WO2009101750A1 - Loop antenna and immunity test method - Google Patents
Loop antenna and immunity test method Download PDFInfo
- Publication number
- WO2009101750A1 WO2009101750A1 PCT/JP2008/072937 JP2008072937W WO2009101750A1 WO 2009101750 A1 WO2009101750 A1 WO 2009101750A1 JP 2008072937 W JP2008072937 W JP 2008072937W WO 2009101750 A1 WO2009101750 A1 WO 2009101750A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- annular conductor
- conductor
- annular
- loop antenna
- magnetic field
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q7/00—Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/12—Supports; Mounting means
- H01Q1/22—Supports; Mounting means by structural association with other equipment or articles
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/36—Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
- H01Q1/38—Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
Definitions
- the present invention relates to a loop antenna, and more particularly to an antenna that is irradiated with a magnetic field to test electromagnetic sensitivity and immunity performance, or a compact loop antenna that generates a magnetic field to communicate.
- an electromagnetic field generated along with the operation of another electronic device or mechanical device arrives, and the electromagnetic field causes an electromagnetic interference to cause an electromagnetic interference (EMI: Electromagnetic Interference), and the performance of the electronic device May cause deterioration.
- EMI Electromagnetic Interference
- the performance of the electronic device May cause deterioration.
- EMI Electromagnetic Interference
- the design stage of the electronic device it is important to identify locations where electromagnetic sensitivity is high, to elucidate the mechanism of occurrence of electromagnetic interference, and to design with improved immunity.
- An antenna is installed near a large scale integrated circuit (LSI) or a printed wiring board (PWB: Printed Wiring Board) in order to identify a portion where electromagnetic sensitivity is weak, and an electromagnetic field is irradiated to cause malfunction or performance degradation. Tests are underway to determine the condition. Such a test helps to identify circuits and mounting components that are weak in electromagnetic immunity.
- LSI large scale integrated circuit
- PWB printed wiring board
- FIG. 11 shows a configuration example when evaluating an immunity performance by installing an antenna for irradiating a magnetic field right above the LSI.
- FIG. 11A is a diagram of the LSI viewed from directly above, and the antenna 10 is installed directly above the QFP (Quad Flat Pack) 1 on which the LSI is mounted so as to be at a certain height from the QFP 1.
- the antenna 10 is made of a multilayer substrate, and the loop wiring 11 for generating a magnetic field is formed of a printed wiring.
- FIG. 11B is a side view of the same configuration as FIG. 11A.
- Peripheral circuits necessary for operating the LSI are also mounted on the mounting board 5.
- a circuit for monitoring the operation of the LSI is also mounted on the mounting board 5.
- FIG. 1 2 is a chip portion of QFP 1
- 3 is a lead frame of QFP 1.
- the antenna 10 is composed of a loop wiring 11 formed by printed wiring on a printed wiring board 13, a lead 12 and a connector 14.
- the high frequency signal sent from the signal generator 17 is transmitted by the coaxial cable 16, the connector 14 and the lead 12, and is finally supplied to the loop wiring 11.
- a magnetic field is generated around the loop surface around the loop wiring 11 in accordance with the laws of electromagnetism.
- the magnetic field in the direction perpendicular to the loop surface is dominant. Therefore, as shown in FIG. 11B, when the antenna 10 is disposed at an appropriate distance so as to be parallel to the QFP mounted on the mounting board 5, a magnetic field with little change in intensity is irradiated over the entire surface of the QFP. it can.
- FIG. 11A While changing the setting of the signal generator 17 and controlling the intensity, modulation, waveform, etc. of the generated magnetic field, the cause of the malfunction of the LSI is identified.
- an antenna of approximately the same size as the QFP is used, but some test methods use a smaller antenna than the QFP to provide limited coverage.
- a magnetic field is irradiated while scanning a small antenna at a predetermined height on the QFP, and a circuit with weak immunity is identified.
- FIG. 13 is an explanatory view of a method of measuring the magnetic field of the surface of the antenna 10 of FIG.
- FIG. 14A is a view obtained by measuring and visualizing the magnetic field while installing the small-sized magnetic field probe 15 in the vicinity of the loop wiring 11 and scanning in the XY axis direction at a constant height.
- the measurement was performed by connecting the small magnetic field probe 15 to a measuring instrument such as a spectrum analyzer, oscillating the antenna 10 at 10 MHz, and measuring the output of the small magnetic field probe 15.
- a measuring instrument such as a spectrum analyzer
- FIG. 14A and (b) the result of scanning and measuring the small magnetic field probe 15 over the whole loop surface is displayed.
- the external shape of the loop wiring 11 of FIG. 13B is 24 mm square, and the width of the loop wiring 11 is 1 mm, and the small magnetic field probes 15 were measured 6 mm apart.
- FIG. 14A it can be seen that a strong magnetic field is generated over the entire surface in the range surrounded by the loop wiring 11.
- FIG. 14A it can be seen that a strong magnetic field is generated over the entire surface in the range surrounded by the loop wiring 11.
- FIG. 14B shows the result of measurement of the magnetic field while making the Y and Z coordinates constant and one-dimensionally scanning on the line AA ′ passing the center of the loop wiring 11 of FIG. 13B.
- Hz is dominant in the area surrounded by the loop wiring 11. There is also a region where Hx becomes strong near the loop wiring 11, but the intensity is lower than Hz. If the measurement distance of the small magnetic field probe 15 is further reduced, and becomes smaller than 1 mm, Hx may become dominant compared to Hz, but the distance between the loop and the object under normal use conditions is taken into consideration Then, the distribution in FIG. 14A is a typical distribution. Since Hy is in principle the direction in which the magnetic field is not observed, it has a very low value.
- Hxyz (x 2 + y 2 + z 2 ) (1/2) in the x, y, and z directions is roughly similar to the distribution in Hz, but in the region where Hx is strong Hxyz Will be greater than Hz. Therefore, in the case of FIG. 14B, Hxyz is approximately a combination of Hz and Hx. In the area surrounded by the loop wiring 11, the change in the intensity of the synthetic magnetic field Hxyz is small, and remains at about 8%. Both FIGS. 14A and 14B are normalized and displayed at the maximum value. If the loop wiring 11 is manufactured to the same size as that of the QFP and placed on the QFP as shown in FIG. 11A, it is possible to irradiate a magnetic field of almost constant strength over the entire surface of the QFP.
- FIG. 15A schematically shows the test method of irradiating the magnetic field described above.
- the hatched portion is a region that generates a strong magnetic field, and the inside of the loop wire 11 substantially belongs to this region.
- the loop wiring 11 can not but be installed away from the chip 1 and the lead frame 3.
- the magnetic field in the vicinity of the center of the loop wiring 11 becomes strong, and as a result, a strong magnetic field is generated in the loop plane illustrated in FIG. 14A. Therefore, changing the installation distance of the antenna 10 to generate an annular magnetic field is very limited.
- FIG. 15A since the magnetic field is irradiated over the entire surface of the QFP 1, the immunity of the entire QFP 1 can be evaluated, but the evaluation of each part can not be performed.
- FIG. 15B it is possible to irradiate the magnetic field only to the chip 2 on which the LSI is formed by creating the loop wiring 11 having a small external dimension, but connecting the lead frame 3 and QFP 1 to the pads on the chip Only the bonding wire 4 can not be irradiated with the magnetic field.
- noise may be generated in the lead frame 3 or the bonding wire 4 by the electromagnetic field coming from the outside, and may be larger than the noise generated inside the chip 2 by the same external electromagnetic field.
- noise generated in the lead frame 3 or the bonding wire 4 becomes conductive noise, and is mixed into the inside of the chip 2 from the terminal portion to cause a malfunction. Therefore, even if an electromagnetic field does not enter the chip 2 from the outside I can not expect an effect. Therefore, it is important to select and test the lead frame 3 and the bonding wires 4 in order to select the correct noise countermeasure.
- FIG. 15C shows the case where the magnetic field irradiation test is performed by selecting the portion where bonding wire 4 and bonding wire 4 are connected to lead frame 3 (that is, the portion where lead frame 3 is tapered), and FIG. This is the case where the test is performed to irradiate the magnetic field including the wiring 6 on the board 5.
- a magnetic field generation method that generates a strong magnetic field in an annular shape, it becomes possible to test by combining the chip 2, the bonding wire 4, the lead frame 3, and the wiring 6 on the mounting board. It becomes possible to identify the mounted component that causes the decrease in immunity.
- FIG. 16 shows an example in which a magnetic field is selected for each circuit.
- the test is performed including all the parts connected to the circuit to be tested, rather than selecting at the mounting part level.
- Examples of circuits include power supply circuits, data ports, I / O ports for signal transmission, etc.
- pins connected to similar circuits are often adjacent on the QFP. In that case, as shown in FIG. 16B, for example, it may not be desirable to irradiate a specific lead frame 3.
- Patent document 1 connects a first half loop 3c, a circular loop 3e, and a second half loop 3g in series, and forms a first annular shape including a first half loop 3c and a second half loop 3g.
- a loop antenna is disclosed in which the antenna portion and the second annular antenna portion consisting of the circular loop 3e are formed in the same shape and the same size, and the first and second annular antenna portions are adhered.
- FIG. 2C of Patent Document 2 discloses a coil antenna for a noncontact communication device in which the magnetic field strength is increased by winding a loop portion of a loop antenna a plurality of times.
- the present invention has been made in view of the above-described point, and its object is to control the magnetic field distribution in the vicinity of the loop antenna to enable generation of an annular magnetic field distribution adapted to the measurement object,
- the present invention provides a novel loop antenna that can accurately identify circuits and components with low immunity performance.
- Another object of the present invention is to provide an electronic device having an extremely short distance communication function, capable of preventing a malfunction by selectively attenuating a magnetic field around components which are not desired to be irradiated with a magnetic field. It is.
- the first aspect of the loop antenna according to the present invention is A first annular conductor, One or more second annular conductors smaller than the first annular conductor and located inside the ring of the first annular conductor, Said second annular conductor is connected in series with said first annular conductor;
- the first annular conductor and the second annular conductor are disposed on the same plane, and
- One or more second annular conductors smaller than the first annular conductor and located inside the ring of the first annular conductor, Said second annular conductor is connected in series with said first annular conductor;
- the first annular conductor and the second annular conductor are disposed on different sides of the substrate,
- An annular conductor, And a metal plate disposed inside the ring of the annular conductor, The annular conductor and the metal plate are disposed on the same plane,
- the aspect of the magnetic field generation method according to the present invention is A first annular conductor and one or more second annular conductors smaller than the first annular conductor and located inside the annulus of the first annular conductor, the second annular conductor comprising A loop antenna connected in series to the first annular conductor is driven at a frequency having a wavelength sufficiently longer than the total length of the first annular conductor and the second annular conductor, and an annular magnetic field distribution It is characterized in that
- the loop antenna of the present invention is configured as described above, the magnetic field can be selectively irradiated, and it becomes easy to identify parts having low immunity performance.
- the mounting method of the loop antenna of the present invention in the electronic device having the extremely short distance communication function, since the magnetic field around the parts which are not desired to be irradiated with the magnetic field can be selectively attenuated, malfunction can be prevented.
- FIG. 1A It is a figure which shows magnetic field distribution of the vicinity of the loop antenna of this invention. It is a figure which shows magnetic field distribution of the vicinity of the loop antenna of this invention. It is a figure explaining the other structural example of the loop antenna of this invention. It is a figure explaining the other structural example of the loop antenna of this invention. It is a figure explaining the other structural example of the loop antenna of this invention. It is a figure explaining the other structural example of the loop antenna of this invention. It is a figure explaining the other structural example of the loop antenna of this invention. It is a figure explaining the structure of the loop antenna which has a conductor board of this invention. It is a figure which shows the example which has arrange
- FIG. 4A It is a figure which shows the conductor board provided in the other side of the printed wiring board of FIG. 4B. It is a figure explaining the other structural example of the loop antenna of this invention. It is a figure explaining the other structural example of the loop antenna of this invention. It is a figure explaining the other structural example of the loop antenna of this invention. It is a figure explaining the other structural example of the loop antenna of this invention. It is a figure which shows that a lead frame does not exist in 45 degree direction of QFP. It is a figure explaining the other structural example of the loop antenna of this invention. It is a figure explaining the other structural example of the loop antenna of this invention. It is a figure which applied the loop antenna of the present invention to SiP. It is a side view of FIG. 9A.
- FIG. 11B is a side view of FIG. 11A. It is a figure explaining the conventional loop antenna. It is a figure explaining the measuring method of the magnetic field distribution of the conventional loop antenna vicinity. It is a top view of FIG. 13A. It is a figure which shows an example of the magnetic field distribution of the conventional loop antenna vicinity. It is a figure which shows an example of the magnetic field distribution of the conventional loop antenna vicinity.
- the loop antenna of the present invention comprises a first annular conductor and one or more second annular conductors smaller than the first annular conductor and located inside the ring of the first annular conductor, Configured to generate an annular magnetic field in a region between the annular conductor and the second annular conductor, thereby selectively irradiating the magnetic field and identifying a component having low immunity performance. It is.
- the first annular conductor and the second annular conductor may be connected in series and driven by one signal source, or the first annular conductor Each of the second annular conductors may be driven by another signal source.
- yen is included.
- FIG. 1 is a view for explaining an embodiment of a loop antenna 20 of the present invention.
- the loop antenna 20 of the present invention comprises a printed wiring board 21 and a conductor pattern 28 formed thereon.
- the conductor pattern 28 includes an annular conductor 22 formed so as to go around the outside, an annular conductor 23 connected in series to a part of the conductor pattern 28, and a connection wire 24 connecting the respective annular conductors.
- the annular conductor 23 has a smaller outside dimension than the annular conductor 22 and is disposed inside the annular conductor 22.
- the annular conductor 22 is connected to the connection wiring 25, and the other end of the connection wiring 25 is connected to the pads 30a and 30b.
- FIG. 1B shows a state in which the coaxial cable 26 is vertically connected to the printed wiring board 21, but the center conductor of the coaxial cable is electrically connected to the pad 30a using a method such as soldering. It is fixed.
- the outer conductor of the coaxial cable is connected to the pad 30 b via the sleeve 27. By performing such connection, it is possible to vertically connect with the conductor pattern 28 while suppressing the collapse of the coaxial structure.
- the other end of the coaxial cable 26 is connected to the signal generator 17, and the signal transmitted from the signal generator 17 is transmitted to the annular conductors 22 and 23 to generate a magnetic field around the annular conductors 22 and 23 according to the laws of electromagnetism. .
- the antenna 20 can be brought close to the QFP 1 at a fixed height as shown in FIG. 11B.
- FIGS. 2A and 2B show the results of measuring the magnetic field on the loop antenna 20 in the same measurement system as in FIGS. 13A and 13B. Each figure is shown normalized with the maximum value.
- the outer dimensions of the annular conductor 24 are 24 mm, the outer dimensions of the annular conductor 23 are 15 mm, and the wiring width is 1 mm.
- FIG. 2A it can be seen that the magnetic field strength at the central portion is reduced, and a strong magnetic field is generated in the ring.
- FIG. 2B shows the result of measuring the distribution on the AA ′ line of FIG. 13B, but two peaks are observed.
- This peak is approximately located in the region sandwiched by the annular conductor 22 and the annular conductor 23.
- the annular conductor 22 generates a magnetic field at its center in a direction from the front to the back of the paper.
- the current 31b flowing through the annular conductor 23 is in the opposite direction to the current 31a, a magnetic field is generated at the central portion in the direction of penetrating from the back side to the front side of the drawing.
- the conductor pattern 28 includes two loop antennas having different directions of oscillation with the same phase.
- FIG. 1A The above results are shown in FIG. 1A in which two loop antennas are driven by a signal having a wavelength sufficiently longer than the total length of the annular conductors 22 and 23. Such a frequency is selected.
- a signal having a wavelength sufficiently longer than the total length of the annular conductors 22 and 23 Such a frequency is selected.
- the annular conductors 22 and 23 are driven in phase to generate a magnetic field, an annular magnetic field distribution shown in FIG. 2A can be obtained.
- the wavelength is shorter than the total length of the annular conductor, the influence of voltage and current distribution on the annular conductor becomes large, and it becomes impossible to generate an annular magnetic field distribution having uniform magnetic field strength.
- the annular conductors 22, 23 have a near rectangular shape. Assuming that the measurement object is a QFP, it is possible to conduct the test over the entire surface of the object by making it square. Usually, the QFP 1 and the chip 2 are substantially square, and the sides are parallel to each other. Therefore, as shown in FIG. 1A, by arranging the annular conductor 23 at the center of the annular conductor 22 so that the sides are parallel to each other, the irradiation range shown in FIG. 15 can be selected and irradiated.
- the conductor pattern 28 may be designed according to the shape. Therefore, the conductor pattern 28 is manufactured in a rectangle, a trapezoid, a circle, an ellipse, or a polygon according to the purpose.
- the annular conductor 22 and the annular conductor 23 do not have to have the same shape, and a combination of different shapes is also acceptable as shown in FIG. 3A.
- FIG. 3C is an example in which a plurality of annular conductors 23 are arranged.
- the center of the annular conductor 22 and the center of the annular conductor 23 do not have to be aligned, and the annular conductor 23 can be disposed at an asymmetric position with respect to the annular conductor 22.
- packages such as SiP (System in Package)
- the chip is often mounted at an asymmetric position, and such a mounting method is also possible.
- the factor A is always included in the conventional test method using the antenna 10. That is, if the test is performed while changing the outer dimensions of the loop wiring 11, it is necessary to measure the electromagnetic immunity in the combination such as factor A, factor (A + B), factor (A + B + C), factor (A + B + C), factor (A + B + C + D) become.
- the method of selecting the irradiation area in such an addition formula for example, if contribution to the immunity of factor A is large, the contribution of other factors can not be separated, and if the interaction between each factor is large There is a disadvantage that the effect of is difficult to separate.
- the inner annular conductor 23 is replaced with a conductor plate 32 made of a metal plate having a predetermined area.
- the conductor plate 32 is disposed at the center of the annular conductor 22.
- the annular conductor 22 is driven at a predetermined frequency, a strong magnetic field is generated inside the ring, but if the conductor plate 32 is thick enough to prevent the magnetic field from penetrating, the magnetic field at the central portion of the conductor plate 32 is attenuated.
- the loop antenna 20 does not operate to cancel the magnetic field positively, an annular distribution similar to that of the loop antenna 20 can be obtained.
- each side of the conductor plate 32 is formed so as to be parallel to each side of the annular conductor 22, the magnetic field distribution shown in FIGS. 15B and 15C can be generated.
- the shape of the conductor plate 32 may be any shape such as a trapezoid in accordance with the measurement condition. Further, the shape of the annular conductor may be different from the shape of the metal plate.
- the pads 30a and 30b for connecting the coaxial cable 26 are disposed outside the annular conductor 22 provided on one surface of the printed wiring board 21.
- the connection pads 31 a and 31 b are disposed inside the annular conductor 22.
- FIG. 4C shows a conductor plate 32 provided on the other surface of the printed wiring board 21 of FIG. 4B.
- the conductor plate 32 is connected to the pad 31 b by the via 33, and the ground conductor of the coaxial cable 26 together with the pad 31 b.
- the magnetic field attenuates around the conductor plate 32 as in FIG. 4A. Since the coaxial cable 26 can be installed inside the annular conductor 22, the size can be reduced.
- the conductor plate 32 is disposed on the inner side of the annular conductor 22, and the conductor plate 32 is formed on the same surface as the annular conductor 22, and the pads 31a and 31b are opposed to the conductor plate 32 to be a conductor. It may be configured to be provided on a surface different from the surface on which the plate 32 is provided.
- the shape of the annular conductor 22 is polygonal, and a magnetic field is applied only to the hatched area in FIG. 16A.
- the loop antenna is rectangular or annular, but as shown in FIG. 5A, the magnetic field can be irradiated only to the lead frame to be tested if the shape of the lead frame of the QFP is matched.
- FIG. 5B if an annular conductor is formed inside, it is possible to attenuate the magnetic field strength around the lead frame that you do not want to test, as shown in FIG. 16B.
- FIG. 6A shows an embodiment of the present invention in which the connection wirings 24 and 25 are disposed in parallel with the side of the QFP.
- the connection wiring 25 is formed in this manner, a distribution which does not originally require a magnetic field is formed around the connection wiring 25, the magnetic field strength is lowered, and a part of the lead frames may not be irradiated with the magnetic field of sufficient strength.
- the connection wiring 25 is connected to the corner of the annular conductor 22 formed in a rectangular shape, and drawn out so as to form an angle of 45 degrees with each side of the annular wiring.
- the connection wiring 24 is disposed adjacent to the connection wiring 25 and the angle between the connection wirings 24 and 25 is 0 degree.
- connection wiring 25 does not have to be arranged linearly with the connection wiring 24 and may form an angle of 45 degrees. In FIG. 6B, the connection wiring 24 and the connection wiring 25 are partially shared.
- connection wiring 25 is a polygon, it is preferable to provide the connection wiring 25 at the corner where the two sides of the polygon intersect.
- annular conductor 22 and an annular conductor 23 are formed in different layers.
- the annular conductor 23 is disposed inside the annular conductor 22, and the annular conductor 22 and the annular conductor 23 are connected in series at the vias 34. It is possible to change the distance in the direction perpendicular to the loop surface of the annular conductor 22 and the annular conductor 23 by controlling the thickness of the printed board 21 and to control the intensity distribution on the QFP 1.
- a characteristic magnetic field distribution can be generated by using the antenna of the present invention in a frequency band of a wavelength sufficiently longer than the total length of the annular conductor.
- the strength of the magnetic field can be locally adjusted, and the same effect as the loop antenna 20 can be obtained.
- the annular conductors 61 and 62 can be controlled independently, the phase of the supplied signal can be reversed or the amplitude can be changed, and the generated magnetic field distribution can be efficiently controlled. Therefore, precise control is possible as compared with the integrated type of FIG. 1A.
- the loop antenna of the present invention described above can also be applied to a transmitting / receiving antenna incorporated on a printed wiring board or in an LSI package.
- FIGS. 9A and 9B show a device in which a printed wiring board 21 in which a loop antenna is formed is mounted on a system in package (SiP) via a spacer 60.
- SiP system in package
- the reason for mounting a planar antenna on a printed circuit board is to realize thinning and downsizing. For this reason, the distance between the SiP and the antenna conductor is very close, for example, 1 mm or less.
- Two chips 51 and 52 are mounted on the interposer 50 by BGA.
- the chips 51, 52 are connected to each other by wires 58, 59 on the interposer, as shown in FIG. 9C. This is to recombine the wiring on the interposer 50.
- the wiring 58 becomes a first layer
- the wiring 59 becomes a second layer, and so on.
- Such an SiP is used in a wireless medium for reading and writing information without contact, such as an IC card or a wireless tag. Moreover, it may be mounted in the inside of information terminal devices, such as a mobile telephone.
- the loop antenna 20 of this embodiment is used when transmitting and receiving information with an external device wirelessly.
- the loop antenna 10 illustrated in FIG. 12 is given. As described above, such a loop antenna 10 produces a substantially uniform magnetic field distribution as shown in FIG. 14A.
- the loop antenna 20 of the present invention is driven by the chip 51 to generate a magnetic field, and performs communication with an external LSI over an extremely short distance.
- the wires formed on the interposer such as the wires 58 and 59 are longer than the on-chip wires, and thus are susceptible to the influence of the external electromagnetic field in a frequency band lower than the chips 51 and 52. Therefore, when the conventional antenna 10 is used in place of the loop antenna 20, a large noise voltage is generated in the wires 58 and 59, which becomes conductive noise and intrudes into the circuits in the chips 51 and 52, causing the circuit to malfunction. That is, the wires 58 and 59 which are more sensitive to the electromagnetic field coming from the outside than the chips 51 and 52 alone will eventually allow the entry of noise.
- the loop antenna 20 of the present invention generates an annular magnetic field distribution near the loop antenna 20, and the magnetic field strength at the central portion is weak. That is, since the magnetic field strength is weak in the region where the wiring with high electromagnetic sensitivity in the central portion of FIG. 9A is present, it is possible to reduce the risk of occurrence of a malfunction.
- a receiving antenna is installed to face the antenna 20, and communication is performed at an extremely short distance.
- the loop antenna 10 having substantially the same outer dimensions is used as the receiving antenna, when the antenna 10 and the loop antenna 20 are excited with the same power, the output of the receiving antenna of the loop antenna 20 is lowered. This is because the magnetic field strength at the central portion of the loop antenna 20 is attenuated. If the total amount of magnetic field in the loop of the receiving antenna is equal, the gain in transmission and reception does not decrease. Comparing the integrated value of the magnetic field in the loop with the external dimensions of the receiving antenna being the same as on the transmitting side, if the transmission power of the loop antenna 20 is multiplied by 1.8, a magnetic field equivalent to the antenna 10 is generated Are equal.
- FIG. 10 is a result of measuring the magnetic field distribution generated by the antenna 10 and the loop antenna 20, and is normalized by the maximum value of the loop antenna 20.
- the present invention is applicable to a loop antenna, an electronic device having an extremely short distance communication function, and various other related devices.
Landscapes
- Details Of Aerials (AREA)
Abstract
Provided is a loop antenna capable of accurately identifying circuits and components having low immunity performances. The loop antenna is provided with a first ring-shaped conductor and one or more second ring-shaped conductors smaller than the first ring-shaped conductor and disposed inside the ring of the first ring-shaped conductor. The first ring-shaped conductor and the second ring-shaped conductors are connected in series and disposed in the same plane. In this case, in the area surrounded by the first ring-shaped conductor and the second ring-shaped conductors, the direction of a magnetic field generated by the first ring-shaped conductor is opposite to those generated by the second ring-shaped conductors.
Description
本発明は、ループアンテナに係わり、特に、磁界を照射して電磁感受性やイミュニティ性能の試験を行うアンテナ、または磁界を発生させて通信を行う小型ループアンテナに関する。
The present invention relates to a loop antenna, and more particularly to an antenna that is irradiated with a magnetic field to test electromagnetic sensitivity and immunity performance, or a compact loop antenna that generates a magnetic field to communicate.
電子機器が動作する際、他の電子機器や機械機器の動作に伴い発生する電磁界が到来し、その電磁界が電磁妨害を引き起こし、電磁障害(EMI:Electromagnetic Interference)を引き起こし、電子機器の性能低下を発生させることがある。一方、このような電磁妨害が存在する環境で、電子機器が性能低下することなく動作することができるイミュニティを向上させ、電磁妨害による性能低下を防止するためには、電子機器の設計段階で、電磁感受性が強い箇所を特定し、電磁障害の発生メカニズムを解明し、イミュニティを向上させた設計を行うことが重要である。
When an electronic device operates, an electromagnetic field generated along with the operation of another electronic device or mechanical device arrives, and the electromagnetic field causes an electromagnetic interference to cause an electromagnetic interference (EMI: Electromagnetic Interference), and the performance of the electronic device May cause deterioration. On the other hand, in an environment where such electromagnetic interference exists, in order to improve the immunity with which the electronic device can operate without the performance deterioration and to prevent the performance deterioration due to the electromagnetic interference, at the design stage of the electronic device, It is important to identify locations where electromagnetic sensitivity is high, to elucidate the mechanism of occurrence of electromagnetic interference, and to design with improved immunity.
電磁感受性が弱い箇所を特定するために、大規模集積回路(LSI)やプリント配線板(PWB:Printed Wiring Board)の近傍にアンテナを設置して電磁界を照射し、誤動作の発生や性能低下の状態を調べる試験が行われている。このような試験は、電磁的なイミュニティが弱い回路や実装部品の特定に役立つ。
An antenna is installed near a large scale integrated circuit (LSI) or a printed wiring board (PWB: Printed Wiring Board) in order to identify a portion where electromagnetic sensitivity is weak, and an electromagnetic field is irradiated to cause malfunction or performance degradation. Tests are underway to determine the condition. Such a test helps to identify circuits and mounting components that are weak in electromagnetic immunity.
図11は、LSIの真上に磁界を照射するためのアンテナを設置してイミュニティ性能を評価する際の構成例である。
FIG. 11 shows a configuration example when evaluating an immunity performance by installing an antenna for irradiating a magnetic field right above the LSI.
図11Aは、LSIを真上からみた図であり、アンテナ10が、LSIが実装されているQFP(Quad Flat Pack)1の真上に、QFP1から一定の高さとなるように設置されている。図11Aの例では、アンテナ10は多層基板で製作されており、磁界を発生させるループ配線11がプリント配線で形成されている。図11Bは、図11Aと同じ構成を横から見た図である。実装ボード5上にはLSIを動作させるために必要な周辺回路も実装されている。実装ボード5上にはLSIの動作を監視するための回路も実装されている。
FIG. 11A is a diagram of the LSI viewed from directly above, and the antenna 10 is installed directly above the QFP (Quad Flat Pack) 1 on which the LSI is mounted so as to be at a certain height from the QFP 1. In the example of FIG. 11A, the antenna 10 is made of a multilayer substrate, and the loop wiring 11 for generating a magnetic field is formed of a printed wiring. FIG. 11B is a side view of the same configuration as FIG. 11A. Peripheral circuits necessary for operating the LSI are also mounted on the mounting board 5. A circuit for monitoring the operation of the LSI is also mounted on the mounting board 5.
なお、図1において、2はQFP1のチップ部分、3は、QFP1のリードフレームである。
In FIG. 1, 2 is a chip portion of QFP 1, and 3 is a lead frame of QFP 1.
アンテナ10は、図12に示す通り、プリント配線板13上にプリント配線により形成されたループ配線11とリード12及びコネクタ14とからなる。信号発生器17から送出された高周波信号は、同軸ケーブル16、コネクタ14、リード12により伝送され、最終的にループ配線11に供給される。ループ配線11の周囲には電磁気学の法則に従いループ面周囲に磁界を生じるが、このとき、ループ面に垂直な方向の磁界が優勢となるのが一般的である。したがって、図11Bのように、アンテナ10を実装ボード5上に実装されているQFPと平行になるように適度な距離をおいて設置すると、QFPの全面にわたって強度変化の少ない磁界を照射することができる。信号発生器17の設定を変えて発生する磁界の強度や変調、波形などを制御しながら、LSIの誤動作の原因を特定する。図11Aでは、QFPとほぼ同じ大きさのアンテナを使用しているが、QFPよりも小さいアンテナを使用して限られた範囲で照射する試験法もある。この場合、小型のアンテナを所定の高さでQFP上を走査させながら磁界を照射させ、イミュニティが弱い回路を特定する。
As shown in FIG. 12, the antenna 10 is composed of a loop wiring 11 formed by printed wiring on a printed wiring board 13, a lead 12 and a connector 14. The high frequency signal sent from the signal generator 17 is transmitted by the coaxial cable 16, the connector 14 and the lead 12, and is finally supplied to the loop wiring 11. A magnetic field is generated around the loop surface around the loop wiring 11 in accordance with the laws of electromagnetism. At this time, in general, the magnetic field in the direction perpendicular to the loop surface is dominant. Therefore, as shown in FIG. 11B, when the antenna 10 is disposed at an appropriate distance so as to be parallel to the QFP mounted on the mounting board 5, a magnetic field with little change in intensity is irradiated over the entire surface of the QFP. it can. While changing the setting of the signal generator 17 and controlling the intensity, modulation, waveform, etc. of the generated magnetic field, the cause of the malfunction of the LSI is identified. In FIG. 11A, an antenna of approximately the same size as the QFP is used, but some test methods use a smaller antenna than the QFP to provide limited coverage. In this case, a magnetic field is irradiated while scanning a small antenna at a predetermined height on the QFP, and a circuit with weak immunity is identified.
図13は、図12のアンテナ10の表面の磁界を小型磁界プローブ15で測定する方法の説明図である。図13A、Bに示す通り、小型磁界プローブ15をループ配線11近傍に設置して一定の高さでXY軸方向に走査させながら磁界を測定し、可視化した図が図14Aである。図14Aでは、ループ配線11近傍の磁界はX、Y、Z方向の成分を持つので、小型磁界プローブ15の設置軸を変えながら、X方向成分(Hx)、Y方向成分(Hy)、Z方向成分(Hz)の強度を測定し、Hxyz=(x2+y2+z2)(1/2)で合成して表示してある。
FIG. 13 is an explanatory view of a method of measuring the magnetic field of the surface of the antenna 10 of FIG. As shown in FIGS. 13A and 13B, FIG. 14A is a view obtained by measuring and visualizing the magnetic field while installing the small-sized magnetic field probe 15 in the vicinity of the loop wiring 11 and scanning in the XY axis direction at a constant height. In FIG. 14A, since the magnetic field in the vicinity of the loop wiring 11 has components in the X, Y, Z directions, the X direction component (Hx), the Y direction component (Hy), Z direction while changing the installation axis of the small magnetic field probe 15 The intensity of the component (Hz) is measured and synthesized and displayed as Hxyz = (x 2 + y 2 + z 2 ) (1/2) .
測定は、小型磁界プローブ15をスペクトラムアナライザなどの測定器に接続して行い、10MHzでアンテナ10を発振させて小型磁界プローブ15の出力を測定した。図14A、(b)ではループ全面に渡って小型磁界プローブ15を走査して測定した結果を表示している。図14A、(b)で、ループ配線11の中心は、(x,y)=(18mm,18mm)となっている。図13Bのループ配線11の外形は、24mm角、ループ配線11の幅は1mmであり、小型磁界プローブ15を6mm離して測定した。図14Aでは、ループ配線11で囲まれた範囲では全面にわたって強い磁界が生じていることが分かる。図14Bは、Y、Z座標を一定として、図13Bのループ配線11の中心を通るA-A'線上を1次元走査させながら磁界を測定した結果である。図14BのX=18mmの位置では、ループ配線11の中心に小型磁界プローブ15があることを意味している。測定上の誤差などによる非対称性が認められるが、ほぼ対称な分布となっている。
The measurement was performed by connecting the small magnetic field probe 15 to a measuring instrument such as a spectrum analyzer, oscillating the antenna 10 at 10 MHz, and measuring the output of the small magnetic field probe 15. In FIG. 14A and (b), the result of scanning and measuring the small magnetic field probe 15 over the whole loop surface is displayed. In FIG. 14A, (b), the center of the loop wiring 11 is (x, y) = (18 mm, 18 mm). The external shape of the loop wiring 11 of FIG. 13B is 24 mm square, and the width of the loop wiring 11 is 1 mm, and the small magnetic field probes 15 were measured 6 mm apart. In FIG. 14A, it can be seen that a strong magnetic field is generated over the entire surface in the range surrounded by the loop wiring 11. FIG. 14B shows the result of measurement of the magnetic field while making the Y and Z coordinates constant and one-dimensionally scanning on the line AA ′ passing the center of the loop wiring 11 of FIG. 13B. The position of X = 18 mm in FIG. 14B means that the small magnetic field probe 15 is located at the center of the loop wiring 11. Although the asymmetry due to the measurement error etc. is recognized, it has a nearly symmetrical distribution.
図14Bから分かるとおり、ループ配線11で囲まれた領域内ではHzが優勢である。ループ配線11の近くではHxが強くなる領域もあるが、その強度はHzに比べると低い。小型磁界プローブ15の測定距離がさらに小さくなり、1mmよりも小さくなるとHxがHzに比べて優勢になる場合もあるが、通常の使用される状態でのループと対象物との間の距離を考慮すると、図14Aの分布形は典型的な分布である。Hyは原理的には磁界が観測されない方向であるので、非常に低い値となっている。x、y、z方向の合成磁界であるHxyz=(x2+y2+z2)(1/2)の大きさは、概ねHzの分布に似ているが、Hxが強くなる領域ではHxyzがHzよりも大きくなる。したがって、図14Bの場合は、HxyzはほぼHzとHxの合成となる。ループ配線11で囲まれた領域では、合成磁界Hxyzの強度変化は少なく、約8%の変化にとどまっている。なお、図14A、Bともに最大値で正規化して表示している。ループ配線11をQFPと同程度の大きさで製作し、図11Aに示す通り、QFP上に設置すると、QFP全面にわたってほぼ一定の強さの磁界を照射することができる。
As can be seen from FIG. 14B, Hz is dominant in the area surrounded by the loop wiring 11. There is also a region where Hx becomes strong near the loop wiring 11, but the intensity is lower than Hz. If the measurement distance of the small magnetic field probe 15 is further reduced, and becomes smaller than 1 mm, Hx may become dominant compared to Hz, but the distance between the loop and the object under normal use conditions is taken into consideration Then, the distribution in FIG. 14A is a typical distribution. Since Hy is in principle the direction in which the magnetic field is not observed, it has a very low value. The magnitude of the combined magnetic field Hxyz = (x 2 + y 2 + z 2 ) (1/2) in the x, y, and z directions is roughly similar to the distribution in Hz, but in the region where Hx is strong Hxyz Will be greater than Hz. Therefore, in the case of FIG. 14B, Hxyz is approximately a combination of Hz and Hx. In the area surrounded by the loop wiring 11, the change in the intensity of the synthetic magnetic field Hxyz is small, and remains at about 8%. Both FIGS. 14A and 14B are normalized and displayed at the maximum value. If the loop wiring 11 is manufactured to the same size as that of the QFP and placed on the QFP as shown in FIG. 11A, it is possible to irradiate a magnetic field of almost constant strength over the entire surface of the QFP.
図15Aは、以上述べた磁界を照射する試験法を概略的に示したものである。斜線部分が強い磁界を発生させる領域であり、ループ配線11の内側が、ほぼこの領域に属する。QFP1とアンテナ11の距離を変えると分布形も変わるが、均一な分布に近くなるような測定距離で試験を行うのが一般的である。詳しく説明すると、アンテナ10が試験対象のLSIチップ1やリードフレーム3に非常に近接している場合、ループ配線11近傍にのみ強い磁界が生じ、ループ配線11の中心部の磁界強度は低くなる。即ち、環状の磁界分布が生じる。ところが、QFPの場合、パッケージの厚みがあるため、ループ配線11はチップ1やリードフレーム3から離して設置せざるを得ない。この場合、ループ配線11の中心付近の磁界が強くなり、結果として、図14Aに例示したループ面内で強い磁界が生じる。したがって、アンテナ10の設置距離を変えて環状の磁界を発生させるのは、制約が大きい。
FIG. 15A schematically shows the test method of irradiating the magnetic field described above. The hatched portion is a region that generates a strong magnetic field, and the inside of the loop wire 11 substantially belongs to this region. Although changing the distance between the QFP 1 and the antenna 11 changes the distribution, it is general to conduct the test at a measurement distance close to a uniform distribution. Specifically, when the antenna 10 is very close to the LSI chip 1 and the lead frame 3 to be tested, a strong magnetic field is generated only in the vicinity of the loop wiring 11 and the magnetic field strength at the central portion of the loop wiring 11 is low. That is, an annular magnetic field distribution occurs. However, in the case of the QFP, since the thickness of the package is large, the loop wiring 11 can not but be installed away from the chip 1 and the lead frame 3. In this case, the magnetic field in the vicinity of the center of the loop wiring 11 becomes strong, and as a result, a strong magnetic field is generated in the loop plane illustrated in FIG. 14A. Therefore, changing the installation distance of the antenna 10 to generate an annular magnetic field is very limited.
上記では、磁界を照射して試験を行う場合を例示したが、均一な電界を発生させるアンテナを使用すれば、電界による誤動作試験に応用することができる。
Although the case where a test is performed by irradiating a magnetic field is illustrated above, if the antenna which generate | occur | produces a uniform electric field is used, it can apply to the malfunction test by an electric field.
図15Aでは、QFP1全面に渡って磁界が照射されてしまうため、QFP1全体のイミュニティを評価することが可能であるが、部品ごとの評価はできない。図15Bのように、外形寸法が小さいループ配線11を作成すればLSIが形成されているチップ2のみに磁界を照射することは可能であるが、リードフレーム3、QFP1とチップ上のパッドを接続するボンディングワイヤ4のみに磁界を照射することができない。特に、1GHz以下の周波数帯では、外部から到来する電磁界によりリードフレーム3やボンディングワイヤ4で雑音が生じ、同じ外部電磁界によりチップ2内部で生じる雑音よりも大きい場合もある。この場合、リードフレーム3やボンディングワイヤ4で生じた雑音が伝導性のノイズとなり、端子部からチップ2内部に混入し誤動作を引き起こすため、チップ2に外部から電磁界が侵入しない対策を行っても効果は期待できない。そのため、リードフレーム3やボンディングワイヤ4を選択して試験を行うことは、正しいノイズ対策を選択するために重要である。
In FIG. 15A, since the magnetic field is irradiated over the entire surface of the QFP 1, the immunity of the entire QFP 1 can be evaluated, but the evaluation of each part can not be performed. As shown in FIG. 15B, it is possible to irradiate the magnetic field only to the chip 2 on which the LSI is formed by creating the loop wiring 11 having a small external dimension, but connecting the lead frame 3 and QFP 1 to the pads on the chip Only the bonding wire 4 can not be irradiated with the magnetic field. In particular, in the frequency band of 1 GHz or less, noise may be generated in the lead frame 3 or the bonding wire 4 by the electromagnetic field coming from the outside, and may be larger than the noise generated inside the chip 2 by the same external electromagnetic field. In this case, noise generated in the lead frame 3 or the bonding wire 4 becomes conductive noise, and is mixed into the inside of the chip 2 from the terminal portion to cause a malfunction. Therefore, even if an electromagnetic field does not enter the chip 2 from the outside I can not expect an effect. Therefore, it is important to select and test the lead frame 3 and the bonding wires 4 in order to select the correct noise countermeasure.
図15Cは、ボンディングワイヤ4とボンディングワイヤ4がリードフレーム3に接続される部分(すなわちリードフレーム3にテーパーがついている部分)を選択して磁界照射試験を行う場合であり、図15Dは、実装ボード5上の配線6まで含めて磁界を照射する試験を行う場合である。このように、円環状に強い磁界を生じる磁界発生法を用いれば、チップ2、ボンディングワイヤ4、リードフレーム3、実装ボード上の配線6を組み合わせて試験することが可能となり、電磁感受性が強く、イミュニティ低下の要因となる実装部品を特定することが可能となる。
FIG. 15C shows the case where the magnetic field irradiation test is performed by selecting the portion where bonding wire 4 and bonding wire 4 are connected to lead frame 3 (that is, the portion where lead frame 3 is tapered), and FIG. This is the case where the test is performed to irradiate the magnetic field including the wiring 6 on the board 5. As described above, by using a magnetic field generation method that generates a strong magnetic field in an annular shape, it becomes possible to test by combining the chip 2, the bonding wire 4, the lead frame 3, and the wiring 6 on the mounting board. It becomes possible to identify the mounted component that causes the decrease in immunity.
図16は、回路ごとに選択して磁界を照射する例である。図16Aでは、実装部品レベルでの選択するのではなく、試験したい回路に接続されている部品を全て含んだ試験を行う。回路の例としては、電源回路、データポート、信号伝送用のI/Oポートなどが挙げられるが、類似した回路に接続されるピンが、QFP上で隣接していることが多い。その場合、図16Bに示すように、例えば、特定のリードフレーム3には照射したくない場合もある。
FIG. 16 shows an example in which a magnetic field is selected for each circuit. In FIG. 16A, the test is performed including all the parts connected to the circuit to be tested, rather than selecting at the mounting part level. Examples of circuits include power supply circuits, data ports, I / O ports for signal transmission, etc. However, pins connected to similar circuits are often adjacent on the QFP. In that case, as shown in FIG. 16B, for example, it may not be desirable to irradiate a specific lead frame 3.
以上述べた通り、従来技術では、実装部品や回路を選択して外部から磁界を照射することができず、イミュニティ性能が低い回路や部品の特定が十分にはできないという欠点があった。
As described above, in the prior art, it is not possible to select a mounted part or circuit and irradiate a magnetic field from the outside, and there is a drawback that it is not possible to sufficiently identify a circuit or part having low immunity performance.
次に、出願人が認識している公知文献について説明する。
Next, known documents recognized by the applicant will be described.
特許文献1は、第1の半ループ3cと円ループ3eと第2の半ループ3gとを直列に接続し、第1の半ループ3cと第2の半ループ3gとからなる第1の環状のアンテナ部分と円ループ3eからなる第2の環状のアンテナ部分とを同じ形状で同じ大きさに形成し、第1及び第2の環状のアンテナ部分を密着させたループアンテナが開示されている。
Patent document 1 connects a first half loop 3c, a circular loop 3e, and a second half loop 3g in series, and forms a first annular shape including a first half loop 3c and a second half loop 3g. A loop antenna is disclosed in which the antenna portion and the second annular antenna portion consisting of the circular loop 3e are formed in the same shape and the same size, and the first and second annular antenna portions are adhered.
上記特許文献1では、電波法上の問題が生じることなく、信号電送を行うことが出来ると記載している。これは、ループアンテナが発生する磁界が十分に合成された距離で磁界分布を問題にしていると考えられる。
In the patent document 1 described above, it is described that signal transmission can be performed without a problem in the Radio Law. This is considered to be the problem of the magnetic field distribution at a distance where the magnetic fields generated by the loop antenna are sufficiently combined.
又、特許文献2の図2Cには、ループアンテナのループ部分を複数回巻回して磁界強度を大きくした非接触通信装置用のコイルアンテナが開示されている。
Further, FIG. 2C of Patent Document 2 discloses a coil antenna for a noncontact communication device in which the magnetic field strength is increased by winding a loop portion of a loop antenna a plurality of times.
なお、特許文献1、2はいずれも、イミュニティの測定に用いられるものではない。
In addition, neither patent document 1 nor 2 is used for the measurement of immunity.
又、上記特許文献1では、電波法上の問題が生じることなく、信号電送を行うことが出来ると記載している。これは、ループアンテナが発生する磁界が十分に合成された、即ち、ループアンテナから十分離れた距離での磁界分布を問題にしていると考えられる。これに対して、本願発明は、ループアンテナ近傍の磁界分布を課題とし、ループアンテナ近傍の磁界分布を制御するものである。
特開昭62-61430号公報
特開2006-74348号公報(第2実施例)
Moreover, in the said patent document 1, it is described that signal transmission can be performed, without the problem in a Radio Law arises. This is considered to be a problem of the magnetic field generated by the loop antenna being sufficiently synthesized, that is, the magnetic field distribution at a distance sufficiently away from the loop antenna. On the other hand, the present invention addresses the magnetic field distribution in the vicinity of the loop antenna and controls the magnetic field distribution in the vicinity of the loop antenna.
Japanese Patent Application Laid-Open No. 62-61430 JP, 2006-74348, A (2nd example)
本発明は、上記した点に鑑みてなされたものであり、その目的とするところは、ループアンテナ近傍の磁界分布を制御することにより、測定対象に合わせた環状の磁界分布の発生を可能にし、イミュニティ性能が低い回路や部品を精度よく特定出来るようにした新規なループアンテナを提供するものである。
The present invention has been made in view of the above-described point, and its object is to control the magnetic field distribution in the vicinity of the loop antenna to enable generation of an annular magnetic field distribution adapted to the measurement object, The present invention provides a novel loop antenna that can accurately identify circuits and components with low immunity performance.
又、本発明の他の目的は、極短距離通信機能を有する電子機器において、磁界を照射させたくない部品周辺の磁界を選択的に減衰させることで、誤動作を防止できる電子機器を提供するものである。
Another object of the present invention is to provide an electronic device having an extremely short distance communication function, capable of preventing a malfunction by selectively attenuating a magnetic field around components which are not desired to be irradiated with a magnetic field. It is.
本発明は、上記した目的を達成するために、基本的には、以下に記載されたような技術構成を採用するものである。
即ち、本発明に係わるループアンテナの第1の態様は、
第1の環状導体と、
前記第1の環状導体よりも小さく、前記第1の環状導体の環の内側に位置する一つ以上
の第2の環状導体を有し、
前記第2の環状導体が前記第1の環状導体と直列に接続され、
前記第1の環状導体と第2の環状導体とが同一平面上に配置されたことを特徴とするものであり、
又、第2の態様は、
基板上に形成した第1の環状導体と、
前記第1の環状導体よりも小さく、前記第1の環状導体の環の内側に位置する一つ以上の第2の環状導体を有し、
前記第2の環状導体が前記第1の環状導体と直列に接続され、
前記第1の環状導体と第2の環状導体とが、前記基板の異なる面に配置されたことを特徴とするものであり、
又、第3の態様は、
環状導体と、
前記環状導体の環の内側に配置される金属板体とからなり、
前記環状導体と金属板体とが同一平面上に配置されていることを特徴とするものであり、
又、第4の態様は、
基板上に形成した環状導体と、
前記環状導体の環の内側に配置される金属板体とからなり、
前記環状導体と金属板体とが、前記基板の異なる面に配置されたことを特徴とするものであり、
又、第5の態様は、
基板と、
前記基板の第1の面に設けた環状導体と、
前記基板の第1の面で前記環状導体の環の内側に設けられ、同軸ケーブルの内導体又は外導体を接続するための金属パッドと、
前記基板の第1の面と異なる第2の面に設けられ、前記金属パッドと複数のビアで接続される金属板体とからなり、
前記同軸ケーブルを前記基板面に垂直に接続することを特徴とするものであり、
又、第6の態様は、
基板と、
前記基板の第1の面に設けた環状導体と、
前記基板の第1の面と異なる第2の面で前記環状導体の環の内側に設けられ、同軸ケーブルの内導体又は外導体を接続するための金属パッドと、
前記基板の第1の面に設けられ、前記金属パッドと複数のビアで接続される金属板体とからなり、
前記同軸ケーブルを前記基板面に垂直に接続することを特徴とするものである。 The present invention basically adopts the technical configuration as described below in order to achieve the above-mentioned object.
That is, the first aspect of the loop antenna according to the present invention is
A first annular conductor,
One or more second annular conductors smaller than the first annular conductor and located inside the ring of the first annular conductor,
Said second annular conductor is connected in series with said first annular conductor;
The first annular conductor and the second annular conductor are disposed on the same plane, and
In the second aspect,
A first annular conductor formed on the substrate;
One or more second annular conductors smaller than the first annular conductor and located inside the ring of the first annular conductor,
Said second annular conductor is connected in series with said first annular conductor;
The first annular conductor and the second annular conductor are disposed on different sides of the substrate,
In the third aspect,
An annular conductor,
And a metal plate disposed inside the ring of the annular conductor,
The annular conductor and the metal plate are disposed on the same plane, and
In the fourth aspect,
An annular conductor formed on a substrate,
And a metal plate disposed inside the ring of the annular conductor,
The annular conductor and the metal plate are disposed on different sides of the substrate,
In the fifth aspect,
A substrate,
An annular conductor provided on the first surface of the substrate;
A metal pad provided inside the ring of the annular conductor on the first surface of the substrate and connecting the inner conductor or the outer conductor of the coaxial cable;
It comprises a metal plate provided on a second surface different from the first surface of the substrate and connected with the metal pad and a plurality of vias,
The coaxial cable is vertically connected to the substrate surface, and
In the sixth aspect,
A substrate,
An annular conductor provided on the first surface of the substrate;
A metal pad provided on the inside of the ring of the annular conductor at a second surface different from the first surface of the substrate and connecting the inner conductor or the outer conductor of the coaxial cable;
It comprises a metal plate provided on the first surface of the substrate and connected to the metal pad by a plurality of vias,
The coaxial cable is vertically connected to the substrate surface.
即ち、本発明に係わるループアンテナの第1の態様は、
第1の環状導体と、
前記第1の環状導体よりも小さく、前記第1の環状導体の環の内側に位置する一つ以上
の第2の環状導体を有し、
前記第2の環状導体が前記第1の環状導体と直列に接続され、
前記第1の環状導体と第2の環状導体とが同一平面上に配置されたことを特徴とするものであり、
又、第2の態様は、
基板上に形成した第1の環状導体と、
前記第1の環状導体よりも小さく、前記第1の環状導体の環の内側に位置する一つ以上の第2の環状導体を有し、
前記第2の環状導体が前記第1の環状導体と直列に接続され、
前記第1の環状導体と第2の環状導体とが、前記基板の異なる面に配置されたことを特徴とするものであり、
又、第3の態様は、
環状導体と、
前記環状導体の環の内側に配置される金属板体とからなり、
前記環状導体と金属板体とが同一平面上に配置されていることを特徴とするものであり、
又、第4の態様は、
基板上に形成した環状導体と、
前記環状導体の環の内側に配置される金属板体とからなり、
前記環状導体と金属板体とが、前記基板の異なる面に配置されたことを特徴とするものであり、
又、第5の態様は、
基板と、
前記基板の第1の面に設けた環状導体と、
前記基板の第1の面で前記環状導体の環の内側に設けられ、同軸ケーブルの内導体又は外導体を接続するための金属パッドと、
前記基板の第1の面と異なる第2の面に設けられ、前記金属パッドと複数のビアで接続される金属板体とからなり、
前記同軸ケーブルを前記基板面に垂直に接続することを特徴とするものであり、
又、第6の態様は、
基板と、
前記基板の第1の面に設けた環状導体と、
前記基板の第1の面と異なる第2の面で前記環状導体の環の内側に設けられ、同軸ケーブルの内導体又は外導体を接続するための金属パッドと、
前記基板の第1の面に設けられ、前記金属パッドと複数のビアで接続される金属板体とからなり、
前記同軸ケーブルを前記基板面に垂直に接続することを特徴とするものである。 The present invention basically adopts the technical configuration as described below in order to achieve the above-mentioned object.
That is, the first aspect of the loop antenna according to the present invention is
A first annular conductor,
One or more second annular conductors smaller than the first annular conductor and located inside the ring of the first annular conductor,
Said second annular conductor is connected in series with said first annular conductor;
The first annular conductor and the second annular conductor are disposed on the same plane, and
In the second aspect,
A first annular conductor formed on the substrate;
One or more second annular conductors smaller than the first annular conductor and located inside the ring of the first annular conductor,
Said second annular conductor is connected in series with said first annular conductor;
The first annular conductor and the second annular conductor are disposed on different sides of the substrate,
In the third aspect,
An annular conductor,
And a metal plate disposed inside the ring of the annular conductor,
The annular conductor and the metal plate are disposed on the same plane, and
In the fourth aspect,
An annular conductor formed on a substrate,
And a metal plate disposed inside the ring of the annular conductor,
The annular conductor and the metal plate are disposed on different sides of the substrate,
In the fifth aspect,
A substrate,
An annular conductor provided on the first surface of the substrate;
A metal pad provided inside the ring of the annular conductor on the first surface of the substrate and connecting the inner conductor or the outer conductor of the coaxial cable;
It comprises a metal plate provided on a second surface different from the first surface of the substrate and connected with the metal pad and a plurality of vias,
The coaxial cable is vertically connected to the substrate surface, and
In the sixth aspect,
A substrate,
An annular conductor provided on the first surface of the substrate;
A metal pad provided on the inside of the ring of the annular conductor at a second surface different from the first surface of the substrate and connecting the inner conductor or the outer conductor of the coaxial cable;
It comprises a metal plate provided on the first surface of the substrate and connected to the metal pad by a plurality of vias,
The coaxial cable is vertically connected to the substrate surface.
又、本発明に係わる磁界発生法の態様は、
第1の環状導体と、前記第1の環状導体よりも小さく、前記第1の環状導体の環の内側に位置する一つ以上の第2の環状導体を有し、前記第2の環状導体が前記第1の環状導体と直列に接続されているループアンテナを、前記第1の環状導体と第2の環状導体との全長に比べて十分に長い波長を有する周波数で駆動し、環状の磁界分布を発生させることを特徴とするものである。 Further, the aspect of the magnetic field generation method according to the present invention is
A first annular conductor and one or more second annular conductors smaller than the first annular conductor and located inside the annulus of the first annular conductor, the second annular conductor comprising A loop antenna connected in series to the first annular conductor is driven at a frequency having a wavelength sufficiently longer than the total length of the first annular conductor and the second annular conductor, and an annular magnetic field distribution It is characterized in that
第1の環状導体と、前記第1の環状導体よりも小さく、前記第1の環状導体の環の内側に位置する一つ以上の第2の環状導体を有し、前記第2の環状導体が前記第1の環状導体と直列に接続されているループアンテナを、前記第1の環状導体と第2の環状導体との全長に比べて十分に長い波長を有する周波数で駆動し、環状の磁界分布を発生させることを特徴とするものである。 Further, the aspect of the magnetic field generation method according to the present invention is
A first annular conductor and one or more second annular conductors smaller than the first annular conductor and located inside the annulus of the first annular conductor, the second annular conductor comprising A loop antenna connected in series to the first annular conductor is driven at a frequency having a wavelength sufficiently longer than the total length of the first annular conductor and the second annular conductor, and an annular magnetic field distribution It is characterized in that
本発明のループアンテナは、上記のように構成したので、磁界を選択的に照射することができるようになり、イミュニティ性能が低い部品を特定することが容易になった。
Since the loop antenna of the present invention is configured as described above, the magnetic field can be selectively irradiated, and it becomes easy to identify parts having low immunity performance.
又、本発明のループアンテナの実装法は、極短距離通信機能を有する電子機器において、磁界を照射させたくない部品周辺の磁界を選択的に減衰させることができるから、誤動作を防止できる。
Further, according to the mounting method of the loop antenna of the present invention, in the electronic device having the extremely short distance communication function, since the magnetic field around the parts which are not desired to be irradiated with the magnetic field can be selectively attenuated, malfunction can be prevented.
1 QFP
2 チップ
3 リードフレーム
4 ボンディングワイヤ
5 実装ボード
6 配線
10 アンテナ
11 ループ配線
12 リード
13 プリント配線板
14 コネクタ
15 小型磁界プローブ
16 同軸ケーブル
17 信号発生器
18 プローブヘッド
20 ループアンテナ
21 プリント配線板
22 環状導体
23 環状導体
24 接続配線
25 接続配線
26 同軸ケーブル
27 スリーブ
28 導体パターン
30a パッド
30b パッド
31a 電流
31b 電流
32 導体板
33 ビア
34 ビア
50 インタポーザ
51 チップ
52 チップ
58 配線
59 配線
60 スペーサー
61 環状導体
62 環状導体 1 QFP
Reference Signs List 2 chip 3 lead frame 4 bonding wire 5 mounting board 6 wiring 10 antenna 11 loop wiring 12 lead 13 printed wiring board 14 connector 15 small magnetic field probe 16 coaxial cable 17 signal generator 18 probe head 20 loop antenna 21 printed wiring board 22 annular conductor 23 ring conductor 24 connection wiring 25 connection wiring 26 coaxial cable 27 sleeve 28 conductor pattern 30 a pad 30 a pad 31 a current 31 b current 32 conductor plate 33 via 34 via 50 interposer 51 chip 52 chip 58 wiring 59 wiring 60 spacer 61 annular conductor 62 annular conductor
2 チップ
3 リードフレーム
4 ボンディングワイヤ
5 実装ボード
6 配線
10 アンテナ
11 ループ配線
12 リード
13 プリント配線板
14 コネクタ
15 小型磁界プローブ
16 同軸ケーブル
17 信号発生器
18 プローブヘッド
20 ループアンテナ
21 プリント配線板
22 環状導体
23 環状導体
24 接続配線
25 接続配線
26 同軸ケーブル
27 スリーブ
28 導体パターン
30a パッド
30b パッド
31a 電流
31b 電流
32 導体板
33 ビア
34 ビア
50 インタポーザ
51 チップ
52 チップ
58 配線
59 配線
60 スペーサー
61 環状導体
62 環状導体 1 QFP
本発明のループアンテナは、第1の環状導体と、第1の環状導体よりも小さく、第1の環状導体の環の内側に位置する一つ以上の第2の環状導体とからなり、第1の環状導体と第2の環状導体とに挟まれた領域に環状の磁界を生じさせるように構成することで、磁界を選択的に照射し、イミュニティ性能が低い部品を特定するように構成したものである。
The loop antenna of the present invention comprises a first annular conductor and one or more second annular conductors smaller than the first annular conductor and located inside the ring of the first annular conductor, Configured to generate an annular magnetic field in a region between the annular conductor and the second annular conductor, thereby selectively irradiating the magnetic field and identifying a component having low immunity performance. It is.
なお、本発明のループアンテナは、第1の環状導体と第2の環状導体とを直列に接続して、一つの信号源で駆動するように構成してもよいし、第1の環状導体と第2の環状導体とをそれぞれ別の信号源で駆動するようにしてもよい。
In the loop antenna of the present invention, the first annular conductor and the second annular conductor may be connected in series and driven by one signal source, or the first annular conductor Each of the second annular conductors may be driven by another signal source.
なお、本発明の環状導体の形状としては、矩形、円形を含む多角形を含むものである。
In addition, as a shape of the annular conductor of this invention, a polygon including a rectangle and a circle | round | yen is included.
次に、本発明の実施例について、図を参照して説明する。
Next, an embodiment of the present invention will be described with reference to the drawings.
図1は、本発明のループアンテナ20の実施例を説明するための図である。
FIG. 1 is a view for explaining an embodiment of a loop antenna 20 of the present invention.
本発明のループアンテナ20は、プリント配線板21とその上に形成された導体パターン28とからなる。導体パターン28は、外側を周回するように形成された環状導体22と、その一部に直列に接続された環状導体23と、それぞれの環状導体を接続する接続配線24とから構成されている。環状導体23は環状導体22よりも外形寸法が小さく、環状導体22よりも内側に配置されている。環状導体22は接続配線25と接続され、接続配線25の他端は、パッド30a、30bに接続されている。図1Bの側面図は、同軸ケーブル26をプリント配線板21に垂直に接続した状態を示すが、同軸ケーブルの中心導体はパッド30aに半田付けなどの工法を使って電気的な導通を持たせながら固定される。一方、同軸ケーブルの外側導体は、スリーブ27を介してパッド30bと接続される。このような接続を行うことにより、同軸構造が崩れるのを抑えながら、かつ垂直に導体パターン28と接続することができる。同軸ケーブル26の他端は信号発生器17に接続され、信号発生器17から送出された信号は環状導体22、23に伝送され、環状導体22、23周辺に電磁気学の法則に従い磁界を発生させる。同軸ケーブル26を垂直に固定することにより、図11Bのように一定の高さでアンテナ20をQFP1に接近させることができる。
The loop antenna 20 of the present invention comprises a printed wiring board 21 and a conductor pattern 28 formed thereon. The conductor pattern 28 includes an annular conductor 22 formed so as to go around the outside, an annular conductor 23 connected in series to a part of the conductor pattern 28, and a connection wire 24 connecting the respective annular conductors. The annular conductor 23 has a smaller outside dimension than the annular conductor 22 and is disposed inside the annular conductor 22. The annular conductor 22 is connected to the connection wiring 25, and the other end of the connection wiring 25 is connected to the pads 30a and 30b. The side view of FIG. 1B shows a state in which the coaxial cable 26 is vertically connected to the printed wiring board 21, but the center conductor of the coaxial cable is electrically connected to the pad 30a using a method such as soldering. It is fixed. On the other hand, the outer conductor of the coaxial cable is connected to the pad 30 b via the sleeve 27. By performing such connection, it is possible to vertically connect with the conductor pattern 28 while suppressing the collapse of the coaxial structure. The other end of the coaxial cable 26 is connected to the signal generator 17, and the signal transmitted from the signal generator 17 is transmitted to the annular conductors 22 and 23 to generate a magnetic field around the annular conductors 22 and 23 according to the laws of electromagnetism. . By fixing the coaxial cable 26 vertically, the antenna 20 can be brought close to the QFP 1 at a fixed height as shown in FIG. 11B.
図2A、Bは、図13A、Bと同じ測定系でループアンテナ20上の磁界を計測した結果である。各々の図は最大値で正規化して表示している。図2Aでは(x,y)=(18mm,18mm)にループアンテナ20の環状導体の中心がある。環状導体24の外形寸法は24mm、環状導体23の外形寸法は15mm、配線幅は1mmである。図2Aでは中央部の磁界強度が低下し、環状に強い磁界が生じていることが分かる。図2Bは、図13BのA-A'ライン上の分布を測定した結果であるが、ピークが2箇所観測される。
FIGS. 2A and 2B show the results of measuring the magnetic field on the loop antenna 20 in the same measurement system as in FIGS. 13A and 13B. Each figure is shown normalized with the maximum value. In FIG. 2A, the center of the annular conductor of the loop antenna 20 is at (x, y) = (18 mm, 18 mm). The outer dimensions of the annular conductor 24 are 24 mm, the outer dimensions of the annular conductor 23 are 15 mm, and the wiring width is 1 mm. In FIG. 2A, it can be seen that the magnetic field strength at the central portion is reduced, and a strong magnetic field is generated in the ring. FIG. 2B shows the result of measuring the distribution on the AA ′ line of FIG. 13B, but two peaks are observed.
このピークは、環状導体22と環状導体23とに挟まれた領域内にほぼ位置している。図1Aで、環状導体22に信号発生器17から供給された電流31aが流れていると仮定すると、環状導体22はその中心部に紙面の表から裏に貫く方向に磁界を生じる。このとき、環状導体23を流れる電流31bは電流31aとは逆向きになるので、その中心部に紙面の裏側から表側に貫く方向に磁界を生じる。
This peak is approximately located in the region sandwiched by the annular conductor 22 and the annular conductor 23. In FIG. 1A, assuming that the current 31a supplied from the signal generator 17 flows in the annular conductor 22, the annular conductor 22 generates a magnetic field at its center in a direction from the front to the back of the paper. At this time, since the current 31b flowing through the annular conductor 23 is in the opposite direction to the current 31a, a magnetic field is generated at the central portion in the direction of penetrating from the back side to the front side of the drawing.
図1Aでは、環状導体22と環状導体23の中心は一致しているので、環状導体22と環状導体23の合成磁界は、その中心付近では強度が低下する。これは、導体パターン28が同じ位相で発振する向きの異なる2つのループアンテナを備えていると考えることもできる。
In FIG. 1A, since the centers of the annular conductor 22 and the annular conductor 23 coincide with each other, the combined magnetic field of the annular conductor 22 and the annular conductor 23 decreases in strength near its center. It can also be considered that the conductor pattern 28 includes two loop antennas having different directions of oscillation with the same phase.
以上の結果は、図1Aで、2個のループアンテナに、環状導体22、23の全長に比べて十分に長い波長を有する周波数の信号で駆動させた場合であり、このような周波数を選択することにより、環状導体22、23が同相で駆動され、磁界を生じるため、図2Aに示す環状の磁界分布を得ることができる。環状導体の全長に比べて波長が短くなると環状導体上の電圧・電流分布の影響が大きくなり、一様な磁界強度を持つ環状の磁界分布を発生させることができなくなる。
The above results are shown in FIG. 1A in which two loop antennas are driven by a signal having a wavelength sufficiently longer than the total length of the annular conductors 22 and 23. Such a frequency is selected. As a result, since the annular conductors 22 and 23 are driven in phase to generate a magnetic field, an annular magnetic field distribution shown in FIG. 2A can be obtained. When the wavelength is shorter than the total length of the annular conductor, the influence of voltage and current distribution on the annular conductor becomes large, and it becomes impossible to generate an annular magnetic field distribution having uniform magnetic field strength.
図1Aでは、環状導体22、23は方形に近い形をしている。測定対象をQFPとすると、方形にすることで対象物の全面に渡って試験を行うことができる。通常、QFP1やチップ2は、ほぼ正方形であり、各辺は平行になるような位置関係である。そのため、図1Aに示すように、環状導体22の中央に環状導体23を各辺が平行となるように配置することにより、図15に示す照射範囲を選択して照射することができる。
In FIG. 1A, the annular conductors 22, 23 have a near rectangular shape. Assuming that the measurement object is a QFP, it is possible to conduct the test over the entire surface of the object by making it square. Usually, the QFP 1 and the chip 2 are substantially square, and the sides are parallel to each other. Therefore, as shown in FIG. 1A, by arranging the annular conductor 23 at the center of the annular conductor 22 so that the sides are parallel to each other, the irradiation range shown in FIG. 15 can be selected and irradiated.
測定対象物が円形である場合や測定対象物の一部に磁界を照射したい場合には、その形状に合わせて導体パターン28を設計すればよい。したがって、導体パターン28は目的に応じて、長方形、台形、円形、楕円形、多角形で製作される。環状導体22と環状導体23は同じ形状である必要はなく、図3Aのように異なる形状の組み合わせも許容される。図3Cは、複数の環状導体23を配置した例である。
When the object to be measured is circular or when it is desired to irradiate a magnetic field to a part of the object to be measured, the conductor pattern 28 may be designed according to the shape. Therefore, the conductor pattern 28 is manufactured in a rectangle, a trapezoid, a circle, an ellipse, or a polygon according to the purpose. The annular conductor 22 and the annular conductor 23 do not have to have the same shape, and a combination of different shapes is also acceptable as shown in FIG. 3A. FIG. 3C is an example in which a plurality of annular conductors 23 are arranged.
又、環状導体22の中心と環状導体23の中心とを一致させる必要はなく、環状導体23を環状導体22に対して非対称な位置に設置することも可能である。SiP(System in Package)などのパッケージでは、チップが非対称な位置に実装されていることも多々あり、そのような実装方式にも対応可能である。
Further, the center of the annular conductor 22 and the center of the annular conductor 23 do not have to be aligned, and the annular conductor 23 can be disposed at an asymmetric position with respect to the annular conductor 22. In packages such as SiP (System in Package), the chip is often mounted at an asymmetric position, and such a mounting method is also possible.
以上述べたループアンテナ20を使うことにより、図15C、図15Dに示す環状領域に磁界を照射することが可能となり、電磁感受性が高い部品や回路の特定に役立つ。
By using the loop antenna 20 described above, it becomes possible to irradiate a magnetic field to the annular region shown in FIG. 15C and FIG. 15D, which helps to identify components and circuits having high electromagnetic sensitivity.
チップ2、ボンディングワイヤ4、リードフレーム3、プリント配線6をそれぞれ要因A、要因B、要因C、要因Dに割り当てると、従来のアンテナ10による試験法では、必ず要因Aが含まれてしまう。即ち、ループ配線11の外形寸法を変えながら試験を行えば、要因A、要因(A+B)、要因(A+B+C)、要因(A+B+C)、要因(A+B+C+D)といった組み合わせでの電磁的なイミュニティを測定することになる。このような加算式に照射領域を選択する方法では、例えば要因Aのイミュニティに対する寄与が大きい場合、他の要因の寄与を分離することができない、各要因間の相互作用が大きい場合には要因ごとの効果が分離しにくいといったデメリットがあった。本発明では、一例を挙げると要因(B+C)、要因(C+D)、要因Cというような隣接する場所にある要因を一部排除した試験が可能となるので、要因分析が容易となり、電磁感受性が高い部品や回路の特定に役立つ。
If the chip 2, the bonding wire 4, the lead frame 3, and the printed wiring 6 are respectively assigned to the factor A, the factor B, the factor C, and the factor D, the factor A is always included in the conventional test method using the antenna 10. That is, if the test is performed while changing the outer dimensions of the loop wiring 11, it is necessary to measure the electromagnetic immunity in the combination such as factor A, factor (A + B), factor (A + B + C), factor (A + B + C), factor (A + B + C + D) become. In the method of selecting the irradiation area in such an addition formula, for example, if contribution to the immunity of factor A is large, the contribution of other factors can not be separated, and if the interaction between each factor is large There is a disadvantage that the effect of is difficult to separate. In the present invention, it is possible to conduct a test in which factors in adjacent places such as factor (B + C), factor (C + D) and factor C, for example, are partially excluded, so factor analysis is facilitated and electromagnetic sensitivity is improved. Helps to identify expensive components and circuits.
図4Aでは、内側の環状導体23を所定の面積を有する金属板からなる導体板32で置換した構造である。図4Aでは導体板32は環状導体22の中央部に配置されている。環状導体22を所定の周波数で駆動すると、環の内部に強い磁界を生じるが、導体板32が磁界が貫通できない程度に厚ければ、導体板32の中央部の磁界が減衰する。ループアンテナ20のように積極的に磁界を打ち消すような動作をするわけではないが、ループアンテナ20と同様の環状分布を得ることができる。導体板32の各辺が環状導体22の各辺を平行になるように形成すれば、図15B、Cに示す磁界分布を発生させることができる。又、導体板32の形状は、測定する状態に合わせて、台形等任意の形状を選択すればよい。又、環状導体の形状と金属板の形状とが異なるように構成してもよい。
In FIG. 4A, the inner annular conductor 23 is replaced with a conductor plate 32 made of a metal plate having a predetermined area. In FIG. 4A, the conductor plate 32 is disposed at the center of the annular conductor 22. When the annular conductor 22 is driven at a predetermined frequency, a strong magnetic field is generated inside the ring, but if the conductor plate 32 is thick enough to prevent the magnetic field from penetrating, the magnetic field at the central portion of the conductor plate 32 is attenuated. Although the loop antenna 20 does not operate to cancel the magnetic field positively, an annular distribution similar to that of the loop antenna 20 can be obtained. If each side of the conductor plate 32 is formed so as to be parallel to each side of the annular conductor 22, the magnetic field distribution shown in FIGS. 15B and 15C can be generated. The shape of the conductor plate 32 may be any shape such as a trapezoid in accordance with the measurement condition. Further, the shape of the annular conductor may be different from the shape of the metal plate.
なお、図4Aでは、同軸ケーブル26を接続するためのパッド30a、30bが、プリント配線板21の一方の面に設けられた環状導体22の外側に設置されている構成であるが、図4Bは、接続パッド31a、31bを環状導体22の内側に配置した例である。
In FIG. 4A, the pads 30a and 30b for connecting the coaxial cable 26 are disposed outside the annular conductor 22 provided on one surface of the printed wiring board 21. In this example, the connection pads 31 a and 31 b are disposed inside the annular conductor 22.
図4Cは、図4Bのプリント配線板21の他方の面に設けられた導体板32であり、導体板32は、パッド31bとビア33で接続されており、パッド31bとともに同軸ケーブル26のグランド導体に接続される。この場合も、図4Aと同様に導体板32周辺では磁界が減衰する。同軸ケーブル26を環状導体22内部に設置できるので小型化がはかれる。
FIG. 4C shows a conductor plate 32 provided on the other surface of the printed wiring board 21 of FIG. 4B. The conductor plate 32 is connected to the pad 31 b by the via 33, and the ground conductor of the coaxial cable 26 together with the pad 31 b. Connected to Also in this case, the magnetic field attenuates around the conductor plate 32 as in FIG. 4A. Since the coaxial cable 26 can be installed inside the annular conductor 22, the size can be reduced.
なお、図示していないが、導体板32を環状導体22の内側に配置すると共に、導体板32を環状導体22と同一の面に形成し、パッド31a、31bを導体板32に対向して導体板32が設けられている面と異なる面に設けるように構成してもよい。
Although not shown, the conductor plate 32 is disposed on the inner side of the annular conductor 22, and the conductor plate 32 is formed on the same surface as the annular conductor 22, and the pads 31a and 31b are opposed to the conductor plate 32 to be a conductor. It may be configured to be provided on a surface different from the surface on which the plate 32 is provided.
図5Aは、環状導体22の形状を多角形とし、図16Aの斜線で示される領域のみに磁界を印加する形状としてある。通常ループアンテナは方形、円環状であるが、図5Aのように、QFPのリードフレームの形状に合わせれば、試験したいリードフレームのみに磁界を照射することができる。更に、図5Bのように、内部に環状導体を形成すれば、図16Bのように、試験したくないリードブレーム周辺での磁界強度を減衰させることができる。
In FIG. 5A, the shape of the annular conductor 22 is polygonal, and a magnetic field is applied only to the hatched area in FIG. 16A. Usually, the loop antenna is rectangular or annular, but as shown in FIG. 5A, the magnetic field can be irradiated only to the lead frame to be tested if the shape of the lead frame of the QFP is matched. Furthermore, as shown in FIG. 5B, if an annular conductor is formed inside, it is possible to attenuate the magnetic field strength around the lead frame that you do not want to test, as shown in FIG. 16B.
図6Aでは、QFPの辺と平行に接続配線24、25が配置されている場合の、本発明の一実施例である。このように接続配線25を形成すると接続配線25周辺で磁界が本来必要としない分布を形成し、磁界強度が低下し、一部のリードフレームには十分な強度の磁界が照射されない可能性がある。一方、図1Aまたは図6Bでは、接続配線25は、長方形に形成された環状導体22の角部と接続され、環状配線の各辺と45度の角度をなすように引き出されている。一方、接続配線25に隣接して接続配線24が配置されており、接続配線24、25のなす角度は0度となっている。測定対象物をQFPとすると、リードフレームは角部には配置されないことが多い。そのため、図1A、図6Cに示した通り、QFP内部のリードフレームはQFPの隣接する辺に対して延長されているが、そのため45度方向は間隔が広くなる。このリードフレームが存在しない対角方向に接続配線25を配置すれば、試験に必要な領域に、一様な磁界を照射することができる。接続配線25は、接続配線24と直線状に配置される必要はなく、45度の角度をなしてもよい。なお、図6Bでは、接続配線24と接続配線25とは部分的に共有される構造となっている。
FIG. 6A shows an embodiment of the present invention in which the connection wirings 24 and 25 are disposed in parallel with the side of the QFP. When the connection wiring 25 is formed in this manner, a distribution which does not originally require a magnetic field is formed around the connection wiring 25, the magnetic field strength is lowered, and a part of the lead frames may not be irradiated with the magnetic field of sufficient strength. . On the other hand, in FIG. 1A or FIG. 6B, the connection wiring 25 is connected to the corner of the annular conductor 22 formed in a rectangular shape, and drawn out so as to form an angle of 45 degrees with each side of the annular wiring. On the other hand, the connection wiring 24 is disposed adjacent to the connection wiring 25 and the angle between the connection wirings 24 and 25 is 0 degree. If the measurement object is QFP, the lead frame is often not placed at the corners. Therefore, as shown in FIG. 1A and FIG. 6C, the lead frame inside the QFP is extended with respect to the adjacent side of the QFP, so the distance in the 45 degree direction becomes wider. By arranging the connection wiring 25 in a diagonal direction in which the lead frame does not exist, a uniform magnetic field can be irradiated to a region required for the test. The connection wiring 25 does not have to be arranged linearly with the connection wiring 24 and may form an angle of 45 degrees. In FIG. 6B, the connection wiring 24 and the connection wiring 25 are partially shared.
又、環状導体が多角形である場合には、多角形の二つの辺が交差する角部に接続配線25を設けることが望ましい。
When the annular conductor is a polygon, it is preferable to provide the connection wiring 25 at the corner where the two sides of the polygon intersect.
図7は、環状導体22と環状導体23とが、異なる層に形成されている。環状導体23は環状導体22の内側に配置され、ビア34で環状導体22と環状導体23とは直列に接続されている。環状導体22と環状導体23のループ面に垂直な方向の距離を変えることはプリント基板21の厚みを制御することにより可能で、QFP1上での強度分布を制御することが可能となる。
In FIG. 7, an annular conductor 22 and an annular conductor 23 are formed in different layers. The annular conductor 23 is disposed inside the annular conductor 22, and the annular conductor 22 and the annular conductor 23 are connected in series at the vias 34. It is possible to change the distance in the direction perpendicular to the loop surface of the annular conductor 22 and the annular conductor 23 by controlling the thickness of the printed board 21 and to control the intensity distribution on the QFP 1.
これまで述べてきた通り、環状導体の全長に比べて十分長い波長の周波数帯で、本発明のアンテナを使用することにより、特徴的な磁界分布を生成することができる。図1Aに例示した2つの環状導体が直列に接続されたループアンテナ20を使用すればただちに環状の磁界分布を発生させることができる。
As described above, a characteristic magnetic field distribution can be generated by using the antenna of the present invention in a frequency band of a wavelength sufficiently longer than the total length of the annular conductor. By using the loop antenna 20 in which two annular conductors illustrated in FIG. 1A are connected in series, it is possible to immediately generate an annular magnetic field distribution.
また、図8に示すとおり、2個の環状導体を独立させて動作させれば、磁界の強度を局所的に調整することができ、ループアンテナ20と同等の効果が得られる。図8の場合は、環状導体61、62を独立に制御可能なので、供給する信号の位相を反転させたり、振幅を変えることができ、発生する磁界分布を効率的に制御することができる。従って、図1Aの一体型に比べて精密な制御が可能となる。
Further, as shown in FIG. 8, if the two annular conductors are operated independently, the strength of the magnetic field can be locally adjusted, and the same effect as the loop antenna 20 can be obtained. In the case of FIG. 8, since the annular conductors 61 and 62 can be controlled independently, the phase of the supplied signal can be reversed or the amplitude can be changed, and the generated magnetic field distribution can be efficiently controlled. Therefore, precise control is possible as compared with the integrated type of FIG. 1A.
これら磁界分布発生法を利用すれば、すでに述べたとおり、LSIパッケージを構成するQFP1やチップ2、およびプリント基板上の配線の試験が可能となり、LSIの誤動作の状態を解析するためのイミュニティ試験を効率化することができる。
By using these magnetic field distribution generation methods, as described above, it becomes possible to test the QFP 1 and chip 2 that constitute the LSI package, and the wiring on the printed circuit board, and the immunity test to analyze the state of malfunction of the LSI It can be efficient.
次に、本発明の他の実施例について説明する。
Next, another embodiment of the present invention will be described.
上述した本発明のループアンテナを、プリント配線板上やLSIパッケージに内蔵される送受信アンテナに応用することもできる。
The loop antenna of the present invention described above can also be applied to a transmitting / receiving antenna incorporated on a printed wiring board or in an LSI package.
図9A、Bでは、SiP(System in Package)上に、スぺーサー60を介して、ループアンテナが形成されているプリント配線板21が実装されている装置を示している。
FIGS. 9A and 9B show a device in which a printed wiring board 21 in which a loop antenna is formed is mounted on a system in package (SiP) via a spacer 60. FIG.
プリント基板で平面状のアンテナを実装するのは、薄型化、小型化を実現するためである。このため、SiPとアンテナ導体間の距離は非常に近く、例えば、1mm以下である。インタポーザ50上には2個のチップ51、52がBGA実装されている。チップ51、52は、図9Cに示す通り、インタポーザ上の配線58、59によって相互に接続されている。これはインタポーザ50上で配線の組み換えを行うためであり、接続する配線の数が増えると配線58は第1層、配線59は第2層というように多層となる。
The reason for mounting a planar antenna on a printed circuit board is to realize thinning and downsizing. For this reason, the distance between the SiP and the antenna conductor is very close, for example, 1 mm or less. Two chips 51 and 52 are mounted on the interposer 50 by BGA. The chips 51, 52 are connected to each other by wires 58, 59 on the interposer, as shown in FIG. 9C. This is to recombine the wiring on the interposer 50. When the number of connected wiring increases, the wiring 58 becomes a first layer, the wiring 59 becomes a second layer, and so on.
このようなSiPは、ICカードや無線タグなどの非接触で情報の読み書きを行う無線媒体などで使用される。又、携帯電話などの情報端末機器内部に搭載されることもある。この実施例のループアンテナ20は、無線で外部の機器と情報の送受信を行う際に使用される。従来のアンテナの代表例としては、図12で例示したループアンテナ10があげられる。このようなループアンテナ10はすでに述べたように、図14Aに示したようなほぼ均一な磁界分布を生じる。
Such an SiP is used in a wireless medium for reading and writing information without contact, such as an IC card or a wireless tag. Moreover, it may be mounted in the inside of information terminal devices, such as a mobile telephone. The loop antenna 20 of this embodiment is used when transmitting and receiving information with an external device wirelessly. As a typical example of the conventional antenna, the loop antenna 10 illustrated in FIG. 12 is given. As described above, such a loop antenna 10 produces a substantially uniform magnetic field distribution as shown in FIG. 14A.
本発明のループアンテナ20は、チップ51により駆動され磁界を発生し、外部のLSIと極短距離での通信を行う。このとき配線58、59のようなインタポーザ上に形成される配線は、オンチップの配線よりも長いため、チップ51、52よりも低い周波数帯で外部電磁界の影響を受けやすい。このため、従来型のアンテナ10をループアンテナ20の代わりに用いると配線58、59で大きなノイズ電圧が生じ、伝導性ノイズとなってチップ51、52内部の回路に侵入し、回路が誤動作する。すなわち、チップ51、52単体よりも外部から到来する電磁界に対する感受性が強い配線58、59によって結局ノイズの侵入を許してしまうという結果になってしまう。
The loop antenna 20 of the present invention is driven by the chip 51 to generate a magnetic field, and performs communication with an external LSI over an extremely short distance. At this time, the wires formed on the interposer such as the wires 58 and 59 are longer than the on-chip wires, and thus are susceptible to the influence of the external electromagnetic field in a frequency band lower than the chips 51 and 52. Therefore, when the conventional antenna 10 is used in place of the loop antenna 20, a large noise voltage is generated in the wires 58 and 59, which becomes conductive noise and intrudes into the circuits in the chips 51 and 52, causing the circuit to malfunction. That is, the wires 58 and 59 which are more sensitive to the electromagnetic field coming from the outside than the chips 51 and 52 alone will eventually allow the entry of noise.
本発明のループアンテナ20は、既に述べた通り、ループアンテナ20近傍では環状の磁界分布を生じ、中央部分での磁界強度が弱い。すなわち、図9Aの中央部の電磁感受性が強い配線が存在する領域では、磁界強度が弱くなるため、誤動作が発生するリスクを低減することが可能となる。
As described above, the loop antenna 20 of the present invention generates an annular magnetic field distribution near the loop antenna 20, and the magnetic field strength at the central portion is weak. That is, since the magnetic field strength is weak in the region where the wiring with high electromagnetic sensitivity in the central portion of FIG. 9A is present, it is possible to reduce the risk of occurrence of a malfunction.
ICカード等では、アンテナ20に対向するように受信アンテナが設置され、極短距離での通信が行われる。外形寸法がほぼ等しいループアンテナ10を受信アンテナとした場合、アンテナ10とループアンテナ20を同じ電力で励振するとループアンテナ20の方が受信アンテナの出力が低下することになる。これはループアンテナ20の中央部の磁界強度が減衰するためである。受信アンテナのループ内の磁界の総量が等しければ送受信の際の利得は低下しない。受信アンテナの外形寸法を送信側と同じとしてループ内の磁界の積算値を比較すると、ループアンテナ20の送信電力を1.8倍にすればアンテナ10と同等の磁界が発生し、受信アンテナの出力が同等となる。図10は、このときの磁界分布を比較したものである。この場合でも、ループアンテナ20中心付近の磁界強度は、ループアンテナ10の中心付近の磁界強度よりも約30%、デシベル表記では約10dB小さい値となる。したがって、従来型と同等の利得を持たせながら、かつ中心付近の部品が保護される効果が期待できる。なお、図10は、アンテナ10とループアンテナ20が生じる磁界分布を計測した結果で、ループアンテナ20の最大値で正規化している。
In an IC card or the like, a receiving antenna is installed to face the antenna 20, and communication is performed at an extremely short distance. When the loop antenna 10 having substantially the same outer dimensions is used as the receiving antenna, when the antenna 10 and the loop antenna 20 are excited with the same power, the output of the receiving antenna of the loop antenna 20 is lowered. This is because the magnetic field strength at the central portion of the loop antenna 20 is attenuated. If the total amount of magnetic field in the loop of the receiving antenna is equal, the gain in transmission and reception does not decrease. Comparing the integrated value of the magnetic field in the loop with the external dimensions of the receiving antenna being the same as on the transmitting side, if the transmission power of the loop antenna 20 is multiplied by 1.8, a magnetic field equivalent to the antenna 10 is generated Are equal. FIG. 10 compares the magnetic field distribution at this time. Even in this case, the magnetic field strength near the center of the loop antenna 20 is about 30% smaller than the magnetic field strength near the center of the loop antenna 10 and about 10 dB smaller in decibel notation. Therefore, the effect of protecting the parts near the center can be expected while providing the same gain as the conventional type. FIG. 10 is a result of measuring the magnetic field distribution generated by the antenna 10 and the loop antenna 20, and is normalized by the maximum value of the loop antenna 20.
この出願は、2008年2月12日に出願された日本出願特願2008-30739を基礎とする優先権を主張し、その開示の全てをここに取り込む。
This application claims priority based on Japanese Patent Application No. 2008-30739 filed on February 12, 2008, the entire disclosure of which is incorporated herein.
本発明は、ループアンテナ、極短距離通信機能を有する電子機器、その他関連する各種機器に適用可能なものである。
The present invention is applicable to a loop antenna, an electronic device having an extremely short distance communication function, and various other related devices.
Claims (19)
- 第1の環状導体と、
前記第1の環状導体よりも小さく、前記第1の環状導体の環の内側に位置する一つ以上の第2の環状導体を有し、
前記第2の環状導体が前記第1の環状導体と直列に接続され、
前記第1の環状導体と第2の環状導体とが同一平面上に配置されたことを特徴とするループアンテナ。 A first annular conductor,
One or more second annular conductors smaller than the first annular conductor and located inside the ring of the first annular conductor,
Said second annular conductor is connected in series with said first annular conductor;
A loop antenna characterized in that the first annular conductor and the second annular conductor are disposed on the same plane. - 基板上に形成した第1の環状導体と、
前記第1の環状導体よりも小さく、前記第1の環状導体の環の内側に位置する一つ以上の第2の環状導体を有し、
前記第2の環状導体が前記第1の環状導体と直列に接続され、
前記第1の環状導体と第2の環状導体とが、前記基板の異なる面に配置されたことを特徴とするループアンテナ。 A first annular conductor formed on the substrate;
One or more second annular conductors smaller than the first annular conductor and located inside the ring of the first annular conductor,
Said second annular conductor is connected in series with said first annular conductor;
A loop antenna, wherein the first annular conductor and the second annular conductor are disposed on different sides of the substrate. - 前記第1の環状導体と第2の環状導体とで囲まれる部分では、前記第1の環状導体が発生する磁界の向きと第2の環状導体が発生する磁界の向きとが逆向きとなることを特徴とする請求項1又は2記載のループアンテナ。 In the portion surrounded by the first annular conductor and the second annular conductor, the direction of the magnetic field generated by the first annular conductor and the direction of the magnetic field generated by the second annular conductor are opposite to each other. The loop antenna according to claim 1 or 2, characterized in that
- 前記第1の環状導体と第2の環状導体とが、長方形であることを特徴とする請求項1~3の何れかに記載のループアンテナ。 The loop antenna according to any one of claims 1 to 3, wherein the first annular conductor and the second annular conductor are rectangular.
- 前記第1の環状導体と第2の環状導体とを接続するための導体が、前記長方形の角部に配置されたことを特徴とする請求項4記載のループアンテナ。 The loop antenna according to claim 4, wherein a conductor for connecting the first annular conductor and the second annular conductor is disposed at a corner of the rectangle.
- 前記第1の環状導体の各辺と第2の環状導体の各辺とが平行であることを特徴とする請求項1~5の何れかに記載のループアンテナ。 The loop antenna according to any one of claims 1 to 5, wherein each side of the first annular conductor and each side of the second annular conductor are parallel.
- 前記第1の環状導体の形状と第2の環状導体の形状とが異なることを特徴とする請求項1~3の何れかに記載のループアンテナ。 The loop antenna according to any one of claims 1 to 3, wherein the shape of the first annular conductor and the shape of the second annular conductor are different.
- 前記第1の環状導体又は第2の環状導体の少なくとも一つを円形又は台形状を含む多角形状としたことを特徴とする請求項1~3の何れかに記載のループアンテナ。 The loop antenna according to any one of claims 1 to 3, wherein at least one of the first annular conductor and the second annular conductor has a circular shape or a polygonal shape including a trapezoidal shape.
- 前記第1の環状導体と第2の環状導体とを接続するための導体が、前記多角形状の角部に配置されたことを特徴とする請求項8記載のループアンテナ。 The loop antenna according to claim 8, wherein a conductor for connecting the first annular conductor and the second annular conductor is disposed at a corner of the polygonal shape.
- 環状導体と、
前記環状導体の環の内側に配置される金属板体とからなり、
前記環状導体と金属板体とが同一平面上に配置されていることを特徴とするループアンテナ。 An annular conductor,
And a metal plate disposed inside the ring of the annular conductor,
A loop antenna characterized in that the annular conductor and the metal plate are disposed on the same plane. - 基板上に形成した環状導体と、
前記環状導体の環の内側に配置される金属板体とからなり、
前記環状導体と金属板体とが、前記基板の異なる面に配置されたことを特徴とするループアンテナ。 An annular conductor formed on a substrate,
And a metal plate disposed inside the ring of the annular conductor,
The loop antenna, wherein the annular conductor and the metal plate are disposed on different surfaces of the substrate. - 基板と、
前記基板の第1の面に設けた環状導体と、
前記基板の第1の面で前記環状導体の環の内側に設けられ、同軸ケーブルの内導体又は外導体を接続するための金属パッドと、
前記基板の第1の面と異なる第2の面に設けられ、前記金属パッドと複数のビアで接続される金属板体とからなり、
前記同軸ケーブルを前記基板面に垂直に接続することを特徴とするループアンテナ。 A substrate,
An annular conductor provided on the first surface of the substrate;
A metal pad provided inside the ring of the annular conductor on the first surface of the substrate and connecting the inner conductor or the outer conductor of the coaxial cable;
It comprises a metal plate provided on a second surface different from the first surface of the substrate and connected with the metal pad and a plurality of vias,
A loop antenna characterized by connecting the coaxial cable perpendicularly to the substrate surface. - 基板と、
前記基板の第1の面に設けた環状導体と、
前記基板の第1の面と異なる第2の面で前記環状導体の環の内側に設けられ、同軸ケーブルの内導体又は外導体を接続するための金属パッドと、
前記基板の第1の面に設けられ、前記金属パッドと複数のビアで接続される金属板体とからなり、
前記同軸ケーブルを前記基板面に垂直に接続することを特徴とするループアンテナ。 A substrate,
An annular conductor provided on the first surface of the substrate;
A metal pad provided on the inside of the ring of the annular conductor at a second surface different from the first surface of the substrate and connecting the inner conductor or the outer conductor of the coaxial cable;
It comprises a metal plate provided on the first surface of the substrate and connected to the metal pad by a plurality of vias,
A loop antenna characterized by connecting the coaxial cable perpendicularly to the substrate surface. - 前記環状導体と金属板体とが長方形であり、前記環状導体の各辺と金属板体の各辺が平行であることを特徴とする請求項11~13の何れかに記載のループアンテナ。 The loop antenna according to any one of claims 11 to 13, wherein the annular conductor and the metal plate are rectangular, and each side of the annular conductor is parallel to each side of the metal plate.
- 前記環状導体の形状と金属板体の形状とが異なることを特徴とする請求項11~13の何れかに記載のループアンテナ。 The loop antenna according to any one of claims 11 to 13, wherein the shape of the annular conductor is different from the shape of the metal plate.
- 前記環状導体が、円形又は台形状を含む多角形状であることを特徴とする請求項11~13の何れかに記載のループアンテナ。 The loop antenna according to any one of claims 11 to 13, wherein the annular conductor has a circular shape or a polygonal shape including a trapezoidal shape.
- 第1の環状導体と、前記第1の環状導体よりも小さく、前記第1の環状導体の環の内側に位置する一つ以上の第2の環状導体を有し、前記第2の環状導体が前記第1の環状導体と直列に接続されているループアンテナを、前記第1の環状導体と第2の環状導体との全長に比べて十分に長い波長を有する周波数で駆動し、環状の磁界分布を発生させることを特徴とする磁界発生法。 A first annular conductor and one or more second annular conductors smaller than the first annular conductor and located inside the annulus of the first annular conductor, the second annular conductor comprising A loop antenna connected in series to the first annular conductor is driven at a frequency having a wavelength sufficiently longer than the total length of the first annular conductor and the second annular conductor, and an annular magnetic field distribution A magnetic field generating method characterized by generating
- 請求項1~16のループアンテナを使用してループ面の近傍で環状の磁界分布を発生させ、電子機器の誤動作を調べることを特徴とするイミュニティ試験法。 An immunity test method characterized in that an annular magnetic field distribution is generated in the vicinity of a loop surface using the loop antenna according to any one of claims 1 to 16 to investigate malfunction of an electronic device.
- 請求項1~16のループアンテナを使用する極短距離通信機能を有する電子機器において、電磁感受性の強い回路又は部品が配置される領域の前記ループアンテナの磁界強度を他の領域の磁界強度より弱くするように実装することを特徴とするループアンテナの実装法。 The electronic device having an ultra short distance communication function using the loop antenna according to any one of claims 1 to 16, wherein the magnetic field strength of the loop antenna in the area where the circuit or component having high electromagnetic sensitivity is arranged is weaker than the magnetic field strength in other areas. A mounting method of a loop antenna characterized by mounting as follows.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009553350A JP5504894B2 (en) | 2008-02-12 | 2008-12-17 | Loop antenna and immunity test method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008-030739 | 2008-02-12 | ||
JP2008030739 | 2008-02-12 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009101750A1 true WO2009101750A1 (en) | 2009-08-20 |
Family
ID=40956787
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2008/072937 WO2009101750A1 (en) | 2008-02-12 | 2008-12-17 | Loop antenna and immunity test method |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5504894B2 (en) |
WO (1) | WO2009101750A1 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011182583A (en) * | 2010-03-02 | 2011-09-15 | Denso Corp | Voltage control circuit and voltage control system |
JP2013511925A (en) * | 2009-11-23 | 2013-04-04 | ハリス コーポレイション | Planar communication antenna having an orbital circular structure and isotropic radiation and associated method |
JP6006831B1 (en) * | 2015-05-18 | 2016-10-12 | 日本電信電話株式会社 | Uniform electric field range determination method |
WO2017030001A1 (en) * | 2015-08-17 | 2017-02-23 | 日本電信電話株式会社 | Loop antenna array and loop antenna array group |
WO2017158869A1 (en) * | 2016-03-15 | 2017-09-21 | 日本電信電話株式会社 | Loop antenna array |
WO2017163453A1 (en) * | 2016-03-22 | 2017-09-28 | 日本電信電話株式会社 | Antenna control apparatus, antennal control program, and antenna control system |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11313017A (en) * | 1998-04-24 | 1999-11-09 | Nippon Steel Corp | Antenna device for reader-writer |
JP2003085519A (en) * | 2001-09-11 | 2003-03-20 | Toshiba Corp | Radio card |
JP2003098211A (en) * | 2001-09-27 | 2003-04-03 | Denki Tsushin Univ | Immunity testing method, immunity testing device and rotary magnetic field generating device |
JP2003532318A (en) * | 2000-04-21 | 2003-10-28 | アエスカ エス.ア. | Antenna for contactless transmission / reception reading system |
JP2004215061A (en) * | 2003-01-07 | 2004-07-29 | Ngk Spark Plug Co Ltd | Folded loop antenna |
JP2004336198A (en) * | 2003-05-01 | 2004-11-25 | Toshiba Corp | Antenna assembly |
JP2005027296A (en) * | 2003-07-02 | 2005-01-27 | Sensormatic Electronics Corp | Phase compensated electromagnetic-field-canceling nested loop antenna |
JP2007523563A (en) * | 2004-02-20 | 2007-08-16 | スリーエム イノベイティブ プロパティズ カンパニー | Magnetic field shaping shielding for radio frequency identification (RFID) systems |
-
2008
- 2008-12-17 JP JP2009553350A patent/JP5504894B2/en not_active Expired - Fee Related
- 2008-12-17 WO PCT/JP2008/072937 patent/WO2009101750A1/en active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11313017A (en) * | 1998-04-24 | 1999-11-09 | Nippon Steel Corp | Antenna device for reader-writer |
JP2003532318A (en) * | 2000-04-21 | 2003-10-28 | アエスカ エス.ア. | Antenna for contactless transmission / reception reading system |
JP2003085519A (en) * | 2001-09-11 | 2003-03-20 | Toshiba Corp | Radio card |
JP2003098211A (en) * | 2001-09-27 | 2003-04-03 | Denki Tsushin Univ | Immunity testing method, immunity testing device and rotary magnetic field generating device |
JP2004215061A (en) * | 2003-01-07 | 2004-07-29 | Ngk Spark Plug Co Ltd | Folded loop antenna |
JP2004336198A (en) * | 2003-05-01 | 2004-11-25 | Toshiba Corp | Antenna assembly |
JP2005027296A (en) * | 2003-07-02 | 2005-01-27 | Sensormatic Electronics Corp | Phase compensated electromagnetic-field-canceling nested loop antenna |
JP2007523563A (en) * | 2004-02-20 | 2007-08-16 | スリーエム イノベイティブ プロパティズ カンパニー | Magnetic field shaping shielding for radio frequency identification (RFID) systems |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013511925A (en) * | 2009-11-23 | 2013-04-04 | ハリス コーポレイション | Planar communication antenna having an orbital circular structure and isotropic radiation and associated method |
JP2011182583A (en) * | 2010-03-02 | 2011-09-15 | Denso Corp | Voltage control circuit and voltage control system |
JP6006831B1 (en) * | 2015-05-18 | 2016-10-12 | 日本電信電話株式会社 | Uniform electric field range determination method |
WO2017030001A1 (en) * | 2015-08-17 | 2017-02-23 | 日本電信電話株式会社 | Loop antenna array and loop antenna array group |
JP2017041665A (en) * | 2015-08-17 | 2017-02-23 | 日本電信電話株式会社 | Loop antenna array group |
CN107925164A (en) * | 2015-08-17 | 2018-04-17 | 日本电信电话株式会社 | Perimeter antenna array and perimeter antenna array group |
US10777909B2 (en) | 2015-08-17 | 2020-09-15 | Nippon Telegrah And Telephone Corporation | Loop antenna array and loop antenna array group |
WO2017158869A1 (en) * | 2016-03-15 | 2017-09-21 | 日本電信電話株式会社 | Loop antenna array |
US10700432B2 (en) | 2016-03-15 | 2020-06-30 | Nippon Telegraph And Telephone Corporation | Loop antenna array |
WO2017163453A1 (en) * | 2016-03-22 | 2017-09-28 | 日本電信電話株式会社 | Antenna control apparatus, antennal control program, and antenna control system |
US10177823B2 (en) | 2016-03-22 | 2019-01-08 | Nippon Telegraph And Telephone Corporation | Antenna control apparatus, antenna control program, and antenna control system |
Also Published As
Publication number | Publication date |
---|---|
JPWO2009101750A1 (en) | 2011-06-09 |
JP5504894B2 (en) | 2014-05-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2009101750A1 (en) | Loop antenna and immunity test method | |
US10677816B2 (en) | Electromagnetic shield for testing integrated circuits | |
Sudo et al. | Electromagnetic interference (EMI) of system-on-package (SOP) | |
JP5017827B2 (en) | Electromagnetic wave source search method and current probe used therefor | |
WO2009113373A1 (en) | Semiconductor device | |
US6624536B1 (en) | Electromagnetic noise reducing device, noise reducing electronic component and electronic appliance manufacturing method | |
JP5442950B2 (en) | Semiconductor device, manufacturing method thereof, signal transmission / reception method using the semiconductor device, and tester device | |
KR20130087906A (en) | Apparatus of testing emi in image sensor ic device | |
US6803655B2 (en) | Semiconductor integrated circuit device with EMI prevention structure | |
JP2007178406A (en) | Probe card | |
US10375819B2 (en) | Circuit board device | |
US8704531B2 (en) | Loop element and noise analyzer | |
WO2021229638A1 (en) | Electromagnetic field sensor | |
JP5879679B2 (en) | Circuit board and arrangement method of noise countermeasure component | |
JP3885830B2 (en) | Printed circuit board design support apparatus, design support method, and recording medium recording program used in design support apparatus | |
US11887937B2 (en) | Reduction in susceptibility of analog integrated circuits and sensors to radio frequency interference | |
JP4312094B2 (en) | Composite probe device for electromagnetic field evaluation | |
CN107302827A (en) | The PCB encapsulating structures and its radio frequency test method of a kind of compatible antenna pedestal | |
JP2005217120A (en) | Electromagnetic wave shield and loop antenna device using the same | |
JP2005340733A (en) | Noise radiation suppressing memory module | |
CN115112926A (en) | Microphone sensor chip testing board | |
CN118393307A (en) | MOSFET electromagnetic radiation immunity test method | |
JP5705955B2 (en) | Semiconductor device | |
Foroughian et al. | Radio Frequency Interference Due to Power Plane Radiation and Mitigation Using RFI and PI Co-Optimized Design in Mobile Platforms | |
CN117269708A (en) | MOSFET near-field electromagnetic radiation testing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 08872367 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009553350 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 08872367 Country of ref document: EP Kind code of ref document: A1 |