8).
(実施例1)
 25mm×75mm×1.1mm厚のITO透明電極(陽極)付きガラス基板(ジオマティック社製)をイソプロピルアルコール中で超音波洗浄を5分間行った後、UVオゾン洗浄を30分間行った。洗浄後の透明電極ライン付きガラス基板を真空蒸着装置の基板ホルダーに装着し、まず透明電極ラインが形成されている側の面上に透明電極を覆うようにして下記化合物A-1を膜厚60nmとなるように成膜した。その後、この化合物A-1からなる膜上に、下記化合物A-2を膜厚20nmとなるように成膜した。
Example 1
A 25 mm × 75 mm × 1.1 mm thick glass substrate with ITO transparent electrode (anode) (manufactured by Geomatic) was subjected to ultrasonic cleaning in isopropyl alcohol for 5 minutes and then UV ozone cleaning for 30 minutes. The glass substrate with the transparent electrode line after the cleaning is mounted on the substrate holder of the vacuum deposition apparatus, and the following compound A-1 is first formed to a thickness of 60 nm so as to cover the transparent electrode on the surface where the transparent electrode line is formed. It formed into a film so that it might become. Thereafter, the following compound A-2 was formed to a thickness of 20 nm on the film made of the compound A-1.
 さらに、この化合物A-2からなる膜上に、本発明のホスト材料(アントラセン誘導体)EM1とドーパント材料(ジアミノピレン誘導体)DM5-2を重量比40:2にて同時蒸着により成膜して有機発光媒体を形成し、膜厚40nmの青色系発光層とした。 Further, the host material (anthracene derivative) EM1 and the dopant material (diaminopyrene derivative) DM5-2 of the present invention are formed on the film made of the compound A-2 by co-evaporation at a weight ratio of 40: 2. A light emitting medium was formed to form a blue light emitting layer having a thickness of 40 nm.
 この青色系発光層上に電子輸送層として膜厚20nmで下記構造のAlqを蒸着により成膜した。この後、LiFを膜厚1nmで成膜した。このLiFからなる膜上に金属Alを厚みが150nmとなるように蒸着させ金属陰極を形成し、有機EL発光素子を作製した。 On the blue light emitting layer, an Alq having a thickness of 20 nm was deposited as an electron transport layer by vapor deposition. Thereafter, LiF was formed to a thickness of 1 nm. On the film made of LiF, metal Al was deposited so as to have a thickness of 150 nm to form a metal cathode, and an organic EL light emitting device was produced.
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000054
(実施例2~204)
 実施例1において、ホスト材料EM1、ドーパント材料DM5-2の代わりに下記表1~5に示す材料を用いて、同様に有機EL素子を作製した。
(Examples 2 to 204)
In Example 1, organic EL devices were similarly fabricated using the materials shown in Tables 1 to 5 below instead of the host material EM1 and the dopant material DM5-2.
(比較例1)
 実施例1において、ホスト材料EM1の代わりにEM74を、ドーパント材料DM5-2の代わりに下記構造の化合物Aを用いて、同様に有機EL素子を作製した。
(Comparative Example 1)
In Example 1, an organic EL device was prepared in the same manner using EM74 instead of the host material EM1 and compound A having the following structure instead of the dopant material DM5-2.
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000055
(比較例2)
 実施例1において、ホスト材料EM1の代わりに下記構造の化合物Bを、ドーパント材料DM5-2の代わりに下記構造の化合物Cを用いて、同様に有機EL素子を作製した。
(Comparative Example 2)
In Example 1, an organic EL device was produced in the same manner using Compound B having the following structure instead of the host material EM1 and Compound C having the following structure instead of the dopant material DM5-2.
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000056
 下記表1~5に、実施例及び比較例の有機EL素子の発光波長および初期輝度1000cd/m2における半減寿命を示す。 Tables 1 to 5 below show the light emission wavelengths and the half lives at an initial luminance of 1000 cd / m 2 of the organic EL elements of Examples and Comparative Examples.
Figure JPOXMLDOC01-appb-T000057
Figure JPOXMLDOC01-appb-T000057
Figure JPOXMLDOC01-appb-T000058
Figure JPOXMLDOC01-appb-T000058
Figure JPOXMLDOC01-appb-T000059
Figure JPOXMLDOC01-appb-T000059
Figure JPOXMLDOC01-appb-T000060
Figure JPOXMLDOC01-appb-T000060
Figure JPOXMLDOC01-appb-T000061
Figure JPOXMLDOC01-appb-T000061
 本発明の有機発光媒体を用いた有機EL素子は、例えば、壁掛テレビの平面発光体やディスプレイのバックライト等の光源として有用である。 The organic EL element using the organic light-emitting medium of the present invention is useful as a light source such as a flat light emitter of a wall-mounted television or a backlight of a display.

Claims (21)

  1.  下記式(1)で表されるジアミノピレン誘導体と、下記式(2)で表されるアントラセン誘導体とを含む有機発光媒体。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、Ar1~Ar4は、それぞれ独立に、置換もしくは無置換の核炭素数6~50のアリール基、又は置換もしくは無置換の核原子数5~50の複素環基である。R21及びR22は、それぞれ独立に、水素原子、置換もしくは無置換の炭素数1~50のアルキル基、置換もしくは無置換の核炭素数3~50のシクロアルキル基、から選ばれる基である。ただし、Ar1~Ar4のうち1つ以上は、α-ナフチル基である。また、R21及びR22が同時に水素原子になることはない。)

    Figure JPOXMLDOC01-appb-C000002
    (式(2)中、Ar11及びAr12は、それぞれ独立に、置換もしくは無置換の核炭素数6~20のアリール基であり、R1~R8は、それぞれ独立に、水素原子、置換もしくは無置換の核炭素数6~50のアリール基、置換もしくは無置換の核原子数5~50の複素環基、置換もしくは無置換の炭素数1~50のアルキル基、置換もしくは無置換の核炭素数3~50のシクロアルキル基、置換もしくは無置換の炭素数1~50のアルコキシ基、置換もしくは無置換の炭素数7~50のアラルキル基、置換もしくは無置換の核炭素数6~50のアリールオキシ基、置換もしくは無置換の核炭素数6~50のアリールチオ基、置換もしくは無置換の炭素数2~50のアルコキシカルボニル基、置換もしくは無置換のシリル基、カルボキシル基、ハロゲン原子、シアノ基、ニトロ基及びヒドロキシル基から選ばれる基である。)
    An organic light-emitting medium comprising a diaminopyrene derivative represented by the following formula (1) and an anthracene derivative represented by the following formula (2).
    Figure JPOXMLDOC01-appb-C000001
    (In the formula (1), Ar 1 to Ar 4 are each independently a substituted or unsubstituted aryl group having 6 to 50 nuclear carbon atoms, or a substituted or unsubstituted heterocyclic group having 5 to 50 nuclear atoms. R 21 and R 22 are each independently a group selected from a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, and a substituted or unsubstituted cycloalkyl group having 3 to 50 nuclear carbon atoms. Provided that at least one of Ar 1 to Ar 4 is an α-naphthyl group, and R 21 and R 22 do not simultaneously become hydrogen atoms.)

    Figure JPOXMLDOC01-appb-C000002
    (In the formula (2), Ar 11 and Ar 12 are each independently a substituted or unsubstituted aryl group having 6 to 20 nuclear carbon atoms, and R 1 to R 8 are each independently a hydrogen atom or a substituted group. Or an unsubstituted aryl group having 6 to 50 carbon atoms, a substituted or unsubstituted heterocyclic group having 5 to 50 nuclear atoms, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted nucleus; A cycloalkyl group having 3 to 50 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 50 carbon atoms, a substituted or unsubstituted aralkyl group having 7 to 50 carbon atoms, a substituted or unsubstituted nucleus having 6 to 50 carbon atoms An aryloxy group, a substituted or unsubstituted arylthio group having 6 to 50 nuclear carbon atoms, a substituted or unsubstituted alkoxycarbonyl group having 2 to 50 carbon atoms, a substituted or unsubstituted silyl group, a carboxyl group, Gen atom, a cyano group, a group selected from nitro group and a hydroxyl group.)
  2.  前記式(1)中のAr1~Ar4のうち2つが、α-ナフチル基である請求項1に記載の有機発光媒体。 The organic light-emitting medium according to claim 1, wherein two of Ar 1 to Ar 4 in the formula (1) are α-naphthyl groups.
  3.  前記式(1)中のAr1及びAr3が、α-ナフチル基である請求項3に記載の有機発光媒体。 The organic light-emitting medium according to claim 3, wherein Ar 1 and Ar 3 in the formula (1) are α-naphthyl groups.
  4.  前記式(1)中のR21及びR22がそれぞれ独立に、置換もしくは無置換の炭素数1~5のアルキル基、または置換もしくは無置換の核炭素数3~6のシクロアルキル基である請求項1に記載の有機発光媒体。 R 21 and R 22 in the formula (1) are each independently a substituted or unsubstituted alkyl group having 1 to 5 carbon atoms, or a substituted or unsubstituted cycloalkyl group having 3 to 6 nuclear carbon atoms. Item 2. The organic light emitting medium according to Item 1.
  5.  前記式(1)中のR21とR22とが同一の基である請求項1又は4に記載の有機発光媒体。 The organic light-emitting medium according to claim 1 or 4, wherein R 21 and R 22 in the formula (1) are the same group.
  6.  前記式(2)におけるAr11及びAr12が、それぞれ独立に、置換もしくは無置換の核炭素数10~20の縮合アリール基である請求項1に記載の有機発光媒体。 The organic light-emitting medium according to claim 1, wherein Ar 11 and Ar 12 in the formula (2) are each independently a substituted or unsubstituted condensed aryl group having 10 to 20 nuclear carbon atoms.
  7.  前記式(2)におけるAr11及びAr12が同一の基である請求項6に記載の有機発光媒体。 The organic light-emitting medium according to claim 6, wherein Ar 11 and Ar 12 in the formula (2) are the same group.
  8.  前記式(2)におけるAr11及びAr12が、置換もしくは無置換の9-フェナントレニル基である請求項7に記載の有機発光媒体。 The organic light-emitting medium according to claim 7, wherein Ar 11 and Ar 12 in the formula (2) are substituted or unsubstituted 9-phenanthrenyl groups.
  9.  前記式(2)におけるAr11及びAr12が、置換もしくは無置換のβ-ナフチル基である請求項7に記載の有機発光媒体。 The organic light-emitting medium according to claim 7, wherein Ar 11 and Ar 12 in the formula (2) are substituted or unsubstituted β-naphthyl groups.
  10.  前記式(2)におけるAr11及びAr12が、置換もしくは無置換のα-ナフチル基である請求項7に記載の有機発光媒体。 The organic light-emitting medium according to claim 7, wherein Ar 11 and Ar 12 in the formula (2) are substituted or unsubstituted α-naphthyl groups.
  11.  前記式(2)におけるAr11及びAr12が異なる基である請求項6に記載の有機発光媒体。 The organic light-emitting medium according to claim 6, wherein Ar 11 and Ar 12 in the formula (2) are different groups.
  12.  前記式(2)におけるAr11及びAr12が、置換もしくは無置換の9-フェナントレニル基、置換もしくは無置換のα-ナフチル基、及び置換もしくは無置換のβ-ナフチル基のいずれかである請求項11に記載の有機発光媒体。 Ar 11 and Ar 12 in the formula (2) are any one of a substituted or unsubstituted 9-phenanthrenyl group, a substituted or unsubstituted α-naphthyl group, and a substituted or unsubstituted β-naphthyl group. 11. The organic luminescent medium according to 11.
  13.  前記式(2)におけるAr11及びAr12の一方が置換もしくは無置換のフェニル基であり、他方が置換もしくは無置換の核炭素数10~20の縮合アリール基である請求項1に記載の有機発光媒体。 2. The organic according to claim 1, wherein one of Ar 11 and Ar 12 in the formula (2) is a substituted or unsubstituted phenyl group, and the other is a substituted or unsubstituted condensed aryl group having 10 to 20 nuclear carbon atoms. Luminescent medium.
  14.  前記置換もしくは無置換の核炭素数10~20の縮合アリール基が、置換もしくは無置換のα-ナフチル基である請求項13に記載の有機発光媒体。 14. The organic light-emitting medium according to claim 13, wherein the substituted or unsubstituted condensed aryl group having 10 to 20 nuclear carbon atoms is a substituted or unsubstituted α-naphthyl group.
  15.  前記置換もしくは無置換の核炭素数10~20の縮合アリール基が、置換もしくは無置換のβ-ナフチル基である請求項13に記載の有機発光媒体。 14. The organic light-emitting medium according to claim 13, wherein the substituted or unsubstituted condensed aryl group having 10 to 20 nuclear carbon atoms is a substituted or unsubstituted β-naphthyl group.
  16.  前記式(2)で表されるアントラセン誘導体が、下記式(2-6)で表される請求項1に記載の有機発光媒体。
    Figure JPOXMLDOC01-appb-C000003
    (式(2-6)中、R1~R8は式(2)と同様である。Ar5及びAr6はそれぞれ独立に、置換もしくは無置換の核炭素数6~50のアリール基、置換もしくは無置換の炭素数1~50のアルキル基、置換もしくは無置換の核炭素数3~50のシクロアルキル基、置換もしくは無置換の炭素数7~50のアラルキル基、又は置換もしくは無置換の核原子数5~50の複素環基である。)
    The organic light-emitting medium according to claim 1, wherein the anthracene derivative represented by the formula (2) is represented by the following formula (2-6).
    Figure JPOXMLDOC01-appb-C000003
    (In formula (2-6), R 1 to R 8 are the same as those in formula (2). Ar 5 and Ar 6 are each independently a substituted or unsubstituted aryl group having 6 to 50 nuclear carbon atoms, substituted Or an unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 50 carbon atoms, a substituted or unsubstituted aralkyl group having 7 to 50 carbon atoms, or a substituted or unsubstituted nucleus. (It is a heterocyclic group having 5 to 50 atoms.)
  17.  前記式(2-6)中のAr5及びAr6が置換もしくは無置換のフェニル基である請求項16に記載の有機発光媒体。 The organic light-emitting medium according to claim 16, wherein Ar 5 and Ar 6 in the formula (2-6) are substituted or unsubstituted phenyl groups.
  18.  前記式(2-6)中のAr5及びAr6の一方が置換もしくは無置換のフェニル基であり、他方が置換もしくは無置換の核炭素数10~20の縮合アリール基である請求項16に記載の有機発光媒体。 17. In the formula (2-6), one of Ar 5 and Ar 6 is a substituted or unsubstituted phenyl group, and the other is a substituted or unsubstituted condensed aryl group having 10 to 20 nuclear carbon atoms. The organic luminescent medium as described.
  19.  前記式(2-6)中のAr5及びAr6が置換もしくは無置換の核炭素数10~20の縮合アリール基である請求項16に記載の有機発光媒体。 The organic light-emitting medium according to claim 16, wherein Ar 5 and Ar 6 in the formula (2-6) are substituted or unsubstituted condensed aryl groups having 10 to 20 nuclear carbon atoms.
  20.  陰極と陽極との間に、発光層を含む一層以上の有機薄膜層を有し、該有機薄膜層の少なくとも一層が、請求項1~19のいずれか1項に記載の有機発光媒体を含有する有機エレクトロルミネッセンス素子。 One or more organic thin film layers including a light emitting layer are provided between the cathode and the anode, and at least one of the organic thin film layers contains the organic light emitting medium according to any one of claims 1 to 19. Organic electroluminescence device.
  21.  前記発光層が、前記有機発光媒体を含有する請求項20記載の有機エレクトロルミネッセンス素子。 The organic electroluminescent device according to claim 20, wherein the light emitting layer contains the organic light emitting medium.
PCT/JP2009/052424 2008-02-15 2009-02-13 Organic luminescent medium and organic el device WO2009102026A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009553465A JPWO2009102026A1 (en) 2008-02-15 2009-02-13 Organic light-emitting medium and organic EL device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008035162 2008-02-15
JP2008-035162 2008-02-15

Publications (1)

Publication Number Publication Date
WO2009102026A1 true WO2009102026A1 (en) 2009-08-20

Family

ID=40957056

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/052424 WO2009102026A1 (en) 2008-02-15 2009-02-13 Organic luminescent medium and organic el device

Country Status (2)

Country Link
JP (1) JPWO2009102026A1 (en)
WO (1) WO2009102026A1 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011074252A1 (en) * 2009-12-16 2011-06-23 出光興産株式会社 Aromatic amine derivative and organic electroluminescent element using same
WO2011074253A1 (en) 2009-12-16 2011-06-23 出光興産株式会社 Organic light-emitting medium
JPWO2009116628A1 (en) * 2008-03-19 2011-07-21 出光興産株式会社 Anthracene derivatives, light emitting materials, and organic electroluminescence devices
WO2012048780A1 (en) * 2010-10-15 2012-04-19 Merck Patent Gmbh Compounds for electronic devices
JP2012119592A (en) * 2010-12-03 2012-06-21 Toyo Ink Sc Holdings Co Ltd Material for organic electroluminescent element and use of the same
US9166179B2 (en) 2009-04-24 2015-10-20 Idemitsu Kosan Co., Ltd. Aromatic amine derivative, and organic electroluminescent element comprising the same
US9902687B2 (en) 2014-09-19 2018-02-27 Idemitsu Kosan Co., Ltd. Compound
WO2018095382A1 (en) * 2016-11-23 2018-05-31 广州华睿光电材料有限公司 Aromatic amine derivative, preparation method therefor, and uses thereof
US10056558B2 (en) 2011-11-25 2018-08-21 Idemitsu Kosan Co., Ltd. Aromatic amine derivative, material for organic electroluminescent element, and organic electroluminescent element
CN109776335A (en) * 2017-11-15 2019-05-21 武汉尚赛光电科技有限公司 Amine derivant of pyrene and preparation method thereof, application and device
CN109790142A (en) * 2016-11-23 2019-05-21 广州华睿光电材料有限公司 Deuterated aromatic amine derivant and its preparation method and application
JP2019091896A (en) * 2010-12-28 2019-06-13 株式会社半導体エネルギー研究所 Light-emitting element, light-emitting device, electronic apparatus, lighting device, and light-emitting element material
WO2020039708A1 (en) 2018-08-23 2020-02-27 国立大学法人九州大学 Organic electroluminescence element
EP4122934A1 (en) 2021-11-25 2023-01-25 Beijing Summer Sprout Technology Co., Ltd. Organic electroluminescent material and device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005108348A1 (en) * 2004-05-12 2005-11-17 Idemitsu Kosan Co., Ltd. Aromatic amine derivative, organic electroluminescent element employing the same, and process for producing aromatic amine derivative
WO2008136522A1 (en) * 2007-05-08 2008-11-13 Idemitsu Kosan Co., Ltd. Diaminopyrene derivative and organic el device using the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100121489A (en) * 2008-02-15 2010-11-17 이데미쓰 고산 가부시키가이샤 Organic luminescent medium and organic el device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005108348A1 (en) * 2004-05-12 2005-11-17 Idemitsu Kosan Co., Ltd. Aromatic amine derivative, organic electroluminescent element employing the same, and process for producing aromatic amine derivative
WO2008136522A1 (en) * 2007-05-08 2008-11-13 Idemitsu Kosan Co., Ltd. Diaminopyrene derivative and organic el device using the same

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10461257B2 (en) 2008-03-19 2019-10-29 Idemitsu Kosan Co., Ltd. Anthracene derivatives, luminescent materials and organic electroluminescent devices
US11456421B2 (en) 2008-03-19 2022-09-27 Idemitsu Kosan Co., Ltd. Anthracene derivatives, luminescent materials and organic electroluminescent devices
JPWO2009116628A1 (en) * 2008-03-19 2011-07-21 出光興産株式会社 Anthracene derivatives, light emitting materials, and organic electroluminescence devices
JP5491383B2 (en) * 2008-03-19 2014-05-14 出光興産株式会社 Anthracene derivatives, light emitting materials, and organic electroluminescence devices
US8822041B2 (en) 2008-03-19 2014-09-02 Idemitsu Kosan Co., Ltd. Anthracene derivatives, luminescent materials and organic electroluminescent devices
US9660195B2 (en) 2008-03-19 2017-05-23 Idemitsu Kosan Co., Ltd. Anthracene derivative having a phenanthryl group
US9466800B2 (en) 2009-04-24 2016-10-11 Idemitsu Kosan Co., Ltd. Aromatic amine derivative, and organic electroluminescent element comprising the same
US11024806B2 (en) 2009-04-24 2021-06-01 Idemitsu Kosan Co., Ltd. Aromatic amine derivative, and organic electroluminescent element comprising the same
US10686137B2 (en) 2009-04-24 2020-06-16 Idemitsu Kosan Co., Ltd. Aromatic amine derivative, and organic electroluminescent element comprising the same
US10263191B2 (en) 2009-04-24 2019-04-16 Idemitsu Kosan Co., Ltd. Aromatic amine derivative, and organic electroluminescent element comprising the same
US9741938B2 (en) 2009-04-24 2017-08-22 Idemitsu Kosan Co., Ltd. Aromatic amine derivative, and organic electroluminescent element comprising the same
US9166179B2 (en) 2009-04-24 2015-10-20 Idemitsu Kosan Co., Ltd. Aromatic amine derivative, and organic electroluminescent element comprising the same
CN102239141A (en) * 2009-12-16 2011-11-09 出光兴产株式会社 Aromatic amine derivative and organic electroluminescent element using same
US9923146B2 (en) 2009-12-16 2018-03-20 Idemitsu Kosan Co., Ltd. Aromatic amine derivative and organic electroluminescent element using same
JP5587302B2 (en) * 2009-12-16 2014-09-10 出光興産株式会社 Aromatic amine derivative and organic electroluminescence device using the same
KR101358494B1 (en) * 2009-12-16 2014-02-05 이데미쓰 고산 가부시키가이샤 Aromatic amine derivative, and organic electroluminescent element comprising same
JPWO2011074252A1 (en) * 2009-12-16 2013-04-25 出光興産株式会社 Aromatic amine derivative and organic electroluminescence device using the same
US9331285B2 (en) 2009-12-16 2016-05-03 Idemitsu Kosan Co., Ltd. Aromatic amine derivative and organic electroluminescent element using same
WO2011074253A1 (en) 2009-12-16 2011-06-23 出光興産株式会社 Organic light-emitting medium
WO2011074252A1 (en) * 2009-12-16 2011-06-23 出光興産株式会社 Aromatic amine derivative and organic electroluminescent element using same
WO2012048780A1 (en) * 2010-10-15 2012-04-19 Merck Patent Gmbh Compounds for electronic devices
JP2012119592A (en) * 2010-12-03 2012-06-21 Toyo Ink Sc Holdings Co Ltd Material for organic electroluminescent element and use of the same
JP2019091896A (en) * 2010-12-28 2019-06-13 株式会社半導体エネルギー研究所 Light-emitting element, light-emitting device, electronic apparatus, lighting device, and light-emitting element material
US10056558B2 (en) 2011-11-25 2018-08-21 Idemitsu Kosan Co., Ltd. Aromatic amine derivative, material for organic electroluminescent element, and organic electroluminescent element
US10118889B2 (en) 2014-09-19 2018-11-06 Idemitsu Kosan Co., Ltd. Compound
US9902687B2 (en) 2014-09-19 2018-02-27 Idemitsu Kosan Co., Ltd. Compound
US10435350B2 (en) 2014-09-19 2019-10-08 Idemitsu Kosan Co., Ltd. Organic electroluminecence device
CN109790142A (en) * 2016-11-23 2019-05-21 广州华睿光电材料有限公司 Deuterated aromatic amine derivant and its preparation method and application
CN109790457A (en) * 2016-11-23 2019-05-21 广州华睿光电材料有限公司 Aromatic amine derivant and its preparation method and application
WO2018095382A1 (en) * 2016-11-23 2018-05-31 广州华睿光电材料有限公司 Aromatic amine derivative, preparation method therefor, and uses thereof
US11512039B2 (en) 2016-11-23 2022-11-29 Guangzhou Chinaray Optoelectronic Materials Ltd. Aromatic amine derivatives, preparation methods therefor, and uses thereof
CN109790457B (en) * 2016-11-23 2023-06-30 广州华睿光电材料有限公司 Aromatic amine derivative, preparation method and application thereof
CN109776335A (en) * 2017-11-15 2019-05-21 武汉尚赛光电科技有限公司 Amine derivant of pyrene and preparation method thereof, application and device
CN109776335B (en) * 2017-11-15 2022-03-18 武汉尚赛光电科技有限公司 Amine derivative of pyrene, preparation method, application and device thereof
WO2020039708A1 (en) 2018-08-23 2020-02-27 国立大学法人九州大学 Organic electroluminescence element
EP4122934A1 (en) 2021-11-25 2023-01-25 Beijing Summer Sprout Technology Co., Ltd. Organic electroluminescent material and device

Also Published As

Publication number Publication date
JPWO2009102026A1 (en) 2011-06-16

Similar Documents

Publication Publication Date Title
JP5191496B2 (en) Aromatic amine derivative and organic electroluminescence device using the same
KR101349457B1 (en) Aromatic amine derivative and organic electroluminescent device using same
EP1860097B1 (en) Aromatic amine derivative and organic electroluminescence device utilizing the same
US8647754B2 (en) Aromatic diamine derivative and organic electroluminescent device using the same
JP5091854B2 (en) Aromatic amine derivative and organic electroluminescence device using the same
WO2009102054A1 (en) Organic luminescent medium and organic el device
JP4381645B2 (en) Novel anthracene compound and organic electroluminescence device using the same
WO2009107596A1 (en) Organic luminescent medium and organic el element
JPWO2010013676A1 (en) Organic light-emitting medium and organic EL device
WO2009102026A1 (en) Organic luminescent medium and organic el device
WO2010013675A1 (en) Organic light-emitting medium and organic el element
JP5249654B2 (en) Organic electroluminescence device using fluoranthene derivative
JP2009161470A (en) Asymmetrical aromatic diamine derivative and organic electroluminescent device by using the same
WO2010052885A1 (en) Organic electroluminescence element
WO2010010924A1 (en) Anthracene derivative, and organic electroluminescence element comprising same
JPWO2008156089A1 (en) Aromatic amine derivative and organic electroluminescence device using the same
JP5325484B2 (en) Organic electroluminescence device
JP5525702B2 (en) Organic electroluminescence device using indenoperylene derivative
JP4860849B2 (en) Novel aromatic compound having amino group and organic electroluminescence device using the same
JP5396397B2 (en) Aromatic amine derivative and organic electroluminescence device using the same
JP2010143841A (en) Aromatic amine derivative, and organic electroluminescent device using the same
JP2009161469A (en) Aromatic compound and organic electroluminescent device
JPWO2008156088A1 (en) Trinaphthyl monoamine or derivative thereof, organic electroluminescence device using the same, and solution containing organic electroluminescence material
JP2009161464A (en) Carbazole derivative and organoelectroluminescent element obtained using the same
JP2009161468A (en) Aromatic amine derivative and organic electroluminescent device using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09711494

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009553465

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09711494

Country of ref document: EP

Kind code of ref document: A1