WO2009101372A1 - Element structural absorbeur d ' energie en materiau composite et fuselage d ' aeronef muni d ' un tel absorbeur - Google Patents

Element structural absorbeur d ' energie en materiau composite et fuselage d ' aeronef muni d ' un tel absorbeur Download PDF

Info

Publication number
WO2009101372A1
WO2009101372A1 PCT/FR2009/050235 FR2009050235W WO2009101372A1 WO 2009101372 A1 WO2009101372 A1 WO 2009101372A1 FR 2009050235 W FR2009050235 W FR 2009050235W WO 2009101372 A1 WO2009101372 A1 WO 2009101372A1
Authority
WO
WIPO (PCT)
Prior art keywords
gusset
compression beam
longitudinal axis
aircraft fuselage
compression
Prior art date
Application number
PCT/FR2009/050235
Other languages
English (en)
Inventor
Jérôme Milliere
David Andissac
Cécile RAULOT
Olivier Vincent
Original Assignee
Airbus France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Airbus France filed Critical Airbus France
Priority to EP09710987.0A priority Critical patent/EP2257465B1/fr
Priority to US12/866,935 priority patent/US8814092B2/en
Priority to CN200980109642.2A priority patent/CN101977809B/zh
Priority to BRPI0907873-8A priority patent/BRPI0907873A2/pt
Publication of WO2009101372A1 publication Critical patent/WO2009101372A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C1/00Fuselages; Constructional features common to fuselages, wings, stabilising surfaces or the like
    • B64C1/06Frames; Stringers; Longerons ; Fuselage sections
    • B64C1/061Frames
    • B64C1/062Frames specially adapted to absorb crash loads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C1/00Fuselages; Constructional features common to fuselages, wings, stabilising surfaces or the like
    • B64C1/06Frames; Stringers; Longerons ; Fuselage sections
    • B64C1/064Stringers; Longerons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F7/00Vibration-dampers; Shock-absorbers
    • F16F7/12Vibration-dampers; Shock-absorbers using plastic deformation of members
    • F16F7/127Vibration-dampers; Shock-absorbers using plastic deformation of members by a blade element cutting or tearing into a quantity of material; Pultrusion of a filling material

Definitions

  • the present invention relates to a primary structure of aircraft. More particularly, the invention relates to an aircraft primary structure designed to absorb the energy dissipated during a sudden compressive force, in particular during an impact resulting from an accident such as a landing or a ditching that solicits the fuselage along its vertical axis (vertical component crash).
  • the fuselage of an aircraft mainly comprises a structure consisting of a lining reinforced internally by reinforcement frames and rails.
  • the reinforcing frames are positioned in sections of the fuselage substantially perpendicular to a longitudinal axis of the fuselage and the rails extend substantially along the longitudinal axis.
  • the reinforcing frames support sleepers, generally straight and horizontal, in an aircraft mark, on which are fixed floors.
  • the lower fuselage is, in general, the first area of the aircraft subjected to impacts and thus participates in the absorption of impact energy in an essential manner.
  • the lower part of the fuselage is designed to respond mainly to the demands encountered during the normal commercial operation of the aircraft.
  • a fuselage structure fuselage frame, skins, slats (7), made of composite material, therefore behaves very differently from a fuselage structure of metallic material, with respect to the absorption of energy and at the end stress, before or after a break, the composite material structure will restore a large part of the energy absorbed during the elastic deformation.
  • a known solution is to insert between the floor and the lower frames of the structural elements whose constitution allows to start the ruin under a predefined stress intensity greater than the intensity of nominal loads in service.
  • these structural elements consist of composite materials with fibrous reinforcement, the ruin occurs by decohesion or delamination of the material.
  • These potentially energy-absorbing elements are linked to floor sleepers and frames by rivet type fasteners.
  • the structural elements act as stiffeners.
  • said structural elements are triggered and collapse. This phenomenon being irreversible, it dissipates energy. It is made, for the rest, to substantially constant effort except during the initiation and end of the race when the floor eventually hit the bottom of the fuselage.
  • a primary structure of an aircraft fuselage comprises: a coating, comprising stabilizers for smoothing, at least one reinforcing frame, at least one cross member fixed on said at least one reinforcing frame, - at least one structural element of elongate form, said energy-absorbing structural element, comprising a compression beam, preferably of composite material, of longitudinal axis Z, oriented substantially in a direction of compressive forces to be absorbed during an impact, said beam of compression being attached at a first end to the cross member, and at a second end to the reinforcing frame.
  • the compression beam of the at least one energy-absorbing structural element is fastened to at least one of its ends by means of a gusset, said gusset comprising:
  • a cutting cutting element of the compression beam in at least two lamellae, in the direction of the longitudinal axis Z,
  • the compression beam comprises a core and two flanges having, over a certain length of its end located on the side of the gusset, a cross section, in a plane normal to the longitudinal axis Z, U-shaped, and is fixed to the gusset by fasteners for the recovery of limit forces, able to take up the forces to which the energy absorbing structural element is subjected outside the case of impact.
  • said gusset comprises a cutting element comprising a blade oriented towards the core of the compression beam and two clearance grooves located on either side of the blade.
  • said gusset comprises a cutting element having two blades oriented towards the core of the beam, and three clearance grooves, two neighboring clearance grooves being separated from each other by a blade.
  • the compression beam is formed by a stack of folds, each fold being made by continuous fibers held by a resin.
  • Said beam comprises folds oriented substantially along the longitudinal axis Z, mainly characterizing the longitudinal resistance of the compression beam and folds inclined with respect to the direction of the longitudinal axis Z, which mainly determines the cutting resistance of the compression beam by the cutting element during a shock.
  • said compression beam comprises, at its first end, a priming notch facing each blade, when the compression beam is fixed to the gusset.
  • the gusset is made of a metallic material, at least in part.
  • the invention also relates to a structural energy absorbing element, intended to take up compressive forces between two structural parts of an aircraft fuselage, comprising a compression beam of composite material, of longitudinal axis Z, oriented substantially in a direction of compressive forces to be absorbed upon impact, characterized in that said at least one energy absorbing structural member has at least one gusset attached to at least one end of the compression beam and for transmitting compression forces to the structural part to which said gusset is attached, said gusset comprising: - means for guiding the beam substantially along its longitudinal axis Z,
  • a cutting cutting element of the compression beam in at least two lamellae, in the direction of the longitudinal axis Z,
  • a gusset is attached to each end of the compression beam.
  • FIG. 1 a perspective view, schematically showing a lower portion of a section of a primary structure of an aircraft fuselage comprising four structural energy-absorbing elements under a floor made according to the invention
  • FIG. 2 a front view of two structural energy-absorbing elements of a fuselage according to the invention
  • FIG. 3 a perspective view of a structural energy-absorbing element according to an embodiment, and comprising a beam of compression
  • FIG. 4 a perspective view of a structural energy absorbing element, according to one embodiment, comprising a compression beam and a part for holding said beam
  • FIG. 5 a front view of an absorber structural element of energy, according to an improved embodiment
  • FIG. 6 an illustration of the evacuation of the slats of the compression beam according to one embodiment
  • Figure 7a, 7b illustrations of the evacuation of the slats of the compression beam according to the improved embodiment.
  • a primary structure of an aircraft fuselage comprises, as illustrated in FIG. 1, a substantially cylindrical framework 1 on which is fixed a coating 11 reinforced by heddles 12 extending substantially along a longitudinal axis of the primary structure.
  • fuselage of the aircraft fuselage of the aircraft.
  • the frame 1 of the primary structure of the aircraft fuselage is formed mainly of reinforcing frames 13.
  • Said reinforcing frames are positioned along sections of the fuselage substantially perpendicular to the longitudinal axis of the fuselage and are regularly distributed over the entire length aircraft fuselage. Each of them has a shape that corresponds substantially to the local section of the fuselage, usually circular, at least locally, as in the example of Figure 1.
  • each reinforcing frame 13 is fixed a cross-member 14.
  • the sleepers 14 are advantageously straight and horizontal, in an aircraft mark, so as to be able to support a floor (not shown), such as the floor of a cargo hold or compartment. a passenger cabin.
  • the frame 1 comprises, in a lower portion 15 of the primary structure of the aircraft fuselage located between the cross members 14 and the reinforcing frames 13, at least one structural element 2 energy absorber.
  • at least one structural element 2 energy absorber In the embodiment illustrated in Figure 2, two structural elements 2 energy absorbers are shown.
  • Each structural element 2 energy absorber comprises: a compression beam 21,
  • the compression beam 21 is connected, on the one hand at a first end 213 to a cross member 14 and secondly in a second end 214, opposite to said first end, to a reinforcing frame 13.
  • the compression beam is fixed at at least one of its two ends 213, 214 by means of a gusset 22.
  • the compression beams 21 have a longitudinal axis Z oriented substantially in the direction of the compressive forces to be absorbed during an impact, for example substantially vertical under a floor, and the element or elements
  • the energy absorbing structural members are arranged substantially symmetrically with respect to a vertical longitudinal plane of symmetry 16 of the aircraft fuselage.
  • the structural element 2 energy absorber provides a force transfer function between the cross member 14 and the reinforcing frame 13, when the structure of the fuselage is subjected to normal forces corresponding to stresses encountered during operation. normal operation of the aircraft, plus safety factors.
  • the structural element 2 energy absorber ensures, thanks to the elements that compose it, the destruction of the beam 21, gradually, when said beam is subjected to a compression force applied in the direction of its length, that is to say in the illustrated example substantially vertically, corresponding to the efforts encountered in case of crash.
  • the progressive destruction of the compression beam 21 has the effect of absorbing part of the energy generated during the impact.
  • the gusset 22 also provides a cutting function for the beam of compression 21.
  • the gusset 22 comprises, as illustrated in FIG.
  • a cutting element 224 arranged to cut, in the direction of the longitudinal axis Z, the beam 21 in strips when said beam is guided in translation in the guide means 223, - at least one clearance groove 225, arranged for remove the cut slats from the beam.
  • the beam 21 has, at least over a certain length of its end located on the side of the gusset, a cross section in a plane normal to the longitudinal axis Z in U-shaped and comprises a core 211 of width L and two flanges 212 of height h.
  • the beam has the entire length, a cross section in a plane normal to the longitudinal axis Z U-shaped.
  • the gusset 22 has substantially the shape of a plate. Said gusset comprises:
  • the first end 213 of the beam 21 is fastened, for example at its web 211, to the gusset 22 by fasteners, called working fasteners 215, for taking up the limiting forces to which the structural element 2 is subjected to energy absorption. outside a shock case.
  • the gusset 22 is fixed to the crossmember 14 or the reinforcing frame 13 by means of fasteners 226.
  • the second end 214 of the beam 21 is fixed on the reinforcing frame 13.
  • the second end can be assembled by means conventional or in the same way as on the crossbar 14, by means of the gusset 22.
  • the gusset 22 is implemented on the crosspiece 14 to prevent a possible destruction of said gusset, and mainly of the cutting element 224, on the reinforcing frame 13 during an impact in the lower part of the fuselage.
  • the gusset 22 is implemented on either side of the ends of the beam on the cross-member 14 and on the reinforcing frame 13.
  • the beam 21 is made in a composite material and is constituted by a stack of folds. Each fold is made by continuous fibers held by a resin.
  • the plies are unidirectional, woven or braided.
  • the stack of folds comprises:
  • folds, inclined relative to the longitudinal axis which, on the one hand, provide a part of the transfer of forces in nominal operation, and on the other hand, determine the resistance to cutting of the beam of compression 21 by the cutting element 224 during an impact, such as for example folds at ⁇ 45 ° and
  • the beam 21 is made of a stack of fourteen plies, of the type 6/3/3/2: 6 plies at 0 ° 3 plies at 45 ° 3 plies at -45 ° and 2 plies at 90 ° .
  • the beam 21 is made in a metallic material.
  • the beam 21 is of constant section.
  • the beam 21 is of section and of constant thickness. In another embodiment, the beam 21 has, at the end located on the side of the gusset 22 and over a certain length, a section of dimension substantially smaller than that of a section on the remaining length of the beam 21.
  • the beam 21 comprises, opposite the cutting element 224, a notch 217 to promote the initiation of the cutting of the core 211 of the beam 21.
  • the notch 217 is positioned substantially at half the width of the soul.
  • the guide means 223 are positioned against outer faces 216 of each sole 212 of the beam 21 so as to guide said beam along its longitudinal axis.
  • the guide means have a depth H substantially less than the height h of the flanges 212 of the beam 21, to allow the establishment of the holding member 23, taking into account the manufacturing tolerances.
  • the cutting element 224 comprises a blade 227 provided with a cutting edge oriented towards the compression beam 21, positioned opposite the notch 217 of the compression beam 21, when said compression beam comprises such a notch, and preferably positioned substantially mid-width of the soul.
  • the blade preferably has a substantially V shape at the cutting edge.
  • the blade 227 has a length at least equal to a maximum thickness of the web 211 of the compression beam 21. For example, the length of the blade 227 is substantially equal to the height h of the flanges 212 of the compression beam 21 .
  • the two clearance grooves 225 are situated on either side of the blade 227 and make it possible to evacuate the slats each comprising a sole 212 of the compression beam 21 and a part of the remaining core. secured to each sole, on either side of the gusset 22, in order to avoid hard contact, inter alia, with the cross member 14 which could disturb the destruction dynamics of the compression beam.
  • a holding piece 23 is fixed on the gusset 22 to maintain the compression beam 21 in the guide means 223 of said gusset and to ensure that the web 211 of the compression beam 21 is maintained with respect to the blade 227 during the compression of the beam.
  • the holding member 23 is fixed to the gusset 22 at said guide means and said cutting element.
  • said gusset comprises:
  • the guide means 223 are positioned against the outer faces 216 of each sole 212 of the compression beam 21 so as to guide said compression beam along the longitudinal axis Z.
  • the cutting element 224 comprises two blades 227 each provided with a cutting edge oriented towards the compression beam, spaced from each other by at most the width L of the web 211 of the compression beam 21, and for example positioned substantially close to each sole 212 of the beam 21.
  • the compression beam 21 comprises, opposite each blade 227, a notch 217 to promote the priming of the cutout of the web 211 of the compression beam 21.
  • Two clearance grooves 225 make it possible to evacuate the slats each comprising a sole 212 of the compression beam 21 and a part of the core remaining secured to each sole, on either side of the gusset 22, in order to avoid a hard contact among other things with the transom 14 which could disturb the destruction dynamics of the compression beam 21.
  • the third clearance groove 225 located between the two blades 227 of the cutting element 224, allows to evacuate the blade with the remaining portion of the core 21 of the compression beam from the front.
  • a retaining piece 23 is fixed on the gusset 22 to maintain the compression beam 21 in the guide means 223 of said gusset and to ensure that the web 211 of the compression beam 21 is held with respect to blades 227 during compression of said beam.
  • the holding piece 23 is fixed to the gusset 22 at said guide means so as to allow the release of the leaflet comprising the remaining portion of the web 211 of the compression beam 21 by the third clearance groove 225 .
  • the cutting elements 224 are substantially identical for all the structural elements 2 energy absorber.
  • the gusset 22 is made of a metallic material, preferably aluminum, aluminum alloy or steel alloy so as not to generate a significant mass penalty on the primary structure of the fuselage.
  • the gusset 22 is made of a composite material with fibrous reinforcement in the form of long cut fibers, of a length of the order of 50 mm, for example carbon fibers.
  • the guide means 223, the clearance grooves 225, the cutting member 224 and the at least one blade are made by machining or molding.
  • the gusset is made of a composite material with fiber reinforcement, based on short fibers, for example carbon and are made, for example, from a stamping process.
  • the cutting edge of the at least one blade 227 of the cutting element 224 is an added element, preferably co-molded with the gusset, and preferably made of metal material, advantageously made of titanium alloy, in order to ensure longevity of the cut.
  • the blade has, at the cutting edge, an angle ⁇ (Figure 7b), said blade angle, between 30 ° and 45 ° for example 37 °.
  • a tripping value of the energy absorbing structural element is determined from the calculation of a breaking value of the working fasteners.
  • each structural element 2 energy absorber provides a transfer function. effort between a cross member 14 and a reinforcing frame 13.
  • the compression beam 21 then moves along its longitudinal axis Z, which is substantially the displacement imposed by the compression forces, the web 211 of the compression beam 21 being torn by the cutting element 224.
  • the compression beam 21 then moves along its longitudinal axis Z, which is substantially the displacement imposed by the compressive forces, the web 211 of the compression beam 21 being torn in matting by the working fasteners.
  • the cutting element 224 cuts the web 211 of the compression beam 21 in addition to the tear in matting generated by the fixings.
  • the cutting element 224 also has a so-called "fail safe” function in the case of premature failure of the shearing working fasteners which, in this case, would no longer ensure their tearing function when the beam is matted. of compression 21.
  • the slats each comprising a sole 212 of the compression beam 21 and a portion of the core remaining secured to each sole are guided on either side of the blade 227 of the cutting element. 224 through the two clearance grooves 225, as shown in Figure 6.
  • the slats each comprising a sole 212 of the compression beam 21 and the remaining portion of the remaining core secured to each sole are guided by two clearance grooves 225, and the slat comprising the core 21. of the compression beam 21 is guided by the third clearance groove 225, located between the two blades 227 of the cutting element 224, as shown in Figures 7a and 7b.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Vibration Dampers (AREA)

Abstract

L'invention concerne un élément structural (2) absorbeur d'énergie pour un fuselage d'aéronef comportant au moins un cadre de renfort (13) et au moins une traverse (14). L'élément structural (2) absorbeur d'énergie comporte une- poutre de compression (21), d'axe longitudinal Z, orientée sensiblement suivant une direction de forces de compression devant être absorbées lors d'un choc. L'adite poutre de compression est apte à être fixée à une première extrémité (213) à la traverse (14), et à une seconde extrémité (214) au cadre de renfort (13). La poutre de compression (21) est fixée à au moins une de ses extrémités (213, 214) par l'intermédiaire d'un gousset (22), ledit gousset assurant en outre une fonction de découpe de la poutre de compression (21) en cas de choc.

Description

ELEMENT STRUCTURAL ABSORBEUR D ' ENERGIE EN MATERIAU COMPOSITE ET FUSELAGE D' AERONEF MUNI D' UN TEL ABSORBEUR
La présente invention est relative à une structure primaire d'aéronefs. Plus particulièrement, l'invention concerne une structure primaire d'aéronefs conçue pour absorber l'énergie dissipée lors d'un effort de compression brutal, en particulier lors d'un choc consécutif à un accident tel qu'un atterrissage ou un amerrissage brutal sollicitant le fuselage selon son axe vertical (crash à composante verticale).
Le fuselage d'un aéronef comprend principalement une structure constituée d'un revêtement renforcé intérieurement par des cadres de renfort et des lisses. Les cadres de renforts sont positionnés suivant des sections du fuselage sensiblement perpendiculaires à un axe longitudinal du fuselage et les lisses s'étendent essentiellement suivant l'axe longitudinal. Les cadres de renfort supportent des traverses, généralement droites et horizontales, dans un repère aéronef, sur lesquelles sont fixés des planchers.
Lors d'un crash à composante principale verticale, la partie inférieure du fuselage est, en général, la première zone de l'aéronef soumise à des impacts et participe donc à l'absorption de l'énergie des impacts de manière essentielle.
La certification des aéronefs, en particulier des avions de transport civil, impose des critères de comportement du fuselage dans différentes situations de crash, afin d'améliorer les chances de survie des passagers en cas d'accident.
Pour les aéronefs dont la structure du fuselage est réalisée à partir d'éléments structuraux (cadres de renfort, revêtement, lisses, traverses) en matériau métallique, une quantité importante de l'énergie de l'impact est absorbée par la déformation plastique des éléments de la structure métallique. II n'est en général pas nécessaire de prévoir des systèmes d'absorption d'énergie dédiés, la structure assurant de manière passive la fonction d'absorption d'énergie du fait des caractéristiques intrinsèques des alliages métalliques mis en oeuvre et d'une conception adaptée.
La partie inférieure du fuselage est donc dessinée afin de répondre principalement aux sollicitations rencontrées lors de l'exploitation commerciale normale de l'aéronef.
L'amélioration constante de la performance des aéronefs stimule aujourd'hui la réalisation de plus en plus fréquente d'éléments structuraux en matériaux composites pour la structure du fuselage de l'aéronef, en raison de l'allégement de masse que ces matériaux composites permettent d'obtenir pour de telles structures.
Cependant, au contraire des éléments structuraux en matériaux métalliques qui disposent d'un important domaine de déformation plastique avant rupture, les matériaux composites n'ont pratiquement pas de domaine plastique avant rupture. Une structure de fuselage (cadre de fuselage, peaux, lisses...), réalisée en matériau composite, se comporte donc très différemment d'une structure de fuselage en matériau métallique, vis à vis de l'absorption d'énergie et en fin de sollicitations, avant ou après une rupture, la structure en matériau composite va restituer une grande partie de l'énergie absorbée lors de la déformation élastique.
Une solution connue consiste à insérer entre le plancher et les cadres inférieurs des éléments structuraux dont la constitution permet d'en déclencher la ruine sous une intensité de sollicitation prédéfinie supérieure à l'intensité de sollicitations nominales en service. Dans le cas où ces éléments structuraux sont constitués de matériaux composites à renfort fibreux, la ruine intervient par décohésion ou délaminage du matériau. Ces éléments potentiellement absorbeur d'énergie sont liés aux traverses de plancher et aux cadres par des fixations de type rivet.
Vis à vis des sollicitations nominales, les éléments structuraux agissent comme des raidisseurs. En cas de sur-sollicitation, par exemple lors d'un accident, lesdits éléments structuraux se déclenchent et s'effondrent. Ce phénomène étant irréversible, celui-ci dissipe de l'énergie. Il s'effectue, du reste, à effort sensiblement constant excepté lors de l'initiation et en fin de course lorsque le plancher fini par heurter la partie inférieure du fuselage.
Cependant, ce phénomène progressif de destruction du matériau de la poutre, qui permet en théorie l'effondrement progressif de l'absorbeur d'énergie sur lui-même est difficilement maîtrisable et prédictible, même dans des conditions de laboratoire.
D'autre part, lors du cisaillement ou de l'arrachement des fixations en cas d'effort sur la poutre suite au scénario de crash, ladite poutre, au lieu d'assurer sa fonction d'absorbeur d'énergie, si la destruction du matériau est mal initiée, se retrouve libre et peut se comporter comme un bélier et endommager prématurément d'autres structures, comme par exemple le plancher. Une telle solution n'est donc pas satisfaisante car non adaptée à une exigence de tenue à un crash à composante principale verticale. La mise en oeuvre d'éléments au niveau de structures primaires d'aéronefs qui permet de concilier l'utilisation d'éléments structuraux (cadres de renforts, revêtement, lisses,...) en matériau composite pour les structures primaires et les exigences de tenue à un crash, en particulier vertical, en absorbant l'énergie est donc indispensable pour améliorer les chances de survie des passagers dans les aéronefs.
Une structure primaire d'un fuselage d'aéronef comporte : un revêtement, comportant des lisses pour le stabiliser, au moins un cadre de renfort, au moins une traverse fixée sur ledit au moins un cadre de renfort, - au moins un élément structural de forme allongé, dit élément structural absorbeur d'énergie, comportant une poutre de compression, de préférence en matériau composite, d'axe longitudinal Z, orientée sensiblement suivant une direction de forces de compression devant être absorbées lors d'un choc, ladite poutre de compression étant fixée à une première extrémité à la traverse, et à une seconde extrémité au cadre de renfort. Suivant l'invention, la poutre de compression du au moins un élément structural absorbeur d'énergie est fixée à au moins une de ses extrémités par l'intermédiaire d'un gousset, ledit gousset comportant :
- des moyens de guidage de la poutre sensiblement suivant son axe longitudinal Z,
- un élément coupant de découpage de la poutre de compression en au moins deux lamelles, suivant la direction de l'axe longitudinal Z,
- une gorge de dégagement pour chaque lamelle.
La poutre de compression comporte une âme et deux semelles présentant, sur une certaine longueur de son extrémité située du coté du gousset, une section droite, dans un plan normal à l'axe longitudinal Z, en forme de U, et est fixée au gousset par des fixations de reprise d'efforts limites, aptes à reprendre les efforts auxquelles est soumis l'élément structural absorbeur d'énergie en dehors du cas de choc. Dans un mode de réalisation du gousset, ledit gousset comporte un élément coupant comportant une lame orientée vers l'âme de la poutre de compression et deux gorges de dégagement situées de part et d'autre de la lame.
Dans un mode amélioré de réalisation du gousset, ledit gousset comporte un élément coupant comportant deux lames orientées vers l'âme de la poutre, et trois gorges de dégagement, deux gorges de dégagement voisines étant séparées entre elles par une lame.
De préférence, la poutre de compression est réalisée par un empilement de plis, chaque pli étant réalisé par des fibres continues maintenues par une résine. Ladite poutre comporte des plis orientés sensiblement suivant l'axe longitudinal Z caractérisant principalement la résistance longitudinale de la poutre de compression et des plis inclinés par rapport à la direction de l'axe longitudinal Z déterminant principalement la résistance au découpage de la poutre de compression par l'élément coupant lors d'un choc.
De préférence, pour favoriser l'amorçage de la découpe de l'âme de la poutre de compression, ladite poutre de compression comporte, au niveau de sa première extrémité, une encoche d'amorçage en vis à vis de chaque lame, lorsque la poutre de compression est fixée au gousset.
Dans un mode de réalisation, le gousset est réalisé dans un matériau métallique, au moins en partie.
L'invention est également relative à un élément structural absorbeur d'énergie, destiné à reprendre des efforts de compression entre deux pièces structurales d'un fuselage d'aéronef, comportant une poutre de compression en matériau composite, d'axe longitudinal Z, orientée sensiblement suivant une direction de forces de compression devant être absorbées lors d'un choc, caractérisé en ce que ledit au moins un élément structural absorbeur d'énergie comporte au moins un gousset, fixé à au moins une des extrémités de la poutre de compression et destiné à transmettre les efforts de compression à la pièce structurale à laquelle ledit gousset est fixé, ledit gousset comportant : - des moyens de guidage de la poutre sensiblement suivant son axe longitudinal Z,
- un élément coupant de découpage de la poutre de compression en au moins deux lamelles, suivant la direction de l'axe longitudinal Z,
- une gorge de dégagement pour chaque lamelle. Dans un mode de réalisation, un gousset est fixé à chaque extrémité de la poutre de compression.
La description détaillée de l'invention est faite en référence aux figures qui représentent :
Figure 1 , une vue en perspective, représentant schématiquement une partie inférieure d'un tronçon d'une structure primaire d'un fuselage d'aéronef comportant quatre éléments structuraux absorbeurs d'énergie sous un plancher réalisés conformément à l'invention,
Figure 2, une vue de face de deux éléments structuraux absorbeurs d'énergie d'un fuselage conforme à l'invention, Figure 3, une vue en perspective d'un élément structural absorbeur d'énergie suivant un mode de réalisation, et comportant une poutre de compression,
Figure 4, une vue en perspective d'un élément structural absorbeur d'énergie, suivant un mode de réalisation, comportant une poutre de compression et une pièce de maintien de ladite poutre, Figure 5, une vue de face d'un élément structural absorbeur d'énergie, suivant un mode amélioré de réalisation,
Figure 6, une illustration de l'évacuation des lamelles de la poutre de compression suivant un mode de réalisation,
Figure 7a, 7b, des illustrations de l'évacuation des lamelles de la poutre de compression suivant le mode amélioré de réalisation.
Une structure primaire d'un fuselage d'aéronef comporte, comme illustré sur la figure 1 , une ossature 1 , sensiblement cylindrique, sur laquelle est fixée un revêtement 11 renforcé par des lisses 12 s'étendant sensiblement suivant un axe longitudinal de la structure primaire du fuselage de l'aéronef. L'ossature 1 de la structure primaire du fuselage d'aéronef est formée principalement de cadres de renfort 13. Lesdits cadres de renfort sont positionnés suivant des sections du fuselage sensiblement perpendiculaires à l'axe longitudinal du fuselage et sont régulièrement répartis sur toute la longueur du fuselage d'aéronef. Chacun d'entre eux présente une forme qui correspond sensiblement à la section locale du fuselage, le plus souvent circulaire, au moins localement, comme dans l'exemple de la figure 1.
Sur chaque cadre de renfort 13 est fixé une traverse 14. Les traverses 14 sont avantageusement droites et horizontales, dans un repère aéronef, de sorte à pouvoir supporter un plancher (non représenté), tel que le plancher d'une soute de chargement ou d'une cabine de passagers.
En outre, l'ossature 1 comporte, dans une partie inférieure 15 de la structure primaire du fuselage d'aéronef située entre les traverses 14 et les cadres de renfort 13, au moins un élément structural 2 absorbeur d'énergie. Dans l'exemple de réalisation illustré sur la figure 2, deux éléments structuraux 2 absorbeurs d'énergie sont représentés. Chaque élément structural 2 absorbeur d'énergie comporte : - une poutre de compression 21 ,
- au moins un gousset 22.
La poutre de compression 21 est reliée, d'une part en une première extrémité 213 à une traverse 14 et d'autre part en une seconde extrémité 214, opposée à ladite première extrémité, à un cadre de renfort 13.
La poutre de compression est fixée, à au moins une de ses deux extrémités 213, 214, au moyen d'un gousset 22.
Pour chaque ensemble traverse-cadre de renfort, les poutres de compression 21 ont un axe longitudinal Z orienté sensiblement suivant la direction des forces de compression devant être absorbées lors d'un choc, par exemple sensiblement vertical sous un plancher, et le ou les éléments structuraux absorbeurs d'énergie sont agencés sensiblement symétriquement par rapport à un plan longitudinal vertical de symétrie 16 du fuselage d'aéronef.
Dans l'exemple de réalisation illustré par la figure 1 , pour un ensemble traverse-cadre de renfort, quatre éléments structuraux 2 absorbeurs d'énergie sont positionnés symétriquement deux à deux par rapport au plan longitudinal vertical de symétrie 16 de la structure primaire du fuselage d'aéronef, sans que ce choix soit limitatif de l'invention.
Le rôle de l'élément structural 2 absorbeur d'énergie est double. D'une part, l'élément structural 2 absorbeur d'énergie assure une fonction de transfert d'efforts entre la traverse 14 et le cadre de renfort 13, lorsque la structure du fuselage est soumise aux efforts normaux correspondant à des sollicitations rencontrées pendant l'exploitation normale de l'aéronef, majorées de facteurs de sécurité. D'autre part, l'élément structural 2 absorbeur d'énergie assure, grâce aux éléments qui le compose, la destruction de la poutre 21 , de façon progressive, lorsque ladite poutre est soumise à un effort de compression appliqué dans le sens de sa longueur, c'est à dire dans l'exemple illustré sensiblement verticalement, correspondant aux efforts rencontrés lors de cas de crash. La destruction progressive de la poutre de compression 21 a pour effet d'absorber une partie de l'énergie générée lors de l'impact.
Le gousset 22 assure en outre une fonction de découpe de la poutre de compression 21.
Le gousset 22 comporte, comme illustré sur la figure 3 :
- des moyens de guidage 223, apte à guider en translation la poutre de compression 21 sensiblement suivant la direction de son axe longitudinal Z, lorsqu'un effort de compression suffisant est appliqué à la poutre,
- un élément coupant 224, agencé pour découper, suivant la direction de l'axe longitudinal Z, la poutre 21 en lamelles lorsque ladite poutre est guidée en translation dans les moyens de guidage 223, - au moins une gorge de dégagement 225, agencée pour évacuer les lamelles découpées de la poutre.
Dans un mode de réalisation d'un élément structural 2 absorbeur d'énergie, la poutre 21 présente, au moins sur une certaine longueur de son extrémité située du coté du gousset, une section droite dans un plan normal à l'axe longitudinal Z en forme de U et comporte une âme 211 de largeur L et deux semelles 212 de hauteur h. Dans l'exemple illustré sur les figures 3 et 4, la poutre présente sur toute la longueur, une section droite dans un plan normal à l'axe longitudinal Z en forme de U.
Le gousset 22 a sensiblement la forme d'une plaque. Ledit gousset comporte :
- les moyens de guidage 223, l'élément coupant 224,
- deux gorges de dégagement 225.
La première extrémité 213 de la poutre 21 est fixée, par exemple au niveau de son âme 211 , au gousset 22 par des fixations, dites fixations travaillantes 215, de reprise d'efforts limites auxquelles est soumis l'élément structural 2 absorbeur d'énergie en dehors d'un cas de choc.
Dans un exemple de réalisation, le gousset 22 est fixé sur la traverse 14 ou le cadre de renfort 13 au moyen de fixations 226. La seconde extrémité 214 de la poutre 21 est fixée sur le cadre de renfort 13. La seconde extrémité peut être assemblée par des moyens conventionnels ou de la même façon que sur la traverse 14, au moyen du gousset 22.
Mais de préférence, le gousset 22 est mis en oeuvre sur la traverse 14 afin d'éviter une éventuelle destruction dudit gousset, et principalement de l'élément coupant 224, sur le cadre de renfort 13 lors d'un impact dans la partie inférieure du fuselage.
Dans un autre exemple de réalisation, le gousset 22 est mis en oeuvre de part et d'autre des extrémités de la poutre sur la traverse 14 et sur le cadre de renfort 13. Dans un mode préféré de réalisation, la poutre 21 est réalisée dans un matériau composite et est constituée par un empilement de plis. Chaque pli est réalisé par des fibres continues maintenues par une résine.
Dans un exemple de réalisation, les plis sont unidirectionnels, tissés ou tressés. L'empilement des plis comporte :
- d'une part, des plis pour assurer essentiellement le transfert des efforts en fonctionnement nominal, sans opposer une résistance importante lors de la déchirure de l'âme 211 , tels que par exemple des plis à 0° c'est à dire orientés dans l'axe lon gitudinal de la poutre,
- d'autre part, des plis, inclinés par rapport à l'axe longitudinal, qui, d'une part assurent une partie du transfert des efforts en fonctionnement nominal, et d'autre part, déterminent la résistance au découpage de la poutre de compression 21 par l'élément coupant 224 lors d'un choc, tels que par exemple des plis à ± 45° et
90° c'est à dire orientés à ± 45° et 90° par rappo rt à l'axe longitudinal de la poutre.
Dans un exemple de réalisation, la poutre 21 est réalisée par un empilement de quatorze plis, du type 6/3/3/2 : 6 plis à 0° 3 plis à 45° 3 plis à - 45°et 2 plis à 90°.
Dans un autre mode de réalisation, la poutre 21 est réalisée dans un matériau métallique.
Dans une forme de réalisation, la poutre 21 est de section constante.
Dans une autre forme de réalisation, la poutre 21 est de section et d'épaisseur constante. Dans une autre forme de réalisation, la poutre 21 présente, à l'extrémité située du coté du gousset 22 et sur une certaine longueur, une section de dimension sensiblement inférieure à celle d'une section sur la longueur restante de la poutre 21.
De préférence, la poutre 21 comporte, en vis à vis de l'élément coupant 224, une encoche 217 pour favoriser l'amorçage de la découpe de l'âme 211 de la poutre 21. De préférence, l'encoche 217 est positionnée sensiblement à mi- largeur de l'âme.
Les moyens de guidage 223 sont positionnés contre des faces extérieures 216 de chaque semelle 212 de la poutre 21 de sorte à guider ladite poutre suivant son axe longitudinal.
De préférence, les moyens de guidage ont une profondeur H sensiblement inférieure à la hauteur h des semelles 212 de la poutre 21 , afin de permettre la mise en place de la pièce de maintien 23, en tenant compte des tolérances de réalisation. L'élément coupant 224 comporte une lame 227 pourvue d'une arête tranchante orientée vers la poutre de compression 21 , positionnée face à l'encoche 217 de la poutre de compression 21 , lorsque ladite poutre de compression comporte une telle encoche, et de préférence positionnée sensiblement à mi largeur de l'âme. La lame présente de préférence une forme sensiblement en V au niveau de l'arête tranchante. La lame 227 a une longueur au moins égale à une épaisseur maximale de l'âme 211 de la poutre de compression 21. Par exemple, la longueur de la lame 227 est sensiblement égale à la hauteur h des semelles 212 de la poutre de compression 21.
Les deux gorges de dégagement 225 sont situées de part et d'autre de la lame 227 et permettent d'évacuer les lamelles comportant chacune une semelle 212 de la poutre de compression 21 et une partie de l'âme restant solidarisée à chaque semelle, de part et d'autre du gousset 22, afin d'éviter un contact dur entre autre avec la traverse 14 qui pourrait perturber la dynamique de destruction de la poutre de compression.
Avantageusement, une pièce de maintien 23 est fixée sur le gousset 22 pour maintenir la poutre de compression 21 dans les moyens de guidage 223 dudit gousset et permettre de garantir que l'âme 211 de la poutre de compression 21 est maintenue en vis à vis de la lame 227 lors de la compression de la poutre. Par exemple, lorsque les épaisseurs de l'élément coupant 224 et des moyens de guidage 223 sont sensiblement égales à la hauteur h des semelles 212, la pièce de maintien 23 est fixée au gousset 22 au niveau desdits moyens de guidage et dudit élément coupant.
Dans un mode amélioré du gousset 22, comme illustré sur la figure 5, ledit gousset comporte :
- les moyens de guidage 223, - l'élément coupant 224, comportant deux lames 227,
- trois gorges de dégagement 225.
Les moyens de guidage 223 sont positionnés contre les faces extérieures 216 de chaque semelle 212 de la poutre de compression 21 de sorte à guider ladite poutre de compression suivant l'axe longitudinal Z. L'élément coupant 224 comporte deux lames 227 pourvues chacune d'une arête tranchante orientée vers la poutre de compression, distantes l'une de l'autre d'au plus la largeur L de l'âme 211 de la poutre de compression 21 , et par exemple positionnées sensiblement à proximité de chaque semelle 212 de la poutre 21. De préférence, la poutre de compression 21 comporte, en vis à vis de chaque lame 227, une encoche 217 pour favoriser l'amorçage de la découpe de l'âme 211 de la poutre de compression 21.
Deux gorges de dégagement 225 permettent d'évacuer les lamelles comportant chacune une semelle 212 de la poutre de compression 21 et une partie de l'âme restant solidarisée à chaque semelle, de part et d'autre du gousset 22, afin d'éviter un contact dur entre autre avec la traverse 14 qui pourrait perturber la dynamique de destruction de la poutre de compression 21. La troisième gorge de dégagement 225, située entre les deux lames 227 de l'élément coupant 224, permet d'évacuer la lamelle comportant la partie restante de l'âme 21 de la poutre de compression par l'avant. Avantageusement, une pièce de maintien 23 est fixée sur le gousset 22 pour maintenir la poutre de compression 21 dans les moyens de guidage 223 dudit gousset et permettre de garantir que l'âme 211 de la poutre de compression 21 est maintenue en vis à vis des lames 227 lors de la compression de ladite poutre. Par exemple, la pièce de maintien 23 est fixée au gousset 22 au niveau desdits moyens de guidage de sorte à permettre le dégagement de la lamelle comportant la partie restante de l'âme 211 de la poutre de compression 21 par la troisième gorge de dégagement 225.
De préférence, les éléments coupants 224 sont sensiblement identiques pour tous les éléments structuraux 2 absorbeur d'énergie. Dans un mode de réalisation, le gousset 22 est réalisé dans un matériau métallique, avantageusement en aluminium, en alliage d'aluminium ou en alliage d'acier afin de ne pas générer une pénalité de masse significative sur la structure primaire du fuselage.
Dans un mode préféré de réalisation, le gousset 22 est réalisé dans un matériau composite à renfort fibreux sous forme de fibres longues coupées, d'une longueur de l'ordre de 50mm, par exemple en fibres de carbone.
Dans une forme de réalisation, les moyens de guidage 223, les gorges de dégagement 225, l'élément coupant 224 et la au moins une lame sont réalisés par usinage ou par moulage. Dans une forme améliorée de réalisation, le gousset est réalisé dans un matériau composite à renfort fibreux, à base de fibres courtes, par exemple en carbone et sont réalisés, par exemple, à partir d'un procédé de matriçage. L'arête tranchante de la au moins une lame 227 de l'élément coupant 224 est un élément ajouté, de préférence co-moulée avec le gousset, et de préférence réalisé en matériau métallique, avantageusement en alliage de titane, afin d'assurer une longévité de la coupe. De préférence, la lame présente, au niveau de l'arête tranchante, un angle α (figure 7b), dit angle de lame, compris entre 30° e t 45° par exemple 37°.
Une valeur de déclenchement de l'élément structural absorbeur d'énergie est déterminée à partir du calcul d'une valeur de rupture des fixations travaillantes.
En fonctionnement nominal, c'est à dire lorsque les charges sont inférieures ou égales à des charges normales susceptibles d'être rencontrées en exploitation commerciale, majorées des facteurs de sécurité associés, chaque élément structural 2 absorbeur d'énergie assure une fonction de transfert d'effort entre une traverse 14 et un cadre de renfort 13.
En cas de crash, une augmentation de l'effort sur la poutre de compression 21 suivant l'axe vertical est générée. Deux cas de déclenchement de l'élément structural 2 absorbeur d'énergie sont alors possibles, suite à cette augmentation :
- un premier cas correspondant à une rupture des fixations en cisaillement, qui permet à l'élément structural 2 absorbeur d'énergie de se déclencher.
La poutre de compression 21 se déplace alors suivant son axe longitudinal Z, qui est sensiblement le déplacement imposé par les efforts de compression, l'âme 211 de la poutre de compression 21 étant déchirée par l'élément coupant 224.
- un deuxième cas correspondant à une rupture de la poutre de compression 21 en matage dans la zone des fixations, qui permet à l'élément structural 2 absorbeur d'énergie de se déclencher.
La poutre de compression 21 se déplace alors suivant son axe longitudinal Z, qui est sensiblement le déplacement imposé par les efforts de compression, l'âme 211 de la poutre de compression 21 étant déchirée en matage par les fixations travaillantes. Dans ce deuxième cas de déclenchement, l'élément coupant 224 découpe l'âme 211 de la poutre de compression 21 en complément de la déchirure en matage générée par les fixations.
De plus, avantageusement, l'élément coupant 224 a également une fonction, dite « fail safe » dans le cas d'une rupture prématurée des fixations travaillantes en cisaillement qui n'assureraient plus dans ce cas leur fonction de déchirure en matage de la poutre de compression 21.
Dans le premier mode de réalisation, les lamelles comportant chacune une semelle 212 de la poutre de compression 21 et une partie de l'âme restant solidarisée à chaque semelle, sont guidées de part et d'autre de la lame 227 de l'élément coupant 224 par les deux gorges de dégagement 225, comme illustré sur la figure 6.
Dans le mode amélioré de réalisation, les lamelles comportant chacune une semelle 212 de la poutre de compression 21 et la partie restante de l'âme restant solidarisée à chaque semelle sont guidées par deux gorges de dégagement 225, et la lamelle comportant l'âme 21 de la poutre de compression 21 est guidée par la troisième gorge de dégagement 225, située entre les deux lames 227 de l'élément coupant 224, comme illustré sur les figures 7a et 7b.
La destruction progressive de la poutre de compression sur sa longueur permet ainsi de dissiper l'énergie générée lors de l'impact.

Claims

R E V E N D I C A T I O N S
- Structure primaire d'un fuselage d'aéronef comportant :
- un revêtement (11 ),
- au moins un cadre de renfort (13),
- au moins une traverse (14) fixée sur ledit au moins un cadre de renfort (13),
- au moins un élément structural (2) de forme allongé, dit élément structural absorbeur d'énergie, comportant une poutre de compression (21 ) d'axe longitudinal Z en matériau composite, ledit matériau comportant des plis de fibres continues maintenues par une résine, ladite poutre de compression, dont l'axe est orienté sensiblement suivant une direction de forces de compression devant être absorbées lors d'un choc, étant fixée à une première extrémité (213) à la traverse (14), et à une seconde extrémité (214) au cadre de renfort (13), caractérisé en ce que la poutre de compression (21 ) du au moins un élément structural (2) absorbeur d'énergie est fixée à au moins une de ses extrémités (213, 214) par l'intermédiaire d'un gousset (22), ledit gousset comportant :
- des moyens de guidage (223) de la poutre (21 ) sensiblement suivant son axe longitudinal Z,
- un élément coupant (224) de découpage de la poutre de compression (21 ) en au moins deux lamelles, suivant la direction de l'axe longitudinal Z,
- une gorge de dégagement (225) pour chaque lamelle. - Structure primaire d'un fuselage d'aéronef suivant la revendication 1 dans laquelle la poutre de compression (21 ) comporte une âme (211 ) et deux semelles (212), présentant, au moins sur une certaine longueur de son extrémité située du coté du gousset (22), une section droite, dans un plan normal à l'axe longitudinal Z, en forme de U, ladite poutre étant fixée au gousset (22) par des fixations de reprise d'efforts limites auxquelles est soumis l'élément structural (2) absorbeur d'énergie en dehors d'un cas de choc. - Structure primaire d'un fuselage d'aéronef suivant la revendication 2 dans laquelle le gousset (22) comporte un élément coupant (224) comportant une lame (227) orientée vers l'âme (211 ) de la poutre de compression (21 ) et deux gorges de dégagement (225) situées de part et d'autre de la lame (227). - Structure primaire d'un fuselage d'aéronef suivant la revendication 2 dans laquelle le gousset (22) comporte un élément coupant (224) comportant deux lames (227) orientées vers l'âme (211 ) de la poutre (21 ), et trois gorges de dégagement (225), deux gorges de dégagement voisines étant séparées entre elles par une lame (227). - Structure primaire d'un fuselage d'aéronef suivant l'une des revendications précédentes dans laquelle la poutre de compression (21 ) comporte des plis orientés sensiblement suivant l'axe longitudinal Z caractérisant principalement la résistance longitudinale de la poutre de compression et des plis inclinés par rapport à la direction de l'axe longitudinal Z déterminant principalement la résistance au découpage de la poutre de compression (21 ) par l'élément coupant (224) lors d'un choc. - Structure primaire d'un fuselage d'aéronef suivant l'une des revendications précédentes dans laquelle la poutre de compression (21 ) comporte, au niveau de la première extrémité (213), une encoche d'amorçage (217) en vis à vis de chaque lame (227) lorsque la poutre de compression (21 ) est fixée au gousset (22). - Structure primaire d'un fuselage d'aéronef suivant l'une des revendications précédentes dans laquelle le gousset (22) est en matériau métallique, au moins en partie. - Structure primaire d'un fuselage d'aéronef suivant l'une des revendications précédentes dans laquelle l'élément structural absorbeur d'énergie (2) assure une transmission des efforts normaux, entre la traverse (14) et le cadre de renfort (13), correspondants à des sollicitations rencontrées pendant l'exploitation normale de l'aéronef. - Structure primaire d'un fuselage d'aéronef suivant la revendication 8 dans laquelle la transmission des efforts normaux est assurée par la fixation de la poutre de compression (21 ) au gousset (22) au moyen de fixations travaillantes (215). 0- Aéronef comportant une structure primaire d'un fuselage d'aéronef conforme à l'une des revendications 1 à 9. 1 - Elément structural (2) absorbeur d'énergie, destiné à reprendre des efforts de compression entre deux pièces structurales (13, 14) d'un fuselage d'aéronef, comportant une poutre de compression (21 ), d'axe longitudinal Z, en matériau composite, ledit matériau comportant des plis de fibres continues maintenues par une résine, ledit axe longitudinal Z étant orienté sensiblement suivant une direction de forces de compression devant être absorbées lors d'un choc, caractérisé en ce que ledit au moins un élément structural (2) absorbeur d'énergie comporte au moins un gousset (22), fixé à au moins une des extrémités (213, 214) de la poutre de compression (21 ) et destiné à transmettre les efforts de compression à la pièce structurale à laquelle ledit gousset est fixé, ledit gousset comportant : - des moyens de guidage (223) de la poutre (21 ) sensiblement suivant son axe longitudinal Z,
- un élément coupant (224) de découpage de la poutre de compression (21 ) en au moins deux lamelles, suivant la direction de l'axe longitudinal Z, - une gorge de dégagement (225) pour chaque lamelle. 2- Elément structural (2) absorbeur d'énergie suivant la revendication 11 dans lequel un gousset (22) est fixé à chaque extrémité (213, 214) de la poutre de compression (21 ).
PCT/FR2009/050235 2008-02-15 2009-02-13 Element structural absorbeur d ' energie en materiau composite et fuselage d ' aeronef muni d ' un tel absorbeur WO2009101372A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP09710987.0A EP2257465B1 (fr) 2008-02-15 2009-02-13 Element structural absorbeur d'energie en materiau composite et fuselage d'aeronef muni d'un tel absorbeur
US12/866,935 US8814092B2 (en) 2008-02-15 2009-02-13 Energy-absorbing structural element made of a composite material and aircraft fuselage having said absorber
CN200980109642.2A CN101977809B (zh) 2008-02-15 2009-02-13 复合材料能量吸收结构零件和带有这类吸能器的航空器机身
BRPI0907873-8A BRPI0907873A2 (pt) 2008-02-15 2009-02-13 Elemento estrutural de absorção de energia feito de um material compósito e fuselagem de aeronave tendo o referido absorvedor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0850966 2008-02-15
FR0850966A FR2927606B1 (fr) 2008-02-15 2008-02-15 Fuselage d'aeronef en materiau composite a tenue au crash amelioree

Publications (1)

Publication Number Publication Date
WO2009101372A1 true WO2009101372A1 (fr) 2009-08-20

Family

ID=39756340

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2009/050235 WO2009101372A1 (fr) 2008-02-15 2009-02-13 Element structural absorbeur d ' energie en materiau composite et fuselage d ' aeronef muni d ' un tel absorbeur

Country Status (6)

Country Link
US (1) US8814092B2 (fr)
EP (1) EP2257465B1 (fr)
CN (1) CN101977809B (fr)
BR (1) BRPI0907873A2 (fr)
FR (1) FR2927606B1 (fr)
WO (1) WO2009101372A1 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011134917A1 (fr) * 2010-04-30 2011-11-03 European Aeronautic Defence And Space Company Eads France Structure de fuselage d'aéronef comportant un dispositif absorbeur d'énergie
EP2679484A1 (fr) 2012-06-28 2014-01-01 Airbus Operations (Société par actions simplifiée) Structure primaire de fuselage pour aéronef comprenant des entretoises à rupture précoce pour accroître l'absorption d'énergie en cas de crash
EP2881319A1 (fr) * 2013-12-03 2015-06-10 Airbus Operations GmbH Agencement de connexion et structure
US20150344119A1 (en) * 2014-05-30 2015-12-03 Airbus Operations (Sas) Sliding connection between the floor structure and the hull structure of an aircraft
US10962075B2 (en) 2017-12-27 2021-03-30 Airbus Operations Sas Shock absorber system comprising a primary shock absorber device and a secondary shock absorber device of different stiffnesses, associated structure and aircraft

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009020896B4 (de) * 2009-05-08 2013-07-18 Deutsches Zentrum für Luft- und Raumfahrt e.V. Flugkörper
DE102010014638B4 (de) * 2010-04-12 2019-08-01 Airbus Defence and Space GmbH Luftfahrzeug mit einer integrierten energieaufnehmenden Verformungsstruktur und Luftfahrzeug mit einem derartigen Rumpf
DE102010027859B4 (de) * 2010-04-16 2017-11-16 Deutsches Zentrum für Luft- und Raumfahrt e.V. Strebenvorrichtung für eine Zelle, Zelle und Fahrzeug
DE102010062018B4 (de) 2010-11-26 2015-05-13 Airbus Operations Gmbh Stützstab zur Stützung einer Fussbodenstruktur eines Flugzeugs
ES2404946B1 (es) * 2011-10-21 2014-09-02 Airbus Operations S.L. Fuselaje de aeronave resistente al impacto y tolerante al daño mejorado
US9505354B2 (en) * 2013-09-16 2016-11-29 The Boeing Company Carbon fiber reinforced polymer cargo beam with integrated cargo stanchions and c-splices
US9371126B2 (en) * 2013-12-03 2016-06-21 Airbus Operations Gmbh Aircraft fuselage
US10745098B2 (en) * 2017-09-05 2020-08-18 The Boeing Company Energy-absorbing under-floor airframe
RU2678541C1 (ru) * 2018-03-06 2019-01-29 Акционерное общество "Научно-производственное предприятие "Звезда" имени академика Г.И. Северина" Амортизатор одностороннего действия
CN112027060B (zh) * 2020-09-03 2022-07-08 中国商用飞机有限责任公司 用于飞机货舱地板下部的吸能立柱
CN113044198A (zh) * 2021-03-09 2021-06-29 上海交通大学 一种飞机地板下可固接-铰接转换的碰撞吸能斜支柱
FR3132501A1 (fr) 2022-02-04 2023-08-11 Airbus Operations Dispositif et procédé d’amortissement et de protection lors d’une phase de glissement pour une partie d’un aéronef.

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3608677A (en) * 1968-10-03 1971-09-28 North American Rockwell Fragmenting tube energy absorber
US3779591A (en) * 1971-08-23 1973-12-18 W Rands Energy absorbing device
FR2657130A1 (fr) * 1990-01-12 1991-07-19 Domange Jarret Procede et dispositif permettant l'absorption d'energie emmagasinee par une masse en mouvement et utilisant l'usinage de copeaux de matiere.
DE4313592A1 (de) * 1993-04-26 1994-10-27 Deutsche Aerospace Airbus Flugzeug, insbesondere Großraumflugzeug
DE4425829C1 (de) * 1994-07-21 1995-10-12 Daimler Benz Aerospace Ag Strukturelement im Sandwich-Form
DE19623449A1 (de) * 1996-06-12 1998-01-02 Daimler Benz Ag Stoßenergie absorbierendes Rohrelement
DE19812579A1 (de) * 1998-03-21 1999-09-23 Audi Ag Energieabsorptionsvorrichtung für Fahrzeuge, insbesondere Kraftfahrzeuge und Verfahren zu ihrer Herstellung
US20030034659A1 (en) * 2001-08-17 2003-02-20 Summe Todd L. Taper and flare energy absorption system
US6601886B1 (en) * 2002-05-31 2003-08-05 Hexcel Corporation Energy absorbing composite tube
US20040231937A1 (en) * 2003-05-19 2004-11-25 Goodworth Alan Roy Aircraft structural components
WO2008065083A1 (fr) * 2006-11-28 2008-06-05 Eads Deutschland Gmbh Élément d'absorption de l'énergie d'une collision, élément de liaison doté d'un tel élément d'absorption de l'énergie d'une collision et aéronef

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19509340C2 (de) * 1995-03-15 1998-12-03 Daimler Benz Aerospace Airbus Strukturelement
US6378349B1 (en) * 2001-03-02 2002-04-30 Billy B. Waldrop Tool and use thereof for forming a sheet metal tube end
DE60224881D1 (de) * 2001-07-20 2008-03-20 Texas A & M Univ Sys Leitplankenendbereich eines kastenbalkens
DE10159067A1 (de) * 2001-12-01 2003-06-26 Daimler Chrysler Ag Faserverbund-Crashstruktur
CN100506646C (zh) * 2006-05-30 2009-07-01 空中客车德国有限公司 在飞机的两个机身段之间准备连接的方法
CN100420607C (zh) * 2007-04-23 2008-09-24 江西洪都航空工业集团有限责任公司 飞机机身口框
US7484781B1 (en) * 2007-11-28 2009-02-03 Isaak Garber Constant deceleration bumper
ES2358253B8 (es) * 2009-10-26 2013-03-27 Hierros Y Aplanaciones S.A.(Hiasa) Mecanismo para la absorción de la energía cinética procedente de impactos frontales de vehículos contra sistemas de contención de vehículos, de uso en los márgenes y medianas de las carreteras, tales como atenuadores de impactos y terminales de barrera.

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3608677A (en) * 1968-10-03 1971-09-28 North American Rockwell Fragmenting tube energy absorber
US3779591A (en) * 1971-08-23 1973-12-18 W Rands Energy absorbing device
FR2657130A1 (fr) * 1990-01-12 1991-07-19 Domange Jarret Procede et dispositif permettant l'absorption d'energie emmagasinee par une masse en mouvement et utilisant l'usinage de copeaux de matiere.
DE4313592A1 (de) * 1993-04-26 1994-10-27 Deutsche Aerospace Airbus Flugzeug, insbesondere Großraumflugzeug
DE4425829C1 (de) * 1994-07-21 1995-10-12 Daimler Benz Aerospace Ag Strukturelement im Sandwich-Form
DE19623449A1 (de) * 1996-06-12 1998-01-02 Daimler Benz Ag Stoßenergie absorbierendes Rohrelement
DE19812579A1 (de) * 1998-03-21 1999-09-23 Audi Ag Energieabsorptionsvorrichtung für Fahrzeuge, insbesondere Kraftfahrzeuge und Verfahren zu ihrer Herstellung
US20030034659A1 (en) * 2001-08-17 2003-02-20 Summe Todd L. Taper and flare energy absorption system
US6601886B1 (en) * 2002-05-31 2003-08-05 Hexcel Corporation Energy absorbing composite tube
US20040231937A1 (en) * 2003-05-19 2004-11-25 Goodworth Alan Roy Aircraft structural components
WO2008065083A1 (fr) * 2006-11-28 2008-06-05 Eads Deutschland Gmbh Élément d'absorption de l'énergie d'une collision, élément de liaison doté d'un tel élément d'absorption de l'énergie d'une collision et aéronef

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011134917A1 (fr) * 2010-04-30 2011-11-03 European Aeronautic Defence And Space Company Eads France Structure de fuselage d'aéronef comportant un dispositif absorbeur d'énergie
FR2959479A1 (fr) * 2010-04-30 2011-11-04 Eads Europ Aeronautic Defence Structure de fuselage d'aeronef comportant un dispositif absorbeur d'energie
US9545989B2 (en) 2010-04-30 2017-01-17 European Aeronautic Defence And Space Company Eads France Aircraft fuselage structure comprising an energy absorbing device
EP2679484A1 (fr) 2012-06-28 2014-01-01 Airbus Operations (Société par actions simplifiée) Structure primaire de fuselage pour aéronef comprenant des entretoises à rupture précoce pour accroître l'absorption d'énergie en cas de crash
EP2881319A1 (fr) * 2013-12-03 2015-06-10 Airbus Operations GmbH Agencement de connexion et structure
US9493224B2 (en) 2013-12-03 2016-11-15 Airbus Operations Gmbh Connection arrangement and structure
US20150344119A1 (en) * 2014-05-30 2015-12-03 Airbus Operations (Sas) Sliding connection between the floor structure and the hull structure of an aircraft
US9764816B2 (en) * 2014-05-30 2017-09-19 Airbus Operations (Sas) Sliding connection between the floor structure and the hull structure of an aircraft
US10962075B2 (en) 2017-12-27 2021-03-30 Airbus Operations Sas Shock absorber system comprising a primary shock absorber device and a secondary shock absorber device of different stiffnesses, associated structure and aircraft

Also Published As

Publication number Publication date
FR2927606A1 (fr) 2009-08-21
EP2257465B1 (fr) 2013-04-24
FR2927606B1 (fr) 2010-07-30
US8814092B2 (en) 2014-08-26
CN101977809B (zh) 2013-07-31
BRPI0907873A2 (pt) 2015-07-21
EP2257465A1 (fr) 2010-12-08
US20110042513A1 (en) 2011-02-24
CN101977809A (zh) 2011-02-16

Similar Documents

Publication Publication Date Title
EP2257465B1 (fr) Element structural absorbeur d'energie en materiau composite et fuselage d'aeronef muni d'un tel absorbeur
WO2011073315A1 (fr) Element structural d'absorption d'energie en materiau composite
EP0802100B1 (fr) Véhicule ferroviaire à cabinet de conduite comportant une structure absorbeuse d'énergie à déformation progressive
EP2679484B1 (fr) Structure primaire de fuselage pour aéronef comprenant des entretoises à rupture précoce pour accroître l'absorption d'énergie en cas de crash
FR2817608A1 (fr) Poutre composite a initiateur de rupture integre et fuselage d'aeronef integrant de telles poutres
EP2113457A1 (fr) Siège anti-écrasement d'un véhicule
FR2984274A1 (fr) Poutre securisee, en particulier cadre fort de fuselage, ainsi que fuselage d'aeronef equipe de tels cadres
EP1813527A1 (fr) Structure composite anti-crash à maintien latéral pour aéronef
FR2936218A1 (fr) Structure primaire pour aeronef en materiau composite a tenue au crash amelioree et element structural absorbeur d'energie associe.
EP2655919B1 (fr) Pièce structurale à capacité de dissipation d'énergie
WO2015097410A1 (fr) Augmentation de la compressibilite d'une poutre de pare-choc
FR2994410A1 (fr) Table pour l'amenagement d'un vehicule, en particulier de transport en commun
FR3023250A1 (fr) Traverse transversale de renfort amelioree a rupture programmee
EP2563651B1 (fr) Structure de fuselage d'aéronef comportant un dispositif absorbeur d'énergie
EP2767458B1 (fr) Plancher arrière de charge pour véhicule automobile, comportant un longeronnet renforcé
EP1580096A1 (fr) Châssis de véhicule comportant un dispositif antivibratoire
EP3164319A1 (fr) Traverse transversale de renfort améliorée pour le choc latéral et le choc frontal
FR3029851A1 (fr) Traverse de porte allegee
EP3315377B1 (fr) Structure de caisse pour un véhicule sur rails et procédé de fabrication d'une telle structure de caisse
EP3059137B1 (fr) Dispositif d'absorption de choc pour un dispositif d'attelage de véhicule ferroviaire
EP3164318B1 (fr) Traverse transversale de renfort améliorée
EP2508419A1 (fr) Procédé de ralentissement de propagation de fissures dans une structure sécurisée et cadre fort sécurisé, en particulier de fuselage
EP3027448B1 (fr) Bloc avant pour un véhicule automobile
EP3489130A1 (fr) Poutre configurée pour absorber une énergie libérée lors d'une collision
FR3008664A1 (fr) Dispositif de montage d'une pedale dans un vehicule automobile

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980109642.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09710987

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009710987

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12866935

Country of ref document: US

ENP Entry into the national phase

Ref document number: PI0907873

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20100816