WO2009101905A1 - 電力増幅器 - Google Patents

電力増幅器 Download PDF

Info

Publication number
WO2009101905A1
WO2009101905A1 PCT/JP2009/052069 JP2009052069W WO2009101905A1 WO 2009101905 A1 WO2009101905 A1 WO 2009101905A1 JP 2009052069 W JP2009052069 W JP 2009052069W WO 2009101905 A1 WO2009101905 A1 WO 2009101905A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
modulation
power amplifier
component
circuit
Prior art date
Application number
PCT/JP2009/052069
Other languages
English (en)
French (fr)
Inventor
Shingo Yamanouchi
Original Assignee
Nec Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nec Corporation filed Critical Nec Corporation
Priority to JP2009553408A priority Critical patent/JP5273056B2/ja
Publication of WO2009101905A1 publication Critical patent/WO2009101905A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/24Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
    • H03F3/245Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages with semiconductor devices only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0211Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers with control of the supply voltage or current
    • H03F1/0216Continuous control
    • H03F1/0222Continuous control by using a signal derived from the input signal
    • H03F1/0227Continuous control by using a signal derived from the input signal using supply converters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0211Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers with control of the supply voltage or current
    • H03F1/0244Stepped control
    • H03F1/025Stepped control by using a signal derived from the input signal
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/32Modifications of amplifiers to reduce non-linear distortion
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/32Modifications of amplifiers to reduce non-linear distortion
    • H03F1/3223Modifications of amplifiers to reduce non-linear distortion using feed-forward
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/21Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
    • H03F3/211Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only using a combination of several amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/24Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/351Pulse width modulation being used in an amplifying circuit

Definitions

  • the present invention relates to a power amplifier, and more particularly to a transmission power amplifier used in wireless communication.
  • the power amplifier for transmission used in a wireless communication device consumes power especially among communication devices. For this reason, improving the power efficiency of the power amplifier is regarded as an important issue for communication device development.
  • amplitude modulation has become the mainstream for improving spectral efficiency. Since this amplitude modulation requires severe signal distortion, the power amplifier is operated in a high back-off (low input power) state where the linearity is good. However, when performing a high back-off operation, there is a problem that the power efficiency of power amplification decreases.
  • transmission signal data is input to the input terminal 101 of the polar modulator 102, the amplitude component signal 105 of the transmission signal is output to the output terminal 103 of the polar modulator 102, and the output terminal of the polar modulator 102.
  • a modulation signal 106 in which the amplitude component and phase component of the transmission signal data are loaded on the carrier wave or a phase modulation signal 107 in which the phase component of the transmission signal is loaded on the carrier wave is output to 104.
  • the polar modulator 102 also has a function capable of individually setting output timings of the amplitude component signal 105 and the modulation signal 106 or the phase modulation signal 107 to desired values.
  • the power supply modulator 109 outputs an amplitude component signal 110 obtained by amplifying the amplitude component signal 105, and modulates the power supply terminal 111 of the power amplifier 108 with the amplitude component signal 110.
  • the power supply modulator 109 includes an output detection terminal 114 and a feedback terminal 115, and outputs information on the amplitude component signal 110 output from the power supply modulator 109 from the output detection terminal 114 and inputs the information to the feedback terminal 115.
  • the function of improving the accuracy of the amplitude component signal 110 based on the signal input to the feedback terminal 115 is provided.
  • the modulation signal 106 or the phase modulation signal 107 output to the output terminal 104 of the polar modulator 102 is input to the power amplifier 108.
  • the output terminal 112 of the power amplifier 108 outputs a modulated signal 113 in which the amplitude component and phase component of the transmission signal data are carried on the carrier wave and amplified.
  • the voltage of the power supply terminal 111 of the power amplifier 108 is controlled in accordance with the amplitude of the output modulation signal 113.
  • the modulation signal 113 has low output power
  • the voltage at the power supply terminal 111 of the power amplifier 108 is lowered, so that the power supplied from the power supply modulator 109 to the power amplifier 108 at the time of low output is the minimum necessary amount. And wasteful power consumption can be suppressed.
  • the power supply modulator 109 includes a pulse modulator 121, a switching amplifier 122, a low pass filter (LPF) 116, and an attenuator 117.
  • An amplitude component signal 105 is input to the power supply modulator 109, and the amplitude component signal 105 is converted into a pulse signal by the pulse modulator 121, and is amplified to the pulse signal 118 by the switching amplifier 122 having high power efficiency.
  • the pulse signal 118 is input to a low-pass filter (LPF) 116 and is converted to an amplified amplitude component signal 110 by removing unnecessary high-frequency components.
  • LPF low-pass filter
  • the power supply modulator 109 outputs the information of the amplitude component signal 110 from the output detection terminal 114 via the attenuator 117 and feeds back the signal at the output detection terminal 114 to the pulse modulator 121 via the feedback terminal 115. With such a configuration, the accuracy of the amplitude component signal 110 can be improved.
  • high power efficiency is realized as a whole by using a high power efficiency switch amplifier for the power modulator 109 and performing voltage control of the power terminal 111 of the power amplifier 108.
  • the power amplifier of FIG. 35 has a problem that an error component (unnecessary wave component) 119 caused by switching noise generated from the pulse modulator 121 and the switching amplifier 122 is mixed into the amplitude component signal 110.
  • This error component 119 is frequency-converted to the carrier frequency band fc by power supply modulation in the power amplifier 108 and mixed into the output modulation signal 113 as the error component 120.
  • This error component 120 causes adjacent channel leakage power (ACPR) and causes a problem that the signal accuracy defined by a communication standard such as WCDMA cannot be achieved.
  • ACPR adjacent channel leakage power
  • Patent Document 1 discloses another technique for suppressing the error component 119 of the power supply modulator.
  • the technique in Patent Document 1 includes an error correcting amplifier 123 and a feedback circuit via an attenuator 124 in the power amplifier shown in FIG. In this circuit, the error signal 119 generated from the switching amplifier 122 is suppressed by injecting the correction signal output from the error correction amplifier 123 into the output of the LPF 116.
  • Patent Document 2 Another method for suppressing the error component 120 caused by the error component 119 of the power supply modulator is disclosed in Patent Document 2.
  • a power amplifier 111a that receives modulation from the power supply terminal 111a from the power supply modulator 109a
  • a power amplifier 111b that receives modulation from the power supply modulator 109b to the power supply terminal 111b.
  • the pulse modulators 121a and 121b include error amplifiers 135a and 135b and PWM (Pulse Width Modulation) type pulse modulators 136a and 136b, respectively.
  • PWM Pulse Width Modulation
  • Control terminals 133a and 133b of the pulse modulators 121a and 121b include Triangular wave clock signals 134a and 134b are input, respectively.
  • the triangular wave clock signals 134a and 134b are set to have opposite phases.
  • the error components 119a and 119b output from the power supply modulators 109a and 109b are also out of phase with each other.
  • the error components 119a and 119b are frequency-converted into the carrier frequency band fc by power supply modulation, and the error components 120a and 120b generated at the outputs of the power amplifiers 108a and 108b are also in opposite phases.
  • the distribution synthesizer 132 By synthesizing the output signals of the power amplifiers 108a and 108b by the distribution synthesizer 132, the error components 120a and 120b having opposite phases are canceled out, and the combined value of the output signals 113a and 113b as the desired signals is output.
  • Patent Document 3 a technique for improving the accuracy of the output signal in the polar modulation technique.
  • the conventional polar modulation type power amplifier is an amplitude output from the polar modulator 102, the power source modulator 109, the power amplifiers 108c and 108d, and the polar modulator 102.
  • the delay adjuster 142 adjusts the output timing of the component signal (envelope signal) and the modulation signal.
  • a distortion detection loop 143 including a directional coupler and 145 and a delay adjuster 144, a directional coupler 145 and 147, a delay adjuster 146, a vector adjuster 148, and an error amplifier 149.
  • a distortion elimination loop 150 In this configuration, an error component included in the modulated signal output from the power amplifier 108d is converted into an ideal modulated signal not including an error output from the delay adjuster 144 and a modulated wave signal output from the power amplifier 108d. The difference is detected using a directional coupler 145.
  • the detected error component of the output signal of the power amplifier 108d is input to the vector adjuster 148 and phase-adjusted, and then amplified to a desired amplitude by the error amplifier 149.
  • the error of the output signal of the power amplifier 108d via the delay adjuster 146 and the output signal of the power amplifier 108d adjusted to the desired amplitude value and phase value by the vector adjuster 148 and the error amplifier 149.
  • the error component can be removed from the output signal of the power amplifier 108d.
  • Patent Document 4 discloses a technique combining a polar modulation technique with a predistortion type linearization technique.
  • the polar modulation type power amplifier includes an amplitude phase separation unit 161, a power supply modulator 109, a power amplifier 108, and a phase modulation unit 164.
  • the amplitude phase separation unit 161 outputs the amplitude component signal S11 and the phase component signal S12, and the phase modulation unit 164 puts the phase component signal V (ph) passed through the predistortion unit 163 on the carrier wave as the phase modulation signal S13. Output.
  • V phase component signal
  • a predistortion unit including output measurement units 168 and 169, a multiplier 162, a variable gain amplifier 165, and predistortion units 163, 166, and 167 is added to the conventional polar technique.
  • the predistortion unit 166 corrects the distortion characteristics of the power supply modulator 109
  • the predistortion unit 163 corrects the distortion characteristics of the power amplifier 108
  • the predistortion unit 167 adjusts the gain of the variable gain amplifier 165 to adjust the power.
  • the average power of the phase modulation wave V (RF, VGA) input to the amplifier 108 is optimized.
  • the predistortion units 163, 166, and 167 include an operation mode switching signal S21, an average output power control signal S20, an output signal V (RF, PA) of the power amplifier 108 measured by the output measurement unit 168, and an output measurement unit. Based on the phase-modulated wave V (RF, VGA) measured at 169, the correction amount of each signal is determined. In this configuration, the function of the predistortion units 163, 166, and 167 improves the signal accuracy of the output signal V (RF, PA) of the power amplifier 108.
  • Non-Patent Document 1 shows an example of a configuration of a power supply modulator that is improved in efficiency.
  • an object of the present invention is to provide a power amplifier with higher output signal accuracy while maintaining high power efficiency and without greatly increasing the circuit scale.
  • a power amplifier is a power amplifier that amplifies a modulation signal as a transmission signal, and generates a modulation signal in which an input signal is superimposed on a carrier wave and an amplitude component signal of the input signal.
  • an amplifier that modulates its own power supply in accordance with the output signal of the power supply modulation circuit and amplifies the input signal of the error component compensation circuit.
  • the power supply modulation circuit has a function of further attenuating or amplifying the amplified output signal and outputting it as a compensation signal to the error component compensation circuit.
  • the error component compensation circuit includes a modulation signal, an amplitude component signal, and A compensation signal may be input, an unnecessary wave component may be obtained from a difference between the amplitude component signal and the compensation signal, and the unnecessary wave component may be superimposed on the modulation signal.
  • the power supply modulation circuit may further include an error suppression function for suppressing unnecessary wave components included in the amplified output signal based on the compensation signal and the amplitude component signal.
  • the power supply modulation circuit has a detection function of detecting an unnecessary wave component in the output signal and outputting it to the error component compensation circuit.
  • the error component compensation circuit inputs the modulation signal and the unnecessary wave component.
  • an unnecessary wave component may be superimposed on the modulation signal.
  • the modulation signal may be a phase modulation signal
  • the signal generation circuit may generate a phase modulation signal in which the phase component signal of the input signal is superimposed on a carrier wave as the modulation signal.
  • the error component compensation circuit includes a variable gain circuit that sets the amplitude of the unwanted wave component to a desired value and outputs it, a DC voltage source, and an unwanted wave whose amplitude is set to the desired value by the variable gain circuit.
  • An adder circuit that synthesizes and outputs the component and the output signal of the DC voltage source, and its power supply is modulated by the output signal of the adder circuit, and the modulation signal output from the signal generation circuit is input and amplified.
  • a compensation amplifier, and the compensation amplifier may output an output signal of the error component compensation circuit.
  • the error component compensation circuit includes a variable gain circuit that sets the amplitude of the unwanted wave component to a desired value and outputs it, a DC voltage source, and an unwanted wave whose amplitude is set to the desired value by the variable gain circuit.
  • An adder circuit that synthesizes and outputs the component and the output signal of the DC voltage source, and a mixer that inputs and mixes the modulation signal output from the signal generation circuit and the output signal of the adder circuit. May output the output signal of the error component compensation circuit.
  • the error component compensation circuit further includes a variable phase shifter that sets and outputs the phase of the unwanted wave component to a desired value
  • the adder has an amplitude and a phase shifter by the variable gain device and the variable phase shifter. You may make it output combining the unnecessary wave component which set the phase to the desired value, and the output signal of a DC voltage source.
  • the power supply modulation circuit includes a pulse modulator that outputs a pulse signal based on the amplitude component signal, a switching amplifier that amplifies the output of the pulse modulator, and a pulse signal output from the switching amplifier. And a low-pass filter that reproduces the amplified amplitude component signal, and the low-pass filter may output the output signal of the power supply modulation circuit.
  • a delay adjustment circuit for delaying the output signal of the power supply modulation circuit may be further provided between the output of the power supply modulation circuit and the power supply of the amplifier.
  • a power amplification method is a method in a power amplifier that amplifies a modulation signal as a transmission signal, and includes a modulation signal in which an input signal is superimposed on a carrier wave, an amplitude component signal of the input signal, Generating an output signal obtained by performing pulse modulation on the amplitude component signal, detecting an unnecessary wave component related to pulse modulation, and superimposing the unnecessary wave component on the input modulation signal and outputting the detected signal And modulating the power supply of the amplifier according to the amplified output signal, and the amplifier inputting and amplifying the output signal on which the unnecessary wave component is superimposed.
  • the modulation signal is a phase modulation signal
  • a phase modulation signal in which the phase component signal of the input signal is superimposed on the carrier wave may be generated as the modulation signal.
  • the present invention it is possible to realize a small-scale circuit power amplifier that suppresses deterioration of the signal accuracy of the output signal of the power amplifier caused by unnecessary wave components (error components) of the power supply modulator and maintains high power efficiency. Is done.
  • FIG. 1 It is a figure which shows the structure of the power amplifier which concerns on the 1st Embodiment of this invention. It is a figure which shows an example of a structure of a power supply modulator. It is a figure which shows the 1st example of a more detailed structure of switching amplifier. It is a figure which shows the 2nd example of a more detailed structure of switching amplifier. It is a figure which shows the 3rd example of a more detailed structure of switching amplifier. It is a figure which shows the 4th example of a more detailed structure of switching amplifier. It is a figure which shows the 5th example of a more detailed structure of switching amplifier. It is a figure which shows the 2nd example of a more detailed structure of switching amplifier.
  • FIG. 17 is a diagram illustrating an example of a configuration of a power amplifier 314.
  • FIG. FIG. 18 is a diagram showing changes in amplitude intensity of a modulation signal and error component output from the power amplifier with respect to amplitude intensity of an error component input to a power supply terminal of the power amplifier in the error component compensation circuit shown in FIG. 17. .
  • FIG. 18 is a diagram showing changes in the phase of the modulation signal and error component output from the power amplifier with respect to the phase of the error component input to the power supply terminal of the power amplifier in the error component compensation circuit shown in FIG. 17. It is the figure which showed the change of the phase of the modulation signal and error component which are output from the power amplifier with respect to the amplitude intensity of the error component which is input to the power supply terminal of the power amplifier in the error component compensation circuit shown in FIG. 2 is a diagram illustrating an example of a configuration of a power amplifier 108.
  • FIG. The figure which showed the change of the amplitude of the error component output from the power amplifier with respect to the amplitude strength and phase of the error component input into the input terminal of the power amplifier installed in the latter stage of the error component compensation circuit shown in FIG. It is.
  • FIG. It is a figure which shows the structure of the power amplifier which concerns on the 1st modification of 3rd embodiment of this invention. It is a figure which shows the structure of the power amplifier which concerns on the 2nd modification of 3rd embodiment of this invention. It is a figure which shows the structure of the power amplifier which concerns on 4th embodiment of this invention.
  • FIG. 1 is a configuration diagram of a power amplifier based on Patent Literature 1.
  • FIG. It is a block diagram of the power amplifier based on patent document 2.
  • FIG. It is a block diagram of the power amplifier based on patent document 3.
  • FIG. It is a block diagram of the power amplifier based on patent document 4.
  • a power amplifier is a power amplifier that amplifies a modulation signal as a transmission signal, generates an amplitude component signal of the input signal based on the input signal, and superimposes the input signal on a carrier wave
  • a signal generation circuit for generating a modulation signal and an input terminal for inputting the amplitude component signal are output, an output signal obtained by amplifying the amplitude component signal is output to an output terminal, and the output signal is attenuated or amplified to detect an output signal
  • a power supply modulation circuit that outputs to a terminal, a first input terminal to which the modulation signal is input, a second input terminal to which the amplitude component signal is input, and a signal at an output signal detection terminal of the power supply modulation circuit
  • An error component of the power supply modulation circuit is detected from a difference between signals at the second input terminal and the third input terminal, and the error component is included in the modulation signal.
  • an error component compensating circuit for superimposing and outputting the output signal of the error component compensation circuit is input
  • an error component compensator is installed in front of the power amplifier that has undergone power supply modulation by the power supply modulator.
  • This error component compensator has a function of superimposing the error component of the output signal of the power supply modulator on the modulated wave input to the power amplifier and outputting it.
  • An error component included in the output of the error component compensator is amplified and output by a power amplifier.
  • the power amplifier undergoes power supply modulation with the output signal of the power supply modulator including an error component, and the error component is superimposed on the output signal of the power amplifier.
  • the error component output from the error component compensator and amplified by the power amplifier cancels out the error signal of the power amplifier output generated by the power supply modulation of the power amplifier, thereby suppressing the error component of the power amplifier output.
  • the error component compensator corrects the amplitude and phase of the error component of the power supply modulator output to optimum values so that the error component in the power amplifier output is appropriately canceled, and then the modulated wave input to the power amplifier. It has a function to superimpose on.
  • a power amplifier is a power amplifier that amplifies a modulation signal as a transmission signal, generates an amplitude component signal of the input signal based on the input signal, and uses the input signal as a carrier wave.
  • a signal generation circuit for generating a superimposed modulation signal and an input terminal for inputting the amplitude component signal are output, an output signal obtained by amplifying the amplitude component signal is output to an output terminal, and the output signal is attenuated or amplified and output.
  • a control terminal that outputs to the signal detection terminal and receives the signal of the output signal detection terminal; and a control mechanism that suppresses an error in the output signal based on the input terminal and the signal input to the control terminal
  • the power supply modulation circuit, the first input terminal to which the modulation signal is input, the second input terminal to which the amplitude component signal is input, and the signal of the output signal detection terminal of the power supply modulation circuit are input.
  • An error component of the power supply modulation circuit is detected from a difference between signals at the second input terminal and the third input terminal, and the error component is superimposed on the modulation signal.
  • the error component compensation circuit to be output and the output signal of the error component compensation circuit are input, and the power supply terminal is modulated by the output signal of the power supply modulation circuit.
  • a power amplifier is a power amplifier that amplifies a modulation signal as a transmission signal, generates an amplitude component signal of the input signal based on the input signal, and transmits the input signal to a carrier wave
  • a signal generation circuit for generating a modulation signal superimposed on the input signal and an input terminal for inputting the amplitude component signal, and outputting an output signal obtained by amplifying the amplitude component signal to an output terminal to detect an error component of the output signal
  • a power modulation circuit that outputs the error component to an error component detection terminal, a first input terminal to which the modulation signal is input, and the error that is output from the error component detection terminal of the power modulation circuit
  • a power amplifier is a power amplifier that amplifies a modulation signal as a transmission signal, generates an amplitude component signal of the input signal based on the input signal, and also has a phase of the input signal
  • a signal generation circuit for generating a phase modulation signal in which a component signal is superimposed on a carrier wave; and an input terminal for inputting the amplitude component signal; outputting an output signal obtained by amplifying the amplitude component signal to an output terminal;
  • a power supply modulation circuit that attenuates or amplifies and outputs to the output signal detection terminal, a first input terminal to which the phase modulation signal is input, a second input terminal to which the amplitude component signal is input, and the power supply modulation
  • a third input terminal to which a signal of the output signal detection terminal of the circuit is input, and an error component of the power supply modulation circuit is detected from a difference between signals at the second input terminal and the third input terminal Is, the error component compensating circuit configured to superimpose the error component in the phase
  • a power amplifier is a power amplifier that amplifies a modulation signal as a transmission signal, generates an amplitude component signal of the input signal based on the input signal, and a phase component of the input signal
  • a signal generation circuit for generating a phase modulation signal in which a signal is superimposed on a carrier wave, and an input terminal for inputting the amplitude component signal are output to the output terminal, and the output signal is attenuated.
  • it includes a control terminal that amplifies and outputs to the output signal detection terminal, and the signal of the output signal detection terminal is input, and suppresses an error in the output signal based on the signal input to the input terminal and the control terminal
  • a power supply modulation circuit including a control mechanism, a first input terminal to which the phase modulation signal is input, a second input terminal to which the amplitude component signal is input, and an output of the power supply modulation circuit
  • the error component compensation circuit that superimposes and outputs the error component and the output signal of the error component compensation circuit are input, and the power supply terminal is modulated by the output signal of the power supply modulation circuit.
  • a power amplifier is a power amplifier that amplifies a modulation signal as a transmission signal, generates an amplitude component signal of the input signal based on the input signal, and also a phase of the input signal
  • a signal generation circuit that generates a phase modulation signal in which a component signal is superimposed on a carrier wave; and an input terminal that inputs the amplitude component signal; outputs an output signal obtained by amplifying the amplitude component signal to an output terminal;
  • a power supply modulation circuit that has a function of detecting an error component and outputs the error component to an error component detection terminal; a first input terminal to which the phase modulation signal is input; and an error component detection terminal of the power supply modulation circuit
  • An error component compensation circuit that outputs the error component superimposed on the phase modulation signal, and an output of the error component compensation circuit. No. is input, the power supply terminal by an output signal of the power supply modulation circuit is modulated.
  • the error component compensation circuit has a variable gain device that sets the amplitude of the error component to a desired value and outputs the variable component, a DC power supply circuit, and the variable gain device sets the amplitude to a desired value.
  • An adder circuit that synthesizes and outputs the error component and the output signal of the DC power supply circuit, and a modulation signal or a phase modulation signal that is output from the signal generation circuit after a power supply terminal is modulated by the output signal of the adder circuit Is preferably input to the input terminal.
  • the error component compensation circuit includes a variable gain device that sets and outputs the amplitude of the error component to a desired value, and a variable phase shifter that sets and outputs the phase of the error component to a desired value A DC power supply circuit; and an adder circuit that synthesizes and outputs the error component whose amplitude and phase are set to desired values by the variable gain device and the variable phase shifter, and an output signal of the DC power supply circuit;
  • the power supply terminal is modulated by an output signal of the adder circuit, and a modulation signal or a phase modulation signal output from the signal generation circuit is input to the input terminal.
  • the error component compensation circuit has a variable gain device that sets the amplitude of the error component to a desired value and outputs the variable component, a DC power supply circuit, and the variable gain device sets the amplitude to a desired value.
  • An adder circuit that synthesizes and outputs the error component and the output signal of the DC power supply circuit, and a modulation signal or a phase modulation signal output from the signal generation circuit is input to a first input terminal, and the adder circuit The output signal is preferably input to the second input terminal.
  • the error component compensation circuit includes a variable gain device that sets and outputs the amplitude of the error component to a desired value, and a variable phase shifter that sets and outputs the phase of the error component to a desired value A DC power supply circuit; and an adder circuit that synthesizes and outputs the error component whose amplitude and phase are set to desired values by the variable gain device and the variable phase shifter, and an output signal of the DC power supply circuit; It is preferable that a modulation signal or a phase modulation signal output from the signal generation circuit is input to a first input terminal, and an output signal of the addition circuit is input to a second input terminal.
  • a delay adjustment circuit is installed at the output of the power supply modulation circuit.
  • the power supply modulation circuit includes a pulse modulator that outputs a pulse signal based on a signal input to the power supply modulation circuit, a switching amplifier that amplifies the output of the pulse modulator, and a switching amplifier.
  • a low-pass filter that smoothes the output pulse signal and reproduces the amplified amplitude component signal.
  • FIG. 1 is a diagram showing a configuration of a power amplifier according to a first embodiment of the present invention.
  • the power amplifier includes a polar modulator 102, a power amplifier 108, a power supply modulator 109, and an error component compensation circuit 201 corresponding to a signal generation circuit. Further, a delay adjuster 211 is provided as necessary.
  • the power amplifier shown in FIG. 1 has an error component compensation circuit 201 added to the power amplifier shown in FIG.
  • a signal obtained by attenuating or amplifying the amplitude component signal 110 and the error component (unnecessary wave component) 119 output from the power supply modulator 109 is supplied to the output detection terminal 114 as an amplitude component signal 209 and an error component (unnecessary wave component) 210. Each is output.
  • the signal at the output detection terminal 114 is input to the feedback terminal 115.
  • the error component 210 is detected from the difference between the amplitude component signal 105 input to the input terminal 204 of the power supply modulator 109 and the amplitude component signal 209 and error component 210 input to the feedback terminal 115. By feedback control based on the error component 210, the error component 119 in the output of the power supply modulator 109 is suppressed.
  • the power supply terminal 111 of the power amplifier 108 is modulated by the amplitude component signal 110 and the error component 119 via the delay adjuster 211.
  • the error component 119 is frequency-converted to the carrier wave band fc by this power supply modulation, and is superimposed on the modulation signal 113 output from the power amplifier 108 as the error component 120.
  • the amplitude component signal 209 and the error component 210 of the output detection terminal 114 are input to the input terminal 203 of the error component compensation circuit 201, and the amplitude component signal 105 is input to the input terminal 205. Then, the error component 210 is detected from the difference between the signals at the input terminal 205 and the input terminal 203.
  • the error component compensation circuit 201 receives the modulation signal 106 or the phase modulation signal 107 output from the polar modulator 102.
  • the modulation signal 106 or the phase modulation signal 107 is amplified or attenuated by the error component compensation circuit 201 and modulated.
  • the signal 206 is output to the terminal 202.
  • the error component 210 detected at the input terminal 205 and the input terminal 203 is frequency-converted to the carrier wave band fc by the error component compensation circuit 201, and the modulation signal 206 of the error component compensation circuit 201 is converted into an error component (unnecessary wave component) 207. Is superimposed on.
  • Modulated signal 206 is amplified by power amplifier 108 and output as modulated signal 113
  • error component 207 is amplified by power amplifier 108 and output as error component (unwanted wave component) 208.
  • the power amplifier 108 cancels out the error component 120 and the error component 208 in the output, thereby suppressing the error component in the output of the power amplifier 108 and improving the signal accuracy.
  • the error component 120 and the error component 208 are most appropriately canceled when both error components have the same amplitude and opposite phase. Therefore, it is desirable that the amplitude and phase of the error component 208 can be set so that the error component 120 and the error component 208 are appropriately canceled.
  • the error component compensation circuit 201 adjusts the amplitude and phase of the error component 210 detected at the input terminal 205 and the input terminal 203 to a desired value, and converts the frequency into the carrier wave band fc. It is desirable to have a function of superimposing on the modulation signal 206.
  • the amplitude component signal 110 and error component 119 output from the power supply modulator 109 and the modulation signal 206 and error component 207 output from the error compensation circuit 201 are adjusted to delay the input timing to the power amplifier 108. It is desirable to insert the regulator 211 into the output of the power supply modulator 109 as necessary. However, when the delay adjustment is unnecessary, the delay adjuster 211 can be omitted.
  • FIG. 2 is a diagram illustrating an example of the configuration of the power supply modulator 109.
  • the power supply modulator 109 includes a pulse modulator 121, a switch amplifier 122, an LPF 116, and an attenuator 117, similarly to the power supply modulator of FIG.
  • the pulse modulator 121 has a function of outputting a desired pulse signal based on signals input to the input terminals 204 and 115.
  • a PWM method As a specific method of the pulse modulator 121, a PWM method, a PFM (Pulse Frequency Modulation) method, a ⁇ modulation method, a ⁇ modulation method, or the like can be applied, but other pulse modulation methods may be applied.
  • PFM Pulse Frequency Modulation
  • the switching amplifier 122 has a function of amplifying the pulse signal output from the pulse modulator 121 to the terminal 221 and outputting it to the terminal 222 as the pulse signal 118.
  • FIG. 3 is a diagram illustrating a first example of a more detailed configuration of the switching amplifier 122.
  • the switching amplifier 122 is composed of transistors 233 and 234 connected in cascade, a gate driver 231 for driving each gate, and a gate driver 232 having an inverter function, based on the circuit configuration of a step-down DC-DC converter. Thus, a voltage is applied to a terminal 235 connected to the collector of the transistor 233.
  • FIG. 4 is a diagram illustrating a second example of a more detailed configuration of the switching amplifier 122.
  • the switching amplifier 122 includes a transistor 233, a reverse diode 241 connected to the source of the transistor 233, and a gate driver 231 that drives the gate of the transistor 233 based on the circuit configuration of the step-down DC-DC converter. Thus, a voltage is applied to a terminal 235 connected to the collector of the transistor 233.
  • FIG. 5 is a diagram illustrating a third example of a more detailed configuration of the switching amplifier 122.
  • the switching amplifier 122 connects the drain to the inductor 261, the diode 241 whose cathode is connected to the terminal 222, the other end of the inductor 261, and the anode of the diode 241 based on the circuit configuration of the step-up DC-DC converter.
  • the transistor 233 and a gate driver 231 that drives the gate of the transistor 233 are configured, and a voltage is applied to a terminal 235 that is one end of the inductor 261.
  • FIG. 6 is a diagram illustrating a fourth example of a more detailed configuration of the switching amplifier 122.
  • the switching amplifier 122 drives the transformer 271, the transistor 233 that drives the transformer 271, the diode 241 that extracts the output from the transformer 271, and the gate of the transistor 233 based on the circuit configuration of the flyback DC-DC converter. And a gate driver 231, and a voltage is applied to a terminal 235 that is one end of the transformer 271.
  • FIG. 7 is a diagram illustrating a fifth example of a more detailed configuration of the switching amplifier 122.
  • the switching amplifier 122 drives the transformer 281, the transistor 233 that drives the transformer 281, the diodes 241 and 282 that extract the output from the transformer 281, and the gate of the transistor 233 based on the circuit configuration of the forward DC-DC converter.
  • a gate driver 231 that performs voltage application to a terminal 235 that is one end of the transformer 281.
  • FIG. 8 is a diagram illustrating an example of a more detailed configuration of the attenuator 117.
  • the attenuator 117 includes voltage dividing resistors 251 and 252.
  • the attenuator 117 only needs to have a function of attenuating the output signal 110 and the error component 119 of the LPF 116 and outputting them to the output detection terminal 114, and is not limited to the configuration of FIG.
  • FIG. 9 is a diagram showing another example of a more detailed configuration of the attenuator 117.
  • the attenuator 117 has a configuration in which a capacitor 253 is added to the voltage dividing resistor 252, and one terminal of the attenuator 117 is connected to the output terminal 222 of the switching amplifier 122.
  • the attenuator 117 in FIG. 9 generates an output signal 110 and an attenuation signal of the error component 119 from the pulse signal 118 by an attenuation and integration function by the voltage dividing resistors 251 and 252 and the capacitor 253, and outputs the output signal 110 to the output detection terminal 114.
  • attenuator 117 may be omitted or an amplifier may be used instead of attenuator 117.
  • FIG. 10 is a diagram showing a configuration of a power amplifier according to a first modification of the first embodiment of the present invention.
  • the feedback terminal 115 of the power supply modulator 109 is omitted from the power amplifier shown in FIG.
  • the power amplifier shown in FIG. 1 detects the error component 210 from the difference between the amplitude component signal 209 and the error component 210 input to the feedback terminal 115, and performs error control from the power supply modulator 109 output by feedback control based on the error component 210.
  • Ingredient 119 was suppressed.
  • the power supply modulator 109c shown in FIG. 10 does not have a function of suppressing the error component 119 by feedback control using the feedback terminal 115, but the function of the error component compensation circuit 201 is the same as that of the power amplifier shown in FIG.
  • the error component 120 and the error component 208 are canceled out, the error component at the output terminal 112 of the power amplifier 108 is suppressed, and the signal accuracy is improved. Since the function and operation of the error component compensation circuit 201 have already been described in the first embodiment shown in FIG. 1, description thereof will not be repeated here.
  • FIG. 11 is a diagram illustrating an example of the configuration of the power supply modulator 109c.
  • the input terminal 115 of the pulse modulator 121 of the power supply modulator 109 shown in FIG. 2 is connected to the power supply 311.
  • the input terminal 115 may be grounded instead of being connected to the power source 311.
  • FIG. 12 is a diagram showing a configuration of a power amplifier according to a second modification of the first embodiment of the present invention.
  • an error component detection terminal 322 is provided instead of the output detection terminal 114 of the power supply modulator 109c from the power amplifier shown in FIG.
  • An input terminal 321 is provided instead of 205.
  • the power supply modulator 109 d outputs the error component 210 to the error component detection terminal 322, and the error component 210 is input to the input terminal 321 of the error component compensation circuit 201.
  • the error component 210 input to the input terminal 321 of the error component compensation circuit 201 is frequency-converted to the carrier frequency band fc in the error component compensation circuit 201 and output as the error component 207.
  • the error component 207 is amplified by the power amplifier 108 and output to the output terminal 112 as the error component 208, similarly to the power amplifier shown in FIGS.
  • FIG. 13 is a diagram illustrating an example of the configuration of the power supply modulator 109d.
  • the power supply modulator 109d shown in FIG. 13 includes a pulse modulator 121c, a switch amplifier 122, an LPF 116, and a differential signal detector 304.
  • Non-Patent Document 1 discloses a power supply modulator including a pulse modulator 121c, a switch amplifier 122, and an LPF 116.
  • a differential signal detector 304 and an error component detection terminal 322 are newly added to the power supply modulator disclosed in Non-Patent Document 1. Since the functions of switch amplifier 122 and LPF 116 have already been described, description thereof will not be repeated here.
  • the pulse modulator 121c includes an amplifier 301, a hysteresis comparator 302, and a current detector 303.
  • the amplifier 301 is composed of a voltage follower type operational amplifier, and the current detector 303 is composed of a resistor.
  • the amplifier 301 amplifies the amplitude component signal 105 input to the input terminal 204 and outputs the voltage component of the amplitude component signal 110 to the power supply terminal 111.
  • the switching amplifier 122 amplifies the pulse signal input to the terminal 221 and outputs it as a pulse signal 118.
  • the pulse signal 118 is smoothed by the LPF 116 and supplied to the power supply terminal 111 as a current component of the amplitude component signal 110.
  • the current error is compensated by the output current from the amplifier 301.
  • the hysteresis comparator 302 generates a pulse signal based on the output current of the amplifier 301 detected by the current detector 303 and outputs the pulse signal to the terminal 221 so that the switching amplifier 122 outputs a desired current without error.
  • the output current of the amplifier 301 detected by the current detector 303 reflects the error component 119 at the power supply terminal 111. Therefore, the differential signal detector 304 can be connected to the current detector 303, and the output signal of the differential signal detector 304 can be output to the terminal 322 as the error component 210.
  • FIG. 14 is a diagram showing a configuration of a power amplifier according to the second embodiment of the present invention.
  • the error component compensation circuit 201 includes a differential input variable gain device 311, a power supply 312, an adder 313, and a power amplifier 314.
  • the differential input variable gain device 311 amplifies or attenuates the difference between the signals input to the input terminal 203 and the input terminal 205 and outputs the amplified signal.
  • the differential input variable gain device 311 has a function of variably setting the gain and a function of setting the amplitude of the output signal to a desired value.
  • the adder 313 has a function of combining and outputting the output signal of the differential input variable gain device 311 and the output signal of the power supply 312.
  • the adder 313 may be realized by a coupling circuit using a capacity or a transformer.
  • an error component 210 obtained as a difference between signals input to the input terminal 203 and the input terminal 205 is amplified or attenuated to a desired amplitude by the differential input variable gain device 311 and output.
  • the power amplifier 314 amplifies the modulation signal 106 or the phase modulation signal 107 at the output terminal 104 of the polar modulator 102 and outputs the amplified signal to the terminal 202 as the modulation signal 206.
  • a terminal 315 which is a power source of the power amplifier 314 is modulated by a combined signal of the error component 210 adjusted to a desired amplitude and the output signal of the power source 312. Due to the power supply modulation of the power amplifier 314, the error component 210 is frequency-converted into the carrier wave band fc and is superimposed on the modulation signal 206 as the error component 207.
  • the error component 207 is amplified by the power amplifier 108 and output to the output terminal 112 as the error component 208, so that the error component 208 and the error component 120 generated by power supply modulation of the power amplifier 108 are canceled out.
  • the error component at the output terminal 112 is suppressed.
  • the amplitude of the error component 208 can be adjusted through the amplitude adjustment of the error component 210 by the differential input variable gain device 311, thereby appropriately canceling out the error component 208 and the error component 120.
  • the amplitude of the error component 208 can be set.
  • FIG. 15 is a diagram showing a configuration of a power amplifier according to a first modification of the second embodiment of the present invention.
  • the power amplifier shown in FIG. 15 uses the power supply modulator 109c in which the feedback terminal 115 is omitted, like the power amplifier shown in FIG.
  • the power amplifier shown in FIG. 15 is common to the power amplifier of FIG. 14 except for the power supply modulator 109c, and the power supply modulator 109c has already been described in the first modification of the first embodiment. Therefore, description is not repeated here.
  • FIG. 16 is a diagram illustrating a configuration of a power amplifier according to a second modification of the second embodiment of the present invention.
  • the power amplifier shown in FIG. 16 uses a power modulator 109d having a terminal 322 for detecting an error component. Since the power supply modulator 109d has already been described in the second modification of the first embodiment, description thereof will not be repeated here.
  • the differential input gain variable device 311 is replaced with a single-phase input gain variable device 331 from the power amplifier shown in FIG.
  • the single-phase input gain variable device 331 has a function of amplifying or attenuating the error component 210 input to the input terminal 321 to a desired amplitude and outputting it.
  • the single-phase input gain variable device 331 has a function of variably setting the gain and a function of setting the amplitude of the output signal to a desired value.
  • the power amplifier shown in FIG. 16 has the same configuration and effects as those of the power amplifier shown in FIG. 14 except for the power supply modulator 109d and the single-phase input gain variable device 331, and therefore description thereof will not be repeated here.
  • FIG. 17 is a diagram showing a configuration of a power amplifier according to the third embodiment of the present invention.
  • a variable phase adjuster 323 is additionally inserted into the output of the single-phase input gain variable device 331 in the power amplifier shown in FIG.
  • the power amplifier shown in FIG. 17 is configured such that the differential input variable gain device 311 sets the amplitude of the error component 210 to a desired value, and the variable phase adjuster 323 sets the phase of the error component 210 to a desired value.
  • the differential input variable gain device 311 sets the amplitude of the error component 210 to a desired value
  • the variable phase adjuster 323 sets the phase of the error component 210 to a desired value.
  • the differential input variable gain device 311 sets and outputs the amplitude of the error component 210 to a desired value, and then the variable phase adjuster 323 sets the phase of the error component 210 to a desired value and outputs it. However, the order of the error component 210 is adjusted by the variable phase adjuster 323, and the amplitude of the error component 210 is then adjusted by the differential input variable gain device 311. Also good.
  • the error component at the output terminal 112 is suppressed by canceling out the error component 208 and the error component 120, as in the first and second embodiments.
  • the amplitude and phase of the error component 208 can be set.
  • FIG. 18 is a diagram illustrating an example of the configuration of the power amplifier 314.
  • the power amplifier 314 includes an input matching circuit 401a, an output matching circuit 402a, a bipolar transistor 406a whose emitter is grounded, a base bias circuit 403a, and a collector bias circuit 404a.
  • the base bias circuit 403a has one end connected to the power supply terminal 405a and applied with a DC voltage, the other end connected to the base of the bipolar transistor 406a, and the other end of the input matching circuit 401a connected to the terminal 104 at one end. Connecting.
  • the collector bias circuit 404 a has one end connected to a terminal 315 serving as a power supply and the output signal of the adder 313 applied thereto, the other end connected to the collector of the bipolar transistor 406 a, and the output matching circuit 402 a other end connected to the terminal 202. Connect to the end.
  • the transistor used for the power amplifier 314 is not limited to a bipolar transistor, and a field effect transistor may be used.
  • a sinusoidal modulated wave having a carrier frequency of 1.95 GHz (modulated wave frequency 1 MHz, modulation degree 0.14) is input to the terminal 104 of the power amplifier 314 having the configuration shown in FIG.
  • a 4 MHz signal is superimposed on a DC voltage that is an output signal of the power supply 312 by the adder 313, and a simulation result when the output signal of the adder 313 is input to the terminal 315 that is the power supply of the power amplifier 314 is shown in FIG. 19 to FIG.
  • FIG. 19 is a diagram illustrating the dependency of the amplitude intensity of the modulation signal 206 and the error component 207 when the amplitude intensity of the error component 210 is changed. As shown in FIG. 19, by changing the amplitude intensity of the error component 210 input to the power supply terminal 315 of the power amplifier 314, the error output to the terminal 202 without changing the amplitude intensity of the modulation signal 206.
  • the amplitude intensity of the component 207 can be controlled with a change rate of 1 dB / dB.
  • FIG. 20 is a diagram illustrating the dependency of the amplitude intensity of the modulation signal 206 and the error component 207 when the phase of the error component 210 is changed. As shown in FIG. 20, even if the phase of the error component 210 is changed, the amplitude intensity of the modulation signal 206 and the error component 207 does not change.
  • FIG. 21 is a diagram showing the phase dependence of the modulation signal 206 and the error component 207 when the phase of the error component 210 is changed.
  • the phase of the error component 207 is changed by +1 deg / deg on the upper band side (1.95 GHz + 4 MHz) without changing the phase of the modulation signal 206.
  • the lower band side (1.95 GHz-4 MHz) can be controlled with a change rate of -1 deg / deg.
  • FIG. 22 is a diagram showing the phase dependence of the modulation signal 206 and the error component 207 when the amplitude intensity of the error component 210 is changed. As shown in FIG. 22, even if the amplitude intensity of the error component 210 is changed, the phase of the modulation signal 206 and the error component 207 does not change.
  • the amplitude of the error component 207 is changed to the amplitude of the error component 210 without affecting the amplitude and phase of the modulated wave 206 output to the terminal 202. It is shown that the phase of the error component 207 can be individually controlled by the phase.
  • the configuration of the power amplifier 108 may be the same as that shown in FIG. 18 as shown in FIG.
  • the configuration of the power amplifier 108 is a sinusoidal modulation wave with a carrier frequency of 1.95 GHz (modulation wave frequency 1 MHz, modulation degree 0.14) as the modulation signal 206, and 1.95 GHz ⁇ 4 MHz as the error component 207.
  • the amplitude component signal 110 input to the power supply terminal 111 of the power amplifier 108 is a sinusoidal modulation wave (modulation wave frequency 1 MHz, modulation degree 0.14), and the error component 119 is a 4 MHz component. Added.
  • FIG. 24 is a graph showing the amount of change in the error component (sum of error components 120 and 208) at the output terminal 112 when the amplitude and phase of the error component 207 at the terminal 202 are changed.
  • FIG. 25 is a diagram showing a spectrum at the output terminal 112 when the error component 207 is not injected into the terminal 202 and when the optimum error component 207 is injected.
  • FIG. 25 shows that only the error component 120 is suppressed without influencing the modulation signal 113 by injecting the error component 207 into the terminal 202.
  • the amplitude and phase of the error components 207 and 208 are also set to the desired values by setting the amplitude and phase of the error component 210 to the desired values using the differential input variable gain device 311 and the variable phase adjuster 323. It is shown that the error components 120 and 208 are offset at the output terminal 112 and the accuracy of the output signal in the power amplifier 108 can be improved.
  • the differential amplifier 123 in the conventional example shown in FIG. 36 is compared with the differential input variable gain device 311 or the single-phase input variable gain device 331 of the present invention, the differential amplifier 123 has the amplitude signal 110 after amplification. While it is necessary to output a correction signal that matches the scale, the differential input variable gain device 311 or the single-phase input variable gain device 331 outputs a correction signal that matches the scale of the amplitude signal 105 before amplification. Good.
  • variable gain device 311 or 331 of the present invention since the output of the variable gain device 311 or 331 of the present invention has a lower amplitude than the output of the differential amplifier 123, when the variable gain device 311 or 331 is implemented by an amplifier, the power supply voltage can be set lower. As a result, power consumption can be suppressed. Further, when the variable gain device 311 or 331 is mounted with an attenuator with an optimum amplitude of the error component 210 being low, the variable gain device 311 or 331 can be composed of passive elements, so that power consumption can be further reduced.
  • the error correction signal 210 must be amplified to a desired amplitude that can cancel the error component 120. This amplification is performed by the amplification process of the power amplifier 108. In the case of the conventional example shown in FIG. 36, the power consumption is increased by adding the differential amplifier 123 for amplifying the correction signal.
  • the amplification function of the existing power amplifier 108 is used to amplify the error component 207 as a correction signal, that is, the error component 210, so that the power amplifier 108 does not increase in power consumption. Signal errors at the output terminal 112 can be suppressed. Therefore, in the present invention, power consumption can be greatly reduced as compared with the conventional example shown in FIG.
  • the conventional example shown in FIG. 38 it is necessary to add an error amplifier 149 with high power consumption in order to generate a correction signal. Further, in the conventional example shown in FIG. 38, it is necessary to use the delay regulators 144 and 146 and the directional couplers 141, 145 and 147 in the high-frequency RF band having a large loss.
  • the low gain low frequency baseband variable gain device 311 or 331, the variable phase adjuster 323, and the adder 313 need only be added to the conventional power amplifier.
  • the correction error component 208 can be generated without increasing the power consumption by diverting the amplification function of the power amplifier 108. Therefore, in the present invention, power consumption can be greatly reduced as compared with the conventional example shown in FIG.
  • the predistortion units 163, 166, and 167 are mounted with a digital circuit configured by a CPU (Central Processing Unit) and a lookup table.
  • a digital predistortion method has a problem that the amount of calculation and processing speed required for an application having a wide modulation wave band are increased, and the circuit scale, cost, and power consumption are further increased.
  • the correction error component 208 can be generated directly without going through the calculation by the digital circuit. Therefore, even when the modulation wave band is expanded, the power consumption is lower than that of the conventional example of FIG. Signal error at the output terminal 112 of the power amplifier 108 can be suppressed.
  • the present invention can be configured only by adding a variable gain device 311 or 331, a variable phase adjuster 323, and an adder 313 to a conventional power amplifier. Therefore, it is necessary to use two power supply modulators and two power amplifiers respectively, and the configuration of FIG. 37 in which the circuit size is more than twice that of the conventional power amplifier, the distortion detection loop 143 and the distortion removal loop 150 having a large circuit size are provided.
  • the power amplifier of the present invention can greatly reduce the circuit scale and size. Further, due to the reduction in circuit scale and size, the present invention can greatly reduce the cost compared to the conventional example.
  • FIG. 26 is a diagram showing a configuration of a power amplifier according to a first modification of the third embodiment of the present invention.
  • the power supply modulator 109c in which the feedback terminal 115 in FIG. 1 is omitted is used as in the power amplifier shown in FIG.
  • the power amplifier shown in FIG. 26 is common to the power amplifier of FIG. 17 except for the power supply modulator 109c, and the power supply modulator 109c has already been described in the first modification of the first embodiment. Therefore, description is not repeated here.
  • FIG. 27 is a diagram illustrating a configuration of a power amplifier according to a second modification of the third embodiment of the present invention.
  • the power supply modulator 109d provided with the error component detection terminal 322 is used as in the power amplifier shown in FIG. Since the power supply modulator 109d has already been described in the second modification of the first embodiment, description thereof will not be repeated here.
  • the differential input gain variable device 311 is replaced with a single-phase input gain variable device 331 from the power amplifier shown in FIG.
  • the single-phase input gain varying device 331 has already been described in the second modification of the second embodiment shown in FIG. 15, and therefore description thereof will not be repeated here.
  • the power amplifier shown in FIG. 27 has the same configuration and effects as those of the power amplifier shown in FIG. 17 except for the power supply modulator 109d and the single-phase input gain variable device 331 already described. Do not repeat.
  • FIG. 28 is a diagram showing a configuration of a power amplifier according to the fourth embodiment of the present invention.
  • the power amplifier shown in FIG. 28 is configured by replacing the power amplifier 314 in the power amplifier shown in FIG.
  • the LO (local oscillation) signal input terminal of the mixer 324 is connected to the terminal 104
  • the baseband signal input terminal of the mixer 324 is connected to the terminal 315
  • the RF output terminal of the mixer 324 is connected to the terminal 202.
  • the mixer 324 like the power amplifier 314 in the power amplifier in FIG. Modulation signal 206 and error component 207 are output to terminal 202.
  • the power amplifier shown in FIG. 28 has the same configuration and effects as those of the second embodiment shown in FIG. 14 except for the mixer 324, and therefore description thereof will not be repeated here.
  • FIG. 29 is a diagram showing a configuration of a power amplifier according to a first modification example of the fourth embodiment of the present invention.
  • the power amplifier shown in FIG. 29 is configured by replacing the power amplifier 314 in the power amplifier shown in FIG. Since mixer 324 has already been described in the power amplifier shown in FIG. 28, description thereof will not be repeated here.
  • the power amplifier shown in FIG. 29 has the same configuration and effect as the first modification example of the second embodiment shown in FIG. 15 except for the mixer 324 already described. Do not repeat.
  • FIG. 30 is a diagram illustrating a configuration of a power amplifier according to a second modification of the fourth embodiment of the present invention.
  • the power amplifier shown in FIG. 30 is configured by replacing the power amplifier 314 in the power amplifier shown in FIG. Since mixer 324 has already been described in the power amplifier shown in FIG. 28, description thereof will not be repeated here.
  • the power amplifier shown in FIG. 30 has the same configuration and effects as those of the power amplifier shown in FIG. 16 except for the mixer 324 already described. Therefore, the description thereof will not be repeated here.
  • FIG. 31 is a diagram showing a configuration of a power amplifier according to the fifth embodiment of the present invention.
  • the power amplifier shown in FIG. 31 is configured by replacing the power amplifier 314 in the power amplifier shown in FIG. Since mixer 324 has already been described in the power amplifier shown in FIG. 28, description thereof will not be repeated here.
  • the power amplifier shown in FIG. 31 has the same configuration and effects as those of the power amplifier shown in FIG. 17 except for the mixer 324 already described. Therefore, the description thereof will not be repeated here.
  • FIG. 32 is a diagram showing a configuration of a power amplifier according to a first modification example of the fifth embodiment of the present invention.
  • the power amplifier shown in FIG. 32 is configured by replacing the power amplifier 314 in the power amplifier shown in FIG. Since mixer 324 has already been described in the power amplifier shown in FIG. 28, description thereof will not be repeated here.
  • the power amplifier shown in FIG. 32 has the same configuration and effects as those of the power amplifier shown in FIG. 26 except for the mixer 324 already described. Therefore, the description thereof will not be repeated here.
  • FIG. 33 is a diagram showing a configuration of a power amplifier according to a second modification example of the fifth embodiment of the present invention.
  • the power amplifier shown in FIG. 33 is configured by replacing the power amplifier 314 in the power amplifier shown in FIG. Since mixer 324 has already been described in the power amplifier shown in FIG. 28, description thereof will not be repeated here.
  • the power amplifier shown in FIG. 33 has the same configuration and effects as those of the power amplifier shown in FIG. 27 except for the mixer 324 already described. Therefore, the description thereof will not be repeated here.
  • the power amplifier 108 is not limited to a one-stage configuration, and may be a multistage power amplifier. Further, a power amplifier may be added before or after the power amplifier 108 or before or after the error component compensation circuit 201.

Abstract

 出力信号の精度が良好な電力増幅器を提供する。ポーラ変調器102を適用した電力増幅器において、電源変調器109で電源変調を受けている電力増幅器108の前段に誤差成分補償回路201を備える。誤差成分補償回路201は、電源変調器109の出力信号の誤差成分119を、変調波に重畳して電力増幅器108に出力する。誤差成分補償回路201の出力に含まれる誤差成分207は電力増幅器108で増幅及び出力される。電力増幅器108は、誤差成分119を含む電源変調器109の出力信号で電源変調を受け、電力増幅器108の出力信号に誤差成分120が重畳される。誤差成分補償回路201から出力され電力増幅器108で増幅される誤差成分208と、電力増幅器108の電源変調で生じる電力増幅器出力の誤差信号120とが相殺されることで、電力増幅器出力の誤差成分が抑制される。

Description

電力増幅器
[関連出願の記載]
 本発明は、日本国特許出願:特願2008-033306号(2008年2月14日出願)の優先権主張に基づくものであり、同出願の全記載内容は引用をもって本書に組み込み記載されているものとする。
 本発明は、電力増幅器に関し、特に無線通信で使用される送信用電力増幅器に関する。
 無線通信機に用いられる送信用電力増幅器は、通信機の中でも特に電力を消費する。そのため、電力増幅器の電力効率改善が通信機開発の重要課題とされている。近年の通信規格は、スペクトル効率改善のため振幅変調が主流になっている。この振幅変調は信号歪に対する要求が厳しいため、電力増幅器は線形性が良好になる高バックオフ(低入力電力)状態で動作させる。しかし高バックオフ動作を行なう場合、電力増幅の電力効率が低下するという問題があった。
 このような電力増幅器の電力効率と線形性の両立の問題を解決するため、図34に示すようなポーラ変調技術を用いた電力増幅器が近年盛んに研究されている。図34の電力増幅器では、ポーラ変調器102の入力端子101に送信信号データを入力し、ポーラ変調器102の出力端子103に送信信号の振幅成分信号105を出力し、ポーラ変調器102の出力端子104に送信信号データの振幅成分及び位相成分を搬送波に載せた変調信号106もしくは送信信号の位相成分を搬送波に載せた位相変調信号107を出力する。ポーラ変調器102は、振幅成分信号105と、変調信号106もしくは位相変調信号107の出力タイミングを個別に所望値に設定できる機能も備えている。
 電源変調器109は、振幅成分信号105を増幅した振幅成分信号110を出力し、振幅成分信号110によって電力増幅器108の電源端子111の変調を行う。また、電源変調器109は、出力検出端子114とフィードバック端子115を備えており、電源変調器109から出力される振幅成分信号110の情報を出力検出端子114から出力してフィードバック端子115に入力し、このフィードバック端子115に入力された信号に基づいて振幅成分信号110の精度を改善する機能を備えている。
 ポーラ変調器102の出力端子104に出力された変調信号106もしくは位相変調信号107は、電力増幅器108に入力される。電力増幅器108の出力端子112には、送信信号データの振幅成分及び位相成分が搬送波に載り且つ増幅された変調信号113が出力される。
 上記のポーラ変調技術を用いた電力増幅器では、出力変調信号113の振幅に合わせて電力増幅器108の電源端子111の電圧を制御する。特に変調信号113が低出力電力である場合は、電力増幅器108の電源端子111の電圧を低下させているので、低出力時に電源変調器109から電力増幅器108への供給電力を必要最低限の量に抑制し、無駄な消費電力を抑制することができる。
 次に、図34の電力増幅器における電源変調器109の詳細について図35に基づいて説明する。電源変調器109は、パルス変調器121と、スイッチングアンプ122と、ローパスフィルタ(LPF)116と、減衰器117とで構成される。電源変調器109には振幅成分信号105が入力され、振幅成分信号105は、パルス変調器121でパルス信号に変換され、電力効率の高いスイッチングアンプ122でパルス信号118に増幅される。そして、パルス信号118は、ローパスフィルタ(LPF)116に入力され不要な高周波成分を除去されることで増幅された振幅成分信号110に変換される。電源変調器109は、減衰器117を経由して振幅成分信号110の情報を出力検出端子114から出力し、フィードバック端子115を経由して出力検出端子114の信号をパルス変調器121へフィードバックする。このような構成とすることで、振幅成分信号110の精度を改善することが可能である。図35の電力増幅器では、電源変調器109に高電力効率のスイッチアンプを使用し、且つ電力増幅器108の電源端子111の電圧制御を行うことで、全体として高電力効率を実現している。
 ところで、図35の電力増幅器において、パルス変調器121及びスイッチングアンプ122から発生するスイッチングノイズなどに起因する誤差成分(不要波成分)119が振幅成分信号110に混入するという問題がある。この誤差成分119は、電力増幅器108における電源変調で搬送波の周波数帯fcに周波数変換され、誤差成分120として出力変調信号113に混入してしまう。この誤差成分120は、隣接チャネル漏洩電力(ACPR)の要因となり、WCDMAなどの通信規格で定められた信号精度を達成できないという問題を引き起こす。
 上記のポーラ変調技術で問題になる誤差成分119を抑制するため、スイッチングアンプ122の代わりに低ノイズのリニアレギュレータを用いるという手段もある。しかしながら、リニアレギュレータはスイッチングアンプに比べて電力効率が低く、これを使用した場合、ポーラ変調技術の目的である高電力効率の実現が困難になる。
 一方、電源変調器の誤差成分119を抑制する別の手法が特許文献1で開示されている。特許文献1における手法では図36に示すように、図35に示した電力増幅器に、誤差補正用アンプ123と、減衰器124を介するフィードバック回路を設けている。この回路では、誤差補正用アンプ123から出力される補正信号をLPF116の出力に注入することで、スイッチングアンプ122から発生する誤差成分119を抑制する。
 また、電源変調器の誤差成分119に起因する誤差成分120を抑制する別の手法が特許文献2で開示されている。特許文献2における手法では図37で示すように、電源変調器109aから電源端子111aの変調を受けている電力増幅器111aと、電源変調器109bから電源端子111bの変調を受けている電力増幅器111bとを、分配合成器131及び132を用いて並列合成している。パルス変調器121a及び121bは、エラーアンプ135a及び135bと、PWM(Pulse Width Modulation)方式のパルス変調器136a及び136bとでそれぞれ構成され、パルス変調器121a及び121bの制御端子133a及び133bには、それぞれ三角波クロック信号134a及び134bが入力される。ここで三角波クロック信号134aと134bは、互いに逆相であるように設定される。これにより、電源変調器109a及び109bから出力される誤差成分119a及び119bも互いに逆相になる。さらに、誤差成分119a及び119bが電源変調で搬送波の周波数帯fcに周波数変換され電力増幅器108a及び108bの出力で発生する誤差成分120a及び120bも互いに逆相になる。電力増幅器108a及び108bの出力信号を分配合成器132で合成することで、互いに逆相である誤差成分120a及び120bは相殺されつつ、且つ所望信号である出力信号113a及び113bの合成値が出力される。
 さらに、ポーラ変調技術における出力信号の精度を改善する技術として、ポーラ変調技術にフィードフォワード型線形化技術を組み合わせた手法が特許文献3で開示されている。特許文献3における手法では図38で示すように、従来型のポーラ変調型電力増幅器がポーラ変調器102と、電源変調器109と、電力増幅器108c及び108dと、ポーラ変調器102から出力される振幅成分信号(包絡線信号)と変調信号との出力タイミングを調整する遅延調整器142とで構成される。さらに、方向性結合器及び145と遅延調整器144とで構成される歪み検出ループ143と、方向性結合器145及び147と遅延調整器146とベクトル調整器148とエラーアンプ149とで構成される歪み除去ループ150とを備えている。この構成では、電力増幅器108dから出力される変調信号に含まれる誤差成分を、遅延調整器144から出力される誤差を含まない理想的な変調信号と電力増幅器108dから出力される変調波信号との差分として、方向性結合器145を用いて検出する。検出された電力増幅器108dの出力信号の誤差成分は、ベクトル調整器148に入力され位相調整を行った後、エラーアンプ149で所望振幅にまで増幅する。方向性結合器147において、遅延調整器146を経由した電力増幅器108dの出力信号と、ベクトル調整器148とエラーアンプ149で所望の振幅値と位相値に調整された電力増幅器108dの出力信号の誤差成分とを合成することで、電力増幅器108dの出力信号から誤差成分を除去することができる。
 また、ポーラ変調技術における出力信号の精度を改善する技術として、ポーラ変調技術にプリディストーション型線形化技術を組み合わせた手法が特許文献4で開示されている。この特許文献4における手法では図39で示すように、ポーラ変調型電力増幅器が、振幅位相分離部161と、電源変調器109と、電力増幅器108と、位相変調部164とで構成される。振幅位相分離部161は、振幅成分信号S11と位相成分信号S12とを出力し、位相変調部164はプリディストーション部163を経由した位相成分信号V(ph)を搬送波に載せて位相変調信号S13として出力する。図39の構成では、従来のポーラ技術に、出力測定部168及び169と、乗算器162と、可変利得増幅器165と、プリディストーション部163、166、167とで構成されるプリディストーション部が追加される。プリディストーション部166は、電源変調器109の歪み特性を補正し、プリディストーション部163は電力増幅器108の歪み特性を補正し、プリディストーション部167は、可変利得増幅器165の利得を調整することで電力増幅器108に入力される位相変調波V(RF,VGA)の平均電力を最適化する。プリディストーション部163、166、167は、動作モード切換信号S21と、平均出力電力制御信号S20と、出力測定部168で測定される電力増幅器108の出力信号V(RF,PA)と、出力測定部169で測定される位相変調波V(RF,VGA)に基づいて、それぞれ信号の補正量を決定する。この構成では、プリディストーション部163、166、167の機能により、電力増幅器108の出力信号V(RF,PA)の信号精度が改善する。
 なお、非特許文献1には、効率化を図った電源変調器の構成の一例が示されている。
特開2007-215158号公報 特開2006-093872号公報 特開2007-221418号公報 特開2005-269440号公報 「2006年12月、アイ・イー・イー・イー・トランザクションズ・オン・マイクロウェーブ・セオリー・アンド・テクニークス、第54巻、第12号、4086~4099頁 (IEEE Transactions on Microwave Theory and Techniques, vol.54, no.12, pp.4086-4096, (2006)」
 なお、上記特許文献及び非特許文献の全開示内容はその引用をもって本書に繰込み記載する。以下の分析は、本発明によって与えられたものである。
 ところで、図36に示す特許文献1の構成では、増幅後の振幅信号110に補正を掛けるため、補正信号の振幅も増幅後の振幅信号110に対応したスケールになり、補正信号の振幅は大きくなる。したがって、誤差補正用アンプ123を大振幅に対応させるように誤差補正アンプ123の電源電圧を高く設定しなければならず、このことが誤差補正アンプ123の消費電力の増大につながる。結果として、誤差補正アンプ123の消費電力が回路全体の電力効率を下げるという問題がある。
 また、図37に示す特許文献2の構成では、高周波帯の出力信号113a及び113bを分配合成器132で合成するため、分配合成器132における合成損失が問題になり、結果として電力効率の低下が生じるという問題がある。また、この方式では、電源変調器と電力増幅器とをそれぞれ二個用いる必要があり、従来のポーラ変調技術と比べて回路規模とコストが増大するという問題点がある。
 さらに、図38に示す特許文献3の構成では、エラーアンプ149で新たに歪みが追加されないように電力増幅器108dの出力信号の誤差成分を増幅する必要がある。このためエラーアンプ149は、飽和出力が電力増幅器108dと同程度かそれ以上の値を持ち且つ高い線形性を要求され、これらの要求を満たすためエラーアンプ149には消費電力の大きい電力増幅器を用いる必要がある。また、RF(radio frequency)帯で用いる遅延調整器144、146と方向性結合器141、145、147における電力損失は、無視できない値を持つ。これらのことは、回路全体の電力効率を押し下げ、所望の電力効率が得られないという問題を生じさせる。さらに、この方式ではポーラ変調器に歪み検出ループ143と歪み除去ループ150を新たに追加する必要があり、このことは回路規模とコストの増大につながるという問題点がある。
 さらにまた、図39に示す特許文献4の構成では、プリディストーション部163、166、167と、出力測定部168、169を追加する必要があり、回路規模の増大という問題が生じる。さらにこの方式では、通常、プリディストーション部163、166、167をCPU(Central Processing Unit)とルックアップテーブルで構成されたデジタル回路で実装することが想定されるが、このようなデジタルプリディストーション方式では変調波の帯域が広いアプリケーションに対しては必要な計算量と処理速度が増大し、回路規模とコスト及び消費電力が一層増大するという問題点がある。
 以上のように、図34から図39に示した従来型のポーラ変調技術において、電力効率の改善と出力信号の精度がトレードオフの関係にあり、両者の両立が依然として充分満たされないということが挙げられる。このことは、ポーラ変調技術を適用した電力増幅器の出力信号の精度を改善するために追加した回路の消費電力が大きいことによって引き起こされている。また従来技術において、出力信号の精度を改善するために大規模の回路を追加する必要があり、このため全体回路のサイズ及びコストが増大するという問題点がある。
 したがって、本発明の目的は、高い電力効率を保ちつつ、かつ回路規模を大きく増大させることなく、出力信号精度をより高めた電力増幅器を提供することにある。
 本発明の1つのアスペクト(側面)に係る電力増幅器は、送信信号として変調信号を増幅する電力増幅器であって、入力信号を搬送波に重畳した変調信号と該入力信号の振幅成分信号とを生成する信号発生回路と、振幅成分信号をパルス変調して増幅した出力信号を出力する電源変調回路と、電源変調回路のパルス変調に係る不要波成分を変調信号に重畳して出力する誤差成分補償回路と、電源変調回路の出力信号に応じて自身の電源を変調すると共に、誤差成分補償回路の出力信号を入力して増幅する増幅器と、を備える。
 本発明の電力増幅器において、電源変調回路は、増幅した出力信号をさらに減衰もしくは増幅して補償信号として誤差成分補償回路に出力する機能を備え、誤差成分補償回路は、変調信号と振幅成分信号と補償信号とを入力し、振幅成分信号及び補償信号の差分から不要波成分を求め、変調信号に不要波成分を重畳するようにしてもよい。
 本発明の電力増幅器において、電源変調回路は、増幅した出力信号の含まれる不要波成分を補償信号と振幅成分信号とに基づいて抑制する誤差抑制機能をさらに備えるようにしてもよい。
 本発明の電力増幅器において、電源変調回路は、出力信号中の不要波成分を検知して誤差成分補償回路に出力する検知機能を備え、誤差成分補償回路は、変調信号と不要波成分とを入力し、変調信号に不要波成分を重畳するようにしてもよい。
 本発明の電力増幅器において、変調信号は、位相変調信号であって、信号発生回路は、変調信号として、入力信号の位相成分信号を搬送波に重畳した位相変調信号を生成するようにしてもよい。
 本発明の電力増幅器において、誤差成分補償回路は、不要波成分の振幅を所望値に設定して出力する可変利得回路と、直流電圧源と、可変利得回路によって振幅を所望値に設定した不要波成分と、直流電圧源の出力信号とを合成して出力する加算回路と、加算回路の出力信号によって自身の電源が変調されると共に、信号発生回路から出力される変調信号を入力して増幅する補償増幅器と、を備え、補償増幅器が誤差成分補償回路の出力信号を出力するようにしてもよい。
 本発明の電力増幅器において、誤差成分補償回路は、不要波成分の振幅を所望値に設定して出力する可変利得回路と、直流電圧源と、可変利得回路によって振幅を所望値に設定した不要波成分と、直流電圧源の出力信号とを合成して出力する加算回路と、信号発生回路から出力される変調信号と、加算回路の出力信号とを入力してミキシングするミキサと、を備え、ミキサが誤差成分補償回路の出力信号を出力するようにしてもよい。
 本発明の電力増幅器において、誤差成分補償回路は、不要波成分の位相を所望値に設定して出力する可変移相器をさらに備え、加算器は、可変利得装置及び可変移相器によって振幅及び位相を所望値に設定した不要波成分と、直流電圧源の出力信号とを合成して出力するようにしてもよい。
 本発明の電力増幅器において、電源変調回路は、振幅成分信号に基づいてパルス信号を出力するパルス変調器と、パルス変調器の出力を増幅するスイッチングアンプと、スイッチングアンプから出力されるパルス信号を平滑化し、増幅した振幅成分信号を再生するローパスフィルタと、を備え、ローパスフィルタが電源変調回路の出力信号を出力するようにしてもよい。
 本発明の電力増幅器において、電源変調回路の出力と増幅器の電源との間に、電源変調回路の出力信号を遅延する遅延調整回路をさらに備えるようにしてもよい。
 本発明の他のアスペクト(側面)に係る電力増幅方法は、送信信号として変調信号を増幅する電力増幅器における方法であって、入力信号を搬送波に重畳した変調信号と該入力信号の振幅成分信号とを生成するステップと、振幅成分信号をパルス変調して増幅した出力信号を出力するステップと、パルス変調に係る不要波成分を検知し、入力した変調信号に不要波成分を重畳して出力するステップと、増幅した出力信号に応じて増幅器の電源を変調すると共に、該増幅器が不要波成分を重畳した出力信号を入力して増幅するステップと、を含む。
 本発明の電力増幅方法において、変調信号は、位相変調信号であって、生成するステップにおいて、変調信号として、入力信号の位相成分信号を搬送波に重畳した位相変調信号を生成するようにしてもよい。
 本発明によれば、電源変調器の不要波成分(誤差成分)に起因する、電力増幅器の出力信号の信号精度の劣化を抑制すると共に、高い電力効率を保つ小規模な回路の電力増幅器が実現される。
本発明の第1の実施の形態に係る電力増幅器の構成を示す図である。 電源変調器の構成の一例を示す図である。 スイッチングアンプのより詳細な構成の第1の例を示す図である。 スイッチングアンプのより詳細な構成の第2の例を示す図である。 スイッチングアンプのより詳細な構成の第3の例を示す図である。 スイッチングアンプのより詳細な構成の第4の例を示す図である。 スイッチングアンプのより詳細な構成の第5の例を示す図である。 スイッチングアンプのより詳細な構成の第2の例を示す図である。 減衰器のより詳細な構成の例を示す図である。 本発明の第一の実施の形態の第一の変形例に係る電力増幅器の構成を示す図である。 本発明の第一の実施の形態の第一の変形例に係る電源変調器の構成の一例を示す図である。 本発明の第一の実施の形態の第二の変形例に係る電力増幅器の構成を示す図である。 本発明の第一の実施の形態の第二の変形例に係る電源変調器の構成の一例を示す図である。 本発明の第二の実施の形態に係る電力増幅器の構成を示す図である。 本発明の第二の実施の形態の第一の変形例に係る電力増幅器の構成を示す図である。 本発明の第二の実施の形態の第二の変形例に係る電力増幅器の構成を示す図である。 本発明の第三の実施の形態に係る電力増幅器の構成を示す図である。 電力増幅器314の構成の一例を示す図である。 図17に示した誤差成分補償回路内の電力増幅器の電源端子に入力される誤差成分の振幅強度に対する、同電力増幅器から出力される変調信号及び誤差成分の振幅強度の変化を示した図である。 図17に示した誤差成分補償回路内の電力増幅器の電源端子に入力される誤差成分の位相に対する、同電力増幅器から出力される変調信号及び誤差成分の振幅強度の変化を示した図である。 図17に示した誤差成分補償回路内の電力増幅器の電源端子に入力される誤差成分の位相に対する、同電力増幅器から出力される変調信号及び誤差成分の位相の変化を示した図である。 図17に示した誤差成分補償回路内の電力増幅器の電源端子に入力される誤差成分の振幅強度に対する、同電力増幅器から出力される変調信号及び誤差成分の位相の変化を示した図である。 電力増幅器108の構成の一例を示す図である。 図17に示した誤差成分補償回路の後段に設置された電力増幅器の入力端子に入力される誤差成分の振幅強度及び位相に対する、同電力増幅器から出力される誤差成分の振幅の変化を示した図である。 図17に示した誤差成分補償回路の後段に設置された電力増幅器の入力端子に所望の誤差補償用の誤差成分を入力した場合及び入力しない場合における、同電力増幅器の出力信号のスペクトルを示した図である。 本発明の第三の実施の形態の第一の変形例に係る電力増幅器の構成を示す図である。 本発明の第三の実施の形態の第二の変形例に係る電力増幅器の構成を示す図である。 本発明の第四の実施の形態に係る電力増幅器の構成を示す図である。 本発明の第四の実施の形態の第一の変形例に係る電力増幅器の構成を示す図である。 本発明の第四の実施の形態の第二の変形例に係る電力増幅器の構成を示す図である。 本発明の第五の実施の形態に係る電力増幅器の構成を示す図である。 本発明の第五の実施の形態の第一の変形例に係る電力増幅器の構成を示す図である。 本発明の第五の実施の形態の第二の変形例に係る電力増幅器の構成を示す図である。 従来のポーラ変調技術に基づく電力増幅器の構成図である。 従来のポーラ変調技術に基づく電力増幅器の詳細な構成図である。 特許文献1に基づく電力増幅器の構成図である。 特許文献2に基づく電力増幅器の構成図である。 特許文献3に基づく電力増幅器の構成図である。 特許文献4に基づく電力増幅器の構成図である。
符号の説明
101、103、104、111、112、114、115、202、204、221、222、235、315、322、405 端子
102 ポーラ変調器
105、110、209、210 振幅成分信号
106、113、206 変調信号
107 位相変調信号
108、314 電力増幅器
109、109c、109d 電源変調器
116 ローパスフィルタ
117、124 減衰器
118 パルス信号
119、120、207、208 誤差成分
121、136 パルス変調器
122 スイッチングアンプ
135、149 エラーアンプ
201 誤差成分補償回路
203、205、321 入力端子
231、232 ゲートドライバ
233、234、406 トランジスタ
241、282 ダイオード
251、252 抵抗
253 容量
261 インダクタ
271、281 トランス
301 増幅器
302 ヒステリシスコンパレータ
303 電流検出器
304 差動信号検出器
311、331 可変利得装置
312 電源
313 加算器
401、402 整合回路
403 ベースバイアス回路
404 コレクタバイアス回路
 本発明の実施の形態に係る電力増幅器は、送信信号として変調信号を増幅する電力増幅器であって、入力信号に基づいて、入力信号の振幅成分信号を生成し、且つ入力信号を搬送波に重畳した変調信号を生成する信号発生回路と、前記振幅成分信号を入力する入力端子を備え、前記振幅成分信号を増幅した出力信号を出力端子に出力し、前記出力信号を減衰もしくは増幅して出力信号検出端子に出力する電源変調回路と、前記変調信号が入力される第一の入力端子と、前記振幅成分信号が入力される第二の入力端子と、前記電源変調回路の出力信号検出端子の信号が入力される第三の入力端子とを備え、前記第二の入力端子及び第三の入力端子における信号の差分から前記電源変調回路の誤差成分が検知され、前記変調信号に前記誤差成分を重畳して出力する誤差成分補償回路と、前記誤差成分補償回路の出力信号が入力され、前記電源変調回路の出力信号によって電源端子が変調される。
 より具体的には、電源変調器で電源変調を受けている電力増幅器の前段に誤差成分補償器を設置する。この誤差成分補償器は、電源変調器の出力信号の誤差成分を、電力増幅器に入力する変調波に重畳して出力する機能を有する。前記誤差成分補償器の出力に含まれる誤差成分は電力増幅器で増幅及び出力される。電力増幅器は誤差成分を含む電源変調器の出力信号で電源変調を受け、電力増幅器の出力信号に前記誤差成分が重畳される。誤差成分補償器から出力され電力増幅器で増幅される誤差成分と、電力増幅器の電源変調で生じる電力増幅器出力の誤差信号とが相殺されることで、電力増幅器出力の誤差成分が抑制される。また誤差成分補償器は、電力増幅器出力における誤差成分の相殺が適切に行われるよう、電源変調器出力の誤差成分の振幅と位相を最適な値に補正してから、電力増幅器に入力する変調波に重畳する機能を有する。
 本発明の他の実施の形態に係る電力増幅器は、送信信号として変調信号を増幅する電力増幅器であって、入力信号に基づいて、入力信号の振幅成分信号を生成し、且つ入力信号を搬送波に重畳した変調信号を生成する信号発生回路と、前記振幅成分信号を入力する入力端子を備え、前記振幅成分信号を増幅した出力信号を出力端子に出力し、前記出力信号を減衰もしくは増幅して出力信号検出端子に出力し、前記出力信号検出端子の信号が入力される制御端子を備え、前記入力端子と前記制御端子に入力される信号に基づいて前記出力信号の誤差を抑制する制御機構を備えた電源変調回路と、前記変調信号が入力される第一の入力端子と、前記振幅成分信号が入力される第二の入力端子と、前記電源変調回路の出力信号検出端子の信号が入力される第三の入力端子とを備え、前記第二の入力端子及び第三の入力端子における信号の差分から前記電源変調回路の誤差成分が検知され、前記変調信号に前記誤差成分を重畳して出力する誤差成分補償回路と、前記誤差成分補償回路の出力信号が入力され、前記電源変調回路の出力信号によって電源端子が変調される。
 本発明のまた他の実施の形態に係る電力増幅器は、送信信号として変調信号を増幅する電力増幅器であって、入力信号に基づいて、入力信号の振幅成分信号を生成し、且つ入力信号を搬送波に重畳した変調信号を生成する信号発生回路と、前記振幅成分信号を入力する入力端子を備え、前記振幅成分信号を増幅した出力信号を出力端子に出力し、前記出力信号の誤差成分を検知する機能を有し、前記誤差成分を誤差成分検出端子に出力する電源変調回路と、前記変調信号が入力される第一の入力端子と、前記電源変調回路の誤差成分検出端子から出力される前記誤差成分が入力される第二の入力端子とを備え、前記変調信号に前記誤差成分を重畳して出力する誤差成分補償回路と、前記誤差成分補償回路の出力信号が入力され、前記電源変調回路の出力信号によって電源端子が変調される。
 本発明のさらに他の実施の形態に係る電力増幅器は、送信信号として変調信号を増幅する電力増幅器であって、入力信号に基づいて、入力信号の振幅成分信号を生成し、且つ入力信号の位相成分信号を搬送波に重畳した位相変調信号を生成する信号発生回路と、前記振幅成分信号を入力する入力端子を備え、前記振幅成分信号を増幅した出力信号を出力端子に出力し、前記出力信号を減衰もしくは増幅して出力信号検出端子に出力する電源変調回路と、前記位相変調信号が入力される第一の入力端子と、前記振幅成分信号が入力される第二の入力端子と、前記電源変調回路の出力信号検出端子の信号が入力される第三の入力端子とを備え、前記第二の入力端子及び第三の入力端子における信号の差分から前記電源変調回路の誤差成分が検知され、前記位相変調信号に前記誤差成分を重畳して出力する誤差成分補償回路と、前記誤差成分補償回路の出力信号が入力され、前記電源変調回路の出力信号によって電源端子が変調される。
 本発明の別の実施の形態に係る電力増幅器は、送信信号として変調信号を増幅する電力増幅器であって、入力信号に基づいて、入力信号の振幅成分信号を生成し、且つ入力信号の位相成分信号を搬送波に重畳した位相変調信号を生成する信号発生回路と、前記振幅成分信号を入力する入力端子を備え、前記振幅成分信号を増幅した出力信号を出力端子に出力し、前記出力信号を減衰もしくは増幅して出力信号検出端子に出力し、前記出力信号検出端子の信号が入力される制御端子を備え、前記入力端子と前記制御端子に入力される信号に基づいて前記出力信号の誤差を抑制する制御機構を備えた電源変調回路と、前記位相変調信号が入力される第一の入力端子と、前記振幅成分信号が入力される第二の入力端子と、前記電源変調回路の出力信号検出端子の信号が入力される第三の入力端子とを備え、前記第二の入力端子及び第三の入力端子における信号の差分から前記電源変調回路の誤差成分が検知され、前記位相変調信号に前記誤差成分を重畳して出力する誤差成分補償回路と、前記誤差成分補償回路の出力信号が入力され、前記電源変調回路の出力信号によって電源端子が変調される。
 本発明のまた別の実施の形態に係る電力増幅器は、送信信号として変調信号を増幅する電力増幅器であって、入力信号に基づいて、入力信号の振幅成分信号を生成し、且つ入力信号の位相成分信号を搬送波に重畳した位相変調信号を生成する信号発生回路と、前記振幅成分信号を入力する入力端子を備え、前記振幅成分信号を増幅した出力信号を出力端子に出力し、前記出力信号の誤差成分を検知する機能を有し、前記誤差成分を誤差成分検出端子に出力する電源変調回路と、前記位相変調信号が入力される第一の入力端子と、前記電源変調回路の誤差成分検出端子から出力される前記誤差成分が入力される第二の入力端子とを備え、前記位相変調信号に前記誤差成分を重畳して出力する誤差成分補償回路と、前記誤差成分補償回路の出力信号が入力され、前記電源変調回路の出力信号によって電源端子が変調される。
 本発明の電力増幅器において、誤差成分補償回路は、前記誤差成分の振幅を所望値に設定して出力する可変利得装置と、直流電源回路と、前記可変利得装置によって振幅を所望値に設定された前記誤差成分と、前記直流電源回路の出力信号とを合成して出力する加算回路と、前記加算回路の出力信号によって電源端子が変調され、前記信号発生回路から出力される変調信号もしくは位相変調信号が入力端子に入力される増幅器と、を有することが好ましい。
 本発明の電力増幅器において、誤差成分補償回路は、前記誤差成分の振幅を所望値に設定して出力する可変利得装置と、前記誤差成分の位相を所望値に設定して出力する可変移相器と、直流電源回路と、前記可変利得装置及び前記可変移相器によって振幅及び位相を所望値に設定された前記誤差成分と、前記直流電源回路の出力信号とを合成して出力する加算回路と、前記加算回路の出力信号によって電源端子が変調され、前記信号発生回路から出力される変調信号もしくは位相変調信号が入力端子に入力される増幅器と、を有することが好ましい。
 本発明の電力増幅器において、誤差成分補償回路は、前記誤差成分の振幅を所望値に設定して出力する可変利得装置と、直流電源回路と、前記可変利得装置によって振幅を所望値に設定された前記誤差成分と、前記直流電源回路の出力信号とを合成して出力する加算回路と、前記信号発生回路から出力される変調信号もしくは位相変調信号が第一の入力端子に入力され、前記加算回路の出力信号が第二の入力端子に入力されるミキサと、を有することが好ましい。
 本発明の電力増幅器において、誤差成分補償回路は、前記誤差成分の振幅を所望値に設定して出力する可変利得装置と、前記誤差成分の位相を所望値に設定して出力する可変移相器と、直流電源回路と、前記可変利得装置及び前記可変移相器によって振幅及び位相を所望値に設定された前記誤差成分と、前記直流電源回路の出力信号とを合成して出力する加算回路と、前記信号発生回路から出力される変調信号もしくは位相変調信号が第一の入力端子に入力され、前記加算回路の出力信号が第二の入力端子に入力されるミキサと、を有することが好ましい。
 本発明の電力増幅器において、電源変調回路の出力に、遅延調整回路が設置されることが好ましい。
 本発明の電力増幅器において、電源変調回路は、前記電源変調回路に入力された信号に基づいてパルス信号を出力するパルス変調器と、前記パルス変調器の出力を増幅するスイッチングアンプと、スイッチングアンプから出力されるパルス信号を平滑化して増幅された前記振幅成分信号を再生するローパスフィルタと、を有することが好ましい。
 以下、実施の形態についてより具体的に図面を参照し詳しく説明する。なお、図中同一または相当部分については同一符号を付してその説明は繰り返さない。
 (第1の実施の形態)
図1は、本発明の第1の実施の形態に係る電力増幅器の構成を示す図である。図1において、電力増幅器は、信号発生回路に相当するポーラ変調器102、電力増幅器108、電源変調器109、誤差成分補償回路201を備える。また、必要に応じて遅延調整器211を備える。図1に示す電力増幅器は、図34で示した電力増幅器に、誤差成分補償回路201が追加されている。
 電源変調器109から出力される振幅成分信号110と誤差成分(不要波成分)119をそれぞれ減衰もしくは増幅した信号が、振幅成分信号209及び誤差成分(不要波成分)210として、出力検出端子114にそれぞれ出力される。出力検出端子114の信号はフィードバック端子115に入力される。電源変調器109の入力端子204に入力される振幅成分信号105と、フィードバック端子115に入力される振幅成分信号209及び誤差成分210との差分から誤差成分210が検出される。この誤差成分210に基づく帰還制御によって電源変調器109の出力における誤差成分119が抑制される。電力増幅器108の電源端子111は、遅延調整器211を経由した振幅成分信号110と誤差成分119によって変調を受ける。誤差成分119は、この電源変調で搬送波帯fcに周波数変換されて誤差成分120として電力増幅器108出力の変調信号113に重畳される。
 誤差成分補償回路201の入力端子203には、出力検出端子114の振幅成分信号209及び誤差成分210が入力され、入力端子205には、振幅成分信号105が入力される。そして、入力端子205と入力端子203における信号の差分から誤差成分210が検知される。誤差成分補償回路201には、ポーラ変調器102から出力される変調信号106もしくは位相変調信号107が入力され、この変調信号106もしくは位相変調信号107は誤差成分補償回路201で増幅もしくは減衰されて変調信号206として端子202へ出力される。さらに、入力端子205と入力端子203で検知された誤差成分210は、誤差成分補償回路201で搬送波帯fcに周波数変換され、誤差成分(不要波成分)207として誤差成分補償回路201の変調信号206に重畳される。変調信号206は電力増幅器108で増幅されて変調信号113として出力され、誤差成分207は電力増幅器108で増幅されて誤差成分(不要波成分)208として出力される。電力増幅器108は、出力における誤差成分120と誤差成分208を相殺させることで、電力増幅器108の出力の誤差成分を抑制し、信号精度の改善が図られる。
 ここで、誤差成分120と誤差成分208の相殺は、両誤差成分が同振幅で且つ逆相である場合に最も適切に行われる。そのため、誤差成分120と誤差成分208の相殺が適切に行われるように、誤差成分208の振幅と位相を設定できることが望ましい。具体的には、誤差成分補償回路201は、入力端子205と入力端子203で検知された誤差成分210の振幅と位相を所望値に調整した上で搬送波帯fcに周波数変換し、誤差成分207として変調信号206に重畳させる機能を有することが望ましい。また、電源変調器109から出力される振幅成分信号110及び誤差成分119と誤差補償回路201から出力される変調信号206及び誤差成分207とが電力増幅器108へ入力されるタイミングを調整するため、遅延調整器211を必要に応じて電源変調器109の出力に挿入することが望ましい。ただし、遅延調整不要の場合は遅延調整器211を省くことができる。
 電源変調器109は、振幅成分信号105を所望値に増幅もしくは減衰する機能があれば、種々の回路を用いることが可能である。図2は、電源変調器109の構成の一例を示す図である。電源変調器109は、図35の電源変調器と同様に、パルス変調器121と、スイッチアンプ122と、LPF116と、減衰器117とで構成される。パルス変調器121は、入力端子204及び115に入力される信号に基づいて所望のパルス信号を出力する機能を有する。パルス変調器121の具体的な方式としては、PWM方式、PFM(Pulse Frequency Modulation)方式、Δ変調方式、ΔΣ変調方式などが適用できるが、他のパルス変調方式を適用しても良い。
 スイッチングアンプ122は、パルス変調器121から端子221に出力されたパルス信号を増幅し、パルス信号118として端子222に出力する機能を有する。図3は、スイッチングアンプ122のより詳細な構成の第1の例を示す図である。スイッチングアンプ122は、降圧型DC-DCコンバータの回路構成を基にして、縦続接続されるトランジスタ233及び234と、それぞれのゲートを駆動するゲートドライバ231と、インバータ機能を有するゲートドライバ232とで構成され、トランジスタ233のコレクタに接続される端子235には電圧が印加される構成となっている。
 図4は、スイッチングアンプ122のより詳細な構成の第2の例を示す図である。スイッチングアンプ122は、降圧型DC-DCコンバータの回路構成を基にして、トランジスタ233と、トランジスタ233のソースに接続される逆方向のダイオード241と、トランジスタ233のゲートを駆動するゲートドライバ231とで構成され、トランジスタ233のコレクタに接続される端子235には電圧が印加される構成となっている。
 図5は、スイッチングアンプ122のより詳細な構成の第3の例を示す図である。スイッチングアンプ122は、昇圧型DC-DCコンバータの回路構成を基にして、インダクタ261と、カソードが端子222に接続されるダイオード241と、インダクタ261の他端およびダイオード241のアノードにドレインを接続するトランジスタ233と、トランジスタ233のゲートを駆動するゲートドライバ231と、で構成され、インダクタ261の一端となる端子235には電圧が印加される構成となっている。
 図6は、スイッチングアンプ122のより詳細な構成の第4の例を示す図である。スイッチングアンプ122は、フライバック型DC-DCコンバータの回路構成を基にして、トランス271と、トランス271を駆動するトランジスタ233と、トランス271から出力を取り出すダイオード241と、トランジスタ233のゲートを駆動するゲートドライバ231と、で構成され、トランス271の一端となる端子235には電圧が印加される構成となっている。
 図7は、スイッチングアンプ122のより詳細な構成の第5の例を示す図である。スイッチングアンプ122は、フォワード型DC-DCコンバータの回路構成を基にして、トランス281と、トランス281を駆動するトランジスタ233と、トランス281から出力を取り出すダイオード241及び282と、トランジスタ233のゲートを駆動するゲートドライバ231と、で構成され、トランス281の一端となる端子235には電圧が印加される構成となっている。
 図8は、減衰器117のより詳細な構成の例を示す図である。減衰器117は、分圧抵抗251と252で構成されている。減衰器117は、LPF116の出力信号110及び誤差成分119を減衰させて出力検出端子114へ出力される機能があれば良く、図8の構成には限定されない。
 また、図9は、減衰器117のより詳細な構成の他の例を示す図である。ここでは減衰器117は、分圧抵抗252に容量253を加えた構成とし、減衰器117の一方の端子をスイッチングアンプ122の出力端子222に接続する。図9における減衰器117は、分圧抵抗251と252及び容量253による減衰及び積分機能で、パルス信号118から出力信号110及び誤差成分119の減衰信号を生成して出力検出端子114へ出力する。なお、電源変調器109の構成において、減衰器117は省いてもよく、または減衰器117の代わりに増幅器を用いてもよい。
 (第1の実施の形態の第1の変形例)
図10は、本発明の第一の実施の形態の第一の変形例に係る電力増幅器の構成を示す図である。図10で示した電力増幅器は、図1で示した電力増幅器から電源変調器109のフィードバック端子115が省略されている。図1で示した電力増幅器は、フィードバック端子115に入力される振幅成分信号209及び誤差成分210の差分から誤差成分210を検出し、誤差成分210に基づく帰還制御によって電源変調器109出力からの誤差成分119を抑制していた。
 図10で示した電源変調器109cは、フィードバック端子115を利用した帰還制御による誤差成分119を抑制する機能を持たないが、図1で示した電力増幅器と同じく誤差成分補償回路201の機能により、誤差成分120と誤差成分208を相殺し、電力増幅器108の出力端子112における誤差成分を抑制し、信号精度の改善が図られる。誤差成分補償回路201の機能と動作は、図1で示した第一の実施の形態で既に説明しているので、ここでは説明を繰り返さない。
 電源変調器109cは、振幅成分信号105を所望値に増幅もしくは減衰する機能があれば、任意の回路を用いてよい。図11は、電源変調器109cの構成の一例を示す図である。図11の電源変調器109cでは、図2で示した電源変調器109のパルス変調器121の入力端子115が、電源311に接続されている。入力端子115は、電源311に接続する代わりに接地されていても良い。
 (第1の実施の形態の第2の変形例)
図12は、本発明の第一の実施の形態の第二の変形例に係る電力増幅器の構成を示す図である。図12で示した電力増幅器では、図10で示した電力増幅器から電源変調器109cの出力検出端子114の代わりに誤差成分検出用の端子322が設けられ、誤差成分補償回路201の入力端子203及び205の代わりに入力端子321が設けられる。
 図12で示した電力増幅器において、電源変調器109dは、誤差成分検出用の端子322に誤差成分210を出力し、誤差成分210は、誤差成分補償回路201の入力端子321に入力される。誤差成分補償回路201の入力端子321に入力された誤差成分210は、誤差成分補償回路201において搬送波の周波数帯fcに周波数変換されて誤差成分207として出力される。図12で示した電力増幅器においても、図1及び図10で示した電力増幅器と同じく、誤差成分207は電力増幅器108で増幅され誤差成分208として出力端子112に出力され、誤差成分208と電力増幅器108の電源変調で生じる誤差成分120とを相殺させることで、出力端子112における誤差成分が抑制される。
 電源変調器109dは、振幅成分信号105を所望値に増幅もしくは減衰する機能があれば、任意の回路を用いてよい。図13は、電源変調器109dの構成の一例を示す図である。図13で示した電源変調器109dは、パルス変調器121cと、スイッチアンプ122と、LPF116と、差動信号検出器304とで構成されている。パルス変調器121cと、スイッチアンプ122と、LPF116とで構成された電源変調器は、非特許文献1において開示されている。ここでは非特許文献1で開示された電源変調器に新たに差動信号検出器304と誤差成分検出用の端子322が追加されている。スイッチアンプ122とLPF116の機能については既に説明しているので、ここでは説明を繰り返さない。
 図13において、パルス変調器121cは、増幅器301と、ヒステリシスコンパレータ302と、電流検出器303とで構成されている。増幅器301は、ボルテージフォロワ型のオペアンプで構成され、電流検出器303は、抵抗で構成される。増幅器301は、入力端子204に入力される振幅成分信号105を増幅して、電源端子111へ振幅成分信号110の電圧成分を出力する。また、スイッチングアンプ122は、端子221に入力されたパルス信号を増幅してパルス信号118として出力し、パルス信号118は、LPF116で平滑化され振幅成分信号110の電流成分として電源端子111へ供給される。
 図13の電源変調器109dにおいて、LPF116から出力される電流に誤差がある場合は、その電流誤差は増幅器301からの出力電流によって補償されるように構成されている。また、スイッチングアンプ122が誤差のない所望電流を出力するように、電流検出器303で検知した増幅器301の出力電流に基づいてヒステリシスコンパレータ302はパルス信号を生成して端子221へ出力する。電源変調器109dにおいて、電流検出器303で検知した増幅器301の出力電流は、電源端子111における誤差成分119を反映している。したがって、電流検出器303に差動信号検出器304を接続し、この差動信号検出器304の出力信号を誤差成分210として端子322に出力させることができる。
 (第2の実施の形態)
図14は、本発明の第二の実施の形態に係る電力増幅器の構成を示す図である。図14で示した電力増幅器では、誤差成分補償回路201が、差動入力可変利得装置311と、電源312と、加算器313と、電力増幅器314とで構成される。差動入力可変利得装置311は、入力端子203と入力端子205に入力された信号の差分を増幅もしくは減衰して出力する。また、差動入力可変利得装置311は、利得を可変設定する機能を有し、出力信号の振幅を所望値に設定できる機能を有する。加算器313は、差動入力可変利得装置311の出力信号と電源312の出力信号とを合成して出力する機能を有する。加算器313は、容量もしくトランスを用いた結合回路で実現してもよい。
 誤差成分補償回路201において、入力端子203と入力端子205に入力された信号の差分として得られる誤差成分210が、差動入力可変利得装置311によって所望の振幅に増幅もしくは減衰されて出力される。電力増幅器314は、ポーラ変調器102の出力端子104における変調信号106もしくは位相変調信号107を増幅し、変調信号206として端子202へ出力する。さらに電力増幅器314の電源である端子315は、所望振幅に調整された誤差成分210と電源312の出力信号との合成信号によって変調される。この電力増幅器314の電源変調によって誤差成分210は搬送波帯fcに周波数変換され、誤差成分207として変調信号206に重畳される。
 第一の実施の形態と同じく、誤差成分207は、電力増幅器108で増幅され誤差成分208として出力端子112に出力され、誤差成分208と電力増幅器108の電源変調で生じる誤差成分120とを相殺させることで、出力端子112における誤差成分が抑制される。特に第二の実施の形態では、差動入力可変利得装置311による誤差成分210の振幅調整を通じて誤差成分208の振幅調整が可能になっており、これにより誤差成分208と誤差成分120の相殺が適切に行なわれるように、誤差成分208の振幅を設定することができる。
 (第2の実施の形態の第1の変形例)
図15は、本発明の第二の実施の形態の第一の変形例に係る電力増幅器の構成を示す図である。図15で示した電力増幅器は、図10で示した電力増幅器と同じく、フィードバック端子115が省略された電源変調器109cが使用されている。図15で示した電力増幅器は、電源変調器109cを除き図14の電力増幅器と共通であり、電源変調器109cについては第一の実施の形態の第一の変形例で既に説明がなされているので、ここでは説明を繰り返さない。
 (第2の実施の形態の第2の変形例)
図16は、本発明の第二の実施の形態の第二の変形例に係る電力増幅器の構成を示す図である。図16で示した電力増幅器は、図12で示した電力増幅器と同じく、誤差成分検出用の端子322を備えた電源変調器109dが使用されている。電源変調器109dについては第一の実施の形態の第二の変形例で既に説明がなされているので、ここでは説明を繰り返さない。
 図16で示した電力増幅器では、図14で示した電力増幅器から差動入力利得可変装置311が単相入力利得可変装置331に置き換えられる。単相入力利得可変装置331は、入力端子321に入力された誤差成分210を所望振幅に増幅もしくは減衰して出力する機能を有する。また、単相入力利得可変装置331は、差動入力利得可変装置311と同じく、利得を可変設定する機能を有し、出力信号の振幅を所望値に設定できる機能を有する。図16で示した電力増幅器は、電源変調器109dと単相入力利得可変装置331を除いては、図14で示した電力増幅器と共通の構成と効果を有するので、ここでは説明を繰り返さない。
 (第3の実施の形態)
図17に、本発明の第三の実施の形態に係る電力増幅器の構成を示す図である。図17で示した電力増幅器では、図14で示した電力増幅器における単相入力利得可変装置331の出力に可変位相調整器323が追加挿入されている。図17で示した電力増幅器は、差動入力可変利得装置311で誤差成分210の振幅を、可変位相調整器323で誤差成分210の位相をそれぞれ所望値に設定するように構成される。図17では、差動入力可変利得装置311で誤差成分210の振幅を所望値に設定して出力し、次に可変位相調整器323で誤差成分210の位相を所望値に設定して出力するように構成されているが、この順序を入れ替える構成とし、可変位相調整器323で誤差成分210の位相を調整し、次に差動入力可変利得装置311で誤差成分210の振幅を調整するようにしても良い。
 図17で示した電力増幅器においても、第一及び第二の実施の形態と同じく、誤差成分208と誤差成分120とを相殺させることで、出力端子112における誤差成分が抑制される。第三の実施の形態では、誤差成分210の振幅及び位相の調整を通じて誤差成分208の振幅及び位相の調整が可能になっており、これにより誤差成分208と誤差成分120の相殺が適切に行なわれるように、誤差成分208の振幅及び位相を設定することができる。
 図18は、電力増幅器314の構成の一例を示す図である。ここで電力増幅器314は、入力整合回路401aと、出力整合回路402aと、エミッタ接地されたバイポーラトランジスタ406aと、ベースバイアス回路403aと、コレクタバイアス回路404aとを備える。ベースバイアス回路403aは、一端を電源用の端子405aに接続して直流電圧を印加し、他端をバイポーラトランジスタ406aのベースと、一端が端子104に接続された入力整合回路401aの他端とに接続する。コレクタバイアス回路404aは、一端を電源となる端子315に接続し加算器313の出力信号が印加され、他端をバイポーラトランジスタ406aのコレクタと、一端が端子202に接続された出力整合回路402aの他端とに接続する。電力増幅器314に用いられるトランジスタは、バイポーラトランジスタに限定されず、電界効果トランジスタを用いても良い。
 ここで一例として、変調信号106として搬送波周波数1.95GHzの正弦変調波(変調波周波数1MHz、変調度0.14)を、図18で示した構成の電力増幅器314の端子104に入力し、誤差成分210として4MHzの信号を加算器313で電源312の出力信号である直流電圧に重畳し、加算器313の出力信号を電力増幅器314の電源となる端子315に入力した場合のシミュレーション結果を、図19から図22に示す。
 図19は、誤差成分210の振幅強度を変えた場合の、変調信号206及び誤差成分207の振幅強度の依存性を示す図である。図19に示すように、電力増幅器314の電源の端子315に入力される誤差成分210の振幅強度を変化させることで、変調信号206の振幅強度を変化させることなく、端子202に出力される誤差成分207の振幅強度を1dB/dBの変化率で制御することができる。
 図20は、誤差成分210の位相を変えた場合の、変調信号206及び誤差成分207の振幅強度の依存性を示す図である。図20に示すように、誤差成分210の位相を変化させても、変調信号206及び誤差成分の207の振幅強度は変化しない。
 図21は、誤差成分210の位相を変えた場合の、変調信号206及び誤差成分207の位相の依存性を示す図である。図21に示すように、誤差成分210の位相を変化させることで、変調信号206の位相を変化させることなく、誤差成分207の位相をupper band側(1.95GHz+4MHz)では+1deg/degの変化率で、lower band側(1.95GHz-4MHz)では-1deg/degの変化率で制御することができる。
 図22は、誤差成分210の振幅強度を変えた場合の、変調信号206及び誤差成分207の位相の依存性を示す図である。図22に示すように、誤差成分210の振幅強度を変化させても、変調信号206及び誤差成分の207の位相は変化しない。
 以上のように図19から図22の結果から、端子202に出力される変調波206の振幅及び位相に影響を与えることなく、誤差成分210の振幅で誤差成分207の振幅を、誤差成分210の位相で誤差成分207の位相を、それぞれ個別に制御できることが示される。
 また、電力増幅器108の構成は、図23に示すように図18と同一の構成としてもよい。電力増幅器108の構成を図23で示した回路として、変調信号206として搬送波周波数1.95GHzの正弦変調波(変調波周波数1MHz、変調度0.14)を、誤差成分207として1.95GHz±4MHzの信号をそれぞれ端子202に入力し、電力増幅器108の電源端子111に入力される振幅成分信号110は正弦変調波(変調波周波数1MHz、変調度0.14)とし、誤差成分119として4MHzの成分を追加した。
 図24は、端子202における誤差成分207の振幅と位相を変化させた場合の、出力端子112における誤差成分(誤差成分120及び208の和)の変化量をグラフ化したものである。この場合、誤差成分207の振幅と位相を振幅=-1.5dB及び位相=180°に設定した場合、誤差成分207を入力しない場合に比べて13dBの誤差改善が得られていることが分かる。
 図25は、端子202への誤差成分207の注入がない場合と、最適な誤差成分207の注入を行なった場合の出力端子112におけるスペクトルを示す図である。図25において、端子202への誤差成分207の注入で変調信号113に影響を与えることなく、誤差成分120のみが抑制されることが示される。
 以上の結果は、差動入力可変利得装置311と可変位相調整器323を用いて誤差成分210の振幅と位相を所望値に設定することで、誤差成分207及び208の振幅と位相も所望値に設定し、出力端子112において誤差成分120と208の相殺を行い、電力増幅器108における出力信号の精度を改善できることを示している。
 次に、本発明の電力増幅器における消費電力について説明する。図36で示した従来例における差動増幅器123と、本発明の差動入力可変利得装置311もしくは単相入力可変利得装置331を比較した場合、差動増幅器123は、増幅後の振幅信号110のスケールに合った補正信号を出力する必要があるのに対し、差動入力可変利得装置311もしくは単相入力可変利得装置331は、増幅前の振幅信号105のスケールに合った補正信号を出力すればよい。すなわち本発明の可変利得装置311もしくは331の出力の方が差動増幅器123の出力よりも低振幅であるため、可変利得装置311もしくは331を増幅器で実装する場合、その電源電圧をより低く設定でき、結果として消費電力を抑制することができる。さらに、誤差成分210の振幅の最適値が低く可変利得装置311もしくは331を減衰器で実装する場合、可変利得装置311もしくは331は受動素子で構成できるので消費電力を一層低減することができる。
 本発明では、誤差成分120を相殺できる所望振幅まで誤差補正信号210を増幅しなければならないが、この増幅は電力増幅器108の増幅過程によって行なう。図36で示した従来例の場合、補正信号を増幅するための差動増幅器123を追加することで消費電力が増大していた。これに対し、本発明では既存の電力増幅器108の増幅機能を流用して補正信号である誤差成分207の増幅すなわち誤差成分210の増幅を行なうので、消費電力の増大を伴うことなく電力増幅器108の出力端子112における信号の誤差抑制が可能となる。従って、本発明では、図36で示した従来例に比べて消費電力を大きく低減することができる。
 図38で示した従来例では、補正信号の生成のために消費電力の大きいエラーアンプ149を追加しなければならなかった。また、図38で示した従来例では、損失の大きい高周波RF帯の遅延調整器144及び146と方向性結合器141と145及び147を使用しなければならなかった。これに対し、本発明では、低損失の低周波ベースバンド帯の可変利得装置311もしくは331と、可変位相調整器323と、加算器313とを従来の電力増幅器に追加するだけで良く、且つ既存の電力増幅器108の増幅機能を流用して消費電力の増大を伴うことなく補正用の誤差成分208を生成することができる。従って、本発明では、図38で示した従来例に比べて消費電力を大きく低減することができる。
 図39で示した従来例では、プリディストーション部163と166及び167をCPU(Central Processing Unit)とルックアップテーブルで構成されたデジタル回路で実装することが想定される。このようなデジタルプリディストーション方式では変調波の帯域が広いアプリケーションに対しては必要な計算量と処理速度が増大し、回路規模とコスト及び消費電力が一層増大するという問題点があった。これに対し本発明では、デジタル回路による演算を経由せず直接に補正用の誤差成分208の生成が可能であるため、変調波帯域が拡大しても図39の従来例よりも低消費電力で電力増幅器108の出力端子112における信号の誤差抑制が可能になる。
 次に、本発明の電力増幅器の回路規模とサイズについて説明する。本発明は、従来の電力増幅器に可変利得装置311もしくは331と、可変位相調整器323と、加算器313とを追加するだけで構成が可能である。従って、電源変調器と電力増幅器とをそれぞれ二個用いる必要があり回路サイズが従来の電力増幅器の2倍以上になる図37の構成や、回路サイズの大きい歪み検出ループ143と歪み除去ループ150を追加する必要がある図38の構成や、従来の電力増幅器に可変利得増幅器165に加えて出力測定部168及び169とプリディストーション部163及び166及び167とを追加する必要がある図39の構成よりも、本発明の電力増幅器は、回路規模とサイズとを大幅に縮小することができる。また回路規模とサイズの縮小により、本発明は従来例よりも大幅にコストを削減することが可能となる。
 (第3の実施の形態の第1の変形例)
図26は、本発明の第三の実施の形態の第一の変形例に係る電力増幅器の構成を示す図である。図26で示した電力増幅器では、図10で示した電力増幅器と同じく、図1のフィードバック端子115が省略された電源変調器109cが使用されている。図26で示した電力増幅器は、電源変調器109cを除き図17の電力増幅器と共通であり、電源変調器109cについては第一の実施の形態の第一の変形例で既に説明がなされているので、ここでは説明を繰り返さない。
 (第3の実施の形態の第2の変形例)
図27は、本発明の第三の実施の形態の第二の変形例に係る電力増幅器の構成を示す図である。図27で示した電力増幅器では、図12で示した電力増幅器と同じく、誤差成分検出用の端子322を備えた電源変調器109dが使用されている。電源変調器109dについては第一の実施の形態の第二の変形例で既に説明がなされているので、ここでは説明を繰り返さない。
 図27で示した電力増幅器は、図17で示した電力増幅器から差動入力利得可変装置311が単相入力利得可変装置331に置き換えられている。単相入力利得可変装置331については、図15で示した第二の実施の形態の第二の変形例で既に説明がなされているので、ここでは説明を繰り返さない。図27で示した電力増幅器は、既に説明した電源変調器109dと単相入力利得可変装置331を除いては、図17で示した電力増幅器と共通の構成と効果を有するので、ここでは説明を繰り返さない。
 (第4の実施の形態)
図28は、本発明の第四の実施の形態に係る電力増幅器の構成を示す図である。図28で示した電力増幅器は、図14で示した電力増幅器における電力増幅器314が、ミキサ324に置き換えられて構成される。ミキサ324のLO(local oscillation)信号入力端子は、端子104に接続され、ミキサ324のベースバンド信号入力端子は、端子315に接続され、ミキサ324のRF出力端子は、端子202に接続される。この構成によってミキサ324は、図14の電力増幅器における電力増幅器314と同じく、振幅を所望値に設定した誤差成分210を搬送波帯fcに周波数変換して変調信号106もしくは位相変調信号107に重畳し、変調信号206及び誤差成分207を端子202に出力する。図28で示した電力増幅器は、ミキサ324を除いては、図14で示した第二の実施の形態と共通の構成と効果を有するので、ここでは説明を繰り返さない。
 (第4の実施の形態の第1の変形例)
図29は、本発明の第四の実施の形態の第一の変形例に係る電力増幅器の構成を示す図である。図29で示した電力増幅器は、図15で示した電力増幅器における電力増幅器314が、ミキサ324に置き換えられて構成されている。ミキサ324については、図28で示した電力増幅器で既に説明がなされているので、ここでは説明を繰り返さない。図29で示した電力増幅器は、既に説明したミキサ324を除いては、図15で示した第二の実施の形態の第一の変形例と共通の構成と効果を有するので、ここでは説明を繰り返さない。
 (第4の実施の形態の第2の変形例)
図30は、本発明の第四の実施の形態の第二の変形例に係る電力増幅器の構成を示す図である。図30で示した電力増幅器は、図16で示した電力増幅器における電力増幅器314が、ミキサ324に置き換えられて構成されている。ミキサ324については、図28で示した電力増幅器で既に説明がなされているので、ここでは説明を繰り返さない。図30で示した電力増幅器は、既に説明したミキサ324を除いては、図16で示した電力増幅器と共通の構成と効果を有するので、ここでは説明を繰り返さない。
 (第5の実施の形態)
図31は、本発明の第五の実施の形態に係る電力増幅器の構成を示す図である。図31で示した電力増幅器は、図17で示した電力増幅器における電力増幅器314が、ミキサ324に置き換えられて構成される。ミキサ324については、図28で示した電力増幅器で既に説明がなされているので、ここでは説明を繰り返さない。図31で示した電力増幅器は、既に説明したミキサ324を除いては、図17で示した電力増幅器と共通の構成と効果を有するので、ここでは説明を繰り返さない。
 (第5の実施の形態の第1の変形例)
図32は、本発明の第五の実施の形態の第一の変形例に係る電力増幅器の構成を示す図である。図32で示し電力増幅器は、図26で示した電力増幅器における電力増幅器314が、ミキサ324に置き換えられて構成されている。ミキサ324については、図28で示した電力増幅器で既に説明がなされているので、ここでは説明を繰り返さない。図32で示した電力増幅器は、既に説明したミキサ324を除いては、図26で示した電力増幅器と共通の構成と効果を有するので、ここでは説明を繰り返さない。
 (第5の実施の形態の第2の変形例)
図33は、本発明の第五の実施の形態の第二の変形例に係る電力増幅器の構成を示す図である。図33で示した電力増幅器は、図26で示した電力増幅器における電力増幅器314が、ミキサ324に置き換えられて構成されている。ミキサ324については、図28で示した電力増幅器で既に説明がなされているので、ここでは説明を繰り返さない。図33で示した電力増幅器は、既に説明したミキサ324を除いては、図27で示した電力増幅器と共通の構成と効果を有するので、ここでは説明を繰り返さない。
 以上の第一から第五の実施の形態及びそれらの変形例において、電力増幅器108は、1段構成に限定されず多段の電力増幅器としても良い。また、電力増幅器108の前段または後段、もしくは誤差成分補償回路201の前段または後段に、電力増幅器を追加して構成しても良い。
 なお、前述の特許文献等の各開示を、本書に引用をもって繰り込むものとする。本発明の全開示(請求の範囲を含む)の枠内において、さらにその基本的技術思想に基づいて、実施形態ないし実施例の変更・調整が可能である。また、本発明の請求の範囲の枠内において種々の開示要素の多様な組み合わせないし選択が可能である。すなわち、本発明は、請求の範囲を含む全開示、技術的思想にしたがって当業者であればなし得るであろう各種変形、修正を含むことは勿論である。

Claims (12)

  1.  送信信号として変調信号を増幅する電力増幅器であって、
     入力信号を搬送波に重畳した変調信号と該入力信号の振幅成分信号とを生成する信号発生回路と、
     前記振幅成分信号をパルス変調して増幅した出力信号を出力する電源変調回路と、
     前記電源変調回路のパルス変調に係る不要波成分を前記変調信号に重畳して出力する誤差成分補償回路と、
     前記電源変調回路の出力信号に応じて自身の電源を変調すると共に、前記誤差成分補償回路の出力信号を入力して増幅する増幅器と、
     を備えることを特徴とする電力増幅器。
  2.  前記電源変調回路は、前記増幅した出力信号をさらに減衰もしくは増幅して補償信号として前記誤差成分補償回路に出力する機能を備え、
     前記誤差成分補償回路は、前記変調信号と前記振幅成分信号と前記補償信号とを入力し、前記振幅成分信号及び前記補償信号の差分から前記不要波成分を求め、前記変調信号に前記不要波成分を重畳することを特徴とする請求項1記載の電力増幅器。
  3.  前記電源変調回路は、前記増幅した出力信号の含まれる不要波成分を前記補償信号と前記振幅成分信号とに基づいて抑制する誤差抑制機能をさらに備えることを特徴とする請求項2記載の電力増幅器。
  4.  前記電源変調回路は、前記出力信号中の不要波成分を検知して前記誤差成分補償回路に出力する検知機能を備え、
     前記誤差成分補償回路は、前記変調信号と前記不要波成分とを入力し、前記変調信号に前記不要波成分を重畳することを特徴とする請求項1記載の電力増幅器。
  5.  前記変調信号は、位相変調信号であって、
     前記信号発生回路は、前記変調信号として、前記入力信号の位相成分信号を搬送波に重畳した前記位相変調信号を生成することを特徴とする請求項1乃至4のいずれか一に記載の電力増幅器。
  6.  前記誤差成分補償回路は、
      前記不要波成分の振幅を所望値に設定して出力する可変利得回路と、
      直流電圧源と、
      前記可変利得回路によって振幅を所望値に設定した前記不要波成分と、前記直流電圧源の出力信号とを合成して出力する加算回路と、
      前記加算回路の出力信号によって自身の電源が変調されると共に、前記信号発生回路から出力される変調信号を入力して増幅する補償増幅器と、
     を備え、
     前記補償増幅器が前記誤差成分補償回路の出力信号を出力することを特徴とする請求項1乃至5のいずれか一に記載の電力増幅器。
  7.  前記誤差成分補償回路は、
      前記不要波成分の振幅を所望値に設定して出力する可変利得回路と、
      直流電圧源と、
      前記可変利得回路によって振幅を所望値に設定した前記不要波成分と、前記直流電圧源の出力信号とを合成して出力する加算回路と、
      前記信号発生回路から出力される変調信号と、前記加算回路の出力信号とを入力してミキシングするミキサと、
     を備え、
     前記ミキサが前記誤差成分補償回路の出力信号を出力することを特徴とする請求項1乃至5のいずれか一に記載の電力増幅器。
  8.  前記誤差成分補償回路は、前記不要波成分の位相を所望値に設定して出力する可変移相器をさらに備え、
     前記加算器は、前記可変利得装置及び前記可変移相器によって振幅及び位相を所望値に設定した前記不要波成分と、前記直流電圧源の出力信号とを合成して出力することを特徴とする請求項6または7記載の電力増幅器。
  9.  前記電源変調回路は、
      前記振幅成分信号に基づいてパルス信号を出力するパルス変調器と、
      前記パルス変調器の出力を増幅するスイッチングアンプと、
      前記スイッチングアンプから出力されるパルス信号を平滑化し、増幅した前記振幅成分信号を再生するローパスフィルタと、
     を備え、
     前記ローパスフィルタが前記電源変調回路の出力信号を出力することを特徴とする請求項1乃至8のいずれか一に記載の電力増幅器。
  10.  前記電源変調回路の出力と前記増幅器の電源との間に、前記電源変調回路の出力信号を遅延する遅延調整回路をさらに備えることを特徴とする請求項1乃至9のいずれか一に記載の電力増幅器。
  11.  送信信号として変調信号を増幅する電力増幅器における方法であって、
     入力信号を搬送波に重畳した変調信号と該入力信号の振幅成分信号とを生成するステップと、
     前記振幅成分信号をパルス変調して増幅した出力信号を出力するステップと、
     前記パルス変調に係る不要波成分を検知し、入力した前記変調信号に前記不要波成分を重畳して出力するステップと、
     前記増幅した出力信号に応じて増幅器の電源を変調すると共に、該増幅器が前記不要波成分を重畳した出力信号を入力して増幅するステップと、
     を含むことを特徴とする電力増幅方法。
  12.  前記変調信号は、位相変調信号であって、
     前記生成するステップにおいて、前記変調信号として、前記入力信号の位相成分信号を搬送波に重畳した前記位相変調信号を生成することを特徴とする請求項11に記載の電力増幅方法。
PCT/JP2009/052069 2008-02-14 2009-02-06 電力増幅器 WO2009101905A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009553408A JP5273056B2 (ja) 2008-02-14 2009-02-06 電力増幅器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008033306 2008-02-14
JP2008-033306 2008-02-14

Publications (1)

Publication Number Publication Date
WO2009101905A1 true WO2009101905A1 (ja) 2009-08-20

Family

ID=40956937

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/052069 WO2009101905A1 (ja) 2008-02-14 2009-02-06 電力増幅器

Country Status (2)

Country Link
JP (1) JP5273056B2 (ja)
WO (1) WO2009101905A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011040507A1 (ja) * 2009-09-30 2011-04-07 日本電気株式会社 電力増幅器、無線通信機および電力増幅方法
JP2011097504A (ja) * 2009-11-02 2011-05-12 Hitachi Kokusai Electric Inc 電源回路
WO2011062039A1 (ja) * 2009-11-17 2011-05-26 日本電気株式会社 増幅装置
WO2011145710A1 (ja) * 2010-05-18 2011-11-24 日本電気株式会社 電源装置、およびそれを用いた電力増幅装置
JP2011249892A (ja) * 2010-05-24 2011-12-08 Mitsubishi Electric Corp バイアス制御増幅器
WO2013031609A1 (ja) * 2011-08-26 2013-03-07 住友電気工業株式会社 増幅装置及び無線通信装置
JP2013225829A (ja) * 2011-08-26 2013-10-31 Sumitomo Electric Ind Ltd 増幅装置及び無線通信装置
JP2015515839A (ja) * 2012-04-30 2015-05-28 インディス、セミコンダクター、インコーポレイテッドIndice Semiconductor Inc. オーディオ周波数増幅器および安定化電源のためのパルス発生回路
JP2016039451A (ja) * 2014-08-06 2016-03-22 ローム株式会社 オーディオアンプ用の電源回路、電子機器、オーディオアンプへの電源電圧の供給方法
JP2018108000A (ja) * 2016-12-28 2018-07-05 株式会社東芝 半導体装置及びdc−dcコンバータ
WO2019026669A1 (ja) * 2017-08-04 2019-02-07 株式会社日立国際電気 無線機及び無線出力増幅方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10256843A (ja) * 1997-03-03 1998-09-25 Hewlett Packard Co <Hp> 線形増幅装置および方法
JP2002530917A (ja) * 1998-11-18 2002-09-17 エリクソン インコーポレイテッド 電力増幅器における振幅変調を線形化するための回路および方法
JP2005184273A (ja) * 2003-12-17 2005-07-07 Nec Corp 高出力増幅器
JP2005269440A (ja) * 2004-03-19 2005-09-29 Matsushita Electric Ind Co Ltd ポーラ変調送信装置及びポーラ変調方法
JP2006295900A (ja) * 2005-03-17 2006-10-26 Matsushita Electric Ind Co Ltd 増幅装置、ポーラ変調送信装置及び無線通信装置
JP2007215158A (ja) * 2006-01-10 2007-08-23 Nec Corp 増幅装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10256843A (ja) * 1997-03-03 1998-09-25 Hewlett Packard Co <Hp> 線形増幅装置および方法
JP2002530917A (ja) * 1998-11-18 2002-09-17 エリクソン インコーポレイテッド 電力増幅器における振幅変調を線形化するための回路および方法
JP2005184273A (ja) * 2003-12-17 2005-07-07 Nec Corp 高出力増幅器
JP2005269440A (ja) * 2004-03-19 2005-09-29 Matsushita Electric Ind Co Ltd ポーラ変調送信装置及びポーラ変調方法
JP2006295900A (ja) * 2005-03-17 2006-10-26 Matsushita Electric Ind Co Ltd 増幅装置、ポーラ変調送信装置及び無線通信装置
JP2007215158A (ja) * 2006-01-10 2007-08-23 Nec Corp 増幅装置

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8797113B2 (en) 2009-09-30 2014-08-05 Nec Corporation Power amplifier, wireless communication device, and power amplification method
WO2011040507A1 (ja) * 2009-09-30 2011-04-07 日本電気株式会社 電力増幅器、無線通信機および電力増幅方法
JP5621780B2 (ja) * 2009-09-30 2014-11-12 日本電気株式会社 電力増幅器、無線通信機および電力増幅方法
JP2011097504A (ja) * 2009-11-02 2011-05-12 Hitachi Kokusai Electric Inc 電源回路
WO2011062039A1 (ja) * 2009-11-17 2011-05-26 日本電気株式会社 増幅装置
JP5287999B2 (ja) * 2009-11-17 2013-09-11 日本電気株式会社 増幅装置
US8633768B2 (en) 2009-11-17 2014-01-21 Nec Corporation Amplifying device
WO2011145710A1 (ja) * 2010-05-18 2011-11-24 日本電気株式会社 電源装置、およびそれを用いた電力増幅装置
US8902001B2 (en) 2010-05-18 2014-12-02 Nec Corporation Power supply device and power amplification apparatus using same
JP2011249892A (ja) * 2010-05-24 2011-12-08 Mitsubishi Electric Corp バイアス制御増幅器
JP2013225829A (ja) * 2011-08-26 2013-10-31 Sumitomo Electric Ind Ltd 増幅装置及び無線通信装置
WO2013031609A1 (ja) * 2011-08-26 2013-03-07 住友電気工業株式会社 増幅装置及び無線通信装置
JP2015515839A (ja) * 2012-04-30 2015-05-28 インディス、セミコンダクター、インコーポレイテッドIndice Semiconductor Inc. オーディオ周波数増幅器および安定化電源のためのパルス発生回路
JP2016039451A (ja) * 2014-08-06 2016-03-22 ローム株式会社 オーディオアンプ用の電源回路、電子機器、オーディオアンプへの電源電圧の供給方法
JP2018108000A (ja) * 2016-12-28 2018-07-05 株式会社東芝 半導体装置及びdc−dcコンバータ
WO2019026669A1 (ja) * 2017-08-04 2019-02-07 株式会社日立国際電気 無線機及び無線出力増幅方法

Also Published As

Publication number Publication date
JPWO2009101905A1 (ja) 2011-06-09
JP5273056B2 (ja) 2013-08-28

Similar Documents

Publication Publication Date Title
JP5273056B2 (ja) 電力増幅器
US10164582B2 (en) Amplifier linearization in a radio frequency system
US6590940B1 (en) Power modulation systems and methods that separately amplify low and high frequency portions of an amplitude waveform
KR101387262B1 (ko) 직교 믹서를 위한 lo 신호 생성 시스템 및 방법
US6449465B1 (en) Method and apparatus for linear amplification of a radio frequency signal
US7817970B2 (en) Transmitting/receiving device having a polar modulator with variable predistortion
KR101224247B1 (ko) 전력 제어 폐루프 내의 공급 전압 제어된 전력 증폭기를위한 듀얼 전압 조정기
US7696818B2 (en) Amplifying apparatus
US7560984B2 (en) Transmitter
US8451942B2 (en) Wireless transmission apparatus using cartesian loop
US20100311365A1 (en) Power Amplifier Controller With Polar Transmitter
JP2002506307A (ja) 前置補償器
WO2002054584A2 (en) Feedforward amplifier
US8594589B2 (en) Power amplifier, power amplification method, and storage medium
JP4425630B2 (ja) 通信ビルディングブロックのための適応線形化技法
US20230275614A1 (en) Transceiver With Auxiliary Receiver Calibration Apparatus and Methodology
JP2008022513A (ja) 歪制御機能付き増幅装置
US7595689B1 (en) Predistorter
JP2009141411A (ja) 電力増幅器
Braithwaite Analog linearization techniques suitable for RF power amplifiers used in integrated transmitters
US9219448B2 (en) Amplifier and amplification method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09710170

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009553408

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09710170

Country of ref document: EP

Kind code of ref document: A1